WO2015161770A1 - 信号采集装置和信号采集方法 - Google Patents

信号采集装置和信号采集方法 Download PDF

Info

Publication number
WO2015161770A1
WO2015161770A1 PCT/CN2015/077030 CN2015077030W WO2015161770A1 WO 2015161770 A1 WO2015161770 A1 WO 2015161770A1 CN 2015077030 W CN2015077030 W CN 2015077030W WO 2015161770 A1 WO2015161770 A1 WO 2015161770A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection modules
multiple input
input selector
signal acquisition
monitoring parameters
Prior art date
Application number
PCT/CN2015/077030
Other languages
English (en)
French (fr)
Inventor
林慧勇
潘力
Original Assignee
昆山韦睿医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山韦睿医疗科技有限公司 filed Critical 昆山韦睿医疗科技有限公司
Publication of WO2015161770A1 publication Critical patent/WO2015161770A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/28Peritoneal dialysis ; Other peritoneal treatment, e.g. oxygenation

Definitions

  • the present invention relates to the field of medical devices, and in particular to a signal acquisition device and a signal acquisition method.
  • Peritoneal dialysis is a dialysis method that uses the human body's own peritoneum as a dialysis membrane.
  • the traditional method is to obtain the monitoring parameters of peritoneal dialysis through several detection modules, and use the multi-input selector to read the monitoring parameters obtained by the several detection modules connected thereto.
  • each detection module is connected to one data channel of the multiple input selectors, so that the multi-channel input selector can only collect the monitoring parameters once for the monitoring parameters obtained by the same detection module in one acquisition cycle. The acquisition of monitoring parameters is not accurate enough.
  • an embodiment of the present invention provides a signal acquisition apparatus, including a plurality of detection modules and a multiple input selector, wherein the detection module is configured to acquire monitoring parameters of peritoneal dialysis, and the multiple input selection
  • the device is configured to sequentially read the monitoring parameters obtained by the plurality of detection modules connected to the data channel, and at least one of the plurality of detection modules simultaneously and at least two data channels of the multiple input selector Connected.
  • the apparatus further includes:
  • An analog to digital converter for transducing the monitoring parameters sequentially read by the multiple input selectors Switch to digital signal.
  • the apparatus further includes:
  • a processor configured to calculate an average value of the monitoring parameters obtained by each detection module in a sample calculation period according to the digital signal.
  • the plurality of detection modules includes four pump chamber pressure sensors.
  • the four pump chamber pressure sensors are each coupled to at least two data channels of the multiple input selector.
  • the multiple input selector comprises 16 data channels, and the number of the plurality of detection modules is specifically 12.
  • an embodiment of the present invention further provides a signal collection method, including the following steps:
  • the plurality of detection modules acquire monitoring parameters of the peritoneal dialysis, and at least one of the plurality of detection modules is simultaneously connected to at least two data channels of the multiple input selectors;
  • the multiple input selector sequentially reads the monitored parameters obtained by the plurality of detection modules connected to its data channel.
  • the method further includes:
  • An analog to digital converter converts the monitored parameters sequentially read by the multiple input selector into digital signals.
  • the method further includes:
  • the processor calculates an average of the monitored parameters obtained by each of the detection modules during the sample calculation period based on the digital signals.
  • the plurality of detection modules includes four pump chamber pressure sensors, and the four pump chamber pressure sensors are each coupled to at least two data channels of the multiple input selector.
  • an embodiment of the present invention further provides a signal collection apparatus, including:
  • a multiple input selector for sequentially reading the plurality of the data channels connected thereto Detecting the monitoring parameters obtained by the module
  • An analog to digital converter configured to convert the monitoring parameter sequentially read by the multiple input selector into a digital signal
  • a processor configured to calculate, according to the digital signal, an average value of the monitoring parameters obtained by each detection module in a sample calculation period
  • the at least one detection module of the plurality of detection modules is simultaneously connected to at least two data channels of the multiple input selector.
