WO2015161614A1 - 一种单发动机动力驱动装置、方法及起重机 - Google Patents

一种单发动机动力驱动装置、方法及起重机 Download PDF

Info

Publication number
WO2015161614A1
WO2015161614A1 PCT/CN2014/086335 CN2014086335W WO2015161614A1 WO 2015161614 A1 WO2015161614 A1 WO 2015161614A1 CN 2014086335 W CN2014086335 W CN 2014086335W WO 2015161614 A1 WO2015161614 A1 WO 2015161614A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
transfer case
engine
vehicle
getting
Prior art date
Application number
PCT/CN2014/086335
Other languages
English (en)
French (fr)
Inventor
吴高腾
李丽
董玉光
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420201300.1U external-priority patent/CN203902277U/zh
Priority claimed from CN201410163476.7A external-priority patent/CN103921675B/zh
Priority claimed from CN201420339355.9U external-priority patent/CN204309600U/zh
Priority claimed from CN201410285750.8A external-priority patent/CN104057823B/zh
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Publication of WO2015161614A1 publication Critical patent/WO2015161614A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/28Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or type of power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K25/00Auxiliary drives
    • B60K25/06Auxiliary drives from the transmission power take-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • B66C23/36Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
    • B66C23/40Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes with a single prime mover for both crane and vehicle

