WO2015163200A1 - Method for producing heat storage member - Google Patents

Method for producing heat storage member Download PDF

Info

Publication number
WO2015163200A1
WO2015163200A1 PCT/JP2015/061522 JP2015061522W WO2015163200A1 WO 2015163200 A1 WO2015163200 A1 WO 2015163200A1 JP 2015061522 W JP2015061522 W JP 2015061522W WO 2015163200 A1 WO2015163200 A1 WO 2015163200A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage member
manufacturing
storage material
filling
Prior art date
Application number
PCT/JP2015/061522
Other languages
French (fr)
Japanese (ja)
Inventor
別所 久徳
山下 隆
大治 澤田
雄一 上村
夕香 内海
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016514878A priority Critical patent/JPWO2015163200A1/en
Publication of WO2015163200A1 publication Critical patent/WO2015163200A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a method for manufacturing a heat storage member, and more particularly to a method for manufacturing a heat storage member to which an overcooling prevention material is added.
  • the heat storage member cools the heat storage material solution filled in the container and changes the phase to a solid phase to store heat, but there may be a supercooling phenomenon that does not become a solid phase even when cooled to a temperature lower than the phase change temperature.
  • a supercooling prevention material is added into the container.
  • the supercooling prevention material is preferably present in the container as a solid in order to promote the generation of a fine solid phase that becomes the nucleus when the aqueous solution of the heat storage material changes from the liquid phase to the solid phase.
  • the supercooling prevention material is set to a temperature condition higher than normal temperature so that the solubility of the supercooling prevention material in the heat storage material solution is high, and the supercooling prevention material is put into the heat storage material solution, and the heat storage material is used using a stirrer and a stirring kiln.
  • a method is used in which the solution is stirred to dissolve the supercooling preventive material, and the container is filled with the heat storage material solution in which the supercooling preventive material is dissolved (for example, see Patent Documents 1 and 2).
  • JP 2001-107035 A Japanese Patent Laid-Open No. 2002-030279
  • the temperature of the heat storage material solution in the stirring kiln is gradually decreased until the heat storage material solution in which the supercooling prevention material is dissolved is transferred from the stirring kiln to the heat storage material container by stirring.
  • a phenomenon occurs in which the supercooling prevention material gradually precipitates on the inner wall of the stirring kiln. For this reason, when the heat storage material solution is sequentially filled in the plurality of containers from the stirring kiln, the dissolution amount of the supercooling prevention material in the heat storage material solution filled in the containers after a certain order becomes smaller than the desired amount. Therefore, there arises a problem that the function of preventing overcooling is impaired.
  • composition of the supercooling preventive material changes depending on the heating conditions at the time of dissolution of the supercooling preventive material, resulting in a problem that the reliability of the heat storage member (for example, repeated characteristics of freezing and thawing) is reduced. .
  • An object of the present invention is to provide a method of manufacturing a heat storage member that prevents overcooling and has excellent heat storage performance.
  • a melting process for melting the heat storage material A filling step of filling the container with a heat storage material solution in which the heat storage material is dissolved from a filling port that opens the container; An addition step of adding a solid supercooling prevention material into the container from the filling port;
  • the manufacturing method of the thermal storage member characterized by having the sealing process which seals the said filling port.
  • the filling step may be performed before the addition step, and may be a method for manufacturing a heat storage member.
  • a method for producing the heat storage member of the present invention may be performed in which the adding step is performed before the filling step.
  • a method for producing the heat storage member of the present invention Before the addition step, It may be a manufacturing method of a heat storage member characterized by having a tableting step of tableting the supercooling prevention material into an addition specified capacity.
  • a method for producing the heat storage member of the present invention Before the addition step, The manufacturing method of the heat storage member characterized by having the coloring process which colors the said supercooling prevention material.
  • the heat storage material may include a hydrated salt heat storage material and a method for manufacturing a heat storage member.
  • the hydrate salt heat storage material is Even if it is the manufacturing method of the heat storage member characterized by being the heat storage material which changes reversibly into the aqueous solution containing a tetraalkylammonium salt and the clathrate hydrate which uses the said tetraalkylammonium salt as a guest molecule Good.
  • the tetraalkylammonium salt may be tetrabutylammonium bromide, and may be a method for manufacturing a heat storage member.
  • a method for producing the heat storage member of the present invention may be characterized in that the supercooling prevention material includes sodium tetraborate.
  • the container is It may be a method for producing a heat storage member, which is a resin molded container using polyethylene or polypropylene as a molding material.
  • the container is The heat storage member manufacturing method may be formed of a flexible film packaging material made of nylon or aluminum.
  • the storage may be characterized by mounting the heat storage member manufactured by the method for manufacturing the heat storage member of the present invention.
  • the storage may be a refrigerator-freezer.
  • FIGS. 1-10 A method for manufacturing a heat storage member according to an embodiment of the present invention will be described with reference to FIGS.
  • the dimensions and ratios of the respective constituent elements are appropriately varied for easy understanding.
  • FIG. 1 shows a method for manufacturing a heat storage member according to Example 1 of the present embodiment.
  • FIGS. 1A to 1E show a method for manufacturing a heat storage member according to this embodiment in this order in this order.
  • 1 (a) to 1 (c) show a stirring kiln (stirring tank) 3 and a stirrer 5.
  • the stirring kiln 3 includes a circular opening for introducing a solvent and a solute, and a kiln section 3a having a U-shaped cross section extending vertically downward from the circular opening.
  • FIG. 1A shows a state where the on-off valve 3c is closed.
  • the kiln unit 3a places the heat storage material container 1 below the discharge port 3d so that the heat storage material solution discharged from the discharge port 3d can be filled into the resin-molded heat storage material container 1a (see FIGS. 1C to 1E). It is hold
  • the stirrer 5 is attached to a setting operation part for setting the number of stirrings per minute, a stirring bar extending from the setting operation part to the inside of the kiln part 3a of the stirring kiln 3, and rotatably attached to the tip of the stirring bar. And a stirring blade 5a.
  • the solvent and the solute can be stirred by rotating the stirring blade 5a in the kiln part 3a in which the solvent and the solute are charged.
  • FIG. 1 (a) shows a state in which water 9 is supplied from the water input device 7 to the kiln part 3 a of the stirring furnace 3 and the heat storage material 13 is input from the heat storage material bag 11.
  • the inside of the kiln part 3a is in a state in which the heat storage material 13 is mixed in the water 9.
  • the stirrer 5 of the stirrer 5 is rotated as shown by the arrow 5b, and the stirring blade 5a is rotated in the water 9 mixed with the heat storage material 13.
  • the water 9 and the heat storage material 13 are agitated.
  • the heat storage material 13 is dissolved in the water 9 by stirring for a predetermined time, and the heat storage material solution 15 is produced.
  • the above process is a melting process for melting the heat storage material. In the melting step of the present embodiment, the process of heating the kiln part 3a of the stirring kiln 3 is not necessary.
  • the heat storage member 1 is installed by positioning the filling port 1b of the heat storage material container 1a of the heat storage member 1 below the discharge port 3d.
  • the opening / closing valve 3c is opened, the heat storage material solution 15 is discharged from the discharge port 3d, and the heat storage material solution 15 in which the heat storage material 13 is dissolved is stored in the heat storage material container.
  • the heat storage material container 1a is filled from the filling port 1b of 1a.
  • the process shown in FIG. 1C is a filling process. The filling process is repeated by the number of heat storage members 1 to be produced.
  • the heat storage member 1 is taken out from the lower part of the stirring kiln 3, and the solid supercooling prevention material 21 is added into the heat storage material container 1a.
  • the step shown in FIG. 1D is an addition step. Since the solid supercooling prevention material 21 is added to each heat storage material container 1a at room temperature, a necessary amount of the supercooling prevention material 21 can be reliably added to the heat storage member 1.
  • the necessary amount of the supercooling prevention material 21 is measured by the quantitative sag 19, and the excess amount is put into the heat storage material container 1a through the funnel 17 inserted into the filling port 1b. Anti-cooling material 21 is added. By using the funnel 17 and the fixed sag 19, the supercooling prevention material 21 can be reliably and accurately added to the heat storage material container 1a.
  • the filling port 1b is sealed so that the heat storage material solution 15 and the supercooling prevention material 21 filled in the heat storage material container 1a do not leak.
  • the filling port 1b is sealed by bringing the cap 1c molded with resin into contact with the filling port 1b and sealing by ultrasonic welding.
  • the process shown in FIG. 1E is a sealing process.
  • a flexible film packaging material made of nylon or aluminum or the like is used as the heat storage material container, the corners of the packaging material are heat-pressed and sealed with a heat seal to form a bag.
  • a pillow wrapping machine is often used for “bag-like formation ⁇ content filling ⁇ sealing”.
  • the supercooling prevention material 21 is not dissolved in the heat storage material solution 15 being stirred. Therefore, the stirring kiln until the heat storage material solution 15 is transferred from the stirring kiln to the heat storage material container 1a. Even if the temperature of the heat storage material solution 15 in 3 gradually decreases, the supercooling prevention material 21 does not precipitate on the inner wall of the stirring kiln 3.
  • the heat storage member 1 manufactured according to the present embodiment makes the amount of addition of the supercooling prevention material 21 in the heat storage material container 1a accurately and constant regardless of the order in which the heat storage material container 15 is filled with the heat storage material solution 15 from the stirring kiln 3. Therefore, an excellent overcooling prevention function can be exhibited.
  • the solid supercooling prevention material 21 is added to the heat storage material container 1a without heating and stirring. For this reason, the amount of dissolution of the supercooling prevention material 21 in the heat storage material solution 15 is small. Therefore, even if the environmental temperature changes after the heat storage member 1 is manufactured, the supercooling prevention material 21 and the heat storage material 15 do not catch the solution (water 9), so the heat storage dissolved in the water 9 in the dissolution process. The material 13 does not precipitate. Therefore, according to the present embodiment, there is no problem that the phase change temperature and the amount of latent heat of the heat storage material solution 15 vary from one heat storage member 1 to another.
  • the solid supercooling prevention material 21 is added to the heat storage material container 1a without heating and stirring, so that the composition of the supercooling prevention material 21 does not have to be changed, so that the reliability of the supercooling prevention material 21 is ensured.
  • the reliability for example, the repeated characteristics of freezing and thawing
  • FIG. 2 shows a method for manufacturing a heat storage member according to Example 2 of the present embodiment.
  • the filling step (FIG. 1 (c)) of filling the heat storage material solution 15 into the heat storage material container 1 a includes the solid supercooling prevention material 21 in the heat storage material container 1 a. It is carried out before the addition step (FIG. 1 (d)) to be added.
  • the second embodiment is characterized in that the adding step is performed before the filling step.
  • 2A to 2B and FIGS. 2D to 2E show a method for manufacturing a heat storage member according to this embodiment in this order in this order.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIGS. 2 (a) to 2 (b) show a melting process for melting the heat storage material.
  • the dissolution process of the present example is the same as the dissolution process shown in FIGS. 1A to 1B of Example 1.
  • FIG.2 (c) has shown the addition process which adds the solid supercooling prevention material 21 in the thermal storage material container 1a.
  • the addition process shown in FIG. 1D of the first embodiment is performed after the filling process of filling the heat storage material container 15 with the heat storage material solution 15 in which the heat storage material 13 is dissolved. Therefore, in Example 1, the supercooling prevention material 21 is added to the heat storage material container 1a filled with the heat storage material solution 15.
  • the addition process of a present Example adds the supercooling prevention material 21 to the empty thermal storage material container 1a with which the thermal storage material solution 15 is not filled.
  • the heat storage material solution 15 may adhere to the filling port 1b of the heat storage material container 1a by the filling step, and the supercooling prevention material 21 may adhere to the filling port 1b in the subsequent addition step.
  • the addition step is before the filling step, it is possible to prevent the supercooling prevention material 21 from adhering to the filling port 1b.
  • 2A and 2B and the addition step shown in FIG. 2C can be performed in parallel, so that the process working time (tact time) can be shortened. it can.
  • FIG. 2D shows a filling process in which the heat storage material solution 15 in which the heat storage material 13 is dissolved is filled from the filling port 1b of the heat storage material container 1a into the heat storage material container 1a to which the supercooling prevention material 21 is added. Since the filling method is the same as that of the first embodiment, the description is omitted.
  • FIG. 2E shows a sealing process. Since the sealing process of this embodiment is the same as that of Embodiment 1, the description thereof is omitted. In the present embodiment, the same effects as those of the first embodiment can be obtained.
  • Thermal storage refers to a technique for temporarily storing heat and extracting the heat as needed.
  • Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like.
  • latent heat storage is used.
  • Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance.
  • the latent heat storage has a high heat storage density and a constant output temperature.
  • Materials for the heat storage material solution that uses latent heat storage include ice (water), paraffin (a general term for saturated chain hydrocarbons represented by the general formula C n H 2n + 2 ), inorganic salts, inorganic salt hydrates, clathrate water Japanese products are used.
  • aqueous solution used for the material of the latent heat storage material solution an aqueous solution in which potassium chloride (KCl) and ammonium chloride (NH 4 Cl) are dissolved in water, sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) are used.
  • KCl potassium chloride
  • NH 4 Cl ammonium chloride
  • sodium chloride NaCl
  • ammonium chloride NH 4 Cl
  • a latent heat storage material solution is not limited to these aqueous solutions.
  • the inorganic salt hydrate used for the material of the latent heat storage material solution sodium sulfate decahydrate (Na 2 SO 4 ⁇ 10H 2 O), sodium acetate trihydrate, sodium thiosulfate pentahydrate, hydrogen phosphate Binary composition of disodium dodecahydrate and dipotassium hydrogen phosphate hexahydrate (melting point 5 ° C), lithium nitrate trihydrate mainly composed of lithium nitrate trihydrate and chloride Binary composition with magnesium hexahydrate (melting point 8-12 ° C) or ternary composition of lithium nitrate trihydrate-magnesium chloride hexahydrate-magnesium bromide hexahydrate (melting)
  • the material of the latent heat storage material solution is not limited to these inorganic salt hydrates.
  • Hydrated salt heat storage material can also be used as the material of the latent heat storage material solution.
  • the hydrate salt heat storage material is a heat storage material that reversibly changes into an aqueous solution containing a tetraalkylammonium salt and an clathrate hydrate containing the tetraalkylammonium salt as a guest molecule.
  • tetraalkylammonium salts include tetrabutylammonium bromide (TBAB) and tetrabutylammonium chloride (TBAC).
  • TBAB tetrabutylammonium bromide
  • TBAC tetrabutylammonium chloride
  • dissolved these in water can be used as a latent heat storage material solution, in this embodiment, a latent heat storage material solution is not limited to these aqueous solutions.
  • the heat storage material solution may be gelled.
  • the gelled heat storage material solution contains a gelling agent.
  • a gel is a gel in which molecules are partially cross-linked to form a three-dimensional network structure that absorbs a solvent and swells therein. The composition of the gel is almost in a liquid phase, but mechanically it is in a solid phase.
  • the gelled heat storage material solution maintains a solid state as a whole even if the phase changes between the solid phase and the liquid phase, and does not have fluidity.
  • the gel-like heat storage material solution is easy to handle because it can maintain a solid state as a whole before and after the phase change.
  • Examples of the gelling agent include synthetic polymers, natural polysaccharides, gelatin, and the like using molecules having one or more hydroxyl groups or carboxyl groups, sulfonic acid groups, amino groups, and amide groups.
  • Examples of the synthetic polymer include polyacrylamide derivatives, polyvinyl alcohol, polyacrylic acid derivatives, and the like.
  • Examples of natural polysaccharides include agar, alginic acid, fercellan, pectin, starch, a mixture of xanthan gum and locust bean gum, tamarind seed gum, julan gum, carrageenan and the like. Although these are mentioned as an example of a gelling agent, in this embodiment, a gelling agent is not limited to these.
  • a supercooling prevention material ammonium alum (AlNH 4 (SO 4 ) 2 ⁇ 12H 2 O), potassium alum (AlK (SO 4 ) 2 ⁇ 12H 2 O), sodium tetraborate decahydrate (Na 2 B) 4 O 7 ⁇ 10H 2 O), sodium tetraborate pentahydrate (Na 2 B 4 O 7 ⁇ 5H 2 O), disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 ⁇ 12H 2 O) And sodium sulfate decahydrate (Na 2 SO 4 .10H 2 O).
  • a supercooling prevention material is not limited to these.
  • the heat storage material container 1a is, for example, a resin molded container using a resin material as a molding material.
  • the resin material used for the heat storage material container 1a include plastic materials such as polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS resin, acrylic resin (PMMA), and polycarbonate (PC).
  • the heat storage material container 1a is not limited to resin, and may be formed using a metal inorganic material such as glass, ceramic, or aluminum as a forming material. Further, the heat storage material container 1a may contain fiber (glass wool, cotton, cellulose, nylon, carbon nanotube, carbon fiber, etc.), powder (alumina powder, metal powder, microcapsule, etc.) and other modifiers. Good. Moreover, the heat storage material container 1a may be formed of a flexible film packaging material having nylon or aluminum as a forming material.
  • FIG. 3 shows a method for manufacturing a heat storage member according to Example 3 of the present embodiment.
  • FIGS. 3A to 3E show the manufacturing method of the heat storage member according to this embodiment in this order in this order.
  • the execution order of the steps in this embodiment is the same as that in Embodiment 1 shown in FIG. 1 except that a quantitative powder filling machine 23 is used in place of the funnel 17 and the quantitative sag 19 in the process of adding the supercooling prevention material 21. have. Since the other points are the same as those in the first embodiment, the description thereof is omitted.
  • Quantitative powder filling machine 23 has a circular opening for introducing supercooling prevention material 21 and a powder container 23a having a U-shaped cross section extending vertically downward from the circular opening.
  • a discharge port 23c for discharging the supercooling prevention material 21 stored in the storage unit and an opening / closing valve for opening and closing the discharge port 23c are provided at the lowermost part of the powder storage unit 23a.
  • FIG. 3D shows a state where the open / close valve is open.
  • the powder storage part 23a has a height sufficient to install the heat storage material container 1 below the discharge port 23c so that the supercooling prevention material 21 discharged from the discharge port 23c can be filled into the resin-molded heat storage material container 1a. Are held by legs 23b.
  • the addition step introduces the supercooling prevention material 21 into the quantitative powder filling machine 23 and connects the discharge port 23 c of the quantitative powder filling machine 23 to the filling port 1 b of the heat storage member 1.
  • the supercooling prevention material 21 is discharged from the discharge port 23c by a predetermined amount and added to the heat storage material container 1a.
  • FIG. 4 shows a method for manufacturing a heat storage member according to Example 4 of the present embodiment.
  • 4 (a) to 4 (b) and 4 (d) to 4 (e) show, in this order, the method for manufacturing the heat storage member according to this embodiment in time series.
  • the execution order of the steps in this example is the same as that in Example 2 shown in FIG. 2, but the quantitative powder filling machine 23 of Example 3 is used in place of the funnel 17 and the quantitative sag 19 in the addition process of the supercooling prevention material 21. It has the feature in the point. Since the other points are the same as those of the second embodiment, the description thereof is omitted.
  • the quantitative powder filling machine 23 the supercooling prevention material 21 can be reliably and accurately added to the heat storage material container 1a. Further, the same effects as those of the second embodiment can be obtained.
  • Example 5 a specific example of the heat storage member manufacturing method using the heat storage member manufacturing method according to the second embodiment will be described as a fifth embodiment. First, materials, members, equipment, jigs, and the like used for manufacturing the heat storage member will be described.
  • Heat storage material 13 tetrabutylammonium bromide (TBAB); 21 kg (35 wt%) (2) Supercooling prevention material 21: sodium tetraborate pentahydrate; 1.2 kg (2 wt%) (3) Water 9; 37.8 kg (63 wt%) (4) Heat storage material container 1a: 150 pieces; material is PE, capacity is 500 cc, and outer dimensions are a thin rectangular parallelepiped shape having a length of 220 mm, a width of 140 mm, and a height of 25 mm.
  • FIGS. 2 (a) to 2 (e) a method for manufacturing a heat storage member will be described with reference to FIGS. 2 (a) to 2 (e).
  • FIG. 2 (a) only 37.8 kg of water 9 is charged into the kiln part 3 a of the stirring kiln 3 from the water charging device 7, and from the heat storage material bag 11 through a sieve (not shown), the heat storage material 13.
  • 21 kg of TBAB is added.
  • the inside of the kiln part 3a is in a state in which the heat storage material 13 is mixed in the water 9.
  • the stirrer 5 of the stirrer 5 is rotated as shown by the arrow 5b, and the stirring blade 5a is rotated in the water 9 mixed with the heat storage material 13.
  • the water 9 and the heat storage material 13 are agitated.
  • the heat storage material 13 is dissolved in the water 9 by stirring for a predetermined time to produce a heat storage material solution 15 of an aqueous TBAB solution.
  • the above process is a melting process for melting the heat storage material. In the melting step of the present embodiment, the process of heating the kiln part 3a of the stirring kiln 3 is not necessary.
  • sodium tetraborate pentahydrate is weighed as a supercooling prevention material 21 with a quantitative sag 19, and the funnel 17 is inserted into the filling port 1b to empty.
  • the addition process which adds a required quantity in normal temperature in the thermal storage material container 1a is implemented.
  • the heat storage member 1 is installed by positioning the filling port 1 b of the heat storage material container 1 a of the heat storage member 1 below the discharge port 3 d below the kiln part 3 a of the stirring kiln 3. .
  • the on-off valve 3c is opened, the heat storage material solution 15 is discharged from the discharge port 3d, and the supercooling prevention material 21 is added from the filling port 1b.
  • the heat storage material solution 15 is filled in the material container 1a.
  • the filling port 1b is sealed so that the heat storage material solution 15 and the supercooling prevention material 21 filled in the heat storage material container 1a do not leak.
  • the filling port 1b is sealed by contacting the cap 1c molded with resin with the filling port 1b and sealing with an ultrasonic welding machine (not shown).
  • the heat storage material container 1a having a capacity of 500 g is filled with 400 g of the heat storage material solution 15, up to 150 heat storage members 1 can be manufactured. It describes below about the work time required for every work process in manufacture of the above heat storage member.
  • Heat storage material 13 tetrabutylammonium bromide (TBAB); 21 kg (35 wt%)
  • Supercooling prevention material 21 sodium tetraborate pentahydrate; 1.2 kg (2 wt%) (3) Water 9; 37.8 kg (62 wt%)
  • Heat storage material container 1a 150 pieces; material is PE, capacity is 500 cc, and outer dimensions are a thin rectangular parallelepiped shape having a length of 220 mm, a width of 140 mm, and a height of 25 mm.
  • 150 caps for sealing the filling port 1b
  • Stirrer 5 (7) Stirring furnace 3 (8)
  • Sieve (not shown); Aperture size of about 100 ⁇ m (9)
  • Ultrasonic welding machine not shown
  • FIG. 5 shows a method for manufacturing a heat storage member according to a comparative example.
  • FIGS. 5A to 5F show the heat storage member manufacturing method according to this comparative example in this order in this order.
  • the same components as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a heating process 27 is performed in which the bottom of the stirring kiln 3 is heated to heat the interior of the kiln 3a to 60 ° C.
  • the stirrer 5 of the stirrer 5 is rotated as shown by the arrow 5b, and the stirring blade 5a is rotated in the water 9 in which the heat storage material 13 and the supercooling prevention material 21 are mixed, so that the water 9, the heat storage material 13 and the overcooling prevention are prevented.
  • the material 21 is agitated.
  • the heat storage material 13 and the supercooling prevention material 21 are dissolved in the water 9 by stirring and heating for a predetermined time, and the heat storage material solution 29 of the TBAB aqueous solution in which the supercooling prevention material 21 is dissolved is produced.
  • the above process is a melting process for melting the heat storage material.
  • the heat storage member 1 ′ is installed by positioning the filling port 1 b of the heat storage material container 1 a of the heat storage member 1 ′ below the discharge port 3 d below the kiln part 3 a of the stirring kiln 3.
  • the opening / closing valve 3c is opened, and the heat storage material solution 29 is discharged from the discharge port 3d to dissolve the heat storage material 13 and the supercooling prevention material 21.
  • the solution 29 is filled into the heat storage material container 1a from the filling port 1b of the heat storage material container 1a.
  • the filling process is repeated by the number of heat storage members 1 ′ to be produced.
  • FIG. 5 (e) shows the state of the filling process when the filling process shown in FIG. 5 (d) is repeated and the number of heat storage members 1 ′ to be manufactured is reduced.
  • the time shown in FIG. 5 (e) is that a predetermined time has elapsed since the heating process 27 in the kiln part 3a is finished, and the temperature of the heat storage material solution 29 in the kiln part 3a is compared with that during heating. It is falling. For this reason, the solubility of the supercooling prevention material 21 falls with the temperature fall of the thermal storage material solution 29 in a filling process, and the supercooling prevention material 21 precipitates.
  • FIG. 5 (e) shows the state of the filling process when the filling process shown in FIG. 5 (d) is repeated and the number of heat storage members 1 ′ to be manufactured is reduced.
  • the time shown in FIG. 5 (e) is that a predetermined time has elapsed since the heating process 27 in the kiln part 3a is finished, and the temperature
  • FIG. 6 is a diagram illustrating a state in which the supercooling prevention material 21 is deposited in the kiln 3a.
  • FIG. 6A shows the state of the heat storage material solution 29 at the time when about 5 minutes have passed since the dissolution step was completed. It can be seen that the heat storage material solution 29, which was initially transparent, becomes cloudy and the supercooling prevention material 21 starts to precipitate.
  • FIG. 5 (f) shows the inside of the kiln part 3 a in a state where the heat storage material solution 29 is exhausted by repeating the filling process a predetermined number of times, and the deposited supercooling prevention material 21 remains on the bottom of the kiln part 3 a. It shows the state.
  • FIG. 6B shows that the residue of the supercooling prevention material 21 can be confirmed on the bottom surface of the kiln part 3a after a predetermined number of filling steps.
  • TBAB 21 kg (35 wt%)
  • Na tetraborate 1.2 kg (2 wt%)
  • water 37.8 kg immediately after the completion of the melting step.
  • 60 kg of the heat storage material aqueous solution 29 can be produced with the configuration of (63 wt%).
  • the heat storage material container 1a having a capacity of 500 g is filled with 400 g of the heat storage material solution 29, a maximum of 150 heat storage members 1 'can be manufactured. It describes below about the work time required for every work process in manufacture of the above heat storage member.
  • the heat storage performance of the heat storage member 1 manufactured by the manufacturing method of Example 5 and the heat storage member 1 ′ manufactured by the manufacturing method of the comparative example will be described with reference to FIG.
  • the heat storage performance was measured under the following conditions.
  • the heat storage member 1 according to Example 5 and the heat storage member 1 ′ according to the comparative example are placed in the refrigerator compartment of the refrigerator installed in an environment where the room temperature is + 30 ° C., and the refrigerator is turned on to cool the refrigerator compartment. Start.
  • the temperature change from the start of cooling until the lapse of 18 hours was measured at a set temperature of the refrigerator compartment of + 1 ° C.
  • the phase change temperatures of the heat storage member 1 and the heat storage member 1 ′ are both + 6 ° C.
  • the heat storage member 1 uses the five heat storage members 1' produced lastly among the 150 heat storage members 1 'produced in the comparative example.
  • the heat storage member 1 uses five heat storage members 1 arbitrarily selected from the 150 heat storage members 1 produced in the fifth embodiment.
  • the vertical axis represents temperature (° C.) and the horizontal axis represents elapsed time (h).
  • a curve indicated by a solid line indicates a temperature change of the heat storage member 1 ′ according to the comparative example
  • a curve indicated by a broken line indicates a temperature change of the heat storage member 1 according to the fifth embodiment.
  • the heat storage member 1 according to the example is in a supercooled state 4 ° C. lower than the phase change temperature + 6 ° C. after 4 hours from the start of cooling, and after 5 hours from the start of cooling. Becomes + 6 ° C. of the phase change temperature, and the phase change from the liquid phase to the solid phase is started.
  • the heat storage material solution 15 of the heat storage member 1 completely changes to a solid phase. Thereafter, the temperature of the heat storage member 1 is decreased by sensible heat radiation in about 3 hours, and after 10 hours from the start of cooling, the temperature is maintained in the range of + 1 ° C. to + 2 ° C., which is substantially the same as the set temperature in the refrigerator compartment.
  • the heat storage member 1 ′ according to the comparative example is in a supercooled state 4 ° C. lower than + 6 ° C. which is the phase change temperature after 4 hours from the start of cooling
  • the heat storage member 1 ′ is almost the same as the set temperature in the refrigerator compartment + 1 It is maintained in the range of 0 ° C to + 2 ° C. That is, the heat storage material solution 29 of the heat storage member 1 ′ according to the comparative example is maintained in a supercooled state without undergoing a phase change from the liquid phase to the solid phase.
  • the supercooling prevention material is gradually deposited in the kiln part 3 a from the start to the end of the filling process, and therefore, the filling of the heat storage material solution 29 is performed.
  • the later the heat storage member 1 ' the less the amount of supercooling prevention material 21 filled in the heat storage material container 1a is less than the required amount. For this reason, even if the heat storage material solution 29 reaches a predetermined phase change temperature, it does not change to a solid phase and exists in a liquid phase while being in a supercooled state, so that latent heat storage due to the phase change is hindered.
  • the necessary amount of the supercooling prevention material 21 is added into the heat storage material container 1a regardless of the filling time, so that the heat storage material solution 15 is stored in the refrigerator compartment.
  • the phase can be changed quickly and reliably to the solid phase.
  • FIG. 8A shows a state in which sodium tetraborate is added into a beaker filled with water. Since sodium tetraborate is only added and not heated or stirred, sodium tetraborate fine particles are precipitated on the bottom surface.
  • FIG. 8B shows that when the beaker is heated to + 60 ° C. and stirred at room temperature (+ 25 ° C.), sodium tetraborate is completely dissolved to prepare an aqueous sodium tetraborate solution and left to stand. It shows a state in which acicular crystals are precipitated instead of fine particles of sodium tetraborate.
  • FIG. 8 (c) shows a state where the solution shown in FIG. 8 (b) is heated to + 60 ° C. and stirred again, but sodium tetraborate is not completely dissolved and the aqueous solution is cloudy. Yes.
  • Example 6 The present embodiment is characterized by having a tableting step for tableting the supercooling prevention material 21 to the specified addition volume before the adding step in the above-described Examples 1 to 5.
  • a powder of sodium tetraborate is formed into a fixed mass (tablet) using a tablet machine.
  • a tablet machine For example, using a small rotary tablet machine as a tablet machine, sodium tetraborate pentahydrate having a particle size of about 1 ⁇ m is formed into a lump (tablet) having a weight of about 8 g by compression molding.
  • the addition step it is not necessary to quantify and add sodium tetraborate using the fixed sag 19 or funnel 17, and one tablet of sodium tetraborate is stored in the heat storage material container from the filling port 1b. Since it is only put in 1a, work efficiency can be greatly improved. According to this embodiment, it is possible to reduce the work time, which took 10 seconds to add the supercooling prevention material 21 to one heat storage material container 1a, to 1 to 2 seconds.
  • Example 7 The present embodiment is characterized by having a coloring step for coloring the supercooling prevention material 21 before the adding step in the first to fifth embodiments.
  • a coloring step for coloring the supercooling prevention material 21 is preferable to color coat sodium tetraborate tableted in Example 6.
  • a coating step for coloring the inorganic pigment is added to color the tableted sodium tetraborate.
  • a pigment-based colorant is preferable to a colorant rather than a dye-based colorant.
  • inorganic colorants are preferred from the viewpoint of light resistance and cost.
  • a metal such as iron or lead
  • examples thereof include Fe 2 O 3 , PbO, HgS, CdS, and Sb 2 O 3 .
  • These colorants may be temperature-indicating materials having the characteristic of reversibly changing color development and decoloration at any constant temperature. Filling work efficiency can be improved by tableting or coloring the supercooling prevention material 21 according to Example 6 or Example 7.
  • FIG. 9A shows a side surface of the manufacturing apparatus 31 of this embodiment
  • FIG. 9B shows a front surface of the manufacturing apparatus 31.
  • the manufacturing apparatus 31 according to the present embodiment is used in the melting process and the filling process.
  • the manufacturing apparatus 31 includes a stirring kiln 3 and a stirrer 5 for use in a melting step of dissolving the heat storage material 13 in water 9. Since the stirring kiln 3 and the stirrer 5 are the same as the structure demonstrated using FIG. 1, the description is abbreviate
  • the heat storage material 13 is put into the stirring kiln 3 filled with the water 9, and the water 9 and the heat storage material 13 in the stirring kiln 3 are stirred using the stirrer 5 to prepare the heat storage material solution 15.
  • the opening / closing valve 3c of the stirring kiln 3 is connected to the inlet of the pump type quantitative filling machine 33 by a sanitary pipe 35 or the like.
  • the stirring kiln 3 and the pump type quantitative filling machine 33 are connected to each other by a pipe perpendicular to the height direction.
  • the pump type quantitative filling machine 33 is used when the heat storage material solution 15 is filled in the heat storage material container 1a in the filling step.
  • the pump type quantitative filling machine 33 forms a cavity of a constant space between the rotor and the stator, and the filling material passes through the portion of the cavity in the direction of the arrow in FIG. It is structured to be taken out from
  • the heat storage material solution 15 is introduced into the pump type quantitative filling machine 33, the discharge port 37 of the pump type quantitative filling machine 33 is connected to the filling port 1a, and the heat storage material solution 15 is discharged from the discharge port 37 by a predetermined amount.
  • the heat storage material container 1a is discharged and filled.
  • the pump type quantitative filling machine 33 By using the pump type quantitative filling machine 33, a method of manufacturing a heat storage member that can be filled at high speed and with high accuracy can be realized. According to the manufacturing apparatus 31 of the present embodiment, the processes from the melting step to the filling step can be efficiently executed collectively.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the phase change temperature of the thermal storage material solution 15 is +6 degreeC
  • this invention is not limited to this.
  • the heat storage material solution 15 having a desired phase change temperature can be manufactured by changing the ratio of the heat storage material 13 and the water 9 or by using a heat storage material other than TBAB.
  • the internal temperature is kept at a desired temperature for a certain period of time during a power failure in areas where power conditions are not good. Can be maintained.
  • the storage equipped with the heat storage member manufactured by the method for manufacturing the heat storage member according to the above embodiment is particularly suitable for alcoholic beverages such as wine, beer and sake, beverages such as juice and water, foods, pharmaceuticals, etc. It is possible to cool and keep the warmed material at an appropriate temperature. There are suitable storage temperatures for these insulations.
  • the said heat storage can store these heat retention materials for a long period of time at a desired storage temperature.
  • the present invention can be widely used for manufacturing a heat storage member to which a supercooling prevention material is added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