  • the plurality of detection modules includes four pump chamber pressure sensors.
  • the four pump chamber pressure sensors are each coupled to at least two data channels of the multiple input selector.
  • the multiple input selector comprises 16 data channels, and the number of the plurality of detection modules is specifically 12.
  • the multiple input selectors are sequentially read and connected to the data channels thereof.
  • the multiple input selector can read the monitoring parameters obtained by the same detection module at least twice in one acquisition cycle. That is to say, in one collection cycle, the monitoring parameters of the peritoneal dialysis obtained by the same detection module can be collected at least twice, which enlarges the number of samples collected by the data, and the increase of the number of samples makes the calculation accuracy of the data increase, thereby improving the monitoring data collection. Accuracy.
  • FIG. 1 is a schematic structural diagram of a signal acquisition apparatus in an embodiment
  • FIG. 2 is a schematic structural diagram of a signal acquisition device in another embodiment
  • FIG. 3 is a schematic diagram of monitoring parameters acquired by acquiring 12 detection modules by using 16 data transmission channels in one embodiment
  • FIG. 4 is a schematic structural view of a signal acquisition device using four pump chamber pressure sensors in one embodiment
  • FIG. 5 is a schematic flow chart of a signal acquisition method in an embodiment.
  • a signal acquisition apparatus comprising a plurality of detection modules 102 and a multi-input selector 104, wherein the detection module 102 is configured to acquire monitoring parameters of peritoneal dialysis
  • the multiple input selector 104 is configured to sequentially read the monitoring parameters obtained by the plurality of detection modules 102 connected to its data channel.
  • at least one of the plurality of detection modules 102 is simultaneously connected to at least two data channels of the multiple input selector 104.
  • the multiple input selector 104 is further configured to read the monitoring parameters obtained by the same detection module 102 at least twice through at least two data channels in one acquisition cycle.
  • the multiple input selector 104 can be read through at least two data channels in one acquisition cycle.
  • the monitoring parameters obtained by the same detection module 102 at least twice. That is, during one collection period, the monitoring parameters of the peritoneal dialysis obtained by the same detection module 102 can be collected at least twice, which enlarges the number of samples collected by the data, and the increase of the number of samples makes the calculation accuracy of the data increase, thereby improving the monitoring data collection. The accuracy.
  • a multi-channel input selector with a relatively large number of data channels is usually used. For example, for 12 detection modules, a multi-input selector with 16 data channels is usually used. This will cause some of the data channels of the multi-input selector to be idle.
  • the existing data channel of the multiple input selector can be connected to the detection module, It can realize at least two readings of some important monitoring parameters in one acquisition cycle, which can improve the accuracy of monitoring data collection and make full use of existing resources without adding additional costs.
  • the signal acquisition device further includes an analog to digital converter 106 and a processor 108, wherein: the analog to digital converter 106 is configured to sequentially read the plurality of input selectors 104. Convert to digital signal.
  • the processor 108 is configured to calculate an average of the monitored parameters obtained by each of the detection modules 102 during the sample calculation period based on the digital signals.
  • the acquisition period refers to the time taken by the multi-input selector to read the monitoring parameters obtained by the corresponding connected detection module through the data channels of all the connection detection modules.
  • the sample calculation period refers to the average value of the monitoring parameters obtained by each detection module calculated by the processor at regular intervals, and the certain time is the sample calculation period. It can be understood that the sample calculation period should be greater than the sampling period. Preferably, the sample calculation period is an integer multiple of the sampling period.
  • processor 108 will obtain a more accurate data acquisition result when calculating the average of the monitoring parameters obtained by each detection module 102 within the sample calculation period.
  • the processor 108 may remove a maximum value and a minimum value when calculating the average value of the monitoring parameters obtained by each detection module 102 to further improve the accuracy of the data calculation.
