WO2015161524A1 - 一种稀灯红外多点触摸屏及其实现方法 - Google Patents

一种稀灯红外多点触摸屏及其实现方法 Download PDF

Info

Publication number
WO2015161524A1
WO2015161524A1 PCT/CN2014/076559 CN2014076559W WO2015161524A1 WO 2015161524 A1 WO2015161524 A1 WO 2015161524A1 CN 2014076559 W CN2014076559 W CN 2014076559W WO 2015161524 A1 WO2015161524 A1 WO 2015161524A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
infrared
touch
unit
tube
Prior art date
Application number
PCT/CN2014/076559
Other languages
English (en)
French (fr)
Inventor
刘卫
Original Assignee
深圳富创通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳富创通科技有限公司 filed Critical 深圳富创通科技有限公司
Priority to CN201480002924.3A priority Critical patent/CN105393197B/zh
Publication of WO2015161524A1 publication Critical patent/WO2015161524A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an optical touch screen, and more particularly to a rare lamp infrared multi-touch screen and an implementation method thereof.
  • Infrared touch screen is using X, Y
  • An infrared matrix densely on the shaft detects and locates the user's touch device.
  • a conventional infrared touch screen is provided with a circuit board outer frame on the front side of the display, and an infrared transmitting tube and an infrared receiving tube are arranged on four sides of the outer frame of the circuit board to form an infrared matrix corresponding to the horizontal and vertical intersections in front of the display screen.
  • the conventional infrared touch screen In order to improve the touch precision of the infrared touch screen, the conventional infrared touch screen must have a spacing between the surrounding infrared transmitting tube and the infrared receiving tube smaller than the outer diameter of the touch object.
  • the conventional practice is to set the outer diameter of the touch object to be greater than 8mm.
  • the distance between the infrared transmitting tube and the infrared receiving tube is set to 5 to 6 mm.
  • the figure will appear as shown in the figure. 2
  • Two cases are shown: one is that when the touch object is located between two adjacent infrared rays, the touch object is not detected; the second is that the touch object can only block one infrared light, and there is no way to obtain the touch by using the centroid formula. The more precise position of the object results in a smoothing of the scribing and a serious jagged phenomenon.
  • the main object of the present invention is to overcome the defects of the large number and high cost of the infrared transmitting tube and the infrared receiving tube existing in the infrared touch screen, and to provide a rare lamp infrared multi-touch screen.
  • a rare lamp infrared multi-touch screen mainly composed of a power source, a touch screen, and a microprocessor connected to the touch screen MCU, USB interface, LDO connected to the microprocessor MCU a circuit module, an infrared emitting unit, an infrared receiving unit and an amplifying unit; the infrared transmitting unit and the infrared receiving unit have a one-to-one correspondence, and the infrared transmitting unit is configured by the transmitting and selecting unit and the connected transmitting device
  • the tube array unit is composed, and the receiving and selecting unit is composed of a receiving and selecting unit and a receiving tube array unit connected thereto, and the amplifying unit is also connected to the receiving and selecting unit.
  • the transmitting tube array unit is composed of two or more infrared transmitting tubes
  • the receiving tube array unit is composed of two or more infrared receiving tubes; the number and position of the infrared transmitting tubes and the number of infrared receiving tubes One-to-one correspondence with the position, and the spacing between the adjacent two infrared transmitting tubes and the infrared receiving tube is greater than the specified minimum outer diameter of the touch object.
  • a method for implementing a rare lamp infrared multi-touch screen mainly comprises the following steps:
  • the right-axis optical scanning network excludes the false touch points of the touch object, and obtains the initial position of the touch object;
  • step (3) determining a specific quadrant area where the initial position is located, if it is located in the first quadrant area, performing step (4) If the second quadrant area is located, step (5) is performed; if it is located in the third quadrant area, step (6) is performed; if it is located in the fourth quadrant area, step (7) is performed;
  • the 'X-axis left-ray scanning network and X are formed on the touch screen as described in step (1).
  • Axis right optical scanning network' wherein the X-axis left optical scanning network refers to an infrared transmitting tube Tn on the X-axis corresponding to the corresponding infrared receiving tube on the X-axis Rn emitting infrared rays, and the infrared transmitting tube on the X-axis Tn also shifts to the left to emit infrared rays to the infrared receiving tube R (n-1) on the X-axis; the X-axis right-light scanning net refers to the infrared transmitting tube Tn on the X-axis corresponding to the corresponding X
  • the infrared receiving tube Rn on the shaft emits infrared rays
  • the infrared transmitting tube Tn on the X-axis is also shifted to the right to emit infrared
  • the 'Y-axis left-light scanning net and the Y-axis right-light scanning net' are formed on the touch screen as described in the step (2), and the Y