The objective of the present invention is to provide a method for producing a heat storage member having superior heat storage performance and of which overcooling is prevented. The method for producing a heat storage member has: a melting step for melting a heat storage material (13); a filling step for filling a heat storage material vessel (1a), through a filling opening (1b) opened in the heat storage material vessel (1a), with the heat storage material liquid (15) resulting from melting the heat storage material (13); an adding step for adding a solid supercooling-prevention material (21) into the heat storage material vessel (1a) from the filling opening (1b); and a sealing step for sealing the filling opening (1b).

Description

蓄熱部材の製造方法Method for manufacturing heat storage member
 本発明は蓄熱部材の製造方法に関し、特に、過冷却防止材を添加した蓄熱部材の製造方法に関する。 The present invention relates to a method for manufacturing a heat storage member, and more particularly to a method for manufacturing a heat storage member to which an overcooling prevention material is added.
 蓄熱部材は、容器に充填した蓄熱材溶液を冷却して固相に相変化させて蓄熱するが、相変化温度以下に冷却しても固相にならない過冷却現象が生じる場合がある。この過冷却現象を防止する方法として過冷却防止材が容器内に添加される。過冷却防止材は、蓄熱材水溶液が液相から固相へ相変化する際の核となる微小固相の発生を促進させるために、容器内に固体で存在するのが望ましい。そのため従来では、蓄熱材溶液に対する過冷却防止材の溶解度が高くなるように常温よりも高い温度条件に設定して過冷却防止材を蓄熱材溶液に投入し、攪拌機と攪拌窯を用いて蓄熱材溶液を撹拌して過冷却防止材を溶解し、過冷却防止材が溶解した蓄熱材溶液を容器に充填する方法が用いられている(例えば、特許文献1、2参照)。こうすることにより、蓄熱材水溶液が相変化する温度では、過冷却防止材の蓄熱材水溶液に対する溶解度が低下し、過冷却防止材が容器内で固体として析出する。これによって、蓄熱材水溶液の微小固相の発生を促進することができる。つまり、過冷却現象を防止することができる。特に、任意の一定温度で保温や保冷を行う保温庫や保冷庫、或いは冷蔵庫や冷凍庫に蓄熱部材を用いる場合、蓄熱部材を相変化温度で液相から固相に変化させる技術、つまり過冷却防止技術は非常に重要である。 The heat storage member cools the heat storage material solution filled in the container and changes the phase to a solid phase to store heat, but there may be a supercooling phenomenon that does not become a solid phase even when cooled to a temperature lower than the phase change temperature. As a method for preventing this supercooling phenomenon, a supercooling prevention material is added into the container. The supercooling prevention material is preferably present in the container as a solid in order to promote the generation of a fine solid phase that becomes the nucleus when the aqueous solution of the heat storage material changes from the liquid phase to the solid phase. Therefore, conventionally, the supercooling prevention material is set to a temperature condition higher than normal temperature so that the solubility of the supercooling prevention material in the heat storage material solution is high, and the supercooling prevention material is put into the heat storage material solution, and the heat storage material is used using a stirrer and a stirring kiln. A method is used in which the solution is stirred to dissolve the supercooling preventive material, and the container is filled with the heat storage material solution in which the supercooling preventive material is dissolved (for example, see Patent Documents 1 and 2). By doing so, at the temperature at which the heat storage material aqueous solution undergoes a phase change, the solubility of the supercooling prevention material in the heat storage material aqueous solution decreases, and the supercooling prevention material precipitates as a solid in the container. Thereby, generation | occurrence | production of the micro solid phase of heat storage material aqueous solution can be accelerated | stimulated. That is, the supercooling phenomenon can be prevented. In particular, when a heat storage member is used in a heat storage or cold storage, or a refrigerator or freezer that performs heat insulation or cold storage at an arbitrary constant temperature, a technology that changes the heat storage member from a liquid phase to a solid phase at a phase change temperature, that is, prevention of overcooling. Technology is very important.
特開2001-107035号公報JP 2001-107035 A 特開2002-030279号公報Japanese Patent Laid-Open No. 2002-030279
 しかしながら上記方法では、撹拌が完了して過冷却防止材が溶解した蓄熱材溶液を撹拌窯から蓄熱材容器に移すまでの間に撹拌窯内の蓄熱材溶液の温度が徐々に低下することによって、過冷却防止材が撹拌窯内壁で徐々に析出してしまう現象が生じる。このため、複数の容器に対して順番に撹拌窯から蓄熱材溶液を充填すると、ある順番以降の容器に充填された蓄熱材溶液中の過冷却防止材の溶解量が所望の量より少なくなってしまい、過冷却防止の機能が損なわれてしまうという問題が生じる。 However, in the above method, the temperature of the heat storage material solution in the stirring kiln is gradually decreased until the heat storage material solution in which the supercooling prevention material is dissolved is transferred from the stirring kiln to the heat storage material container by stirring. A phenomenon occurs in which the supercooling prevention material gradually precipitates on the inner wall of the stirring kiln. For this reason, when the heat storage material solution is sequentially filled in the plurality of containers from the stirring kiln, the dissolution amount of the supercooling prevention material in the heat storage material solution filled in the containers after a certain order becomes smaller than the desired amount. Therefore, there arises a problem that the function of preventing overcooling is impaired.
 また、容器に充填した後の環境温度の低下により、溶液に溶解した過冷却防止材と蓄熱材料が溶液を獲合う結果、蓄熱材の方が析出してしまい、蓄熱材溶液の相変化温度や潜熱量が容器毎にばらついてしまうという問題も生じる。 Moreover, as a result of the decrease in the environmental temperature after filling the container, the supercooling prevention material and the heat storage material dissolved in the solution catch the solution, so that the heat storage material is precipitated, and the phase change temperature of the heat storage material solution There also arises a problem that the amount of latent heat varies from container to container.
 さらに、過冷却防止材の溶解時の加温条件によって過冷却防止材の組成が変化してしまい、蓄熱部材の信頼性(例えば、凍結と融解の繰返し特性)が低下してしまうという問題も生じる。 Furthermore, the composition of the supercooling preventive material changes depending on the heating conditions at the time of dissolution of the supercooling preventive material, resulting in a problem that the reliability of the heat storage member (for example, repeated characteristics of freezing and thawing) is reduced. .
 本発明の目的は、過冷却が防止されると共に優れた蓄熱性能を有する蓄熱部材の製造方法を提供することにある。 An object of the present invention is to provide a method of manufacturing a heat storage member that prevents overcooling and has excellent heat storage performance.
 上記目的を達成するための本発明の一態様によれば、
 蓄熱材を溶解する溶解工程と、
 容器を開口した充填口から前記蓄熱材が溶解した蓄熱材溶液を前記容器に充填する充填工程と、
 固体の過冷却防止材を前記充填口から前記容器内に添加する添加工程と、
 前記充填口を封止する封止工程と
を有することを特徴とする蓄熱部材の製造方法であってもよい。
According to one aspect of the present invention for achieving the above object,
A melting process for melting the heat storage material;
A filling step of filling the container with a heat storage material solution in which the heat storage material is dissolved from a filling port that opens the container;
An addition step of adding a solid supercooling prevention material into the container from the filling port;
The manufacturing method of the thermal storage member characterized by having the sealing process which seals the said filling port.
 上記本発明の蓄熱部材の製造方法であって、
 前記充填工程は、前記添加工程より前に実施されること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The filling step may be performed before the addition step, and may be a method for manufacturing a heat storage member.
 上記本発明の蓄熱部材の製造方法であって、
 前記添加工程は、前記充填工程より前に実施されること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The method for producing a heat storage member may be performed in which the adding step is performed before the filling step.
 上記本発明の蓄熱部材の製造方法であって、
 前記添加工程の前に、
 前記過冷却防止材を添加規定容量に錠剤化する錠剤化工程を有すること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
Before the addition step,
It may be a manufacturing method of a heat storage member characterized by having a tableting step of tableting the supercooling prevention material into an addition specified capacity.
 上記本発明の蓄熱部材の製造方法であって、
 前記添加工程の前に、
 前記過冷却防止材を着色する着色化工程を有すること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
Before the addition step,
The manufacturing method of the heat storage member characterized by having the coloring process which colors the said supercooling prevention material.
 上記本発明の蓄熱部材の製造方法であって、
 前記蓄熱材は、水和塩系蓄熱材を有すること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The heat storage material may include a hydrated salt heat storage material and a method for manufacturing a heat storage member.
 上記本発明の蓄熱部材の製造方法であって、
 前記水和塩系蓄熱材は、
 テトラアルキルアンモニウム塩を含む水溶液と、前記テトラアルキルアンモニウム塩をゲスト分子とする包接水和物とに、可逆的に変化する蓄熱材であること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The hydrate salt heat storage material is
Even if it is the manufacturing method of the heat storage member characterized by being the heat storage material which changes reversibly into the aqueous solution containing a tetraalkylammonium salt and the clathrate hydrate which uses the said tetraalkylammonium salt as a guest molecule Good.
 上記本発明の蓄熱部材の製造方法であって、
 前記テトラアルキルアンモニウム塩は、テトラブチルアンモニウムブロミドであることを特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The tetraalkylammonium salt may be tetrabutylammonium bromide, and may be a method for manufacturing a heat storage member.
 上記本発明の蓄熱部材の製造方法であって、
 前記過冷却防止材は、四ホウ酸ナトリウムを有すること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The method for manufacturing a heat storage member may be characterized in that the supercooling prevention material includes sodium tetraborate.
 上記本発明の蓄熱部材の製造方法であって、
 前記容器は、
 ポリエチレンまたはポリプロピレンを成型材とする樹脂成型容器であること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The container is
It may be a method for producing a heat storage member, which is a resin molded container using polyethylene or polypropylene as a molding material.
 上記本発明の蓄熱部材の製造方法であって、
 前記容器は、
 ナイロンまたはアルミニウムを形成材とするフレキシブル性フィルム包装材で形成されていること
を特徴とする蓄熱部材の製造方法であってもよい。
A method for producing the heat storage member of the present invention,
The container is
The heat storage member manufacturing method may be formed of a flexible film packaging material made of nylon or aluminum.
 また、上記本発明の蓄熱部材の製造方法により製造された蓄熱部材を搭載していることを特徴とする保管庫であってもよい。また、当該保管庫は冷凍冷蔵庫であってもよい。 Further, the storage may be characterized by mounting the heat storage member manufactured by the method for manufacturing the heat storage member of the present invention. The storage may be a refrigerator-freezer.
 本発明によれば、過冷却が防止されると共に優れた蓄熱性能を有する蓄熱部材を実現できる。 According to the present invention, it is possible to realize a heat storage member that prevents overcooling and has excellent heat storage performance.
本発明の一実施の形態の実施例1による蓄熱部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermal storage member by Example 1 of one embodiment of this invention. 本発明の一実施の形態の実施例2による蓄熱部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermal storage member by Example 2 of one embodiment of this invention. 本発明の一実施の形態の実施例3による蓄熱部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermal storage member by Example 3 of one embodiment of this invention. 本発明の一実施の形態の実施例4による蓄熱部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermal storage member by Example 4 of one embodiment of this invention. 比較例による蓄熱部材の製造方法を示す図である。It is a figure which shows the manufacturing method of the heat storage member by a comparative example. 比較例による蓄熱部材の製造方法における充填工程で生じる過冷却防止材の析出現象を示す図である。It is a figure which shows the precipitation phenomenon of the overcooling prevention material which arises at the filling process in the manufacturing method of the heat storage member by a comparative example. 本発明の一実施の形態の実施例5による製造方法で製造した蓄熱部材1と比較例の製造方法で製造した蓄熱部材1´の蓄熱性能を比較する図である。It is a figure which compares the thermal storage performance of the thermal storage member 1 'manufactured with the manufacturing method of the comparative example and the thermal storage member 1 manufactured with the manufacturing method by Example 5 of one embodiment of this invention. 比較例に係る蓄熱部材1´の製造方法の別の問題点を説明する図である。It is a figure explaining another problem of the manufacturing method of heat storage member 1 'concerning a comparative example. 本発明の一実施の形態の各実施例で用いられる製造装置の具体例を示す図である。It is a figure which shows the specific example of the manufacturing apparatus used in each Example of one embodiment of this invention.
 本発明の一実施の形態による蓄熱部材の製造方法について、図1~図9を用いて説明する。なお、以下の全ての図面においては、理解を容易にするため、各構成要素の寸法や比率などは適宜異ならせて図示している。 A method for manufacturing a heat storage member according to an embodiment of the present invention will be described with reference to FIGS. In all the following drawings, the dimensions and ratios of the respective constituent elements are appropriately varied for easy understanding.
(実施例1)
 図1は、本実施の形態の実施例1による蓄熱部材の製造方法を示している。図1(a)~(e)は、この順に本実施例による蓄熱部材の製造方法を時系列で示している。まず、本実施例の蓄熱部材の製造方法で使用する製造装置等の概要について説明する。図1(a)~(c)には攪拌窯(撹拌タンク)3および撹拌機5が示されている。撹拌窯3は、溶媒や溶質を投入するための円形開口部と、円形開口部から鉛直下方に伸びる断面がU字状の窯部3aを有している。窯部3aの最下部には窯内で撹拌された蓄熱材溶液を吐出する吐出口3dと吐出口3dの開閉を行う開閉バルブ3cが設けられている。図1(a)では開閉バルブ3cは閉じられている状態を示している。窯部3aは、吐出口3dから吐出する蓄熱材溶液を樹脂成型された蓄熱材容器1a(図1(c)~(e)参照)に充填できるように蓄熱材容器1を吐出口3dの下方に設置できるだけの高さを有するように脚部3bで保持されている。
Example 1
FIG. 1 shows a method for manufacturing a heat storage member according to Example 1 of the present embodiment. FIGS. 1A to 1E show a method for manufacturing a heat storage member according to this embodiment in this order in this order. First, the outline | summary of the manufacturing apparatus etc. which are used with the manufacturing method of the thermal storage member of a present Example is demonstrated. 1 (a) to 1 (c) show a stirring kiln (stirring tank) 3 and a stirrer 5. FIG. The stirring kiln 3 includes a circular opening for introducing a solvent and a solute, and a kiln section 3a having a U-shaped cross section extending vertically downward from the circular opening. A discharge port 3d for discharging the heat storage material solution stirred in the kiln and an opening / closing valve 3c for opening and closing the discharge port 3d are provided at the lowermost part of the kiln part 3a. FIG. 1A shows a state where the on-off valve 3c is closed. The kiln unit 3a places the heat storage material container 1 below the discharge port 3d so that the heat storage material solution discharged from the discharge port 3d can be filled into the resin-molded heat storage material container 1a (see FIGS. 1C to 1E). It is hold | maintained by the leg part 3b so that it may have the height which can be installed in.
 攪拌機5は、毎分の撹拌数等を設定するための設定操作部と、設定操作部から撹拌窯3の窯部3a内方に延びる撹拌棒と、撹拌棒の先端に回転可能に取り付けられた撹拌翼5aとを有している。溶媒と溶質が投入された窯部3a内で撹拌翼5aを回転させることにより、溶媒と溶質を撹拌することができる。 The stirrer 5 is attached to a setting operation part for setting the number of stirrings per minute, a stirring bar extending from the setting operation part to the inside of the kiln part 3a of the stirring kiln 3, and rotatably attached to the tip of the stirring bar. And a stirring blade 5a. The solvent and the solute can be stirred by rotating the stirring blade 5a in the kiln part 3a in which the solvent and the solute are charged.