  • the multiple input selector includes 16 data channels, and the number of detection modules is specifically 12.
  • 12 detection modules are PT5, PT6, PT8, PT9, PT1, PT2, PT3, PT4, PT7, PT10, PT11, and PT12, and the multi-channel input selector has 16 ports. It is numbered 0, 1, 2, ..., 15 from top to bottom, that is, has 16 data channels.
  • the detection modules PT5, PT6, PT8 and PT9 are connected to two data channels at the same time. For example, PT5 is connected to port 0 and port 12 at the same time.
  • the multiple input selector reads the monitoring parameters obtained by the detection module in sequence, for example.
  • the monitoring parameters obtained by the detection module are sequentially read through the data channel in the order from port 0 to port 15. Since the detection modules PT5, PT6, PT8 and PT9 are connected to two data channels at the same time, in the process of reading the monitoring parameters obtained by the detection module in sequence by the multiple input selectors, it can be understood that the detection module PT5 is in each collection period.
  • the monitoring parameters obtained by PT6, PT8 and PT9 were all read twice.
  • the multi-input selector sequentially reads 16 monitoring data, of which 4 detection modules are obtained.
  • the monitoring data was read 2 times. That is to say, for the four detection modules PT5, PT6, PT8 and PT9, the monitoring data obtained in real time is collected twice, and it takes only 16*1.5ms.
  • the monitoring data obtained by the detection modules PT5, PT6, PT8 and PT9 in real time is collected, two acquisition cycles are required, and each acquisition cycle is performed once. Reading 12 monitoring data, it takes 12*2*1.5ms.
  • the signal acquisition device utilizes less time to obtain more accurate data acquisition results, and at least one of the plurality of detection modules and even all of the detection modules can simultaneously be combined with the multiple input selectors. At least two data channels are connected. For some important monitoring parameters, the corresponding detection module can also be connected to three or more data channels of the multiple input selectors simultaneously to obtain certain monitoring parameters. More accurate acquisition results.
  • several detection modules include four pump chamber pressure sensors.
  • the pump chamber pressure sensor is used to obtain pressure parameters for peritoneal dialysis.
  • the four pump chamber pressure sensors are each coupled to at least two data channels of the multiple input selector. As shown in FIG. 4, in one acquisition cycle of the multi-input selector, the pressure parameters obtained by the four pump chamber pressure sensors are collected twice, and the number of samples of the pressure parameters is greatly improved compared with the conventional technology, thereby improving The accuracy of the calculation.
  • a signal acquisition method comprising:
  • Step 502 The plurality of detection modules acquire monitoring parameters of the peritoneal dialysis, and at least one of the plurality of detection modules is simultaneously connected to at least two data channels of the multiple input selectors.
  • Step 504 The multiple input selector sequentially reads the monitoring parameters obtained by the plurality of detection modules connected to the data channel.
  • the plurality of input selectors sequentially read the plurality of detections connected to the data channel thereof.
  • the multi-input selector reads the monitoring parameters obtained by the same detection module at least twice through at least two data channels in one acquisition cycle.
  • the signal acquisition method further includes: the analog to digital converter converting the sequentially read monitoring parameters of the multiple input selectors into digital signals.
  • the signal acquisition method further comprises: the processor calculating an average value of the monitoring parameters obtained by each detection module in the sample calculation period according to the digital signal.
  • the plurality of detection modules includes four pump chamber pressure sensors, and the four pump chamber pressure sensors are each coupled to at least two data channels of the multiple input selector.
  • the multi-channel input selector can read the monitoring parameters obtained by the same detection module at least two times through at least two data channels in one acquisition cycle, so that the monitoring parameters acquired by the same monitoring module in one acquisition cycle Can be collected at least twice, expanding the number of samples for data collection, and the increase in the number of samples makes the accuracy of data calculations higher.
  • the existing data channel connection detection module of the multi-input selector can be used to make full use of the existing resources without additional cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