Definitions

  • the invention relates to the field of engineering machinery, in particular to a single engine power driving device, method and crane.
  • a mobile crane is usually divided into an upper part and a lower part by a frame 3, and the upper part is connected to the getting off part by a slewing ring 6.
  • the getting off part generally includes the getting off cab 1, the getting off engine and the accessory 2, the drive shaft 4, and the getting off part functions to function as a load carrying vehicle during driving.
  • the boarding part generally includes a boarding operation room 5, a boarding engine and an accessory 7. The function of the boarding part is to perform lifting work, and when the boarding part is working, it is necessary to perform a 360-degree turning motion on the getting-off part.
  • the whole power system of the mobile crane has the following two supporting schemes.
  • a vehicle is shared with the upper and lower vehicles to perform road driving and lifting operations; it can solve the problem of space shortage caused by the need to arrange a separate power system to optimize the weight distribution of the whole machine. More weight is distributed to the structural members, improving the performance of the whole machine, reducing the cost of the whole machine, and optimizing the profit structure of the whole machine.
  • medium and small tonnage cranes (below 100 tons) generally use a single engine type power system.
  • the getting off engine not only provides driving power for the whole vehicle, but also provides lifting work power for the onboard hydraulic system.
  • the single engine power transmission form adopts hydraulic transmission, and the hydraulic pump is driven to provide power to the hydraulic oil. After the power is converted by the central rotary body, the hydraulic oil drives the upper motor and other components to work.
  • the power take-off output function of the gearbox or the disengagement transfer box When in the lifting operation state of the vehicle, the power take-off output function of the gearbox or the disengagement transfer box is turned on, the disengagement transfer case is in the neutral state, and the power is self-disconnecting the engine 11 ⁇ the clutch 12 ⁇ the transmission 13 ⁇
  • the transmission shaft 14 ⁇ the lower transfer case 22 ⁇ the drive shaft 15 ⁇ the hydraulic pump 16 ⁇ the hydraulic oil pipe 17 ⁇ the center rotary body18 ⁇ the hydraulic oil pipe 19 ⁇ the upper hydraulic valve 20 ⁇ the upper hydraulic motor 21 are transmitted, so as to get on the train Heavy job function.
  • Dual-engine power system The getting-off engine provides the driving power of the whole vehicle, and the loading engine provides the lifting work power. Considering the factors of work efficiency, system control, and communication of the vehicle's hydraulic system, large-tonnage cranes (more than 100 tons) often use dual-engine power systems.
  • the crane on-board engine is prone to the problem of difficulty in starting.
  • the large tonnage crane on-board engine is directly connected to the transfer case, and the hydraulic system is directly connected to the transfer case.
  • the starter motor works with the transfer case and the hydraulic oil pump.
  • the load resistance of the whole transmission system is large, especially in the low temperature environment, the viscosity of the hydraulic oil in the oil and hydraulic transmission system in the transfer case increases. Therefore, the resistance torque that the starter motor needs to overcome increases, even exceeding the maximum torque that the starter motor can provide, thereby causing the engine to fail to start.
  • the object of the present invention is to provide a single engine power driving device, method and crane, wherein the single engine power driving device is not only suitable for small and medium tonnage cranes, but also for large tonnage cranes, with high working efficiency and low energy loss.
  • the present invention provides a single engine power drive apparatus including a lower engine, a slewing drive mechanism and an upper transfer case, wherein: a torque and/or power supply is provided for the lower front drive axle and the lower rear drive axle.
  • Said lower engine is connected to said upper transfer case by said rotary drive mechanism, said rotary drive mechanism being a mechanical structure capable of transmitting torque and/or power provided by said lower engine to said upper
  • the vehicle transfer case, each of the power output ports of the upper transfer case is connected to each of the upper hydraulic pumps.
  • the swing drive mechanism includes a center swing transfer case, and the center swing transfer case respectively connects the power output port of the getting off engine and the power of the upper transfer case An input port, the center swing transfer case redirects power provided by the getting off engine to pass through the vehicle swivel seat, and then redirects again to be transmitted to the upper transfer case, the upper car transfer Box drive connection Describe the car hydraulic pump.
  • the center swing transfer case is disposed at a center turn of the frame, the center swing transfer case including a lower case and an upper case, the upper case being disposed on In the vehicle, the lower casing is disposed at the lower vehicle, and the inside of the center rotary transfer case transmits the lower vehicle power to the vehicle through gear engagement and shaft transmission.
  • the lower housing of the central rotary transfer case is disposed on the lower vehicle via a transfer case swivel seat, and the upper housing of the center rotary transfer case is slewingly supported by the transfer case Provided on the upper vehicle, the lower casing and the upper casing respectively rotate relative to each other through the transfer case swivel race and the transfer case slewing bearing.
  • the central rotary transfer case is provided with an input bevel gear shaft, a through bevel gear shaft and an output bevel gear shaft, and the power passes through the input bevel gear shaft and the through bevel gear shaft Passed to the output bevel gear shaft.
  • the center rotary transfer case is provided with a rotary brush having a fixed electric ring portion and a movable conductive piece portion that are rotatable relative to each other, and the fixed electric ring portion And the movable conductive sheet portion are respectively disposed in the lower casing and the upper casing of the central rotary transfer case, and the mutual transmission of the electric control signals of the getting on and off is realized by the fixed electric ring portion and the movable conductive piece portion .
  • the slewing drive mechanism includes an angular actuator having mutually perpendicular input and output shafts, the input shaft being coupled to a power take-off of the vehicle that is disengaged
  • the output shaft is coupled to a power input port of the upper transfer case, and the angle drive redirects power provided by the lower engine to pass through a vehicle slewing ring to be transmitted to the upper vehicle
  • the moving box, the upper moving case drive is connected to each of the loading hydraulic pumps.
  • the angle sensor is disposed at a lower portion of the swing support of the frame, and the upper portion of the swing support is provided with the upper transfer case.
  • the slewing drive mechanism further includes a rotary brush having a fixed electrical ring portion that is rotatable relative to each other and a movable conductive a piece portion, the fixed electric ring portion is fixed to the angular transmission, the movable conductive piece portion is fixed to the upper vehicle transfer case, and the upper and lower vehicles are realized by the fixed electric ring portion and the movable conductive piece portion The mutual transmission of electrical control signals.
  • the utility model further includes a disengagement transfer box, wherein the power input port of the disengagement transfer case is connected to the power output port of the disengaged engine, and the power output of the disengagement transfer case
  • the two ports are connected to the lower front drive axle and the lower rear drive axle, and the torque and/or power provided by the lower engine is transmitted to the lower front drive axle and the lower rear drive axle.
  • the other path is coupled to the central swing transfer case to transfer torque and/or power provided by the lower engine to the center swing transfer case.
  • the utility model further includes a disengagement transfer box, wherein the power input port of the disengagement transfer case is connected to the power output port of the disengaged engine, and the power output of the disengagement transfer case
  • the two ports are connected to the lower front drive axle and the lower rear drive axle, and the torque and/or power provided by the lower engine is transmitted to the lower front drive axle and the lower rear drive axle.
  • the other is coupled to the angle actuator to transmit torque and/or power provided by the lower engine to the angle actuator.
  • the disengagement box is provided with a disengagement mechanism through which torque and/or power is transmitted to the upper transfer case or the lower Drive the front axle and get off the rear drive axle.
  • the power take-off port of the getting off engine is further provided with a gearbox, and the power take-off port of the gearbox is connected to the swing drive mechanism.
  • a clutch is further disposed between the lowering engine and the transmission, and a power outlet of the lowering engine is engaged or disengaged from the transmission by the clutch.
  • a full power power take-off is further provided, the full power power take-off being disposed at a power outlet of the getting off engine and the transmission of the gearbox Between the entrances.
  • the present invention also provides a crane comprising the single engine power drive described above.
  • the present invention also provides a single engine power driving method based on a single engine power driving device including a getting off engine, a getting off transfer case, a center swing transfer case, and a car transfer case; the single engine power drive method includes the following steps:
  • the function of transmitting the torque and/or power to the lower driving front axle and the lower driving axle is closed, and the power is sequentially taken off the engine ⁇ getting off
  • the transfer case ⁇ the center rotary transfer case ⁇ the upper transfer case is used for transmission and drives the hydraulic actuator on the vehicle to realize the lifting operation function.
  • the present invention also provides a single engine power driving method based on a single engine power driving device including a getting off engine, a dismounting case, an angular transmission, and a boarding point.
  • the single engine power driving method includes the following steps:
  • the present invention has at least the following beneficial effects:
  • the invention provides a getting off engine, a slewing drive mechanism and a loading and unloading box, when the vehicle is in the driving state, the output function of the slewing drive mechanism is turned off, and the power output from the engine is transmitted to the front drive axle and the lower drive axle to realize the driving function of getting off the vehicle; when the vehicle is lifted, The output function of the slewing drive mechanism is turned on, and the torque and/or power output from the engine is transmitted to the upper transfer case through the slewing drive mechanism, and respectively transmitted to the corresponding hydraulic pump to drive the hydraulic actuator on the vehicle to realize lifting.
  • the working function; the slewing drive mechanism adopts the pure mechanical power transmission mode, which has higher working efficiency and lower energy loss than the pure hydraulic form, and can guarantee various working conditions for lifting on the vehicle, which is not only suitable for small and medium tonnage cranes. It is also suitable for the power demand of large tonnage cranes with heavy working conditions, high torque and high speed.
  • the invention enables the crane to get on and off the vehicle to share the vehicle with the lower engine, and the power provided by the engine of the vehicle can not only realize the driving function of the whole vehicle, but also the driving force of the upper lifting actuator is driven by the power transmitted by the engine. It can realize the lifting operation function of getting on the vehicle, eliminating the on-board engine and its related accessories, and reducing the weight, so that the space shortage caused by the need to arrange a separate power system can be solved to some extent, and the whole machine is optimized. Weight distribution (distributing more weight to the structural members to improve the performance of the whole machine), reducing the cost of the whole machine and optimizing the profit structure of the whole machine. In addition, due to the reduction of parts that may fail, continuous trouble-free working time and lifting reliability are greatly improved, and daily maintenance work is required only for the engine that is dismounted, thereby further reducing maintenance costs.
  • FIG. 1 is a schematic view showing the external structure of a crane in the prior art
  • FIG. 2 is a schematic diagram of a hydraulic power transmission route of a single engine power system in the prior art
  • FIG. 3 is a schematic diagram of a mechanical power transmission route in a first embodiment of a single engine power driving device according to the present invention
  • FIG. 4 is a schematic structural view of a center swing transfer case in a first embodiment of a single engine power drive device according to the present invention
