WO2015162918A1 - Image-capturing element unit, image-capturing device, and camera-equipped mobile terminal - Google Patents

Image-capturing element unit, image-capturing device, and camera-equipped mobile terminal Download PDF

Info

Publication number
WO2015162918A1
WO2015162918A1 PCT/JP2015/002185 JP2015002185W WO2015162918A1 WO 2015162918 A1 WO2015162918 A1 WO 2015162918A1 JP 2015002185 W JP2015002185 W JP 2015002185W WO 2015162918 A1 WO2015162918 A1 WO 2015162918A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
imaging
lens
unit
image sensor
Prior art date
Application number
PCT/JP2015/002185
Other languages
French (fr)
Japanese (ja)
Inventor
政大 齊藤
和宏 八重樫
邦彦 瀬野
Original Assignee
ミツミ電機株式会社
政大 齊藤
和宏 八重樫
邦彦 瀬野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社, 政大 齊藤, 和宏 八重樫, 邦彦 瀬野 filed Critical ミツミ電機株式会社
Publication of WO2015162918A1 publication Critical patent/WO2015162918A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • the present invention relates to an imaging element unit, an imaging device, and a mobile terminal with a camera.
  • a small imaging device is mounted on a mobile terminal such as a smartphone.
  • the imaging apparatus includes a lens unit having one or more lens groups, and an imaging element that captures a subject image formed by the lens unit.
  • Some cameras have an autofocus function that automatically adjusts the focus when shooting the subject and a camera shake correction function (OIS: Optical Image Stabilization) that corrects camera shake (vibration) that occurs during shooting.
  • OIS Optical Image Stabilization
  • the resolution R in the imaging apparatus is expressed by the following equation (1), where K is a constant (typically 0.61), ⁇ is the wavelength of light, and NA is the numerical aperture.
  • R K ⁇ ⁇ / NA (1)
  • NA the numerical aperture NA is expressed by the following formula (n), where n is a refractive index of a medium between a proximity lens (a lens disposed closest to the imaging device, also called a final lens) and the imaging device, and ⁇ is an incident angle of light. 2).
  • NA n ⁇ sin ⁇ (2) Since K and ⁇ are constant, the resolution R can be increased by filling the space between the proximity lens and the image sensor with a substance having a large refractive index n.
  • Patent Document 1 discloses an image pickup device unit in which an image pickup device and a proximity lens are housed in a lens barrel (lens barrel) and a transparent substance (for example, water) having a refractive index larger than that of air is filled therebetween. Is disclosed.
  • the imaging element unit is configured to include a proximity lens that is a part of the lens unit, there are limitations in designing lens units having various specifications.
  • the imaging element is housed in the lens barrel, it is difficult to reduce the size.
  • An object of the present invention is to provide an image sensor unit that can easily cope with lens units of various specifications and can be miniaturized, and to provide an image pickup apparatus including the image sensor unit and a camera-equipped mobile terminal. That is.
  • the image pickup device unit is an image pickup device unit that is disposed in the vicinity of a lens unit having one or more lens groups, An image sensor for imaging a subject image formed by the lens unit; A substrate on which the image sensor is mounted; Composed of a transparent material having a refractive index greater than that of air, and an element covering portion disposed so as to cover the imaging area of the imaging element; And an overmold part formed by molding on the peripheral edge of the substrate so as to surround the element covering part.
  • An imaging apparatus includes the above-described imaging element unit; A lens unit including one or more lens groups including a proximity lens close to the image sensor unit.
  • a mobile terminal with a camera according to the present invention includes the above-described imaging device.
  • the image sensor unit according to the present invention does not include a lens portion, and thus can easily cope with lens portions of various specifications and is highly versatile. Further, since the element covering portion is reinforced by the overmold portion, the size can be reduced.
  • FIG. 1 is a perspective view showing an image sensor unit 10 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view perpendicular to the X axis of the image sensor unit 10.
  • the imaging element unit 10 shown in FIGS. 1 and 2 is disposed in the vicinity of a lens unit having one or more lens groups in the optical system of the imaging apparatus.
  • the image sensor unit 10 includes an image sensor 11, a substrate 12, a glass part 13, and an overmold part 14.
  • the image pickup device 11 is composed of, for example, a CCD (charge coupled device) image sensor, a CMOS (complementary metal oxide) semiconductor image sensor, or the like.
  • the image sensor 11 is mounted on the substrate 12 and is electrically connected to the wiring on the substrate 11 via the bonding wires 16.
  • the image sensor 11 captures a subject image formed by a lens unit (not shown).
  • the center part of the light receiving surface of the image sensor 11 is the imaging area 11a, and the peripheral part excluding the imaging area 11a is the non-imaging area 11b.
  • the glass portion 13 is made of a transparent glass material having a refractive index larger than that of air, and is disposed on the image sensor 11 so as to cover the image area 11a.
  • NA the numerical aperture
  • NA the numerical aperture
  • the diffraction limit decreases, which is suitable for increasing the resolution.
  • dust can be prevented from adhering to the imaging area 11a of the imaging element 11 when the imaging element unit 10 is mounted on the imaging apparatus, good image quality can be realized.
  • the glass part 13 is bonded onto the image sensor 11 via the adhesive layer 15.
  • the adhesive layer 15 for example, applies a resin adhesive (for example, silicone-based resin) to the light receiving surface of the image sensor 11, places the glass portion 13 thereon, presses it with a predetermined pressure, and spreads the resin adhesive. Is formed.
  • a resin adhesive for example, silicone-based resin
  • the adhesive layer 15 is preferably formed using a resin adhesive without filler (hereinafter referred to as “first adhesive”) and a resin adhesive containing filler (hereinafter referred to as “second adhesive”).
  • first adhesive a resin adhesive without filler
  • second adhesive a resin adhesive containing filler
  • a portion constituted by the first adhesive in the adhesive layer 15 is referred to as a “first adhesive portion”
  • a portion constituted by the second adhesive is referred to as a “second adhesive portion”.
  • the first adhesive portion is disposed in a region including the imaging area 11a
  • the second adhesive portion is disposed only in the non-imaging area 11b excluding the imaging area 11a. This is because the filler is usually larger than one pixel of the image sensor 11, and if there is a filler in the imaging area 11a, it is reflected in the image and the image quality deteriorates.
  • the thickness of the adhesive layer 15 can be easily controlled by arranging the second adhesive portion containing the filler in the non-imaging area 11b.
  • the type, size, shape, addition amount, and the like of the filler are appropriately adjusted according to the adhesive force required for the adhesive layer 15 and the design thickness of the adhesive layer 15.
  • the thickness of the adhesive layer 15 is preferably 2 ⁇ m or more and 25 ⁇ m or less. This is because if the thickness of the adhesive layer 15 is less than 2 ⁇ m, the image sensor 11 and the glass portion 13 may be peeled off due to thermal stress or the like, and if it exceeds 25 ⁇ m, the image quality may be adversely affected. By adjusting the filler dispersed in the second adhesive, the thickness of the adhesive layer 15 can be easily set to a desired thickness.
  • the overmold part 14 is formed by molding at the peripheral part of the substrate 12 so as to surround the periphery of the glass part 13 excluding the light receiving surface 13a.
  • the overmold part 14 is made of a hard resin material (for example, epoxy resin) having high light shielding properties, and reinforces the glass part 13. Since the overmold portion 14 is formed including the arrangement region of the bonding wire 16 and can be finished to the same size as the outer size of the substrate 12, the overmold portion 14 is reduced in size as compared with the image sensor unit described in Patent Document 1. Can be achieved. Moreover, since the overmold part 14 is also filled in a small gap around the image pickup element 11 and can secure a high light shielding property, it is possible to suppress light scattering.
  • the interface between the glass part 13 and the overmold part 14 is preferably uneven. If the interface between the glass part 13 and the overmold part 14 is flat, light rays that do not contribute to imaging are reflected and incident on the image sensor 11, and flare (light fogging) and ghost (light reflection) occur. It is to do.