信号采集装置,包括若干个检测模块(102)和一个多路输入选择器(104),所述检测模块(102)用于获取腹膜透析的监测参数,所述多路输入选择器(104)用于按顺序读取与其数据通道相连的所述若干个检测模块(102)获得的所述监测参数,所述若干个检测模块(102)中至少一个检测模块(102)同时与所述多路输入选择器(104)的至少两个数据通道相连接。采用该信号采集装置,能够提高数据采集的精确度。此外,还提供了一种信号采集方法。

Description

信号采集装置和信号采集方法
本申请要求于2014年4月25日提交中国专利局、申请号为201410172397.2、发明名称为“信号采集装置和信号采集方法”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械领域,特别是涉及一种信号采集装置和信号采集方法。
背景技术
腹膜透析,是利用人体自身的腹膜作为透析膜的一种透析方式。在采集腹膜透析的监测参数的过程中,传统的做法是通过若干个检测模块获取腹膜透析的监测参数,使用多路输入选择器读取与其连接的这若干个检测模块获得的监测参数。然而,传统技术中,每个检测模块连接多路输入选择器的一个数据通道,这样,在一个采集周期内,对于同一检测模块获得的监测参数,多路输入选择器也只能采集一次监测参数,使得监测参数的采集不够精确。
发明内容
基于此,有必要提供一种能提高监测参数采集的精确度的信号采集装置和信号采集方法。
作为本发明的一方面,本发明实施例提供一种信号采集装置,包括若干个检测模块和一个多路输入选择器,所述检测模块用于获取腹膜透析的监测参数,所述多路输入选择器用于按顺序读取与其数据通道相连的所述若干个检测模块获得的所述监测参数,所述若干个检测模块中至少一个检测模块同时与所述多路输入选择器的至少两个数据通道相连接。
在其中一个实施例中,所述装置还包括:
模数转换器,用于将所述多路输入选择器按顺序读取的所述监测参数转 换为数字信号。
在其中一个实施例中,所述装置还包括:
处理器,用于根据所述数字信号计算在样本计算周期内的每个检测模块获得的所述监测参数的平均值。
在其中一个实施例中,所述若干个检测模块包括4个泵腔压力传感器。
在其中一个实施例中,所述4个泵腔压力传感器均与所述多路输入选择器的至少两个数据通道连接。
在其中一个实施例中,所述多路输入选择器包括16个数据通道,所述若干个检测模块具体为12个。
作为本发明的另一方面,本发明实施例还提供一种信号采集方法,包括如下步骤:
若干个检测模块获取腹膜透析的监测参数,所述若干个检测模块中至少一个检测模块同时与多路输入选择器的至少两个数据通道相连接;
所述多路输入选择器按顺序读取与其数据通道相连的所述若干个检测模块获得的所述监测参数。
在其中一个实施例中,所述方法还包括:
模数转换器将所述多路输入选择器按顺序读取的所述监测参数转换为数字信号。
在其中一个实施例中,所述方法还包括:
处理器根据所述数字信号计算在样本计算周期内的每个检测模块获得的所述监测参数的平均值。
在其中一个实施例中,所述若干个检测模块包括4个泵腔压力传感器,且所述4个泵腔压力传感器均与所述多路输入选择器的至少两个数据通道连接。
作为本发明的又一方面,本发明实施例还提供一种信号采集装置,包括:
若干个检测模块,用于获取腹膜透析的监测参数;
一个多路输入选择器,用于按顺序读取与其数据通道相连的所述若干个 检测模块获得的所述监测参数;
模数转换器,用于将所述多路输入选择器按顺序读取的所述监测参数转换为数字信号;
处理器,用于根据所述数字信号计算在样本计算周期内的每个检测模块获得的所述监测参数的平均值;
其中,所述若干个检测模块中至少一个检测模块同时与所述多路输入选择器的至少两个数据通道相连接。
在其中一个实施例中,所述若干个检测模块包括4个泵腔压力传感器。