  • FIG. 5 is a schematic diagram of a mechanical power transmission route in a second embodiment of a single engine power driving device according to the present invention.
  • Figure 6 is a schematic view showing the connection of the angular actuator and the rotary brush in the second embodiment of the single engine power driving device according to the present invention.
  • Mobile crane A device used to lift heavy objects mounted on a chassis that relies on the movement of the tire structure.
  • Gearbox A device in a vehicle that transmits power in several speed ratios.
  • Gearbox function change the transmission ratio, expand the range of driving wheel torque and speed to adapt to changing driving conditions, such as vehicle start, acceleration, uphill, etc., while making the engine advantageous Working under working conditions; with neutral to interrupt power transmission to enable the engine to start, idle, and facilitate transmission shifting or power output.
  • Clutch The engine power is transmitted by the friction principle, with two states of separation and combination. When the state is separated, the engine power output is temporarily cut off, and the clutch is engaged for most of the time to ensure reliable transmission of engine power.
  • Transfer case A component of the whole vehicle power transmission system. Its internal structure is a series of gear sets. Its main functions include adjusting the transmission speed ratio, increasing the power take-off port, transmitting and distributing the driving power.
  • Drive shaft A mechanism for transmitting driving force, generally consisting of a universal joint, a shaft tube, a telescopic spline, etc. For a longer drive shaft, an intermediate support is also required.
  • Hydraulic transmission The energy is transmitted by the change of static pressure energy of the liquid transmission medium, which is mainly composed of oil pump, hydraulic motor and control device.
  • the mechanical energy output from the engine is converted into hydraulic energy by the oil pump, which then converts the hydraulic energy into mechanical energy.
  • the single-engine power driving device comprises a getting-off engine, a slewing drive mechanism and a loading and distracting box, wherein: normally, the getting-off engine is set in the getting-off vehicle, and the power output port of the getting-off engine passes through the transmission shaft and
  • the drive shafts are respectively connected to the lower front drive axle and the lower rear drive axle, and mainly provide torque and/or power, that is, power, for the lower front drive axle and the lower rear drive axle.
  • the invention connects the getting-off engine through the slewing drive mechanism to the upper transfer case, and the slewing drive mechanism can transmit the torque and/or power provided by the getting-off engine to the upper transfer case, and each of the upper transfer case
  • the power outlets are respectively connected to the hydraulic pumps of the upper vehicles.
  • the slewing drive mechanism adopts pure mechanical structure, and the connection with the getting off engine and the loading case is purely mechanical connection, for example, a pure mechanical connection transmission form such as a transmission shaft, a transmission chain and a gear.
  • the pure mechanical structure and the purely mechanical power transmission method have higher working efficiency and lower energy loss, which can ensure various working conditions for lifting on the vehicle, and are applicable not only to small and medium-sized tonnage cranes, but also It is suitable for the power demand of large tonnage cranes with heavy working conditions, high torque and high speed.
  • the single-engine power driving device when the vehicle is in the running state, the output function of the slewing drive mechanism is turned off, and the output power of the engine is directly transmitted to the front driving axle and the lower driving axle to realize getting off the vehicle.
  • Driving function when the lifting operation state is started, the output function of the slewing drive mechanism is turned on, and the torque and/or power outputted by the engine is driven, and the loading and distracting box is driven by the slewing drive mechanism, and respectively transmitted to the corresponding hydraulic pressure
  • the pump drives the hydraulic actuator on the vehicle to realize the lifting operation function.
  • the invention enables the crane to get on and off the vehicle to share the vehicle with the vehicle, and the power provided by the engine of the vehicle can not only realize the driving function of the whole vehicle, but also the lifting and executing mechanism of the lifting vehicle.
  • the transmitted power is driven to realize the lifting operation function on the vehicle, eliminating the on-board engine and its related accessories, and reducing the weight, so that the space caused by the need to arrange a separate power system can be solved to some extent.
  • Tension problem optimize the weight distribution of the whole machine (allocate more weight to the structural members to improve the performance of the whole machine), reduce the cost of the whole machine, and optimize the profit structure of the whole machine.
  • continuous trouble-free working time and lifting reliability are greatly improved, and daily maintenance work is required only for the engine that is dismounted, thereby further reducing maintenance costs.
  • the slewing drive mechanism provided by the present invention may take the form of a center swing transfer case, an angular actuator, or other mechanical structure.
  • the single engine power drive apparatus provided by the present invention will be further described in detail below through two specific embodiments.
  • the single engine power drive device includes a lower engine 102, a swing drive mechanism, and an upper transfer case 110 and a plurality of upper hydraulic pumps 111 disposed above the frame 101, and may also include shifting The box 104 and the lower transfer case 106.
  • the swing drive mechanism includes a center swing transfer case 108. Get off the train The motive 102 is located below the frame 101.
  • the central rotary transfer case 108 can be connected to the power take-off port of the lower transfer case 106 through the first drive shaft 107, and the central transfer transfer case 108 can also be directly connected to the power take-off port of the lower drive engine 102 through the first drive shaft 107. Or directly connected to the power take-off port of the gearbox 104, the center swing transfer case 108 is connected to the upper transfer case 110 through the second drive shaft 109, and the center rotary transfer case 108 redirects the power provided by the lower engine 102 to pass through The vehicle rotates the seat ring, and then changes direction to transmit to the upper transfer case 110.
  • the upper transfer case 110 drives and connects the upper loading hydraulic pumps 111, and each of the upper hydraulic pumps 111 provides power for the upper lifting actuator to ensure power.
  • the power source of the hydraulic system of the vehicle is used to realize the lifting operation function of the vehicle.
  • the above embodiment can drive the upper vehicle lifting actuator by the power provided by the getting off engine 102, and can realize not only the traveling operation function of the entire vehicle but also the lifting operation function of the upper vehicle.
  • the power transmission mode of the above embodiment is purely mechanical, and the power transmission is transmitted from the power system of the getting off engine 102 through the transmission shaft and the central rotary transfer case 108, and the working efficiency is high, and the energy loss is higher than that of the pure hydraulic form. Low, it can guarantee all kinds of working conditions for lifting on the car.
  • the center swing transfer case 108 provided in this embodiment is disposed at the center turn of the frame, and the center axis of the center swing transfer case 108 is coaxial with the center rotation of the frame, and the center swing transfer case 108 may include an upper housing 1081 and a lower housing 1082.
  • the lower housing 1082 is disposed at the lower vehicle, the upper housing 1081 is disposed at the upper vehicle, and the upper housing 1081 and the lower housing 1082 are relatively rotatable.
  • the center rotary transfer case 108 may be internally provided with a gear and a drive shaft, and the transmission of the lower drive power to the vehicle is realized by gear meshing and transmission shaft transmission.
  • the lower housing 1082 of the center rotary transfer case 108 can be disposed on the lower vehicle through the transfer case rotary seat 1083, and the upper housing 1081 of the center rotary transfer case 108 can be disposed through the transfer case slewing support 1084.
  • the race 1083 and the transfer case slewing ring 1084 can rotate relative to each other, and the lower case 1082 and the upper case 1081 respectively rotate relative to each other through the transfer case swivel seat 1083 and the transfer case slewing ring 1084.
  • the shift fork 1085 can be fixed on the upper vehicle, and when the upper vehicle rotates, the upper casing 1081 of the central rotary transfer case 108 is rotated, which realizes the upper casing 1081 and the central rotary transfer case of the central rotary transfer case 108.
  • the lower housings 1082 of 108 are rotated relative to each other.
  • the center rotary transfer case 108 may be provided with an input bevel gear shaft 1086, a through bevel gear shaft 1087 and an output bevel gear shaft 1088, and the power of the crane disengaged engine system is transmitted to the center rotary transfer case 108.
  • the input bevel gear shaft 1086 is transmitted through the through bevel gear shaft 1087 through the meshing between the bevel gears, and transmits power to the output bevel gear shaft 1088 of the center rotary transfer case 108, and the output bevel gear shaft 1088 passes through the second transmission.
  • the shaft 109 is coupled to the upper transfer case 110 to drive the lifting actuator of the upper vehicle to realize the transfer of the lowering power to the vehicle.
  • the central rotary transfer case 108 provided in this embodiment is used as an assembly, and the rotation of the upper housing 1081 and the lower housing 1082 is realized by the cooperative rotation of the transfer case slewing support 1084 and the transfer case rotary seat 1083. It is not easy to change and deviate during the work process, and the coaxiality is good, avoiding the eccentric bearing capacity, and the rotation is stable and reliable.
  • the signal transfer of the onboard electric system can also be realized by the center swing transfer case 108.
  • a rotary brush 1089 can be disposed in the center rotary transfer case 108, and the mutual control of the electrical control signals of the upper and lower vehicles can be realized by the form of the rotary brush 1089.
  • the rotary brush 1089 has a fixed electric ring portion and a movable conductive piece portion that are rotatable relative to each other, and the movable conductive piece portion and the fixed electric ring portion are respectively fixed to the upper casing 1081 and the lower casing 1082 of the center rotary transfer case 108, respectively.
  • the clutch 103 is also disposed on the lower engine 102.
  • the power generated by the lower engine 102 is transmitted to the transmission 104 through the clutch 103, and the gear ratio of the transmission 104 is changed to change different speed ratios to achieve different working conditions. Driving needs.
  • the transmission 104 transmits power to the lower transfer case 106 by connecting the third drive shaft 105, and the lower transfer case 106 can be powered by connecting the lower drive shaft 112 and the lower drive shaft 113. It is assigned to the front drive axle and the rear drive axle to realize the driving function of the whole vehicle.
  • a disengagement mechanism may be disposed in the disengagement transfer case 106, and the disengagement mechanism realizes that the disengagement transfer case 106 transmits torque and/or power to the upper transfer case 110, or the lower front drive axle And the drive axle transmits torque and/or power.
  • the center swing transfer case 108 can also take power directly from the power take-off port on the lower engine 102 or the gearbox 104 instead of taking power from the lower transfer case 106, and can also get off the vehicle.
  • the power is transmitted to the upper vehicle, and the loading mechanism is driven to complete the lifting operation function.
  • the single-engine power driving device provided by the present invention can transmit the power transmission transmitted from the lower moving transfer case 106 to the upper vehicle through the central rotary transfer case 108, and the upper casing 1081 of the central rotary transfer case 108 can be carried on the vehicle. Turn together.
  • the output function of the lower transfer case 106 to transmit power to the upper transfer case 110 is turned off, and the power is sequentially taken from the lower engine 102 ⁇ the clutch 103 ⁇ the transmission 104 ⁇ the third transmission shaft 105 ⁇ the lower vehicle
  • the moving box 106 ⁇ the lower driving shaft 112 and the lower driving shaft 113 ⁇ the lower driving front axle and the lower driving axle are transmitted to realize the getting-off driving function.
  • the lower transfer case 106 When the vehicle is in the lifting work state, the lower transfer case 106 is moved up to the transfer case 110 The output function of the transmission power is turned on, and the power is sequentially from the engine 102 to the clutch 103 to the transmission 104 to the third transmission shaft 105 ⁇ the lower transfer case 106 ⁇ the first transmission shaft 107 ⁇ the central rotary transfer case 108 ⁇ the second
