WO2015162709A1 - Optical component driving device and optical recording device - Google Patents
Optical component driving device and optical recording device Download PDFInfo
- Publication number
- WO2015162709A1 WO2015162709A1 PCT/JP2014/061352 JP2014061352W WO2015162709A1 WO 2015162709 A1 WO2015162709 A1 WO 2015162709A1 JP 2014061352 W JP2014061352 W JP 2014061352W WO 2015162709 A1 WO2015162709 A1 WO 2015162709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical component
- displacement
- light receiving
- light beam
- light
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0065—Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/08—Disposition or mounting of heads or light sources relatively to record carriers
- G11B7/085—Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
Definitions
- the present invention relates to an optical component driving apparatus and an optical recording apparatus.
- the following document discloses a method for acquiring displacement information with a sensor.
- a rod-shaped light-shielding tool is fixed to a holder that fixes an objective lens that is an optical component, a part of light irradiated from the light-emitting element to the light-receiving element is shielded, and the light-receiving element is divided into four parts.
- a method is disclosed in which when the light-shielded position changes, a difference occurs in the amount of light received by the four light receiving elements, and the displacement of the objective lens is calculated from the difference in the amount of received light.
- An object of the present invention is to provide an optical component driving device or the like that detects a displacement of an optical component with high sensitivity in order to control the position of the optical component with high accuracy.
- a representative optical component driving device is connected to an optical component, a holder to which the optical component is attached, and a fixed member, and the holder is displaced with respect to the fixed member.
- a supporting member that can be supported; a reflecting member that is provided on a part of the supporting member and has a surface that is substantially orthogonal to the displacement direction of the holder; a light emitting element that irradiates the reflecting member with light; and the reflecting member.
- a light receiving element that receives the reflected reflected light.
- the optical component drive etc. which detect the displacement of an optical component with high sensitivity can be provided.
- FIG. 1 shows an example of the configuration of an optical recording apparatus. It is a figure explaining the reference light beam which injects into a recording medium, and the reproduction light beam diffracted by the recording area. It is a figure explaining operation
- FIG. 5 is a schematic view of an optical component driving mechanism viewed in the ⁇ Z direction in order to explain the positional relationship between the mirror portion and the sensor beam when the holder displaced in the + X ′ direction is displaced in the ⁇ Z ′ direction.
- FIG. 6 is a schematic view of an optical component driving mechanism viewed in the ⁇ X direction in order to explain the positional relationship between the mirror portion and the sensor beam when the holder displaced in the + X ′ direction is displaced in the ⁇ Z ′ direction.
- FIG. 1 shows the configuration of the optical recording apparatus 401.
- the time for which the light beam 300 emitted from the light source 201 passes through the shutter 202 is limited.
- the ratio of P-polarized light and S-polarized light is controlled by the half-wave plate 203, and then is separated into the signal light beam 301 and the reference light beam 302 by the polarization beam splitter 204.
- the signal light beam 301 passes through several optical elements, is reflected by the polarization beam splitter 205, and enters the spatial light modulator 206.
- the signal beam 301 to which information is added by the spatial light modulator 206 is transmitted through the polarization beam splitter 205, and then an unnecessary frequency component included in the signal beam is removed by the optical component 208 disposed in the relay lens 207. Then, the light passes through the objective lens 209 and is condensed on the recording medium 215.
- the angle at which the reference beam 302 enters the recording medium 215 is controlled by the galvanometer mirror 211 after passing through some optical elements.
- FIG. 2 is a diagram for explaining the reference light beam 302 incident on the recording medium 215 and the reproduction light beam 303 diffracted by the recording area 219.
- the reference beam 302 When reproducing the information recorded on the recording medium 215, only the reference beam 302 is irradiated to the recording medium 215 as shown in FIG.
- the reference light beam 302 passes through the recording medium 215 and is reflected on the same optical axis by the galvanometer mirror 212.
- the reference light beam 302 reflected by the galvano mirror 212 is incident on the recording medium 215 again, it is diffracted by the recording area 219 recorded on the recording medium 215 and enters the objective lens 209 as a reproduction light beam 303.
- the reproduction light beam 303 incident on the objective lens 209 passes through the opening of the optical component 208 shown in FIG. 1, is reflected by the polarization beam splitter 205, and then enters the light receiving element 218 to reproduce the recorded information. .
- the incident angle theta of the reference beam 302 incident on the recording area 219 of the recording medium 215 varying the incident angle theta of the reference beam 302 incident on the recording area 219 of the recording medium 215, the incident angle theta 1 of the recording time of the reference beam 302, theta 2, ⁇ ⁇ ⁇ theta n
- the intensity of the reconstructed light beam 303 is increased at the incident angle that coincides with the angle information, and the angle multiplexed information can be reproduced individually.
- FIG. 3 is a diagram for explaining the operation of the optical component driving mechanism 402.
- the reproduction light beam 303 diffracted from the recording medium 215 is condensed by the objective lens 209 and the relay lens 207, and the condensing point 501 is It passes through the opening of the optical component 208.
- FIG. 3B when the recording medium 215 is displaced in the + X ′ direction, for example, the position where the reproduction light beam 303 diffracted from the recording medium 215 is displaced in the + X ′ direction.
- the condensing point where the reproduction light beam 303 is condensed is displaced to the condensing point 502 in the ⁇ X ′ direction on the optical component 208. For this reason, the reproduction light beam 303 is shielded around the opening of the optical component 208, and the amount of light reaching the light receiving element 218 is reduced to deteriorate the reproduction signal.
- the optical component driving mechanism 402 displaces the position of the optical component 208 in the ⁇ X ′ direction, and transmits the reproduction light beam 303 through the opening of the optical component 208, thereby receiving the light receiving element. A reduction in the amount of the reproduction light beam 303 that reaches 218 is prevented.
- the condensing position of the reproduction beam 303 is monitored by a light receiving element (not shown) provided on the optical component 208 or the like or a light receiving element (not shown) provided on the back surface of the optical component driving mechanism 402.
- the condensing position 303 is displaced, the optical component 208 is displaced so as to follow the displacement.
- the optical component 208 When the recording medium 215 is displaced in the Y′-axis direction, the optical component 208 is moved in the ⁇ Y′-axis direction. When the recording medium 215 is displaced in the Z′-axis direction, the optical component 208 is moved in the Z′-axis direction. It is possible to prevent the reproduction signal from deteriorating by moving it.
- the optical component 208 can be moved to an optimal position corresponding to the displacement of the recording medium 215 by the above control, but the position of the optical component 208 may be shifted by a reproducing operation of the recording medium 215 or the like. is there. At this time, if the reproduction light beam 303 is emitted, the optical component 208 can be displaced to the optimum position again, but the reproduction light beam 303 is not always emitted. Therefore, it is necessary to monitor the positional deviation of the optical component 208 regardless of the reproduction beam 303.
- optical component driving mechanism 402 that detects the positional displacement of the optical component 208 and precisely displaces the optical component 208 will be described.
- FIG. 4 is a diagram for explaining the structure of the optical component driving mechanism 402 that drives the optical component 208 in the two axial directions of the X′-axis direction and the Z′-axis direction by electromagnetic driving.