在其中一个实施例中,所述4个泵腔压力传感器均与所述多路输入选择器的至少两个数据通道连接。
在其中一个实施例中,所述多路输入选择器包括16个数据通道,所述若干个检测模块具体为12个。
上述信号采集装置和信号采集方法,由于若干个检测模块中至少一个检测模块同时与多路输入选择器的至少两个数据通道相连接,这样,多路输入选择器按顺序读取与其数据通道相连的若干个检测模块获得的监测参数的过程中,多路输入选择器在一个采集周期内,可通过至少两个数据通道读取至少两次同一个检测模块获得的监测参数。也就是在一个采集周期内,同一检测模块获得的腹膜透析的监测参数可以被采集至少两次,扩大了数据采集的样本数,样本数的增加使得数据计算精度提高,从而提高了监测数据采集的精确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发 明的范畴。
图1为一个实施例中的信号采集装置的结构示意图;
图2为另一个实施例中的信号采集装置的结构示意图;
图3为一个实施例中利用16个数据传输通道采集12个检测模块获取的监测参数的示意图;
图4为一个实施例中采用4个泵腔压力传感器的信号采集装置的结构示意图;
图5为一个实施例中信号采集方法的流程示意图。
具体实施方式
如图1所示,在一个实施例中,提供了一种信号采集装置,该装置包括若干个检测模块102和一个多路输入选择器104,其中,检测模块102用于获取腹膜透析的监测参数,多路输入选择器104用于按顺序读取与其数据通道相连的若干个检测模块102获得的监测参数。本实施例中,如图1所示,若干个检测模块102中至少一个检测模块102同时与多路输入选择器104的至少两个数据通道相连接。多路输入选择器104还用于在一个采集周期内通过至少两个数据通道读取至少两次同一检测模块102获得的监测参数。
本实施例中,由于至少一个检测模块102同时与多路输入选择器104的至少两个数据通道相连接,使得多路输入选择器104在一个采集周期内,可通过至少两个数据通道读取至少两次同一检测模块102获得的监测参数。也就是在一个采集周期内,同一检测模块102获得的腹膜透析的监测参数可以被采集至少两次,扩大了数据采集的样本数,样本数的增加使得数据计算精度提高,从而提高了监测数据采集的精确度。
此外,在传统技术中,为了提高数据计算精度,通常会采用数据通道比较多的多路输入选择器,比如,对于12个检测模块,通常会使用具有16个数据通道的多路输入选择器,这样会使得多路输入选择器的一些数据通道被闲置。本实施例,可采用多路输入选择器已有的数据通道连接检测模块,从 而实现在一个采集周期内可以对一些较为重要的监测参数进行至少两次的读取,既能提高监测数据采集的精确度,又能充分利用已有的资源,不会增加额外的成本。
在一个实施例中,如图2所示,信号采集装置还包括模数转换器106和处理器108,其中:模数转换器106用于将多路输入选择器104按顺序读取的监测参数转换为数字信号。处理器108用于根据数字信号计算在样本计算周期内的每个检测模块102获得的监测参数的平均值。
采集周期,是指多路输入选择器通过所有连接检测模块的数据通道,依次读取一次对应连接的检测模块获得的监测参数所花费的时间。样本计算周期,是指处理器每隔一定时间计算一次每个检测模块获得的监测参数的平均值,该一定时间即为样本计算周期。可以理解,样本计算周期应大于采样周期。优选的,样本计算周期为采样周期的整数倍。
在一个采集周期内,若检测模块102获得的监测参数被采集了至少两次,在经过多个采集周期后,多路输入选择器104采集得到的监测参数的样本数将增多。这样,处理器108在计算样本计算周期内的每个检测模块102获得的监测参数的平均值时,将会得到更加准确的数据采集结果。优选的,处理器108在计算每个检测模块102获得的监测参数的平均值时,可去掉一个最大值和最小值,以进一步提高数据计算的准确度。