  • the left-axis optical scanning network refers to the infrared transmitting tube Tn on the Y-axis corresponding to the infrared receiving tube Rn on the corresponding Y-axis.
  • the infrared transmitting tube Tn on the Y-axis is also shifted to the left to Y.
  • the infrared receiving tube R ( n-1 ) on the shaft emits infrared rays;
  • the Y-axis right optical scanning net refers to the infrared transmitting tube Tn on the Y-axis corresponding to the corresponding infrared receiving tube on the Y-axis Rn While emitting infrared rays, the infrared emission tube Tn on the Y-axis is also shifted to the right to emit infrared rays to the infrared receiving tube R (n+1) on the Y-axis; wherein the values of n are 1, 2, 3, 4 ......
  • the present invention has the following advantages and beneficial effects:
  • the invention can add a diagonal ray between two adjacent rays, thereby effectively avoiding the situation that the touch object cannot be detected when the touch object is located between two adjacent infrared rays.
  • the invention is creatively implemented in the touch screen to perform quadrant differentiation, and performs different secondary infrared light scanning in each specific quadrant region, so that the position of the touch object can be accurately positioned, and the sawtooth phenomenon can be effectively overcome.
  • the invention can simultaneously confirm the precise position of two or more touch points, thereby completely overcoming the defect that the traditional touch screen cannot achieve multi-touch position localization.
  • Figure 1 is a schematic diagram of a conventional infrared touch frame touching a object blocking two or more infrared rays.
  • Figure 2 is a schematic diagram of the touch object blocking only one piece and not blocking the infrared light emitted by the conventional infrared touch frame.
  • FIG. 3 is a schematic structural view of the overall circuit of the present invention.
  • FIG. 4 is a schematic structural diagram of the overall process of the present invention.
  • FIG. 5 is a schematic diagram of scanning of the X-axis left optical scanning network of the present invention.
  • Figure 6 is a schematic view showing the scanning of the X-axis right optical scanning network of the present invention.
  • Figure 7 is a schematic view showing the scanning of the Y-axis left optical scanning network of the present invention.
  • Figure 8 is a schematic view showing the scanning of the Y-axis right optical scanning network of the present invention.
  • FIG. 9 is a schematic diagram of scanning when the invention has two touch points at the same time.
  • FIG. 10 is a schematic diagram of scanning of the touch point in the first quadrant region and the third quadrant region according to the present invention.
  • FIG. 3 The overall circuit block diagram of the present invention is shown in FIG. 3, which includes a touch screen 1 , an infrared transmitting unit 2 , and an infrared receiving unit 3 . , Amplifier Unit 4, Power Supply 5, Microprocessor MCU 6, LDO Circuit Module 7 and USB Interface.
  • the touch screen 1 is connected to the microprocessor MCU 6, USB The interface, the LDO circuit module 7, the infrared transmitting unit 2, the infrared receiving unit 3, and the amplifying unit 4 are all connected to the microprocessor MCU 6, and the power supply 5 is connected to the USB The interface, the touch screen 1, the infrared transmitting unit 2 and the infrared receiving unit 3 are connected, and provide working energy for the above devices.
  • the infrared transmitting unit 2 and the infrared receiving unit 3 have a one-to-one correspondence, and the infrared transmitting unit 2 and the infrared receiving unit 3 The number of each is two, and one infrared transmitting unit 2 matches one infrared receiving unit 3 and is a group.
  • the infrared transmitting unit 2 is configured by the transmitting and addressing unit 21 and the transmitting and selecting unit 21
  • the connected transmitting tube array unit 22 is composed, and the infrared receiving unit 3 is received by the receiving unit 31 and the receiving tube array unit 32 connected to the receiving and selecting unit 31. Composition.
  • the transmitting tube array unit 22 is composed of two or more infrared transmitting tubes, and the receiving tube array unit 32 It consists of more than two infrared receiving tubes. At the same time, an infrared transmitting tube corresponds to an infrared receiving tube.
  • the whole system takes power from the USB interface of the PC.
  • the USB interface supply voltage is 5V, and the maximum supply current is 500mA.
  • Infrared transmitting unit 2, infrared receiving unit 3 is directly using 5V power supply; microprocessor MCU 6 uses 3.3V power supply, therefore, using LDO circuit module 7 will The 5V voltage of the USB interface is converted to 3.3V to accommodate the needs of the microprocessor MCU 6.
  • the MCU processor 6 controls the timing of the infrared transmitting tube by controlling the transmitting and locating unit 21; The timing of the infrared receiving tube is controlled by controlling the receiving and locating unit 31.
  • MCU processor 6 selects 32 of model STM32F103C8 A high-performance processor that runs all control logic and data processing algorithms. Microprocessor MCU 6 samples all the lamps, processes the arithmetic algorithm centrally, calculates the touch coordinates, and sends them to the PC via USB. Machine.