- the holder 107 is mounted with an optical component 208, a Z′-axis direction driving coil 111, and an X′-axis direction driving coil 112, and the holder 107 is fixed via a support member 108.
- the member 103 is connected.
- the displacement detection element M1 that detects displacement in the X′-axis direction and the displacement detection element M2 that detects displacement in the Z′-axis direction include a light emitting element 113 that emits a sensor light beam 304 and a sensor light beam 304 that diffuses.
- the lens 114 includes a converging lens 114 and a light receiving element 115 that receives the sensor light beam 304 reflected by the mirror 102 on the plane.
- the holder 107 on which the optical component 208 is mounted is sandwiched between the yoke 109 and the magnet 110.
- current flows through the coils 111 and 112 they are displaced in the Z'-axis direction and the X'-axis direction, respectively.
- one highly sensitive displacement detecting element is provided for each axial displacement.
- a current is passed through the Z′-axis direction driving coil 111 and the X′-axis direction driving coil 112 to cancel the displacement of the optical component 208. Control is performed so that the position of the optical component 208 is not displaced by displacing the lens 107.
- FIG. 5 is a diagram of the optical component driving mechanism 402 shown in FIG. 4 as viewed from the Z′-axis direction, and is a schematic diagram for explaining the operation of the displacement detection element M1 that detects the position of the optical component 208 of FIG. is there.
- FIG. 6 is a diagram for explaining the positional relationship between the sensor light beam 304 reflected by the mirror unit 102 and applied to the light receiving element 115 of the displacement detecting element M1, and the light receiving parts 115a and 115b on the light receiving element 115.
- the support member 108 that supports the holder 107 bends according to the amount of displacement of the holder 107. Therefore, the displacement in the X′-axis direction of the optical component 208 is calculated by the displacement amount of the sensor light beam 304 due to the displacement and inclination of the mirror portion 102 provided on the support member 108 that supports the holder 107.
- the normal line of the reflecting surface is parallel to the X′-axis at a predetermined position.
- the sensor light beam 304 emitted from the light emitting element 113 and converged by the lens 114 is reflected by the mirror portion 102 of the support member 108 and irradiated to the light receiving element 115.
- the mirror unit 102 is displaced and tilted. As a result, as shown in FIG.
- the sensor light beam 304 initially irradiated to the intermediate position between the two light receiving portions 115 a and 115 b on the light receiving element 115 is + Y ′ as the mirror portion 102 is displaced and inclined. Move to a position displaced by Ds in the direction. From the light receiving part A 115 a and the light receiving part B 115 b of the light receiving element 115, a signal having an intensity corresponding to the amount of the sensor light beam 304 incident thereon is generated.
- FIG. 7 is a diagram for explaining the displacement amount of the optical component 208 and the displacement signal output from the displacement detection element M1.
- FIG. 8A is a diagram for explaining the relationship between the displacement of the mirror unit 102 and the position of the sensor light beam 304 on the light receiving element 115.
- FIG. 8B is a diagram for explaining the relationship between the tilt of the mirror unit 102 and the position of the sensor light beam 304 on the light receiving element 115.
- the deflection of the mirror unit 102 shown in FIG. 5 is a result of the displacement of the mirror unit 102 shown in FIG. 8A and the inclination of the mirror unit 102 shown in FIG.
- the sensor light beam position displacement Dd on the light receiving element 115 is increased by the incident angle ⁇ i at which the sensor light beam 304 enters the mirror unit 102. It grows with it.
- the incident angle ⁇ i is an angle in the ⁇ Z direction formed by the normal to the reflecting surface of the mirror unit 102 and the sensor light beam 304.
- the sensor beam position displacement Dt of on the light receiving element 115 becomes twice the angle the mirror unit 102 is inclined
- the displacement is proportional to 2 ⁇ m . Note that the interval between the light receiving element 115 and the mirror unit 102 is w.
- FIG. 9 is a diagram for explaining the relationship between the length L from the fixing point of the support member 108 to the fixing member 103 to the mirror portion 102 and the sensor light beam displacement amount Ds on the light receiving element 115. Further, the results are obtained under the condition that the sensor light beam 304 is incident on the mirror unit 102 at an incident angle ⁇ i of 45 degrees.
- the sensor light beam displacement amount Ds is described by separating a component Dd due to displacement of the mirror portion 102 and a component Dt due to tilt.
- the displacement amount Ds of the sensor beam 304 is normalized by the displacement of Dh of the optical component 208, a length L from a fixed point to the fixed member 103 to the mirror portion 102 of the support member 108 by a length L 0 of the support member normalized, and the ordinate, the displacement amount Dh of the sensor beam displacement Ds / optical components on the light receiving element 115, the horizontal axis is the length L 0 of length L / support member from the fixed point to the mirror unit 102 Represents.
- the length L 0 of the support member means the length from the fixed point to the connection point between the support member 108 and the holder 107 as shown in FIG.
- the displacement amount Ds of the sensor beam 304 is mainly caused by the inclination of the mirror unit 102. Therefore, in the region where the inclination of the mirror portion 102 is small near the fixing point to the fixing member 103 and the value on the vertical axis in FIG. 9 is smaller than 1, the displacement Ds of the sensor beam 304 is smaller than the displacement of the optical component 108b. There is.
- the displacement component Dd of the sensor beam 304 due to the displacement of the mirror unit 102 and the displacement component Dt of the sensor beam 304 due to the tilt of the mirror unit 102 are added. Since the value of the vertical axis of is larger than 1, the displacement amount Ds of the sensor light beam 304 on the light receiving element 115 is larger than the displacement amount Dh of the optical element 208, and the displacement can be measured with high sensitivity.
- Ds / Dh becomes 1 or more only by the displacement component Dt due to the inclination, and therefore, from the displacement amount Dh of the optical component regardless of the incident angle ⁇ i. Can be detected as the sensor beam displacement amount Ds. That is, if the position of the mirror part 102 is set so that L / L 0 in the optical component driving mechanism 402 according to the present invention is 0.2 or more and 0.8 or less, it is high even for a minute displacement of the optical component. Displacement can be detected with sensitivity.
- the displacement component Dd of the sensor beam 304 on the light receiving element 115 due to the displacement of the mirror unit 102 is Get smaller.
- the displacement component Dt of the sensor light beam 304 on the light receiving element 115 due to the displacement of the mirror unit 102 becomes small.
- the displacement component of the sensor light beam 304 on the light receiving element 115 regardless of the incident angle ⁇ i.
- the optical component driving mechanism 402 has a configuration in which the interval w between the light receiving element 115 of the displacement detecting element M1 and the mirror unit 102 is at least one third.
- the optical component driving mechanism 402 has a numerical value corresponding to the vertical axis in FIG. 9, that is, the sensor light beam displacement amount Ds and the optical component displacement amount Dh, in advance when designing the displacement detection element M1.
- the displacement amount Dh of the optical component can be obtained from the sensor light beam displacement amount Ds.
- the holder 107 also moves in the Z′-axis direction independently of the displacement in the X′-axis direction. As a result, the support member 108 and the mirror portion 102 are displaced in the Z′-axis direction.
- FIG. 10A shows the optical component drive mechanism 402 in the ⁇ Z ′ direction in order to explain the positional relationship between the mirror portion and the sensor beam when the holder displaced in the + X ′ direction is displaced in the ⁇ Z ′ direction. It is the schematic seen in.