  • the transmission shaft 109 ⁇ the upper transfer case 110 ⁇ the upper loading hydraulic pump 111 transmits and drives the upper hydraulic actuator to realize the lifting operation function.
  • the getting off engine 102 of the present invention is provided with a clutch 103, and the disengagement transfer case 106 is provided with a disengagement mechanism.
  • the disengagement mechanism of the disengagement transfer case 106 can be used to realize different transmission of power.
  • the path can be started by the clutch 103 without the load, and the problem that the getting-off engine 102 is difficult to start in a low temperature environment due to large load resistance is avoided.
  • a full power power take-off can also be used between the lowering engine 102 and the gearbox 104 for power transmission through the auxiliary transmission.
  • the single engine power drive device includes a lower engine 202, a swing drive mechanism, an upper transfer case 210, and a plurality of upper hydraulic pumps 211, and may further include a gearbox 204 and a lower transfer case. 206.
  • the slewing drive mechanism includes an angular actuator 208.
  • the drop engine 202 is located below the frame 201.
  • the angular actuator 208 can be fixed to the frame by the base 2081 (shown in FIG. 6), which enables the power to be transmitted in an angular direction.
  • the angle actuator 208 can be connected to the power take-off port of the lower vehicle transfer case 206 through the second drive shaft 107.
  • the angle drive 208 can also be directly connected to the power take-off port of the lower vehicle engine 202 through the second drive shaft 107, or directly connected to the shifting speed.
  • the power take-off port of the box 204 can be fixed to the frame by the base 2081 (shown in FIG. 6), which enables the power to be transmitted in an angular direction.
  • the angle actuator 208 can be connected to the power take-off port of the lower vehicle transfer case 206 through the second drive shaft 107.
  • the angle drive 208 can also be directly connected to the power take-off port of the lower vehicle engine 202 through the second drive shaft 107, or directly connected to the shifting speed.
  • the power take-off port of the box 204 can be fixed
  • the angular actuator 208 has an input shaft and an output shaft, and the change direction of the transmission direction is 90°, and the input shaft can be flanged through the flange 2082 and the second transmission shaft. 207 is connected, the other end of the second transmission shaft 207 can be connected with the power output port of the getting off engine 202, and the power is transmitted in the horizontal direction.
  • the output shaft can be connected by a spline connection, and is connected to the power input port of the upper transfer case 210 through the spline 2083. After the input power is changed by 90°, the output is output in the vertical direction and transmitted to the upper transfer case 210. The power is distributed by the loading compartment 210. Since the upper transfer case 210 is disposed on the swing support 209, it can be rotated together with the upper vehicle.
  • the slewing drive mechanism may further include a rotary brush 214 for mutual transmission of the electric control signals of the boarding and disembarking during the hoisting operation of the hoisting.
  • the swivel brush 214 can be purchased directly from the market and includes a fixed electrical ring portion and a movable conductive sheet portion that are rotatable relative to each other.
  • the fixed electric ring portion is fixed on the angular actuator 208
  • the movable conductive piece portion is fixed on the upper transfer case 210, so that the mutual transfer of the angular actuator 208 and the upper transfer case 210 can be realized when the upper car is rotated.
  • the electrical signals on and off the vehicle effectively complete the transmission function through the fixed electrical ring portion and the movable conductive plate portion on the rotary brush 214, so that the upper and lower electrical systems become a controllable system through the rotary brush 214.
  • the slewing support 209 is mounted on the frame 201.
  • the upper transfer case 210 disposed on the slewing support 209 not only can the transmission and distribution of the getting on and off power be realized, but also the function of turning with the upper vehicle can be realized.
  • the upper transfer case 210, the angular actuator 208 and the rotary brush 214 together realize the transfer of power transmitted from the lower engine 202 to the upper vehicle, and can be rotated together with the upper vehicle by the swing support 209.
  • the upper transfer case 210 can drive the upper hydraulic pumps 211 to ensure the power source of the upper hydraulic system and achieve the upper vehicle. Lifting function.
  • the single-engine power driving device provided in the embodiment is a hydraulic pump type built in the center of the slewing support, and the hydraulic pump device of the upper vehicle has a built-in rotary center support portion, and the engine is removed from the vehicle.
  • 202 transmits power through the second transmission shaft 207, the angular actuator 208, and the upper transfer case 210, and the working efficiency Higher, compared to the pure hydraulic form, the energy loss is lower, which can ensure the working conditions of the lifting on the vehicle.
  • the disengagement transfer box 206 may also be included, and the power output port of the disengaged engine 202 is connected to the angle actuator 208 through the disengagement transfer case 206 to disengage the off engine 202 through the disengagement transfer case 206.
  • the torque and/or power provided is transmitted to the angle actuator 208.
  • the power input port of the lower transfer case 206 is connected to the power output port of the lower vehicle 202 through the first transmission shaft 205
  • the upper power output port of the lower transfer case 206 is connected to the angular drive through the second transmission shaft 207.
  • the 208, the lower transfer case 206 transmits power to the angular actuator 208 at the slewing support 209 to change the direction of power transmission, and the power is transmitted to the upper transfer case 210 through the angular actuator 208.
  • the lower power output port of the disengagement transfer box 206 can also distribute the power to the lower front drive axle and the lower rear drive axle by connecting the lower drive shaft 212 and the lower drive shaft 213 to realize the complete vehicle. Driving function. By disembarking the transfer case 206, the power output from the lower engine 202 is distributed and transferred between the upper and lower vehicles.
  • the disengagement mechanism may be disposed in the disengagement transfer box 206, and the disengagement transfer case 206 is connected or disconnected from the angular actuator 208 by the disengagement mechanism.
  • the power-on function of the loading of the disengagement box 206 is opened, and the disengagement mechanism connects the boarding power output port of the disengagement box 206 with the second transmission shaft 207, and
  • the disengaged power output port of the disengagement transfer box 206 is in a neutral state, and the power sequentially follows: the disengaged engine 202 ⁇ the first transmission shaft 205 ⁇ the disengagement transfer case 206 ⁇ the second transmission shaft 207 ⁇ the angular transmission 208 ⁇
  • the loading and unloading box 210 ⁇ the upper loading hydraulic pump 211 transmits and drives the upper hydraulic actuator to realize the lifting operation function.
  • the disengaged power output function of the disengagement transfer box 206 is opened.
  • the disengagement mechanism disconnects the upper power output port of the disengagement transfer case 206 from the second transmission shaft 207, and the power is sequentially Along: get off the engine 202 ⁇ first drive
  • the shaft 205 ⁇ the lower transfer case 206 ⁇ the lower drive shaft 212 and the lower drive shaft 213 ⁇ the lower front drive axle and the lower rear drive axle are transmitted to realize the driving function of getting off the vehicle.
  • the present embodiment may further include a gearbox 204 disposed between the power input port of the lower transfer case 206 and the power output port of the lower engine 202.
  • the power output port of the lower engine 202 is connected to the power input port of the transmission 204, and the power generated by the lower engine 202 is transmitted to the transmission 204, and the gear position adjustment of the transmission 204 changes different speed ratios to realize the crane. Driving needs in different working conditions.
  • the power outlet of the transmission 204 is coupled to the lower transfer case 206 via the first drive shaft 205, and the transmission 204 transmits power to the lower transfer case 206 via the first drive shaft 205.
  • the disengagement transfer case 206 is connected to the lower front drive axle and the lower rear drive axle through the lower drive shaft 212 and the lower drive shaft 213, respectively.
  • the disengagement transfer box 206 transmits the input power distribution to the lower front drive axle and the lower rear drive axle to realize the driving function of the whole vehicle; the power can also be distributed to the angular transmission 208 to achieve the upper vehicle. Lifting function.
  • the clutch 203 may also be included, and the power outlet of the lower engine 202 is engaged or disengaged from the transmission 204 via the clutch 203.
  • the getting-off engine 202 can be started without load by the clutch 203, and the problem that the getting-off engine 202 is difficult to start in a low-temperature environment due to large load resistance is avoided.
  • the disengagement box 206 When the vehicle is in the running state, the disengagement box 206 is closed to the power output port of the vehicle, and the power is in accordance with the disengaged engine 202 ⁇ the transmission 204 ⁇ the first transmission shaft 205 ⁇ the disengagement box 206 ⁇ the dismounting drive shaft 212 and The way of getting off the drive shaft 213 ⁇ getting off the front drive axle and getting off the rear drive axle is transmitted in turn to realize the driving function of getting off the vehicle.
  • the output function of the getting-off transfer case 206 is turned on, and the lower transfer case 206 is in the neutral state, and the power is driven from the lower engine 202 ⁇ the transmission 204 ⁇ the first transmission shaft 205 ⁇ Car transfer case 206 ⁇ second drive shaft 207 ⁇ angular drive 208 ⁇ the upper transfer case 210 ⁇ the upper loading hydraulic pump 211 transmits and drives the upper hydraulic actuator to realize the lifting operation function.
  • a full power power take-off (not shown) may be further included between the power output port of the getting off engine 202 and the input port of the gearbox 204, and the full power power take-off can be obtained. Big torque.
  • the full power power take-off can be directly obtained from the market, and the specific matching requirements such as power transmission parameters and connection sizes should be considered when using.
  • Each of the above transmission shafts is a conventional device, and a mechanism for transmitting a driving force is generally composed of a universal joint, a shaft tube, a telescopic spline, etc., and for a long rotating shaft, an intermediate support is also required.
  • each of the upper vehicle hydraulic pumps 211 is installed inside the frame, when the crane has the upper vehicle main arm, the maintenance space of the upper hydraulic pump 211 may be insufficient.
  • a low-power auxiliary engine (not shown) can be added to power the power and air conditioners on the train. In the emergency, it can also provide power for the upper vehicle to facilitate the center of rotation. Maintenance of each component.
  • the power transmission route and the arrangement form of the single-engine power driving device provided by the present invention can realize the mechanical transmission of the vehicle-powered vehicle to the vehicle, which is applicable not only to small and medium-sized tonnage cranes, but also to large tonnages. crane.
  • the present invention also provides a crane including an upper vehicle and a lower vehicle, and further comprising a single engine power driving device in any of the above embodiments.
  • the other components of the crane are of the prior art and will not be described again here.
  • the crane provided by the present invention adopts a single engine power driving device, and the upper vehicle lifting actuator can be driven by the power transmitted from the engine.
  • the vehicle can not only realize the driving function of the whole vehicle, but also realize the lifting operation function of the vehicle.
  • the crane provided by the invention adopts a single engine power driving device, and is shared by the vehicle.
  • An engine can solve the problem of space shortage caused by the need to arrange a separate power system on the upper part of the vehicle, and optimize the weight distribution of the whole machine (allocating more weight to the structural members to improve the performance of the whole machine), Reduce weight, reduce overall machine cost, and optimize the profit structure of the whole machine.
  • the crane provided by the invention adopts a single engine power driving device, which eliminates the loading engine and related accessories, and reduces the weight; during the use process, the continuous trouble-free working time and the lifting reliability are obtained due to the reduction of the components that may be faulty. It is beneficial to improve, and it only needs to perform daily maintenance and repair work on one engine, which reduces maintenance costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Jib Cranes (AREA)