  • each group of receiving tube array units 32 All of the infrared receiving tubes in the array are also arranged in a row.
  • the transmitting tube array unit 22 and the receiving tube array unit 32 are respectively distributed in a rectangular shape on the touch screen 1, thereby forming an X-axis and a Y on the touch screen 1.
  • the two sets of infrared emitting tubes and infrared receiving tubes of the shaft, and the distance between each group of infrared transmitting tubes and infrared receiving tubes are larger than the outer diameter of the specified minimum touch object. According to the basic rules of the industry, the outer diameter of the touch object is generally positioned 8mm.
  • the spacing between each group of infrared transmitting tubes and infrared receiving tubes described in the present application is preferably 9 mm.
  • the transmitting tube array unit 22 and the receiving tube array unit 32 can adopt a matrix layout, and can be adopted according to the size of the touch screen. 8X8 array or 8X12 array.
  • the advantage of this layout is that there are fewer control lines. For example, an 8X8 array can control 64 transmitter tubes or receiver tubes with only 16 pins.
  • the amplifying unit 4 generally adopts a primary to secondary operational amplifier, and can use a single power operational amplifier chip or a dual power operational amplifier chip.
  • the left-axis optical scanning network refers to the infrared transmitting tube Tn on the X-axis corresponding to the corresponding infrared receiving tube on the X-axis.
  • Rn emits infrared rays
  • the infrared transmitting tube Tn on the X-axis is also shifted to the left to X.
  • the infrared receiving tube R ( n-1 ) on the shaft emits infrared rays, wherein the values of n are 1, 2, 3, 4, ..., and the specific structure thereof is shown in FIG. 5;
  • the X-axis right optical scanning network refers to the infrared transmitting tube Tn on the X-axis corresponding to the corresponding infrared receiving tube on the X-axis. While emitting infrared rays, the infrared emission tube Tn on the X-axis is also shifted to the right to emit infrared rays to the infrared receiving tube R (n+1) on the X-axis, wherein n has values of 1, 2, 3, 4 ..., its specific structure is shown in Figure 6.
  • the right-axis optical scanning network excludes the false touch points of the touch object and obtains the initial position of the touch object.
  • the Y-axis left-light scanning network refers to the infrared transmitting tube Tn on the Y-axis corresponding to the infrared receiving tube Rn on the corresponding Y-axis. While emitting infrared rays, the infrared emission tube Tn on the Y-axis is also shifted to the left to emit infrared rays to the infrared receiving tube R (n-1) on the Y-axis, wherein the values of n are 1, 2, 3, 4 ..., its specific structure is shown in Figure 7.
  • the Y-axis right-light scanning network refers to the infrared transmitting tube Tn on the Y-axis corresponding to the infrared receiving tube Rn on the corresponding Y-axis. While emitting infrared rays, the infrared emission tube Tn on the Y-axis is also shifted to the right to emit infrared rays to the infrared receiving tube R (n+1) on the Y-axis, wherein the values of n are 1, 2, 3, 4 ..., its specific structure is shown in Figure 8.
  • step (3) determining a specific quadrant area where the initial position is located, if it is located in the first quadrant area, performing step (4) If it is in the second quadrant area, step (5) is performed; if it is in the third quadrant area, step (6) is performed; if it is in the fourth quadrant area, step (7) is performed.
  • the so-called quadrant area refers to the X-axis central axis and Y in the touch area.
  • the four regions divided by the central axis of the shaft are, in the counterclockwise direction, the first quadrant region, the second quadrant region, the third quadrant region, and the fourth quadrant region.
  • X ( X1*Q1+X2*Q2+ ...... +Xn*Qn ) / ( Q1+Q2+...+Qn ).
  • X1, X2, ..., Xn are in 1 N or N 1
  • the position numbers corresponding to the N infrared receiving tubes or N transmitting tubes, and Q1, Q2, ..., Qn are the infrared light intensity corresponding to the infrared receiving tube.
  • the above N sends 1 receives through the microprocessor MCU 6 To control the transmitting and locating unit and the receiving and locating unit to form a plurality of infrared transmitting tubes to sequentially transmit and fix a signal receiving mode received by one infrared receiving tube; and 1 to send N through the microprocessor MCU 6 To control the transmitting and locating unit and the receiving and locating unit to form a signal acquisition mode in which one infrared transmitting tube is transmitted and a plurality of infrared receiving tubes are sequentially received.
  • the touch screen When running, first scan the net and Y by the X-axis left light
  • the left-axis optical scanning network scans, and the touch screen may have four touch points A, B, C, and D, where A and B are real points, and C and D are two pseudo-touch points.
  • the pseudo-touch points C and D can be excluded to obtain the real touch point A.
  • B and the corresponding coordinates the structure is shown in Figure 10. At this point, we can determine the coordinate values of the two points A and B and the quadrant area where the point is located, that is, point A is in the first quadrant area, B The point is in the third quadrant area.
  • the present invention can be preferably carried out.