- FIG. 10B shows an optical component driving mechanism 402 in order to explain the positional relationship between the mirror portion and the sensor beam when the holder displaced in the + X ′ direction is displaced in the ⁇ Z ′ direction. It is the schematic seen in the direction.
- the displacement detection element M1 operates as an element that can measure only the displacement of the optical component 208 in the X′-axis direction.
- the displacement detection element M2 in the Z′-axis direction of the optical component 208 is detected using the mirror unit 106 whose normal to the reflection surface is in the Z′-axis direction, and the principle is the X′-axis. This is the same as the direction displacement detecting element M1.
- the irradiation area of the sensor light beam 304 on the light receiving element 115 is reduced. For this reason, the rate of change in the amount of sensor light applied to each of the light receiving portions 115a and 115b of the light receiving element 115 with respect to the displacement of the optical component 208 increases, so that the displacement sensitivity of the optical component 208 is high.
- this invention is not limited to an above-described Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Landscapes
- Optical Head (AREA)
Abstract
The purpose of the present invention is to provide an optical component driving device and the like that detect with high sensitivity the displacement of an optical component in order to control with high accuracy the position of the optical component. To achieve this purpose, this representative optical component driving device is provided with the following: an optical component; a holder to which the optical component is attached; a support member that is connected to a fixed member and that displaceably supports the holder with respect to the fixed member; a reflection member that is provided to a portion of the support member and that has a surface which is roughly orthogonal to the displacement direction of the holder; a light emitting element that projects light towards the reflection member; and a light receiving element that receives reflected light reflected by the reflection member.
Description
本発明は、光学部品駆動装置および光記録装置に関するものである。
The present invention relates to an optical component driving apparatus and an optical recording apparatus.
光学部品の位置を検出する方法として、以下の文献では、センサで変位情報を取得する方式が開示されている。
As a method for detecting the position of an optical component, the following document discloses a method for acquiring displacement information with a sensor.
特許文献1では、光学部品である対物レンズを固定するホルダに棒状の遮光具が固定され、発光素子から受光素子に照射される光の一部を遮光し、受光素子は四つに分割されており、遮光される位置が変わると四つの受光素子の受光量に差が生じ、その受光量差から対物レンズの変位を算出する方式が開示されている。
In Patent Document 1, a rod-shaped light-shielding tool is fixed to a holder that fixes an objective lens that is an optical component, a part of light irradiated from the light-emitting element to the light-receiving element is shielded, and the light-receiving element is divided into four parts. In addition, a method is disclosed in which when the light-shielded position changes, a difference occurs in the amount of light received by the four light receiving elements, and the displacement of the objective lens is calculated from the difference in the amount of received light.
上記特許文献1の技術では、受光素子面積に対して光学部品である対物レンズの変位量が小さい時、様々な雑音強度に対する十分な信号強度(S/N)を得ることが困難である。この場合、対物レンズの微小な変位に対するサーボ制御が困難になる可能性があった。
In the technique of Patent Document 1, it is difficult to obtain a sufficient signal intensity (S / N) for various noise intensities when the displacement amount of the objective lens that is an optical component is small with respect to the area of the light receiving element. In this case, servo control for a minute displacement of the objective lens may be difficult.
本発明の目的は、光学部品の位置を高精度に制御するために、光学部品の変位を高感度に検出する光学部品駆動装置等を提供することを目的とする
An object of the present invention is to provide an optical component driving device or the like that detects a displacement of an optical component with high sensitivity in order to control the position of the optical component with high accuracy.
上記課題を解決するために、代表的な本発明の光学部品駆動装置は、光学部品と、前記光学部品が取付けられたホルダと、固定部材に接続され、当該固定部材に対して前記ホルダを変位可能に支持する支持部材と、前記支持部材の一部に設けられ、前記ホルダの変位方向と略直交する面を有する反射部材と、前記反射部材へ光線を照射する発光素子と、前記反射部材で反射された反射光線を受光する受光素子と、を備える。
In order to solve the above-described problems, a representative optical component driving device according to the present invention is connected to an optical component, a holder to which the optical component is attached, and a fixed member, and the holder is displaced with respect to the fixed member. A supporting member that can be supported; a reflecting member that is provided on a part of the supporting member and has a surface that is substantially orthogonal to the displacement direction of the holder; a light emitting element that irradiates the reflecting member with light; and the reflecting member. A light receiving element that receives the reflected reflected light.
本発明によれば、光学部品の変位を高感度に検出する光学部品駆動等を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the optical component drive etc. which detect the displacement of an optical component with high sensitivity can be provided.
ADVANTAGE OF THE INVENTION According to this invention, the optical component drive etc. which detect the displacement of an optical component with high sensitivity can be provided.
以下、本発明の実施例について図面を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の本実施例に係る光記録装置の構成について、図面を参照して説明する。
The configuration of the optical recording apparatus according to this embodiment of the present invention will be described with reference to the drawings.
図1は、光記録装置401の構成を示したものである。
FIG. 1 shows the configuration of the optical recording apparatus 401.
初めに、記録媒体215に情報を記録する手順を説明する。
First, a procedure for recording information on the recording medium 215 will be described.
光源201を出射した光線300はシャッタ202で通過する時間を制限される。光線300はシャッタ202通過後、2分の1波長板203でP偏光とS偏光の割合を制御された後、偏光ビームスプリッタ204で信号光線301と参照光線302とに分離される。信号光線301はいくつかの光学素子を透過後、偏光ビームスプリッタ205で反射し、空間光変調器206に入射する。空間光変調器206で情報を付加された信号光線301は偏光ビームスプリッタ205を透過した後、リレーレンズ207内に配置した光学部品208で信号光線に含まれる不要な周波数成分等を除去された後、対物レンズ209を透過し、記録媒体215に集光する。
The time for which the light beam 300 emitted from the light source 201 passes through the shutter 202 is limited. After the light beam 300 passes through the shutter 202, the ratio of P-polarized light and S-polarized light is controlled by the half-wave plate 203, and then is separated into the signal light beam 301 and the reference light beam 302 by the polarization beam splitter 204. The signal light beam 301 passes through several optical elements, is reflected by the polarization beam splitter 205, and enters the spatial light modulator 206. The signal beam 301 to which information is added by the spatial light modulator 206 is transmitted through the polarization beam splitter 205, and then an unnecessary frequency component included in the signal beam is removed by the optical component 208 disposed in the relay lens 207. Then, the light passes through the objective lens 209 and is condensed on the recording medium 215.
一方、参照光線302はいくつかの光学素子を透過後、ガルバノミラー211で記録媒体215に入射する角度を制御される。
On the other hand, the angle at which the reference beam 302 enters the recording medium 215 is controlled by the galvanometer mirror 211 after passing through some optical elements.
信号光線301と参照光線302を記録媒体215中で重ね合わせると、記録媒体215内には信号光線301と参照光線302で形成される干渉縞が記録され、これにより情報を記録する。また、記録媒体215に入射する参照光線302の角度をガルバノミラー211で変化させると、入射角度毎に記録ができるため、角度多重記録ができる。
When the signal beam 301 and the reference beam 302 are overlapped in the recording medium 215, interference fringes formed by the signal beam 301 and the reference beam 302 are recorded in the recording medium 215, thereby recording information. Further, when the angle of the reference light beam 302 incident on the recording medium 215 is changed by the galvanometer mirror 211, recording can be performed at each incident angle, so that angle multiplex recording can be performed.