 次に、図1(a)~(e)を用いて蓄熱部材の製造方法について説明する。図1(a)は、撹拌窯3の窯部3aに水投入機7から水9を投入すると共に、蓄熱材袋11から蓄熱材13を投入している状態を示している。窯部3a内は水9に蓄熱材13が混入した状態となっている。 Next, a method for manufacturing a heat storage member will be described with reference to FIGS. FIG. 1 (a) shows a state in which water 9 is supplied from the water input device 7 to the kiln part 3 a of the stirring furnace 3 and the heat storage material 13 is input from the heat storage material bag 11. The inside of the kiln part 3a is in a state in which the heat storage material 13 is mixed in the water 9.
 図1(a)に示す状態に引き続いて、図1(b)では攪拌機5の撹拌棒を矢印5bに示すように回転させて撹拌翼5aを蓄熱材13が混入した水9内で回転させて、水9と蓄熱材13とを撹拌する。所定時間の撹拌により蓄熱材13が水9に溶解して蓄熱材溶液15が作製される。以上の工程が蓄熱材を溶解する溶解工程である。本実施例の溶解工程では撹拌窯3の窯部3aを加温する処理は必要ない。 Following the state shown in FIG. 1 (a), in FIG. 1 (b), the stirrer 5 of the stirrer 5 is rotated as shown by the arrow 5b, and the stirring blade 5a is rotated in the water 9 mixed with the heat storage material 13. The water 9 and the heat storage material 13 are agitated. The heat storage material 13 is dissolved in the water 9 by stirring for a predetermined time, and the heat storage material solution 15 is produced. The above process is a melting process for melting the heat storage material. In the melting step of the present embodiment, the process of heating the kiln part 3a of the stirring kiln 3 is not necessary.
 次に、図1(c)に示すように、蓄熱部材1の蓄熱材容器1aの充填口1bを吐出口3dの下方に位置決めして蓄熱部材1を設置する。撹拌翼5aを停止させて蓄熱材溶液15の搖動を抑えてから開閉バルブ3cを開き、吐出口3dから蓄熱材溶液15を吐出させて、蓄熱材13が溶解した蓄熱材溶液15を蓄熱材容器1aの充填口1bから蓄熱材容器1aに充填する。図1(c)に示す工程が充填工程である。充填工程は作製する蓄熱部材1の数だけ繰り返される。 Next, as shown in FIG. 1C, the heat storage member 1 is installed by positioning the filling port 1b of the heat storage material container 1a of the heat storage member 1 below the discharge port 3d. After the stirring blade 5a is stopped and the peristalsis of the heat storage material solution 15 is suppressed, the opening / closing valve 3c is opened, the heat storage material solution 15 is discharged from the discharge port 3d, and the heat storage material solution 15 in which the heat storage material 13 is dissolved is stored in the heat storage material container. The heat storage material container 1a is filled from the filling port 1b of 1a. The process shown in FIG. 1C is a filling process. The filling process is repeated by the number of heat storage members 1 to be produced.
 次に、図1(d)に示すように、撹拌窯3の下部から蓄熱部材1を取り出して、固体の過冷却防止材21を蓄熱材容器1a内に添加する。図1(d)に示す工程が添加工程である。蓄熱材容器1a毎に固体の過冷却防止材21を常温で添加するので、必要量の過冷却防止材21を蓄熱部材1に確実に添加することができる。本例の添加工程では図1(d)に示すように、過冷却防止材21の必要量を定量サジ19により計量し、充填口1bに差し込んだ漏斗17を介して蓄熱材容器1a内に過冷却防止材21を添加する。漏斗17と定量サジ19を用いることにより、過冷却防止材21を蓄熱材容器1a内に確実に精度よく添加することができる。 Next, as shown in FIG. 1 (d), the heat storage member 1 is taken out from the lower part of the stirring kiln 3, and the solid supercooling prevention material 21 is added into the heat storage material container 1a. The step shown in FIG. 1D is an addition step. Since the solid supercooling prevention material 21 is added to each heat storage material container 1a at room temperature, a necessary amount of the supercooling prevention material 21 can be reliably added to the heat storage member 1. In the addition step of this example, as shown in FIG. 1 (d), the necessary amount of the supercooling prevention material 21 is measured by the quantitative sag 19, and the excess amount is put into the heat storage material container 1a through the funnel 17 inserted into the filling port 1b. Anti-cooling material 21 is added. By using the funnel 17 and the fixed sag 19, the supercooling prevention material 21 can be reliably and accurately added to the heat storage material container 1a.
 次に、図1(e)に示すように、蓄熱材容器1aに充填した蓄熱材溶液15や過冷却防止材21が漏洩しないように充填口1bを封止する。充填口1bの封止は、樹脂成型されたキャップ1cを充填口1bに接触させて超音波溶着により封止する。図1(e)に示す工程が封止工程である。蓄熱材容器として、ナイロンまたはアルミニウム等を形成材とするフレキシブル性フィルム包装材を用いる場合には、包装材の角部をヒートシールで熱圧着・封止し袋状にする。「袋状の形成→内容物充填→封止」にはピロー包装機が用いられることが多い。 Next, as shown in FIG. 1E, the filling port 1b is sealed so that the heat storage material solution 15 and the supercooling prevention material 21 filled in the heat storage material container 1a do not leak. The filling port 1b is sealed by bringing the cap 1c molded with resin into contact with the filling port 1b and sealing by ultrasonic welding. The process shown in FIG. 1E is a sealing process. When a flexible film packaging material made of nylon or aluminum or the like is used as the heat storage material container, the corners of the packaging material are heat-pressed and sealed with a heat seal to form a bag. A pillow wrapping machine is often used for “bag-like formation → content filling → sealing”.
 本実施例による蓄熱部材1の製造方法では、撹拌中の蓄熱材溶液15に過冷却防止材21を溶解させないので、蓄熱材溶液15を撹拌窯から蓄熱材容器1aに移すまでの間に撹拌窯3内の蓄熱材溶液15の温度が徐々に低下しても、過冷却防止材21が撹拌窯3内壁で析出することはない。本実施例により製造した蓄熱部材1は、撹拌窯3から蓄熱材溶液15を蓄熱材容器1aに充填する順番に関わらず蓄熱材容器1a内の過冷却防止材21の添加量を正確に一定にすることができるため、優れた過冷却防止機能を発揮させることができる。 In the manufacturing method of the heat storage member 1 according to the present embodiment, the supercooling prevention material 21 is not dissolved in the heat storage material solution 15 being stirred. Therefore, the stirring kiln until the heat storage material solution 15 is transferred from the stirring kiln to the heat storage material container 1a. Even if the temperature of the heat storage material solution 15 in 3 gradually decreases, the supercooling prevention material 21 does not precipitate on the inner wall of the stirring kiln 3. The heat storage member 1 manufactured according to the present embodiment makes the amount of addition of the supercooling prevention material 21 in the heat storage material container 1a accurately and constant regardless of the order in which the heat storage material container 15 is filled with the heat storage material solution 15 from the stirring kiln 3. Therefore, an excellent overcooling prevention function can be exhibited.
 また本実施例の蓄熱部材1の製造方法では、固体の過冷却防止材21を加温も撹拌もせずに蓄熱材容器1aに添加するようにしている。このため、蓄熱材溶液15中の過冷却防止材21の溶解量が少ない。従って、蓄熱部材1の製造後に環境温度が変化しても、過冷却防止材21と蓄熱材15が溶液(水9)を獲合うことも生じないため、溶解工程で水9に溶解させた蓄熱材13が析出してしまうこともない。よって本実施例によれば、蓄熱材溶液15の相変化温度や潜熱量が蓄熱部材1毎にばらついてしまうという問題も生じない。 Further, in the method for manufacturing the heat storage member 1 of the present embodiment, the solid supercooling prevention material 21 is added to the heat storage material container 1a without heating and stirring. For this reason, the amount of dissolution of the supercooling prevention material 21 in the heat storage material solution 15 is small. Therefore, even if the environmental temperature changes after the heat storage member 1 is manufactured, the supercooling prevention material 21 and the heat storage material 15 do not catch the solution (water 9), so the heat storage dissolved in the water 9 in the dissolution process. The material 13 does not precipitate. Therefore, according to the present embodiment, there is no problem that the phase change temperature and the amount of latent heat of the heat storage material solution 15 vary from one heat storage member 1 to another.
 さらに、固体の過冷却防止材21を加温も撹拌もせずに蓄熱材容器1aに添加するため、過冷却防止材21の組成を変化させずに済むため過冷却防止材21の信頼性を確保して、蓄熱部材1の信頼性(例えば、凍結と融解の繰返し特性)を向上できる。 Furthermore, since the solid supercooling prevention material 21 is added to the heat storage material container 1a without heating and stirring, the composition of the supercooling prevention material 21 does not have to be changed, so that the reliability of the supercooling prevention material 21 is ensured. Thus, the reliability (for example, the repeated characteristics of freezing and thawing) of the heat storage member 1 can be improved.
(実施例2)
 図2は、本実施の形態の実施例2による蓄熱部材の製造方法を示している。上記の実施例1による蓄熱部材の製造方法では、蓄熱材溶液15を蓄熱材容器1aに充填する充填工程(図1(c))は、固体の過冷却防止材21を蓄熱材容器1a内に添加する添加工程(図1(d))より前に実施されている。これに対し本実施例2では、添加工程が充填工程より前に実施されることを特徴としている。図2(a)~(b)と(d)~(e)は、この順に本実施例による蓄熱部材の製造方法を時系列で示している。本実施例による蓄熱部材の製造方法において、実施例1と同様の構成部材については同一の符号を付してその詳細な説明は省略する。
(Example 2)
FIG. 2 shows a method for manufacturing a heat storage member according to Example 2 of the present embodiment. In the manufacturing method of the heat storage member according to the first embodiment, the filling step (FIG. 1 (c)) of filling the heat storage material solution 15 into the heat storage material container 1 a includes the solid supercooling prevention material 21 in the heat storage material container 1 a. It is carried out before the addition step (FIG. 1 (d)) to be added. On the other hand, the second embodiment is characterized in that the adding step is performed before the filling step. 2A to 2B and FIGS. 2D to 2E show a method for manufacturing a heat storage member according to this embodiment in this order in this order. In the manufacturing method of the heat storage member according to the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施例による蓄熱部材の製造方法において、図2(a)~(b)は蓄熱材を溶解する溶解工程を示している。本実施例の溶解工程は、実施例1の図1(a)~(b)に示す溶解工程と同一である。図2(c)は、固体の過冷却防止材21を蓄熱材容器1a内に添加する添加工程を示している。実施例1の図1(d)に示す添加工程は、蓄熱材13が溶解した蓄熱材溶液15を蓄熱材容器1aに充填する充填工程の後に実施される。従って、実施例1では、蓄熱材溶液15が充填された蓄熱材容器1aに過冷却防止材21を添加する。これに対し、本実施例の添加工程は、蓄熱材溶液15が充填されていない空の蓄熱材容器1aに過冷却防止材21を添加する。 In the method for manufacturing a heat storage member according to this embodiment, FIGS. 2 (a) to 2 (b) show a melting process for melting the heat storage material. The dissolution process of the present example is the same as the dissolution process shown in FIGS. 1A to 1B of Example 1. FIG.2 (c) has shown the addition process which adds the solid supercooling prevention material 21 in the thermal storage material container 1a. The addition process shown in FIG. 1D of the first embodiment is performed after the filling process of filling the heat storage material container 15 with the heat storage material solution 15 in which the heat storage material 13 is dissolved. Therefore, in Example 1, the supercooling prevention material 21 is added to the heat storage material container 1a filled with the heat storage material solution 15. On the other hand, the addition process of a present Example adds the supercooling prevention material 21 to the empty thermal storage material container 1a with which the thermal storage material solution 15 is not filled.
 実施例1では、充填工程により蓄熱材容器1aの充填口1bに蓄熱材溶液15が付着し、その後の添加工程において過冷却防止材21が充填口1bに付着してしまう可能性があるが、本実施例によれば、添加工程が充填工程より前にあるので過冷却防止材21が充填口1bに付着することを防止できる。また、図2(a)~(b)に示す溶解工程と図2(c)に示す添加工程とは並行して実施することができるので、工程作業時間(タクトタイム)の短縮を図ることができる。 In Example 1, the heat storage material solution 15 may adhere to the filling port 1b of the heat storage material container 1a by the filling step, and the supercooling prevention material 21 may adhere to the filling port 1b in the subsequent addition step. According to this embodiment, since the addition step is before the filling step, it is possible to prevent the supercooling prevention material 21 from adhering to the filling port 1b. 2A and 2B and the addition step shown in FIG. 2C can be performed in parallel, so that the process working time (tact time) can be shortened. it can.
 図2(d)は、蓄熱材13が溶解した蓄熱材溶液15を蓄熱材容器1aの充填口1bから過冷却防止材21が添加された蓄熱材容器1aに充填する充填工程を示している。充填方法は実施例1と同様であるので説明は省略する。図2(e)は封止工程を示している。本実施例の封止工程は実施例1と同様なので説明は省略する。本実施例においても実施例1と同様の効果を奏することができる。 FIG. 2D shows a filling process in which the heat storage material solution 15 in which the heat storage material 13 is dissolved is filled from the filling port 1b of the heat storage material container 1a into the heat storage material container 1a to which the supercooling prevention material 21 is added. Since the filling method is the same as that of the first embodiment, the description is omitted. FIG. 2E shows a sealing process. Since the sealing process of this embodiment is the same as that of Embodiment 1, the description thereof is omitted. In the present embodiment, the same effects as those of the first embodiment can be obtained.
 次に、上記実施例1および実施例2による蓄熱部材の製造方法で用いられる蓄熱材について説明する。蓄熱とは、熱を一時的に蓄え、必要に応じてその熱を取り出す技術をいう。蓄熱方式としては、顕熱蓄熱、潜熱蓄熱、化学蓄熱等があるが、本実施形態では、潜熱蓄熱を利用する。潜熱蓄熱は、物質の潜熱を利用して、物質の相変化の熱エネルギーを蓄える。潜熱蓄熱は、蓄熱密度が高く、出力温度が一定である。潜熱蓄熱を利用する蓄熱材溶液の材料には、氷(水)、パラフィン(一般式C2n+2で表される飽和鎖式炭化水素の総称)、無機塩、無機塩水和物、包接水和物などが用いられる。 Next, the heat storage material used with the manufacturing method of the heat storage member by the said Example 1 and Example 2 is demonstrated. Thermal storage refers to a technique for temporarily storing heat and extracting the heat as needed. Examples of the heat storage method include sensible heat storage, latent heat storage, chemical heat storage, and the like. In this embodiment, latent heat storage is used. Latent heat storage uses the latent heat of a substance to store the thermal energy of the phase change of the substance. The latent heat storage has a high heat storage density and a constant output temperature. Materials for the heat storage material solution that uses latent heat storage include ice (water), paraffin (a general term for saturated chain hydrocarbons represented by the general formula C n H 2n + 2 ), inorganic salts, inorganic salt hydrates, clathrate water Japanese products are used.
 潜熱蓄熱材溶液の材料に用いられる無機塩水溶液として、塩化カリウム(KCl)と塩化アンモニウム(NHCl)とを水に溶解した水溶液、塩化ナトリウム(NaCl)と塩化アンモニウム(NHCl)とを水に溶解した水溶液等が挙げられるが、本実施形態において潜熱蓄熱材溶液はこれらの水溶液に限定されない。 As an inorganic salt aqueous solution used for the material of the latent heat storage material solution, an aqueous solution in which potassium chloride (KCl) and ammonium chloride (NH 4 Cl) are dissolved in water, sodium chloride (NaCl) and ammonium chloride (NH 4 Cl) are used. Although the aqueous solution etc. which were melt | dissolved in water are mentioned, in this embodiment, a latent heat storage material solution is not limited to these aqueous solutions.
 潜熱蓄熱材溶液の材料に用いられる無機塩水和物として、硫酸ナトリウム十水和物(NaSO・10HO)、酢酸ナトリウム三水和物、チオ硫酸ナトリウム五水和物、リン酸水素二ナトリウム十二水和物とリン酸水素二カリウム六水和物との二元系組成物(融解点5℃)、硝酸リチウム三水和物を主成分とする硝酸リチウム三水和物と塩化マグネシウム六水和物との二元系組成物(融解点8~12℃)又は硝酸リチウム三水和物-塩化マグネシウム六水和物-臭化マグネシウム六水和物の三元系組成物(融解点5.8~9.7℃)等が挙げられるが、本実施形態において潜熱蓄熱材溶液の材料はこれらの無機塩水和物に限定されない。 As the inorganic salt hydrate used for the material of the latent heat storage material solution, sodium sulfate decahydrate (Na 2 SO 4 · 10H 2 O), sodium acetate trihydrate, sodium thiosulfate pentahydrate, hydrogen phosphate Binary composition of disodium dodecahydrate and dipotassium hydrogen phosphate hexahydrate (melting point 5 ° C), lithium nitrate trihydrate mainly composed of lithium nitrate trihydrate and chloride Binary composition with magnesium hexahydrate (melting point 8-12 ° C) or ternary composition of lithium nitrate trihydrate-magnesium chloride hexahydrate-magnesium bromide hexahydrate (melting) In this embodiment, the material of the latent heat storage material solution is not limited to these inorganic salt hydrates.