  • the interface between the glass part 13 and the overmold part 14 can be formed in a concavo-convex shape by roughening the peripheral surface of the glass part 13.
  • an infrared cut filter (infrared cut layer) may be disposed on the exposed surface of the glass portion 13 that is not covered with the overmold portion 14, that is, the light receiving surface 13a of the glass portion 13.
  • the film thickness of the infrared cut filter is preferably 4 to 7 ⁇ m.
  • FIG. 3 is a diagram illustrating a manufacturing process of the image sensor unit 10. First, as shown in FIG. 3A, the image sensor 11 is mounted on the substrate 12 (first step).
  • a resin adhesive is applied to the light receiving surface of the image sensor 11 (second step).
  • a second resin adhesive 15b containing a filler is applied to the non-imaging area 11b of the imaging element 11 and temporarily cured by heating or light irradiation to form a gel.
  • the second resin adhesive 15b is applied to the outside of the four corners of the imaging area 11a.
  • the 1st resin adhesive 15a without a filler is apply
  • the application amount of the first resin adhesive 15a is set such that the entire surface of the imaging area 11a is covered when the first resin adhesive 15a is expanded by pressing the glass portion 13.
  • the glass portion 13 is placed on the image sensor 11 and pressed with a predetermined pressure (third step).
  • the first resin adhesive 15a without filler is expanded and pushed out of the imaging area 11a through the gap between the second resin adhesive 15b with filler.
  • bubbles are pushed out of the imaging area 11a together with the first resin adhesive 15a.
  • a uniform adhesive layer 15 is formed (see FIG. 4C).
  • the first resin adhesive 15a and the second resin adhesive 15b are fully cured by heating or light irradiation.
  • the second resin adhesive 15b containing filler is also slightly expanded by pressing the glass portion 13, so that the application position and the application amount of the second resin adhesive 15b do not enter the imaging area 11a even if expanded. Should be set.
  • the overmold part 14 is formed around the glass part 13 by molding to complete the imaging element unit 10 (fourth step). After the molding, the upper surface of the overmold part 14 may be polished so that the light receiving surface 13a of the glass part 13 is surfaced.
  • the image sensor unit 10 includes an image sensor (11) that captures a subject image formed by the lens unit, a substrate (12) on which the image sensor (11) is mounted, and a refractive index higher than that of air.
  • An element covering portion (glass portion 13) that is made of a large transparent substance and is disposed so as to cover the imaging area (11a) of the imaging element (11), and a substrate (12) so as to surround the element covering portion (13).
  • an overmold part (14) formed by molding at the peripheral part.
  • the image sensor unit 10 since it does not include a lens part, it can easily cope with lens parts of various specifications and is highly versatile. Moreover, since the glass part 13 is reinforced with the overmold part 14, size reduction can be achieved. Moreover, since the light-receiving surface of the image pick-up element 11 is covered with the glass part 13, the high resolution of an image pick-up device can be achieved. Furthermore, since dust does not adhere to the imaging area 11a of the imaging device 11, good image quality can be realized.
  • FIG. 5 is a perspective view showing the imaging apparatus 1 including the imaging element unit 10.
  • FIG. 6 is a diagram illustrating an optical system of the imaging apparatus 1.
  • the imaging apparatus 1 shown in FIGS. 5 and 6 includes the above-described imaging element unit 10 and a lens unit 20 having one or more lens groups (five groups in FIG. 6) including a proximity lens close to the imaging element unit 10.
  • the imaging device 1 is mounted on a camera-equipped mobile terminal such as a smartphone, a mobile phone, a notebook computer, a tablet terminal, a portable game machine, a web camera, or an in-vehicle camera.
  • the lens unit 20 is a so-called zoom lens that can cope with wide-angle shooting (focal length: short) to telephoto shooting (focal length: long).
  • the lens unit 20 includes a first lens group 21, a second lens group 22, a third lens group 23, a fourth lens group 24, and a fifth lens group 25 in order from the subject side.
  • the first lens group 21 is a lens group including a prism, and is fixed during zooming.
  • the second lens group 22 is a variator lens group that moves on the optical axis at the time of zooming and changes the focal length of the entire lens system. For example, in the case of zooming from the wide angle end to the telephoto end, the second lens group 22 moves to the first lens group 21 side.
  • the third lens group 23 is a compensator lens group that moves on the optical axis in conjunction with the movement of the second lens group 22 and corrects a focus shift caused by zooming.
  • the fourth lens group 24 is a lens for camera shake correction.
  • the fifth lens group 25 is a proximity lens close to the light receiving surface of the image sensor unit 10.
  • a second lens group drive unit 32 is connected to the second lens group 22.
  • a driving mechanism of the second lens group 22 is shown in FIG.
  • the second lens group 22 is held by the lens barrel 324.
  • the lens barrel 324 is slidably held on a guide shaft 323 arranged in parallel to the optical axis.
  • the lens barrel 324 is connected to the drive shaft 322 of the drive motor 321.
  • the lens barrel 324 holding the second lens group 22 is moved along the guide shaft 323 by a predetermined distance. Move and change focal length.
  • the third lens group 23 is connected with a third lens group driving unit 33.
  • the third lens group driving unit 33 When the operation of the third lens group driving unit 33 is controlled by a control unit (not shown), the third lens group 23 moves on the optical axis by a predetermined distance. Since the driving mechanism of the third lens group 23 is the same as that of the second lens group 22, the description thereof is omitted.
  • the OIS (Optical Image Stabilization) drive unit 34 is connected to the fourth lens group 24.
  • the OIS drive unit 34 includes, for example, a lens barrel (not shown) that holds the fourth lens group 24, a movable unit having a magnet unit (not shown), and a fixed unit having a coil unit (not shown).
  • the lens barrel is swung using the driving force of the voice coil motor (VCM).
  • VCM voice coil motor
  • a printed wiring board 42 is connected to the second lens group driving unit 32, the third group lens driving unit 33, and the OIS driving unit 34, and signals related to power feeding and driving are input / output via the printed wiring board 42. Is done.
  • the image sensor unit 10 is disposed in proximity to the fifth lens group 25 (proximity lens).
  • the distance between the image sensor unit 10 (the light receiving surface 13a of the glass portion 13 or the infrared cut filter) and the fifth lens group 25 is preferably 0.1 ⁇ m to 2.8 mm. In this case, it is confirmed that the spatial frequency at 30% MTF (Modulation (Transfer Function) on the optical axis is improved by 2.5 times compared to the optical system without the glass portion 13, and the resolution is remarkably improved. ing.
  • the printed wiring board 41 is connected to the substrate 12 of the image pickup device unit 10, and the power supply to the image pickup device 11 and the output of the video signal imaged by the image pickup device 11 are performed via the printed wiring board 41.
  • the imaging apparatus 1 including the imaging element unit 10 high resolution can be achieved. Moreover, since dust does not adhere to the imaging area 11a of the imaging element 11, a certain quality is maintained.
  • the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
  • it can replace with the glass part 13 in embodiment, and the box body which sealed liquids, such as water and oil, can also be applied. That is, the element covering portion in the present invention only needs to be made of a transparent material having a refractive index larger than that of air.
  • positioning location of the 2nd resin adhesive 15b containing a filler in embodiment is not limited to the form shown in FIG.
  • the second resin adhesive 15b may be applied to a plurality of locations (eight locations in FIG. 8A) along the periphery of the imaging area 11a of the imaging device 11.
  • the second resin adhesive 15b may be applied in a strip shape along the periphery of the imaging area 11a of the imaging device 11. That is, the second resin adhesive 15b may be applied so as to have a gap through which the second resin adhesive 15a without filler is pushed out of the imaging area 11a.