次に、記録媒体215に記録した情報を再生する手順を説明する。
Next, a procedure for reproducing information recorded on the recording medium 215 will be described.
図2は、記録媒体215に入射する参照光線302と、記録領域219で回折された再生光線303を説明する図である。
FIG. 2 is a diagram for explaining the reference light beam 302 incident on the recording medium 215 and the reproduction light beam 303 diffracted by the recording area 219.
記録媒体215に記録した情報を再生する時は、図2に示すように、参照光線302のみを記録媒体215に照射する。参照光線302は記録媒体215を透過した後、ガルバノミラー212で同一光軸上に反射される。ガルバノミラー212で反射された参照光線302は再び記録媒体215に入射すると、記録媒体215に記録された記録領域219で回折され、再生光線303として対物レンズ209に入射する。対物レンズ209に入射した再生光線303は、図1で示した光学部品208の開口部を透過し、偏光ビームスプリッタ205で反射された後、受光素子218に入射し、記録した情報が再生される。また図2に示すように、記録媒体215の記録領域219に入射する参照光線302の入射角度θを変化させると、記録時の参照光線302の入射角度θ1、θ2、・・・θnと一致した入射角度において再生光線303の強度が大きくなり、角度多重した情報を個別に再生できる。
次に、再生時に外部振動等により記録媒体215の位置が変化した時、光記録装置401の特性に与える影響について説明する。 When reproducing the information recorded on therecording medium 215, only the reference beam 302 is irradiated to the recording medium 215 as shown in FIG. The reference light beam 302 passes through the recording medium 215 and is reflected on the same optical axis by the galvanometer mirror 212. When the reference light beam 302 reflected by the galvano mirror 212 is incident on the recording medium 215 again, it is diffracted by the recording area 219 recorded on the recording medium 215 and enters the objective lens 209 as a reproduction light beam 303. The reproduction light beam 303 incident on the objective lens 209 passes through the opening of the optical component 208 shown in FIG. 1, is reflected by the polarization beam splitter 205, and then enters the light receiving element 218 to reproduce the recorded information. . Further, as shown in FIG. 2, varying the incident angle theta of the reference beam 302 incident on the recording area 219 of the recording medium 215, the incident angle theta 1 of the recording time of the reference beam 302, theta 2, · · · theta n The intensity of the reconstructed light beam 303 is increased at the incident angle that coincides with the angle information, and the angle multiplexed information can be reproduced individually.
Next, the influence on the characteristics of theoptical recording apparatus 401 when the position of the recording medium 215 changes due to external vibration or the like during reproduction will be described.
次に、再生時に外部振動等により記録媒体215の位置が変化した時、光記録装置401の特性に与える影響について説明する。 When reproducing the information recorded on the
Next, the influence on the characteristics of the
図3は、光学部品駆動機構402の動作を説明する図である。
FIG. 3 is a diagram for explaining the operation of the optical component driving mechanism 402.
記録媒体が所定の位置にある時は、図3(a)に示すように、記録媒体215から回折された再生光線303は対物レンズ209やリレーレンズ207で集光され、その集光点501は光学部品208の開口部を透過する。しかし、図3(b)に示すように、記録媒体215が例えば+X’方向に変位すると、記録媒体215から回折される再生光線303の発生位置は+X’方向に変位する。それにより、再生光線303が集光される集光点は光学部品208上で-X’方向の集光点502に変位する。そのため、再生光線303は光学部品208の開口部周囲で遮光され、受光素子218に到達する光量が減少して再生信号が劣化する。
When the recording medium is at a predetermined position, as shown in FIG. 3A, the reproduction light beam 303 diffracted from the recording medium 215 is condensed by the objective lens 209 and the relay lens 207, and the condensing point 501 is It passes through the opening of the optical component 208. However, as shown in FIG. 3B, when the recording medium 215 is displaced in the + X ′ direction, for example, the position where the reproduction light beam 303 diffracted from the recording medium 215 is displaced in the + X ′ direction. As a result, the condensing point where the reproduction light beam 303 is condensed is displaced to the condensing point 502 in the −X ′ direction on the optical component 208. For this reason, the reproduction light beam 303 is shielded around the opening of the optical component 208, and the amount of light reaching the light receiving element 218 is reduced to deteriorate the reproduction signal.
そこで、図3(c)に示すように、光学部品駆動機構402で光学部品208の位置を-X’方向に変位させ、光学部品208の開口部に再生光線303を透過させることで、受光素子218に到達する再生光線303の光量低下を防ぐ。具体的には、光学部品208等に設けた図示しない受光素子、または、光学部品駆動機構402の背面に設けられた図示しない受光素子によって再生光線303の集光位置を監視しており、再生光線303の集光位置が変位すると、その変位に追従するように光学部品208を変位させる。上記動作により、記録媒体215の位置変動による再生信号の劣化を防ぐ。
Therefore, as shown in FIG. 3C, the optical component driving mechanism 402 displaces the position of the optical component 208 in the −X ′ direction, and transmits the reproduction light beam 303 through the opening of the optical component 208, thereby receiving the light receiving element. A reduction in the amount of the reproduction light beam 303 that reaches 218 is prevented. Specifically, the condensing position of the reproduction beam 303 is monitored by a light receiving element (not shown) provided on the optical component 208 or the like or a light receiving element (not shown) provided on the back surface of the optical component driving mechanism 402. When the condensing position 303 is displaced, the optical component 208 is displaced so as to follow the displacement. By the above operation, the reproduction signal is prevented from deteriorating due to the position fluctuation of the recording medium 215.
なお、記録媒体215がY’軸方向に変位した時は光学部品208を-Y’軸方向に移動させ、記録媒体215がZ’軸方向に変位した時は光学部品208をZ’軸方向に移動させることで再生信号の劣化を防ぐことが可能になる。
When the recording medium 215 is displaced in the Y′-axis direction, the optical component 208 is moved in the −Y′-axis direction. When the recording medium 215 is displaced in the Z′-axis direction, the optical component 208 is moved in the Z′-axis direction. It is possible to prevent the reproduction signal from deteriorating by moving it.
ここで、上記の制御によって光学部品208を記録媒体215の変位に対応した最適な位置に移動することができるが、光学部品208の位置は記録媒体215の再生動作等によってずれてしまう可能性がある。その際、再生光線303が発せされていれば、改めて最適な位置へ光学部品208を変位させることが可能であるが、再生光線303は常に発せられているわけではない。そのため、再生光線303によらず光学部品208の位置ずれを監視することが必要である。
Here, the optical component 208 can be moved to an optimal position corresponding to the displacement of the recording medium 215 by the above control, but the position of the optical component 208 may be shifted by a reproducing operation of the recording medium 215 or the like. is there. At this time, if the reproduction light beam 303 is emitted, the optical component 208 can be displaced to the optimum position again, but the reproduction light beam 303 is not always emitted. Therefore, it is necessary to monitor the positional deviation of the optical component 208 regardless of the reproduction beam 303.