Abstract

本发明公开了一种稀灯红外多点触摸屏,其特征在于,主要由电源( 5 )、触摸屏( 1 ),与该触摸屏( 1 )相连接的微处理器 MCU ( 6 ),与该微处理器 MCU ( 6 )相连接的 USB 接口、 LDO 电路模块( 7 )、红外发射单元( 2 )、红外接收单元( 3 )及放大单元( 4 )等结构。同时还公开了一种稀灯红外多点触摸屏的实现方法,其特征在于,主要包括( 1 )在触摸屏上形成 X 轴左光扫描网和 X 轴右光扫描网,获取触摸物体的初略触摸点等步骤。本发明能同时确认两个以上触摸点的精确位置,从而彻底克服传统触摸屏不能实现多点触摸位置定位的缺陷。

Description

一种稀灯红外多点触摸屏及其实现方法 技术领域
本 发明 涉及一种光学触摸屏,具体是指一种稀灯红外多点触摸屏及其实现方法。
背景技术
红外触摸屏是利用 X 、 Y 轴上密布的红外线矩阵来检测并定位用户的触摸设备。传统的红外触摸屏是在显示器的前面安装一个电路板外框,同时在电路板外框的四边排布红外发射管和红外接收管,使其在显示器屏幕前面形成一一对应横竖交叉的红外线矩阵。使用时,当用户在触控屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的 X 、 Y 坐标。
为了提高红外触摸屏的触摸精度,传统红外触摸屏必须让四周红外发射管和红外接收管的间距小于触摸物体的外径。而常规做法则是将触摸物体外径定为大于 8mm ,红外发射管和红外接收管的间距定为 5 ~ 6mm ,当触摸物体置于触摸区域时,将阻挡住两条或两条以上红外光线,如图 1 所示。利用这两条或两条以上被阻挡的红外光线的强弱和质心公式,再计算出触摸物体更精确的位置。如果四周红外发射管和红外接收管的间距大于触摸物体的外径,则会出现如图 2 所示的两种情况:其一是,当触摸物体位于相邻两条红外光线中间时,检测不到触摸物体;其二是,触摸物体只能挡住一条红外光线,没有办法利用质心公式得到触摸物体更精确的位置,导致划线时不平滑,锯齿现象严重。
为了解决采用上述方法所存在的缺陷,人们就不得不把红外发射管和红外接收管的间距定位小于触摸物体的外径,从而不仅导致传统红外触摸屏的红外发射管和红外接收管的数量大大增加,产品成本偏高。
技术问题
本发明的主要目的在于克服目前红外触摸屏所存在的红外发射管和红外接收管的数量大、成本高的缺陷,提供一种稀灯红外多点触摸屏。
技术解决方案
本发明通过下述技术方案实现:一种稀灯红外多点触摸屏,主要由电源、触摸屏,与该触摸屏相连接的微处理器 MCU ,与该微处理器 MCU 相连接的 USB 接口、 LDO 电路模块、红外发射单元、红外接收单元及放大单元组成;所述红外发射单元与红外接收单元的数量和位置均一一对应,且该红外发射单元由发射选址单元以及与之相连接的发射管阵列单元组成,而接收选址单元则由接收选址单元以及与之相连接的接收管阵列单元组成,所述放大单元还与接收选址单元相连接。
进一步地,所述发射管阵列单元由两条以上的红外发射管组成,所述接收管阵列单元由两条以上的红外接收管组成;所述红外发射管的数量与位置与红外接收管的数量和位置一一对应,且相邻两个红外发射管和红外接收管之间的间距均大于规定的最小触摸物体外径。
一种稀灯红外多点触摸屏的实现方法,主要包括以下步骤:
( 1 )在触摸屏上形成 X 轴左光扫描网和 X 轴右光扫描网,获取触摸物体的初略触摸点;
( 2 )在触摸屏上形成 Y 轴左光扫描网和 Y 轴右光扫描网,排除触摸物体的虚假触摸点,获得触摸物体的初略位置;
( 3 )判定该初略位置所位于的具体象限区域,若位于第一象限区域,则执行步骤( 4 );若位于第二象限区域,则执行步骤( 5 );若位于第三象限区域,则执行步骤( 6 );若位于第四象限区域,则执行步骤( 7 );
( 4 )增加 N 发 1 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……;
( 5 )增加 N 发 1 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……;
( 6 )增加 1 发 N 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……;
( 7 )增加 1 发 N 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……。
为了确保使用效果,步骤( 1 )中所述的'在触摸屏上形成 X 轴左光扫描网和 X 轴右光扫描网',其中,该 X 轴左光扫描网是指 X 轴上的红外发射管 Tn 对应相应的 X 轴上的红外接收管 Rn 发射红外线的同时, X 轴上的红外发射管 Tn 还向左偏移向 X 轴上的红外接收管 R ( n-1 )发射红外线;该 X 轴右光扫描网是指在 X 轴上的红外发射管 Tn 对应相应的 X 轴上的红外接收管 Rn 发射红外线的同时, X 轴上的红外发射管 Tn 还向右偏移向 X 轴上的红外接收管 R ( n+1 )发射红外线;其中, n 的取值为 1 、 2 、 3 、 4 ……。