 潜熱蓄熱材溶液の材料として水和塩系蓄熱材を用いることもできる。水和塩系蓄熱材は、テトラアルキルアンモニウム塩を含む水溶液と、テトラアルキルアンモニウム塩をゲスト分子とする包接水和物とに可逆的に変化する蓄熱材である。テトラアルキルアンモニウム塩として、テトラブチルアンモニウムブロミド(TBAB)、塩化テトラブチルアンモニウム(TBAC)等がある。これらを水に溶解した水溶液を潜熱蓄熱材溶液として用いることができるが、本実施形態において潜熱蓄熱材溶液はこれらの水溶液に限定されない。 Hydrated salt heat storage material can also be used as the material of the latent heat storage material solution. The hydrate salt heat storage material is a heat storage material that reversibly changes into an aqueous solution containing a tetraalkylammonium salt and an clathrate hydrate containing the tetraalkylammonium salt as a guest molecule. Examples of tetraalkylammonium salts include tetrabutylammonium bromide (TBAB) and tetrabutylammonium chloride (TBAC). Although the aqueous solution which melt | dissolved these in water can be used as a latent heat storage material solution, in this embodiment, a latent heat storage material solution is not limited to these aqueous solutions.
 また、蓄熱材溶液はゲル化されていてもよい。ゲル化された蓄熱材溶液にはゲル化剤が含有されている。ゲルとは一般に、分子が部分的に架橋されることで三次元的な網目構造を形成し、その内部に溶媒を吸収し膨潤したものをいう。ゲルの組成はほぼ液相状態であるが、力学的には、固相状態となる。ゲル化した蓄熱材溶液は、固相と液相との間で相変化しても全体として固体状態を維持し、流動性を有しない。ゲル状の蓄熱材溶液は、相変化の前後で全体として固体状態を維持できるので取扱いが容易である。 Further, the heat storage material solution may be gelled. The gelled heat storage material solution contains a gelling agent. In general, a gel is a gel in which molecules are partially cross-linked to form a three-dimensional network structure that absorbs a solvent and swells therein. The composition of the gel is almost in a liquid phase, but mechanically it is in a solid phase. The gelled heat storage material solution maintains a solid state as a whole even if the phase changes between the solid phase and the liquid phase, and does not have fluidity. The gel-like heat storage material solution is easy to handle because it can maintain a solid state as a whole before and after the phase change.
 ゲル化剤としては、ヒドロキシル基もしくはカルボキシル基、スルホン酸基、アミノ基、アミド基を1つ以上備えた分子を用いた合成高分子、天然系多糖類又はゼラチン等が挙げられる。合成高分子としては、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸誘導体等が挙げられる。天然系多糖類としては、寒天、アルギン酸、ファーセルラン、ペクチン、澱粉、キサンタンガム+ローカストビーンガムの混合物、タマリンド種子ガム、ジュランガム、カラギーナン等が挙げられる。これらは、ゲル化剤の一例として挙げられるが、本実施形態においてゲル化剤はこれらに限定されない。 Examples of the gelling agent include synthetic polymers, natural polysaccharides, gelatin, and the like using molecules having one or more hydroxyl groups or carboxyl groups, sulfonic acid groups, amino groups, and amide groups. Examples of the synthetic polymer include polyacrylamide derivatives, polyvinyl alcohol, polyacrylic acid derivatives, and the like. Examples of natural polysaccharides include agar, alginic acid, fercellan, pectin, starch, a mixture of xanthan gum and locust bean gum, tamarind seed gum, julan gum, carrageenan and the like. Although these are mentioned as an example of a gelling agent, in this embodiment, a gelling agent is not limited to these.
 過冷却防止材としては、アンモニウムミョウバン(AlNH(SO・12HO)、カリウムミョウバン(AlK(SO・12HO)、四ホウ酸ナトリウム十水和物(Na・10HO)、四ホウ酸ナトリウム五水和物(Na・5HO)、リン酸水素二ナトリウム十二水和物(NaHPO・12HO)および硫酸ナトリウム十水和物(NaSO・10HO)等が挙げられる。これらは、過冷却防止材の一例として挙げられるが、本実施形態において過冷却防止材はこれらに限定されない。 As the supercooling preventive material, ammonium alum (AlNH 4 (SO 4 ) 2 · 12H 2 O), potassium alum (AlK (SO 4 ) 2 · 12H 2 O), sodium tetraborate decahydrate (Na 2 B) 4 O 7 · 10H 2 O), sodium tetraborate pentahydrate (Na 2 B 4 O 7 · 5H 2 O), disodium hydrogen phosphate dodecahydrate (Na 2 HPO 4 · 12H 2 O) And sodium sulfate decahydrate (Na 2 SO 4 .10H 2 O). Although these are mentioned as an example of a supercooling prevention material, in this embodiment, a supercooling prevention material is not limited to these.
 蓄熱材容器1aは、例えば、樹脂材料を成型材とする樹脂成型容器である。蓄熱材容器1aに用いられる樹脂材料としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ABS樹脂、アクリル樹脂(PMMA)、ポリカーボネート(PC)等のプラスチック材料が挙げられる。蓄熱材容器1aには、これらのプラスチック材料を射出成型やブロー成型等によって成型したプラスチック容器からなる硬質包装材、または溶液法、溶融法、カレンダー法等によって成膜されたプラスチックフィルムからなる軟質包装材が用いられる。蓄熱材容器1aは、樹脂に限らずガラス、セラミック、あるいはアルミニウム等の金属の無機材料を形成材として形成されていてもよい。また、蓄熱材容器1aは、繊維質(グラスウール、綿、セルロース、ナイロン、カーボンナノチューブ、炭素繊維等)、粉末(アルミナ粉末、金属粉末、マイクロカプセル等)及びその他改質剤が含まれていてもよい。また、蓄熱材容器1aは、ナイロン、またはアルミニウムを形成材とするフレキシブル性フィルム包装材で形成されていてもよい。 The heat storage material container 1a is, for example, a resin molded container using a resin material as a molding material. Examples of the resin material used for the heat storage material container 1a include plastic materials such as polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS resin, acrylic resin (PMMA), and polycarbonate (PC). In the heat storage material container 1a, a hard packaging material made of a plastic container obtained by molding these plastic materials by injection molding or blow molding, or a soft packaging made of a plastic film formed by a solution method, a melting method, a calendar method, or the like. A material is used. The heat storage material container 1a is not limited to resin, and may be formed using a metal inorganic material such as glass, ceramic, or aluminum as a forming material. Further, the heat storage material container 1a may contain fiber (glass wool, cotton, cellulose, nylon, carbon nanotube, carbon fiber, etc.), powder (alumina powder, metal powder, microcapsule, etc.) and other modifiers. Good. Moreover, the heat storage material container 1a may be formed of a flexible film packaging material having nylon or aluminum as a forming material.
(実施例3)
 図3は、本実施の形態の実施例3による蓄熱部材の製造方法を示している。図3(a)~(e)は、この順に本実施例による蓄熱部材の製造方法を時系列で示している。本実施例における工程の実施順序は図1に示す実施例1と同様だが、過冷却防止材21の添加工程において漏斗17と定量サジ19に代えて、定量紛体充填機23を用いた点に特徴を有している。その他の点については実施例1と同様なのでその説明は省略する。
Example 3
FIG. 3 shows a method for manufacturing a heat storage member according to Example 3 of the present embodiment. FIGS. 3A to 3E show the manufacturing method of the heat storage member according to this embodiment in this order in this order. The execution order of the steps in this embodiment is the same as that in Embodiment 1 shown in FIG. 1 except that a quantitative powder filling machine 23 is used in place of the funnel 17 and the quantitative sag 19 in the process of adding the supercooling prevention material 21. have. Since the other points are the same as those in the first embodiment, the description thereof is omitted.
 定量紛体充填機23は、過冷却防止材21を投入するための円形開口部と、円形開口部から鉛直下方に伸びる断面がU字状の紛体収容部23aを有している。紛体収容部23aの最下部には収容部内に収容された過冷却防止材21を吐出する吐出口23cと吐出口23cの開閉を行う開閉バルブが設けられている。図3(d)では開閉バルブは開放されている状態を示している。紛体収容部23aは、吐出口23cから吐出する過冷却防止材21を樹脂成型された蓄熱材容器1aに充填できるように蓄熱材容器1を吐出口23cの下方に設置できるだけの高さを有するように脚部23bで保持されている。 Quantitative powder filling machine 23 has a circular opening for introducing supercooling prevention material 21 and a powder container 23a having a U-shaped cross section extending vertically downward from the circular opening. A discharge port 23c for discharging the supercooling prevention material 21 stored in the storage unit and an opening / closing valve for opening and closing the discharge port 23c are provided at the lowermost part of the powder storage unit 23a. FIG. 3D shows a state where the open / close valve is open. The powder storage part 23a has a height sufficient to install the heat storage material container 1 below the discharge port 23c so that the supercooling prevention material 21 discharged from the discharge port 23c can be filled into the resin-molded heat storage material container 1a. Are held by legs 23b.
 本実施例による蓄熱部材の製造方法において、添加工程は、過冷却防止材21を定量粉体充填機23に導入し、定量紛体充填機23の吐出口23cを蓄熱部材1の充填口1bに接続して、吐出口23cから過冷却防止材21を所定量だけ吐出して蓄熱材容器1a内に添加することを特徴とする。定量紛体充填機23を用いることにより、過冷却防止材21を蓄熱材容器1a内に確実に精度よく添加することができる。また、実施例1と同様の効果を奏することができる。 In the method for manufacturing a heat storage member according to this embodiment, the addition step introduces the supercooling prevention material 21 into the quantitative powder filling machine 23 and connects the discharge port 23 c of the quantitative powder filling machine 23 to the filling port 1 b of the heat storage member 1. The supercooling prevention material 21 is discharged from the discharge port 23c by a predetermined amount and added to the heat storage material container 1a. By using the quantitative powder filling machine 23, the supercooling prevention material 21 can be reliably and accurately added to the heat storage material container 1a. Further, the same effects as those of the first embodiment can be obtained.
(実施例4)
 図4は、本実施の形態の実施例4による蓄熱部材の製造方法を示している。図4(a)~(b)、(d)~(e)は、この順に本実施例による蓄熱部材の製造方法を時系列で示している。本実施例における工程の実施順序は図2に示す実施例2と同様だが、過冷却防止材21の添加工程において漏斗17と定量サジ19に代えて、実施例3の定量紛体充填機23を用いた点に特徴を有している。その他の点については実施例2と同様なのでその説明は省略する。定量紛体充填機23を用いることにより、過冷却防止材21を蓄熱材容器1a内に確実に精度よく添加することができる。また、実施例2と同様の効果を奏することができる。
Example 4
FIG. 4 shows a method for manufacturing a heat storage member according to Example 4 of the present embodiment. 4 (a) to 4 (b) and 4 (d) to 4 (e) show, in this order, the method for manufacturing the heat storage member according to this embodiment in time series. The execution order of the steps in this example is the same as that in Example 2 shown in FIG. 2, but the quantitative powder filling machine 23 of Example 3 is used in place of the funnel 17 and the quantitative sag 19 in the addition process of the supercooling prevention material 21. It has the feature in the point. Since the other points are the same as those of the second embodiment, the description thereof is omitted. By using the quantitative powder filling machine 23, the supercooling prevention material 21 can be reliably and accurately added to the heat storage material container 1a. Further, the same effects as those of the second embodiment can be obtained.
(実施例5)
 次に、上記実施例2による蓄熱部材の製造方法を用いた蓄熱部材の製造方法の具体例を実施例5として説明する。まず、蓄熱部材の製造に用いた材料、部材、設備、および治具等について説明する。
(1)蓄熱材13:テトラブチルアンモニウムブロミド(TBAB);21kg(35wt%)
(2)過冷却防止材21:四ホウ酸ナトリウム五水和物;1.2kg(2wt%)
(3)水9;37.8kg(63wt%)
(4)蓄熱材容器1a;150個;材質はPE、容量は500cc、外形寸法は、縦が220mm、横が140mm、高さが25mmの薄板直方体形状を呈している。
(5)キャップ1c;150個(充填口1bの封止用)
(6)攪拌機5
(7)撹拌窯3
(8)ふるい(不図示);目開き寸100μm程度
(9)漏斗17;ステンレス製(φ12mm)
(10)定量サジ19;4.9ml容量
(11)超音波溶着機(不図示)
(Example 5)
Next, a specific example of the heat storage member manufacturing method using the heat storage member manufacturing method according to the second embodiment will be described as a fifth embodiment. First, materials, members, equipment, jigs, and the like used for manufacturing the heat storage member will be described.
(1) Heat storage material 13: tetrabutylammonium bromide (TBAB); 21 kg (35 wt%)
(2) Supercooling prevention material 21: sodium tetraborate pentahydrate; 1.2 kg (2 wt%)
(3) Water 9; 37.8 kg (63 wt%)
(4) Heat storage material container 1a: 150 pieces; material is PE, capacity is 500 cc, and outer dimensions are a thin rectangular parallelepiped shape having a length of 220 mm, a width of 140 mm, and a height of 25 mm.
(5) 150 caps (for sealing the filling port 1b)
(6) Stirrer 5
(7) Stirring furnace 3
(8) Sieve (not shown); Aperture size of about 100 μm (9) Funnel 17: Stainless steel (φ12 mm)
(10) Fixed sag 19; 4.9 ml capacity (11) Ultrasonic welding machine (not shown)
 次に、図2(a)~(e)を参照しつつ蓄熱部材の製造方法について説明する。図2(a)に示すように、撹拌窯3の窯部3aに水投入機7から水9を37.8kgだけ投入すると共に、蓄熱材袋11からふるい(不図示)を介して蓄熱材13としてTBABを21kg投入する。窯部3a内は水9に蓄熱材13が混入した状態となっている。 Next, a method for manufacturing a heat storage member will be described with reference to FIGS. 2 (a) to 2 (e). As shown in FIG. 2 (a), only 37.8 kg of water 9 is charged into the kiln part 3 a of the stirring kiln 3 from the water charging device 7, and from the heat storage material bag 11 through a sieve (not shown), the heat storage material 13. As a result, 21 kg of TBAB is added. The inside of the kiln part 3a is in a state in which the heat storage material 13 is mixed in the water 9.
 図2(a)に示す状態に引き続いて、図2(b)では攪拌機5の撹拌棒を矢印5bに示すように回転させて撹拌翼5aを蓄熱材13が混入した水9内で回転させて、水9と蓄熱材13とを撹拌する。所定時間の撹拌により蓄熱材13が水9に溶解してTBAB水溶液の蓄熱材溶液15が作製される。以上の工程が蓄熱材を溶解する溶解工程である。本実施例の溶解工程では撹拌窯3の窯部3aを加温する処理は必要ない。 Following the state shown in FIG. 2 (a), in FIG. 2 (b), the stirrer 5 of the stirrer 5 is rotated as shown by the arrow 5b, and the stirring blade 5a is rotated in the water 9 mixed with the heat storage material 13. The water 9 and the heat storage material 13 are agitated. The heat storage material 13 is dissolved in the water 9 by stirring for a predetermined time to produce a heat storage material solution 15 of an aqueous TBAB solution. The above process is a melting process for melting the heat storage material. In the melting step of the present embodiment, the process of heating the kiln part 3a of the stirring kiln 3 is not necessary.
 溶解工程に並行して、図2(c)に示すように、過冷却防止材21として四ホウ酸ナトリウム五水和物を定量サジ19により計量して、漏斗17を充填口1bに差し込んで空の蓄熱材容器1a内に常温で必要量を添加する添加工程を実施する。 In parallel with the melting step, as shown in FIG. 2 (c), sodium tetraborate pentahydrate is weighed as a supercooling prevention material 21 with a quantitative sag 19, and the funnel 17 is inserted into the filling port 1b to empty. The addition process which adds a required quantity in normal temperature in the thermal storage material container 1a is implemented.
 次に、図2(d)に示すように、蓄熱部材1の蓄熱材容器1aの充填口1bを撹拌窯3の窯部3a下部の吐出口3dの下方に位置決めして蓄熱部材1を設置する。撹拌翼5aを停止させて蓄熱材溶液15の搖動を抑えてから開閉バルブ3cを開き、吐出口3dから蓄熱材溶液15を吐出させて、充填口1bから過冷却防止材21が添加された蓄熱材容器1aに蓄熱材溶液15を充填する。 Next, as shown in FIG. 2 (d), the heat storage member 1 is installed by positioning the filling port 1 b of the heat storage material container 1 a of the heat storage member 1 below the discharge port 3 d below the kiln part 3 a of the stirring kiln 3. . After the stirring blade 5a is stopped and the peristalsis of the heat storage material solution 15 is suppressed, the on-off valve 3c is opened, the heat storage material solution 15 is discharged from the discharge port 3d, and the supercooling prevention material 21 is added from the filling port 1b. The heat storage material solution 15 is filled in the material container 1a.
 次に、図2(e)に示すように、蓄熱材容器1aに充填した蓄熱材溶液15や過冷却防止材21が漏洩しないように充填口1bを封止する。充填口1bの封止は、樹脂成型されたキャップ1cを充填口1bに接触させて超音波溶着機(不図示)により封止する。 Next, as shown in FIG. 2 (e), the filling port 1b is sealed so that the heat storage material solution 15 and the supercooling prevention material 21 filled in the heat storage material container 1a do not leak. The filling port 1b is sealed by contacting the cap 1c molded with resin with the filling port 1b and sealing with an ultrasonic welding machine (not shown).
 以上の蓄熱部材の製造方法により、TBAB:21kg(35wt%)、四ホウ酸Na:1.2kg(2wt%)、水:37.8kg(63wt%)の構成による蓄熱材水溶液15を60kg作製できる。500g容量の蓄熱材容器1aに400gの蓄熱材溶液15を充填する場合には、最大150個の蓄熱部材1を製造できる。以上の蓄熱部材の製造における作業工程毎に要した作業時間について以下に記載する。
(1)水9の投入      :30秒(1工程当り)
(2)蓄熱材13の投入   : 3分(1工程当り)
(3)撹拌・溶解      :15分(1工程当り)
(4)過冷却防止材21の添加:10秒(蓄熱部材1個当り)
(5)蓄熱材溶液15の充填 :10秒(蓄熱部材1個当り)
(6)キャップ1cの溶着  : 5秒(蓄熱部材1個当り)