在一个实施例中,多路输入选择器包括16个数据通道,若干个检测模块具体为12个。结合图3所示,本实施例中,12个检测模块依次为PT5、PT6、PT8、PT9、PT1、PT2、PT3、PT4、PT7、PT10、PT11和PT12,多路输入选择器具有16个端口,从上至下依次编号为0、1、2···15,即具有16个数据通道。在这12个检测模块中,检测模块PT5、PT6、PT8和PT9同时连接了2个数据通道,比如,PT5同时与端口0和端口12连接。
为了使得本发明所提供的信号采集装置采集数据的原理更为清楚,下面结合图3所示的实施例来详细说明数据采集过程。
如上所述,多路输入选择器是按顺序读取检测模块获得的监测参数,例 如,在每个采集周期内,按照从端口0~端口15的顺序依次通过数据通道读取检测模块获得的监测参数。由于检测模块PT5、PT6、PT8和PT9同时连接了2个数据通道,在多路输入选择器按顺序读取检测模块获得的监测参数的过程中,可以理解,每个采集周期内,检测模块PT5、PT6、PT8和PT9获得的监测参数都被读取了两次。
以多路输入选择器读取一次监测参数的单位时间为1.5ms为例说明,在一个采集周期内,多路输入选择器依次读取到16个监测数据,其中,有4个检测模块获得的监测数据被读取2次。也就是说,对这4个检测模块PT5、PT6、PT8和PT9来说,其实时得到的监测数据被采集2次,只需要花费时间16*1.5ms。而传统技术中,由于所有的检测模块只连接一个数据通道,若要采集2次检测模块PT5、PT6、PT8和PT9实时得到的监测数据,则需要进行两个采集周期,且每个采集周期一次读取12个监测数据,因此需要花费时间12*2*1.5ms。因此,本发明提供的信号采集装置,利用了更少的时间得到了更为精确的数据采集结果,可以将若干个检测模块中的至少一个检测模块甚至所有的检测模块同时与多路输入选择器的至少两个数据通道相连接,对于某些较为重要的监测参数,对应的检测模块还可以同时与多路输入选择器的三个甚至更多的数据通道相连接,以对某些监测参数得到更为精确的采集结果。
在一个实施例中,若干个检测模块包括4个泵腔压力传感器。泵腔压力传感器用于获取腹膜透析的压力参数。
进一步的,在一个实施例中,4个泵腔压力传感器均与多路输入选择器的至少两个数据通道连接。结合图4所示,在多路输入选择器的一个采集周期内,4个泵腔压力传感器获得的压力参数都被采集2次,相对于传统技术,大大提高了压力参数的样本数,从而提高了计算的精确度。
如图5所示,在一个实施例中,提供了一种信号采集方法,该方法包括:
步骤502,若干个检测模块获取腹膜透析的监测参数,该若干个检测模块中至少一个检测模块同时与多路输入选择器的至少两个数据通道相连接。
步骤504,多路输入选择器按顺序读取与其数据通道相连的若干个检测模块获得的监测参数。
本实施例中,由于该若干个检测模块中至少一个检测模块同时与多路输入选择器的至少两个数据通道相连接,在多路输入选择器按顺序读取与其数据通道相连的若干个检测模块获得的监测参数的过程中,多路输入选择器在一个采集周期内通过至少两个数据通道读取至少两次同一检测模块获得的监测参数。
在一个实施例中,信号采集方法还包括:模数转换器将多路输入选择器按顺序读取的监测参数转换为数字信号。
进一步的,在一个实施例中,信号采集方法还包括:处理器根据数字信号计算在样本计算周期内的每个检测模块获得的监测参数的平均值。
在一个实施例中,若干个检测模块包括4个泵腔压力传感器,且该4个泵腔压力传感器均与多路输入选择器的至少两个数据通道连接。