Abstract

一种单发动机动力驱动装置、方法及起重机,其中,单发动机动力驱动装置包括下车发动机(102)、回转驱动机构和上车分动箱(110),其中:为下车前驱动桥和下车后驱动桥提供功率用的所述下车发动机通过所述回转驱动机构与所述上车分动箱相连接,所述回转驱动机构能够通过由所述下车发动机提供的扭矩和/或功率来驱动所述上车分动箱,所述上车分动箱的各动力输出口分别与各上车液压泵(111)相连。单发动机动力驱动装置的动力传递方式是纯机械式的,工作效率较高,能量损耗较低,能保证上车起重的各种工况作业,不仅适用于中小吨位起重机,还适用于大吨位起重机。

Description

一种单发动机动力驱动装置、方法及起重机 技术领域
本发明涉及工程机械领域,尤其涉及一种单发动机动力驱动装置、方法及起重机。
背景技术
如图1所示,在工程机械领域,移动式起重机通常通过车架3分为上车部分和下车部分,上车部分通过回转支承6连接在下车部分。下车部分一般包括下车驾驶室1、下车发动机及附件2、驱动轴4,下车部分的作用是在行驶过程中起载重车辆的功能。上车部分一般包括上车操作室5、上车发动机及附件7,上车部分的作用是实施起重作业,上车部分工作时,需要在下车部分上作360度回转动作。
目前移动式起重机的整机动力系统有如下两种配套方案。
1)单发动机动力系统:上下车共用一个发动机,执行道路行驶和起重作业;可在一定程度上解决上车由于需要布置单独的动力系统所造成的空间紧张问题,优化整机重量分布,将更多的重量分配到受力结构件上,提高整机性能,降低整机成本,优化整机利润构成。
考虑到成本低、结构简单、使用维护方便,中小吨位起重机(100吨以下)一般多用单发动机形式的动力系统。在中小吨位起重机上,下车发动机不仅为整车提供行驶作业动力,而且为上车液压系统提供起重作业动力。通过中心回转体,实现上下车液压油动力和电气信号的传递。单发动机动力传递形式采用液压传递,下车驱动液压泵给液压油提供动力,动力经过中心回转体转换之后,通过液压油驱动上车马达等零部件工作。
如图2所示,当在下车行驶状态时,变速箱或下车分动箱的取 力器输出功能关闭,动力自位于车架上平面10下方的下车发动机11→离合器12→变速箱13→传动轴14→下车分动箱22→传动轴23和驱动轴24进行传递,实现下车行驶功能。当在上车起重作业状态时,变速箱或下车分动箱的取力器输出功能开启,下车分动箱处于空档状态,动力自下车发动机11→离合器12→变速箱13→传动轴14→下车分动箱22→传动轴15→液压泵16→液压油管17→中心回转体18→液压油管19→上车液压阀20→上车液压马达21进行传递,实现上车起重作业功能。
对于中小吨位起重机现有的单发动机动力系统配置,主要有以下问题。采用纯液压传动方式时,液压油箱、主泵需要全部布置在下车,由于液压油箱、主泵自身尺寸较大,对下车的布置提出很高的要求。中心回转体需要20个左右的液压通道,那么中心回转体自身的结构将会相当复杂,制造加工难度无法预估。由于采用中心回转体的布置形式,上车无法应用开式液压系统,且中心回转体对液压系统的压力建立、能量传递等影响较大,直接影响上车的工作效率。
2)双发动机动力系统:下车发动机提供整车行驶动力,上车发动机提供起重作业动力。考虑到作业效率、系统控制方式、上下车液电系统沟通等因素,目前大吨位起重机(100吨以上)多采用双发动机形式的动力系统。
采用双发动机动力系统,在低温环境下,起重机上车发动机易出现起动困难的问题。目前大吨位起重机上车发动机与分动箱直接相连,而液压系统与分动箱直接连接。在发动机起动时,起动马达带着分动箱、液压油泵一起工作,此时整个传动系统的负载阻力较大,特别在低温环境下,分动箱内机油、液压传动系统中液压油粘度增大,使得起动马达需要克服的阻力矩增大,甚至超出起动马达所能提供的最大转矩,从而导致发动机无法起动。而目前大吨位工 程起重机的上车分动箱无法安装离合器,不能采用发动机-离合器-变速箱的连接方式。而且采用双发动机配置,需要两套独立的空滤器、散热器、消音器等发动机附件,重量较重,成本较高。
随着市场的持续发展,单发动机系统以其成本低、重量轻、发动机维修保养成本低的优势,开始得到市场用户的重视;同时,得益于发动机及整机动力系统优化技术的不断进步,随着发动机电控喷射技术的发展,根据负载反馈进行闭环控制调节,使发动机处于经济运行区域工作。目前越来越多主机厂考虑到在大吨位起重机上配套单发动机动力系统的方案,但目前还没有较为完善的解决方案。
发明内容
本发明的目的是提出一种单发动机动力驱动装置、方法及起重机,其中,单发动机动力驱动装置不仅适用于中小吨位起重机,还适用于大吨位起重机,工作效率较高,能量损耗较低。
为此,本发明实施例采用如下技术方案:
本发明提供了一种单发动机动力驱动装置,包括下车发动机、回转驱动机构和上车分动箱,其中:为下车前驱动桥和下车后驱动桥提供扭矩和/或功率用的所述下车发动机通过所述回转驱动机构与所述上车分动箱相连接,所述回转驱动机构为机械结构,其能够将所述下车发动机提供的扭矩和/或功率传递给所述上车分动箱,所述上车分动箱的各动力输出口分别与各上车液压泵相连。
在一优选或可选实施例中,所述回转驱动机构包括中心回转分动箱,所述中心回转分动箱分别连接所述下车发动机的动力输出口和所述上车分动箱的动力输入口,所述中心回转分动箱将所述下车发动机提供的动力改变方向以穿过车辆回转座圈,然后再次改变方向以传递至所述上车分动箱,所述上车分动箱驱动连接各所 述上车液压泵。
在一优选或可选实施例中,所述中心回转分动箱设置在车架的中心回转处,所述中心回转分动箱包括下壳体和上壳体,所述上壳体设置在上车,所述下壳体设置在下车,所述中心回转分动箱内部通过齿轮啮合和轴传动将下车动力向上车传递。
在一优选或可选实施例中,所述中心回转分动箱的下壳体通过分动箱回转座圈设置在下车上,所述中心回转分动箱的上壳体通过分动箱回转支承设置在上车上,所述下壳体和所述上壳体分别对应通过所述分动箱回转座圈和所述分动箱回转支承实现相互转动。
在一优选或可选实施例中,所述中心回转分动箱内设置有输入锥齿轮轴、贯通锥齿轮轴和输出锥齿轮轴,动力经所述输入锥齿轮轴、所述贯通锥齿轮轴传递到所述输出锥齿轮轴。
在一优选或可选实施例中,所述中心回转分动箱内设置有回转电刷,所述回转电刷具有能够相互转动的固定电环部分和活动导电片部分,所述固定电环部分和所述活动导电片部分分别对应设置在所述中心回转分动箱的下壳体和上壳体内,通过所述固定电环部分和所述活动导电片部分实现上下车电气控制信号的相互传输。
在一优选或可选实施例中,所述回转驱动机构包括角传动器,所述角传动器具有相互垂直的输入轴和输出轴,所述输入轴与所述下车发动机的动力输出口连接,所述输出轴与所述上车分动箱的动力输入口连接,所述角传动器将所述下车发动机提供的动力改变方向以穿过车辆回转座圈,传递至所述上车分动箱,所述上车分动箱驱动连接各所述上车液压泵。
在一优选或可选实施例中,所述角传感器设置在车架的回转支撑的下部,所述回转支撑的上部设置所述上车分动箱。
在一优选或可选实施例中,所述回转驱动机构还包括回转电刷,所述回转电刷具有能够相互转动的固定电环部分和活动导电 片部分,所述固定电环部分固定于所述角传动器,所述活动导电片部分固定于所述上车分动箱,通过所述固定电环部分和所述活动导电片部分实现上下车电气控制信号的相互传输。
在一优选或可选实施例中,还包括下车分动箱,所述下车分动箱的动力输入口连接所述下车发动机的动力输出口,所述下车分动箱的动力输出口分两路,一路与所述下车前驱动桥和下车后驱动桥连接,将所述下车发动机提供的扭矩和/或功率传递给所述下车前驱动桥和下车后驱动桥,另一路与所述中心回转分动箱连接,将所述下车发动机提供的扭矩和/或功率传递给所述中心回转分动箱。
在一优选或可选实施例中,还包括下车分动箱,所述下车分动箱的动力输入口连接所述下车发动机的动力输出口,所述下车分动箱的动力输出口分两路,一路与所述下车前驱动桥和下车后驱动桥连接,将所述下车发动机提供的扭矩和/或功率传递给所述下车前驱动桥和下车后驱动桥,另一路与所述角传动器连接,将所述下车发动机提供的扭矩和/或功率传递给所述角传动器。
在一优选或可选实施例中,所述下车分动箱内设置有脱接机构,通过所述脱接机构实现将扭矩和/或功率传递给所述上车分动箱或所述下车前驱动桥和下车后驱动桥。
在一优选或可选实施例中,所述下车发动机的动力输出口上还设置有变速箱,所述变速箱的动力输出口连接所述回转驱动机构。
在一优选或可选实施例中,所述下车发动机与所述变速箱之间还设置有离合器,所述下车发动机的动力输出口通过所述离合器与所述变速箱接合或分离。
在一优选或可选实施例中,还包括全功率取力器,所述全功率取力器设置在所述下车发动机的动力输出口与所述变速箱的输 入口之间。
为实现上述目的,本发明还提供了一种起重机,其包括上述的单发动机动力驱动装置。
为实现上述目的,本发明还提供了一种基于单发动机动力驱动装置的单发动机动力驱动方法,所述单发动机动力驱动装置包括下车发动机、下车分动箱、中心回转分动箱和上车分动箱;所述单发动机动力驱动方法包括以下步骤:
当在下车行驶状态时,所述下车分动箱向所述上车分动箱传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→下车前驱动桥和下车后驱动桥,进行传递,实现下车行驶功能;
当在上车起重作业状态时,所述下车分动箱向所述下车前驱动桥和下车后驱动桥传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→中心回转分动箱→上车分动箱,进行传递,驱动上车液压执行机构,实现起重作业功能。
为实现上述目的,本发明还提供了一种基于单发动机动力驱动装置的单发动机动力驱动方法,所述单发动机动力驱动装置包括下车发动机、下车分动箱、角传动器和上车分动箱;所述单发动机动力驱动方法包括以下步骤:
当在下车行驶状态时,所述下车分动箱向所述上车分动箱传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→下车前驱动桥和下车后驱动桥,进行传递,实现下车行驶功能;
当在上车起重作业状态时,所述下车分动箱向所述下车前驱动桥和下车后驱动桥传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→角传动器→上车分动箱,进行传递,驱动上车液压执行机构,实现起重作业功能。
基于上述技术方案,本发明至少具有以下有益效果:
本发明设置了下车发动机、回转驱动机构和上车分动箱,当 下车行驶状态时,回转驱动机构的输出功能关闭,下车发动机输出的功率传递给下车前驱动桥和下车后驱动桥,实现下车的行驶功能;当上车起重作业状态时,回转驱动机构的输出功能开启,下车发动机输出的扭矩和/或功率,通过回转驱动机构传递给上车分动箱,并分别传递到相应的液压泵,驱动上车液压执行机构,实现起重作业功能;回转驱动机构采用纯机械式的动力传递方式,相比纯液压形式,工作效率较高,能量损耗较低,能保证上车起重的各种作业工况,不仅适用于中小吨位起重机,还适用于大吨位起重机吊重工况多、大扭矩、高转速的动力需求。
本发明使得起重机的上车和下车共用下车发动机,通过下车发动机提供的动力,不仅能实现整车的行驶作业功能,而且上车起重执行机构通过下车发动机传递的动力进行驱动,能实现上车的起重作业功能,省去了上车发动机及其相关附件,重量减轻,从而可以在一定程度上解决上车由于需要布置单独的动力系统所造成的空间紧张问题,优化整机重量分布(将更多的重量分配到受力结构件上,提高整机性能),降低整机成本,优化整机利润构成。另外,由于可能发生故障的部件减少,连续无故障工作时间及起重可靠性得到有力的提高,而且只需对下车发动机进行日常维修保养作业,因此进一步降低了维护成本。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中的起重机外部结构示意图;
图2为现有技术中的单发动机动力系统的液压式动力传递路线简图;
图3为本发明提供的单发动机动力驱动装置第一实施例中的机械式动力传递路线简图;
图4为本发明提供的单发动机动力驱动装置第一实施例中的中心回转分动箱的结构简图;
图5为本发明所提供的单发动机动力驱动装置第二实施例中的机械式动力传递路线简图;
图6为本发明所提供的单发动机动力驱动装置第二实施例中的角传动器和回转电刷的连接示意图。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
首先对本发明中涉及到的技术术语进行解释。
移动式起重机:一种用于起升重物的设备,安装在依靠轮胎结构移动的底盘上。
变速箱:车辆中以若干个速比传递动力的装置。变速箱功用:改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,如车辆起步、加速、上坡等,同时使发动机在有利的 工况下工作;具有空档来中断动力传递,以使发动机能够起动、怠速,并便于变速器换档或进行动力输出。
离合器:依靠摩擦原理传递发动机动力,具有分离和结合两种状态。分离状态时临时切断发动机动力输出,大部分时间离合器处于接合状态,保证可靠的传递发动机动力。
分动箱:整车动力传动系统中一个零部件,其内部结构为一系列齿轮组,其主要功能有调整传动速比、增加取力口、传递和分配驱动动力等。
传动轴:用于传递驱动力的一种机构,一般是由万向节、轴管、伸缩花键等组成,对于较长的传动轴,还需要有中间支承。
液压传动:靠液体传动介质静压力能的变化来传递能量,主要由油泵、液压马达和控制装置等组成。发动机输出的机械能通过油泵转换成液压能,然后再由液压马达将液压能转换成机械能。
本发明所提供的单发动机动力驱动装置包括下车发动机、回转驱动机构和上车分动箱,其中:通常情况下,下车发动机设置在下车中,下车发动机的动力输出口通过传动轴和驱动轴分别与下车前驱动桥和下车后驱动桥连接,主要为下车前驱动桥和下车后驱动桥提供扭矩和/或功率,即动力。
本发明将下车发动机通过回转驱动机构与上车分动箱相连接,通过回转驱动机构能够将下车发动机提供的扭矩和/或功率传递给上车分动箱,上车分动箱的各动力输出口分别与各上车液压泵相连。并且回转驱动机构采用纯机械结构,其与下车发动机和上车分动箱的连接采用纯机械连接,例如采用传动轴、传动链、齿轮等纯机械连接传递形式。采用纯机械结构和纯机械式的动力传递方式相比纯液压形式,工作效率较高,能量损耗较低,能保证上车起重的各种作业工况,不仅适用于中小吨位起重机,而且还适用于大吨位起重机吊重工况多、大扭矩、高转速的动力需求。
本发明所提供的单发动机动力驱动装置,在下车行驶状态时,回转驱动机构的输出功能关闭,下车发动机输出的功率直接传递给下车前驱动桥和下车后驱动桥,实现下车的行驶功能;在上车起重作业状态时,回转驱动机构的输出功能开启,下车发动机输出的扭矩和/或功率,通过回转驱动机构来驱动上车分动箱,并分别传递到相应的液压泵,驱动上车液压执行机构,实现起重作业功能。
由此可以看出:本发明使得起重机的上车和下车共用下车发动机,通过下车发动机提供的动力,不仅能实现整车的行驶作业功能,而且上车起重执行机构通过下车发动机传递的动力进行驱动,能实现上车的起重作业功能,省去了上车发动机及其相关附件,重量减轻,从而可以在一定程度上解决上车由于需要布置单独的动力系统所造成的空间紧张问题,优化整机重量分布(将更多的重量分配到受力结构件上,提高整机性能),降低整机成本,优化整机利润构成。另外,由于可能发生故障的部件减少,连续无故障工作时间及起重可靠性得到有力的提高,而且只需对下车发动机进行日常维修保养作业,因此进一步降低了维护成本。