以下に、光学部品208の位置変位を検出するとともに、光学部品208を精密に変位させる光学部品駆動機構402の具体的な構成を示す。
Hereinafter, a specific configuration of the optical component driving mechanism 402 that detects the positional displacement of the optical component 208 and precisely displaces the optical component 208 will be described.
図4は、電磁駆動でX’軸方向とZ’軸方向の二軸方向に光学部品208を駆動する光学部品駆動機構402の構造を説明する図である。
FIG. 4 is a diagram for explaining the structure of the optical component driving mechanism 402 that drives the optical component 208 in the two axial directions of the X′-axis direction and the Z′-axis direction by electromagnetic driving.
図4に示す光学部品駆動機構402においてホルダ107は光学部品208とZ’軸方向駆動用コイル111とX’軸方向駆動用コイル112が搭載され、さらに、ホルダ107は支持部材108を介して固定部材103と連結されている。また、X’軸方向の変位を検出する変位検出素子M1、及び、Z’軸方向の変位を検出する変位検出素子M2は、センサ光線304を出射する発光素子113と、拡散するセンサ光線304を収束するレンズ114と、平面上のミラー部102で反射したセンサ光線304を受光する受光素子115とから構成されている。
In the optical component driving mechanism 402 shown in FIG. 4, the holder 107 is mounted with an optical component 208, a Z′-axis direction driving coil 111, and an X′-axis direction driving coil 112, and the holder 107 is fixed via a support member 108. The member 103 is connected. The displacement detection element M1 that detects displacement in the X′-axis direction and the displacement detection element M2 that detects displacement in the Z′-axis direction include a light emitting element 113 that emits a sensor light beam 304 and a sensor light beam 304 that diffuses. The lens 114 includes a converging lens 114 and a light receiving element 115 that receives the sensor light beam 304 reflected by the mirror 102 on the plane.
光学部品208を搭載したホルダ107は、ヨーク109と磁石110で挟まれている。コイル111と112に電流が流れると、それぞれZ’軸方向とX’軸方向に変位する。
The holder 107 on which the optical component 208 is mounted is sandwiched between the yoke 109 and the magnet 110. When current flows through the coils 111 and 112, they are displaced in the Z'-axis direction and the X'-axis direction, respectively.
本発明では、ホルダ107の二軸方向の位置を高精度に検出するために、各軸方向の変位に対してそれぞれ一個の高感度な変位検出素子を設ける。そして、これら変位検出素子M1、M2によって光学部品208の変位を検出すると、Z’軸方向駆動用コイル111、X’軸方向駆動用コイル112に電流を流し、光学部品208の変位を打ち消すようホルダ107を変位させることで光学部品208の位置がずれないよう制御する。
In the present invention, in order to detect the position of the holder 107 in the biaxial direction with high accuracy, one highly sensitive displacement detecting element is provided for each axial displacement. When the displacement detection elements M1 and M2 detect the displacement of the optical component 208, a current is passed through the Z′-axis direction driving coil 111 and the X′-axis direction driving coil 112 to cancel the displacement of the optical component 208. Control is performed so that the position of the optical component 208 is not displaced by displacing the lens 107.
図5は、図4に示す光学部品駆動機構402をZ’軸方向から見た図であり、図4の光学部品208の位置を検出する変位検出素子M1の動作を説明するための概略図である。
5 is a diagram of the optical component driving mechanism 402 shown in FIG. 4 as viewed from the Z′-axis direction, and is a schematic diagram for explaining the operation of the displacement detection element M1 that detects the position of the optical component 208 of FIG. is there.
図6はミラー部102で反射し、変位検出素子M1の受光素子115に照射されるセンサ光線304と、受光素子115上の受光部115a、115bの位置関係を説明する図である。
FIG. 6 is a diagram for explaining the positional relationship between the sensor light beam 304 reflected by the mirror unit 102 and applied to the light receiving element 115 of the displacement detecting element M1, and the light receiving parts 115a and 115b on the light receiving element 115.
図5に示すように、光学部品208を搭載しているホルダ107がX’軸方向に変位すると、ホルダ107を支える支持部材108はホルダ107の変位量に応じて撓む。そこで、光学部品208のX’軸方向の変位を、ホルダ107を支える支持部材108に設けたミラー部102の変位と傾きによるセンサ光線304の変位量で算出する。
As shown in FIG. 5, when the holder 107 on which the optical component 208 is mounted is displaced in the X′-axis direction, the support member 108 that supports the holder 107 bends according to the amount of displacement of the holder 107. Therefore, the displacement in the X′-axis direction of the optical component 208 is calculated by the displacement amount of the sensor light beam 304 due to the displacement and inclination of the mirror portion 102 provided on the support member 108 that supports the holder 107.
以下に変位検出素子M1でのミラー部102の変位と傾きによるセンサ光線304の変位量の測定原理を説明する。
Hereinafter, the measurement principle of the amount of displacement of the sensor beam 304 due to the displacement and inclination of the mirror unit 102 in the displacement detection element M1 will be described.
図5に示すように、X’軸方向の変位を測定する変位検出素子M1で測定対象となるミラー部102において、反射面の法線は所定の位置でX’軸に平行である。発光素子113から出射し、レンズ114で収束されたセンサ光線304は、支持部材108のミラー部102で反射し、受光素子115に照射される。例えば、ホルダ107が+X’方向にDh変位すると、ミラー部102は変位と傾きを起こす。それにより、図6に示すように、初期に受光素子115上の2つの受光部115aと受光部115bの中間位置に照射されているセンサ光線304は、ミラー部102の変位と傾きに伴い+Y’方向にDs変位した位置に移動する。受光素子115の受光部A115aと受光部B115bからは、それぞれに入射したセンサ光線304の光量に応じた強度の信号が発生する。
As shown in FIG. 5, in the mirror unit 102 to be measured by the displacement detection element M1 that measures the displacement in the X′-axis direction, the normal line of the reflecting surface is parallel to the X′-axis at a predetermined position. The sensor light beam 304 emitted from the light emitting element 113 and converged by the lens 114 is reflected by the mirror portion 102 of the support member 108 and irradiated to the light receiving element 115. For example, when the holder 107 is displaced by Dh in the + X ′ direction, the mirror unit 102 is displaced and tilted. As a result, as shown in FIG. 6, the sensor light beam 304 initially irradiated to the intermediate position between the two light receiving portions 115 a and 115 b on the light receiving element 115 is + Y ′ as the mirror portion 102 is displaced and inclined. Move to a position displaced by Ds in the direction. From the light receiving part A 115 a and the light receiving part B 115 b of the light receiving element 115, a signal having an intensity corresponding to the amount of the sensor light beam 304 incident thereon is generated.
図7は、光学部品208の変位量と変位検出素子M1から出力される変位信号を説明する図である。
FIG. 7 is a diagram for explaining the displacement amount of the optical component 208 and the displacement signal output from the displacement detection element M1.
光学部品208の変位に伴う受光部115a、115bからの信号を演算回路116で差分すると、図7に示すように光学部品208の変位量に応じた変位信号が得られる。この変位信号を制御回路217で処理し、光学部品駆動機構402の光学部品208位置を制御する。
When the signals from the light receiving portions 115a and 115b accompanying the displacement of the optical component 208 are differentiated by the arithmetic circuit 116, a displacement signal corresponding to the displacement amount of the optical component 208 is obtained as shown in FIG. This displacement signal is processed by the control circuit 217 to control the position of the optical component 208 of the optical component driving mechanism 402.