同时,步骤( 2 )中所述的'在触摸屏上形成 Y 轴左光扫描网和 Y 轴右光扫描网',该 Y 轴左光扫描网指在 Y 轴上的红外发射管 Tn 对应相应的 Y 轴上的红外接收管 Rn 发射红外线的同时, Y 轴上的红外发射管 Tn 还向左偏移向 Y 轴上的红外接收管 R ( n-1 )发射红外线;该 Y 轴右光扫描网是指在 Y 轴上的红外发射管 Tn 对应相应的 Y 轴上的红外接收管 Rn 发射红外线的同时, Y 轴上的红外发射管 Tn 还向右偏移向 Y 轴上的红外接收管 R ( n+1 )发射红外线;其中, n 的取值为 1 、 2 、 3 、 4 ……。
步骤( 4 )、( 5 )、( 6 )及( 7 )中所述的'计算出触摸物体的具体触摸位置',其具体计算公式为: X= ( X1*Q1+X2*Q2+ …… +Xn*Qn ) / ( Q1+Q2+......+Qn );其中, X1 、 X2 、 ...... 、 Xn 为在 1 发 N 收或 N 发 1 收扫描时, N 个红外接收管或 N 个发射 管所对应的位置序号,而 Q1 , Q2 、 ...... 、 Qn 则为红外接收管所对应的红外光强度。
有益效果
本发明与现有技术相比,具有以下优点以及有益效果:
( 1 )本发明整体结构非常简单,其使用的红外发射管和红外接收管的数量较少,能极大的降低制作成本。
( 2 )本发明能在相邻两个光线中间增加一条对角光线,从而能有效避免当触摸物体位于相邻两条红外光线中间时,不能检测到触摸物体的情况。
( 3 )本发明开创性的在触摸屏内实行象限区分,并在每个具体象限区域实行不同的二次红外光扫描,从而能精确定位触摸物的位置,能有效的克服锯齿现象。
( 4 )本发明能同时确认两个以上触摸点的精确位置,从而彻底克服传统触摸屏不能实现多点触摸位置定位的缺陷。
附图说明
图 1 为传统红外触摸框的触摸物体挡住两条或两条以上红外光线时的示意图。
图 2 为触摸物只挡住一条及未挡住传统红外触摸框所发射的红外光线时的示意图。
图 3 为本发明的整体电路结构示意图。
图 4 为本发明的整体流程结构示意图。
图 5 为本发明的 X 轴左光扫描网的扫描示意图。
图 6 为本发明的 X 轴右光扫描网的扫描示意图。
图 7 为本发明的 Y 轴左光扫描网的扫描示意图。
图 8 为本发明的 Y 轴右光扫描网的扫描示意图。
图 9 为本发明同时具有两个触摸点时的扫描示意图。
图 10 为本发明触摸点在第一象限区域和第三象限区域时的扫描示意图。
本发明的最佳实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明 的实施方式不限于此。
实施例
本发明的整体电路 结构框图如图 3 所示,即包括有触摸屏 1 、红外发射单元 2 、红外接收单元 3 、放大单元 4 、电源 5 、微处理器 MCU 6 、 LDO 电路模块 7 及 USB 接口。其中,触摸屏 1 与微处理器 MCU 6 相连接, USB 接口、 LDO 电路模块 7 、红外发射单元 2 、红外接收单元 3 及放大单元 4 均与该微处理器 MCU 6 相连接,而电源 5 则与 USB 接口、触摸屏 1 、红外发射单元 2 和红外接收单元 3 相连接,并为上述设备提供工作电能。
红外发射单元 2 与红外接收单元 3 的数量和位置均一一对应,且该红外发射单元 2 和红外接收单元 3 的数量均为 2 个,一个红外发射单元 2 与一个红外接收单元 3 相匹配并为一组。所述的红外发射单元 2 由发射选址单元 21 ,以及与该发射选址单元 21 相连接的发射管阵列单元 22 组成,而红外接收单元 3 则由接收选址单元 31 ,以及与该收选址单元 31 相连接的接收管阵列单元 32 组成。其中,发射管阵列单元 22 由两条以上的红外发射管组成,而接收管阵列单元 32 由两条以上的红外接收管组成。同时,一个红外发射管对应一个红外接收管。
整个系统从 PC 机的 USB 接口取电, USB 接口供电电压为 5V ,供电电流最大值为 500mA 。红外发射单元 2 、红外接收单元 3 是直接使用 5V 电源;微处理器 MCU 6 使用 3.3V 电源,因此,使用 LDO 电路模块 7 将 USB 接口的 5V 电压转化为 3.3V ,以适应微处理器 MCU 6 的需要。
MCU 处理器 6 通过控制发射选址单元 21 来控制红外发射管的时序;同时 MCU 通过控制接收选址单元 31 来控制红外接收管的时序。在具体实施时, MCU 处理器 6 选用型号为 STM32F103C8 的 32 位高性能处理器,运行所有的控制逻辑及数据处理算法。微处理器 MCU 6 对所有灯管进行采样后,集中处理算点算法,算出触摸坐标,经过 USB 发给 PC 机。
安装时,每组发射管阵列单元 22 中的所有红外发射管排成一列,同时,每组接收管阵列单元 32 中的所有红外接收管也排成一列。发射管阵列单元 22 和接收管阵列单元 32 分别在触摸屏 1 上呈矩形分布,从而在触摸屏 1 上形成 X 轴和 Y 轴两组红外发射管和红外接收管,且每组红外发射管和红外接收管相互之间的间距均大于规定的最小触摸物体外径。根据行业的基本规则,该触摸物体外径一般定位 8mm ,而本申请中所述的每组红外发射管和红外接收管相互之间的间距优先为 9mm 。
发射管阵列单元 22 和接收管阵列单元 32 ,可以采用矩阵式布局,根据触摸屏尺寸不同,可以采用 8X8 阵列或 8X12 阵列。这样布局的好处是控制线较少,例如 8X8 阵列只需要 16 个引脚就可以控制 64 个发射管或接收管。
放大单元 4 ,一般采用一级到二级运放,可以使用单电源运放芯片或者是双电源运放芯片。