Abstract

 The objectives of the present invention are to provide an image-capturing element unit that is capable of easily becoming compatible with lens sections of various specifications and capable of being reduced in size, and to provide an image-capturing device and a camera-equipped mobile terminal that are provided with the image-capturing element unit. An image-capturing element unit (10) is disposed in proximity to a lens section that has one or more lens groups. The image-capturing element unit (10) is provided with an image-capturing element (11) for capturing an image of an object that is to be imaged by the lens section, a substrate (12) on which the image-capturing element (11) is mounted, an element-covering part (glass part) (13) that is configured using a transparent material having an index of refraction larger than that of the air and that is disposed to cover an image-capture area (11a) of the image-capturing element (11), and an overmold part (14) that is formed by being molded onto the peripheral edges of the substrate (12) to enclose the element-covering part (13).

Description

撮像素子ユニット、撮像装置、及びカメラ付き携帯端末Imaging device unit, imaging device, and portable terminal with camera
 本発明は、撮像素子ユニット、撮像装置、及びカメラ付き携帯端末に関する。 The present invention relates to an imaging element unit, an imaging device, and a mobile terminal with a camera.
 一般に、スマートフォン等の携帯端末には、小型の撮像装置が搭載されている。撮像装置は、1以上のレンズ群を有するレンズ部と、レンズ部により結像された被写体像を撮像する撮像素子を備える。被写体を撮影するときのピント合わせを自動的に行うオートフォーカス機能及び撮影時に生じる手振れ(振動)を補正して画像の乱れを軽減する手振れ補正機能(OIS:Optical Image Stabilization)を備えているものも多い。近年では、画像のさらなる高精細化に対応すべく、高解像度の撮像装置が要求されている。 Generally, a small imaging device is mounted on a mobile terminal such as a smartphone. The imaging apparatus includes a lens unit having one or more lens groups, and an imaging element that captures a subject image formed by the lens unit. Some cameras have an autofocus function that automatically adjusts the focus when shooting the subject and a camera shake correction function (OIS: Optical Image Stabilization) that corrects camera shake (vibration) that occurs during shooting. Many. In recent years, there has been a demand for high-resolution imaging devices in order to cope with higher definition of images.
 撮像装置における分解能Rは、K:定数(代表的には0.61)、λ:光の波長、NA:開口数として、下式(1)で表される。
  R=K・λ/NA ・・・(1)
 また、開口数NAは、n:近接レンズ(撮像素子の最も近くに配置されるレンズ、最終レンズとも呼ばれる)と撮像素子の間の媒質の屈折率、θ:光の入射角として、下式(2)で表される。
  NA=n・sinθ ・・・(2)
 K、λは一定なので、屈折率nの大きい物質で近接レンズと撮像素子の間を充填することで、分解能Rを高くすることができる。
The resolution R in the imaging apparatus is expressed by the following equation (1), where K is a constant (typically 0.61), λ is the wavelength of light, and NA is the numerical aperture.
R = K · λ / NA (1)
In addition, the numerical aperture NA is expressed by the following formula (n), where n is a refractive index of a medium between a proximity lens (a lens disposed closest to the imaging device, also called a final lens) and the imaging device, and θ is an incident angle of light. 2).
NA = n · sin θ (2)
Since K and λ are constant, the resolution R can be increased by filling the space between the proximity lens and the image sensor with a substance having a large refractive index n.
 例えば、特許文献1には、レンズバレル(鏡筒)内に撮像素子及び近接レンズを収容し、これらの間に空気よりも屈折率の大きい透明物質(例えば水)を充填してなる撮像素子ユニットが開示されている。 For example, Patent Document 1 discloses an image pickup device unit in which an image pickup device and a proximity lens are housed in a lens barrel (lens barrel) and a transparent substance (for example, water) having a refractive index larger than that of air is filled therebetween. Is disclosed.
特開2005-303148号公報JP 2005-303148 A
 しかしながら、特許文献1に記載の撮像装置においては、撮像素子ユニットがレンズ部の一部である近接レンズを含んで構成されるため、様々な仕様のレンズ部を設計する上で制約がある。また、レンズバレル内に撮像素子が収容される構成となっているため、小型化を図ることが困難である。 However, in the imaging device described in Patent Document 1, since the imaging element unit is configured to include a proximity lens that is a part of the lens unit, there are limitations in designing lens units having various specifications. In addition, since the imaging element is housed in the lens barrel, it is difficult to reduce the size.
 本発明の目的は、様々な仕様のレンズ部に容易に対応できるとともに小型化を図ることができる撮像素子ユニットを提供すること、並びにこの撮像素子ユニットを備える撮像装置及びカメラ付き携帯端末を提供することである。 An object of the present invention is to provide an image sensor unit that can easily cope with lens units of various specifications and can be miniaturized, and to provide an image pickup apparatus including the image sensor unit and a camera-equipped mobile terminal. That is.
 本発明に係る撮像素子ユニットは、1以上のレンズ群を有するレンズ部に近接して配置される撮像素子ユニットであって、
 前記レンズ部により結像される被写体像を撮像する撮像素子と、
 前記撮像素子が実装される基板と、
 空気よりも屈折率の大きい透明物質で構成され、前記撮像素子の撮像エリアを覆うように配置される素子被覆部と、
 前記素子被覆部を囲繞するように前記基板の周縁部にモールド成形によって形成されるオーバーモールド部と、を備えることを特徴とする。
The image pickup device unit according to the present invention is an image pickup device unit that is disposed in the vicinity of a lens unit having one or more lens groups,
An image sensor for imaging a subject image formed by the lens unit;
A substrate on which the image sensor is mounted;
Composed of a transparent material having a refractive index greater than that of air, and an element covering portion disposed so as to cover the imaging area of the imaging element;
And an overmold part formed by molding on the peripheral edge of the substrate so as to surround the element covering part.
 本発明に係る撮像装置は、上記の撮像素子ユニットと、
 前記撮像素子ユニットに近接する近接レンズを含む1以上のレンズ群を有するレンズ部と、を備えることを特徴とする。
An imaging apparatus according to the present invention includes the above-described imaging element unit;
A lens unit including one or more lens groups including a proximity lens close to the image sensor unit.
 本発明に係るカメラ付き携帯端末は、上記の撮像装置を備えることを特徴とする。 A mobile terminal with a camera according to the present invention includes the above-described imaging device.
 本発明に係る撮像素子ユニットによれば、レンズ部を含まないので、様々な仕様のレンズ部に容易に対応することができ、汎用性が高い。また、オーバーモールド部によって素子被覆部を補強するので、小型化を図ることができる。 The image sensor unit according to the present invention does not include a lens portion, and thus can easily cope with lens portions of various specifications and is highly versatile. Further, since the element covering portion is reinforced by the overmold portion, the size can be reduced.
本発明の一実施の形態に係る撮像素子ユニットを示す斜視図である。It is a perspective view showing an image sensor unit according to an embodiment of the present invention. 撮像素子ユニットのX軸に垂直な断面図である。It is sectional drawing perpendicular | vertical to the X-axis of an image pick-up element unit. 撮像素子ユニットの製造工程を示す図である。It is a figure which shows the manufacturing process of an image pick-up element unit. 樹脂接着剤の塗布状態の一例を示す図である。It is a figure which shows an example of the application | coating state of a resin adhesive. 撮像素子ユニットを備える撮像装置を示す斜視図である。It is a perspective view showing an imaging device provided with an image sensor unit. 撮像装置の光学系を示す図である。It is a figure which shows the optical system of an imaging device. 第2レンズ群の駆動機構を示す図である。It is a figure which shows the drive mechanism of a 2nd lens group. 樹脂接着剤の塗布状態の他の一例を示す図である。It is a figure which shows another example of the application | coating state of a resin adhesive.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、本発明の一実施の形態に係る撮像素子ユニット10を示す斜視図である。図2は、撮像素子ユニット10のX軸に垂直な断面図である。
 図1、2に示す撮像素子ユニット10は、撮像装置の光学系において、1以上のレンズ群を有するレンズ部に近接して配置されるものである。撮像素子ユニット10は、撮像素子11、基板12、ガラス部13、及びオーバーモールド部14を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing an image sensor unit 10 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view perpendicular to the X axis of the image sensor unit 10.
The imaging element unit 10 shown in FIGS. 1 and 2 is disposed in the vicinity of a lens unit having one or more lens groups in the optical system of the imaging apparatus. The image sensor unit 10 includes an image sensor 11, a substrate 12, a glass part 13, and an overmold part 14.
 撮像素子11は、例えばCCD(chargecoupled device)型イメージセンサー、CMOS(complementary metal oxide semiconductor)型イメージセンサー等により構成される。撮像素子11は、基板12に実装され、ボンディングワイヤー16を介して基板11上の配線に電気的に接続される。撮像素子11は、レンズ部(図示略)により結像された被写体像を撮像する。撮像素子11の受光面のうち中央部が撮像エリア11aであり、撮像エリア11aを除く周縁部が非撮像エリア11bである。 The image pickup device 11 is composed of, for example, a CCD (charge coupled device) image sensor, a CMOS (complementary metal oxide) semiconductor image sensor, or the like. The image sensor 11 is mounted on the substrate 12 and is electrically connected to the wiring on the substrate 11 via the bonding wires 16. The image sensor 11 captures a subject image formed by a lens unit (not shown). The center part of the light receiving surface of the image sensor 11 is the imaging area 11a, and the peripheral part excluding the imaging area 11a is the non-imaging area 11b.
 ガラス部13は、空気よりも屈折率の大きい透明なガラス材で構成され、撮像エリア11aを覆うように撮像素子11上に配置される。撮像素子11の撮像エリア11aにガラス部13を配置することにより、開口数NA(=n・sinθ)が大きくなり回折限界が小さくなるので、高解像度化を図るのに好適である。また、撮像素子ユニット10を撮像装置に実装する際に、撮像素子11の撮像エリア11aに塵埃が付着するのを防止できるので、良好な画像品質を実現することができる。 The glass portion 13 is made of a transparent glass material having a refractive index larger than that of air, and is disposed on the image sensor 11 so as to cover the image area 11a. By arranging the glass portion 13 in the imaging area 11a of the imaging device 11, the numerical aperture NA (= n · sin θ) increases and the diffraction limit decreases, which is suitable for increasing the resolution. Moreover, since dust can be prevented from adhering to the imaging area 11a of the imaging element 11 when the imaging element unit 10 is mounted on the imaging apparatus, good image quality can be realized.
 ガラス部13は、接着層15を介して撮像素子11上に接着される。接着層15は、例えば撮像素子11の受光面に樹脂接着剤(例えばシリコーン系樹脂)を塗布し、その上にガラス部13を載置して所定の圧力で押圧し、樹脂接着剤を押し拡げることにより形成される。 The glass part 13 is bonded onto the image sensor 11 via the adhesive layer 15. The adhesive layer 15, for example, applies a resin adhesive (for example, silicone-based resin) to the light receiving surface of the image sensor 11, places the glass portion 13 thereon, presses it with a predetermined pressure, and spreads the resin adhesive. Is formed.
 接着層15は、フィラー無しの樹脂接着剤(以下「第1の接着剤」)とフィラー入りの樹脂接着剤(以下「第2の接着剤」)を用いて形成するのが好ましい。接着層15のうち第1の接着剤で構成される部分を「第1の接着部」、第2の接着剤構成される部分を「第2の接着部」と称する。
 第1の接着部は、撮像エリア11aを含む領域に配置され、第2の接着部は、撮像エリア11aを除く非撮像エリア11bにだけ配置される。通常、フィラーは撮像素子11の1画素よりも大きく、撮像エリア11a内にフィラーがあると画像に映り込んで画像品質が劣化するためである。
The adhesive layer 15 is preferably formed using a resin adhesive without filler (hereinafter referred to as “first adhesive”) and a resin adhesive containing filler (hereinafter referred to as “second adhesive”). A portion constituted by the first adhesive in the adhesive layer 15 is referred to as a “first adhesive portion”, and a portion constituted by the second adhesive is referred to as a “second adhesive portion”.
The first adhesive portion is disposed in a region including the imaging area 11a, and the second adhesive portion is disposed only in the non-imaging area 11b excluding the imaging area 11a. This is because the filler is usually larger than one pixel of the image sensor 11, and if there is a filler in the imaging area 11a, it is reflected in the image and the image quality deteriorates.
 ガラス部13を押圧してもフィラーは容易に損壊しないので、非撮像エリア11bにフィラー入りの第2の接着部を配置することにより、接着層15の厚さを容易に制御することができる。フィラーの種類、大きさ、形状、添加量などは、接着層15に要求される接着力や接着層15の設計厚さに応じて適宜に調整される。 Since the filler is not easily damaged even when the glass portion 13 is pressed, the thickness of the adhesive layer 15 can be easily controlled by arranging the second adhesive portion containing the filler in the non-imaging area 11b. The type, size, shape, addition amount, and the like of the filler are appropriately adjusted according to the adhesive force required for the adhesive layer 15 and the design thickness of the adhesive layer 15.
 接着層15の厚さは、2μm以上25μm以下であることが好ましい。接着層15の厚さが2μm未満であると撮像素子11とガラス部13が熱応力等によって剥離する虞があり、25μmを超えると画像品質に悪影響を及ぼす虞があるためである。第2の接着剤に分散されるフィラーを調整することにより、接着層15の厚さを容易に所望の厚さとすることができる。 The thickness of the adhesive layer 15 is preferably 2 μm or more and 25 μm or less. This is because if the thickness of the adhesive layer 15 is less than 2 μm, the image sensor 11 and the glass portion 13 may be peeled off due to thermal stress or the like, and if it exceeds 25 μm, the image quality may be adversely affected. By adjusting the filler dispersed in the second adhesive, the thickness of the adhesive layer 15 can be easily set to a desired thickness.
 オーバーモールド部14は、受光面13aを除くガラス部13の周囲を囲繞するように基板12の周縁部にモールド成形によって形成される。オーバーモールド部14は、遮光性が高い、硬質の樹脂材料(例えばエポキシ樹脂)で構成され、ガラス部13を補強する。オーバーモールド部14は、ボンディングワイヤー16の配置領域を含んで形成され、基板12の外形サイズと同等に仕上げることができるので、特許文献1に記載されるような撮像素子ユニットに比較して小型化を図ることができる。また、オーバーモールド部14は、撮像素子11の周囲の小さな隙間にも充填され、高い遮光性を確保できるので、光の散乱を抑制することができる。 The overmold part 14 is formed by molding at the peripheral part of the substrate 12 so as to surround the periphery of the glass part 13 excluding the light receiving surface 13a. The overmold part 14 is made of a hard resin material (for example, epoxy resin) having high light shielding properties, and reinforces the glass part 13. Since the overmold portion 14 is formed including the arrangement region of the bonding wire 16 and can be finished to the same size as the outer size of the substrate 12, the overmold portion 14 is reduced in size as compared with the image sensor unit described in Patent Document 1. Can be achieved. Moreover, since the overmold part 14 is also filled in a small gap around the image pickup element 11 and can secure a high light shielding property, it is possible to suppress light scattering.
 ガラス部13とオーバーモールド部14の界面は凹凸状になっていることが好ましい。ガラス部13とオーバーモールド部14の界面が平坦になっていると、撮像に寄与しない光線が反射して撮像素子11に入射し、フレア(光のかぶり)やゴースト(光の映り込み)が発生するためである。例えば、ガラス部13の周面に粗面加工を施すことにより、ガラス部13とオーバーモールド部14の界面を凹凸状に形成することができる。 The interface between the glass part 13 and the overmold part 14 is preferably uneven. If the interface between the glass part 13 and the overmold part 14 is flat, light rays that do not contribute to imaging are reflected and incident on the image sensor 11, and flare (light fogging) and ghost (light reflection) occur. It is to do. For example, the interface between the glass part 13 and the overmold part 14 can be formed in a concavo-convex shape by roughening the peripheral surface of the glass part 13.
 なお、ガラス部13のうちオーバーモールド部14で覆われていない露出面、すなわちガラス部13の受光面13aには、赤外線カットフィルタ(赤外線カット層)を配置するようにしてもよい。この場合、赤外線カットフィルタの膜厚は、4~7μmとするのが好ましい。 Note that an infrared cut filter (infrared cut layer) may be disposed on the exposed surface of the glass portion 13 that is not covered with the overmold portion 14, that is, the light receiving surface 13a of the glass portion 13. In this case, the film thickness of the infrared cut filter is preferably 4 to 7 μm.
 図3は、撮像素子ユニット10の製造工程を示す図である。
 まず、図3Aに示すように、基板12に撮像素子11を実装する(第1の工程)。
FIG. 3 is a diagram illustrating a manufacturing process of the image sensor unit 10.
First, as shown in FIG. 3A, the image sensor 11 is mounted on the substrate 12 (first step).
 次に、図3Bに示すように、撮像素子11の受光面に樹脂接着剤を塗布する(第2の工程)。具体的には、図4Aに示すように、撮像素子11の非撮像エリア11bにフィラー入りの第2の樹脂接着剤15bを塗布し、加熱又は光照射により仮硬化させて、ゲル状とする。図4Aでは、撮像エリア11aの四隅の外側に第2の樹脂接着剤15bを塗布している。
 そして、図4Bに示すように、撮像エリア11a内にフィラー無しの第1の樹脂接着剤15aを塗布する。第1の樹脂接着剤15aの塗布量は、ガラス部13を押圧して第1の樹脂接着剤15aが押し拡げられるときに、撮像エリア11aの全面が覆われる程度に設定される。
Next, as shown in FIG. 3B, a resin adhesive is applied to the light receiving surface of the image sensor 11 (second step). Specifically, as shown in FIG. 4A, a second resin adhesive 15b containing a filler is applied to the non-imaging area 11b of the imaging element 11 and temporarily cured by heating or light irradiation to form a gel. In FIG. 4A, the second resin adhesive 15b is applied to the outside of the four corners of the imaging area 11a.
And as shown to FIG. 4B, the 1st resin adhesive 15a without a filler is apply | coated in the imaging area 11a. The application amount of the first resin adhesive 15a is set such that the entire surface of the imaging area 11a is covered when the first resin adhesive 15a is expanded by pressing the glass portion 13.
 次に、図3Cに示すように、撮像素子11にガラス部13を載置し、所定の圧力で押圧する(第3の工程)。このとき、フィラー無しの第1の樹脂接着剤15aは押し拡げられて、フィラー入りの第2の樹脂接着剤15bの隙間から撮像エリア11a外にも押し出される。また、第1の樹脂接着剤15aとともに気泡も撮像エリア11a外に押し出される。これにより、均一な接着層15が形成される(図4C参照)。そして、加熱又は光照射により第1の樹脂接着剤15a及び第2の樹脂接着剤15bを本硬化させる。 Next, as shown in FIG. 3C, the glass portion 13 is placed on the image sensor 11 and pressed with a predetermined pressure (third step). At this time, the first resin adhesive 15a without filler is expanded and pushed out of the imaging area 11a through the gap between the second resin adhesive 15b with filler. In addition, bubbles are pushed out of the imaging area 11a together with the first resin adhesive 15a. As a result, a uniform adhesive layer 15 is formed (see FIG. 4C). Then, the first resin adhesive 15a and the second resin adhesive 15b are fully cured by heating or light irradiation.
 なお、ガラス部13の押圧によってフィラー入りの第2の樹脂接着剤15bも若干押し拡げられるので、拡がっても撮像エリア11aに侵入しないように、第2の樹脂接着剤15bの塗布位置及び塗布量を設定するべきである。 Note that the second resin adhesive 15b containing filler is also slightly expanded by pressing the glass portion 13, so that the application position and the application amount of the second resin adhesive 15b do not enter the imaging area 11a even if expanded. Should be set.
 次に、図3Dに示すように、ガラス部13の周囲にモールド成形によってオーバーモールド部14を形成し、撮像素子ユニット10が完成する(第4の工程)。モールド成形後に、オーバーモールド部14の上面を研磨して、ガラス部13の受光面13aの面出しを行うようにしてもよい。 Next, as shown in FIG. 3D, the overmold part 14 is formed around the glass part 13 by molding to complete the imaging element unit 10 (fourth step). After the molding, the upper surface of the overmold part 14 may be polished so that the light receiving surface 13a of the glass part 13 is surfaced.
 このように、撮像素子ユニット10は、レンズ部により結像される被写体像を撮像する撮像素子(11)と、撮像素子(11)が実装される基板(12)と、空気よりも屈折率の大きい透明物質で構成され、撮像素子(11)の撮像エリア(11a)を覆うように配置される素子被覆部(ガラス部13)と、素子被覆部(13)を囲繞するように基板(12)の周縁部にモールド成形によって形成されるオーバーモールド部(14)と、を備える。 As described above, the image sensor unit 10 includes an image sensor (11) that captures a subject image formed by the lens unit, a substrate (12) on which the image sensor (11) is mounted, and a refractive index higher than that of air. An element covering portion (glass portion 13) that is made of a large transparent substance and is disposed so as to cover the imaging area (11a) of the imaging element (11), and a substrate (12) so as to surround the element covering portion (13). And an overmold part (14) formed by molding at the peripheral part.
 撮像素子ユニット10によれば、レンズ部を含まないので、様々な仕様のレンズ部に容易に対応することができ、汎用性が高い。また、オーバーモールド部14によってガラス部13を補強するので、小型化を図ることができる。また、撮像素子11の受光面がガラス部13で覆われるので、撮像装置の高解像度化を図ることができる。さらには、撮像素子11の撮像エリア11aに塵埃が付着しないので、良好な画像品質を実現することができる。 According to the image sensor unit 10, since it does not include a lens part, it can easily cope with lens parts of various specifications and is highly versatile. Moreover, since the glass part 13 is reinforced with the overmold part 14, size reduction can be achieved. Moreover, since the light-receiving surface of the image pick-up element 11 is covered with the glass part 13, the high resolution of an image pick-up device can be achieved. Furthermore, since dust does not adhere to the imaging area 11a of the imaging device 11, good image quality can be realized.
 図5は、撮像素子ユニット10を備える撮像装置1を示す斜視図である。図6は、撮像装置1の光学系を示す図である。
 図5、図6に示す撮像装置1は、上述した撮像素子ユニット10と、撮像素子ユニット10に近接する近接レンズを含む1以上のレンズ群(図6では5群)を有するレンズ部20とを備える。撮像装置1は、例えばスマートフォン、携帯電話機、ノート型パソコン、タブレット端末、携帯型ゲーム機、webカメラ、車載用カメラ等のカメラ付き携帯端末に搭載される。
FIG. 5 is a perspective view showing the imaging apparatus 1 including the imaging element unit 10. FIG. 6 is a diagram illustrating an optical system of the imaging apparatus 1.
The imaging apparatus 1 shown in FIGS. 5 and 6 includes the above-described imaging element unit 10 and a lens unit 20 having one or more lens groups (five groups in FIG. 6) including a proximity lens close to the imaging element unit 10. Prepare. The imaging device 1 is mounted on a camera-equipped mobile terminal such as a smartphone, a mobile phone, a notebook computer, a tablet terminal, a portable game machine, a web camera, or an in-vehicle camera.
 レンズ部20は、広角撮影(焦点距離:短)から望遠撮影(焦点距離:長)に対応できる、いわゆるズームレンズである。レンズ部20は、被写体側から順に、第1レンズ群21、第2レンズ群22、第3レンズ群23、第4レンズ群24、及び第5レンズ群25を有する。 The lens unit 20 is a so-called zoom lens that can cope with wide-angle shooting (focal length: short) to telephoto shooting (focal length: long). The lens unit 20 includes a first lens group 21, a second lens group 22, a third lens group 23, a fourth lens group 24, and a fifth lens group 25 in order from the subject side.
 第1レンズ群21は、プリズムを含むレンズ群であり、変倍中は固定とされる。
 第2レンズ群22は、変倍に際して光軸上を移動してレンズ系全体としての焦点距離を変えるバリエータ-レンズ群である。例えば、広角端から望遠端への変倍の場合、第2レンズ群22は、第1レンズ群21側に移動する。
 第3レンズ群23は、第2レンズ群22の移動に連動して光軸上を移動し、変倍に伴う焦点ズレを補正するコンペンセーターレンズ群である。
 第4レンズ群24は、手振れ補正用のレンズである。
 第5レンズ群25は、撮像素子ユニット10の受光面に近接する近接レンズである。
The first lens group 21 is a lens group including a prism, and is fixed during zooming.
The second lens group 22 is a variator lens group that moves on the optical axis at the time of zooming and changes the focal length of the entire lens system. For example, in the case of zooming from the wide angle end to the telephoto end, the second lens group 22 moves to the first lens group 21 side.
The third lens group 23 is a compensator lens group that moves on the optical axis in conjunction with the movement of the second lens group 22 and corrects a focus shift caused by zooming.
The fourth lens group 24 is a lens for camera shake correction.
The fifth lens group 25 is a proximity lens close to the light receiving surface of the image sensor unit 10.
 第2レンズ群22には、2群レンズ用駆動部32が接続される。第2レンズ群22の駆動機構を図7に示す。図7に示すように、第2レンズ群22は、レンズバレル324に保持される。レンズバレル324は、光軸に平行に配置されたガイド軸323に、摺動可能に保持される。また、レンズバレル324は、駆動用モーター321の駆動軸322に接続される。
 制御部(図示略)によって2群レンズ用駆動部32(駆動用モーター321)の動作が制御されることにより、第2レンズ群22を保持するレンズバレル324がガイド軸323に沿って所定距離だけ移動し、焦点距離が変更される。
A second lens group drive unit 32 is connected to the second lens group 22. A driving mechanism of the second lens group 22 is shown in FIG. As shown in FIG. 7, the second lens group 22 is held by the lens barrel 324. The lens barrel 324 is slidably held on a guide shaft 323 arranged in parallel to the optical axis. The lens barrel 324 is connected to the drive shaft 322 of the drive motor 321.
By controlling the operation of the second group lens drive unit 32 (drive motor 321) by a control unit (not shown), the lens barrel 324 holding the second lens group 22 is moved along the guide shaft 323 by a predetermined distance. Move and change focal length.
 第3レンズ群23には、3群レンズ用駆動部33が接続される。制御部(図示略)によって第3群レンズ用駆動部33の動作が制御されることにより、第3レンズ群23は光軸上を所定距離だけ移動する。第3レンズ群23の駆動機構については、第2レンズ群22の駆動機構と同様であるので、説明を省略する。 The third lens group 23 is connected with a third lens group driving unit 33. When the operation of the third lens group driving unit 33 is controlled by a control unit (not shown), the third lens group 23 moves on the optical axis by a predetermined distance. Since the driving mechanism of the third lens group 23 is the same as that of the second lens group 22, the description thereof is omitted.
 第4レンズ群24には、OIS(Optical Image Stabilization)用駆動部34が接続される。OIS用駆動部34は、例えば第4レンズ群24を保持するレンズバレル(図示略)及びマグネット部(図示略)を有する可動部と、コイル部(図示略)を有する固定部と、を備え、ボイスコイルモーター(VCM)の駆動力を利用して、レンズバレルを揺動させる。制御部(図示略)によってOIS用駆動部34の動作が制御されることにより、第4レンズ群24が揺動し、手振れ補正が行われる。 The OIS (Optical Image Stabilization) drive unit 34 is connected to the fourth lens group 24. The OIS drive unit 34 includes, for example, a lens barrel (not shown) that holds the fourth lens group 24, a movable unit having a magnet unit (not shown), and a fixed unit having a coil unit (not shown). The lens barrel is swung using the driving force of the voice coil motor (VCM). When the operation of the OIS drive unit 34 is controlled by a control unit (not shown), the fourth lens group 24 swings, and camera shake correction is performed.
 2群レンズ用駆動部32、3群レンズ用駆動部33、及びOIS用駆動部34には、プリント配線基板42が接続され、このプリント配線基板42を介して給電及び駆動に関わる信号の入出力が行われる。 A printed wiring board 42 is connected to the second lens group driving unit 32, the third group lens driving unit 33, and the OIS driving unit 34, and signals related to power feeding and driving are input / output via the printed wiring board 42. Is done.
 撮像素子ユニット10は、第5レンズ群25(近接レンズ)に近接して配置される。撮像素子ユニット10(ガラス部13の受光面13a又は赤外線カットフィルタ)と第5レンズ群25の間隔は、0.1μm~2.8mmであることが好ましい。この場合、ガラス部13を設けない光学系に比較して、光軸上のMTF(Modulation Transfer Function)30%時の空間周波数が2.5倍向上し、解像度が格段に向上することが確認されている。 The image sensor unit 10 is disposed in proximity to the fifth lens group 25 (proximity lens). The distance between the image sensor unit 10 (the light receiving surface 13a of the glass portion 13 or the infrared cut filter) and the fifth lens group 25 is preferably 0.1 μm to 2.8 mm. In this case, it is confirmed that the spatial frequency at 30% MTF (Modulation (Transfer Function) on the optical axis is improved by 2.5 times compared to the optical system without the glass portion 13, and the resolution is remarkably improved. ing.
 撮像素子ユニット10の基板12にはプリント配線基板41が接続され、このプリント配線基板41を介して撮像素子11への給電及び撮像素子11で撮像された映像信号の出力が行われる。 The printed wiring board 41 is connected to the substrate 12 of the image pickup device unit 10, and the power supply to the image pickup device 11 and the output of the video signal imaged by the image pickup device 11 are performed via the printed wiring board 41.
 撮像素子ユニット10を備える撮像装置1によれば、高解像度化を図ることができる。また、撮像素子11の撮像エリア11aに塵埃が付着しないので、一定の品質が保持される。 According to the imaging apparatus 1 including the imaging element unit 10, high resolution can be achieved. Moreover, since dust does not adhere to the imaging area 11a of the imaging element 11, a certain quality is maintained.
 以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 例えば、実施の形態におけるガラス部13に代えて、水や油等の液体を封止した箱体を適用することもできる。すなわち、本発明における素子被覆部は、空気よりも屈折率の大きい透明物質で構成されたものであればよい。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
For example, it can replace with the glass part 13 in embodiment, and the box body which sealed liquids, such as water and oil, can also be applied. That is, the element covering portion in the present invention only needs to be made of a transparent material having a refractive index larger than that of air.
 また、実施の形態におけるフィラー入りの第2の樹脂接着剤15bの配置箇所は、図4に示す形態に限定されない。例えば、図8Aに示すように、撮像素子11の撮像エリア11aの周縁に沿う複数の箇所(図8Aでは8箇所)に第2の樹脂接着剤15bを塗布するようにしてもよい。また例えば、図8Bに示すように、撮像素子11の撮像エリア11aの周縁に沿って第2の樹脂接着剤15bを帯状に塗布するようにしてもよい。すなわち、第2の樹脂接着剤15bは、フィラー無しの第2の樹脂接着剤15aが撮像エリア11a外に押し出される隙間を有するように塗布されればよい。 Moreover, the arrangement | positioning location of the 2nd resin adhesive 15b containing a filler in embodiment is not limited to the form shown in FIG. For example, as shown in FIG. 8A, the second resin adhesive 15b may be applied to a plurality of locations (eight locations in FIG. 8A) along the periphery of the imaging area 11a of the imaging device 11. Further, for example, as shown in FIG. 8B, the second resin adhesive 15b may be applied in a strip shape along the periphery of the imaging area 11a of the imaging device 11. That is, the second resin adhesive 15b may be applied so as to have a gap through which the second resin adhesive 15a without filler is pushed out of the imaging area 11a.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 2014年4月25日出願の特願2014-091933の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosures of the specification, drawings and abstract included in the Japanese application of Japanese Patent Application No. 2014-091933 filed on April 25, 2014 are incorporated herein by reference.
 1 撮像装置
 10 撮像素子ユニット
 11 撮像素子
 11a 撮像エリア
 12 基板
 13 ガラス部(素子被覆部)
 14 オーバーモールド部
 15 接着層
 16 ボンディングワイヤー
DESCRIPTION OF SYMBOLS 1 Imaging device 10 Imaging element unit 11 Imaging element 11a Imaging area 12 Board | substrate 13 Glass part (element coating | coated part)
14 Overmold part 15 Adhesive layer 16 Bonding wire

Claims (10)

  1.  1以上のレンズ群を有するレンズ部に近接して配置される撮像素子ユニットであって、
     前記レンズ部により結像される被写体像を撮像する撮像素子と、
     前記撮像素子が実装される基板と、
     空気よりも屈折率の大きい透明物質で構成され、前記撮像素子の撮像エリアを覆うように配置される素子被覆部と、
     前記素子被覆部を囲繞するように前記基板の周縁部にモールド成形によって形成されるオーバーモールド部と、を備えることを特徴とする撮像素子ユニット。
    An image sensor unit disposed in proximity to a lens unit having one or more lens groups,
    An image sensor for imaging a subject image formed by the lens unit;
    A substrate on which the image sensor is mounted;
    Composed of a transparent material having a refractive index greater than that of air, and an element covering portion disposed so as to cover the imaging area of the imaging element;
    An image pickup device unit comprising: an overmold portion formed by molding at a peripheral portion of the substrate so as to surround the element covering portion.
  2.  前記素子被覆部は、ガラスで構成されることを特徴とする請求項1に記載の撮像素子ユニット。 The imaging element unit according to claim 1, wherein the element covering portion is made of glass.
  3.  前記素子被覆部は、接着層を介して前記撮像素子上に接着されることを特徴とする請求項1に記載の撮像素子ユニット。 The image sensor unit according to claim 1, wherein the element covering portion is bonded onto the image sensor via an adhesive layer.
  4.  前記接着層の厚さが2μm以上25μm以下であることを特徴とする請求項3に記載の撮像素子ユニット。 The imaging element unit according to claim 3, wherein the adhesive layer has a thickness of 2 µm to 25 µm.
  5.  前記接着層は、
     フィラー無しの第1の樹脂接着剤からなり、前記撮像エリアを含む領域に配置される第1の接着部と、
     フィラー入りの第2の樹脂接着剤からなり、前記撮像エリアを除く非撮像エリアにだけ配置される第2の接着部と、を有することを特徴とする請求項3に記載の撮像素子ユニット。
    The adhesive layer is
    A first adhesive portion made of a first resin adhesive without a filler and disposed in a region including the imaging area;
    The imaging element unit according to claim 3, further comprising: a second adhesive portion which is made of a second resin adhesive containing a filler and is disposed only in a non-imaging area excluding the imaging area.
  6.  前記素子被覆部と前記オーバーモールド部との界面が凹凸を有することを特徴とする請求項1に記載の撮像素子ユニット。 The imaging element unit according to claim 1, wherein an interface between the element covering portion and the overmold portion has irregularities.
  7.  前記素子被覆部のうち前記オーバーモールド部で覆われていない露出面に赤外線カット層を有することを特徴とする請求項1に記載の撮像素子ユニット。 The imaging element unit according to claim 1, further comprising an infrared cut layer on an exposed surface of the element covering portion that is not covered with the overmold portion.
  8.  請求項1に記載の撮像素子ユニットと、
     前記撮像素子ユニットに近接する近接レンズを含む1以上のレンズ群を有するレンズ部と、を備えることを特徴とする撮像装置。
    The image sensor unit according to claim 1;
    An imaging apparatus comprising: a lens unit including one or more lens groups including a proximity lens close to the imaging element unit.
  9.  前記近接レンズと前記撮像素子ユニットとの間隔が、0.1μm~2.8mmであることを特徴とする請求項8に記載の撮像装置。 The imaging apparatus according to claim 8, wherein a distance between the proximity lens and the imaging element unit is 0.1 μm to 2.8 mm.
  10.  請求項8に記載の撮像装置を備えることを特徴とするカメラ付き携帯端末。 A camera-equipped mobile terminal comprising the imaging device according to claim 8.
PCT/JP2015/002185 2014-04-25 2015-04-22 Image-capturing element unit, image-capturing device, and camera-equipped mobile terminal WO2015162918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091933 2014-04-25
JP2014091933A JP2015211131A (en) 2014-04-25 2014-04-25 Image pickup device unit, imaging apparatus, and portable terminal with camera