図8(a)は、ミラー部102の変位と受光素子115上でのセンサ光線304の位置の関係を説明する図である。図8(b)は、ミラー部102の傾斜と受光素子115上でのセンサ光線304の位置の関係を説明する図である。
FIG. 8A is a diagram for explaining the relationship between the displacement of the mirror unit 102 and the position of the sensor light beam 304 on the light receiving element 115. FIG. 8B is a diagram for explaining the relationship between the tilt of the mirror unit 102 and the position of the sensor light beam 304 on the light receiving element 115.
図5に示したミラー部102の撓みは、図8(a)に示すミラー部102の変位と、図8(b)に示すミラー部102の傾斜が重畳したものである。
The deflection of the mirror unit 102 shown in FIG. 5 is a result of the displacement of the mirror unit 102 shown in FIG. 8A and the inclination of the mirror unit 102 shown in FIG.
ミラー部102がX’軸方向に変位する図8(a)に示す条件において、受光素子115上でのセンサ光線位置変位Ddは、センサ光線304がミラー部102に入射する入射角度θiの増加にともない大きくなる。なお、入射角度θiはミラー部102の反射面法線とセンサ光線304とのなすθZ方向の角度である。また、ミラー部102がθZ方向に-θm傾斜する図8(b)に示す条件において、受光素子115上でのセンサ光線位置変位Dtは、ミラー部102が傾斜した角度の二倍となる2θmに比例した変位となる。なお、受光素子115とミラー部102との間隔をwとする。
Under the conditions shown in FIG. 8A in which the mirror unit 102 is displaced in the X′-axis direction, the sensor light beam position displacement Dd on the light receiving element 115 is increased by the incident angle θ i at which the sensor light beam 304 enters the mirror unit 102. It grows with it. The incident angle θ i is an angle in the θ Z direction formed by the normal to the reflecting surface of the mirror unit 102 and the sensor light beam 304. Further, in the condition shown in FIG. 8 (b) of the mirror unit 102 - [theta] m inclined theta Z-direction, the sensor beam position displacement Dt of on the light receiving element 115 becomes twice the angle the mirror unit 102 is inclined The displacement is proportional to 2θ m . Note that the interval between the light receiving element 115 and the mirror unit 102 is w.
図9は、支持部材108の固定部材103への固定点からミラー部102までの長さLと、受光素子115上のセンサ光線変位量Dsの関係を説明する図である。また、ミラー部102へ45度の入射角θiでセンサ光線304が入射した条件での結果である。センサ光線変位量Dsは、ミラー部102の変位による成分Ddと傾斜による成分Dtとを分離して記載している。なお、センサ光線304の変位量Dsは光学部品208の変位量Dhで規格化し、支持部材108の固定部材103への固定点からミラー部102までの長さLは支持部材の長さL0で規格化し、縦軸は、受光素子115上のセンサ光線変位量Ds/光学部品の変位量Dhで、横軸は、固定点からミラー部102までの長さL/支持部材の長さL0で表している。尚、支持部材の長さL0とは、図5に示すように固定点から支持部材108とホルダ107の接続点までの長さをいう。
FIG. 9 is a diagram for explaining the relationship between the length L from the fixing point of the support member 108 to the fixing member 103 to the mirror portion 102 and the sensor light beam displacement amount Ds on the light receiving element 115. Further, the results are obtained under the condition that the sensor light beam 304 is incident on the mirror unit 102 at an incident angle θ i of 45 degrees. The sensor light beam displacement amount Ds is described by separating a component Dd due to displacement of the mirror portion 102 and a component Dt due to tilt. Incidentally, the displacement amount Ds of the sensor beam 304 is normalized by the displacement of Dh of the optical component 208, a length L from a fixed point to the fixed member 103 to the mirror portion 102 of the support member 108 by a length L 0 of the support member normalized, and the ordinate, the displacement amount Dh of the sensor beam displacement Ds / optical components on the light receiving element 115, the horizontal axis is the length L 0 of length L / support member from the fixed point to the mirror unit 102 Represents. The length L 0 of the support member means the length from the fixed point to the connection point between the support member 108 and the holder 107 as shown in FIG.
図9に示すように、固定点からミラー部102までの長さLが短い条件では、センサ光線304の変位量Dsは主にミラー部102の傾斜によって引き起こされる。そのため、固定部材103への固定点近傍でミラー部102の傾斜が小さく図9の縦軸の値が1より小さい領域では、光学部品108bの変位量よりセンサ光線304の変位量Dsが小さくなる領域がある。一方、固定点からミラー部102までの長さLが長い領域では、ミラー部102の変位によるセンサ光線304の変位成分Ddとミラー部102の傾斜によるセンサ光線304の変位成分Dtが加算され図9の縦軸の値が1より大きくなるため、受光素子115上のセンサ光線304の変位量Dsは光学素子208の変位量Dhよりも大きくなり、高感度に変位を測定できる特徴がある。
As shown in FIG. 9, under the condition that the length L from the fixed point to the mirror unit 102 is short, the displacement amount Ds of the sensor beam 304 is mainly caused by the inclination of the mirror unit 102. Therefore, in the region where the inclination of the mirror portion 102 is small near the fixing point to the fixing member 103 and the value on the vertical axis in FIG. 9 is smaller than 1, the displacement Ds of the sensor beam 304 is smaller than the displacement of the optical component 108b. There is. On the other hand, in the region where the length L from the fixed point to the mirror unit 102 is long, the displacement component Dd of the sensor beam 304 due to the displacement of the mirror unit 102 and the displacement component Dt of the sensor beam 304 due to the tilt of the mirror unit 102 are added. Since the value of the vertical axis of is larger than 1, the displacement amount Ds of the sensor light beam 304 on the light receiving element 115 is larger than the displacement amount Dh of the optical element 208, and the displacement can be measured with high sensitivity.
すなわち、L/L0が0.2以上0.8以下の領域では、傾斜による変位成分DtのみでDs/Dhが1以上となるため、入射角度θiに依らず光学部品の変位量Dhよりも大きな変位量をセンサ光線変位量Dsとして検出できる。つまり、本発明に係る光学部品駆動機構402におけるL/L0が、0.2以上0.8以下になるようミラー部102の位置を設定すれば、光学部品の微量な変位に対しても高感度に変位を検出することができる。
That is, in the region where L / L 0 is 0.2 or more and 0.8 or less, Ds / Dh becomes 1 or more only by the displacement component Dt due to the inclination, and therefore, from the displacement amount Dh of the optical component regardless of the incident angle θ i. Can be detected as the sensor beam displacement amount Ds. That is, if the position of the mirror part 102 is set so that L / L 0 in the optical component driving mechanism 402 according to the present invention is 0.2 or more and 0.8 or less, it is high even for a minute displacement of the optical component. Displacement can be detected with sensitivity.