According to the above method for producing a heat storage member, 60 kg of the heat storage material aqueous solution 15 having a structure of TBAB: 21 kg (35 wt%), Na tetraborate: 1.2 kg (2 wt%), and water: 37.8 kg (63 wt%) can be produced. . When the heat storage material container 1a having a capacity of 500 g is filled with 400 g of the heat storage material solution 15, up to 150 heat storage members 1 can be manufactured. It describes below about the work time required for every work process in manufacture of the above heat storage member.
(1) Charge of water 9: 30 seconds (per process)
(2) Input of heat storage material 13: 3 minutes (per process)
(3) Stirring / dissolution: 15 minutes (per process)
(4) Addition of supercooling prevention material 21: 10 seconds (per one heat storage member)
(5) Filling of heat storage material solution 15: 10 seconds (per one heat storage member)
(6) Welding of cap 1c: 5 seconds (per heat storage member)
(比較例)
 次に、比較例による蓄熱部材の製造方法について説明する。まず、蓄熱部材の製造に用いた材料、部材、設備、および治具等について説明する。
(1)蓄熱材13:テトラブチルアンモニウムブロミド(TBAB);21kg(35wt%)
(2)過冷却防止材21:四ホウ酸ナトリウム五水和物;1.2kg(2wt%)
(3)水9;37.8kg(62wt%)
(4)蓄熱材容器1a;150個;材質はPE、容量は500cc、外形寸法は、縦が220mm、横が140mm、高さが25mmの薄板直方体形状を呈している。
(5)キャップ1c;150個(充填口1bの封止用)
(6)攪拌機5
(7)撹拌窯3
(8)ふるい(不図示);目開き寸100μm程度
(9)超音波溶着機(不図示)
(Comparative example)
Next, the manufacturing method of the heat storage member by a comparative example is demonstrated. First, materials, members, equipment, jigs, and the like used for manufacturing the heat storage member will be described.
(1) Heat storage material 13: tetrabutylammonium bromide (TBAB); 21 kg (35 wt%)
(2) Supercooling prevention material 21: sodium tetraborate pentahydrate; 1.2 kg (2 wt%)
(3) Water 9; 37.8 kg (62 wt%)
(4) Heat storage material container 1a: 150 pieces; material is PE, capacity is 500 cc, and outer dimensions are a thin rectangular parallelepiped shape having a length of 220 mm, a width of 140 mm, and a height of 25 mm.
(5) 150 caps (for sealing the filling port 1b)
(6) Stirrer 5
(7) Stirring furnace 3
(8) Sieve (not shown); Aperture size of about 100 μm (9) Ultrasonic welding machine (not shown)
 図5は、比較例に係る蓄熱部材の製造方法を示している。図5(a)~(f)は、この順に本比較例による蓄熱部材の製造方法を時系列で示している。本比較例による蓄熱部材の製造方法において、上記実施例と同様の構成部材については同一の符号を付してその詳細な説明は省略する。 FIG. 5 shows a method for manufacturing a heat storage member according to a comparative example. FIGS. 5A to 5F show the heat storage member manufacturing method according to this comparative example in this order in this order. In the manufacturing method of the heat storage member according to this comparative example, the same components as those in the above embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図5(a)に示すように、撹拌窯3の窯部3aに水投入機7から水9を37.8kgだけ投入すると共に、蓄熱材袋11からふるい(不図示)を介して蓄熱材13としてTBABを21kgだけ投入する。窯部3a内は水9に蓄熱材13が混入した状態となっている。 As shown to Fig.5 (a), while only 37.8 kg of water 9 is thrown into the kiln part 3a of the stirring kiln 3 from the water charging device 7, the heat storage material 13 is passed from the heat storage material bag 11 through a sieve (not shown). As a result, only 21 kg of TBAB is added. The inside of the kiln part 3a is in a state in which the heat storage material 13 is mixed in the water 9.
 次に、図5(b)に示すように、撹拌窯3の窯部3aに過冷却防止材袋25から過冷却防止材21として四ホウ酸ナトリウムを1.2kgだけ投入する。窯部3a内は水9に蓄熱材13と過冷却防止材21が混入した状態となっている。 Next, as shown in FIG. 5 (b), 1.2 kg of sodium tetraborate is added as the supercooling prevention material 21 from the supercooling prevention material bag 25 to the kiln part 3 a of the stirring kiln 3. In the kiln part 3a, the heat storage material 13 and the supercooling prevention material 21 are mixed in the water 9.
 図5(b)に示す状態に引き続いて、図5(c)では、撹拌窯3の底部を加熱して窯部3a内を60℃に加温する加温処理27が実行される。攪拌機5の撹拌棒を矢印5bに示すように回転させて、蓄熱材13と過冷却防止材21が混入した水9内で撹拌翼5aを回転させて、水9と蓄熱材13と過冷却防止材21とを撹拌する。所定時間の撹拌・加温により蓄熱材13と過冷却防止材21が水9に溶解して、過冷却防止材21が溶解したTBAB水溶液の蓄熱材溶液29が作製される。以上の工程が蓄熱材を溶解する溶解工程である。 Following the state shown in FIG. 5 (b), in FIG. 5 (c), a heating process 27 is performed in which the bottom of the stirring kiln 3 is heated to heat the interior of the kiln 3a to 60 ° C. The stirrer 5 of the stirrer 5 is rotated as shown by the arrow 5b, and the stirring blade 5a is rotated in the water 9 in which the heat storage material 13 and the supercooling prevention material 21 are mixed, so that the water 9, the heat storage material 13 and the overcooling prevention are prevented. The material 21 is agitated. The heat storage material 13 and the supercooling prevention material 21 are dissolved in the water 9 by stirring and heating for a predetermined time, and the heat storage material solution 29 of the TBAB aqueous solution in which the supercooling prevention material 21 is dissolved is produced. The above process is a melting process for melting the heat storage material.
 次に、図5(d)に示すように、撹拌窯3の底部の加熱を停止して窯部3a内の加温処理27を終了させる。蓄熱部材1´の蓄熱材容器1aの充填口1bを撹拌窯3の窯部3a下部の吐出口3dの下方に位置決めして蓄熱部材1´を設置する。撹拌翼5aを停止させて蓄熱材溶液29の搖動を抑えてから開閉バルブ3cを開き、吐出口3dから蓄熱材溶液29を吐出させて、蓄熱材13と過冷却防止材21が溶解した蓄熱材溶液29を蓄熱材容器1aの充填口1bから蓄熱材容器1aに充填する。充填工程は作製する蓄熱部材1´の数だけ繰り返される。 Next, as shown in FIG.5 (d), the heating of the bottom part of the stirring kiln 3 is stopped, and the heating process 27 in the kiln part 3a is complete | finished. The heat storage member 1 ′ is installed by positioning the filling port 1 b of the heat storage material container 1 a of the heat storage member 1 ′ below the discharge port 3 d below the kiln part 3 a of the stirring kiln 3. After the stirring blade 5a is stopped and the peristalsis of the heat storage material solution 29 is suppressed, the opening / closing valve 3c is opened, and the heat storage material solution 29 is discharged from the discharge port 3d to dissolve the heat storage material 13 and the supercooling prevention material 21. The solution 29 is filled into the heat storage material container 1a from the filling port 1b of the heat storage material container 1a. The filling process is repeated by the number of heat storage members 1 ′ to be produced.
 図5(e)は、図5(d)に示す充填工程が繰り返されて、製造する蓄熱部材1´の個数が残り少なくなったときの充填工程の状態を示している。図5(e)に示す時点は、窯部3a内の加温処理27を終了させてから所定時間が経過しており、窯部3a内の蓄熱材溶液29の温度は加温時に比して低下している。このため、充填工程での蓄熱材溶液29の温度低下に伴い過冷却防止材21の溶解度が低下して過冷却防止材21が析出する。図6は窯部3a内に過冷却防止材21が析出した状態を説明する図である。図6(a)は、溶解工程が終了してから5分程度が経過した時点の蓄熱材溶液29の状態を示している。当初透明であった蓄熱材溶液29が白濁し、過冷却防止材21が析出し始めていることが分かる。 FIG. 5 (e) shows the state of the filling process when the filling process shown in FIG. 5 (d) is repeated and the number of heat storage members 1 ′ to be manufactured is reduced. The time shown in FIG. 5 (e) is that a predetermined time has elapsed since the heating process 27 in the kiln part 3a is finished, and the temperature of the heat storage material solution 29 in the kiln part 3a is compared with that during heating. It is falling. For this reason, the solubility of the supercooling prevention material 21 falls with the temperature fall of the thermal storage material solution 29 in a filling process, and the supercooling prevention material 21 precipitates. FIG. 6 is a diagram illustrating a state in which the supercooling prevention material 21 is deposited in the kiln 3a. FIG. 6A shows the state of the heat storage material solution 29 at the time when about 5 minutes have passed since the dissolution step was completed. It can be seen that the heat storage material solution 29, which was initially transparent, becomes cloudy and the supercooling prevention material 21 starts to precipitate.
 図5(f)は、所定回数の充填工程が繰り返されて蓄熱材溶液29がなくなった状態の窯部3a内を示しており、析出した過冷却防止材21が窯部3aの底に残っている状態を示している。図6(b)は、所定回数の充填工程が終了した後に窯部3aの底面に過冷却防止材21の残渣が確認できることを示している。 FIG. 5 (f) shows the inside of the kiln part 3 a in a state where the heat storage material solution 29 is exhausted by repeating the filling process a predetermined number of times, and the deposited supercooling prevention material 21 remains on the bottom of the kiln part 3 a. It shows the state. FIG. 6B shows that the residue of the supercooling prevention material 21 can be confirmed on the bottom surface of the kiln part 3a after a predetermined number of filling steps.
 なお、図示は省略したが、蓄熱材容器1aに充填した蓄熱材溶液29や過冷却防止材21が漏洩しないように充填口1bを超音波溶着機(不図示)により封止する封止工程が実施されている。 In addition, although illustration was abbreviate | omitted, the sealing process which seals the filling port 1b with an ultrasonic welding machine (not shown) so that the thermal storage material solution 29 and the supercooling prevention material 21 with which the thermal storage material container 1a was filled may not leak. It has been implemented.
 以上の比較例に係る蓄熱部材1´の製造方法によれば、溶解工程の終了直後にはTBAB:21kg(35wt%)、四ホウ酸Na:1.2kg(2wt%)、水:37.8kg(63wt%)の構成にて蓄熱材水溶液29を60kg作製できる。500g容量の蓄熱材容器1aに400gの蓄熱材溶液29を充填する場合には、最大150個の蓄熱部材1´を製造できる。以上の蓄熱部材の製造における作業工程毎に要した作業時間について以下に記載する。
(1)水9の投入              :30秒(1工程当り)
(2)蓄熱材13および過冷却防止材21の投入: 3分(1工程当り)
(3)撹拌窯3の加温および撹拌・溶解    :45分(1工程当り)
(4)蓄熱材溶液29の充填         :10秒(蓄熱部材1個当り)
(5)キャップ1cの溶着          : 5秒(蓄熱部材1個当り)
According to the manufacturing method of the heat storage member 1 ′ according to the comparative example, TBAB: 21 kg (35 wt%), Na tetraborate: 1.2 kg (2 wt%), water: 37.8 kg immediately after the completion of the melting step. 60 kg of the heat storage material aqueous solution 29 can be produced with the configuration of (63 wt%). When the heat storage material container 1a having a capacity of 500 g is filled with 400 g of the heat storage material solution 29, a maximum of 150 heat storage members 1 'can be manufactured. It describes below about the work time required for every work process in manufacture of the above heat storage member.
(1) Charge of water 9: 30 seconds (per process)
(2) Inputting the heat storage material 13 and the supercooling prevention material 21: 3 minutes (per process)
(3) Heating and stirring / dissolution of the stirring kiln 3: 45 minutes (per process)
(4) Filling of heat storage material solution 29: 10 seconds (per one heat storage member)
(5) Welding of cap 1c: 5 seconds (per heat storage member)
 次に、上記実施例5の製造方法で製造した蓄熱部材1と比較例の製造方法で製造した蓄熱部材1´の蓄熱性能について図7を用いて説明する。蓄熱性能の測定は以下の条件の下で行った。室温が+30℃の環境下に設置した冷蔵庫の冷蔵室内に実施例5に係る蓄熱部材1と比較例に係る蓄熱部材1´とを載置し、冷蔵庫の電源を投入して冷蔵室内の冷却を開始する。冷蔵室の設定温度を+1℃として冷却開始から18時間経過時までの温度変化を測定した。蓄熱部材1と蓄熱部材1´の相変化温度は共に+6℃である。また、蓄熱部材1´は、上記比較例で作製した150個の蓄熱部材1´のうち、最後に作製した5個の蓄熱部材1´を用いている。蓄熱部材1は、実施例5で作製した150個の蓄熱部材1のうち任意に選択した5個の蓄熱部材1を用いている。 Next, the heat storage performance of the heat storage member 1 manufactured by the manufacturing method of Example 5 and the heat storage member 1 ′ manufactured by the manufacturing method of the comparative example will be described with reference to FIG. The heat storage performance was measured under the following conditions. The heat storage member 1 according to Example 5 and the heat storage member 1 ′ according to the comparative example are placed in the refrigerator compartment of the refrigerator installed in an environment where the room temperature is + 30 ° C., and the refrigerator is turned on to cool the refrigerator compartment. Start. The temperature change from the start of cooling until the lapse of 18 hours was measured at a set temperature of the refrigerator compartment of + 1 ° C. The phase change temperatures of the heat storage member 1 and the heat storage member 1 ′ are both + 6 ° C. Moreover, the heat storage member 1 'uses the five heat storage members 1' produced lastly among the 150 heat storage members 1 'produced in the comparative example. The heat storage member 1 uses five heat storage members 1 arbitrarily selected from the 150 heat storage members 1 produced in the fifth embodiment.
 図7に示すグラフの縦軸は温度(℃)を表し、横軸は経過時間(h)を表している。図において実線で示す曲線は比較例に係る蓄熱部材1´の温度変化を示し、破線で示す曲線は実施例5に係る蓄熱部材1の温度変化を示している。図から明らかなように、実施例に係る蓄熱部材1は、冷却開始から4時間経過時点で相変化温度である+6℃より4℃低い過冷却状態となった後、冷却開始から5時間経過後には相変化温度の+6℃になり、液相から固相への相変化が開始される。冷却開始から7時間経過では蓄熱部材1の蓄熱材溶液15は完全に固相に相変化する。その後、3時間程度で顕熱放熱により蓄熱部材1の温度は低下して、冷却開始から10時間経過以降は、冷蔵室内の設定温度とほぼ同一の+1℃~+2℃の範囲に維持される。 7, the vertical axis represents temperature (° C.) and the horizontal axis represents elapsed time (h). In the figure, a curve indicated by a solid line indicates a temperature change of the heat storage member 1 ′ according to the comparative example, and a curve indicated by a broken line indicates a temperature change of the heat storage member 1 according to the fifth embodiment. As is apparent from the figure, the heat storage member 1 according to the example is in a supercooled state 4 ° C. lower than the phase change temperature + 6 ° C. after 4 hours from the start of cooling, and after 5 hours from the start of cooling. Becomes + 6 ° C. of the phase change temperature, and the phase change from the liquid phase to the solid phase is started. In 7 hours from the start of cooling, the heat storage material solution 15 of the heat storage member 1 completely changes to a solid phase. Thereafter, the temperature of the heat storage member 1 is decreased by sensible heat radiation in about 3 hours, and after 10 hours from the start of cooling, the temperature is maintained in the range of + 1 ° C. to + 2 ° C., which is substantially the same as the set temperature in the refrigerator compartment.
 一方、比較例に係る蓄熱部材1´は、冷却開始から4時間経過時点で相変化温度である+6℃より4℃低い過冷却状態となった以降は、冷蔵室内の設定温度とほぼ同一の+1℃~+2℃の範囲に維持される。つまり、比較例に係る蓄熱部材1´の蓄熱材溶液29は液相から固相への相変化をせずに過冷却状態が維持されている。 On the other hand, after the heat storage member 1 ′ according to the comparative example is in a supercooled state 4 ° C. lower than + 6 ° C. which is the phase change temperature after 4 hours from the start of cooling, the heat storage member 1 ′ is almost the same as the set temperature in the refrigerator compartment + 1 It is maintained in the range of 0 ° C to + 2 ° C. That is, the heat storage material solution 29 of the heat storage member 1 ′ according to the comparative example is maintained in a supercooled state without undergoing a phase change from the liquid phase to the solid phase.
 このように、比較例に係る蓄熱部材1´の製造方法では、充填工程の開始から終了に向けて徐々に窯部3a内に過冷却防止材が析出してしまうので、蓄熱材溶液29の充填時期が遅い蓄熱部材1´ほど、蓄熱材容器1a内に充填される過冷却防止材21が必要量より少なくなってしまう。このため、蓄熱材溶液29が所定の相変化温度になっても固相へ相変化せずに過冷却状態のまま液相で存在するため、相変化による潜熱蓄熱が阻害されてしまう。これに対し、本実施例に係る蓄熱部材1の製造方法では、充填時期によらず必要量の過冷却防止材21が蓄熱材容器1a内に添加されるので、蓄熱材溶液15を冷蔵室内で早く確実に固相へ相変化させることができる。 Thus, in the manufacturing method of the heat storage member 1 ′ according to the comparative example, the supercooling prevention material is gradually deposited in the kiln part 3 a from the start to the end of the filling process, and therefore, the filling of the heat storage material solution 29 is performed. The later the heat storage member 1 ', the less the amount of supercooling prevention material 21 filled in the heat storage material container 1a is less than the required amount. For this reason, even if the heat storage material solution 29 reaches a predetermined phase change temperature, it does not change to a solid phase and exists in a liquid phase while being in a supercooled state, so that latent heat storage due to the phase change is hindered. On the other hand, in the method for manufacturing the heat storage member 1 according to the present embodiment, the necessary amount of the supercooling prevention material 21 is added into the heat storage material container 1a regardless of the filling time, so that the heat storage material solution 15 is stored in the refrigerator compartment. The phase can be changed quickly and reliably to the solid phase.