上述信号采集方法,多路输入选择器在一个采集周期内,可以通过至少两个数据通道读取至少两次同一个检测模块获得的监测参数,使得一个采集周期内,同一监测模块获取的监测参数可以被采集至少两次,扩大了数据采集的样本数,样本数的增加使得数据计算精度提高。此外,可以采用多路输入选择器已有的数据通道连接检测模块,充分利用了已有的资源,不会增加额外的成本。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种信号采集装置,包括若干个检测模块和一个多路输入选择器,所述检测模块用于获取腹膜透析的监测参数,所述多路输入选择器用于按顺序读取与其数据通道相连的所述若干个检测模块获得的所述监测参数,其中,
    所述若干个检测模块中至少一个检测模块同时与所述多路输入选择器的至少两个数据通道相连接。
  2. 根据权利要求1所述的信号采集装置,其中,还包括:
    模数转换器,用于将所述多路输入选择器按顺序读取的所述监测参数转换为数字信号。
  3. 根据权利要求2所述的信号采集装置,其中,还包括:
    处理器,用于根据所述数字信号计算在样本计算周期内的每个检测模块获得的所述监测参数的平均值。
  4. 根据权利要求1所述的信号采集装置,其中,所述若干个检测模块包括4个泵腔压力传感器。
  5. 根据权利要求4所述的信号采集装置,其中,所述4个泵腔压力传感器均与所述多路输入选择器的至少两个数据通道连接。
  6. 根据权利要求5所述的信号采集装置,其中,所述多路输入选择器包括16个数据通道,所述若干个检测模块具体为12个。
  7. 一种信号采集方法,其中,包括如下步骤:
    若干个检测模块获取腹膜透析的监测参数,所述若干个检测模块中至少一个检测模块同时与多路输入选择器的至少两个数据通道相连接;
    所述多路输入选择器按顺序读取与其数据通道相连的所述若干个检测模块获得的所述监测参数。
  8. 根据权利要求7所述的信号采集方法,其中,还包括:
    模数转换器将所述多路输入选择器按顺序读取的所述监测参数转换为数字信号。
  9. 根据权利要求6所述的信号采集方法,其中,还包括:
    处理器根据所述数字信号计算在样本计算周期内的每个检测模块获得的所述监测参数的平均值。
  10. 根据权利要求7所述的信号采集方法,其中,所述若干个检测模块包括4个泵腔压力传感器,且所述4个泵腔压力传感器均与所述多路输入选择器的至少两个数据通道连接。
  11. 一种信号采集装置,包括:
    若干个检测模块,用于获取腹膜透析的监测参数;
    一个多路输入选择器,用于按顺序读取与其数据通道相连的所述若干个检测模块获得的所述监测参数;
    模数转换器,用于将所述多路输入选择器按顺序读取的所述监测参数转换为数字信号;
    处理器,用于根据所述数字信号计算在样本计算周期内的每个检测模块获得的所述监测参数的平均值;
    其中,所述若干个检测模块中至少一个检测模块同时与所述多路输入选择器的至少两个数据通道相连接。
  12. 根据权利要求11所述的信号采集装置,其中,所述若干个检测模块包括4个泵腔压力传感器。
  13. 根据权利要求12所述的信号采集装置,其中,所述4个泵腔压力传感器均与所述多路输入选择器的至少两个数据通道连接。
  14. 根据权利要求13所述的信号采集装置,其中,所述多路输入选择器包括16个数据通道,所述若干个检测模块具体为12个。
PCT/CN2015/077030 2014-04-25 2015-04-21 信号采集装置和信号采集方法 WO2015161770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410172397.2A CN103920202A (zh) 2014-04-25 2014-04-25 信号采集装置和信号采集方法
CN201410172397.2 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015161770A1 true WO2015161770A1 (zh) 2015-10-29