运行时,该触摸点的定 位流程如图 4 所示,主要包括以下步骤:
( 1 )在触摸屏上形成 X 轴左光扫描网和 X 轴右光扫描网,获取触摸物体的初略触摸点。该 X 轴左光扫描网是指 X 轴上的红外发射管 Tn 对应相应的 X 轴上的红外接收管 Rn 发射红外线的同时, X 轴上的红外发射管 Tn 还向左偏移向 X 轴上的红外接收管 R ( n-1 )发射红外线,其中 n 的取值为 1 、 2 、 3 、 4 ……,其具体结构如图 5 所示;
该 X 轴右光扫描网是指在 X 轴上的红外发射管 Tn 对应相应的 X 轴上的红外接收管 Rn 发射红外线的同时, X 轴上的红外发射管 Tn 还向右偏移向 X 轴上的红外接收管 R ( n+1 )发射红外线,其中, n 的取值为 1 、 2 、 3 、 4 ……,其具体结构如图 6 所示。
( 2 )在触摸屏上形成 Y 轴左光扫描网和 Y 轴右光扫描网,排除触摸物体的虚假触摸点,获得触摸物体的初略位置。该 Y 轴左光扫描网指在 Y 轴上的红外发射管 Tn 对应相应的 Y 轴上的红外接收管 Rn 发射红外线的同时, Y 轴上的红外发射管 Tn 还向左偏移向 Y 轴上的红外接收管 R ( n-1 )发射红外线,其中, n 的取值为 1 、 2 、 3 、 4 ……,其具体结构如图 7 所示。
该 Y 轴右光扫描网是指在 Y 轴上的红外发射管 Tn 对应相应的 Y 轴上的红外接收管 Rn 发射红外线的同时, Y 轴上的红外发射管 Tn 还向右偏移向 Y 轴上的红外接收管 R ( n+1 )发射红外线,其中, n 的取值为 1 、 2 、 3 、 4 ……,其具体结构如图 8 所示。
( 3 )判定该初略位置所位于的具体象限区域,若位于第一象限区域,则执行步骤( 4 );若位于第二象限区域,则执行步骤( 5 );若位于第三象限区域,则执行步骤( 6 );若位于第四象限区域,则执行步骤( 7 )。
其中,所谓的象限区域是指在触摸区域内按 X 轴中轴线和 Y 轴中轴线所分成的四个区域,按逆时针方向依次为第一象限区域、第二象限区域、第三象限区域和第四象限区域。
( 4 )增加 N 发 1 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置。其中, N 的取值为 2 、 3 、 4 ……。
( 5 )增加 N 发 1 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置。其中, N 的取值为 2 、 3 、 4 ……。
( 6 )增加 1 发 N 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置。其中, N 的取值为 2 、 3 、 4 ……。
( 7 )增加 1 发 N 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置。其中, N 的取值为 2 、 3 、 4 ……。
在计算触摸物体的具体触摸位置时,其具体触摸位置 X 为: X= ( X1*Q1+X2*Q2+ …… +Xn*Qn ) / ( Q1+Q2+......+Qn )。其中, X1 、 X2 、 ...... 、 Xn 为在 1 发 N 收或 N 发 1 收扫描时, N 个红外接收管或 N 个发射 管所对应的位置序号,而 Q1 , Q2 、 ...... 、 Qn 则为红外接收管所对应的红外光强度。
而上述的 N 发 1 收是指通过微处理器 MCU 6 来控制发射选址单元和接收选址单元形成多个红外发射管依次发射、固定 1 个红外接收管接收的信号采集方式;而 1 发 N 收则是指通过微处理器 MCU 6 来控制发射选址单元和接收选址单元形成固定 1 个红外发射管发射、多个红外接收管依次接收的信号采集方式。
当触摸屏上同时出现两个或两个以上的触摸点时,传统的触摸屏无法进行识别,但采用本申请则能很好地进行解决。现以触摸屏上同时出现 2 个触摸物体来进行说明:
假定触摸屏上面有两个触摸物体 A 和 B ,如图 9 所示。运行时,先由 X 轴左光扫描网和 Y 轴左光扫描网进行扫描,此时可得到触摸屏上可能含有四个触摸点 A 、 B 、 C 、 D ,其中 A 和 B 是真实点, C 和 D 是两个伪触摸点。
其次,结合 X 轴右光扫描网和 Y 轴右光扫描网便可以排除伪触摸点 C 和 D ,得到真实触摸点 A 和 B 以及相应的坐标,其结构如图 10 所示。此时,我们便可以确定出 A 、 B 两点的坐标值及所处的象限区域,即 A 点处于第一象限区域, B 点位于第三象限区域。
由于 A 点在第一象限区域,则执行:增加 N 发 1 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并按照公式 X= ( X1*Q1+X2*Q2+ …… +Xn*Qn ) / ( Q1+Q2+......+Qn )计算出 A 点的准确位置。
同时,由于 B 点在第三象限区域,则执行:增加 1 发 N 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并根据公式 X= ( X1*Q1+X2*Q2+ …… +Xn*Qn ) / ( Q1+Q2+......+Qn )计算出 B 点的准确位置。
如上所述,便可较好的实施本发明。
本发明的实施方式
工业实用性
序列表自由内容