本发明提供的回转驱动机构可以采用中心回转分动箱的形式、角传动器的形式,或者其他机械结构的形式。下面通过两个具体实施例对本发明提供的单发动机动力驱动装置进行进一步详细说明。
第一实施例:
如图3所示,为本发明提供的单发动机动力驱动装置的第一实施例的示意图。在该第一实施例中,单发动机动力驱动装置包括下车发动机102、回转驱动机构,以及设置在车架101上方的上车分动箱110和数个上车液压泵111,还可以包括变速箱104和下车分动箱106。其中,回转驱动机构包括中心回转分动箱108。下车发 动机102位于车架101的下方。
中心回转分动箱108可以通过第一传动轴107连接下车分动箱106的取力口,中心回转分动箱108也可以通过第一传动轴107直接连接下车发动机102的取力口,或者直接连接变速箱104的取力口,中心回转分动箱108通过第二传动轴109连接上车分动箱110,中心回转分动箱108将下车发动机102提供的动力改变方向以穿过车辆回转座圈,然后再次改变方向以传递至上车分动箱110,上车分动箱110驱动连接各上车液压泵111,各上车液压泵111为上车起重执行机构提供动力,保证上车液压系统的动力来源,实现上车的起重作业功能。
上述实施例能通过下车发动机102提供的动力驱动上车起重执行机构,不仅能实现整车的行驶作业功能,而且能实现上车的起重作业功能。
上述实施例的动力传递方式是纯机械式的,从下车发动机102动力系统中通过传动轴和中心回转分动箱108进行动力的传递,工作效率较高,相比纯液压形式,能量损耗较低,能够保证上车起重的各种工况作业。
如图4所示,本实施例提供的中心回转分动箱108设置在车架的中心回转处,且中心回转分动箱108的中心轴线与车架的中心回转同轴,中心回转分动箱108可以包括上壳体1081和下壳体1082。下壳体1082设置在下车,上壳体1081设置在上车,上壳体1081和下壳体1082可以相对旋转。中心回转分动箱108内部可以设置有齿轮和传动轴,通过齿轮啮合、传动轴传动实现将下车动力向上车的传递。
上述实施例中,中心回转分动箱108的下壳体1082可以通过分动箱回转座圈1083设置在下车上,中心回转分动箱108的上壳体1081可以通过分动箱回转支承1084设置在上车上,而分动箱回转 座圈1083与分动箱回转支承1084可以相互转动,下壳体1082和上壳体1081分别对应通过分动箱回转座圈1083和分动箱回转支承1084实现相互转动。拨叉1085可以固定在上车,当上车转动时,带动中心回转分动箱108的上壳体1081转动,这就实现了中心回转分动箱108的上壳体1081与中心回转分动箱108的下壳体1082的相互转动。
上述实施例中,中心回转分动箱108内可以设置有输入锥齿轮轴1086、贯通锥齿轮轴1087和输出锥齿轮轴1088,起重机下车发动机系统的动力传递到中心回转分动箱108内的输入锥齿轮轴1086上,通过锥齿轮间的啮合,经过贯通锥齿轮轴1087的传递,将动力传递到中心回转分动箱108的输出锥齿轮轴1088上,输出锥齿轮轴1088通过第二传动轴109连接上车分动箱110,来驱动上车的起重执行机构,实现将下车动力向上车的传递。
本实施例中提供的中心回转分动箱108作为一个总成,其上壳体1081和下壳体1082的转动是通过分动箱回转支承1084与分动箱回转座圈1083的配合转动实现的,工作过程中不易变动偏离,同轴性较好,避免了偏心承载力,转动平稳可靠。
本实施例除了可以通过中心回转分动箱108实现将下车动力向上车的传递转移,也可以通过中心回转分动箱108实现上下车电气系统的信号传输。中心回转分动箱108内可以设置回转电刷1089,通过回转电刷1089形式实现上下车电气控制信号的相互传输。回转电刷1089具有能够相互转动的固定电环部分和活动导电片部分,活动导电片部分和固定电环部分可以分别对应固定在中心回转分动箱108的上壳体1081和下壳体1082上,且跟随其一起转动,上下车的电气信号通过中心回转分动箱108中的回转电刷1089的固定电环和活动导电片有效的完成传输功能,实现起重机上车回转过程中的整车电气控制信号的相互传输,使上下车电气系统通过回转 电刷1089成为一个可控系统。
上述实施例中,下车发动机102上还可以设置离合器103,下车发动机102产生的动力通过离合器103传递到变速箱104,通过变速箱104的档位调节改变不同速比,以实现不同工况的行驶需求。
上述实施例中,变速箱104通过连接第三传动轴105将动力传给下车分动箱106,下车分动箱106可以通过连接下车传动轴112和下车驱动轴113,可将动力分配到下车前驱动桥和下车后驱动桥上,实现整车的行驶功能。
上述实施例中,可以在下车分动箱106内设置脱接机构,通过脱接机构实现下车分动箱106向上车分动箱110传递扭矩和/或功率,或者,向下车前驱动桥和下车后驱动桥传递扭矩和/或功率。
上述实施例中,中心回转分动箱108也可以直接从下车发动机102或变速箱104上的取力口处取力,代替从下车分动箱106上取力,同样能将下车的动力传递至上车,驱动上车机构完成起重作业功能。
本发明提供的单发动机动力驱动装置,可以通过中心回转分动箱108将下车分动箱106传递过来的动力转换传递给上车,中心回转分动箱108的上壳体1081能够随上车一起转动。
采用上述实施例中的单发动机动力驱动装置,主要有以下两种动力传递状态。
当在下车行驶状态时,下车分动箱106向上车分动箱110传递动力的输出功能关闭,动力依次自下车发动机102→离合器103→变速箱104→第三传动轴105→下车分动箱106→下车传动轴112和下车驱动轴113→下车前驱动桥和下车后驱动桥,进行传递,实现下车行驶功能。
当在上车起重作业状态时,下车分动箱106向上车分动箱110 传递动力的输出功能开启,动力依次自下车发动机102→离合器103→变速箱104→第三传动轴105→下车分动箱106→第一传动轴107→中心回转分动箱108→第二传动轴109→上车分动箱110→各上车液压泵111,进行传递,驱动上车液压执行机构,实现起重作业功能。
本发明的下车发动机102带有离合器103,下车分动箱106带有脱接机构,当上车进行起重作业时,可以通过下车分动箱106的脱接机构实现动力的不同传递路径,可以通过离合器103实现下车发动机102在无负载的情况下进行启动,避免了下车发动机102由于负载阻力大,在低温环境下启动困难的问题。
为得到更大的扭矩,也可以在下车发动机102和变速箱104之间采用全功率取力器,通过辅助传动装置进行动力传递。
第二实施例:
如图5所示,为本发明提供的单发动机动力驱动装置的第二实施例的示意图。在该第二实施例中,单发动机动力驱动装置包括下车发动机202、回转驱动机构、上车分动箱210和数个上车液压泵211,还可以包括变速箱204和下车分动箱206。其中,回转驱动机构包括角传动器208。下车发动机202位于车架201的下方。
上述实施例中,角传动器208可以通过基座2081(如图6所示)固定在车架上,其能够实现动力以一定角度方向进行传递。角传动器208可以通过第二传动轴107连接下车分动箱206的取力口,角传动器208也可以通过第二传动轴107直接连接下车发动机202的取力口,或者直接连接变速箱204的取力口。
如图6所示,在本实施例中,角传动器208具有输入轴和输出轴,传动方向的改变角度是90°,输入轴可以采用法兰连接方式,通过法兰2082与第二传动轴207连接,第二传动轴207另一端可以与下车发动机202的动力输出口连接,动力沿水平方向输 入。输出轴可以采用花键连接方式,通过花键2083与上车分动箱210的动力输入口相连接,将输入的动力改变90°后,沿垂直方向进行输出,传递给上车分动箱210,由上车分动箱210对动力进行分配。由于上车分动箱210设置在回转支撑209上,因此可以随着上车一同转动。
如图5所示,在本实施例中,回转驱动机构还可以包括回转电刷214,其用于在上车吊重回转作业过程中上车和下车电气控制信号的相互传输。回转电刷214可以直接从市面购置得到,其包括固定电环部分和活动导电片部分,二者能够相互转动。使用时,固定电环部分固定在角传动器208上,活动导电片部分固定在上车分动箱210上,因此在上车回转时能实现角传动器208和上车分动箱210的相互转动。上车和下车的电气信号通过回转电刷214上的固定电环部分和活动导电片部分有效地完成传输功能,使上车和下车电气系统通过回转电刷214成为一个可控系统。
回转支撑209安装在车架201上,通过设置在回转支撑209上的上车分动箱210,不仅可以实现上车和下车动力的传递和分配,而且还可以实现随上车一起回转的功能。上车分动箱210、角传动器208和回转电刷214共同实现将下车发动机202传递过来的动力转换传递给上车,并通过回转支撑209能够随上车一起转动。
由于上车分动箱210的各动力输出口分别与各上车液压泵211相连,因此上车分动箱210可以驱动各上车液压泵211,保证上车液压系统的动力来源,实现上车的起重作业功能。
从上述实施例的结构可以看出,本实施例所提供的单发动机动力驱动装置是回转支撑中心处内藏液压泵式的,将上车液压油泵装置内藏回转中心支撑处,从下车发动机202通过第二传动轴207、角传动器208和上车分动箱210进行动力的传递,工作效率 较高,相比纯液压形式,能量损耗较低,能保证上车起重的各种工况作业。
上述实施例中,还可以包括下车分动箱206,下车发动机202的动力输出口通过下车分动箱206与角传动器208连接,以通过下车分动箱206将下车发动机202提供的扭矩和/或功率传递给角传动器208。具体地,下车分动箱206的动力输入口通过第一传动轴205连接下车发动机202的动力输出口,下车分动箱206的上车动力输出口通过第二传动轴207连接角传动器208,下车分动箱206将动力传递到回转支撑209处的角传动器208上,以改变动力的传递方向,通过角传动器208将动力传递到上车分动箱210。
当然,下车分动箱206的下车动力输出口还可以通过连接下车传动轴212和下车驱动轴213,将动力分配到下车前驱动桥和下车后驱动桥上,实现整车的行驶功能。通过下车分动箱206,以实现下车发动机202输出的动力在上车和下车之间进行分配和传递。
上述实施例中,下车分动箱206内还可以设置脱接机构,下车分动箱206通过脱接机构与角传动器208连接或断开。当上车起重作业的时候,下车分动箱206的上车动力输出功能开启,此时脱接机构将下车分动箱206的上车动力输出口与第二传动轴207连接,而下车分动箱206的下车动力输出口处于空挡状态,动力依次沿着:下车发动机202→第一传动轴205→下车分动箱206→第二传动轴207→角传动器208→上车分动箱210→各上车液压泵211进行传递,驱动上车液压执行机构,实现起重作业功能。当下车行驶状态的时候,下车分动箱206的下车动力输出功能开启,此时脱接机构将下车分动箱206的上车动力输出口与第二传动轴207断开,动力依次沿着:下车发动机202→第一传动 轴205→下车分动箱206→下车传动轴212和下车驱动轴213→下车前驱动桥和下车后驱动桥进行传递,实现下车的行驶功能。
本实施例中还可以包括变速箱204,其设置在下车分动箱206的动力输入口与下车发动机202的动力输出口之间。具体为:下车发动机202的动力输出口与变速箱204的动力输入口相连接,下车发动机202产生的动力传递到变速箱204,变速箱204的档位调节改变不同速比,以实现起重机不同工况的行驶需求。变速箱204的动力输出口通过第一传动轴205连接下车分动箱206,变速箱204通过第一传动轴205将动力传给下车分动箱206。下车分动箱206分别通过下车传动轴212和下车驱动轴213连接下车前驱动桥和下车后驱动桥。下车分动箱206将输入的动力分配传递到下车前驱动桥和下车后驱动桥上,实现整车的行驶功能;也可以将动力分配给角传动器208上,以实现上车的起重功能。
上述实施例中,还可以包括离合器203,下车发动机202的动力输出口通过离合器203与变速箱204接合或分离。由此,下车发动机202通过离合器203可以在无负载的情况下进行启动,避免了下车发动机202由于负载阻力大,在低温环境下启动困难的问题。
采用上述实施例中的单发动机动力驱动装置,主要有以下两种动力传递状态。
当下车行驶状态时,下车分动箱206向上车的动力输出口关闭,动力按照下车发动机202→变速箱204→第一传动轴205→下车分动箱206→下车传动轴212和下车驱动轴213→下车前驱动桥和下车后驱动桥的方式依次传递,实现下车的行驶功能。当上车起重作业状态时,下车分动箱206向上车的输出功能开启,下车分动箱206处于空挡状态,动力自下车发动机202→变速箱204→第一传动轴205→下车分动箱206→第二传动轴207→角传动器 208→上车分动箱210→各上车液压泵211进行传递,驱动上车液压执行机构,实现起重作业功能。
上述实施例中,还可以包括全功率取力器(图中未示出),其设置在下车发动机202的动力输出口与变速箱204的输入口之间,通过全功率取力器可以获得更大的扭矩。本实施例中,全功率取力器可以直接从市面购置得到,使用时需考虑动力传递参数,连接尺寸等具体匹配要求。
上述各传动轴采用的是现有设备,用于传递驱动力的一种机构,一般是由万向节、轴管、伸缩花键等组成,对于较长的转动轴,还需要有中间支承。
实质上,在这种上车和下车的动力传动方式下,由于各上车液压泵211安装在车架内部,当起重机带有上车主臂时,会出现上车液压泵211的维修空间不足的问题,因此可以增加一个小功率的辅助发动机(图中未示出),用来给上车的电源和空调等提供动力,危急时也可以为上车变幅提供动力,以方便回转中心处各零部件的维修保养。
综上所述,本发明提供的单发动机动力驱动装置的各动力传动路线以及布置形式,能够实现下车发动机动力向上车的机械式传递,不仅适用于中小吨位起重机,而且还能够适用于大吨位起重机。
本发明还提供了一种起重机,该起重机包括上车和下车,还包括上述任一实施例中的单发动机动力驱动装置。起重机的其它部件均为现有技术,在此不再展开描述。
本发明提供的起重机通过采用单发动机动力驱动装置,上车起重执行机构能通过下车发动机传递的动力进行驱动。通过下车发动机提供的动力,不仅能实现整车的行驶作业功能,而且能实现上车的起重作业功能。
本发明提供的起重机采用单发动机动力驱动装置,上下车共用 一个发动机,可在一定程度上解决上车由于需要布置单独的动力系统所造成的空间紧张问题,优化整机重量分布(将更多的重量分配到受力结构件上,提高整机性能),重量减轻,降低整机成本,优化整机利润构成。
本发明提供的起重机采用单发动机动力驱动装置,省去了上车发动机及其相关附件,重量减轻;在使用过程中,由于可能发生故障的部件减少,连续无故障工作时间及起重可靠性得到有利提高,而且只需对下车一个发动机进行日常维修保养作业,降低了维护成本。
在本实用新型的描述中,需要理解的是,使用“第一”、“第二”、“第三”等词语来限定零部件,仅仅是为了便于对上述零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本实用新型保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (18)

  1. 一种单发动机动力驱动装置,其特征在于:包括下车发动机、回转驱动机构和上车分动箱,其中:为下车前驱动桥和下车后驱动桥提供扭矩和/或功率用的所述下车发动机通过所述回转驱动机构与所述上车分动箱相连接,所述回转驱动机构为机械结构,其能够将所述下车发动机提供的扭矩和/或功率传递给所述上车分动箱,所述上车分动箱的各动力输出口分别与各上车液压泵相连。
  2. 如权利要求1所述的单发动机动力驱动装置,其特征在于:所述回转驱动机构包括中心回转分动箱,所述中心回转分动箱分别连接所述下车发动机的动力输出口和所述上车分动箱的动力输入口,所述中心回转分动箱将所述下车发动机提供的动力改变方向以穿过车辆回转座圈,然后再次改变方向以传递至所述上车分动箱,所述上车分动箱驱动连接各所述上车液压泵。
  3. 如权利要求2所述的单发动机动力驱动装置,其特征在于:所述中心回转分动箱设置在车架的中心回转处,所述中心回转分动箱包括下壳体和上壳体,所述上壳体设置在上车,所述下壳体设置在下车,所述中心回转分动箱内部通过齿轮啮合和轴传动将下车动力向上车传递。
  4. 如权利要求3所述的单发动机动力驱动装置,其特征在于:所述中心回转分动箱的下壳体通过分动箱回转座圈设置在下车上,所述中心回转分动箱的上壳体通过分动箱回转支承设置在上车上,所述下壳体和所述上壳体分别对应通过所述分动箱回转座圈和所述分动箱回转支承实现相互转动。
  5. 如权利要求2所述的单发动机动力驱动装置,其特征在于:所述中心回转分动箱内设置有输入锥齿轮轴、贯通锥齿轮轴和输出 锥齿轮轴,动力经所述输入锥齿轮轴、所述贯通锥齿轮轴传递到所述输出锥齿轮轴。
  6. 如权利要求2所述的单发动机动力驱动装置,其特征在于:所述中心回转分动箱内设置有回转电刷,所述回转电刷具有能够相互转动的固定电环部分和活动导电片部分,所述固定电环部分和所述活动导电片部分分别对应设置在所述中心回转分动箱的下壳体和上壳体内,通过所述固定电环部分和所述活动导电片部分实现上、下车电气控制信号的相互传输。
  7. 如权利要求1所述的单发动机动力驱动装置,其特征在于:所述回转驱动机构包括角传动器,所述角传动器具有相互垂直的输入轴和输出轴,所述输入轴与所述下车发动机的动力输出口连接,所述输出轴与所述上车分动箱的动力输入口连接,所述角传动器将所述下车发动机提供的动力改变方向以穿过车辆回转座圈,传递至所述上车分动箱,所述上车分动箱驱动连接各所述上车液压泵。
  8. 如权利要求7所述的单发动机动力驱动装置,其特征在于:所述角传感器设置在车架的回转支撑的下部,所述回转支撑的上部设置所述上车分动箱。
  9. 如权利要求7所述的单发动机动力驱动装置,其特征在于:所述回转驱动机构还包括回转电刷,所述回转电刷具有能够相互转动的固定电环部分和活动导电片部分,所述固定电环部分固定于所述角传动器,所述活动导电片部分固定于所述上车分动箱,通过所述固定电环部分和所述活动导电片部分实现上下车电气控制信号的相互传输。
  10. 如权利要求2-6任一项所述的单发动机动力驱动装置,其特征在于:还包括下车分动箱,所述下车分动箱的动力输入口连接所述下车发动机的动力输出口,所述下车分动箱的动力输出口 分两路,一路与所述下车前驱动桥和下车后驱动桥连接,将所述下车发动机提供的扭矩和/或功率传递给所述下车前驱动桥和下车后驱动桥,另一路与所述中心回转分动箱连接,将所述下车发动机提供的扭矩和/或功率传递给所述中心回转分动箱。
  11. 如权利要求7-9任一项所述的单发动机动力驱动装置,其特征在于:还包括下车分动箱,所述下车分动箱的动力输入口连接所述下车发动机的动力输出口,所述下车分动箱的动力输出口分两路,一路与所述下车前驱动桥和下车后驱动桥连接,将所述下车发动机提供的扭矩和/或功率传递给所述下车前驱动桥和下车后驱动桥,另一路与所述角传动器连接,将所述下车发动机提供的扭矩和/或功率传递给所述角传动器。
  12. 如权利要求10或11所述的单发动机动力驱动装置,其特征在于:所述下车分动箱内设置有脱接机构,通过所述脱接机构实现将扭矩和/或功率传递给所述上车分动箱或所述下车前驱动桥和下车后驱动桥。
  13. 如权利要求1-12任一项所述的单发动机动力驱动装置,其特征在于:所述下车发动机的动力输出口上还设置有变速箱,所述变速箱的动力输出口连接所述回转驱动机构。
  14. 如权利要求13所述的单发动机动力驱动装置,其特征在于:所述下车发动机与所述变速箱之间还设置有离合器,所述下车发动机的动力输出口通过所述离合器与所述变速箱接合或分离。
  15. 如权利要求13或14所述的单发动机动力驱动装置,其特征在于:还包括全功率取力器,所述全功率取力器设置在所述下车发动机的动力输出口与所述变速箱的输入口之间。
  16. 一种起重机,其特征在于:包括如权利要求1-15任一项所述的单发动机动力驱动装置。
  17. 一种基于单发动机动力驱动装置的单发动机动力驱动方法,其特征在于,所述单发动机动力驱动装置包括下车发动机、下车分动箱、中心回转分动箱和上车分动箱;所述单发动机动力驱动方法包括以下步骤:
    当在下车行驶状态时,所述下车分动箱向所述上车分动箱传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→下车前驱动桥和下车后驱动桥,进行传递,实现下车行驶功能;
    当在上车起重作业状态时,所述下车分动箱向所述下车前驱动桥和下车后驱动桥传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→中心回转分动箱→上车分动箱,进行传递,驱动上车液压执行机构,实现起重作业功能。
  18. 一种基于单发动机动力驱动装置的单发动机动力驱动方法,其特征在于,所述单发动机动力驱动装置包括下车发动机、下车分动箱、角传动器和上车分动箱;所述单发动机动力驱动方法包括以下步骤:
    当在下车行驶状态时,所述下车分动箱向所述上车分动箱传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→下车前驱动桥和下车后驱动桥,进行传递,实现下车行驶功能;
    当在上车起重作业状态时,所述下车分动箱向所述下车前驱动桥和下车后驱动桥传递扭矩和/或功率的功能关闭,动力依次自下车发动机→下车分动箱→角传动器→上车分动箱,进行传递,驱动上车液压执行机构,实现起重作业功能。
PCT/CN2014/086335 2014-04-22 2014-09-12 一种单发动机动力驱动装置、方法及起重机 WO2015161614A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201420201300.1U CN203902277U (zh) 2014-04-22 2014-04-22 一种单发动机动力驱动装置及起重机
CN201410163476.7A CN103921675B (zh) 2014-04-22 一种单发动机动力驱动装置、方法及起重机
CN201410163476.7 2014-04-22
CN201420201300.1 2014-04-22
CN201410285750.8 2014-06-24
CN201420339355.9U CN204309600U (zh) 2014-06-24 2014-06-24 一种单发动机的起重机及其动力传动装置
CN201410285750.8A CN104057823B (zh) 2014-06-24 2014-06-24 一种单发动机的起重机及其动力传动装置
CN201420339355.9 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015161614A1 true WO2015161614A1 (zh) 2015-10-29

Family

ID=54331692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086335 WO2015161614A1 (zh) 2014-04-22 2014-09-12 一种单发动机动力驱动装置、方法及起重机

Country Status (1)

Country Link
WO (1) WO2015161614A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914775A (zh) * 2017-12-27 2018-04-17 中国重汽集团济南动力有限公司 一种双功率专用车底盘及控制方法
CN109882571A (zh) * 2019-03-01 2019-06-14 青岛北海俊惠电子仪表有限公司 动力传递装置及含该动力传递装置的通井机、修井机
CN110103706A (zh) * 2018-02-01 2019-08-09 西安博贤机电设备有限公司 一种用于单发动机专用车的模块化节能环保型取力分动箱
CN110370462A (zh) * 2019-08-23 2019-10-25 莱州亚通重型装备有限公司 一种矿用静液式混凝土搅拌运输车
CN110465020A (zh) * 2019-08-29 2019-11-19 徐工集团工程机械股份有限公司 消防车
CN114852867A (zh) * 2022-04-26 2022-08-05 中联重科股份有限公司 用于起重机的控制方法及控制装置、控制器和起重机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162043A (zh) * 2007-11-29 2008-04-16 赵宏坚 一种机械-液压复合传动机构
EP2377802A1 (de) * 2010-04-15 2011-10-19 Terex Demag GmbH Kran mit Zusatzaggregat
CN102390258A (zh) * 2011-10-18 2012-03-28 中联重科股份有限公司 一种起重机底盘驱动系统、底盘和起重机
CN102431447A (zh) * 2011-11-28 2012-05-02 三一汽车起重机械有限公司 一种工程车及其驱动系统
CN102897033A (zh) * 2011-07-29 2013-01-30 埃英根利勃海尔-维克股份有限公司 用于起重机的驱动装置
CN103921675A (zh) * 2014-04-22 2014-07-16 徐州重型机械有限公司 一种单发动机动力驱动装置、方法及起重机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101162043A (zh) * 2007-11-29 2008-04-16 赵宏坚 一种机械-液压复合传动机构
EP2377802A1 (de) * 2010-04-15 2011-10-19 Terex Demag GmbH Kran mit Zusatzaggregat
CN102897033A (zh) * 2011-07-29 2013-01-30 埃英根利勃海尔-维克股份有限公司 用于起重机的驱动装置
CN102390258A (zh) * 2011-10-18 2012-03-28 中联重科股份有限公司 一种起重机底盘驱动系统、底盘和起重机
CN102431447A (zh) * 2011-11-28 2012-05-02 三一汽车起重机械有限公司 一种工程车及其驱动系统
CN103921675A (zh) * 2014-04-22 2014-07-16 徐州重型机械有限公司 一种单发动机动力驱动装置、方法及起重机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914775A (zh) * 2017-12-27 2018-04-17 中国重汽集团济南动力有限公司 一种双功率专用车底盘及控制方法
CN107914775B (zh) * 2017-12-27 2024-01-23 中国重汽集团济南动力有限公司 一种双功率专用车底盘及控制方法
CN110103706A (zh) * 2018-02-01 2019-08-09 西安博贤机电设备有限公司 一种用于单发动机专用车的模块化节能环保型取力分动箱
CN109882571A (zh) * 2019-03-01 2019-06-14 青岛北海俊惠电子仪表有限公司 动力传递装置及含该动力传递装置的通井机、修井机
CN110370462A (zh) * 2019-08-23 2019-10-25 莱州亚通重型装备有限公司 一种矿用静液式混凝土搅拌运输车
CN110465020A (zh) * 2019-08-29 2019-11-19 徐工集团工程机械股份有限公司 消防车
CN110465020B (zh) * 2019-08-29 2024-06-07 徐工集团工程机械股份有限公司 消防车
CN114852867A (zh) * 2022-04-26 2022-08-05 中联重科股份有限公司 用于起重机的控制方法及控制装置、控制器和起重机

Similar Documents

Publication Publication Date Title
WO2015161614A1 (zh) 一种单发动机动力驱动装置、方法及起重机
US11584626B2 (en) Electric telehandler
US11192448B2 (en) Axle assembly for frame rail vehicles
US8915812B2 (en) Hydrostatically power-splitting transmission
CN102897033B (zh) 用于起重机的驱动装置
JP5401251B2 (ja) 建設機械
CN107148365B (zh) 作业车辆
EP3211272B1 (en) Work vehicle
CN113978225A (zh) 一种分布式电驱桥系统及车辆
CN205468311U (zh) 自卸车
WO2024021460A1 (zh) 一种增程式混合动力系统、控制方法及起重机
WO2013078819A1 (zh) 一种工程车及其驱动系统
CN104373509A (zh) 角传动装置、动力传动系统及单发动机起重机
CN203902277U (zh) 一种单发动机动力驱动装置及起重机
CN204309600U (zh) 一种单发动机的起重机及其动力传动装置
CN105082997A (zh) 一种组合式拖拉机
CN105564227B (zh) 夹心式机械液压复合传动箱、道路养护车动力控制方法
CN204284310U (zh) 角传动装置、动力传动系统及单发动机起重机
CN202149184U (zh) 铰接车传动装置
CN216231645U (zh) 一种分布式电驱桥系统及车辆
CN102874380B (zh) 一种拖缆机驱动装置及拖缆机
CN104057823B (zh) 一种单发动机的起重机及其动力传动装置
WO2006012802A1 (fr) Châssis pour un véhicule de balayage des routes
US2731097A (en) Vehicle with selective wheel drive from either of two motors
CN203780313U (zh) 装载机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14890348

Country of ref document: EP

Kind code of ref document: A1