 次に、図8を用いて、比較例に係る蓄熱部材1´の製造方法に存在するさらなる問題点について説明する。図8(a)は、水を満たしたビーカ内に四ホウ酸ナトリウムを添加した状態を示している。四ホウ酸ナトリウムを添加したのみで加温・撹拌していないので四ホウ酸ナトリウムの微粒子が底面に沈殿している状態である。 Next, further problems existing in the method of manufacturing the heat storage member 1 ′ according to the comparative example will be described with reference to FIG. FIG. 8A shows a state in which sodium tetraborate is added into a beaker filled with water. Since sodium tetraborate is only added and not heated or stirred, sodium tetraborate fine particles are precipitated on the bottom surface.
 図8(b)は、室温(+25℃)においてビーカ内を+60℃に加温して撹拌し、四ホウ酸ナトリウムを完全に溶解させて四ホウ酸ナトリウム水溶液を作製して放置させたところ、四ホウ酸ナトリウムの微粒子ではなく針状結晶が析出した状態を示している。 FIG. 8B shows that when the beaker is heated to + 60 ° C. and stirred at room temperature (+ 25 ° C.), sodium tetraborate is completely dissolved to prepare an aqueous sodium tetraborate solution and left to stand. It shows a state in which acicular crystals are precipitated instead of fine particles of sodium tetraborate.
 図8(c)は、図8(b)に示す状態から再度+60℃に加温して撹拌したが、四ホウ酸ナトリウムは完全には溶解せず、水溶液が白濁している状態を示している。 FIG. 8 (c) shows a state where the solution shown in FIG. 8 (b) is heated to + 60 ° C. and stirred again, but sodium tetraborate is not completely dissolved and the aqueous solution is cloudy. Yes.
 さらなる実験により、溶液の温度が+60℃近辺を境に四ホウ酸ナトリウムの水に対する溶解度特性が変化することが分かった。また、溶解温度を+60℃から+80℃へ変更することによって四ホウ酸ナトリウムを再溶解できることを確認した。また、溶解温度を上げることによって析出状態が変わることを確認した。また、再析出した状態で高温撹拌を行なっても、溶解不能であることも確認した。これにより、比較例に係る蓄熱部材の製造方法では、溶解時の加温条件によって過冷却防止材の組成が変化してしまい、蓄熱部材の信頼性が低下するという問題がある。これに対し本実施形態による蓄熱部材の製造方法では比較例のような問題は生じない。 Further experiments have shown that the solubility characteristics of sodium tetraborate in water change when the solution temperature is around + 60 ° C. Further, it was confirmed that sodium tetraborate can be redissolved by changing the dissolution temperature from + 60 ° C. to + 80 ° C. Further, it was confirmed that the precipitation state was changed by increasing the melting temperature. Moreover, even if it stirred at high temperature in the state which reprecipitated, it also confirmed that it was insoluble. Thereby, in the manufacturing method of the heat storage member which concerns on a comparative example, the composition of a supercooling prevention material changes with the heating conditions at the time of melt | dissolution, and there exists a problem that the reliability of a heat storage member falls. On the other hand, the manufacturing method of the heat storage member according to the present embodiment does not cause the problem as in the comparative example.
 次に、本実施例に係る蓄熱部材の製造方法と比較例に係る蓄熱部材の製造方法での工程作業時間について比較する。
 実施例5で作製した蓄熱部材1を150個作製するのに要する工程作業時間は、
工程作業時間(分)
=(水9の投入:0.5分)+(蓄熱材13の投入:3分)+(撹拌・溶解:15分)+(過冷却防止材21の添加:1/6分×150個)+(蓄熱材溶液15の充填:1/6×150個)+(キャップ1cの溶着:1/12×150個)
=0.5+3+15+25+25+12.5
=81(分)
となる。
Next, the process work time in the method for manufacturing the heat storage member according to the present embodiment and the method for manufacturing the heat storage member according to the comparative example will be compared.
The process work time required to produce 150 heat storage members 1 produced in Example 5 is:
Process work time (minutes)
= (Input of water 9: 0.5 minutes) + (input of heat storage material 13: 3 minutes) + (stirring / dissolution: 15 minutes) + (addition of supercooling prevention material 21: 1/6 minutes x 150) + (Filling of heat storage material solution 15: 1/6 × 150) + (welding of cap 1c: 1/12 × 150)
= 0.5 + 3 + 15 + 25 + 25 + 12.5
= 81 (minutes)
It becomes.
 比較例の製造方法で作製した蓄熱部材1´を150個作製するのに要する工程作業時間は、
工程作業時間(分)
=(水9の投入:0.5分)+(蓄熱材13および過冷却防止材21の投入:3分)+(撹拌窯3の加温および撹拌・溶解:45分)+(蓄熱材溶液29の充填:1/6×150個)+(キャップ1cの溶着:1/12×150個)
=0.5+3+45+25+12.5
=86(分)
となる。
 このように、本実施例に係る製造方法の方が比較例に係る製造方法より工程作業時間を短縮することができる。さらに、溶解工程と添加工程とを並行して実施すれば、さらに工程作業時間の短縮を図ることができる。
The process work time required to produce 150 heat storage members 1 ′ produced by the production method of the comparative example is as follows:
Process work time (minutes)
= (Input of water 9: 0.5 minutes) + (input of heat storage material 13 and supercooling prevention material 21: 3 minutes) + (heating and stirring / dissolution of stirring furnace 3: 45 minutes) + (heat storage material solution 29 filling: 1/6 × 150) + (welding cap 1c: 1/12 × 150)
= 0.5 + 3 + 45 + 25 + 12.5
= 86 (minutes)
It becomes.
Thus, the manufacturing method according to the present embodiment can shorten the process work time compared to the manufacturing method according to the comparative example. Furthermore, if the dissolution step and the addition step are performed in parallel, the process work time can be further reduced.
(実施例6)
 本実施例は、上述の実施例1~5における添加工程の前に、過冷却防止材21を添加規定容量に錠剤化する錠剤化工程を有することを特徴とする。錠剤化工程では、錠剤機を用いて四ホウ酸ナトリウムの粉末を定量の塊(錠剤)状にする。錠剤機として例えば小型回転式錠剤機を用いて、粒径が1μm程度の四ホウ酸ナトリウム五水和物を圧縮成型により重量が8g程度の塊(錠剤)状に形成する。本実施例によれば、添加工程において、定量サジ19や漏斗17を使って四ホウ酸ナトリウムを定量化して添加する必要がなく、四ホウ酸ナトリウムの錠剤一錠を充填口1bから蓄熱材容器1a内に投入するだけなので作業効率を大幅に改善することができる。本実施例によれば、1個の蓄熱材容器1aに過冷却防止材21を添加するのに10秒かかっていた作業時間を1~2秒に短縮できる。
(Example 6)
The present embodiment is characterized by having a tableting step for tableting the supercooling prevention material 21 to the specified addition volume before the adding step in the above-described Examples 1 to 5. In the tableting process, a powder of sodium tetraborate is formed into a fixed mass (tablet) using a tablet machine. For example, using a small rotary tablet machine as a tablet machine, sodium tetraborate pentahydrate having a particle size of about 1 μm is formed into a lump (tablet) having a weight of about 8 g by compression molding. According to the present embodiment, in the addition step, it is not necessary to quantify and add sodium tetraborate using the fixed sag 19 or funnel 17, and one tablet of sodium tetraborate is stored in the heat storage material container from the filling port 1b. Since it is only put in 1a, work efficiency can be greatly improved. According to this embodiment, it is possible to reduce the work time, which took 10 seconds to add the supercooling prevention material 21 to one heat storage material container 1a, to 1 to 2 seconds.
(実施例7)
 本実施例は、上述の実施例1~5における添加工程の前に、過冷却防止材21を着色する着色化工程を有することを特徴とする。特に、実施例6で錠剤化した四ホウ酸ナトリウムに着色コーティングするのが好ましい。錠剤化工程の後に、無機顔料を着色するコーティング工程を追加し、錠剤化した四ホウ酸ナトリウムを着色化する。着色材には、長期使用や溶液と接触することを考慮すると、染料系よりも顔料系着色材が好ましい。また、顔料着色材には、無機系と有機系があるが、耐光性、コストの観点から無機系着色材が好ましい。例えば、鉄や鉛などの金属を酸化させたもので、Fe、PbO、HgS、CdS、Sbなどが挙げられる。これらの着色材は、任意の一定温度によって発色と消色を可逆的に変化する特徴を有する示温材料であってもよい。実施例6や実施例7により過冷却防止材21を錠剤化したり着色化したりすることにより充填作業効率を向上させることができる。
(Example 7)
The present embodiment is characterized by having a coloring step for coloring the supercooling prevention material 21 before the adding step in the first to fifth embodiments. In particular, it is preferable to color coat sodium tetraborate tableted in Example 6. After the tableting step, a coating step for coloring the inorganic pigment is added to color the tableted sodium tetraborate. In consideration of long-term use and contact with a solution, a pigment-based colorant is preferable to a colorant rather than a dye-based colorant. Moreover, although there are inorganic and organic pigment colorants, inorganic colorants are preferred from the viewpoint of light resistance and cost. For example, it is obtained by oxidizing a metal such as iron or lead, and examples thereof include Fe 2 O 3 , PbO, HgS, CdS, and Sb 2 O 3 . These colorants may be temperature-indicating materials having the characteristic of reversibly changing color development and decoloration at any constant temperature. Filling work efficiency can be improved by tableting or coloring the supercooling prevention material 21 according to Example 6 or Example 7.
(実施例8)
 次に、上述の実施例による蓄熱部材の製造方法で用いる製造装置の一例を実施例8として図9を用いて説明する。図9(a)は本実施例の製造装置31の側面を示し 図9(b)は製造装置31の正面を示している。本実施例による製造装置31は溶解工程と充填工程で用いられる。製造装置31は、蓄熱材13を水9に溶解する溶解工程で用いるための撹拌窯3と撹拌機5とを有している。撹拌窯3と攪拌機5は図1を用いて説明した構成と同様なのでその説明は省略する。水9を満たした撹拌窯3内に蓄熱材13を投入し、撹拌機5を用いて撹拌窯3内の水9と蓄熱材13を撹拌して蓄熱材溶液15を作製する。撹拌窯3の開閉バルブ3cはポンプ式定量充填機33の注入口とサニタリー配管35等で接続されている。撹拌窯3とポンプ式定量充填機33は高さ方向に垂直に配管接続されている。
(Example 8)
Next, an example of a manufacturing apparatus used in the method for manufacturing a heat storage member according to the above-described embodiment will be described as an eighth embodiment with reference to FIG. FIG. 9A shows a side surface of the manufacturing apparatus 31 of this embodiment, and FIG. 9B shows a front surface of the manufacturing apparatus 31. The manufacturing apparatus 31 according to the present embodiment is used in the melting process and the filling process. The manufacturing apparatus 31 includes a stirring kiln 3 and a stirrer 5 for use in a melting step of dissolving the heat storage material 13 in water 9. Since the stirring kiln 3 and the stirrer 5 are the same as the structure demonstrated using FIG. 1, the description is abbreviate | omitted. The heat storage material 13 is put into the stirring kiln 3 filled with the water 9, and the water 9 and the heat storage material 13 in the stirring kiln 3 are stirred using the stirrer 5 to prepare the heat storage material solution 15. The opening / closing valve 3c of the stirring kiln 3 is connected to the inlet of the pump type quantitative filling machine 33 by a sanitary pipe 35 or the like. The stirring kiln 3 and the pump type quantitative filling machine 33 are connected to each other by a pipe perpendicular to the height direction.
 ポンプ式定量充填機33は、充填工程において蓄熱材溶液15を蓄熱材容器1aに充填する際に用いる。ポンプ式定量充填機33は、ロータが回転すると、ロータとステータの間に一定空間のキャビティができ、当該キャビティの部分を図中の矢印の方向に充填物が通って、定量的に吐出口37から取り出される構造となっている。充填工程では、蓄熱材溶液15をポンプ式定量充填機33に導入し、ポンプ式定量充填機33の吐出口37を充填口1aに接続して、吐出口37から蓄熱材溶液15を所定量だけ吐出して蓄熱材容器1aに充填する。ポンプ式定量充填機33を用いることにより、高速且つ高精度で充填可能な蓄熱部材の製造方法が実現できる。本実施例の製造装置31によれば、溶解工程から充填工程までのプロセスを一括で効率的に実行することができる。 The pump type quantitative filling machine 33 is used when the heat storage material solution 15 is filled in the heat storage material container 1a in the filling step. When the rotor rotates, the pump type quantitative filling machine 33 forms a cavity of a constant space between the rotor and the stator, and the filling material passes through the portion of the cavity in the direction of the arrow in FIG. It is structured to be taken out from In the filling step, the heat storage material solution 15 is introduced into the pump type quantitative filling machine 33, the discharge port 37 of the pump type quantitative filling machine 33 is connected to the filling port 1a, and the heat storage material solution 15 is discharged from the discharge port 37 by a predetermined amount. The heat storage material container 1a is discharged and filled. By using the pump type quantitative filling machine 33, a method of manufacturing a heat storage member that can be filled at high speed and with high accuracy can be realized. According to the manufacturing apparatus 31 of the present embodiment, the processes from the melting step to the filling step can be efficiently executed collectively.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 上記実施の形態では、蓄熱材溶液15の相変化温度は+6℃としているが本発明はこれに限られない。例えば、蓄熱材13と水9との割合を変えたり、蓄熱材をTBAB以外の材料としたりすることにより、所望の相変化温度の蓄熱材溶液15を製造することができる。
The present invention is not limited to the above embodiment, and various modifications can be made.
In the said embodiment, although the phase change temperature of the thermal storage material solution 15 is +6 degreeC, this invention is not limited to this. For example, the heat storage material solution 15 having a desired phase change temperature can be manufactured by changing the ratio of the heat storage material 13 and the water 9 or by using a heat storage material other than TBAB.
 また、上記実施の形態による蓄熱部材の製造方法により製造された蓄熱部材を保管庫、特に冷凍冷蔵庫に搭載することにより、電力事情が芳しくない地域等における停電時に庫内温度を一定時間所望温度に維持することができる。また、上記実施の形態による蓄熱部材の製造方法により製造された蓄熱部材を搭載した保管庫は、特にワイン、ビール、日本酒等のアルコール飲料、ジュース、水等の飲料、食品類、又は医薬品等の保温物を適温で保冷、保温可能である。これらの保温物には適した保管温度が存在する。当該保温庫は、所望の保管温度でこれらの保温物を長期間保管することができる。 In addition, by installing the heat storage member manufactured by the method for manufacturing the heat storage member according to the above embodiment in a storage, particularly in a refrigerator-freezer, the internal temperature is kept at a desired temperature for a certain period of time during a power failure in areas where power conditions are not good. Can be maintained. In addition, the storage equipped with the heat storage member manufactured by the method for manufacturing the heat storage member according to the above embodiment is particularly suitable for alcoholic beverages such as wine, beer and sake, beverages such as juice and water, foods, pharmaceuticals, etc. It is possible to cool and keep the warmed material at an appropriate temperature. There are suitable storage temperatures for these insulations. The said heat storage can store these heat retention materials for a long period of time at a desired storage temperature.
 なお、上述の各実施例に記載されている技術的特徴(構成要件)は相互に組合せ可能であり、組み合わせることにより、新しい技術的特徴を形成することができる。 It should be noted that the technical features (configuration requirements) described in the above embodiments can be combined with each other, and a new technical feature can be formed by combining them.
 本発明は、過冷却防止材を添加した蓄熱部材の製造に広く利用可能である。 The present invention can be widely used for manufacturing a heat storage member to which a supercooling prevention material is added.
1、1´ 蓄熱部材
1a 蓄熱材容器
1b 充填口
1c キャップ
3 撹拌窯
3a 窯部
3b 脚部
3c 開閉バルブ
3d 吐出口
5 撹拌機
5a 撹拌翼
7 水投入機
9 水
13 蓄熱材
15、29 蓄熱材溶液
17 漏斗
19 定量サジ
21 過冷却防止材
23 定量紛体充填機
23a 紛体収容部
23b 脚部
23c 吐出口
33 ポンプ式定量充填機
37 吐出口
DESCRIPTION OF SYMBOLS 1, 1 'Thermal storage member 1a Thermal storage material container 1b Filling port 1c Cap 3 Stirring kiln 3a Kiln part 3b Leg part 3c Opening and closing valve 3d Discharge port 5 Stirrer 5a Stirring blade 7 Water input machine 9 Water 13 Thermal storage material 15, 29 Thermal storage material Solution 17 Funnel 19 Fixed sag 21 Supercooling prevention material 23 Fixed powder filling machine 23a Powder storage part 23b Leg part 23c Discharge port 33 Pump type fixed filling machine 37 Discharge port