Claims (5)

  1. 一种稀灯红外多点触摸屏,其特征在于,主要由电源( 5 )、触摸屏( 1 ),与该触摸屏( 1 )相连接的微处理器 MCU ( 6 ),与该微处理器 MCU ( 6 )相连接的 USB 接口、 LDO 电路模块( 7 )、红外发射单元( 2 )、红外接收单元( 3 )及放大单元( 4 )组成;所述红外发射单元( 2 )与红外接收单元( 3 )的数量和位置均一一对应,且该红外发射单元( 2 )由发射选址单元( 21 )以及与之相连接的发射管阵列单元( 22 )组成,而接收选址单元( 3 )则由接收选址单元( 31 )以及与之相连接的接收管阵列单元( 32 )组成;所述放大单元( 4 )还与接收选址单元( 3 )相连接。
  2. 根据权利要求 1 所述的一种稀灯红外多点触摸屏,其特征在于,所述发射管阵列单元( 22 )由两条以上的红外发射管组成,所述接收管阵列单元( 32 )由两条以上的红外接收管组成;所述红外发射管的数量与位置与红外接收管的数量和位置一一对应,且相邻两个红外发射管和红外接收管之间的间距均大于规定的最小触摸物体外径。
  3. 一种稀灯红外多点触摸屏的实现方法,其特征在于,主要包括以下步骤:
    ( 1 )在触摸屏上形成 X 轴左光扫描网和 X 轴右光扫描网 ,获取触摸物体的初略触摸点;
    ( 2 )在触摸屏上形成 Y 轴左光扫描网和 Y 轴右光扫描网,排除触摸物体的虚假触摸点,获得触摸物体的初略位置;
    ( 3 )判定该初略位置所位于的具体象限区域,若位于第一象限区域,则执行步骤( 4 );若位于第二象限区域,则执行步骤( 5 );若位于第三象限区域,则执行步骤( 6 );若位于第四象限区域,则执行步骤( 7 );
    ( 4 )增加 N 发 1 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……;
    ( 5 )增加 N 发 1 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……;
    ( 6 )增加 1 发 N 收的 X 轴扇形扫描和 N 发 1 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……;
    ( 7 )增加 1 发 N 收的 X 轴扇形扫描和 1 发 N 收的 Y 轴扇形扫描,并计算出触摸物体的具体触摸位置,其中, N 的取值为 2 、 3 、 4 ……。
  4. 根据权利要求 3 所述的一种稀灯红外多点触摸屏的实现方法,其特征在于,步骤( 1 )中所述的'在触摸屏上形成 X 轴左光扫描网和 X 轴右光扫描网',其中,该 X 轴左光扫描网是指 X 轴上的红外发射管 Tn 对应相应的 X 轴上的红外接收管 Rn 发射红外线的同时, X 轴上的红外发射管 Tn 还向左偏移向 X 轴上的红外接收管 R ( n-1 )发射红外线;该 X 轴右光扫描网是指在 X 轴上的红外发射管 Tn 对应相应的 X 轴上的红外接收管 Rn 发射红外线的同时, X 轴上的红外发射管 Tn 还向右偏移向 X 轴上的红外接收管 R ( n+1 )发射红外线;
    步骤( 2 )中所述的'在触摸屏上形成 Y 轴左光扫描网和 Y 轴右光扫描网',该 Y 轴左光扫描网指在 Y 轴上的红外发射管 Tn 对应相应的 Y 轴上的红外接收管 Rn 发射红外线的同时, Y 轴上的红外发射管 Tn 还向左偏移向 Y 轴上的红外接收管 R ( n-1 )发射红外线;该 Y 轴右光扫描网是指在 Y 轴上的红外发射管 Tn 对应相应的 Y 轴上的红外接收管 Rn 发射红外线的同时, Y 轴上的红外发射管 Tn 还向右偏移向 Y 轴上的红外接收管 R ( n+1 )发射红外线;
    其中, n 的取值为 1 、 2 、 3 、 4 ……。
  5. 根据权利要求 3 或 4 所述的一种稀灯红外多点触摸屏的实现方法,其特征在于,步骤( 4 )、( 5 )、( 6 )及( 7 )中所述的'计算出触摸物体的具体触摸位置',其具体计算公式为: X= ( X1*Q1+X2*Q2+ …… +Xn*Qn ) / ( Q1+Q2+......+Qn );
    其中, X1 、 X2 、 ...... 、 Xn 为在 1 发 N 收或 N 发 1 收扫描时, N 个红外接收管或 N 个发射 管所对应的位置序号,而 Q1 , Q2 、 ...... 、 Qn 则为红外接收管所对应的红外光强度。
PCT/CN2014/076559 2014-04-25 2014-04-30 一种稀灯红外多点触摸屏及其实现方法 WO2015161524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480002924.3A CN105393197B (zh) 2014-04-25 2014-04-30 一种稀灯红外多点触摸屏的实现方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420209686.0U CN203849710U (zh) 2014-04-25 2014-04-25 一种稀灯红外多点触摸屏
CN201420209686.0 2014-04-25