Family

ID=51138740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077030 WO2015161770A1 (zh) 2014-04-25 2015-04-21 信号采集装置和信号采集方法

Country Status (2)

Country Link
CN (1) CN103920202A (zh)
WO (1) WO2015161770A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920202A (zh) * 2014-04-25 2014-07-16 昆山韦睿医疗科技有限公司 信号采集装置和信号采集方法
CN109726704B (zh) * 2019-01-16 2021-04-27 北京集创北方科技股份有限公司 屏幕信号采集装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050251585A1 (en) * 2002-08-28 2005-11-10 Yokogawa Electric Corporation Multi-interval data acquisition apparatus
CN201233288Y (zh) * 2008-07-22 2009-05-06 深圳市英唐智能控制股份有限公司 一种多路数据采集系统
CN102279020A (zh) * 2011-07-01 2011-12-14 中国计量学院 便携式血液净化装置检测仪
CN103176411A (zh) * 2011-12-21 2013-06-26 北京普源精电科技有限公司 一种可编程多通道数据采集装置的控制方法
CN103920202A (zh) * 2014-04-25 2014-07-16 昆山韦睿医疗科技有限公司 信号采集装置和信号采集方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101278838B (zh) * 2008-04-29 2011-05-18 罗远明 多通道呼吸生理信号无线监测方法
CN101422357A (zh) * 2008-06-24 2009-05-06 浙江大学 Usb接口多道生理信息采集系统
US20130131574A1 (en) * 2011-05-11 2013-05-23 Daniel L. Cosentino Dialysis treatment monitoring
CN202236532U (zh) * 2011-10-12 2012-05-30 四川中测辐射科技有限公司 血液透析机检测仪
CN103513196B (zh) * 2012-06-19 2015-12-02 上海联影医疗科技有限公司 磁共振系统、磁共振接收机及其接收信号处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050251585A1 (en) * 2002-08-28 2005-11-10 Yokogawa Electric Corporation Multi-interval data acquisition apparatus
CN201233288Y (zh) * 2008-07-22 2009-05-06 深圳市英唐智能控制股份有限公司 一种多路数据采集系统
CN102279020A (zh) * 2011-07-01 2011-12-14 中国计量学院 便携式血液净化装置检测仪
CN103176411A (zh) * 2011-12-21 2013-06-26 北京普源精电科技有限公司 一种可编程多通道数据采集装置的控制方法
CN103920202A (zh) * 2014-04-25 2014-07-16 昆山韦睿医疗科技有限公司 信号采集装置和信号采集方法

Also Published As

Publication number Publication date
CN103920202A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
JP2017196523A5 (ja) 脳活動解析システム、脳活動解析装置、及び脳活動解析プログラム
DK2929341T3 (en) Scalable biosensing platform with high capacity
JP2017526412A5 (zh)
WO2015161770A1 (zh) 信号采集装置和信号采集方法
CN102258365A (zh) 一种正弦波调制光电容积脉搏波测量装置和测量方法
EP4273879A3 (en) Glucose-measurement systems and methods presenting icons
RU2017133140A (ru) Устройство для определения частоты сердечных сокращений и вариабельности сердечного ритма
CN105030216A (zh) 一种中医脉象检测与信号转换系统和方法
EP4296371A3 (en) Membrane enhanced sensors and fabrication methods
JP2020503087A5 (zh)
JP2018503499A5 (zh)
WO2010048817A1 (zh) 信号相位差测量方法、装置和系统
EP2905528A3 (en) Method and system for detecting a flow blockage in a pipe
CN108592977B (zh) 动态校准模拟信号和数字信号同步采集分析方法及系统
WO2015169235A1 (zh) 一种能够自动判断佩戴位置的测量方法及设备
WO2011095888A3 (en) Method and rapid test device for detection of target molecule
JP2014530642A5 (zh)
EA201791302A1 (ru) Система и способ сбора и анализа данных, касающихся режима работы в реакторе с продувкой методом погружения сверху
CN103926204A (zh) 基于多光谱图像特征的土壤酸碱度快速检测方法
Polimeni et al. Evaluation of the number of PPG harmonics to assess Smartphone effectiveness
US20170126508A1 (en) Method and system for identifying a network-connected sensor device based on electrical fingerprint
CN116881781A (zh) 一种运行模态阻尼识别方法、损伤检测方法、系统及设备
WO2018065108A3 (en) Analysis system for testing a sample
CN107462318A (zh) 测振系统及其振动信号时域波形的分析方法
CN108471960A (zh) 血压检测信号采样补偿方法和装置以及血压信号采集系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782721

Country of ref document: EP

Kind code of ref document: A1