Claims (13)

  1.  蓄熱材を溶解する溶解工程と、
     容器を開口した充填口から前記蓄熱材が溶解した蓄熱材溶液を前記容器に充填する充填工程と、
     固体の過冷却防止材を前記充填口から前記容器内に添加する添加工程と、
     前記充填口を封止する封止工程と
    を有することを特徴とする蓄熱部材の製造方法。
    A melting process for melting the heat storage material;
    A filling step of filling the container with a heat storage material solution in which the heat storage material is dissolved from a filling port that opens the container;
    An addition step of adding a solid supercooling prevention material into the container from the filling port;
    And a sealing step for sealing the filling port.
  2.  請求項1に記載の蓄熱部材の製造方法であって、
     前記充填工程は、前記添加工程より前に実施されること
    を特徴とする蓄熱部材の製造方法。
    It is a manufacturing method of the thermal storage member according to claim 1,
    The said filling process is implemented before the said addition process, The manufacturing method of the thermal storage member characterized by the above-mentioned.
  3.  請求項1に記載の蓄熱部材の製造方法であって、
     前記添加工程は、前記充填工程より前に実施されること
    を特徴とする蓄熱部材の製造方法。
    It is a manufacturing method of the thermal storage member according to claim 1,
    The said addition process is implemented before the said filling process, The manufacturing method of the thermal storage member characterized by the above-mentioned.
  4.  請求項1~3のいずれか一項に記載の蓄熱部材の製造方法であって、
     前記添加工程の前に、
     前記過冷却防止材を添加規定容量に錠剤化する錠剤化工程を有すること
    を特徴とする蓄熱部材の製造方法。
    A method for producing a heat storage member according to any one of claims 1 to 3,
    Before the addition step,
    A method for producing a heat storage member, comprising a tableting step of tableting the supercooling prevention material into an addition specified capacity.
  5.  請求項1~4のいずれか一項に記載の蓄熱部材の製造方法であって、
     前記添加工程の前に、
     前記過冷却防止材を着色する着色化工程を有すること
    を特徴とする蓄熱部材の製造方法。
    A method for producing a heat storage member according to any one of claims 1 to 4,
    Before the addition step,
    The manufacturing method of the thermal storage member characterized by having the coloring process which colors the said supercooling prevention material.
  6.  請求項1~5のいずれか一項に記載の蓄熱部材の製造方法であって、
     前記蓄熱材は、水和塩系蓄熱材を有すること
    を特徴とする蓄熱部材の製造方法。
    A method of manufacturing a heat storage member according to any one of claims 1 to 5,
    The said heat storage material has a hydrated salt type heat storage material, The manufacturing method of the heat storage member characterized by the above-mentioned.
  7.  請求項6に記載の蓄熱部材の製造方法であって、
     前記水和塩系蓄熱材は、
     テトラアルキルアンモニウム塩を含む水溶液と、前記テトラアルキルアンモニウム塩をゲスト分子とする包接水和物とに、可逆的に変化する蓄熱材であること
    を特徴とする蓄熱部材の製造方法。
    It is a manufacturing method of the thermal storage member according to claim 6,
    The hydrate salt heat storage material is
    A method for producing a heat storage member, which is a heat storage material that reversibly changes between an aqueous solution containing a tetraalkylammonium salt and an clathrate hydrate containing the tetraalkylammonium salt as a guest molecule.
  8.  請求項7に記載の蓄熱部材の製造方法であって、
     前記テトラアルキルアンモニウム塩は、テトラブチルアンモニウムブロミドであることを特徴とする蓄熱部材の製造方法。
    It is a manufacturing method of the thermal storage member according to claim 7,
    The method for producing a heat storage member, wherein the tetraalkylammonium salt is tetrabutylammonium bromide.
  9.  請求項1~8のいずれか一項に記載の蓄熱部材の製造方法であって、
     前記過冷却防止材は、四ホウ酸ナトリウムを有すること
    を特徴とする蓄熱部材の製造方法。
    A method for producing a heat storage member according to any one of claims 1 to 8,
    The said supercooling prevention material has sodium tetraborate, The manufacturing method of the thermal storage member characterized by the above-mentioned.
  10.  請求項1~9のいずれか一項に記載の蓄熱部材の製造方法であって、
     前記容器は、
     ポリエチレンまたはポリプロピレンを成型材とする樹脂成型容器であること
    を特徴とする蓄熱部材の製造方法。
    A method for producing a heat storage member according to any one of claims 1 to 9,
    The container is
    A method for producing a heat storage member, which is a resin molded container using polyethylene or polypropylene as a molding material.
  11.  請求項1~9のいずれか一項に記載の蓄熱部材の製造方法であって、
     前記容器は、
     ナイロンまたはアルミニウムを形成材とするフレキシブル性フィルム包装材で形成されていることを特徴とする蓄熱部材の製造方法。
    A method for producing a heat storage member according to any one of claims 1 to 9,
    The container is
    A method for producing a heat storage member, characterized by being formed of a flexible film packaging material made of nylon or aluminum.
  12.  請求項1~11のいずれか一項に記載の蓄熱部材の製造方法により製造された蓄熱部材を搭載していることを特徴とする保管庫。 A storage room equipped with a heat storage member manufactured by the method for manufacturing a heat storage member according to any one of claims 1 to 11.
  13.  請求項12に記載の保管庫であって、冷凍冷蔵庫であることを特徴とする保管庫。 The storage according to claim 12, wherein the storage is a refrigerator-freezer.
PCT/JP2015/061522 2014-04-24 2015-04-14 Method for producing heat storage member WO2015163200A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016514878A JPWO2015163200A1 (en) 2014-04-24 2015-04-14 Method for manufacturing heat storage member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014090533 2014-04-24
JP2014-090533 2014-04-24

Publications (1)

Publication Number Publication Date
WO2015163200A1 true WO2015163200A1 (en) 2015-10-29

Family

ID=54332367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061522 WO2015163200A1 (en) 2014-04-24 2015-04-14 Method for producing heat storage member

Country Status (2)

Country Link
JP (1) JPWO2015163200A1 (en)
WO (1) WO2015163200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780607A (en) * 2020-07-24 2020-10-16 青海民族大学 Solid-state fused salt energy storage tank

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995668A (en) * 1995-09-29 1997-04-08 Misato Kk Heat accumulating composition, its production and production of heat accumulator
JP2002030280A (en) * 2000-07-14 2002-01-31 Sumitomo Chem Co Ltd Method for producing granule of agent for preventing supercooling of salt hydrate
JP2003034785A (en) * 2001-07-24 2003-02-07 Sumitomo Chem Co Ltd Method for manufacturing thermal storage medium
JP2004218889A (en) * 2003-01-10 2004-08-05 Mitsubishi Chem Mkv Co Cold storage medium
JP2006321949A (en) * 2005-05-20 2006-11-30 Japan Energy Corp Paraffin-based latent heat-storing material composition
JP2008195860A (en) * 2007-02-14 2008-08-28 Mitsubishi Paper Mills Ltd Granulated product of heat storage material and its use
JP2009161719A (en) * 2007-12-10 2009-07-23 Jfe Engineering Corp Heat storage method and supercooling-suppressing method and heat storage apparatus
JP2009213701A (en) * 2008-03-11 2009-09-24 Yamaichi Kk Heat storable heating apparatus
JP2010131289A (en) * 2008-12-08 2010-06-17 Takara:Kk Heat storage material bedclothing
JP2014052120A (en) * 2012-09-06 2014-03-20 Jfe Engineering Corp Manufacturing method of substance having heat storage property

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995668A (en) * 1995-09-29 1997-04-08 Misato Kk Heat accumulating composition, its production and production of heat accumulator
JP2002030280A (en) * 2000-07-14 2002-01-31 Sumitomo Chem Co Ltd Method for producing granule of agent for preventing supercooling of salt hydrate
JP2003034785A (en) * 2001-07-24 2003-02-07 Sumitomo Chem Co Ltd Method for manufacturing thermal storage medium
JP2004218889A (en) * 2003-01-10 2004-08-05 Mitsubishi Chem Mkv Co Cold storage medium
JP2006321949A (en) * 2005-05-20 2006-11-30 Japan Energy Corp Paraffin-based latent heat-storing material composition
JP2008195860A (en) * 2007-02-14 2008-08-28 Mitsubishi Paper Mills Ltd Granulated product of heat storage material and its use
JP2009161719A (en) * 2007-12-10 2009-07-23 Jfe Engineering Corp Heat storage method and supercooling-suppressing method and heat storage apparatus
JP2009213701A (en) * 2008-03-11 2009-09-24 Yamaichi Kk Heat storable heating apparatus
JP2010131289A (en) * 2008-12-08 2010-06-17 Takara:Kk Heat storage material bedclothing
JP2014052120A (en) * 2012-09-06 2014-03-20 Jfe Engineering Corp Manufacturing method of substance having heat storage property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780607A (en) * 2020-07-24 2020-10-16 青海民族大学 Solid-state fused salt energy storage tank

Also Published As

Publication number Publication date
JPWO2015163200A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
Kumar et al. Review of stability and thermal conductivity enhancements for salt hydrates
Mohamed et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems
Englmair et al. Crystallization by local cooling of supercooled sodium acetate trihydrate composites for long-term heat storage
EP3575375B1 (en) Latent-heat storage material composition and latent-heat storage tank
CN106753254A (en) A kind of inorganic hydrated salt composite phase-change heat-storage material and its preparation and application
US10823477B2 (en) Thermal energy storage member and storage container using the same, and refrigerator using the same
Lin et al. Enhanced cold storage performance of Na2SO4· 10H2O/expanded graphite composite phase change materials
JP6594870B2 (en) Cooling material
JP3742871B2 (en) Manufacturing method of heat storage body
CN113396199B (en) Phase Change Material (PCM) with solid-to-solid transition
EP3864106B1 (en) Metal nitrate based compositions for use as phase change materials
WO2015163200A1 (en) Method for producing heat storage member
WO2014192616A1 (en) Heat storage member, manufacturing method of same, and storage container, refrigerator, packaging container, clothing, glass and pillow using said heat storage member
US20230265332A1 (en) Phase change material
US20230040088A1 (en) Method for obtaining nitrate-based eutetic mixtures to thermal storage in solar cooling systems and such eutetic mixtures
CN113175774B (en) Refrigerator, refrigerator car and refrigerating method thereof
JP6088877B2 (en) Cooler
JP2015209998A (en) Cooling box
Malarmannan et al. Experimental investigation on reducing the solidification time of NFPCM by reducing sub cooling for different heat transfer fluid temperature for cooling applications
JPH0141672B2 (en)
JPS6238398B2 (en)
JP2016098007A (en) Heat exchange unit
JP2016056333A (en) Cold insulation tool
JPS6067582A (en) Method for encapsulating heat storage material of latent heat
Martin Thermal Energy Storage technical progress report, April 1984-March 1985

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201607970

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 15782285

Country of ref document: EP

Kind code of ref document: A1