Publications (1)

Publication Number Publication Date
WO2015161524A1 true WO2015161524A1 (zh) 2015-10-29

Family

ID=51562697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076559 WO2015161524A1 (zh) 2014-04-25 2014-04-30 一种稀灯红外多点触摸屏及其实现方法

Country Status (2)

Country Link
CN (2) CN203849710U (zh)
WO (1) WO2015161524A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502477A (zh) * 2016-11-30 2017-03-15 上海创功通讯技术有限公司 一种具有压力感应层的终端的触控方法及装置
CN110502158A (zh) * 2019-08-15 2019-11-26 无锡海森诺科技有限公司 一种基于反射实现红外触摸的系统及其检测方法
CN112261480A (zh) * 2020-09-28 2021-01-22 南京熊猫电子股份有限公司 一种结合红外触摸技术的电视机单键操控实现方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2824143Y (zh) * 2005-09-23 2006-10-04 成都吉锐触摸电脑有限公司 带有光学透镜的红外触摸屏
CN102129328A (zh) * 2010-01-16 2011-07-20 鸿富锦精密工业(深圳)有限公司 红外线触摸屏

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387931B (zh) * 2008-10-14 2010-10-13 贺伟 一种红外线触摸屏多点识别方法
CN101477428B (zh) * 2008-12-02 2011-12-07 广东威创视讯科技股份有限公司 一种红外触摸定位装置
CN102364415B (zh) * 2011-06-28 2013-08-21 广东威创视讯科技股份有限公司 红外触摸屏多触摸点识别方法及装置
CN102339173B (zh) * 2011-10-10 2013-10-30 北京鸿合盛视数字媒体技术有限公司 一种红外电子白板和控制方法
KR101372423B1 (ko) * 2012-03-26 2014-03-10 주식회사 알엔디플러스 멀티 터치스크린 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2824143Y (zh) * 2005-09-23 2006-10-04 成都吉锐触摸电脑有限公司 带有光学透镜的红外触摸屏
CN102129328A (zh) * 2010-01-16 2011-07-20 鸿富锦精密工业(深圳)有限公司 红外线触摸屏

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502477A (zh) * 2016-11-30 2017-03-15 上海创功通讯技术有限公司 一种具有压力感应层的终端的触控方法及装置
CN106502477B (zh) * 2016-11-30 2024-04-12 上海创功通讯技术有限公司 一种具有压力感应层的终端的触控方法及装置
CN110502158A (zh) * 2019-08-15 2019-11-26 无锡海森诺科技有限公司 一种基于反射实现红外触摸的系统及其检测方法
CN112261480A (zh) * 2020-09-28 2021-01-22 南京熊猫电子股份有限公司 一种结合红外触摸技术的电视机单键操控实现方法

Also Published As

Publication number Publication date
CN203849710U (zh) 2014-09-24
CN105393197A (zh) 2016-03-09
CN105393197B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
WO2015161524A1 (zh) 一种稀灯红外多点触摸屏及其实现方法
WO2012086957A2 (en) Method and apparatus for providing touch interface
WO2014098305A1 (en) Touch sensitive device for providing mini-map of tactile user interface and method of controlling the same
WO2010053305A2 (ko) 적외선 터치 스캐닝 모듈
CN104182092B (zh) 红外触摸屏定位方法及系统
WO2014121501A1 (zh) 基于红外光敏的红外触摸屏的实现方法
CN101551739A (zh) 切换器及屏幕显示系统与方法
CN110096133A (zh) 红外手势识别装置及方法
WO2014112782A1 (ko) 트랙킹 시스템 및 이를 이용한 트랙킹 방법
CN105302381B (zh) 红外线触摸屏精准度调整方法及装置
CN103809910A (zh) 一种通过触控终端输入设备进行交互的方法及装置
CN103092438A (zh) 一种红外触摸装置及多点触摸定位方法
WO2013103180A1 (ko) 마주하는 두 변의 적외선 소자의 배열을 이용한 적외선 터치스크린 장치
WO2015135194A1 (zh) 无人驾驶飞行器及其数据处理方法
US8892790B2 (en) Control panel and serial port communication arbiter for touch screen with camera
CN107688431B (zh) 基于雷达定位的人机交互方法
CN206312090U (zh) Kvm控制器
CN202362755U (zh) 一种控制电路及具有所述控制电路的显示装置
CN1282063C (zh) 红外线定位鼠标教鞭
WO2015143939A1 (zh) 一种坐标系生成方法
CN202995682U (zh) 多点触控显示屏
TWI781751B (zh) 觸控訊號處理方法及其相關觸控裝置
WO2018070657A1 (en) Electronic apparatus, and display apparatus
WO2015102222A1 (ko) 얼라인먼트 기능을 구비한 터치 스크린 장치
CN106569608A (zh) 一种切换用户控制权的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480002924.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/04/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14889947

Country of ref document: EP

Kind code of ref document: A1