なお、図8(a)に示すように、ミラー部102へのセンサ光線304の入射角度θiが小さい場合、ミラー部102が変位したことによる受光素子115上のセンサ光線304の変位成分Ddは小さくなる。また、図8(b)に示すように、受光素子115とミラー部102との間隔wが小さい場合、ミラー部102が変位したことによる受光素子115上のセンサ光線304の変位成分Dtは小さくなる。しかしながら、受光素子115とミラー部102との間隔をwが支持部材の長さL0の3分の1以上である時、入射角θiに依らず受光素子115上のセンサ光線304の変位成分Dtは光学素子208の変位量Dhよりも大きくなる条件が存在する。そのため本発明に係る光学部品駆動機構402は、変位検出素子M1の受光素子115とミラー部102との間隔wは3分の1以上とする構成であることが望ましい。
As shown in FIG. 8A, when the incident angle θ i of the sensor beam 304 to the mirror unit 102 is small, the displacement component Dd of the sensor beam 304 on the light receiving element 115 due to the displacement of the mirror unit 102 is Get smaller. Further, as shown in FIG. 8B, when the interval w between the light receiving element 115 and the mirror unit 102 is small, the displacement component Dt of the sensor light beam 304 on the light receiving element 115 due to the displacement of the mirror unit 102 becomes small. . However, when the distance between the light receiving element 115 and the mirror portion 102 is not less than one third of the length L 0 of the support member, the displacement component of the sensor light beam 304 on the light receiving element 115 regardless of the incident angle θ i. There is a condition that Dt becomes larger than the displacement amount Dh of the optical element 208. Therefore, it is desirable that the optical component driving mechanism 402 according to the present invention has a configuration in which the interval w between the light receiving element 115 of the displacement detecting element M1 and the mirror unit 102 is at least one third.
本発明の光学部品駆動機構402は、変位検出素子M1の設計時において、予め図9の縦軸に相当する数値、すなわち、受光素子上でのセンサ光線変位量Dsと光学部品の変位量Dhとの関係を記憶させることで、センサ光線変位量Dsから光学部品の変位量Dhを求めることが可能となる。 なお、ホルダ107はX’軸方向の変位と独立してZ’軸方向の変位もする。それにより、支持部材108とミラー部102はZ’軸方向に変位する。
The optical component driving mechanism 402 according to the present invention has a numerical value corresponding to the vertical axis in FIG. 9, that is, the sensor light beam displacement amount Ds and the optical component displacement amount Dh, in advance when designing the displacement detection element M1. By storing this relationship, the displacement amount Dh of the optical component can be obtained from the sensor light beam displacement amount Ds. Note that the holder 107 also moves in the Z′-axis direction independently of the displacement in the X′-axis direction. As a result, the support member 108 and the mirror portion 102 are displaced in the Z′-axis direction.
図10(a)は+X’方向に変位しているホルダが、-Z’方向に変位した時のミラー部とセンサ光線との位置関係を説明するために光学部品駆動機構402を-Z’方向に見た概略図である。また図10(b)は、+X’方向に変位しているホルダが、-Z’方向に変位した時のミラー部とセンサ光線との位置関係を説明するために光学部品駆動機構402を-X’方向に見た概略図である。
FIG. 10A shows the optical component drive mechanism 402 in the −Z ′ direction in order to explain the positional relationship between the mirror portion and the sensor beam when the holder displaced in the + X ′ direction is displaced in the −Z ′ direction. It is the schematic seen in. FIG. 10B shows an optical component driving mechanism 402 in order to explain the positional relationship between the mirror portion and the sensor beam when the holder displaced in the + X ′ direction is displaced in the −Z ′ direction. It is the schematic seen in the direction.
図10(a)と図10(b)に示すように、ホルダ107が+X’方向に変位した状態で-Z’軸方向に変位しても、センサ光線304が反射されるミラー部102のX’軸方向の変位やθZ’方向の傾きはほとんど変化しない。そのため変位検出素子M1は光学部品208のX’軸方向の変位のみが測定できる素子として動作する。
As shown in FIGS. 10A and 10B, even if the holder 107 is displaced in the + X ′ direction, even if the holder 107 is displaced in the −Z ′ axis direction, the sensor beam 304 is reflected by X. The displacement in the 'axial direction and the inclination in the θ Z' direction hardly change. Therefore, the displacement detection element M1 operates as an element that can measure only the displacement of the optical component 208 in the X′-axis direction.
なお図4に示すように、光学部品208のZ’軸方向の変位検出素子M2は、反射面の法線がZ’軸方向のミラー部106を用いて検出しており、原理はX’軸方向の変位検出素子M1と同じである。
As shown in FIG. 4, the displacement detection element M2 in the Z′-axis direction of the optical component 208 is detected using the mirror unit 106 whose normal to the reflection surface is in the Z′-axis direction, and the principle is the X′-axis. This is the same as the direction displacement detecting element M1.
また、発光素子113から出射し拡散するセンサ光線304をレンズ114で収束させることで、受光素子115上でのセンサ光線304の照射領域が小さくなる。そのため、光学部品208の変位に対する受光素子115の各受光部115a、115bに照射されるセンサ光線の光量の変化割合は増大するため、光学部品208の変位感度が高い特徴がある。
Further, by converging the sensor light beam 304 emitted and diffused from the light emitting element 113 by the lens 114, the irradiation area of the sensor light beam 304 on the light receiving element 115 is reduced. For this reason, the rate of change in the amount of sensor light applied to each of the light receiving portions 115a and 115b of the light receiving element 115 with respect to the displacement of the optical component 208 increases, so that the displacement sensitivity of the optical component 208 is high.
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
102 ミラー部
103 固定部材
106 ミラー部
107 ホルダ
108 支持部材
109 ヨーク
110 磁石
111 コイル
112 コイル
113 発光素子
114 レンズ
115 受光素子
115a 受光部
115b 受光部
116 演算回路
117 受光素子
201 光源
202 シャッタ
203 2分の1波長板
204 偏光ビームスプリッタ
205 偏光ビームスプリッタ
206 空間光変調器
207 リレーレンズ
208 光学部品209 対物レンズ
211 ガルバノミラー
212 ガルバノミラー
215 記録媒体
217 制御回路
218 受光素子
219 記録領域
221 受光素子
300 光線
301 信号光線
302 参照光線
303 再生光線
304 センサ用光線
401 光記録装置
402 光学部品駆動機構
501-502 集光点位置
M1、M2 変位検出素子 102mirror part 103 fixing member 106 mirror part 107 holder 108 support member 109 yoke 110 magnet 111 coil 112 coil 113 light emitting element 114 lens 115 light receiving element 115a light receiving part 115b light receiving part 116 arithmetic circuit 117 light receiving element 201 light source 202 shutter 203 2 minutes 1-wave plate 204 Polarizing beam splitter 205 Polarizing beam splitter 206 Spatial light modulator 207 Relay lens 208 Optical component 209 Objective lens 211 Galvano mirror 212 Galvano mirror 215 Recording medium 217 Control circuit 218 Light receiving element 219 Recording area 221 Light receiving element 300 Light beam 301 Signal Light beam 302 Reference light beam 303 Reproducing light beam 304 Light beam for sensor 401 Optical recording device 402 Optical component driving mechanism 501-502 Condensing point position M1, M2 Displacement detecting element
103 固定部材
106 ミラー部
107 ホルダ
108 支持部材
109 ヨーク
110 磁石
111 コイル
112 コイル
113 発光素子
114 レンズ
115 受光素子
115a 受光部
115b 受光部
116 演算回路
117 受光素子
201 光源
202 シャッタ
203 2分の1波長板
204 偏光ビームスプリッタ
205 偏光ビームスプリッタ
206 空間光変調器
207 リレーレンズ
208 光学部品209 対物レンズ
211 ガルバノミラー
212 ガルバノミラー
215 記録媒体
217 制御回路
218 受光素子
219 記録領域
221 受光素子
300 光線
301 信号光線
302 参照光線
303 再生光線
304 センサ用光線
401 光記録装置
402 光学部品駆動機構
501-502 集光点位置
M1、M2 変位検出素子 102
Claims (6)
- 光学部品と、前記光学部品が取付けられたホルダと、固定部材に接続され、当該固定部材に対して前記ホルダを変位可能に支持する支持部材と、前記支持部材の一部に設けられ、前記ホルダの変位方向と略直交する面を有する反射部材と、前記反射部材へ光線を照射する発光素子と、前記反射部材で反射された反射光線を受光する受光素子と、を備える光学部品駆動装置。 An optical component; a holder to which the optical component is attached; a support member that is connected to the fixing member and supports the holder so as to be displaceable with respect to the fixing member; An optical component driving device comprising: a reflecting member having a surface substantially orthogonal to the direction of displacement of the light; a light emitting element that irradiates the reflecting member with a light beam; and a light receiving element that receives the reflected light beam reflected by the reflecting member.