Publications (1)

Publication Number Publication Date
WO2015162918A1 true WO2015162918A1 (en) 2015-10-29

Family

ID=54332094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002185 WO2015162918A1 (en) 2014-04-25 2015-04-22 Image-capturing element unit, image-capturing device, and camera-equipped mobile terminal

Country Status (3)

Country Link
JP (1) JP2015211131A (en)
TW (1) TW201543892A (en)
WO (1) WO2015162918A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654173A (en) * 1979-10-11 1981-05-14 Toshiba Corp Solidstate image sensor
JPH04114456A (en) * 1990-09-04 1992-04-15 Canon Inc Photoelectric converter
JP2003163342A (en) * 2001-11-29 2003-06-06 Olympus Optical Co Ltd Solid state imaging device and its manufacturing method
JP2006005029A (en) * 2004-06-15 2006-01-05 Fujitsu Ltd Imaging device and its manufacturing method
JP2007142194A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JP2008235686A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Optical device, camera module, mobile phone, digital still camera, and medical endoscope
WO2010058503A1 (en) * 2008-11-21 2010-05-27 パナソニック株式会社 Semiconductor device and method of manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951989B2 (en) * 2006-02-09 2012-06-13 富士通セミコンダクター株式会社 Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654173A (en) * 1979-10-11 1981-05-14 Toshiba Corp Solidstate image sensor
JPH04114456A (en) * 1990-09-04 1992-04-15 Canon Inc Photoelectric converter
JP2003163342A (en) * 2001-11-29 2003-06-06 Olympus Optical Co Ltd Solid state imaging device and its manufacturing method
JP2006005029A (en) * 2004-06-15 2006-01-05 Fujitsu Ltd Imaging device and its manufacturing method
JP2007142194A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JP2008235686A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Optical device, camera module, mobile phone, digital still camera, and medical endoscope
WO2010058503A1 (en) * 2008-11-21 2010-05-27 パナソニック株式会社 Semiconductor device and method of manufacturing same

Also Published As

Publication number Publication date
JP2015211131A (en) 2015-11-24
TW201543892A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
CN110687659B (en) Photographing optical lens assembly, image capturing device and electronic device
US8654242B2 (en) Single-focus optical system, image pickup device, and digital apparatus
US10165166B2 (en) Camera module
TWI620967B (en) Camera module
TWI689748B (en) Imaging lens assembly, image capturing unit and electronic device
US10422982B2 (en) Super-wide angle lens and photographing lens having the same
JP2010164755A (en) Optical element, photographing optical system and camera module
JP2009192819A (en) Imaging lens and imaging apparatus
US10185125B2 (en) Photographing optical lens system, image capturing unit and electronic device
KR20130127780A (en) Camera module
JP6806991B2 (en) The camera module
WO2014126092A1 (en) Imaging device, lens unit, and method for manufacturing imaging device
TW202131079A (en) Imaging lens assembly, camera module and electronic device
TWI595781B (en) Camera module
CN112462490B (en) Photographing optical lens, image capturing device and electronic device
KR20160064640A (en) Camera module
JP2010049112A (en) Lens unit and image capturing device
US9411136B2 (en) Image capturing module and optical auxiliary unit thereof
US8792043B2 (en) Focus-fixed camera module
KR101853807B1 (en) Tele converter lens system and photographing apparatus
JP6443633B2 (en) Combination lens and imaging device
WO2015162918A1 (en) Image-capturing element unit, image-capturing device, and camera-equipped mobile terminal
JP2013057699A (en) Lens barrel
US9432560B2 (en) Image capturing module for saving focusing time and increasing assembly flatness and method of assembling the same
KR101541580B1 (en) Camera module and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783512

Country of ref document: EP

Kind code of ref document: A1