- 請求項1に記載の光学部品駆動装置おいて、
前記反射部材と前記受光素子との前記変位方向の間隔は前記支持部材の長さの3分の1以上であることを特徴とする光学部品駆動装置。 In the optical component drive device according to claim 1,
The optical component driving apparatus according to claim 1, wherein a distance between the reflecting member and the light receiving element in the displacement direction is one third or more of a length of the support member. - 請求項1に記載の光学部品駆動装置おいて、
前記支持部材と前記固定部材との接続点である固定点から前記反射部材までの長さは、前記支持部材と前記ホルダとの接続点から前記固定点までの長さの0.2倍以上0.8倍以下であることを特徴とする光学部品駆動装置。 In the optical component drive device according to claim 1,
The length from the fixing point, which is the connection point between the support member and the fixing member, to the reflecting member is not less than 0.2 times the length from the connection point between the support member and the holder to the fixing point. An optical component driving device characterized by being 8 times or less. - 請求項1に記載の光学部品駆動装置おいて、
前記受光素子は、前記反射光線の受光位置の変位を検出可能な受光部を備え、
前記受光素子が検出した前記反射光線の変位を打ち消すように前記ホルダを変位させる制御部をさらに備えることを特徴とする光学部品駆動装置。 In the optical component drive device according to claim 1,
The light receiving element includes a light receiving unit capable of detecting a displacement of a light receiving position of the reflected light beam,
An optical component driving apparatus, further comprising: a controller that displaces the holder so as to cancel the displacement of the reflected light beam detected by the light receiving element. - 請求項1に記載の光学部品駆動装置において、
前記反射部材は前記支持部材上に少なくとも2つ設けられ、一方の前記反射部材の反射面と他方の前記反射部材の反射面とは略直交することを特徴とする光学部品駆動装置。 In the optical component drive device according to claim 1,
At least two of the reflection members are provided on the support member, and the reflection surface of one of the reflection members and the reflection surface of the other reflection member are substantially orthogonal to each other. - 請求項1に記載の光学部品駆動装置を備え、
記録媒体から回折された再生光線を前記光学部品を介して、レンズへ入光させることを特徴とする光記録装置。 An optical component driving device according to claim 1,
An optical recording apparatus, wherein a reproducing light beam diffracted from a recording medium is incident on a lens through the optical component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/061352 WO2015162709A1 (en) | 2014-04-23 | 2014-04-23 | Optical component driving device and optical recording device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/061352 WO2015162709A1 (en) | 2014-04-23 | 2014-04-23 | Optical component driving device and optical recording device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015162709A1 true WO2015162709A1 (en) | 2015-10-29 |
Family
ID=54331901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061352 WO2015162709A1 (en) | 2014-04-23 | 2014-04-23 | Optical component driving device and optical recording device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015162709A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240630A (en) * | 1985-08-16 | 1987-02-21 | Olympus Optical Co Ltd | Optical pickup |
JPH01260639A (en) * | 1988-04-11 | 1989-10-17 | Nec Corp | Lens actuator |
JPH043342A (en) * | 1990-04-20 | 1992-01-08 | Victor Co Of Japan Ltd | Actuator inspection device |
JP2001209965A (en) * | 2000-01-25 | 2001-08-03 | Olympus Optical Co Ltd | Optical recording/reproducing device |
-
2014
- 2014-04-23 WO PCT/JP2014/061352 patent/WO2015162709A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240630A (en) * | 1985-08-16 | 1987-02-21 | Olympus Optical Co Ltd | Optical pickup |
JPH01260639A (en) * | 1988-04-11 | 1989-10-17 | Nec Corp | Lens actuator |
JPH043342A (en) * | 1990-04-20 | 1992-01-08 | Victor Co Of Japan Ltd | Actuator inspection device |
JP2001209965A (en) * | 2000-01-25 | 2001-08-03 | Olympus Optical Co Ltd | Optical recording/reproducing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102077064B1 (en) | Auto focus control apparatus, semiconductor inspecting apparatus and microscope | |
JP5634138B2 (en) | Displacement detector | |
JP2008310942A5 (en) | ||
WO2014132379A1 (en) | Fourier transform infrared spectrometer | |
JP4939086B2 (en) | Atomic force microscope | |
KR0147628B1 (en) | Optical pickup for multi-layer disk | |
JP6794458B2 (en) | Scan Reflective Mirror Surveillance System and Method, Focus Leveling System | |
US8937855B2 (en) | Holographic optical pickup device, optical information recording and reproducing device, and method of reproducing optical information, having angular variable element arrangements for changing a light angle | |
JP2007078515A (en) | Laser radar system | |
WO2015162709A1 (en) | Optical component driving device and optical recording device | |
TWI414385B (en) | Real time monitoring system for depth of laser processing and method thereof | |
US20140362676A1 (en) | Optical information processing apparatus and method for controlling same | |
JP4626121B2 (en) | GAP DETECTION METHOD, GAP CONTROL METHOD, AND DEVICE | |
JP2012189547A (en) | Displacement sensor | |
JP2012189546A (en) | Displacement sensor | |
JP2010102785A (en) | Optical information recording/reproducing apparatus | |
JP2005025164A (en) | Disk registering device for holographic rom system and method thereof | |
JP2006171593A (en) | Hologram reproducing apparatus and method | |
WO2015194025A1 (en) | Optical component drive device and optical component drive method | |
JP2007102934A (en) | Optical pickup, optical disk device, and method for manufacturing optical pickup | |
JP3818143B2 (en) | Optical disk device | |
JP2008269719A (en) | Focus servo control method and optical disk device | |
JPH0782651B2 (en) | Focus error detector | |
JP5670664B2 (en) | Displacement detector | |
JP2003272187A (en) | Focus control device and master optical disk exposure device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14889984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14889984 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |