WO2015159914A1 - Capacitive three-dimensional sensor - Google Patents

Capacitive three-dimensional sensor Download PDF

Info

Publication number
WO2015159914A1
WO2015159914A1 PCT/JP2015/061564 JP2015061564W WO2015159914A1 WO 2015159914 A1 WO2015159914 A1 WO 2015159914A1 JP 2015061564 W JP2015061564 W JP 2015061564W WO 2015159914 A1 WO2015159914 A1 WO 2015159914A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode body
spacer
direction position
adhesive layer
position detection
Prior art date
Application number
PCT/JP2015/061564
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 小林
義幸 国分
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to JP2016513812A priority Critical patent/JP6489710B2/en
Priority to CN201580007343.3A priority patent/CN105980970B/en
Publication of WO2015159914A1 publication Critical patent/WO2015159914A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a capacitive three-dimensional sensor that detects a three-dimensional position.
  • An electronic device such as a notebook personal computer may include a touch pad as means for moving a pointer displayed on a monitor, and a capacitive sensor may be used as the touch pad.
  • a capacitance type sensor used as a touch pad has detected a change in capacitance in a two-dimensional direction (X direction and Y direction). , Y direction and Z direction) are also being studied (Patent Document 1).
  • a capacitance type three-dimensional sensor that changes the capacitance in the three-dimensional direction
  • a sheet-like XY-direction position detection electrode body that detects the position in the XY direction and a position in the Z-direction are arranged on the front side.
  • a sheet-shaped Z-direction position detection electrode body to be detected and a plurality of elastically deformable dot spacers provided between them are known (Patent Document 2).
  • the dot spacers are bonded and fixed in a state where their tips are in contact with the spacer adhesive layer.
  • the capacitance type three-dimensional sensor described in Patent Document 2 when the user's finger or stylus pen presses the XY direction position detection electrode body, the dot spacer elastically deforms, and the XY direction position detection electrode body. And the Z-direction position detecting electrode body are reduced in distance. The displacement in the Z direction can be obtained by detecting the capacitance that changes at that time.
  • An object of the present invention is to provide a capacitance type three-dimensional sensor with improved position detection accuracy in the Z direction.
  • the present inventors investigated the reason why the Z-direction position detection accuracy is low in the capacitive three-dimensional sensor described in Patent Document 2.
  • the dot spacer has a low adhesive strength with respect to the spacer adhesive layer, and when the XY direction position detection electrode is pressed, some of the dot spacers adhere to the spacer. It has become clear that there is a case of peeling from the layer. At this time, since the dot spacers do not peel uniformly, even if the pressing depth is the same, the capacitance value between the XY direction position detection electrode body and the Z direction position detection electrode body is the same. In other words, it became clear that the Z-direction position detection result is likely to vary.
  • the capacitance type three-dimensional sensor according to the first aspect of the present invention is disposed so as to overlap the sheet-like XY direction position detecting electrode body for detecting the position in the XY direction and the XY direction position detecting electrode body.
  • a sheet-like Z-direction position detecting electrode body for detecting a position in the Z direction, and the XY direction position detecting electrode body includes a pair of conductive films for detecting a position in the XY direction
  • the Z-direction position detecting electrode body is a capacitance type three-dimensional sensor provided with a conductive film for detecting the Z-direction position, and the Z-direction position detecting electrode in the XY-direction position detecting electrode body.
  • a plurality of dot spacers provided on the body-side surface, and a spacer adhesive layer for bonding the plurality of dot spacers to the Z-direction position detection electrode body, wherein the plurality of dot spacers are the XY-direction position detection electrodes.
  • Body and said space In a state where gaps are formed between the adhesive layer, a portion inside the spacer adhesive layer is adhered buried, a capacitance type 3-dimensional sensor.
  • the capacitance type three-dimensional sensor according to the first aspect of the present invention has the above configuration, and the Shore A hardness is 85 when the Z-direction position detecting electrode body is 1 cm in thickness on the spacer adhesive layer side.
  • the capacitance type three-dimensional sensor of the second invention of the present invention is arranged so as to overlap the sheet-like XY direction position detecting electrode body for detecting the position in the XY direction and the XY direction position detecting electrode body.
  • a sheet-like Z-direction position detecting electrode body for detecting a position in the Z direction, and the XY direction position detecting electrode body includes a pair of conductive films for detecting a position in the XY direction
  • the Z-direction position detection electrode body is a capacitance type three-dimensional sensor provided with a conductive film for detecting a Z-direction position, and the XY-direction position detection electrode in the Z-direction position detection electrode body.
  • a plurality of dot spacers provided on the body-side surface, and a spacer adhesive layer for bonding the plurality of dot spacers to the XY direction position detection electrode body, wherein the plurality of dot spacers are the Z position detection electrode body.
  • the capacitance type three-dimensional sensor according to a second aspect of the present invention has the above configuration, wherein the XY-direction position detecting electrode body has a Shore A hardness of 85 when the thickness is 1 cm on the spacer adhesive layer side. It is preferable that an elastic deformation layer made of the following material is provided, and the dot spacer is made of a material that cannot be elastically deformed.
  • the spacer adhesive layer is preferably formed of a hot melt adhesive or an active energy ray curable resin in the above configuration. .
  • the height of each of the dot spacers is preferably 30 to 150 ⁇ m.
  • the electrostatic capacity type three-dimensional sensor of the present invention has high position detection accuracy in the Z direction.
  • FIG. 1 shows a three-dimensional sensor according to this embodiment.
  • the three-dimensional sensor 1 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
  • the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 are arranged so as to overlap each other via a gap, and the Z-direction position detection electrode body 20 and the XY-direction position detection electrode A spacer adhesive layer 40 and a dot spacer 50 are formed between the body 60.
  • the spacer adhesive layer 40 is provided on the front side of the Z direction position detecting electrode body 20, and the dot spacer 50 is provided on the back side of the XY direction position detecting electrode body 60.
  • the dot spacer 50 is partly buried in the spacer adhesive layer 40 and adhered in a state where a gap is formed between the spacer adhesive layer 40 and the XY direction position detecting electrode body 60, and FIG. In the example shown in FIG. 2, the tip of the dot spacer 50 is in contact with the elastic deformation layer 30.
  • the input area with which the finger or stylus pen is brought into contact is rectangular in plan view (not shown).
  • the longitudinal direction of the input area is the X direction
  • the short direction of the input area is the Y direction
  • the direction perpendicular to the X direction and the Y direction is the Z direction.
  • the finger or stylus pen contacts the protective layer 90.
  • the protective layer 90 side is referred to as “front side” or “front side”.
  • the support plate 10 side is referred to as “back side” or “back side”.
  • the support plate 10 is a plate that is bonded to and supported by the Z-direction position detection electrode body 20 and prevents the Z-direction position detection electrode body 20 from bending.
  • the support plate 10 is a plate having a thickness of 100 ⁇ m or more, preferably 200 ⁇ m or more, more preferably 500 ⁇ m or more, and its upper limit is about 10 mm.
  • the material of the support plate 10 For example, any of a metal, resin, ceramics, and glass may be sufficient.
  • the Z-direction position detection electrode body 20 is an electrode body used when detecting a position in the Z direction, and is provided on the front surface 10 a of the support plate 10.
  • the Z-direction position detecting electrode body 20 in the present embodiment includes a base sheet 21, a predetermined pattern-shaped conductive film 22 formed on the front surface 21a (first surface 21a) of the base sheet 21, and a conductive pattern. This is an electrode sheet having an insulating film 23 covering the film 22.
  • the Z-direction position detecting electrode body 20 in this embodiment includes an elastic deformation layer 30 on the surface of the insulating film 23, that is, on the spacer adhesive layer 40 side.
  • “conductive” means that the electric resistance value is less than 1 M ⁇
  • “insulation” means that the electric resistance value is 1 M ⁇ or more, preferably 10 M ⁇ or more.
  • a plastic film, a glass plate, etc. can be used, for example.
  • the resin constituting the plastic film for example, polyethylene terephthalate, polycarbonate, polyimide, triacetyl cellulose, cyclic polyolefin, acrylic resin, or the like can be used.
  • polyethylene terephthalate or polycarbonate is preferable as the substrate sheet 21 because of its high heat resistance and dimensional stability and low cost.
  • the thickness of the base sheet 21 is preferably 25 to 75 ⁇ m. If the thickness of the base material sheet 21 is equal to or greater than the lower limit value, the three-dimensional sensor 1 can be easily thinned if it is less likely to break during processing and is equal to or less than the upper limit value.
  • Examples of the conductive film 22 include a film formed of a conductive paste, a film containing a conductive polymer, a film containing metal nanowires, a film containing carbon, and a metal vapor deposition film formed by a metal vapor deposition method. It is done.
  • Examples of the conductive paste include silver paste, copper paste, and gold paste.
  • Examples of the conductive polymer include polythiophene, polypyrrole, polyaniline, and the like.
  • Examples of metal nanowires include silver nanowires and gold nanowires.
  • Examples of carbon include carbon black and carbon nanotubes. For example, copper, aluminum, nickel, chromium, zinc, gold, or the like can be used as a metal for forming the metal vapor deposition film.
  • the metal vapor deposition method is a method by which a thin metal film can be easily formed.
  • a metal vapor deposition method is not particularly limited.
  • plasma CVD method laser CVD method, thermal CVD method, gas source CVD method, coating method, vacuum vapor deposition method, sputtering method, reactive sputtering method, MBE ( Molecular beam epitaxy) method, cluster ion beam method, ion plating method, plasma polymerization method (high frequency excitation ion plating method), and the like.
  • the vacuum vapor deposition method is preferable because the film formation speed is high and the cost is low.
  • the surface of the conductive film 22 may be subjected to various surface treatments such as plasma treatment, ultraviolet irradiation treatment, corona treatment, and excimer light treatment.
  • plasma treatment ultraviolet irradiation treatment
  • corona treatment corona treatment
  • excimer light treatment When the conductive film 22 is subjected to the above surface treatment, the adhesion with the insulating film 23 is improved and the contact resistance is lowered.
  • the thickness of the conductive film 22 is preferably 1 to 25 ⁇ m and more preferably 5 to 15 ⁇ m in the case of a film formed of a conductive paste.
  • the thickness of the conductive film 22 is preferably 0.1 to 5.0 ⁇ m, and more preferably 0.1 to 2.0 ⁇ m.
  • the thickness of the conductive film 22 is preferably 20 to 1000 nm, and more preferably 50 to 300 nm.
  • the thickness of the conductive film 22 is preferably 0.01 to 25 ⁇ m, and more preferably 0.1 to 15 ⁇ m.
  • the thickness of the conductive film 22 is preferably 0.01 to 1.0 ⁇ m and more preferably 0.05 to 0.3 ⁇ m in the case of a metal vapor deposition film. If the thickness of the conductive film 22 is less than the lower limit, pinholes may be formed and disconnection may occur, and if the upper limit is exceeded, it is difficult to reduce the thickness.
  • the method for measuring the thickness of the conductive film 22 varies depending on the thickness range. For example, when the film thickness is on the order of ⁇ m, it can be measured by a micrometer or laser displacement measurement. In the case of a film thickness thinner than the order, it can be measured by cross-sectional observation using a scanning electron microscope.
  • the pattern of the conductive film 22 in the present embodiment is, for example, a pattern having a plurality of X-direction electrode portions 22a formed along the X direction and formed into a strip shape with a constant width, as shown in FIG.
  • the width of the X-direction electrode portion 22a is preferably 0.1 to 2 mm, and more preferably 0.2 to 1 mm. If the width of the X-direction electrode portion 22a is equal to or larger than the lower limit value, disconnection can be prevented, and if the width is equal to or smaller than the upper limit value, position detection accuracy can be improved.
  • the interval between adjacent X-direction electrode portions 22a and 22a is preferably 1 to 5 mm, and more preferably 1.5 to 3 mm. More preferred.
  • the position detection accuracy of the three-dimensional sensor 1 can be improved if the distance between the adjacent X-direction electrode portions 22a, 22a is equal to or less than the upper limit value. However, it is not preferable that the distance between adjacent X-direction electrode portions 22a and 22a be less than the lower limit value because the number of wires increases.
  • the insulating film 23 is an insulating resin film.
  • the insulating film 23 can improve the adhesion of the elastically deformable layer 30 and can prevent the conductive film 22 from being deteriorated (oxidized or corroded).
  • the insulating resin for example, a thermosetting resin, a visible light curable resin, an electron beam curable resin, or an ultraviolet curable resin is used. In terms of small thermal shrinkage during curing, the ultraviolet curable resin is used. preferable. Examples of such ultraviolet curable resins include urethane acrylate, epoxy acrylate, polyester acrylate, acrylic acrylate, and silicone acrylate.
  • the insulating film 23 is preferably thin as long as insulation can be ensured.
  • the thickness is preferably 5 ⁇ m or more from the viewpoint of preventing pinhole formation.
  • the thickness is preferably 0.5 ⁇ m or more from the viewpoint of preventing pinhole formation.
  • the Z-direction position detection electrode body 20 includes a lead wiring 24 and an external connection terminal 25 (see FIG. 2).
  • the routing wiring 24 is a wiring for connecting each X-direction electrode portion 22 a and the external connection terminal 25.
  • the width of the routing wiring 24 is preferably 20 to 100 ⁇ m, and more preferably 20 to 50 ⁇ m. If the width of the routing wiring 24 is equal to or greater than the lower limit value, disconnection of the routing wiring can be prevented, and if the width is equal to or less than the upper limit value, the material used for the routing wiring 24 can be reduced, thereby reducing the cost.
  • the spacing between adjacent routing wires 24, 24 is preferably 20 to 100 ⁇ m, and more preferably 20 to 50 ⁇ m.
  • the three-dimensional sensor 1 can be easily downsized if the distance between adjacent routing wires 24, 24 is less than or equal to the upper limit value. However, it is difficult in manufacturing to make the interval between adjacent routing wires 24, 24 less than the lower limit value.
  • the external connection terminal 25 is a terminal for connecting to an external circuit and is made of a conductive material.
  • the external connection terminal 25 in the present embodiment is a rectangular conductive portion.
  • the elastic deformation layer 30 is a layer that can be elastically deformed when the surface thereof is pressed, and is a layer having a Shore A hardness of 85 or less when measured with a thickness of 1 cm. However, if it is too soft, recovery after elastic deformation is delayed, so the Shore A hardness of the elastic deformation layer 30 is preferably 30 or more.
  • the Shore A hardness of the elastically deformable layer 30 can be measured by a method specified in JIS K6253.
  • Specific examples of the elastic deformation layer 30 include, for example, a polyurethane layer, a silicone layer, a rubber layer, an elastomer layer, a foamed material layer, and the like.
  • a polyurethane layer is preferable in that it has sufficient elasticity and is low in cost.
  • the material forming the elastic deformation layer 30 may be thermosetting or thermoplastic.
  • the thickness of the elastic deformation layer 30 is determined according to the amount of displacement in the Z direction of the XY direction position detecting electrode body 60 at the time of pressing.
  • the thickness of the elastic deformation layer 30 is preferably 20 to 200 ⁇ m, and more preferably 20 to 100 ⁇ m. If the thickness of the elastic deformation layer 30 is equal to or greater than the lower limit value, the XY direction position detecting electrode body 60 can be sufficiently deformed when the protective layer 90 is pressed. The deformation layer 30 can be easily formed.
  • the spacer adhesive layer 40 in this embodiment is a layer that adheres the dot spacer 50 to the Z-direction position detecting electrode body 20.
  • the spacer adhesive layer 40 is formed on the surface of the elastic deformation layer 30 of the Z-direction position detecting electrode body 20.
  • an adhesive formed from a hot melt adhesive layer for example, an adhesive formed from a hot melt adhesive layer, an active energy ray curable resin (an ultraviolet curable resin, an electron beam curable resin, or a visible light curable resin). An agent layer etc. are mentioned.
  • the spacer adhesive layer 40 may be an adhesive layer other than an adhesive layer formed from a hot melt adhesive layer and an active energy ray curable resin, but the spacer adhesive layer 40 is a hot melt adhesive layer.
  • the adhesive layer is preferably an adhesive layer formed from an adhesive layer and an active energy ray-curable resin.
  • the adhesive layer formed from the hot melt adhesive layer and the active energy ray curable resin has low fluidity. Therefore, the air / dielectric ratio can be made uniform between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60, and the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body. It is possible to reduce the variation in the electrostatic capacity with respect to 60.
  • the spacer adhesive layer 40 has high fluidity, when the dot spacer 50 is pushed toward the spacer adhesive layer 40, the portion of the dot spacer 50 that is not buried in the spacer adhesive layer 40 contacts the spacer adhesive layer 40.
  • the XY direction position detecting electrode body 60 is prevented from returning to the original position after the pressing is completed.
  • the spacer adhesive layer 40 is a hot melt adhesive layer or an adhesive layer formed from an active energy ray curable resin
  • the spacer adhesive layer 40 is hard. Therefore, the portion of the dot spacer 50 that is not buried in the spacer adhesive layer 40 is prevented from adhering to the spacer adhesive layer 40. Therefore, the XY direction position detecting electrode body 60 easily returns to the original position after the pressing.
  • the thickness of the spacer adhesive layer 40 is preferably 5 ⁇ m or more, and more preferably 10 to 30 ⁇ m. If the thickness of the spacer adhesive layer 40 is equal to or greater than the lower limit, the dot spacer 50 can be adhered with sufficient strength. If the thickness of the spacer adhesive layer 40 exceeds the upper limit value, the spacer adhesive layer 40 may enter between the adjacent dot spacers 50 and 50, and the function of the elastic deformation layer 30 may be reduced.
  • a plurality of dot spacers 50 are provided between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60.
  • the dot spacer 50 in the present embodiment is a hemispherical dot shape, and a part thereof is buried in the spacer adhesive layer 40 and is in contact with the surface of the elastic deformation layer 30. In this state, the dot spacer 50 is bonded to the spacer bonding layer 40. Further, as described above, in the example shown in FIG. 1, the tip of the dot spacer 50 is in contact with the elastic deformation layer 30.
  • the dot spacer 50 forms a gap between the spacer adhesive layer 40 and the XY direction position detection electrode body 60. When the protective layer 90 is pressed by the gap, the XY direction position detection electrode body 60 can be deformed, and the distance between the Z direction position detection electrode body 20 and the XY direction position detection electrode body 60 can be reduced. Can do.
  • the dot spacer 50 There is no restriction
  • the dot spacers 50 are preferably rectangular in that the adhesion to the spacer adhesive layer 40 can be easily increased.
  • the dot spacer 50 in this embodiment is not elastically deformable, and can be formed from a material having a Shore A hardness of more than 85 when measured with a thickness of 1 cm.
  • the dot spacer 50 is preferably one that cannot measure hardness with Shore A and can measure hardness with Shore D.
  • examples of the material of the dot spacer 50 include a cured product of an active energy ray curable resin (an ultraviolet curable resin, an electron beam curable resin, and a visible light curable resin), and a cured product of a thermosetting resin. And a cured product of a thermoplastic resin.
  • an active energy ray curable resin an ultraviolet curable resin, an electron beam curable resin, and a visible light curable resin
  • a cured product of a thermosetting resin a cured product of a thermoplastic resin.
  • a cured product of an active energy ray-curable resin is preferable in that the height of the dot spacer 50 can be easily secured and the solvent does not volatilize during cu
  • the height (the length in the Z direction) of the dot spacer 50 is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more. If the height of the dot spacer 50 is equal to or more than the lower limit value, the XY direction position detecting electrode body 60 is more easily bent when pressed and a sufficient amount of displacement can be secured. On the other hand, the height of the dot spacer 50 is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less. If the height of the dot spacer 50 is not more than the upper limit value, the dot spacer 50 can be easily formed. That is, the height of the dot spacer 50 is preferably 30 to 150 ⁇ m, and more preferably 50 to 100 ⁇ m.
  • the buried depth of the dot spacer 50 with respect to the spacer adhesive layer 40 is preferably 3 to 67%. If the embedding depth of the dot spacer 50 with respect to the spacer adhesive layer 40 is 3% or more of the length of the dot spacer 50 in the Z direction, the adhesive strength can be further increased. If the embedding depth of the dot spacer 50 with respect to the spacer adhesive layer 40 is 67% or less, a sufficient gap can be formed between the spacer adhesive layer 40 and the XY direction position detecting electrode body 60.
  • the dot spacers 50 are regularly arranged, and are arranged in, for example, a 60-degree zigzag pattern, a square zigzag pattern, a parallel pattern, or a grid pattern.
  • the interval between the adjacent dot spacers 50 and 50 is preferably 0.3 mm or less in the interval between the end portions in the width direction of the dot spacers 50 and 50. If the distance between the adjacent dot spacers 50, 50 is 0.3 mm or less, the XY direction position detection electrode body 60 can be prevented from adhering to the spacer adhesive layer 40.
  • the XY direction position detection electrode body 60 is an electrode body used when detecting positions in the X direction and the Y direction, and is provided on the front side of the dot spacer 50 in the three-dimensional sensor 1.
  • the XY direction position detecting electrode body 60 used in the present embodiment is a laminated sheet in which a pair of electrode sheets 70 and 80 are laminated. The pair of electrode sheets 70 and 80 are bonded by an adhesive layer.
  • the electrode sheet 70 includes a base sheet 71, a patterned conductive film 72 formed on the front surface 71 a (first surface 71 a) of the base sheet 71, and an insulating film 73 that covers the conductive film 72. .
  • the base material sheet 71 the thing similar to the base material sheet 21 can be used. However, the base sheet 71 is not necessarily the same as the base sheet 21.
  • the conductive film 72 the same film as the conductive film 22 can be used. However, the conductive film 72 is not necessarily the same as the conductive film 22.
  • the insulating film 73 the same film as the insulating film 23 can be used. However, the insulating film 73 is not necessarily the same as the insulating film 23.
  • the pattern of the conductive film 72 in the present embodiment is a pattern having a plurality of strip-shaped Y-direction electrode portions 72 a formed along the Y direction.
  • the width of the Y-direction electrode portion 72a that is, the length in the X direction is preferably 2 to 7 mm, and more preferably 3 to 5 mm. If the width of the Y-direction electrode portion 72a is equal to or larger than the lower limit value, disconnection can be prevented, and if the width is equal to or smaller than the upper limit value, position detection accuracy can be improved.
  • the interval between adjacent Y-direction electrode portions 72a and 72a that is, the interval between the end portions in the width direction of Y-direction electrode portions 72a and 72a is preferably 0.05 to 2 mm, and preferably 0.1 to 1 mm. Is more preferable. If the distance between adjacent Y-direction electrode portions 72a and 72a is equal to or less than the upper limit value, the three-dimensional sensor 1 can be easily downsized. However, it is not preferable to set the interval between the adjacent Y-direction electrode portions 72a and 72a to be less than the lower limit because the number of wirings increases.
  • the electrode sheet 70 has routing wiring 74 and external connection terminals 75 (see FIG. 3).
  • the lead wiring 74 is a wiring for connecting each Y-direction electrode portion 72 a and the external connection terminal 75.
  • the preferred width and interval of the routing wiring 74 are the same as those of the routing wiring 24 described above. Examples of a method for forming the routing wiring 74 and the external connection terminal 75 include a method in which a conductive paste is screen-printed on the surface of the base sheet 71 and then heated and cured.
  • the electrode sheet 80 in the present embodiment is bonded to the surface 70 a on the front side of the electrode sheet 70 with an adhesive layer 61.
  • the electrode sheet 80 in the present embodiment covers the base material sheet 81, the patterned conductive film 82 formed on the front surface 81 a (first surface 81 a) of the base material sheet 81, and the conductive film 82.
  • an insulating film 83 As the base material sheet 81, the thing similar to the base material sheet 21 can be used. However, the base sheet 81 is not necessarily the same as the base sheet 21.
  • the conductive film 82 the same film as the conductive film 22 can be used. However, the conductive film 82 is not necessarily the same as the conductive film 22.
  • the insulating film 83 the same film as the insulating film 23 can be used. However, the insulating film 83 is not necessarily the same as the insulating film 23.
  • the pattern of the conductive film 82 in this embodiment is the same as the pattern of the conductive film 22, and as shown in FIG. 4, the pattern includes a plurality of strip-shaped X-direction electrode portions 82a formed along the X direction.
  • the pattern of the conductive film 82 is not necessarily the same as the pattern of the conductive film 22. If they are not the same, the width of the conductive film 82 is preferably in the range of 0.05 to 2.0 mm, more preferably 0.05 to 1.0 mm.
  • the electrode sheet 80 has routing wiring 84 and external connection terminals 85 (see FIG. 4).
  • the lead wiring 84 is a wiring for connecting each X-direction electrode portion 82 a and the external connection terminal 85.
  • the preferable width and interval of the routing wiring 84 are the same as those of the routing wiring 24 described above.
  • Examples of a method for forming the routing wiring 84 and the external connection terminal 85 include a method in which a conductive paste is screen-printed on the front surface of the base sheet 81 and then cured by heating. In the three-dimensional sensor 1, the external connection terminals 25, 75, and 85 are arranged so as not to overlap each other by shifting the positions in the plan view direction.
  • the protective layer 90 is a layer that is formed on the surface 60 a on the front side of the XY direction position detection electrode body 60 and protects the XY direction position detection electrode body 60.
  • the protective layer 90 is bonded to the XY direction position detecting electrode body 60 by the double-sided adhesive tape 91.
  • the protective layer 90 is made of, for example, an insulating resin or insulating elastic glass.
  • As the insulating resin an insulating thermoplastic resin, an insulating thermosetting resin, or an ultraviolet curable resin is used. Further, the protective layer 90 may be decorated as necessary.
  • the thickness of the protective layer 90 is preferably 25 to 1000 ⁇ m.
  • the XY direction position detecting electrode body 60 can be sufficiently protected, and if the thickness is equal to or smaller than the upper limit value, the protective layer 90 can be easily bent at the time of pressing. .
  • the manufacturing method of the three-dimensional sensor 1 includes a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, and protection.
  • the method which has a layer bonding process and a support plate bonding process is mentioned.
  • the X-direction electrode portion 22a, the routing wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21.
  • the insulating film 23 is formed thereon, and the elastic deformation layer 30 is further formed to obtain the Z-direction position detecting electrode body 20.
  • a method for forming the X-direction electrode portion 22a (patterned conductive film 22) for example, an unpatterned conductive film is formed on at least a part of the surface 21a (first surface 21a) on the front side of the base sheet 21. Thereafter, there is a method of etching the conductive film so as to have a predetermined pattern.
  • etching method at this time for example, a dry etching method such as a chemical etching method (wet etching method), laser etching, plasma etching using argon plasma or oxygen plasma, or ion beam etching can be applied.
  • a dry etching method such as a chemical etching method (wet etching method), laser etching, plasma etching using argon plasma or oxygen plasma, or ion beam etching can be applied.
  • laser etching is preferable because the X-direction electrode portion 22a can be formed finely.
  • Examples of a method for forming the lead wiring 24 and the external connection terminal 25 include a method in which a conductive paste is screen-printed on the first surface 21a of the base sheet 21 and then heated and cured.
  • various printing methods such as screen printing and ink jet printing can be applied.
  • the periphery may be trimmed to make the Z-direction position detection electrode body 20 a predetermined shape.
  • the elastically deformable layer 30 is formed on the entire surface of the Z-direction position detecting electrode body 20. Specifically, the elastic deformation layer 30 is formed on the entire exposed surface of the insulating film 23 constituting the Z-direction position detection electrode body 20.
  • the method for forming the elastically deformable layer 30 is not particularly limited, and various printing methods and various coating methods can be applied, for example.
  • the XY direction position detection electrode body manufacturing step is a step of bonding the electrode sheets 70 and 80 after the electrode sheet 70 and the electrode sheet 80 are manufactured.
  • the electrode sheet 70 is obtained by forming the Y-direction electrode portion 72a, the routing wiring 74, and the external connection terminal 75 on the first surface 71a of the base sheet 71, and forming the insulating film 73 thereon.
  • the electrode sheet 80 is obtained by forming the X-direction electrode portion 82a, the routing wiring 84 and the external connection terminal 85 on the first surface 81a of the base sheet 81, and forming the insulating film 83 thereon.
  • the formation method of the Y direction electrode portion 72a and the X direction electrode portion 82a is the same as the formation method of the X direction electrode portion 22a of the Z direction position detecting electrode body 20.
  • the formation method of the routing wirings 74 and 84 and the external connection terminals 75 and 85 is the same as the formation method of the routing wiring 24 and the external connection terminals 25 of the Z-direction position detection electrode body 20.
  • the periphery may be trimmed in order to make the electrode sheets 70 and 80 have a predetermined shape. In the bonding of the electrode sheet 70 and the electrode sheet 80, the surface of the electrode sheet 70 and the back surface of the electrode sheet 80 are bonded.
  • the insulating film 73 of the electrode sheet 70 and the base material sheet 81 of the electrode sheet 80 are bonded.
  • Examples of a method for bonding the electrode sheet 70 and the electrode sheet 80 include a method of bonding using an adhesive layer 61 made of a pressure-sensitive adhesive, an adhesive, or a double-sided pressure-sensitive adhesive tape. In these bonding, you may pressurize and you may heat in the case of the pressurization.
  • the spacer forming step in the present embodiment is a step of forming the dot spacer 50 on the back surface of the XY direction position detecting electrode body 60. Specifically, in the spacer forming step, the dot spacers 50 are formed on the exposed surface of the base material sheet 71 of the electrode sheet 70 constituting the XY direction position detecting electrode body 60.
  • a method for forming the dot spacer 50 is not particularly limited, and for example, screen printing, inkjet printing, imprinting, and the like can be applied.
  • the dot spacer 50 is formed by screen printing of the active energy ray curable resin, for example, screen-printing ink containing the active energy ray curable resin on the exposed surface of the base sheet, A method of forming dot spacers 50 by irradiating and curing active energy rays can be applied.
  • the spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the entire surface of the elastic deformation layer 30 of the Z-direction position detecting electrode body 20. Specifically, when the spacer adhesive layer 40 is composed of a hot melt adhesive, in the spacer adhesive layer forming step, the molten hot melt adhesive is applied to the entire surface of the elastic deformation layer 30 and cooled. Then, the spacer adhesive layer 40 is formed. On the other hand, when the spacer adhesive layer 40 is made of an active energy ray curable resin, a liquid containing the active energy ray curable resin is applied to the entire surface of the elastic deformation layer 30 in the spacer adhesive layer forming step.
  • the applied active energy ray-curable resin is cured by irradiation with active energy rays to form the spacer adhesive layer 40.
  • the applied active energy ray-curable resin may be cured before the pressure-bonding step, or may be cured after the dot spacer 50 is pressure-bonded in the pressure-bonding step. If the active energy ray-curable resin is cured after the dot spacer 50 is pressure-bonded in the pressure-bonding step, the dot spacer 50 can be easily embedded in the spacer adhesive layer 40.
  • the XY direction position detecting electrode body 60 provided with the dot spacers 50 and the Z direction position detecting electrode body 20 provided with the spacer adhesive layer 40 are crimped to form an adhesive laminate.
  • at least a part of the dot spacer 50 is buried in the spacer adhesive layer 40.
  • the spacer adhesive layer 40 and the dot spacer 50 are pressed, and a part of the dot spacer 50 is buried in the spacer adhesive layer 40 and crimped.
  • the spacer adhesive layer 40 may be melted by heating, or the spacer adhesive layer 40 may be dissolved by a solvent. As described above, when the spacer adhesive layer 40 is made of an active energy ray curable resin, the active energy ray curable resin is not cured before the dot spacer 50 is buried in the spacer adhesive layer 40.
  • the depth of the dot spacer 50 embedded in the spacer adhesive layer 40 is appropriately set, and the size of the gap between the XY direction position detecting electrode body 60 and the spacer adhesive layer 40 is set. Can be adjusted to a desired range.
  • the spacer adhesive layer 40 and the dot spacer 50 may be surface-treated to improve the adhesion.
  • a protective layer bonding process is a process of bonding a protective layer to the said adhesive laminated body. Specifically, in the protective layer bonding step, the protective layer 90 is bonded to the insulating film 83 of the XY direction position detecting electrode body 60 constituting the above-mentioned bonded laminated body using a double-sided adhesive tape 91. Alternatively, it is possible to provide an adhesive layer on the insulating film 83 instead of the double-sided adhesive tape 91.
  • a support board bonding process is a process of bonding a support board to the said adhesion laminated body. Specifically, in the support plate bonding step, the support plate 10 is bonded using the double-sided pressure-sensitive adhesive tape 11 to the base material sheet 21 of the Z-direction position detecting electrode body 20 that constitutes the above-mentioned adhesive laminate. Thereby, the three-dimensional sensor 1 is obtained.
  • the three-dimensional sensor 1 is used as a capacitive touch pad of a notebook personal computer.
  • the user of the personal computer moves his / her finger along the surface of the protective layer 90 in order to move the position in the X direction and the position in the Y direction of the pointer displayed on the monitor.
  • the three-dimensional sensor 1 uses the XY direction position detection electrode body 60 to detect the position of the finger in the X direction and the position in the Y direction in the input area.
  • the positions of the fingers in the X direction and the Y direction are obtained by using the conductive films 72 and 82 to detect a change in capacitance in the X direction and a change in capacitance in the Y direction.
  • the user moves the position in the X direction and the position in the Y direction of the pointer to the selection area for executing the target processing, and then presses the input area of the three-dimensional sensor 1 with the finger. To do.
  • the XY direction position detection electrode body 60 and the protective layer 90 are bent, and the dot spacer 50 presses and deforms the elastic deformation layer 30 by the bending. Therefore, the distance between the Z-direction position detecting electrode body 20 and the electrode sheet 70 of the XY-direction position detecting electrode body 60 is shortened.
  • the adhesive strength is high, and the protective layer 90 is not pressed or pressed.
  • the dot spacer 50 is hardly peeled off from the spacer adhesive layer 40. Therefore, when not pressed, the capacitance values of the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be set to a predetermined value as a whole. On the other hand, at the time of pressing, if the pressing depth is the same, the capacitance value can be made the same value. Thereby, the position detection accuracy in the Z direction can be improved.
  • the distance between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 is the height of the dot spacer 50. Therefore, the interval between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the variation in the capacitance value between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 becomes smaller when not pressed. Thereby, the three-dimensional sensor 1 of the present embodiment has higher position detection accuracy in the X direction.
  • the dot spacer 50 since the elastic deformation layer 30 is provided, the dot spacer 50 does not need to have elasticity, and the degree of freedom of the material and forming method of the dot spacer 50 is increased. In addition, the dot spacer 50 can be formed, and the mold forming is not necessary. Therefore, the three-dimensional sensor 1 can be obtained at a low cost. In addition, when mold forming is applied to the formation of the spacer, since the spacer is formed into a sheet shape, the number of parts when manufacturing the three-dimensional sensor increases. In this embodiment, the spacer sheet is not necessary. The number of parts can be reduced.
  • FIG. 5 shows the three-dimensional sensor of this embodiment.
  • the three-dimensional sensor 2 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
  • the present embodiment has the same configuration as that of the first embodiment except that the spacer adhesive layer 40 is formed in a pattern at a position corresponding to the dot spacer 50.
  • the pattern of the spacer adhesive layer 40 is not particularly limited as long as the spacer adhesive layer 40 is formed at a position corresponding to the dot spacer 50, and examples thereof include a dot shape and a lattice shape.
  • the spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 in a pattern on a part of the surface of the elastic deformation layer 30.
  • the position where the spacer adhesive layer 40 is formed is a position corresponding to the dot spacer 50.
  • the formation method of the spacer adhesive layer 40 is the same as the formation method of the spacer adhesive layer 40 in the first embodiment except that the formation position is changed from the entire surface of the elastic deformation layer 30 to a part of the surface of the elastic deformation layer 30. It is the same as the method.
  • the adhesive strength is high, and the dot spacer 50 is not pressed and pressed. It is difficult to peel off from the spacer adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved. Further, since the tip of the dot spacer 50 is in contact with the surface of the elastic deformation layer 30, the distance between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 2 can be further improved.
  • the three-dimensional sensor 2 of this embodiment since a plurality of spacer adhesive layers 40 are formed in a pattern, a space is formed between adjacent spacer adhesive layers 40 and 40. Thereby, when the elastic deformation layer 30 is pressed by the dot spacer 50, the portion pushed out by the deformation of the elastic deformation layer 30 can escape to the space. Therefore, it is possible to prevent the spacer adhesive layer 40 from inhibiting the deformation of the elastic deformation layer 30, and as a result, the operability of the three-dimensional sensor 2 can be improved. Further, since a plurality of spacer adhesive layers 40 are formed in a pattern, even when the spacer adhesive layer 40 has high elasticity, it can easily return to its original shape without hindering the restoration after deformation.
  • FIG. 6 shows the three-dimensional sensor of this embodiment.
  • the three-dimensional sensor 3 of the present embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
  • the elastic deformation layer 30 is not the Z-direction position detection electrode body 20 but the XY-direction position detection electrode body 60, and the arrangement of the spacer adhesive layer 40 and the dot spacer 50 is different.
  • the second embodiment is the same as the first embodiment except that a gap is formed between the directional position detection electrode body 20 and the spacer adhesive layer 40. That is, in this embodiment, the dot spacer 50 is provided on the insulating film 23 of the Z-direction position detection electrode body 20, and the elastic deformation layer 30 is formed on the back side of the base sheet 71 of the XY-direction position detection electrode body 60. A spacer adhesive layer 40 is formed on the back side of the elastic deformation layer 30. The direction of the dot spacer 50 in the present embodiment is opposite to that in the first embodiment. However, the dot spacer 50 is partially embedded in the spacer adhesive layer 40 and bonded to the first embodiment. It is the same.
  • the XY direction position detection electrode body 60 and the protective layer 90 are bent, and the elastic deformation layer 30 is formed into a dot spacer by the bending. It is pressed toward 50. Thereby, the dot spacer 50 presses and deforms the elastic deformation layer 30. Therefore, the distance between the Z-direction position detecting electrode body 20 and the electrode sheet 70 of the XY-direction position detecting electrode body 60 is shortened. At that time, a change in capacitance between the conductive film 22 and the conductive film 72, that is, a change in capacitance in the Z direction is detected, and a pressing amount is obtained from the change in capacitance.
  • the manufacturing method of the three-dimensional sensor 3 includes a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, and a protection.
  • the method which has a layer bonding process and a support plate bonding process is mentioned.
  • the spacer formation process, spacer adhesion layer formation process, and pressure bonding process in the present embodiment are different from the spacer formation process, spacer adhesion layer formation process, and pressure bonding process in the first embodiment, and the other processes are the first implementation. It is the same as the form.
  • the X-direction electrode portion 22a, the routing wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21 and insulated on them. This is a step of forming the film 23 and obtaining the Z-direction position detecting electrode body 20.
  • the method of forming the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 is the same as the formation of the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 in the first embodiment. It is the same as the method.
  • the electrode sheets 70 and 80 are bonded together, and the elastic deformation layer 30 is formed on the entire back side of the electrode sheet 70. It is a process to do.
  • the method for forming the electrode sheets 70 and 80 in the present embodiment is the same as the method for forming the electrode sheets 70 and 80 in the first embodiment.
  • the elastically deformable layer 30 is formed on the entire back surface of the base sheet 71 of the electrode sheet 70 constituting the XY direction position detecting electrode body 60.
  • the formation method of the elastic deformation layer 30 is the same as the formation method of the elastic deformation layer 30 in the first embodiment.
  • the spacer forming step in the present embodiment is a step of forming dot spacers 50 on the surface of the Z direction position detecting electrode body 20. Specifically, in the spacer forming step, the dot spacers 50 are formed in a dot shape on the exposed surface of the insulating film 23 constituting the Z-direction position detecting electrode body 20.
  • the method for forming the dot spacer 50 is the same as the method for forming the dot spacer 50 in the first embodiment.
  • the spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the entire back surface of the elastic deformation layer 30 provided in the XY direction position detecting electrode body 60.
  • the method for forming the spacer adhesive layer 40 is the same as the method for forming the spacer adhesive layer 40 in the first embodiment, except that the formation position of the spacer adhesive layer 40 is changed from the front surface side to the back surface side of the elastic deformation layer 30. is there.
  • the XY direction position detecting electrode body 60 provided with the spacer adhesive layer 40 and the Z direction position detecting electrode body 20 provided with the dot spacer 50 are crimped to form an adhesive laminate,
  • part of the dot spacer 50 is buried in the spacer adhesive layer 40.
  • the spacer adhesive layer 40 and the dot spacer 50 are pressed, and a part of the dot spacer 50 is buried in the spacer adhesive layer 40 and crimped.
  • the dot spacer 50 is buried in the spacer adhesive layer 40 so that the tip of the dot spacer 50 is in contact with the back surface of the elastic deformation layer 30.
  • the adhesive strength is high, and the dot spacer 50 is a spacer when not pressed and when pressed. It becomes difficult to peel from the adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved. Further, since the tip of the dot spacer 50 is in contact with the back surface of the elastic deformation layer 30, the distance between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 3 can be further improved.
  • FIG. 7 shows the three-dimensional sensor of this embodiment.
  • the three-dimensional sensor 4 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
  • the present embodiment is the same as the first embodiment except that the elastic deformation layer is not provided and the spacer adhesive layer 40 is directly bonded to the Z-direction position detecting electrode body 20.
  • the dot spacer 50 in the present embodiment is preferably made of an elastically deformable material, and is formed of a material having a Shore A hardness of 85 or less when measured with a thickness of 1 cm.
  • the elastically deformable material the same material as that constituting the elastically deformable layer in the first embodiment can be used.
  • a part of the dot spacer 50 is buried and adhered inside the spacer adhesive layer 40, but the tip of the dot spacer 50 is in contact with the surface of the insulating film 23 of the X-direction position detection electrode body 20. Yes. Since the tip of the dot spacer 50 is in contact with the surface of the insulating film 23 of the X-direction position detecting electrode body 20, the conductive film 22 can be prevented from being damaged.
  • a Z-direction position detection electrode body preparation step As a manufacturing method of the three-dimensional sensor 4 described above, a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, The method which has a protective layer bonding process and a support plate bonding process is mentioned.
  • the Z-direction position detection electrode body in the first embodiment is the same as the Z-direction position detection electrode body preparation step, spacer adhesion layer formation step, and crimping step in this embodiment.
  • the spacer adhesive layer forming process, and the crimping process the other processes are the same as those in the first embodiment.
  • the X-direction electrode portion 22a, the routing wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21.
  • the insulating film 23 is formed thereon to obtain the Z-direction position detecting electrode body 20.
  • the method of forming the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 is the same as the formation of the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 in the first embodiment. It is the same as the method.
  • the spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the entire surface of the insulating film 23 of the Z-direction position detecting electrode body 20. Specifically, when the spacer adhesive layer 40 is composed of a hot melt adhesive, in the spacer adhesive layer forming step, the melted hot melt adhesive is applied to the entire surface of the insulating film 23 and cooled. Then, the spacer adhesive layer 40 is formed. When the spacer adhesive layer 40 is composed of an active energy ray curable resin, in the spacer adhesive layer forming step, an adhesive solution or an adhesive solution is applied to the entire surface of the insulating film 23 to obtain active energy rays. The spacer adhesive layer 40 is formed by curing by irradiation.
  • the XY direction position detecting electrode body 60 provided with the dot spacers 50 and the Z direction position detecting electrode body 20 provided with the spacer adhesive layer 40 are crimped to form an adhesive laminate.
  • This is a step of forming a part of the dot spacer 50 and burying it inside the spacer adhesive layer 40.
  • the spacer adhesive layer 40 and the dot spacer 50 are pressed, and a part of the dot spacer 50 is buried in the spacer adhesive layer 40 and crimped. At that time, a part of the dot spacer 50 is buried in the spacer adhesive layer 40 so that the tip of the dot spacer 50 is in contact with the surface of the insulating film 23.
  • the adhesive strength is high, and the dot spacer 50 is a spacer when not pressed and when pressed. It is difficult to peel from the adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved. Further, since the tip of the dot spacer 50 is in contact with the surface of the insulating film 23, the distance between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 4 can be further improved.
  • FIG. 8 shows the three-dimensional sensor of this embodiment.
  • the three-dimensional sensor 5 of the present embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
  • the present embodiment is the same as the first embodiment except that the spacer adhesive layer 40 is formed instead of the insulating film 23 of the Z-direction position detecting electrode body 20 and the elastic deformation layer is omitted.
  • the dot spacer 50 in the present embodiment is preferably made of an elastically deformable material, and is formed of a material having a Shore A hardness of 85 or less when measured with a thickness of 1 cm.
  • the elastically deformable material the same material as that constituting the elastically deformable layer in the first embodiment can be used.
  • the manufacturing method of the three-dimensional sensor 5 includes a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, and a protection.
  • the method which has a layer bonding process and a support plate bonding process is mentioned.
  • the Z-direction position detection electrode body preparation process, the spacer adhesive layer formation process, and the crimping process in the present embodiment are different from the Z-direction position detection electrode body preparation process, the spacer adhesive layer formation process, and the crimping process in the first embodiment. Other processes are the same as those in the first embodiment.
  • the X-direction electrode portion 22a, the lead-out wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21, and Z This is a step of obtaining the directional position detecting electrode body 20.
  • the formation method of the X direction electrode portion 22a, the formation method of the routing wiring 24 and the external connection terminal 25 are the same as the formation method of the X direction electrode portion 22a, the formation method of the routing wiring 24 and the external connection terminal 25 in the first embodiment. It is the same.
  • the spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the exposed surface of the Z-direction position detecting electrode body 20. Specifically, in the spacer adhesive layer forming step, the spacer adhesive layer 40 is formed on the entire surface of the base sheet 21, the X-direction electrode portion 22 a, the routing wiring 24, and the external connection terminal 25 of the Z-direction position detection electrode body 20. .
  • the method for forming the spacer adhesive layer 40 in the present embodiment is the same as the method for forming the spacer adhesive layer 40 in the first embodiment.
  • the XY direction position detecting electrode body 60 provided with the dot spacers 50 and the Z direction position detecting electrode body 20 provided with the spacer adhesive layer 40 are crimped to form an adhesive laminate.
  • a part of the dot spacer 50 is formed such that the tip of the dot spacer 50 does not contact the surface of the conductive film 22 and a gap is formed between the spacer adhesive layer 40 and the XY direction position detection electrode body 60. Is buried in the spacer adhesive layer 40.
  • the three-dimensional sensor 5 of the present embodiment has a simplified configuration.
  • FIG. 9 shows the three-dimensional sensor of this embodiment.
  • the three-dimensional sensor 6 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
  • the present embodiment is the same as the first embodiment except that the dot spacer 50 is formed in a truncated cone shape having a flat tip surface.
  • the spacer forming step in the present embodiment is a step in which the dot spacer 50 is formed on the back surface of the XY direction position detecting electrode body 60 by an imprint method using UV (ultraviolet light). This is different from the spacer forming step in the embodiment. That is, in the spacer forming step of the present embodiment, the dot spacers 50 are formed on the exposed surface of the base material sheet 71 of the electrode sheet 70 constituting the XY direction position detecting electrode body 60 by the UV imprint method.
  • an ink containing an active energy ray-curable resin is screen-printed on the exposed surface of the base sheet.
  • the active energy ray curable resin is sandwiched between a mold die made of a glass material (not shown) and the base sheet, and the dot pattern formed on the mold die is transferred while being transferred to the active energy ray curable resin.
  • the active energy ray curable resin is cured to form the dot spacers 50.
  • UV light is shielded by the conductive film pattern formed on the base sheet in the XY direction position detection electrode body manufacturing step.
  • the conductive film pattern formed on the base sheet in the XY direction position detection electrode body manufacturing step There is a problem.
  • the adhesive strength is high, and the dot spacer 50 is not pressed and pressed. It is difficult to peel off from the spacer adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved. Further, since the tip of the dot spacer 50 is in contact with the surface of the elastic deformation layer 30, the distance between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 2 can be further improved.
  • the dot spacer 50 has a truncated cone shape (columnar shape), and the tip that is a flat surface comes into surface contact with the surface of the elastic deformation layer 30.
  • the interval between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 can be more reliably fixed, and therefore the Z-direction position detection accuracy of the three-dimensional sensor 6 can be further improved. Can do.
  • the dot shape of the dot spacer 50 can be formed with high accuracy by applying the UV imprint method as the method of forming the dot spacer 50. Thereby, it becomes easy to adjust the gap between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 at a constant interval. Further, by using a mold, as shown in FIG. 9, the dot shape of the dot spacer 50 is easily formed with high accuracy on the back surface side of the base sheet 71 having the conductive film 72 formed on the front surface side. can do. In addition, when forming the dot spacer 50 using a mold, if the spacer is formed on the sheet, there is no need to newly add a base material sheet for forming the dot spacer.
  • the tip of the dot spacer 50 can be formed as a flat surface (flat surface). Thereby, it becomes easy to adjust the gap between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 at a constant interval. Moreover, since the adhesion area between the dot spacer 50 and the elastic deformation layer 30 is increased, the adhesion force is improved. Furthermore, by applying the UV imprint method, the dot shape of the dot spacer 50 can be processed into a free shape by a highly accurate printing method.
  • the dot spacer can be easily formed with high accuracy not only in a circular shape in a plan view but also in various shapes such as a square shape in a plan view. It becomes possible to further improve the adhesive force between the deformable layer 30. Further, the shape of the dot spacer 50 can be easily formed with high accuracy as a columnar shape such as a conical shape as shown in FIG. 9 as well as a hemispherical shape in a sectional view as shown in FIG. Therefore, as described above, the adhesive force between the dot spacer 50 and the elastic deformation layer 30 can be further improved.
  • the three-dimensional sensor of the present invention is not limited to the above embodiment.
  • the widths of the X-direction electrode portion and the Y-direction electrode portion do not need to be constant.
  • the width may change periodically, and the thick portions and the narrower portions are alternately arranged. You may arrange in.
  • the three-dimensional sensor of the present invention does not need to be formed on the support plate in the order of the Z-direction position detection electrode body, the spacer adhesive layer and the dot spacer, and the XY-direction position detection electrode body.
  • XY direction position detection electrode body, spacer adhesive layer and dot spacer, Z direction position detection electrode body may be formed in this order.
  • the three-dimensional sensor of the present invention may not include the support plate and the protective layer.
  • Double-sided adhesive tape 20 Z-direction position detection electrode body 21 Base sheet 22 Conductive film 22a X-direction conductive portion 23 Insulating film 24 Lead-out wiring 25 External connection Terminal 30 Elastic deformation layer 40 Spacer adhesive layer 50 Dot spacer 60 XY direction position detection electrode body 61 Adhesive layer 70 Electrode sheet 71 Base sheet 72 Conductive film 72a Y direction electrode part 73 Insulating film 74 Lead-out wiring 75 External connection terminal 80 Electrode sheet 81 Substrate sheet 82 Conductive film 82a X-direction electrode part 83 Insulating film 84 Lead-out wiring 85 External connection terminal 90 Protective layer 91 Double-sided adhesive tape

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

This capacitive three-dimensional sensor (1) is provided with an XY-direction position detection electrode body (60), a Z-direction position detection electrode body (20) which is disposed so as to overlap with the XY-direction position detection electrode body (60), multiple dot spacers (50) which are disposed on the Z-direction position detection electrode body (20)-side surface of the XY-direction position detection electrode body (60), and a spacer bonding layer (40) for bonding the multiple dot spacers (50) to the Z-direction position detection electrode body (20). The multiple dot spacers (50) are bonded while partially embedded in the spacer bonding layer (40) in a state in which an air gap is formed between the XY-direction position detection electrode body (60) and the spacer bonding layer (40).

Description

静電容量式3次元センサCapacitance type 3D sensor
 本発明は、3次元の位置を検出する静電容量式3次元センサに関する。
本出願は、2014年4月16日に日本に出願された特願2014-084940号に基づき、優先権を主張し、その内容をここに援用する。
The present invention relates to a capacitive three-dimensional sensor that detects a three-dimensional position.
This application claims priority based on Japanese Patent Application No. 2014-084940 filed in Japan on April 16, 2014, the contents of which are incorporated herein by reference.
 ノート型パーソナルコンピュータ等の電子機器においては、モニタに表示されたポインタを移動させる手段としてタッチパッドを備えることがあり、このタッチパッドとしては、静電容量式センサを用いることがある。
 従来、タッチパッドとして使用される静電容量式センサは、2次元方向(X方向及びY方向)の静電容量の変化を検出するものであったが、近年では、3次元方向の(X方向、Y方向及びZ方向)の静電容量の変化を検出するものも検討されている(特許文献1)。
 3次元方向の静電容量を変化させる静電容量式3次元センサとしては、表側に配置された、XY方向の位置を検出するシート状のXY方向位置検出用電極体と、Z方向の位置を検出するシート状のZ方向位置検出用電極体と、これらの間に複数設けられた弾性変形可能なドットスペーサとを備えるものが知られている(特許文献2)。前記ドットスペーサは、その先端が、スペーサ接着層に接触した状態で接着されて固定されている。
 特許文献2に記載の静電容量式3次元センサでは、使用者の指やスタイラスペンがXY方向位置検出用電極体を押圧した際に、ドットスペーサが弾性変形し、XY方向位置検出用電極体とZ方向位置検出用電極体との距離が縮まる。その際に変化する静電容量を検出することにより、Z方向の変位を求めることができる。
An electronic device such as a notebook personal computer may include a touch pad as means for moving a pointer displayed on a monitor, and a capacitive sensor may be used as the touch pad.
Conventionally, a capacitance type sensor used as a touch pad has detected a change in capacitance in a two-dimensional direction (X direction and Y direction). , Y direction and Z direction) are also being studied (Patent Document 1).
As a capacitance type three-dimensional sensor that changes the capacitance in the three-dimensional direction, a sheet-like XY-direction position detection electrode body that detects the position in the XY direction and a position in the Z-direction are arranged on the front side. A sheet-shaped Z-direction position detection electrode body to be detected and a plurality of elastically deformable dot spacers provided between them are known (Patent Document 2). The dot spacers are bonded and fixed in a state where their tips are in contact with the spacer adhesive layer.
In the capacitance type three-dimensional sensor described in Patent Document 2, when the user's finger or stylus pen presses the XY direction position detection electrode body, the dot spacer elastically deforms, and the XY direction position detection electrode body. And the Z-direction position detecting electrode body are reduced in distance. The displacement in the Z direction can be obtained by detecting the capacitance that changes at that time.
日本国特許第3681771号公報Japanese Patent No. 36817171 国際公開第2013/132736号International Publication No. 2013/132737
 しかし、特許文献2に記載の静電容量式3次元センサにおいては、XY方向位置検出用電極体を押圧した際の、Z方向の位置検出結果にばらつきが生じやすく、Z方向の位置検出精度が低かった。
 本発明は、Z方向の位置検出精度を向上させた静電容量式3次元センサを提供することを目的とする。
However, in the electrostatic capacitance type three-dimensional sensor described in Patent Document 2, the position detection result in the Z direction tends to vary when the XY direction position detection electrode body is pressed, and the position detection accuracy in the Z direction is high. It was low.
An object of the present invention is to provide a capacitance type three-dimensional sensor with improved position detection accuracy in the Z direction.
 本発明者らは、特許文献2に記載の静電容量式3次元センサにおいて、Z方向位置検出精度が低くなる理由について調べた。その結果、特許文献2に記載の静電容量式3次元センサでは、スペーサ接着層に対するドットスペーサの接着強度が低く、XY方向位置検出用電極を押圧した際に、一部のドットスペーサがスペーサ接着層から剥離する場合があることが明らかとなった。この際、ドットスペーサは一定には剥離しないため、押圧深さが同一であっても、XY方向位置検出用電極体とZ方向位置検出用電極体との間の静電容量値が同じにはならず、Z方向位置検出結果にばらつきが生じやすくなることが明らかとなった。また、接着強度が低いことにより、押圧前から、一部のドットスペーサがスペーサ接着層から剥離していることがあり、非押圧時の初期値の静電容量もばらつく場合があることが明らかとなった。本発明者等は、上記の知見を基に、ドットスペーサがスペーサ接着層から剥離しにくくなる手法について検討し、以下の静電容量式3次元センサを発明した。 The present inventors investigated the reason why the Z-direction position detection accuracy is low in the capacitive three-dimensional sensor described in Patent Document 2. As a result, in the capacitance type three-dimensional sensor described in Patent Document 2, the dot spacer has a low adhesive strength with respect to the spacer adhesive layer, and when the XY direction position detection electrode is pressed, some of the dot spacers adhere to the spacer. It has become clear that there is a case of peeling from the layer. At this time, since the dot spacers do not peel uniformly, even if the pressing depth is the same, the capacitance value between the XY direction position detection electrode body and the Z direction position detection electrode body is the same. In other words, it became clear that the Z-direction position detection result is likely to vary. Also, due to the low adhesive strength, it is clear that some dot spacers may have peeled off from the spacer adhesive layer before pressing, and the initial capacitance when not pressed may vary. became. Based on the above findings, the present inventors have studied a technique for making it difficult for the dot spacers to peel off from the spacer adhesive layer, and have invented the following capacitive three-dimensional sensor.
 本発明の第1の発明の静電容量式3次元センサは、XY方向の位置を検出するシート状のXY方向位置検出用電極体と、前記XY方向位置検出用電極体と重なるように配置され、Z方向の位置を検出するシート状のZ方向位置検出用電極体とを具備し、前記XY方向位置検出用電極体は、XY方向の位置を検出するための一対の導電膜を備え、前記Z方向位置検出用電極体は、Z方向の位置を検出するための導電膜を備えた静電容量式3次元センサであって、前記XY方向位置検出用電極体における前記Z方向位置検出用電極体側の面に設けられた複数のドットスペーサと、前記複数のドットスペーサをZ方向位置検出用電極体に接着するスペーサ接着層とを備え、前記複数のドットスペーサは、前記XY方向位置検出用電極体と前記スペーサ接着層との間に空隙が形成された状態で、前記スペーサ接着層の内部に一部が埋没して接着している、静電容量式3次元センサである。
 本発明の第1の発明の静電容量式3次元センサは、上記構成において、前記Z方向位置検出用電極体が、スペーサ接着層側に、厚さを1cmとした際のショアA硬度が85以下の材料からなる弾性変形層を備え、前記ドットスペーサが、弾性変形不能な材料により形成されていることが好ましい。
 本発明の第2の発明の静電容量式3次元センサは、XY方向の位置を検出するシート状のXY方向位置検出用電極体と、前記XY方向位置検出用電極体と重なるように配置され、Z方向の位置を検出するシート状のZ方向位置検出用電極体とを具備し、前記XY方向位置検出用電極体は、XY方向の位置を検出するための一対の導電膜を備え、前記Z方向位置検出用電極体は、Z方向の位置を検出するための導電膜を備えた静電容量式3次元センサであって、前記Z方向位置検出用電極体における前記XY方向位置検出用電極体側の面に設けられた複数のドットスペーサと、前記複数のドットスペーサをXY方向位置検出用電極体に接着するスペーサ接着層とを備え、前記複数のドットスペーサは、前記Z位置検出用電極体と前記スペーサ接着層との間に空隙が形成された状態で、前記スペーサ接着層の内部に一部が埋没して接着している。
 本発明の第2の発明の静電容量式3次元センサは、上記構成において、前記XY方向位置検出用電極体が、スペーサ接着層側に、厚さを1cmとした際のショアA硬度が85以下の材料からなる弾性変形層を備え、前記ドットスペーサが、弾性変形不能な材料により形成されていることが好ましい。
 本発明の第1及び第2の発明の静電容量式3次元センサは、上記構成において、前記スペーサ接着層は、ホットメルト系接着剤又は活性エネルギー線硬化性樹脂から形成されていることが好ましい。
 本発明の第1及び第2の発明の静電容量式3次元センサは、上記構成において、前記ドットスペーサの各々の高さは30~150μmであることが好ましい。
The capacitance type three-dimensional sensor according to the first aspect of the present invention is disposed so as to overlap the sheet-like XY direction position detecting electrode body for detecting the position in the XY direction and the XY direction position detecting electrode body. A sheet-like Z-direction position detecting electrode body for detecting a position in the Z direction, and the XY direction position detecting electrode body includes a pair of conductive films for detecting a position in the XY direction, The Z-direction position detecting electrode body is a capacitance type three-dimensional sensor provided with a conductive film for detecting the Z-direction position, and the Z-direction position detecting electrode in the XY-direction position detecting electrode body. A plurality of dot spacers provided on the body-side surface, and a spacer adhesive layer for bonding the plurality of dot spacers to the Z-direction position detection electrode body, wherein the plurality of dot spacers are the XY-direction position detection electrodes. Body and said space In a state where gaps are formed between the adhesive layer, a portion inside the spacer adhesive layer is adhered buried, a capacitance type 3-dimensional sensor.
The capacitance type three-dimensional sensor according to the first aspect of the present invention has the above configuration, and the Shore A hardness is 85 when the Z-direction position detecting electrode body is 1 cm in thickness on the spacer adhesive layer side. It is preferable that an elastic deformation layer made of the following material is provided, and the dot spacer is made of a material that cannot be elastically deformed.
The capacitance type three-dimensional sensor of the second invention of the present invention is arranged so as to overlap the sheet-like XY direction position detecting electrode body for detecting the position in the XY direction and the XY direction position detecting electrode body. A sheet-like Z-direction position detecting electrode body for detecting a position in the Z direction, and the XY direction position detecting electrode body includes a pair of conductive films for detecting a position in the XY direction, The Z-direction position detection electrode body is a capacitance type three-dimensional sensor provided with a conductive film for detecting a Z-direction position, and the XY-direction position detection electrode in the Z-direction position detection electrode body. A plurality of dot spacers provided on the body-side surface, and a spacer adhesive layer for bonding the plurality of dot spacers to the XY direction position detection electrode body, wherein the plurality of dot spacers are the Z position detection electrode body. And the spacer contact In a state where gaps are formed between the layers, some inside the spacer adhesive layer is adhered buried.
The capacitance type three-dimensional sensor according to a second aspect of the present invention has the above configuration, wherein the XY-direction position detecting electrode body has a Shore A hardness of 85 when the thickness is 1 cm on the spacer adhesive layer side. It is preferable that an elastic deformation layer made of the following material is provided, and the dot spacer is made of a material that cannot be elastically deformed.
In the capacitance type three-dimensional sensor of the first and second inventions of the present invention, the spacer adhesive layer is preferably formed of a hot melt adhesive or an active energy ray curable resin in the above configuration. .
In the capacitance-type three-dimensional sensor of the first and second inventions of the present invention, in the above configuration, the height of each of the dot spacers is preferably 30 to 150 μm.
 本発明の静電容量式3次元センサは、Z方向の位置検出精度が高くなっている。 The electrostatic capacity type three-dimensional sensor of the present invention has high position detection accuracy in the Z direction.
本発明の静電容量式3次元センサの第1実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 1st embodiment of a capacitance type three-dimensional sensor of the present invention. 第1実施形態におけるZ方向位置検出用電極体を示す平面図である。It is a top view which shows the Z direction position detection electrode body in 1st Embodiment. 第1実施形態で使用されるXY方向位置検出用電極体を構成する一方の電極シートを示す平面図である。It is a top view which shows one electrode sheet which comprises the electrode body for XY direction position detection used by 1st Embodiment. 第1実施形態で使用されるXY方向位置検出用電極体を構成する他方の電極シートを示す平面図である。It is a top view which shows the other electrode sheet which comprises the electrode body for XY direction position detection used by 1st Embodiment. 本発明の静電容量式3次元センサの第2実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 2nd embodiment of a capacitance type three-dimensional sensor of the present invention. 本発明の静電容量式3次元センサの第3実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 3rd embodiment of a capacitance type three-dimensional sensor of the present invention. 本発明の静電容量式3次元センサの第4実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 4th embodiment of a capacitance type three-dimensional sensor of the present invention. 本発明の静電容量式3次元センサの第5実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 5th embodiment of a capacitance type three-dimensional sensor of the present invention. 本発明の静電容量式3次元センサの第6実施形態を示す部分断面図である。It is a fragmentary sectional view showing a 6th embodiment of a capacitance type three-dimensional sensor of the present invention.
<第1実施形態>
 本発明の静電容量式3次元センサ(以下、「3次元センサ」と略す。)の第1実施形態について説明する。
 図1に、本実施形態の3次元センサを示す。本実施形態の3次元センサ1は、支持板10と、Z方向位置検出用電極体20と、スペーサ接着層40と、ドットスペーサ50と、XY方向位置検出用電極体60と、保護層90とを備える。
 本実施形態では、Z方向位置検出用電極体20とXY方向位置検出用電極体60とが空隙を介して互いに重なるように配置され、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間に、スペーサ接着層40及びドットスペーサ50が形成されている。スペーサ接着層40はZ方向位置検出用電極体20の表側に設けられ、ドットスペーサ50はXY方向位置検出用電極体60の裏側に設けられている。また、スペーサ接着層40とXY方向位置検出用電極体60との間に空隙が形成された状態で、ドットスペーサ50は、スペーサ接着層40に一部が埋没して接着しており、図1に示す例においては、ドットスペーサ50の先端が弾性変形層30に接している。
<First Embodiment>
A first embodiment of a capacitive three-dimensional sensor (hereinafter abbreviated as “three-dimensional sensor”) of the present invention will be described.
FIG. 1 shows a three-dimensional sensor according to this embodiment. The three-dimensional sensor 1 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
In the present embodiment, the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 are arranged so as to overlap each other via a gap, and the Z-direction position detection electrode body 20 and the XY-direction position detection electrode A spacer adhesive layer 40 and a dot spacer 50 are formed between the body 60. The spacer adhesive layer 40 is provided on the front side of the Z direction position detecting electrode body 20, and the dot spacer 50 is provided on the back side of the XY direction position detecting electrode body 60. Further, the dot spacer 50 is partly buried in the spacer adhesive layer 40 and adhered in a state where a gap is formed between the spacer adhesive layer 40 and the XY direction position detecting electrode body 60, and FIG. In the example shown in FIG. 2, the tip of the dot spacer 50 is in contact with the elastic deformation layer 30.
 本実施形態の3次元センサ1では、指又はスタイラスペンを接触させる入力領域が、平面視で矩形状にされている(図示略)。本明細書では、入力領域の長手方向をX方向、入力領域の短手方向をY方向、X方向及びY方向に対して垂直な方向をZ方向として説明する。
 また、本発明の3次元センサ1においては、保護層90に指又はスタイラスペンが接触する。本実施形態においては、保護層90側を「表側」又は「前面側」という。また、本実施形態においては、支持板10側を「裏側」又は「裏面側」という。
In the three-dimensional sensor 1 of the present embodiment, the input area with which the finger or stylus pen is brought into contact is rectangular in plan view (not shown). In the present specification, the description will be made assuming that the longitudinal direction of the input area is the X direction, the short direction of the input area is the Y direction, and the direction perpendicular to the X direction and the Y direction is the Z direction.
In the three-dimensional sensor 1 of the present invention, the finger or stylus pen contacts the protective layer 90. In the present embodiment, the protective layer 90 side is referred to as “front side” or “front side”. Further, in the present embodiment, the support plate 10 side is referred to as “back side” or “back side”.
(支持板)
 支持板10は、Z方向位置検出用電極体20が貼合されて支持され、Z方向位置検出用電極体20の撓みを防ぐ板である。具体的には、支持板10は、厚さが100μm以上、好ましくは200μm以上、より好ましくは500μm以上の板であり、また、その上限は10mm程度である。支持板10の材質に特に制限はなく、例えば、金属、樹脂、セラミックス、ガラスのいずれであってもよい。
(Support plate)
The support plate 10 is a plate that is bonded to and supported by the Z-direction position detection electrode body 20 and prevents the Z-direction position detection electrode body 20 from bending. Specifically, the support plate 10 is a plate having a thickness of 100 μm or more, preferably 200 μm or more, more preferably 500 μm or more, and its upper limit is about 10 mm. There is no restriction | limiting in particular in the material of the support plate 10, For example, any of a metal, resin, ceramics, and glass may be sufficient.
(Z方向位置検出用電極体)
 Z方向位置検出用電極体20は、Z方向の位置を検出する際に使用される電極体であって、支持板10の表側の面10aに設けられている。
 本実施形態におけるZ方向位置検出用電極体20は、基材シート21と、基材シート21の表側の面21a(第1面21a)に形成された所定のパターン状の導電膜22と、導電膜22を被覆する絶縁膜23とを有する電極シートである。また、本実施形態におけるZ方向位置検出用電極体20は、絶縁膜23の表面、すなわちスペーサ接着層40側に、弾性変形層30を備えている。
 本発明において、「導電」とは、電気抵抗値が1MΩ未満であることを意味し、「絶縁」とは、電気抵抗値が1MΩ以上、好ましくは10MΩ以上のことを意味する。
(Z-direction position detection electrode body)
The Z-direction position detection electrode body 20 is an electrode body used when detecting a position in the Z direction, and is provided on the front surface 10 a of the support plate 10.
The Z-direction position detecting electrode body 20 in the present embodiment includes a base sheet 21, a predetermined pattern-shaped conductive film 22 formed on the front surface 21a (first surface 21a) of the base sheet 21, and a conductive pattern. This is an electrode sheet having an insulating film 23 covering the film 22. The Z-direction position detecting electrode body 20 in this embodiment includes an elastic deformation layer 30 on the surface of the insulating film 23, that is, on the spacer adhesive layer 40 side.
In the present invention, “conductive” means that the electric resistance value is less than 1 MΩ, and “insulation” means that the electric resistance value is 1 MΩ or more, preferably 10 MΩ or more.
 基材シート21としては、例えば、プラスチックフィルム、ガラス板等を使用することができる。
プラスチックフィルムを構成する樹脂としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、トリアセチルセルロース、環状ポリオレフィン、アクリル樹脂等を使用することができる。基材シート21としては、上記の樹脂の中でも、耐熱性及び寸法安定性が高く、低コストであることから、ポリエチレンテレフタレート又はポリカーボネートが好ましい。
基材シート21の厚さは25~75μmであることが好ましい。基材シート21の厚さが前記下限値以上であれば、加工時に折れにくく、前記上限値以下であれば、3次元センサ1を容易に薄型化できる。
As the base material sheet 21, a plastic film, a glass plate, etc. can be used, for example.
As the resin constituting the plastic film, for example, polyethylene terephthalate, polycarbonate, polyimide, triacetyl cellulose, cyclic polyolefin, acrylic resin, or the like can be used. Among the resins described above, polyethylene terephthalate or polycarbonate is preferable as the substrate sheet 21 because of its high heat resistance and dimensional stability and low cost.
The thickness of the base sheet 21 is preferably 25 to 75 μm. If the thickness of the base material sheet 21 is equal to or greater than the lower limit value, the three-dimensional sensor 1 can be easily thinned if it is less likely to break during processing and is equal to or less than the upper limit value.
導電膜22としては、例えば、導電性ペーストにより形成された膜、導電性高分子を含む膜、金属ナノワイヤーを含む膜、カーボンを含む膜、金属蒸着法によって形成された金属蒸着膜等が挙げられる。
導電性ペーストとしては、例えば、銀ペースト、銅ペースト、金ペースト等が挙げられる。
導電性高分子としては、例えば、ポリチオフェン、ポリピロール、ポリアニリン等が挙げられる。
金属ナノワイヤーとしては、例えば、銀ナノワイヤー、金ナノワイヤー等が挙げられる。
カーボンとしては、例えば、カーボンブラック、カーボンナノチューブ等が挙げられる。
金属蒸着膜を形成する金属としては、例えば、銅、アルミニウム、ニッケル、クロム、亜鉛、金等を使用することができる。金属蒸着膜としては、上記の金属の中でも、電気抵抗が低く、低コストであることから、銅が好ましい。
金属蒸着法は、薄い金属膜を容易に形成できる方法である。このような金属蒸着法としては、特に制限されず、例えば、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、などが挙げられる。金属蒸着膜を形成する方法としては、上記方法の中でも、成膜スピードが速く、低コストであることから、真空蒸着法が好ましい。
Examples of the conductive film 22 include a film formed of a conductive paste, a film containing a conductive polymer, a film containing metal nanowires, a film containing carbon, and a metal vapor deposition film formed by a metal vapor deposition method. It is done.
Examples of the conductive paste include silver paste, copper paste, and gold paste.
Examples of the conductive polymer include polythiophene, polypyrrole, polyaniline, and the like.
Examples of metal nanowires include silver nanowires and gold nanowires.
Examples of carbon include carbon black and carbon nanotubes.
For example, copper, aluminum, nickel, chromium, zinc, gold, or the like can be used as a metal for forming the metal vapor deposition film. As the metal vapor deposition film, copper is preferable among the above metals because of its low electrical resistance and low cost.
The metal vapor deposition method is a method by which a thin metal film can be easily formed. Such a metal vapor deposition method is not particularly limited. For example, plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, vacuum vapor deposition method, sputtering method, reactive sputtering method, MBE ( Molecular beam epitaxy) method, cluster ion beam method, ion plating method, plasma polymerization method (high frequency excitation ion plating method), and the like. As a method for forming a metal vapor deposition film, among the above methods, the vacuum vapor deposition method is preferable because the film formation speed is high and the cost is low.
導電膜22の表面には、例えば、プラズマ処理、紫外線照射処理、コロナ処理、エキシマ光処理等の各種表面処理が施されてもよい。導電膜22に、上記の表面処理が施されていると、絶縁膜23との密着性が向上し、接触抵抗が低くなる。 The surface of the conductive film 22 may be subjected to various surface treatments such as plasma treatment, ultraviolet irradiation treatment, corona treatment, and excimer light treatment. When the conductive film 22 is subjected to the above surface treatment, the adhesion with the insulating film 23 is improved and the contact resistance is lowered.
導電膜22の厚さは、導電性ペーストにより形成された膜の場合には、1~25μmであることが好ましく、5~15μmであることがより好ましい。
導電膜22の厚さは、導電性高分子を含む膜の場合には、0.1~5.0μmであることが好ましく、0.1~2.0μmであることがより好ましい。
導電膜22の厚さは、金属ナノワイヤーを含む膜の場合には、20~1000nmであることが好ましく、50~300nmであることがより好ましい。
導電膜22の厚さは、カーボンを含む膜の場合には、0.01~25μmであることが好ましく、0.1~15μmであることがより好ましい。
導電膜22の厚さは、金属蒸着膜の場合には、0.01~1.0μmであることが好ましく、0.05~0.3μmであることがより好ましい。
導電膜22の厚さが前記下限値未満であると、ピンホールが形成して断線するおそれがあり、前記上限値を超えると、薄型化が困難になる。
なお、導電膜22の厚さを測定する方法としては、その厚さのレンジによって異なるが、例えば、μmオーダーの膜厚の場合はマイクロメーターやレーザー変位計測によって測定することができ、また、μmオーダーよりも薄い膜厚の場合には、走査型電子顕微鏡を用いた断面観察によって測定することができる。
The thickness of the conductive film 22 is preferably 1 to 25 μm and more preferably 5 to 15 μm in the case of a film formed of a conductive paste.
In the case of a film containing a conductive polymer, the thickness of the conductive film 22 is preferably 0.1 to 5.0 μm, and more preferably 0.1 to 2.0 μm.
In the case of a film containing metal nanowires, the thickness of the conductive film 22 is preferably 20 to 1000 nm, and more preferably 50 to 300 nm.
In the case of a film containing carbon, the thickness of the conductive film 22 is preferably 0.01 to 25 μm, and more preferably 0.1 to 15 μm.
The thickness of the conductive film 22 is preferably 0.01 to 1.0 μm and more preferably 0.05 to 0.3 μm in the case of a metal vapor deposition film.
If the thickness of the conductive film 22 is less than the lower limit, pinholes may be formed and disconnection may occur, and if the upper limit is exceeded, it is difficult to reduce the thickness.
The method for measuring the thickness of the conductive film 22 varies depending on the thickness range. For example, when the film thickness is on the order of μm, it can be measured by a micrometer or laser displacement measurement. In the case of a film thickness thinner than the order, it can be measured by cross-sectional observation using a scanning electron microscope.
本実施形態における導電膜22のパターンは、例えば、図2に示すように、X方向に沿って形成された、一定の幅で帯状とされたX方向電極部22aを複数有するパターンである。
X方向電極部22aの幅は0.1~2mmであることが好ましく、0.2~1mmであることがより好ましい。X方向電極部22aの幅が前記下限値以上であれば、断線を防止でき、前記上限値以下であれば、位置検出精度を向上させることができる。
隣接するX方向電極部22a,22a同士の間隔、即ち、X方向電極部22a,22aの幅方向の端部同士の間隔は1~5mmであることが好ましく、1.5~3mmであることがより好ましい。隣接するX方向電極部22a,22a同士の間隔が、前記上限値以下であれば、3次元センサ1の位置検出精度を向上させることができる。しかし、隣接するX方向電極部22a,22a同士の間隔を前記下限値未満にすることは、配線数が増加することから好ましくない。
The pattern of the conductive film 22 in the present embodiment is, for example, a pattern having a plurality of X-direction electrode portions 22a formed along the X direction and formed into a strip shape with a constant width, as shown in FIG.
The width of the X-direction electrode portion 22a is preferably 0.1 to 2 mm, and more preferably 0.2 to 1 mm. If the width of the X-direction electrode portion 22a is equal to or larger than the lower limit value, disconnection can be prevented, and if the width is equal to or smaller than the upper limit value, position detection accuracy can be improved.
The interval between adjacent X-direction electrode portions 22a and 22a, that is, the interval between the end portions in the width direction of X-direction electrode portions 22a and 22a is preferably 1 to 5 mm, and more preferably 1.5 to 3 mm. More preferred. The position detection accuracy of the three-dimensional sensor 1 can be improved if the distance between the adjacent X-direction electrode portions 22a, 22a is equal to or less than the upper limit value. However, it is not preferable that the distance between adjacent X-direction electrode portions 22a and 22a be less than the lower limit value because the number of wires increases.
絶縁膜23は絶縁性樹脂の膜である。絶縁膜23によって弾性変形層30の密着性を向上させることができ、また、導電膜22の劣化(酸化、腐食)を防止することができる。
絶縁性樹脂としては、例えば、熱硬化型樹脂、可視光線硬化型樹脂、電子線硬化型樹脂または紫外線硬化型樹脂が使用されるが、硬化時の熱収縮が小さい点では、紫外線硬化型樹脂が好ましい。このような紫外線硬化型樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート、アクリルアクリレート、及びシリコーンアクリレート等を例示することができる。
絶縁膜23は、絶縁性を確保できる範囲で、薄いことが好ましい。絶縁膜23の形成にスクリーン印刷を適用した場合には、ピンホール形成防止の点から、厚さを5μm以上とすることが好ましい。絶縁膜23の形成にインクジェット印刷を適用した場合には、ピンホール形成防止の点から、厚さを0.5μm以上とすることが好ましい。
The insulating film 23 is an insulating resin film. The insulating film 23 can improve the adhesion of the elastically deformable layer 30 and can prevent the conductive film 22 from being deteriorated (oxidized or corroded).
As the insulating resin, for example, a thermosetting resin, a visible light curable resin, an electron beam curable resin, or an ultraviolet curable resin is used. In terms of small thermal shrinkage during curing, the ultraviolet curable resin is used. preferable. Examples of such ultraviolet curable resins include urethane acrylate, epoxy acrylate, polyester acrylate, acrylic acrylate, and silicone acrylate.
The insulating film 23 is preferably thin as long as insulation can be ensured. When screen printing is applied to the formation of the insulating film 23, the thickness is preferably 5 μm or more from the viewpoint of preventing pinhole formation. When ink jet printing is applied to the formation of the insulating film 23, the thickness is preferably 0.5 μm or more from the viewpoint of preventing pinhole formation.
また、Z方向位置検出用電極体20は、引き回し配線24と、外部接続用端子25とを有する(図2参照)。
引き回し配線24は、各X方向電極部22aと外部接続用端子25とを接続するための配線である。
引き回し配線24の幅は20~100μmであることが好ましく、20~50μmであることがより好ましい。引き回し配線24の幅が前記下限値以上であれば、引き回し配線の断線を防止でき、前記上限値以下であれば、引き回し配線24に使用する材料を削減できるため、低コスト化できる。
隣接する引き回し配線24,24同士の間隔は20~100μmであることが好ましく、20~50μmであることがより好ましい。隣接する引き回し配線24,24同士の間隔が、前記上限値以下であれば、3次元センサ1を容易に小型化できる。しかし、隣接する引き回し配線24,24同士の間隔を前記下限値未満にすることは、製造上、困難である。
外部接続用端子25は、外部の回路に接続するための端子であり、導電材料からなる。
本実施形態における外部接続用端子25は、矩形状の導電部となっている。
Further, the Z-direction position detection electrode body 20 includes a lead wiring 24 and an external connection terminal 25 (see FIG. 2).
The routing wiring 24 is a wiring for connecting each X-direction electrode portion 22 a and the external connection terminal 25.
The width of the routing wiring 24 is preferably 20 to 100 μm, and more preferably 20 to 50 μm. If the width of the routing wiring 24 is equal to or greater than the lower limit value, disconnection of the routing wiring can be prevented, and if the width is equal to or less than the upper limit value, the material used for the routing wiring 24 can be reduced, thereby reducing the cost.
The spacing between adjacent routing wires 24, 24 is preferably 20 to 100 μm, and more preferably 20 to 50 μm. The three-dimensional sensor 1 can be easily downsized if the distance between adjacent routing wires 24, 24 is less than or equal to the upper limit value. However, it is difficult in manufacturing to make the interval between adjacent routing wires 24, 24 less than the lower limit value.
The external connection terminal 25 is a terminal for connecting to an external circuit and is made of a conductive material.
The external connection terminal 25 in the present embodiment is a rectangular conductive portion.
弾性変形層30は、その表面が押圧された際に弾性変形可能な層であり、厚さを1cmとして測定した際のショアA硬度が85以下の層である。ただし、軟らかすぎると、弾性変形後の回復が遅くなるため、弾性変形層30のショアA硬度は30以上であることが好ましい。ここで、弾性変形層30のショアA硬度は、JIS K6253に規定される方法で測定することができる。
弾性変形層30の具体例としては、例えば、ポリウレタン層、シリコーン層、ゴム層、エラストマー層、発泡材料層等が挙げられる。弾性変形層30としては、上記材料の中でも、充分な弾性を有し、低コストである点では、ポリウレタン層が好ましい。
また、弾性変形層30を形成する材料は、熱硬化性でもよいし、熱可塑性でもよい。
The elastic deformation layer 30 is a layer that can be elastically deformed when the surface thereof is pressed, and is a layer having a Shore A hardness of 85 or less when measured with a thickness of 1 cm. However, if it is too soft, recovery after elastic deformation is delayed, so the Shore A hardness of the elastic deformation layer 30 is preferably 30 or more. Here, the Shore A hardness of the elastically deformable layer 30 can be measured by a method specified in JIS K6253.
Specific examples of the elastic deformation layer 30 include, for example, a polyurethane layer, a silicone layer, a rubber layer, an elastomer layer, a foamed material layer, and the like. As the elastic deformation layer 30, among the above materials, a polyurethane layer is preferable in that it has sufficient elasticity and is low in cost.
The material forming the elastic deformation layer 30 may be thermosetting or thermoplastic.
弾性変形層30の厚さは、押圧時のXY方向位置検出用電極体60のZ方向変位量に応じて決められる。Z方向変位量が10μmの場合には、弾性変形層30の厚さは20~200μmであることが好ましく、20~100μmであることがより好ましい。弾性変形層30の厚さが前記下限値以上であれば、保護層90を押圧した際にXY方向位置検出用電極体60を充分に変形させることができ、前記上限値以下であれば、弾性変形層30を容易に形成できる。 The thickness of the elastic deformation layer 30 is determined according to the amount of displacement in the Z direction of the XY direction position detecting electrode body 60 at the time of pressing. When the amount of displacement in the Z direction is 10 μm, the thickness of the elastic deformation layer 30 is preferably 20 to 200 μm, and more preferably 20 to 100 μm. If the thickness of the elastic deformation layer 30 is equal to or greater than the lower limit value, the XY direction position detecting electrode body 60 can be sufficiently deformed when the protective layer 90 is pressed. The deformation layer 30 can be easily formed.
(スペーサ接着層)
本実施形態におけるスペーサ接着層40は、ドットスペーサ50をZ方向位置検出用電極体20に接着する層である。本実施形態では、スペーサ接着層40は、Z方向位置検出用電極体20の弾性変形層30の表面に形成されている。
スペーサ接着層40としては、具体的には、例えば、ホットメルト系接着剤層、活性エネルギー線硬化性樹脂(紫外線硬化性樹脂、電子線硬化性樹脂、可視光線硬化性樹脂)から形成された接着剤層等が挙げられる。なお、スペーサ接着層40が、ホットメルト系接着剤層及び活性エネルギー線硬化性樹脂から形成された接着剤層以外の接着剤層であっても構わないが、スペーサ接着層40は、ホットメルト系接着剤層及び活性エネルギー線硬化性樹脂から形成された接着剤層であることが好ましい。
ホットメルト系接着剤層及び活性エネルギー線硬化性樹脂から形成された接着剤層は流動性が低い。そのため、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間において空気/誘電体の比率を均一化でき、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間の静電容量のばらつきをより小さくできる。
スペーサ接着層40の流動性が高いと、ドットスペーサ50がスペーサ接着層40に向って押された際に、ドットスペーサ50の、スペーサ接着層40に埋没していない部分がスペーサ接着層40に接触し、そのまま接着してしまうことがある。この場合、押圧終了後にXY方向位置検出用電極体60が元の位置に戻ることが阻害される。しかし、スペーサ接着層40がホットメルト系接着剤層又は活性エネルギー線硬化性樹脂から形成された接着剤層であると、スペーサ接着層40は硬くなっている。そのため、ドットスペーサ50の、スペーサ接着層40に埋没していない部分がスペーサ接着層40に接着することが防止される。したがって、押圧終了後に、XY方向位置検出用電極体60が容易に元の位置に戻る。
(Spacer adhesive layer)
The spacer adhesive layer 40 in this embodiment is a layer that adheres the dot spacer 50 to the Z-direction position detecting electrode body 20. In the present embodiment, the spacer adhesive layer 40 is formed on the surface of the elastic deformation layer 30 of the Z-direction position detecting electrode body 20.
Specifically, as the spacer adhesive layer 40, for example, an adhesive formed from a hot melt adhesive layer, an active energy ray curable resin (an ultraviolet curable resin, an electron beam curable resin, or a visible light curable resin). An agent layer etc. are mentioned. The spacer adhesive layer 40 may be an adhesive layer other than an adhesive layer formed from a hot melt adhesive layer and an active energy ray curable resin, but the spacer adhesive layer 40 is a hot melt adhesive layer. The adhesive layer is preferably an adhesive layer formed from an adhesive layer and an active energy ray-curable resin.
The adhesive layer formed from the hot melt adhesive layer and the active energy ray curable resin has low fluidity. Therefore, the air / dielectric ratio can be made uniform between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60, and the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body. It is possible to reduce the variation in the electrostatic capacity with respect to 60.
When the spacer adhesive layer 40 has high fluidity, when the dot spacer 50 is pushed toward the spacer adhesive layer 40, the portion of the dot spacer 50 that is not buried in the spacer adhesive layer 40 contacts the spacer adhesive layer 40. In some cases, it may be bonded as it is. In this case, the XY direction position detecting electrode body 60 is prevented from returning to the original position after the pressing is completed. However, when the spacer adhesive layer 40 is a hot melt adhesive layer or an adhesive layer formed from an active energy ray curable resin, the spacer adhesive layer 40 is hard. Therefore, the portion of the dot spacer 50 that is not buried in the spacer adhesive layer 40 is prevented from adhering to the spacer adhesive layer 40. Therefore, the XY direction position detecting electrode body 60 easily returns to the original position after the pressing.
スペーサ接着層40の厚さは5μm以上であることが好ましく、10~30μmであることがより好ましい。スペーサ接着層40の厚さが前記下限値以上であれば、ドットスペーサ50を充分な強度で接着できる。スペーサ接着層40の厚さが前記上限値を超えると、隣接するドットスペーサ50,50の間にスペーサ接着層40が入り込んで、弾性変形層30の機能を減じるおそれがある。 The thickness of the spacer adhesive layer 40 is preferably 5 μm or more, and more preferably 10 to 30 μm. If the thickness of the spacer adhesive layer 40 is equal to or greater than the lower limit, the dot spacer 50 can be adhered with sufficient strength. If the thickness of the spacer adhesive layer 40 exceeds the upper limit value, the spacer adhesive layer 40 may enter between the adjacent dot spacers 50 and 50, and the function of the elastic deformation layer 30 may be reduced.
(ドットスペーサ)
ドットスペーサ50は、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間に複数設けられている。本実施形態におけるドットスペーサ50は半球のドット状で、その一部がスペーサ接着層40の内部に埋没し、弾性変形層30の表面に接している。この状態で、ドットスペーサ50は、スペーサ接着層40に接着している。また、上述したように、図1に示す例では、ドットスペーサ50の先端が弾性変形層30に接している。
本実施形態では、ドットスペーサ50によって、スペーサ接着層40とXY方向位置検出用電極体60との間に空隙を形成している。その空隙により、保護層90を押圧したときには、XY方向位置検出用電極体60を変形させることができ、Z方向位置検出用電極体20とXY方向位置検出用電極体60との距離を縮めることができる。
(Dot spacer)
A plurality of dot spacers 50 are provided between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60. The dot spacer 50 in the present embodiment is a hemispherical dot shape, and a part thereof is buried in the spacer adhesive layer 40 and is in contact with the surface of the elastic deformation layer 30. In this state, the dot spacer 50 is bonded to the spacer bonding layer 40. Further, as described above, in the example shown in FIG. 1, the tip of the dot spacer 50 is in contact with the elastic deformation layer 30.
In the present embodiment, the dot spacer 50 forms a gap between the spacer adhesive layer 40 and the XY direction position detection electrode body 60. When the protective layer 90 is pressed by the gap, the XY direction position detection electrode body 60 can be deformed, and the distance between the Z direction position detection electrode body 20 and the XY direction position detection electrode body 60 can be reduced. Can do.
ドットスペーサ50の形状に特に制限はなく、例えば、平面視で矩形状、菱形状、六角形状、円形状、楕円形状等が挙げられる。ドットスペーサ50の形状は、上記形状の中でも、スペーサ接着層40に対する接着力を容易に高くできる点では、矩形状が好ましい。 There is no restriction | limiting in particular in the shape of the dot spacer 50, For example, rectangular shape, rhombus shape, hexagonal shape, circular shape, elliptical shape etc. are mentioned by planar view. Among the above shapes, the dot spacers 50 are preferably rectangular in that the adhesion to the spacer adhesive layer 40 can be easily increased.
本実施形態におけるドットスペーサ50は、弾性変形不能であり、厚さを1cmとして測定した際のショアA硬度が85を超える硬度を有する材料から形成することができる。ドットスペーサ50は、ショアAでは硬度測定不能で、ショアDで硬度の測定が可能になるものが好ましい。具体的には、ドットスペーサ50の材料としては、例えば、活性エネルギー線硬化性樹脂(紫外線硬化性樹脂、電子線硬化性樹脂、可視光線硬化性樹脂)の硬化物、熱硬化性樹脂の硬化物、熱可塑性樹脂の硬化物等が挙げられる。上記材料の中でも、ドットスペーサ50の高さを容易に確保でき、硬化時に溶剤の揮発がない点では、活性エネルギー線硬化性樹脂の硬化物が好ましい。 The dot spacer 50 in this embodiment is not elastically deformable, and can be formed from a material having a Shore A hardness of more than 85 when measured with a thickness of 1 cm. The dot spacer 50 is preferably one that cannot measure hardness with Shore A and can measure hardness with Shore D. Specifically, examples of the material of the dot spacer 50 include a cured product of an active energy ray curable resin (an ultraviolet curable resin, an electron beam curable resin, and a visible light curable resin), and a cured product of a thermosetting resin. And a cured product of a thermoplastic resin. Among the above materials, a cured product of an active energy ray-curable resin is preferable in that the height of the dot spacer 50 can be easily secured and the solvent does not volatilize during curing.
ドットスペーサ50の高さ(Z方向の長さ)は30μm以上であることが好ましく、50μm以上であることがより好ましい。ドットスペーサ50の高さが前記下限値以上であれば、押圧時にXY方向位置検出用電極体60がより撓みやすくなって充分な変位量を確保できる。一方、ドットスペーサ50の高さは150μm以下であることが好ましく、100μm以下であることがより好ましい。ドットスペーサ50の高さが前記上限値以下であれば、容易にドットスペーサ50を形成できる。即ち、ドットスペーサ50の高さは、30~150μmであることが好ましく、50~100μmであることがより好ましい。
ドットスペーサ50のスペーサ接着層40に対する埋没深さは、3~67%であることが好ましい。ドットスペーサ50のスペーサ接着層40に対する埋没深さが、ドットスペーサ50のZ方向の長さの3%以上であれば、より接着強度を高くできる。ドットスペーサ50のスペーサ接着層40に対する埋没深さが、67%以下であれば、スペーサ接着層40とXY方向位置検出用電極体60との間に充分な空隙を形成できる。
The height (the length in the Z direction) of the dot spacer 50 is preferably 30 μm or more, and more preferably 50 μm or more. If the height of the dot spacer 50 is equal to or more than the lower limit value, the XY direction position detecting electrode body 60 is more easily bent when pressed and a sufficient amount of displacement can be secured. On the other hand, the height of the dot spacer 50 is preferably 150 μm or less, and more preferably 100 μm or less. If the height of the dot spacer 50 is not more than the upper limit value, the dot spacer 50 can be easily formed. That is, the height of the dot spacer 50 is preferably 30 to 150 μm, and more preferably 50 to 100 μm.
The buried depth of the dot spacer 50 with respect to the spacer adhesive layer 40 is preferably 3 to 67%. If the embedding depth of the dot spacer 50 with respect to the spacer adhesive layer 40 is 3% or more of the length of the dot spacer 50 in the Z direction, the adhesive strength can be further increased. If the embedding depth of the dot spacer 50 with respect to the spacer adhesive layer 40 is 67% or less, a sufficient gap can be formed between the spacer adhesive layer 40 and the XY direction position detecting electrode body 60.
ドットスペーサ50は規則的に配置され、例えば、60度千鳥状、角千鳥状、並列状、格子状に配列される。
隣接するドットスペーサ50,50の間隔は、ドットスペーサ50,50の幅方向端部間の間隔で0.3mm以下であることが好ましい。隣接するドットスペーサ50,50の間隔が0.3mm以下であれば、XY方向位置検出用電極体60がスペーサ接着層40に接着することを防止できる。
The dot spacers 50 are regularly arranged, and are arranged in, for example, a 60-degree zigzag pattern, a square zigzag pattern, a parallel pattern, or a grid pattern.
The interval between the adjacent dot spacers 50 and 50 is preferably 0.3 mm or less in the interval between the end portions in the width direction of the dot spacers 50 and 50. If the distance between the adjacent dot spacers 50, 50 is 0.3 mm or less, the XY direction position detection electrode body 60 can be prevented from adhering to the spacer adhesive layer 40.
(XY方向位置検出用電極体)
 XY方向位置検出用電極体60は、X方向及びY方向の位置を検出する際に使用される電極体であって、3次元センサ1においてドットスペーサ50よりも表側に設けられている。本実施形態で使用されるXY方向位置検出用電極体60は、一対の電極シート70,80が積層された積層シートである。これら一対の電極シート70,80は、接着層によって接着されている。
(XY-direction position detection electrode body)
The XY direction position detection electrode body 60 is an electrode body used when detecting positions in the X direction and the Y direction, and is provided on the front side of the dot spacer 50 in the three-dimensional sensor 1. The XY direction position detecting electrode body 60 used in the present embodiment is a laminated sheet in which a pair of electrode sheets 70 and 80 are laminated. The pair of electrode sheets 70 and 80 are bonded by an adhesive layer.
 電極シート70は、基材シート71と、基材シート71の表側の面71a(第1面71a)に形成されたパターン状の導電膜72と、導電膜72を被覆する絶縁膜73とを有する。
 基材シート71としては、基材シート21と同様のものを使用することができる。ただし、基材シート71は、必ずしも、基材シート21と同一のものとする必要はない。
 導電膜72としては、導電膜22と同様のものを使用することができる。ただし、導電膜72は、必ずしも、導電膜22と同一のものとする必要はない。
 絶縁膜73としては、絶縁膜23と同様のものを使用することができる。ただし、絶縁膜73は、必ずしも、絶縁膜23と同一のものとする必要はない。
The electrode sheet 70 includes a base sheet 71, a patterned conductive film 72 formed on the front surface 71 a (first surface 71 a) of the base sheet 71, and an insulating film 73 that covers the conductive film 72. .
As the base material sheet 71, the thing similar to the base material sheet 21 can be used. However, the base sheet 71 is not necessarily the same as the base sheet 21.
As the conductive film 72, the same film as the conductive film 22 can be used. However, the conductive film 72 is not necessarily the same as the conductive film 22.
As the insulating film 73, the same film as the insulating film 23 can be used. However, the insulating film 73 is not necessarily the same as the insulating film 23.
 本実施形態における導電膜72のパターンは、図3に示すように、Y方向に沿って形成された帯状のY方向電極部72aを複数有するパターンである。
 Y方向電極部72aの幅、すなわちX方向での長さは2~7mmであることが好ましく、3~5mmであることがより好ましい。Y方向電極部72aの幅が前記下限値以上であれば、断線を防止でき、前記上限値以下であれば、位置検出精度を向上させることができる。
 隣接するY方向電極部72a,72a同士の間隔、すなわち、Y方向電極部72a,72aの幅方向端部間の間隔は0.05~2mmであることが好ましく、0.1~1mmであることがより好ましい。隣接するY方向電極部72a,72a同士の間隔が、前記上限値以下であれば、3次元センサ1を容易に小型化できる。しかし、隣接するY方向電極部72a,72a同士の間隔を前記下限値未満にすることは、配線数が増加することから好ましくない。
As shown in FIG. 3, the pattern of the conductive film 72 in the present embodiment is a pattern having a plurality of strip-shaped Y-direction electrode portions 72 a formed along the Y direction.
The width of the Y-direction electrode portion 72a, that is, the length in the X direction is preferably 2 to 7 mm, and more preferably 3 to 5 mm. If the width of the Y-direction electrode portion 72a is equal to or larger than the lower limit value, disconnection can be prevented, and if the width is equal to or smaller than the upper limit value, position detection accuracy can be improved.
The interval between adjacent Y- direction electrode portions 72a and 72a, that is, the interval between the end portions in the width direction of Y- direction electrode portions 72a and 72a is preferably 0.05 to 2 mm, and preferably 0.1 to 1 mm. Is more preferable. If the distance between adjacent Y- direction electrode portions 72a and 72a is equal to or less than the upper limit value, the three-dimensional sensor 1 can be easily downsized. However, it is not preferable to set the interval between the adjacent Y- direction electrode portions 72a and 72a to be less than the lower limit because the number of wirings increases.
 電極シート70は、引き回し配線74と、外部接続用端子75とを有する(図3参照)。引き回し配線74は、各Y方向電極部72aと外部接続用端子75とを接続するための配線である。引き回し配線74の好ましい幅や間隔は、上記の引き回し配線24と同様である。
 引き回し配線74及び外部接続用端子75の形成方法としては、例えば、基材シート71の表側の面に導電性ペーストをスクリーン印刷した後、加熱して硬化させる方法が挙げられる。
The electrode sheet 70 has routing wiring 74 and external connection terminals 75 (see FIG. 3). The lead wiring 74 is a wiring for connecting each Y-direction electrode portion 72 a and the external connection terminal 75. The preferred width and interval of the routing wiring 74 are the same as those of the routing wiring 24 described above.
Examples of a method for forming the routing wiring 74 and the external connection terminal 75 include a method in which a conductive paste is screen-printed on the surface of the base sheet 71 and then heated and cured.
 本実施形態における電極シート80は、電極シート70の表側の面70aに、接着層61によって貼合されている。また、本実施形態における電極シート80は、基材シート81と、基材シート81の表側の面81a(第1面81a)に形成されたパターン状の導電膜82と、導電膜82を被覆する絶縁膜83とを有する。
 基材シート81としては、基材シート21と同様のものを使用することができる。ただし、基材シート81は、必ずしも、基材シート21と同一のものとする必要はない。
 導電膜82としては、導電膜22と同様のものを使用することができる。ただし、導電膜82は、必ずしも、導電膜22と同一のものとする必要はない。
 絶縁膜83としては、絶縁膜23と同様のものを使用することができる。ただし、絶縁膜83は、必ずしも、絶縁膜23と同一のものとする必要はない。
The electrode sheet 80 in the present embodiment is bonded to the surface 70 a on the front side of the electrode sheet 70 with an adhesive layer 61. In addition, the electrode sheet 80 in the present embodiment covers the base material sheet 81, the patterned conductive film 82 formed on the front surface 81 a (first surface 81 a) of the base material sheet 81, and the conductive film 82. And an insulating film 83.
As the base material sheet 81, the thing similar to the base material sheet 21 can be used. However, the base sheet 81 is not necessarily the same as the base sheet 21.
As the conductive film 82, the same film as the conductive film 22 can be used. However, the conductive film 82 is not necessarily the same as the conductive film 22.
As the insulating film 83, the same film as the insulating film 23 can be used. However, the insulating film 83 is not necessarily the same as the insulating film 23.
 本実施形態における導電膜82のパターンは、導電膜22のパターンと同一であり、図4に示すように、X方向に沿って形成された帯状のX方向電極部82aを複数有するパターンである。
 本発明において、導電膜82のパターンは、必ずしも、導電膜22のパターンと同一である必要はない。同一でない場合、導電膜82の幅は0.05~2.0mmの範囲内であることが好ましく、0.05~1.0mmであることがより好ましい。
The pattern of the conductive film 82 in this embodiment is the same as the pattern of the conductive film 22, and as shown in FIG. 4, the pattern includes a plurality of strip-shaped X-direction electrode portions 82a formed along the X direction.
In the present invention, the pattern of the conductive film 82 is not necessarily the same as the pattern of the conductive film 22. If they are not the same, the width of the conductive film 82 is preferably in the range of 0.05 to 2.0 mm, more preferably 0.05 to 1.0 mm.
 電極シート80は、引き回し配線84と、外部接続用端子85とを有する(図4参照)。引き回し配線84は、各X方向電極部82aと外部接続用端子85とを接続するための配線である。引き回し配線84の好ましい幅や間隔は、上記の引き回し配線24と同様である。
 引き回し配線84及び外部接続用端子85の形成方法としては、例えば、基材シート81の表側の面に導電性ペーストをスクリーン印刷した後、加熱して硬化させる方法が挙げられる。
 なお、3次元センサ1において、外部接続用端子25,75,85は、互いに平面視方向における位置をずらすことにより、重なり合わないように配置されている。
The electrode sheet 80 has routing wiring 84 and external connection terminals 85 (see FIG. 4). The lead wiring 84 is a wiring for connecting each X-direction electrode portion 82 a and the external connection terminal 85. The preferable width and interval of the routing wiring 84 are the same as those of the routing wiring 24 described above.
Examples of a method for forming the routing wiring 84 and the external connection terminal 85 include a method in which a conductive paste is screen-printed on the front surface of the base sheet 81 and then cured by heating.
In the three-dimensional sensor 1, the external connection terminals 25, 75, and 85 are arranged so as not to overlap each other by shifting the positions in the plan view direction.
(保護層)
 保護層90は、XY方向位置検出用電極体60の表側の面60aに形成され、XY方向位置検出用電極体60を保護する層である。本実施形態では、保護層90は、両面粘着テープ91によって、XY方向位置検出用電極体60に貼合されている。
 保護層90は、例えば、絶縁性樹脂や絶縁性弾性ガラスからなる。絶縁性樹脂としては、絶縁性の熱可塑性樹脂、絶縁性の熱硬化型樹脂または紫外線硬化型樹脂が使用される。また、保護層90は、必要に応じて加飾されても構わない。
 保護層90の厚さは25~1000μmであることが好ましい。保護層90の厚さが前記下限値以上であれば、XY方向位置検出用電極体60を充分に保護でき、前記上限値以下であれば、押圧時に保護層90を容易に撓ませることができる。
(Protective layer)
The protective layer 90 is a layer that is formed on the surface 60 a on the front side of the XY direction position detection electrode body 60 and protects the XY direction position detection electrode body 60. In the present embodiment, the protective layer 90 is bonded to the XY direction position detecting electrode body 60 by the double-sided adhesive tape 91.
The protective layer 90 is made of, for example, an insulating resin or insulating elastic glass. As the insulating resin, an insulating thermoplastic resin, an insulating thermosetting resin, or an ultraviolet curable resin is used. Further, the protective layer 90 may be decorated as necessary.
The thickness of the protective layer 90 is preferably 25 to 1000 μm. If the thickness of the protective layer 90 is equal to or greater than the lower limit value, the XY direction position detecting electrode body 60 can be sufficiently protected, and if the thickness is equal to or smaller than the upper limit value, the protective layer 90 can be easily bent at the time of pressing. .
(製造方法)
 上記の3次元センサ1の製造方法としては、Z方向位置検出用電極体作製工程と、XY方向位置検出用電極体作製工程と、スペーサ形成工程とスペーサ接着層形成工程と、圧着工程と、保護層貼合工程と、支持板貼合工程とを有する方法が挙げられる。
(Production method)
The manufacturing method of the three-dimensional sensor 1 includes a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, and protection. The method which has a layer bonding process and a support plate bonding process is mentioned.
[Z方向位置検出用電極体作製工程]
 本実施形態におけるZ方向位置検出用電極体作製工程は、基材シート21の第1面21aに、X方向電極部22aと、引き回し配線24と、外部接続用端子25とを形成し、これらの上に絶縁膜23を形成し、さらに、弾性変形層30を形成して、Z方向位置検出用電極体20を得る工程である。
 X方向電極部22a(パターン状の導電膜22)の形成方法としては、例えば、基材シート21の表側の面21a(第1面21a)の少なくとも一部に、パターンのない導電膜を形成した後、その導電膜を所定のパターンとなるようにエッチングする方法が挙げられる。
 この際のエッチング方法としては、例えば、ケミカルエッチング法(ウェットエッチング法)やレーザーエッチング、アルゴンプラズマや酸素プラズマを利用したプラズマエッチング、イオンビームエッチング等のドライエッチング法が適用できる。これらの方法の中でも、X方向電極部22aを微細に形成できる点からレーザーエッチングが好ましい。
 引き回し配線24及び外部接続用端子25の形成方法としては、例えば、基材シート21の第1面21aに導電性ペーストをスクリーン印刷した後、加熱して硬化させる方法が挙げられる。
 絶縁膜23の形成方法としては、例えば、スクリーン印刷、インクジェット印刷等の各種印刷方法を適用することができる。
 絶縁膜23を形成した後には、Z方向位置検出用電極体20を所定の形状にするために周縁をトリミングしてもよい。
 本実施形態における弾性変形層の形成では、Z方向位置検出用電極体20の表面の全面に弾性変形層30を形成する。
 具体的には、Z方向位置検出用電極体20を構成する絶縁膜23の露出面の全面に弾性変形層30を形成する。弾性変形層30の形成方法としては、特に制限されず、例えば、各種印刷法、各種塗工法を適用することができる。
[Z-direction position detection electrode body manufacturing process]
In the Z-direction position detection electrode body manufacturing step in the present embodiment, the X-direction electrode portion 22a, the routing wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21. In this process, the insulating film 23 is formed thereon, and the elastic deformation layer 30 is further formed to obtain the Z-direction position detecting electrode body 20.
As a method for forming the X-direction electrode portion 22a (patterned conductive film 22), for example, an unpatterned conductive film is formed on at least a part of the surface 21a (first surface 21a) on the front side of the base sheet 21. Thereafter, there is a method of etching the conductive film so as to have a predetermined pattern.
As an etching method at this time, for example, a dry etching method such as a chemical etching method (wet etching method), laser etching, plasma etching using argon plasma or oxygen plasma, or ion beam etching can be applied. Among these methods, laser etching is preferable because the X-direction electrode portion 22a can be formed finely.
Examples of a method for forming the lead wiring 24 and the external connection terminal 25 include a method in which a conductive paste is screen-printed on the first surface 21a of the base sheet 21 and then heated and cured.
As a method of forming the insulating film 23, for example, various printing methods such as screen printing and ink jet printing can be applied.
After the insulating film 23 is formed, the periphery may be trimmed to make the Z-direction position detection electrode body 20 a predetermined shape.
In the formation of the elastically deformable layer in the present embodiment, the elastically deformable layer 30 is formed on the entire surface of the Z-direction position detecting electrode body 20.
Specifically, the elastic deformation layer 30 is formed on the entire exposed surface of the insulating film 23 constituting the Z-direction position detection electrode body 20. The method for forming the elastically deformable layer 30 is not particularly limited, and various printing methods and various coating methods can be applied, for example.
[XY方向位置検出用電極体作製工程]
 XY方向位置検出用電極体作製工程は、電極シート70と電極シート80とを作製した後、これら電極シート70,80を貼合する工程である。
 電極シート70は、基材シート71の第1面71aにY方向電極部72aと引き回し配線74と外部接続用端子75とを形成し、これらの上に絶縁膜73を形成することにより得る。
 電極シート80は、基材シート81の第1面81aにX方向電極部82aと引き回し配線84と外部接続用端子85とを形成し、これらの上に絶縁膜83を形成することにより得る。
 Y方向電極部72a及びX方向電極部82aの形成方法は、Z方向位置検出用電極体20のX方向電極部22aの形成方法と同様である。
 引き回し配線74,84及び外部接続用端子75,85の形成方法は、Z方向位置検出用電極体20の引き回し配線24及び外部接続用端子25の形成方法と同様である。
 絶縁膜73,83を形成した後には、電極シート70,80を所定の形状にするために周縁をトリミングしてもよい。
 電極シート70と電極シート80の貼合では、電極シート70の表面と電極シート80の裏面とを貼合する。具体的には、電極シート70の絶縁膜73と電極シート80の基材シート81とを貼合する。
 電極シート70と電極シート80の貼合方法としては、例えば、粘着剤、接着剤、又は両面粘着テープからなる接着層61を用いて貼合する方法が挙げられる。これらの貼合の際には、加圧してもよいし、その加圧の際には加熱してもよい。
[XY electrode position detection process]
The XY direction position detection electrode body manufacturing step is a step of bonding the electrode sheets 70 and 80 after the electrode sheet 70 and the electrode sheet 80 are manufactured.
The electrode sheet 70 is obtained by forming the Y-direction electrode portion 72a, the routing wiring 74, and the external connection terminal 75 on the first surface 71a of the base sheet 71, and forming the insulating film 73 thereon.
The electrode sheet 80 is obtained by forming the X-direction electrode portion 82a, the routing wiring 84 and the external connection terminal 85 on the first surface 81a of the base sheet 81, and forming the insulating film 83 thereon.
The formation method of the Y direction electrode portion 72a and the X direction electrode portion 82a is the same as the formation method of the X direction electrode portion 22a of the Z direction position detecting electrode body 20.
The formation method of the routing wirings 74 and 84 and the external connection terminals 75 and 85 is the same as the formation method of the routing wiring 24 and the external connection terminals 25 of the Z-direction position detection electrode body 20.
After the insulating films 73 and 83 are formed, the periphery may be trimmed in order to make the electrode sheets 70 and 80 have a predetermined shape.
In the bonding of the electrode sheet 70 and the electrode sheet 80, the surface of the electrode sheet 70 and the back surface of the electrode sheet 80 are bonded. Specifically, the insulating film 73 of the electrode sheet 70 and the base material sheet 81 of the electrode sheet 80 are bonded.
Examples of a method for bonding the electrode sheet 70 and the electrode sheet 80 include a method of bonding using an adhesive layer 61 made of a pressure-sensitive adhesive, an adhesive, or a double-sided pressure-sensitive adhesive tape. In these bonding, you may pressurize and you may heat in the case of the pressurization.
[スペーサ形成工程]
 本実施形態におけるスペーサ形成工程は、XY方向位置検出用電極体60の裏面にドットスペーサ50を形成する工程である。
 具体的に、スペーサ形成工程では、XY方向位置検出用電極体60を構成する電極シート70の基材シート71の露出面にドットスペーサ50を形成する。ドットスペーサ50の形成方法としては、特に制限されず、例えば、スクリーン印刷、インクジェット印刷、インプリント等を適用することができる。
 具体的に、ドットスペーサ50を活性エネルギー線硬化性樹脂のスクリーン印刷により形成する場合には、例えば、基材シートの露出面に、活性エネルギー線硬化性樹脂を含むインクをスクリーン印刷し、次いで、活性エネルギー線を照射し、硬化させてドットスペーサ50を形成する方法を適用できる。
[Spacer formation process]
The spacer forming step in the present embodiment is a step of forming the dot spacer 50 on the back surface of the XY direction position detecting electrode body 60.
Specifically, in the spacer forming step, the dot spacers 50 are formed on the exposed surface of the base material sheet 71 of the electrode sheet 70 constituting the XY direction position detecting electrode body 60. A method for forming the dot spacer 50 is not particularly limited, and for example, screen printing, inkjet printing, imprinting, and the like can be applied.
Specifically, when the dot spacer 50 is formed by screen printing of the active energy ray curable resin, for example, screen-printing ink containing the active energy ray curable resin on the exposed surface of the base sheet, A method of forming dot spacers 50 by irradiating and curing active energy rays can be applied.
[スペーサ接着層形成工程]
 本実施形態におけるスペーサ接着層形成工程は、Z方向位置検出用電極体20の弾性変形層30の表面全体にスペーサ接着層40を形成する工程である。
 具体的に、スペーサ接着層40をホットメルト系接着剤で構成する場合には、スペーサ接着層形成工程では、溶融させたホットメルト系接着剤を弾性変形層30の表面全体に塗工し、冷却して、スペーサ接着層40を形成する。
 一方、スペーサ接着層40を活性エネルギー線硬化性樹脂で構成する場合には、スペーサ接着層形成工程では、活性エネルギー線硬化性樹脂を含む液を弾性変形層30の表面全体に塗工する。そして、活性エネルギー線の照射により、塗工した活性エネルギー線硬化性樹脂を硬化させて、スペーサ接着層40を形成する。塗工した活性エネルギー線硬化性樹脂は、圧着工程前に硬化してもよいし、圧着工程においてドットスペーサ50を圧着させた後に硬化してもよい。圧着工程においてドットスペーサ50を圧着させた後に活性エネルギー線硬化性樹脂を硬化すれば、ドットスペーサ50をスペーサ接着層40の内部に容易に埋没させることができる。
[Spacer adhesive layer forming process]
The spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the entire surface of the elastic deformation layer 30 of the Z-direction position detecting electrode body 20.
Specifically, when the spacer adhesive layer 40 is composed of a hot melt adhesive, in the spacer adhesive layer forming step, the molten hot melt adhesive is applied to the entire surface of the elastic deformation layer 30 and cooled. Then, the spacer adhesive layer 40 is formed.
On the other hand, when the spacer adhesive layer 40 is made of an active energy ray curable resin, a liquid containing the active energy ray curable resin is applied to the entire surface of the elastic deformation layer 30 in the spacer adhesive layer forming step. Then, the applied active energy ray-curable resin is cured by irradiation with active energy rays to form the spacer adhesive layer 40. The applied active energy ray-curable resin may be cured before the pressure-bonding step, or may be cured after the dot spacer 50 is pressure-bonded in the pressure-bonding step. If the active energy ray-curable resin is cured after the dot spacer 50 is pressure-bonded in the pressure-bonding step, the dot spacer 50 can be easily embedded in the spacer adhesive layer 40.
[圧着工程]
 本実施形態における圧着工程は、ドットスペーサ50が設けられたXY方向位置検出用電極体60と、スペーサ接着層40が設けられたZ方向位置検出用電極体20とを圧着して接着積層体を形成すると共に、ドットスペーサ50の少なくとも一部をスペーサ接着層40の内部に埋没させる工程である。
 具体的に、圧着工程では、スペーサ接着層40とドットスペーサ50とを押し当て、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させて圧着する。その際、ドットスペーサ50の先端が弾性変形層30の表面に接するように、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させる。これにより、XY方向位置検出用電極体60とスペーサ接着層40との間に空隙を形成する。
 圧着の際には、ドットスペーサ50の埋没を容易にするために、加熱してスペーサ接着層40を溶融させてもよいし、スペーサ接着層40を溶剤により溶解させてもよい。上述したように、スペーサ接着層40を活性エネルギー線硬化性樹脂で構成する場合には、ドットスペーサ50をスペーサ接着層40に埋没させる前には、活性エネルギー線硬化性樹脂を硬化させず、埋没させた後に硬化することが好ましい。この際、圧着圧力をコントロールすることで、ドットスペーサ50のスペーサ接着層40への埋没深さを適宜設定し、XY方向位置検出用電極体60とスペーサ接着層40との間の空隙の大きさを所望の範囲に調整することも可能である。
 また、圧着の前には、スペーサ接着層40及びドットスペーサ50を表面処理して接着性を向上させてもよい。
[Crimping process]
In the crimping step in the present embodiment, the XY direction position detecting electrode body 60 provided with the dot spacers 50 and the Z direction position detecting electrode body 20 provided with the spacer adhesive layer 40 are crimped to form an adhesive laminate. In this process, at least a part of the dot spacer 50 is buried in the spacer adhesive layer 40.
Specifically, in the crimping step, the spacer adhesive layer 40 and the dot spacer 50 are pressed, and a part of the dot spacer 50 is buried in the spacer adhesive layer 40 and crimped. At that time, a part of the dot spacer 50 is buried in the spacer adhesive layer 40 so that the tip of the dot spacer 50 is in contact with the surface of the elastic deformation layer 30. As a result, a gap is formed between the XY direction position detecting electrode body 60 and the spacer adhesive layer 40.
At the time of pressure bonding, in order to facilitate the embedding of the dot spacer 50, the spacer adhesive layer 40 may be melted by heating, or the spacer adhesive layer 40 may be dissolved by a solvent. As described above, when the spacer adhesive layer 40 is made of an active energy ray curable resin, the active energy ray curable resin is not cured before the dot spacer 50 is buried in the spacer adhesive layer 40. It is preferable to cure after curing. At this time, by controlling the pressing pressure, the depth of the dot spacer 50 embedded in the spacer adhesive layer 40 is appropriately set, and the size of the gap between the XY direction position detecting electrode body 60 and the spacer adhesive layer 40 is set. Can be adjusted to a desired range.
In addition, before the pressure bonding, the spacer adhesive layer 40 and the dot spacer 50 may be surface-treated to improve the adhesion.
[保護層貼合工程]
 保護層貼合工程は、上記接着積層体に保護層を貼合する工程である。
 具体的に、保護層貼合工程では、上記接着積層体を構成するXY方向位置検出用電極体60の絶縁膜83に保護層90を、両面粘着テープ91を用いて貼合する。あるいは、両面粘着テープ91に代えて、絶縁膜83上に接着剤層を設けることも可能である。
[Protective layer bonding process]
A protective layer bonding process is a process of bonding a protective layer to the said adhesive laminated body.
Specifically, in the protective layer bonding step, the protective layer 90 is bonded to the insulating film 83 of the XY direction position detecting electrode body 60 constituting the above-mentioned bonded laminated body using a double-sided adhesive tape 91. Alternatively, it is possible to provide an adhesive layer on the insulating film 83 instead of the double-sided adhesive tape 91.
[支持板貼合工程]
 支持板貼合工程は、上記接着積層体に支持板を貼合する工程である。
 具体的に、支持板貼合工程では、上記接着積層体を構成するZ方向位置検出用電極体20の基材シート21に、両面粘着テープ11を用いて、支持板10を貼合する。これにより、3次元センサ1を得る。
[Support plate pasting process]
A support board bonding process is a process of bonding a support board to the said adhesion laminated body.
Specifically, in the support plate bonding step, the support plate 10 is bonded using the double-sided pressure-sensitive adhesive tape 11 to the base material sheet 21 of the Z-direction position detecting electrode body 20 that constitutes the above-mentioned adhesive laminate. Thereby, the three-dimensional sensor 1 is obtained.
(使用方法)
 上記3次元センサ1を、ノート型パーソナルコンピュータの静電容量式タッチパッドとして用いた使用例について説明する。
 パーソナルコンピュータの使用者は、モニタに表示されたポインタのX方向の位置及びY方向の位置を移動させるために、保護層90の表面に沿って指を動かす。その際、3次元センサ1では、XY方向位置検出用電極体60を利用し、入力領域における指のX方向の位置及びY方向の位置を検出する。具体的には、導電膜72,82を利用し、X方向における静電容量の変化、Y方向における静電容量の変化を検出することによって、X方向及びY方向の指の位置を求める。
 また、使用者は、ポインタのX方向の位置及びY方向の位置を、目的の処理を実行するための選択領域に移動させた後、指で3次元センサ1の入力領域内を押圧して決定する。
 このとき、XY方向位置検出用電極体60及び保護層90は撓み、その撓みによってドットスペーサ50が弾性変形層30を押圧して変形させる。そのため、Z方向位置検出用電極体20とXY方向位置検出用電極体60の電極シート70との距離が短くなる。その際の、導電膜22と導電膜72との間の静電容量の変化、すなわちZ方向の静電容量の変化を検出し、その静電容量の変化から押圧量を求める。そして、その押圧量に応じた処理を実行する。
(how to use)
A usage example in which the three-dimensional sensor 1 is used as a capacitive touch pad of a notebook personal computer will be described.
The user of the personal computer moves his / her finger along the surface of the protective layer 90 in order to move the position in the X direction and the position in the Y direction of the pointer displayed on the monitor. At this time, the three-dimensional sensor 1 uses the XY direction position detection electrode body 60 to detect the position of the finger in the X direction and the position in the Y direction in the input area. Specifically, the positions of the fingers in the X direction and the Y direction are obtained by using the conductive films 72 and 82 to detect a change in capacitance in the X direction and a change in capacitance in the Y direction.
In addition, the user moves the position in the X direction and the position in the Y direction of the pointer to the selection area for executing the target processing, and then presses the input area of the three-dimensional sensor 1 with the finger. To do.
At this time, the XY direction position detection electrode body 60 and the protective layer 90 are bent, and the dot spacer 50 presses and deforms the elastic deformation layer 30 by the bending. Therefore, the distance between the Z-direction position detecting electrode body 20 and the electrode sheet 70 of the XY-direction position detecting electrode body 60 is shortened. At that time, a change in capacitance between the conductive film 22 and the conductive film 72, that is, a change in capacitance in the Z direction is detected, and a pressing amount is obtained from the change in capacitance. And the process according to the pressing amount is performed.
(作用効果)
 本実施形態の3次元センサ1では、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着しているため、接着強度が高く、保護層90の非押圧時及び押圧時のいずれにおいてもドットスペーサ50がスペーサ接着層40から剥離しにくい。そのため、非押圧時においては、Z方向位置検出用電極体20とXY方向位置検出用電極体60との静電容量値を、全体的に所定の値にすることができる。一方、押圧時においては、同じ押圧深さであれば、静電容量値を同じ値にすることができる。これにより、Z方向の位置検出精度を向上させることができる。
 また、ドットスペーサ50の先端が弾性変形層30の表面に接するため、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔がドットスペーサ50の高さとなる。したがって、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔を容易に一定化させることができる。そのため、非押圧時において、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間の静電容量値のばらつきはより小さくなる。これにより、本実施形態の3次元センサ1は、X方向の位置検出精度がより高くなる。
 また、本実施形態の3次元センサ1では、弾性変形層30を備えるため、ドットスペーサ50が弾性を有する必要はなく、ドットスペーサ50の材質及び形成方法の自由度が大きくなり、例えば、印刷によってもドットスペーサ50を形成でき、金型成形が不要になる。したがって、3次元センサ1を低コストで得ることが可能になる。
 また、スペーサの形成に金型成形を適用した場合には、スペーサをシート状にするため、3次元センサを製造する際の部品が多くなるが、本実施形態では、スペーサのシートは不要であり、部品点数を少なくできる。
(Function and effect)
In the three-dimensional sensor 1 of the present embodiment, since a part of the dot spacer 50 is buried and bonded inside the spacer adhesive layer 40, the adhesive strength is high, and the protective layer 90 is not pressed or pressed. In this case, the dot spacer 50 is hardly peeled off from the spacer adhesive layer 40. Therefore, when not pressed, the capacitance values of the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be set to a predetermined value as a whole. On the other hand, at the time of pressing, if the pressing depth is the same, the capacitance value can be made the same value. Thereby, the position detection accuracy in the Z direction can be improved.
Further, since the tip of the dot spacer 50 is in contact with the surface of the elastic deformation layer 30, the distance between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 is the height of the dot spacer 50. Therefore, the interval between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the variation in the capacitance value between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 becomes smaller when not pressed. Thereby, the three-dimensional sensor 1 of the present embodiment has higher position detection accuracy in the X direction.
In the three-dimensional sensor 1 of the present embodiment, since the elastic deformation layer 30 is provided, the dot spacer 50 does not need to have elasticity, and the degree of freedom of the material and forming method of the dot spacer 50 is increased. In addition, the dot spacer 50 can be formed, and the mold forming is not necessary. Therefore, the three-dimensional sensor 1 can be obtained at a low cost.
In addition, when mold forming is applied to the formation of the spacer, since the spacer is formed into a sheet shape, the number of parts when manufacturing the three-dimensional sensor increases. In this embodiment, the spacer sheet is not necessary. The number of parts can be reduced.
<第2実施形態>
 本発明の3次元センサの第2実施形態について以下に説明する。
 図5に、本実施形態の3次元センサを示す。本実施形態の3次元センサ2は、支持板10と、Z方向位置検出用電極体20と、スペーサ接着層40と、ドットスペーサ50と、XY方向位置検出用電極体60と、保護層90とを備える。
 本実施形態は、スペーサ接着層40が、ドットスペーサ50に対応する位置でパターン状に形成されている点以外は、第1実施形態と同様の構成である。
 スペーサ接着層40のパターンとしては、ドットスペーサ50に対応する位置にスペーサ接着層40が形成されていれば特に制限されず、例えば、ドット状、格子状等が挙げられる。
Second Embodiment
A second embodiment of the three-dimensional sensor of the present invention will be described below.
FIG. 5 shows the three-dimensional sensor of this embodiment. The three-dimensional sensor 2 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
The present embodiment has the same configuration as that of the first embodiment except that the spacer adhesive layer 40 is formed in a pattern at a position corresponding to the dot spacer 50.
The pattern of the spacer adhesive layer 40 is not particularly limited as long as the spacer adhesive layer 40 is formed at a position corresponding to the dot spacer 50, and examples thereof include a dot shape and a lattice shape.
(製造方法)
 上記の3次元センサ2の製造方法としては、Z方向位置検出用電極体作製工程と、XY方向位置検出用電極体作製工程と、スペーサ形成工程と、スペーサ接着層形成工程と、圧着工程と、保護層貼合工程と、支持板貼合工程とを有する方法が挙げられる。
 ただし、本実施形態におけるスペーサ接着層形成工程は、第1実施形態におけるスペーサ接着層形成工程とは異なり、その他の工程については、第1実施形態と同様である。
以下に、本実施形態におけるスペーサ接着層形成工程について、詳しく説明する。
(Production method)
As a manufacturing method of the three-dimensional sensor 2 described above, a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, The method which has a protective layer bonding process and a support plate bonding process is mentioned.
However, the spacer adhesive layer forming step in the present embodiment is different from the spacer adhesive layer forming step in the first embodiment, and the other steps are the same as those in the first embodiment.
Below, the spacer contact bonding layer formation process in this embodiment is demonstrated in detail.
[スペーサ接着層形成工程]
 本実施形態におけるスペーサ接着層形成工程は、弾性変形層30の表面の一部に、スペーサ接着層40をパターン状に形成する工程である。弾性変形層30の表面において、スペーサ接着層40を形成する位置は、ドットスペーサ50と対応する位置である。
 スペーサ接着層40の形成方法は、その形成位置を、弾性変形層30の表面全体から、弾性変形層30の表面の一部に変更する点以外は、第1実施形態におけるスペーサ接着層40の形成方法と同様である。
[Spacer adhesive layer forming process]
The spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 in a pattern on a part of the surface of the elastic deformation layer 30. On the surface of the elastic deformation layer 30, the position where the spacer adhesive layer 40 is formed is a position corresponding to the dot spacer 50.
The formation method of the spacer adhesive layer 40 is the same as the formation method of the spacer adhesive layer 40 in the first embodiment except that the formation position is changed from the entire surface of the elastic deformation layer 30 to a part of the surface of the elastic deformation layer 30. It is the same as the method.
(作用効果)
 本実施形態の3次元センサ2においても、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着しているため、接着強度が高く、非押圧時及び押圧時においてドットスペーサ50がスペーサ接着層40から剥離しにくくなっている。したがって、第1実施形態にて説明したように、Z方向の位置検出精度を向上させることができる。
 また、ドットスペーサ50の先端が弾性変形層30の表面に接するため、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔を容易に一定化させることができる。そのため、3次元センサ2のZ方向位置検出精度をより向上させることができる。
 本実施形態の3次元センサ2では、スペーサ接着層40がパターン状に複数形成されているため、隣接するスペーサ接着層40,40の間に空間が形成される。これにより、ドットスペーサ50によって弾性変形層30が押圧されたときには、弾性変形層30の変形によって押し出された部分を、その空間に逃がすことができる。したがって、スペーサ接着層40が弾性変形層30の変形を阻害することを防止でき、その結果、3次元センサ2の操作性を向上させることができる。
 また、スペーサ接着層40がパターン状に複数形成されていることで、スペーサ接着層40の弾性が高い場合でも、変形後に復元性を阻害することなく、元の形状に容易に戻る。
(Function and effect)
Also in the three-dimensional sensor 2 of the present embodiment, since a part of the dot spacer 50 is buried and adhered inside the spacer adhesive layer 40, the adhesive strength is high, and the dot spacer 50 is not pressed and pressed. It is difficult to peel off from the spacer adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved.
Further, since the tip of the dot spacer 50 is in contact with the surface of the elastic deformation layer 30, the distance between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 2 can be further improved.
In the three-dimensional sensor 2 of this embodiment, since a plurality of spacer adhesive layers 40 are formed in a pattern, a space is formed between adjacent spacer adhesive layers 40 and 40. Thereby, when the elastic deformation layer 30 is pressed by the dot spacer 50, the portion pushed out by the deformation of the elastic deformation layer 30 can escape to the space. Therefore, it is possible to prevent the spacer adhesive layer 40 from inhibiting the deformation of the elastic deformation layer 30, and as a result, the operability of the three-dimensional sensor 2 can be improved.
Further, since a plurality of spacer adhesive layers 40 are formed in a pattern, even when the spacer adhesive layer 40 has high elasticity, it can easily return to its original shape without hindering the restoration after deformation.
<第3実施形態>
 本発明の3次元センサの第3実施形態について説明する。
 図6に、本実施形態の3次元センサを示す。本実施形態の3次元センサ3は、支持板10と、Z方向位置検出用電極体20と、スペーサ接着層40と、ドットスペーサ50と、XY方向位置検出用電極体60と、保護層90とを備える。
 本実施形態は、弾性変形層30を備えるのがZ方向位置検出用電極体20ではなくXY方向位置検出用電極体60である点と、スペーサ接着層40及びドットスペーサ50の配置が異なり、Z方向位置検出用電極体20とスペーサ接着層40との間に空隙が形成されている点以外は第1実施形態と同様である。
 すなわち、本実施形態では、Z方向位置検出用電極体20の絶縁膜23にドットスペーサ50が設けられ、XY方向位置検出用電極体60の基材シート71の裏側に弾性変形層30が形成され、弾性変形層30の裏側にスペーサ接着層40が形成されている。
 本実施形態におけるドットスペーサ50の向きは、第1実施形態と反対であるが、ドットスペーサ50が、スペーサ接着層40の内部に一部が埋没して接着される点は、第1実施形態と同様である。
<Third Embodiment>
A third embodiment of the three-dimensional sensor of the present invention will be described.
FIG. 6 shows the three-dimensional sensor of this embodiment. The three-dimensional sensor 3 of the present embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
In this embodiment, the elastic deformation layer 30 is not the Z-direction position detection electrode body 20 but the XY-direction position detection electrode body 60, and the arrangement of the spacer adhesive layer 40 and the dot spacer 50 is different. The second embodiment is the same as the first embodiment except that a gap is formed between the directional position detection electrode body 20 and the spacer adhesive layer 40.
That is, in this embodiment, the dot spacer 50 is provided on the insulating film 23 of the Z-direction position detection electrode body 20, and the elastic deformation layer 30 is formed on the back side of the base sheet 71 of the XY-direction position detection electrode body 60. A spacer adhesive layer 40 is formed on the back side of the elastic deformation layer 30.
The direction of the dot spacer 50 in the present embodiment is opposite to that in the first embodiment. However, the dot spacer 50 is partially embedded in the spacer adhesive layer 40 and bonded to the first embodiment. It is the same.
 本実施形態の3次元センサ3では、指で3次元センサ3の入力領域内を押圧したとき、XY方向位置検出用電極体60及び保護層90が撓み、その撓みによって弾性変形層30がドットスペーサ50に向って押し付けられる。これにより、ドットスペーサ50が弾性変形層30を押圧して変形させる。そのため、Z方向位置検出用電極体20とXY方向位置検出用電極体60の電極シート70との距離が短くなる。その際の、導電膜22と導電膜72との間の静電容量の変化、すなわちZ方向の静電容量の変化を検出し、その静電容量の変化から押圧量を求める。 In the three-dimensional sensor 3 of this embodiment, when the input area of the three-dimensional sensor 3 is pressed with a finger, the XY direction position detection electrode body 60 and the protective layer 90 are bent, and the elastic deformation layer 30 is formed into a dot spacer by the bending. It is pressed toward 50. Thereby, the dot spacer 50 presses and deforms the elastic deformation layer 30. Therefore, the distance between the Z-direction position detecting electrode body 20 and the electrode sheet 70 of the XY-direction position detecting electrode body 60 is shortened. At that time, a change in capacitance between the conductive film 22 and the conductive film 72, that is, a change in capacitance in the Z direction is detected, and a pressing amount is obtained from the change in capacitance.
(製造方法)
 上記の3次元センサ3の製造方法としては、Z方向位置検出用電極体作製工程と、XY方向位置検出用電極体作製工程と、スペーサ形成工程とスペーサ接着層形成工程と、圧着工程と、保護層貼合工程と、支持板貼合工程とを有する方法が挙げられる。
 ただし、本実施形態におけるスペーサ形成工程、スペーサ接着層形成工程及び圧着工程は、第1実施形態におけるスペーサ形成工程、スペーサ接着層形成工程及び圧着工程とは異なり、その他の工程については、第1実施形態と同様である。
(Production method)
The manufacturing method of the three-dimensional sensor 3 includes a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, and a protection. The method which has a layer bonding process and a support plate bonding process is mentioned.
However, the spacer formation process, spacer adhesion layer formation process, and pressure bonding process in the present embodiment are different from the spacer formation process, spacer adhesion layer formation process, and pressure bonding process in the first embodiment, and the other processes are the first implementation. It is the same as the form.
[Z方向位置検出用電極体作製工程]
 本実施形態におけるZ方向位置検出用電極体作製工程は、基材シート21の第1面21aにX方向電極部22aと引き回し配線24と外部接続用端子25とを形成し、これらの上に絶縁膜23を形成して、Z方向位置検出用電極体20を得る工程である。
 X方向電極部22a、絶縁膜23、引き回し配線24及び外部接続用端子25の形成方法は、第1実施形態におけるX方向電極部22a、絶縁膜23、引き回し配線24及び外部接続用端子25の形成方法と同様である。
[Z-direction position detection electrode body manufacturing process]
In the Z-direction position detection electrode body manufacturing step in the present embodiment, the X-direction electrode portion 22a, the routing wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21 and insulated on them. This is a step of forming the film 23 and obtaining the Z-direction position detecting electrode body 20.
The method of forming the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 is the same as the formation of the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 in the first embodiment. It is the same as the method.
[XY方向位置検出用電極体作製工程]
 XY方向位置検出用電極体作製工程は、電極シート70と電極シート80とを作製した後、これら電極シート70,80を貼合し、さらに電極シート70の裏側の全面に弾性変形層30を形成する工程である。
 本実施形態における電極シート70,80の形成方法は、第1実施形態における電極シート70,80の形成方法と同様である。
 本実施形態における弾性変形層の形成では、XY方向位置検出用電極体60を構成する電極シート70の基材シート71の裏面の全面に弾性変形層30を形成する。弾性変形層30の形成方法は第1実施形態における弾性変形層30の形成方法と同様である。
[XY electrode position detection process]
In the XY direction position detection electrode body manufacturing step, after the electrode sheet 70 and the electrode sheet 80 are manufactured, the electrode sheets 70 and 80 are bonded together, and the elastic deformation layer 30 is formed on the entire back side of the electrode sheet 70. It is a process to do.
The method for forming the electrode sheets 70 and 80 in the present embodiment is the same as the method for forming the electrode sheets 70 and 80 in the first embodiment.
In the formation of the elastically deformable layer in the present embodiment, the elastically deformable layer 30 is formed on the entire back surface of the base sheet 71 of the electrode sheet 70 constituting the XY direction position detecting electrode body 60. The formation method of the elastic deformation layer 30 is the same as the formation method of the elastic deformation layer 30 in the first embodiment.
[スペーサ形成工程]
 本実施形態におけるスペーサ形成工程は、Z方向位置検出用電極体20の表面にドットスペーサ50を形成する工程である。
 具体的に、スペーサ形成工程では、Z方向位置検出用電極体20を構成する絶縁膜23の露出面にドットスペーサ50をドット状に形成する。ドットスペーサ50の形成方法は、第1実施形態におけるドットスペーサ50の形成方法と同様である。
[Spacer formation process]
The spacer forming step in the present embodiment is a step of forming dot spacers 50 on the surface of the Z direction position detecting electrode body 20.
Specifically, in the spacer forming step, the dot spacers 50 are formed in a dot shape on the exposed surface of the insulating film 23 constituting the Z-direction position detecting electrode body 20. The method for forming the dot spacer 50 is the same as the method for forming the dot spacer 50 in the first embodiment.
[スペーサ接着層形成工程]
 本実施形態におけるスペーサ接着層形成工程は、XY方向位置検出用電極体60に備えられる弾性変形層30の裏面全体に、スペーサ接着層40を形成する工程である。
 スペーサ接着層40の形成方法は、スペーサ接着層40の形成位置を、弾性変形層30の表面側から裏面側に変更する点以外は、第1実施形態におけるスペーサ接着層40の形成方法と同様である。
[Spacer adhesive layer forming process]
The spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the entire back surface of the elastic deformation layer 30 provided in the XY direction position detecting electrode body 60.
The method for forming the spacer adhesive layer 40 is the same as the method for forming the spacer adhesive layer 40 in the first embodiment, except that the formation position of the spacer adhesive layer 40 is changed from the front surface side to the back surface side of the elastic deformation layer 30. is there.
[圧着工程]
 圧着工程は、スペーサ接着層40が設けられたXY方向位置検出用電極体60と、ドットスペーサ50が設けられたZ方向位置検出用電極体20とを圧着して接着積層体を形成すると共に、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させる工程である。
 具体的に、圧着工程では、スペーサ接着層40とドットスペーサ50とを押し当て、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させて圧着する。その際、ドットスペーサ50の先端が弾性変形層30の裏面に接するように、ドットスペーサ50をスペーサ接着層40の内部に埋没させる。
[Crimping process]
In the crimping step, the XY direction position detecting electrode body 60 provided with the spacer adhesive layer 40 and the Z direction position detecting electrode body 20 provided with the dot spacer 50 are crimped to form an adhesive laminate, In this step, part of the dot spacer 50 is buried in the spacer adhesive layer 40.
Specifically, in the crimping step, the spacer adhesive layer 40 and the dot spacer 50 are pressed, and a part of the dot spacer 50 is buried in the spacer adhesive layer 40 and crimped. At that time, the dot spacer 50 is buried in the spacer adhesive layer 40 so that the tip of the dot spacer 50 is in contact with the back surface of the elastic deformation layer 30.
(作用効果)
 本実施形態の3次元センサ3も、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着しているため、接着強度が高く、非押圧時及び押圧時においてドットスペーサ50がスペーサ接着層40から剥離しにくくなる。したがって、第1実施形態にて説明したように、Z方向の位置検出精度を向上させることができる。
 また、ドットスペーサ50の先端が弾性変形層30の裏面に接するため、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔を容易に一定化させることができる。そのため、3次元センサ3のZ方向位置検出精度をより向上させることができる。
(Function and effect)
Also in the three-dimensional sensor 3 of the present embodiment, since a part of the dot spacer 50 is buried and bonded inside the spacer adhesive layer 40, the adhesive strength is high, and the dot spacer 50 is a spacer when not pressed and when pressed. It becomes difficult to peel from the adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved.
Further, since the tip of the dot spacer 50 is in contact with the back surface of the elastic deformation layer 30, the distance between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 3 can be further improved.
<第4実施形態>
 本発明の3次元センサの第4実施形態について説明する。
 図7に、本実施形態の3次元センサを示す。本実施形態の3次元センサ4は、支持板10と、Z方向位置検出用電極体20と、スペーサ接着層40と、ドットスペーサ50と、XY方向位置検出用電極体60と、保護層90とを備える。
 本実施形態は、弾性変形層を備えず、スペーサ接着層40がZ方向位置検出用電極体20に直接接着する以外は第1実施形態と同様である。
 本実施形態におけるドットスペーサ50は、弾性変形可能な材料から構成され、厚さを1cmとして測定した際のショアA硬度が85以下の材料から形成されていることが好ましい。弾性変形可能な材料としては、第1実施形態における弾性変形層を構成する材料と同様の物を使用することができる。
 本実施形態においても、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着するが、ドットスペーサ50の先端はX方向位置検出用電極体20の絶縁膜23の表面に接している。ドットスペーサ50の先端がX方向位置検出用電極体20の絶縁膜23の表面に接することで、導電膜22の傷付きを防止できる。
<Fourth embodiment>
A fourth embodiment of the three-dimensional sensor of the present invention will be described.
FIG. 7 shows the three-dimensional sensor of this embodiment. The three-dimensional sensor 4 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
The present embodiment is the same as the first embodiment except that the elastic deformation layer is not provided and the spacer adhesive layer 40 is directly bonded to the Z-direction position detecting electrode body 20.
The dot spacer 50 in the present embodiment is preferably made of an elastically deformable material, and is formed of a material having a Shore A hardness of 85 or less when measured with a thickness of 1 cm. As the elastically deformable material, the same material as that constituting the elastically deformable layer in the first embodiment can be used.
Also in the present embodiment, a part of the dot spacer 50 is buried and adhered inside the spacer adhesive layer 40, but the tip of the dot spacer 50 is in contact with the surface of the insulating film 23 of the X-direction position detection electrode body 20. Yes. Since the tip of the dot spacer 50 is in contact with the surface of the insulating film 23 of the X-direction position detecting electrode body 20, the conductive film 22 can be prevented from being damaged.
(製造方法)
 上記の3次元センサ4の製造方法としては、Z方向位置検出用電極体作製工程と、XY方向位置検出用電極体作製工程と、スペーサ形成工程と、スペーサ接着層形成工程と、圧着工程と、保護層貼合工程と、支持板貼合工程とを有する方法が挙げられる。
 本実施形態では、弾性変形層を有さないため、本実施形態におけるZ方向位置検出用電極体作製工程、スペーサ接着層形成工程及び圧着工程は、第1実施形態におけるZ方向位置検出用電極体作製工程、スペーサ接着層形成工程及び圧着工程とは異なり、その他の工程については、第1実施形態と同様である。
(Production method)
As a manufacturing method of the three-dimensional sensor 4 described above, a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, The method which has a protective layer bonding process and a support plate bonding process is mentioned.
In this embodiment, since there is no elastically deformable layer, the Z-direction position detection electrode body in the first embodiment is the same as the Z-direction position detection electrode body preparation step, spacer adhesion layer formation step, and crimping step in this embodiment. Unlike the manufacturing process, the spacer adhesive layer forming process, and the crimping process, the other processes are the same as those in the first embodiment.
[Z方向位置検出用電極体作製工程]
 本実施形態におけるZ方向位置検出用電極体作製工程は、基材シート21の第1面21aに、X方向電極部22aと、引き回し配線24と、外部接続用端子25とを形成し、これらの上に絶縁膜23を形成して、Z方向位置検出用電極体20を得る工程である。
 X方向電極部22a、絶縁膜23、引き回し配線24及び外部接続用端子25の形成方法は、第1実施形態におけるX方向電極部22a、絶縁膜23、引き回し配線24及び外部接続用端子25の形成方法と同様である。
[Z-direction position detection electrode body manufacturing process]
In the Z-direction position detection electrode body manufacturing step in the present embodiment, the X-direction electrode portion 22a, the routing wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21. In this process, the insulating film 23 is formed thereon to obtain the Z-direction position detecting electrode body 20.
The method of forming the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 is the same as the formation of the X-direction electrode portion 22a, the insulating film 23, the routing wiring 24, and the external connection terminal 25 in the first embodiment. It is the same as the method.
[スペーサ接着層形成工程]
 本実施形態におけるスペーサ接着層形成工程は、Z方向位置検出用電極体20の絶縁膜23の表面の全面にスペーサ接着層40を形成する工程である。
 具体的に、スペーサ接着層40をホットメルト系接着剤で構成する場合には、スペーサ接着層形成工程では、溶融させたホットメルト系接着剤を絶縁膜23の表面の全面に塗工し、冷却して、スペーサ接着層40を形成する。
 スペーサ接着層40を活性エネルギー線硬化性樹脂で構成する場合には、スペーサ接着層形成工程では、粘着剤の溶液又は接着剤の溶液を絶縁膜23の表面の全面に塗工し、活性エネルギー線の照射により硬化させて、スペーサ接着層40を形成する。
[Spacer adhesive layer forming process]
The spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the entire surface of the insulating film 23 of the Z-direction position detecting electrode body 20.
Specifically, when the spacer adhesive layer 40 is composed of a hot melt adhesive, in the spacer adhesive layer forming step, the melted hot melt adhesive is applied to the entire surface of the insulating film 23 and cooled. Then, the spacer adhesive layer 40 is formed.
When the spacer adhesive layer 40 is composed of an active energy ray curable resin, in the spacer adhesive layer forming step, an adhesive solution or an adhesive solution is applied to the entire surface of the insulating film 23 to obtain active energy rays. The spacer adhesive layer 40 is formed by curing by irradiation.
[圧着工程]
 本実施形態における圧着工程は、ドットスペーサ50が設けられたXY方向位置検出用電極体60と、スペーサ接着層40が設けられたZ方向位置検出用電極体20とを圧着して接着積層体を形成すると共に、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させる工程である。
 具体的に、圧着工程では、スペーサ接着層40とドットスペーサ50とを押し当て、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させて圧着する。その際、ドットスペーサ50の先端が絶縁膜23の表面に接するように、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させる。
[Crimping process]
In the crimping step in the present embodiment, the XY direction position detecting electrode body 60 provided with the dot spacers 50 and the Z direction position detecting electrode body 20 provided with the spacer adhesive layer 40 are crimped to form an adhesive laminate. This is a step of forming a part of the dot spacer 50 and burying it inside the spacer adhesive layer 40.
Specifically, in the crimping step, the spacer adhesive layer 40 and the dot spacer 50 are pressed, and a part of the dot spacer 50 is buried in the spacer adhesive layer 40 and crimped. At that time, a part of the dot spacer 50 is buried in the spacer adhesive layer 40 so that the tip of the dot spacer 50 is in contact with the surface of the insulating film 23.
(作用効果)
 本実施形態の3次元センサ4も、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着しているため、接着強度が高く、非押圧時及び押圧時においてドットスペーサ50がスペーサ接着層40から剥離しにくくなっている。したがって、第1実施形態にて説明したように、Z方向の位置検出精度を向上させることができる。
 また、ドットスペーサ50の先端が絶縁膜23の表面に接するため、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔を容易に一定化させることができる。そのため、3次元センサ4のZ方向位置検出精度をより向上させることができる。
(Function and effect)
Also in the three-dimensional sensor 4 of the present embodiment, since a part of the dot spacer 50 is buried and bonded inside the spacer adhesive layer 40, the adhesive strength is high, and the dot spacer 50 is a spacer when not pressed and when pressed. It is difficult to peel from the adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved.
Further, since the tip of the dot spacer 50 is in contact with the surface of the insulating film 23, the distance between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 4 can be further improved.
<第5実施形態>
 本発明の3次元センサの第5実施形態について説明する。
 図8に、本実施形態の3次元センサを示す。本実施形態の3次元センサ5は、支持板10と、Z方向位置検出用電極体20と、スペーサ接着層40と、ドットスペーサ50と、XY方向位置検出用電極体60と、保護層90とを備える。
 本実施形態は、スペーサ接着層40がZ方向位置検出用電極体20の絶縁膜23の代わりに形成され、弾性変形層が省略されている点以外は第1実施形態と同様である。
 本実施形態におけるドットスペーサ50は、弾性変形可能な材料から構成され、厚さを1cmとして測定した際のショアA硬度が85以下の材料から形成されていることが好ましい。弾性変形可能な材料としては、第1実施形態における弾性変形層を構成する材料と同様の物を使用することができる。
<Fifth Embodiment>
A fifth embodiment of the three-dimensional sensor of the present invention will be described.
FIG. 8 shows the three-dimensional sensor of this embodiment. The three-dimensional sensor 5 of the present embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
The present embodiment is the same as the first embodiment except that the spacer adhesive layer 40 is formed instead of the insulating film 23 of the Z-direction position detecting electrode body 20 and the elastic deformation layer is omitted.
The dot spacer 50 in the present embodiment is preferably made of an elastically deformable material, and is formed of a material having a Shore A hardness of 85 or less when measured with a thickness of 1 cm. As the elastically deformable material, the same material as that constituting the elastically deformable layer in the first embodiment can be used.
(製造方法)
 上記の3次元センサ5の製造方法としては、Z方向位置検出用電極体作製工程と、XY方向位置検出用電極体作製工程と、スペーサ形成工程とスペーサ接着層形成工程と、圧着工程と、保護層貼合工程と、支持板貼合工程とを有する方法が挙げられる。
 本実施形態におけるZ方向位置検出用電極体作製工程、スペーサ接着層形成工程及び圧着工程は、第1実施形態におけるZ方向位置検出用電極体作製工程、スペーサ接着層形成工程及び圧着工程とは異なり、その他の工程については、第1実施形態と同様である。
(Production method)
The manufacturing method of the three-dimensional sensor 5 includes a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, and a protection. The method which has a layer bonding process and a support plate bonding process is mentioned.
The Z-direction position detection electrode body preparation process, the spacer adhesive layer formation process, and the crimping process in the present embodiment are different from the Z-direction position detection electrode body preparation process, the spacer adhesive layer formation process, and the crimping process in the first embodiment. Other processes are the same as those in the first embodiment.
[Z方向位置検出用電極体作製工程]
 本実施形態におけるZ方向位置検出用電極体作製工程は、基材シート21の第1面21aに、X方向電極部22aと、引き回し配線24と、外部接続用端子25とを形成して、Z方向位置検出用電極体20を得る工程である。
 X方向電極部22aの形成方法、引き回し配線24及び外部接続用端子25の形成方法は、第1実施形態におけるX方向電極部22aの形成方法、引き回し配線24及び外部接続用端子25の形成方法と同様である。
[Z-direction position detection electrode body manufacturing process]
In the Z-direction position detection electrode body manufacturing step in the present embodiment, the X-direction electrode portion 22a, the lead-out wiring 24, and the external connection terminal 25 are formed on the first surface 21a of the base sheet 21, and Z This is a step of obtaining the directional position detecting electrode body 20.
The formation method of the X direction electrode portion 22a, the formation method of the routing wiring 24 and the external connection terminal 25 are the same as the formation method of the X direction electrode portion 22a, the formation method of the routing wiring 24 and the external connection terminal 25 in the first embodiment. It is the same.
[スペーサ接着層形成工程]
 本実施形態におけるスペーサ接着層形成工程は、Z方向位置検出用電極体20の露出面の上にスペーサ接着層40を形成する工程である。
 具体的に、スペーサ接着層形成工程では、Z方向位置検出用電極体20の基材シート21、X方向電極部22a、引き回し配線24及び外部接続用端子25の全面にスペーサ接着層40を形成する。本実施形態におけるスペーサ接着層40の形成方法は、第1実施形態におけるスペーサ接着層40の形成方法と同様である。
[Spacer adhesive layer forming process]
The spacer adhesive layer forming step in this embodiment is a step of forming the spacer adhesive layer 40 on the exposed surface of the Z-direction position detecting electrode body 20.
Specifically, in the spacer adhesive layer forming step, the spacer adhesive layer 40 is formed on the entire surface of the base sheet 21, the X-direction electrode portion 22 a, the routing wiring 24, and the external connection terminal 25 of the Z-direction position detection electrode body 20. . The method for forming the spacer adhesive layer 40 in the present embodiment is the same as the method for forming the spacer adhesive layer 40 in the first embodiment.
[圧着工程]
 本実施形態における圧着工程は、ドットスペーサ50が設けられたXY方向位置検出用電極体60と、スペーサ接着層40が設けられたZ方向位置検出用電極体20とを圧着して接着積層体を形成すると共に、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させる工程である。その際、ドットスペーサ50の先端が導電膜22の表面に接せず、スペーサ接着層40とXY方向位置検出用電極体60との間に空隙が形成されるように、ドットスペーサ50の一部をスペーサ接着層40の内部に埋没させる。
[Crimping process]
In the crimping step in the present embodiment, the XY direction position detecting electrode body 60 provided with the dot spacers 50 and the Z direction position detecting electrode body 20 provided with the spacer adhesive layer 40 are crimped to form an adhesive laminate. This is a step of forming a part of the dot spacer 50 and burying it inside the spacer adhesive layer 40. At that time, a part of the dot spacer 50 is formed such that the tip of the dot spacer 50 does not contact the surface of the conductive film 22 and a gap is formed between the spacer adhesive layer 40 and the XY direction position detection electrode body 60. Is buried in the spacer adhesive layer 40.
(作用効果)
 本実施形態の3次元センサ5も、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着しているため、非押圧時及び押圧時においてドットスペーサ50がスペーサ接着層40から剥離しにくくなっている。したがって、第1実施形態にて説明したように、Z方向の位置検出精度を向上させることができる。
 本実施形態の3次元センサ5は、簡素化された構成である。
(Function and effect)
Also in the three-dimensional sensor 5 of the present embodiment, a part of the dot spacer 50 is buried and bonded inside the spacer adhesive layer 40, so that the dot spacer 50 is peeled off from the spacer adhesive layer 40 at the time of non-pressing and at the time of pressing. It is difficult to do. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved.
The three-dimensional sensor 5 of the present embodiment has a simplified configuration.
<第6実施形態>
 本発明の3次元センサの第6実施形態について説明する。
 図9に、本実施形態の3次元センサを示す。本実施形態の3次元センサ6は、支持板10と、Z方向位置検出用電極体20と、スペーサ接着層40と、ドットスペーサ50と、XY方向位置検出用電極体60と、保護層90とを備える。
 本実施形態は、ドットスペーサ50が、先端面が平坦面とされた円錐台状に形成されている点以外は、第1実施形態と同様である。
<Sixth Embodiment>
A sixth embodiment of the three-dimensional sensor of the present invention will be described.
FIG. 9 shows the three-dimensional sensor of this embodiment. The three-dimensional sensor 6 of this embodiment includes a support plate 10, a Z-direction position detection electrode body 20, a spacer adhesive layer 40, a dot spacer 50, an XY-direction position detection electrode body 60, and a protective layer 90. Is provided.
The present embodiment is the same as the first embodiment except that the dot spacer 50 is formed in a truncated cone shape having a flat tip surface.
(製造方法)
 上記の3次元センサ6の製造方法としては、Z方向位置検出用電極体作製工程と、XY方向位置検出用電極体作製工程と、スペーサ形成工程と、スペーサ接着層形成工程と、圧着工程と、保護層貼合工程と、支持板貼合工程とを有する方法が挙げられる。
 ただし、本実施形態におけるスペーサ形成工程は、第1実施形態におけるスペーサ形成工程とは異なり、その他の工程は、第1実施形態と同様である。
(Production method)
As a manufacturing method of the three-dimensional sensor 6 described above, a Z-direction position detection electrode body preparation step, an XY-direction position detection electrode body preparation step, a spacer formation step, a spacer adhesive layer formation step, a crimping step, The method which has a protective layer bonding process and a support plate bonding process is mentioned.
However, the spacer formation process in this embodiment is different from the spacer formation process in the first embodiment, and other processes are the same as those in the first embodiment.
[スペーサ形成工程]
 本実施形態におけるスペーサ形成工程は、XY方向位置検出用電極体60の裏面に、UV(紫外光)を用いたインプリント法により、ドットスペーサ50を形成する工程とされる点で、第1実施形態におけるスペーサ形成工程とは異なる。
 すなわち、本実施形態のスペーサ形成工程では、XY方向位置検出用電極体60を構成する電極シート70の基材シート71の露出面に、UVインプリント法によってドットスペーサ50を形成する。
[Spacer formation process]
The spacer forming step in the present embodiment is a step in which the dot spacer 50 is formed on the back surface of the XY direction position detecting electrode body 60 by an imprint method using UV (ultraviolet light). This is different from the spacer forming step in the embodiment.
That is, in the spacer forming step of the present embodiment, the dot spacers 50 are formed on the exposed surface of the base material sheet 71 of the electrode sheet 70 constituting the XY direction position detecting electrode body 60 by the UV imprint method.
より具体的には、例えば、まず、基材シートの露出面に、活性エネルギー線硬化性樹脂を含むインクをスクリーン印刷する。
次いで、図示略のガラス素材からなるモールド金型と基材シートとで活性エネルギー線硬化性樹脂を挟み込むことにより、モールド金型に形成されたドットパターンを活性エネルギー線硬化性樹脂に転写しながらプレスする。
そして、モールド金型側からUV(紫外線)を照射することにより、活性エネルギー線硬化性樹脂を硬化させてドットスペーサ50を形成する。
ここで、通常の方法で、UVインプリント法によってドットスペーサを形成しようとすると、XY方向位置検出用電極体作製工程において基材シート上に形成した導電膜のパターンにより、UV光が遮光されるという問題がある。これに対し、本実施形態においては、モールド金型としてガラス素材のものを適用することで、モールド金型の外部から活性エネルギー線硬化性樹脂に向けてUV光を照射することが可能となる。
More specifically, for example, first, an ink containing an active energy ray-curable resin is screen-printed on the exposed surface of the base sheet.
Next, the active energy ray curable resin is sandwiched between a mold die made of a glass material (not shown) and the base sheet, and the dot pattern formed on the mold die is transferred while being transferred to the active energy ray curable resin. To do.
Then, by irradiating UV (ultraviolet rays) from the mold die side, the active energy ray curable resin is cured to form the dot spacers 50.
Here, if dot spacers are to be formed by the UV imprint method using a normal method, UV light is shielded by the conductive film pattern formed on the base sheet in the XY direction position detection electrode body manufacturing step. There is a problem. On the other hand, in this embodiment, it is possible to irradiate UV light from the outside of the mold die toward the active energy ray curable resin by applying a glass material as the mold die.
(作用効果)
 本実施形態の3次元センサ6においても、ドットスペーサ50の一部がスペーサ接着層40の内部に埋没して接着しているため、接着強度が高く、非押圧時及び押圧時においてドットスペーサ50がスペーサ接着層40から剥離しにくくなっている。したがって、第1実施形態にて説明したように、Z方向の位置検出精度を向上させることができる。
 また、ドットスペーサ50の先端が弾性変形層30の表面に接するため、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔を容易に一定化させることができる。そのため、3次元センサ2のZ方向位置検出精度をより向上させることができる。
また、本実施形態の3次元センサ6では、ドットスペーサ50が円錐台状(柱状)とされており、平坦面である先端が弾性変形層30の表面に面接触する。これにより、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間隔をより確実に一定化させることができるので、3次元センサ6のZ方向位置検出精度をさらに向上させることができる。
(Function and effect)
Also in the three-dimensional sensor 6 of the present embodiment, since a part of the dot spacer 50 is buried and bonded inside the spacer adhesive layer 40, the adhesive strength is high, and the dot spacer 50 is not pressed and pressed. It is difficult to peel off from the spacer adhesive layer 40. Therefore, as described in the first embodiment, the position detection accuracy in the Z direction can be improved.
Further, since the tip of the dot spacer 50 is in contact with the surface of the elastic deformation layer 30, the distance between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 can be easily made constant. Therefore, the Z direction position detection accuracy of the three-dimensional sensor 2 can be further improved.
Further, in the three-dimensional sensor 6 of the present embodiment, the dot spacer 50 has a truncated cone shape (columnar shape), and the tip that is a flat surface comes into surface contact with the surface of the elastic deformation layer 30. As a result, the interval between the Z-direction position detection electrode body 20 and the XY-direction position detection electrode body 60 can be more reliably fixed, and therefore the Z-direction position detection accuracy of the three-dimensional sensor 6 can be further improved. Can do.
さらに、本実施形態では、ドットスペーサ50の形成方法としてUVインプリント法を適用することで、ドットスペーサ50のドット形状を高精度で形成することができる。これにより、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間を一定間隔に調整するのが容易になる。また、モールド金型を用いることで、図9に示すように、表面側に導電膜72が形成された基材シート71の裏面側に、容易に、ドットスペーサ50のドット形状を高精度で形成することができる。また、モールド金型を用いてドットスペーサ50を形成する際、スペーサをシート上に形成した場合には、ドットスペーサを形成するための基材シートを新たに追加する必要が無いなので、製造工程や製造コストを増大させることなく、高精度のドット形状でドットスペーサを形成することが可能となる。
また、UVインプリント法を適用することで、図9に例示するように、ドットスペーサ50の先端を平坦面(フラット面)として形成することができる。これにより、Z方向位置検出用電極体20とXY方向位置検出用電極体60との間を一定間隔に調整するのが容易になる。また、ドットスペーサ50と弾性変形層30との間の接着面積が増大するので、接着力が向上する。
さらに、UVインプリント法を適用することで、ドットスペーサ50のドット形状を、精度の高い印刷方法によって自由な形状に加工することができる。これにより、ドットスペーサを、平面視で円形状のような形状のみならず、例えば、平面視で四角形状等の各種形状として、高精度で容易に形成することができるので、ドットスペーサ50と弾性変形層30との間の接着力をより向上させることが可能となる。
また、ドットスペーサ50の形状を、図1に示すような断面視で半球状のみならず、例えば、図9に示すような円錐形状等の柱状の形状として、高精度で容易に形成することができるので、上記同様、ドットスペーサ50と弾性変形層30との間の接着力をより向上させることが可能となる。
Furthermore, in this embodiment, the dot shape of the dot spacer 50 can be formed with high accuracy by applying the UV imprint method as the method of forming the dot spacer 50. Thereby, it becomes easy to adjust the gap between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 at a constant interval. Further, by using a mold, as shown in FIG. 9, the dot shape of the dot spacer 50 is easily formed with high accuracy on the back surface side of the base sheet 71 having the conductive film 72 formed on the front surface side. can do. In addition, when forming the dot spacer 50 using a mold, if the spacer is formed on the sheet, there is no need to newly add a base material sheet for forming the dot spacer. It is possible to form dot spacers with a highly accurate dot shape without increasing the manufacturing cost.
Further, by applying the UV imprint method, as illustrated in FIG. 9, the tip of the dot spacer 50 can be formed as a flat surface (flat surface). Thereby, it becomes easy to adjust the gap between the Z-direction position detecting electrode body 20 and the XY-direction position detecting electrode body 60 at a constant interval. Moreover, since the adhesion area between the dot spacer 50 and the elastic deformation layer 30 is increased, the adhesion force is improved.
Furthermore, by applying the UV imprint method, the dot shape of the dot spacer 50 can be processed into a free shape by a highly accurate printing method. Accordingly, the dot spacer can be easily formed with high accuracy not only in a circular shape in a plan view but also in various shapes such as a square shape in a plan view. It becomes possible to further improve the adhesive force between the deformable layer 30.
Further, the shape of the dot spacer 50 can be easily formed with high accuracy as a columnar shape such as a conical shape as shown in FIG. 9 as well as a hemispherical shape in a sectional view as shown in FIG. Therefore, as described above, the adhesive force between the dot spacer 50 and the elastic deformation layer 30 can be further improved.
<その他の実施形態>
 なお、本発明の3次元センサは、上記実施形態に限定されない。
 例えば、X方向電極部及びY方向電極部は、幅が一定である必要はなく、例えば、幅が周期的に変化しても構わないし、幅が太い部分と、それよりも細い部分とが交互に配置されても構わない。
 本発明の3次元センサは、支持板に、Z方向位置検出用電極体、スペーサ接着層及びドットスペーサ、XY方向位置検出用電極体の順で形成されている必要はなく、例えば、支持板に、XY方向位置検出用電極体、スペーサ接着層及びドットスペーサ、Z方向位置検出用電極体の順に形成されてもよい。
 また、XY方向位置検出用電極体のX方向電極部とY方向電極部の位置関係に制限はなく、どちらが表側に配置されても構わない。
 また、本発明の3次元センサは、支持板及び保護層を備えていなくても構わない。
<Other embodiments>
The three-dimensional sensor of the present invention is not limited to the above embodiment.
For example, the widths of the X-direction electrode portion and the Y-direction electrode portion do not need to be constant. For example, the width may change periodically, and the thick portions and the narrower portions are alternately arranged. You may arrange in.
The three-dimensional sensor of the present invention does not need to be formed on the support plate in the order of the Z-direction position detection electrode body, the spacer adhesive layer and the dot spacer, and the XY-direction position detection electrode body. , XY direction position detection electrode body, spacer adhesive layer and dot spacer, Z direction position detection electrode body may be formed in this order.
Moreover, there is no restriction | limiting in the positional relationship of the X direction electrode part of a XY direction position detection electrode body, and a Y direction electrode part, and which may be arrange | positioned on the front side.
Moreover, the three-dimensional sensor of the present invention may not include the support plate and the protective layer.
1,2,3,4,5,6 3次元センサ
10 支持板
11 両面粘着テープ
20 Z方向位置検出用電極体
21 基材シート
22 導電膜
22a X方向導電部
23 絶縁膜
24 引き回し配線
25 外部接続用端子
30 弾性変形層
40 スペーサ接着層
50 ドットスペーサ
60 XY方向位置検出用電極体
61 接着層
70 電極シート
71 基材シート
72 導電膜
72a Y方向電極部
73 絶縁膜
74 引き回し配線
75 外部接続用端子
80 電極シート
81 基材シート
82 導電膜
82a X方向電極部
83 絶縁膜
84 引き回し配線
85 外部接続用端子
90 保護層
91 両面粘着テープ
1, 2, 3, 4, 5, 6 Three-dimensional sensor 10 Support plate 11 Double-sided adhesive tape 20 Z-direction position detection electrode body 21 Base sheet 22 Conductive film 22a X-direction conductive portion 23 Insulating film 24 Lead-out wiring 25 External connection Terminal 30 Elastic deformation layer 40 Spacer adhesive layer 50 Dot spacer 60 XY direction position detection electrode body 61 Adhesive layer 70 Electrode sheet 71 Base sheet 72 Conductive film 72a Y direction electrode part 73 Insulating film 74 Lead-out wiring 75 External connection terminal 80 Electrode sheet 81 Substrate sheet 82 Conductive film 82a X-direction electrode part 83 Insulating film 84 Lead-out wiring 85 External connection terminal 90 Protective layer 91 Double-sided adhesive tape

Claims (6)

  1.  XY方向の位置を検出するシート状のXY方向位置検出用電極体と、前記XY方向位置検出用電極体と重なるように配置され、Z方向の位置を検出するシート状のZ方向位置検出用電極体とを具備し、前記XY方向位置検出用電極体は、XY方向の位置を検出するための一対の導電膜を備え、前記Z方向位置検出用電極体は、Z方向の位置を検出するための導電膜を備えた静電容量式3次元センサであって、
     前記XY方向位置検出用電極体における前記Z方向位置検出用電極体側の面に設けられた複数のドットスペーサと、前記複数のドットスペーサをZ方向位置検出用電極体に接着するスペーサ接着層とを備え、
     前記複数のドットスペーサは、前記XY方向位置検出用電極体と前記スペーサ接着層との間に空隙が形成された状態で、前記スペーサ接着層の内部に一部が埋没して接着している、静電容量式3次元センサ。
    A sheet-like XY direction position detecting electrode body for detecting a position in the XY direction and a sheet-like Z direction position detecting electrode arranged so as to overlap the XY direction position detecting electrode body and detecting the position in the Z direction The XY direction position detecting electrode body includes a pair of conductive films for detecting the position in the XY direction, and the Z direction position detecting electrode body is for detecting the position in the Z direction. An electrostatic capacitance type three-dimensional sensor provided with a conductive film of
    A plurality of dot spacers provided on a surface of the XY direction position detection electrode body on the Z direction position detection electrode body side, and a spacer adhesive layer that bonds the plurality of dot spacers to the Z direction position detection electrode body. Prepared,
    The plurality of dot spacers are partly buried and bonded inside the spacer adhesive layer in a state where a gap is formed between the XY direction position detecting electrode body and the spacer adhesive layer. Capacitive 3D sensor.
  2.  前記Z方向位置検出用電極体が、スペーサ接着層側に、厚さを1cmとした際のショアA硬度が85以下の材料からなる弾性変形層を備え、
     前記ドットスペーサが、弾性変形不能な材料により形成されている、請求項1に記載の静電容量式3次元センサ。
    The Z-direction position detecting electrode body includes an elastic deformation layer made of a material having a Shore A hardness of 85 or less when the thickness is 1 cm on the spacer adhesive layer side,
    The capacitive three-dimensional sensor according to claim 1, wherein the dot spacer is formed of a material that cannot be elastically deformed.
  3.  XY方向の位置を検出するシート状のXY方向位置検出用電極体と、前記XY方向位置検出用電極体と重なるように配置され、Z方向の位置を検出するシート状のZ方向位置検出用電極体とを具備し、前記XY方向位置検出用電極体は、XY方向の位置を検出するための一対の導電膜を備え、前記Z方向位置検出用電極体は、Z方向の位置を検出するための導電膜を備えた静電容量式3次元センサであって、
     前記Z方向位置検出用電極体における前記XY方向位置検出用電極体側の面に設けられた複数のドットスペーサと、前記複数のドットスペーサをXY方向位置検出用電極体に接着するスペーサ接着層とを備え、
     前記複数のドットスペーサは、前記Z位置検出用電極体と前記スペーサ接着層との間に空隙が形成された状態で、前記スペーサ接着層の内部に一部が埋没して接着している、静電容量式3次元センサ。
    A sheet-like XY direction position detecting electrode body for detecting a position in the XY direction and a sheet-like Z direction position detecting electrode arranged so as to overlap the XY direction position detecting electrode body and detecting the position in the Z direction The XY direction position detecting electrode body includes a pair of conductive films for detecting the position in the XY direction, and the Z direction position detecting electrode body is for detecting the position in the Z direction. An electrostatic capacitance type three-dimensional sensor provided with a conductive film of
    A plurality of dot spacers provided on a surface on the XY direction position detection electrode body side in the Z direction position detection electrode body, and a spacer adhesive layer for bonding the plurality of dot spacers to the XY direction position detection electrode body Prepared,
    The plurality of dot spacers are partially buried in and bonded to the spacer adhesive layer in a state where a gap is formed between the Z position detecting electrode body and the spacer adhesive layer. Capacitive 3D sensor.
  4.  前記XY方向位置検出用電極体が、スペーサ接着層側に、厚さを1cmとした際のショアA硬度が85以下の材料からなる弾性変形層を備え、
     前記ドットスペーサが、弾性変形不能な材料により形成されている、請求項3に記載の静電容量式3次元センサ。
    The XY direction position detecting electrode body is provided with an elastic deformation layer made of a material having a Shore A hardness of 85 or less when the thickness is 1 cm on the spacer adhesive layer side,
    The capacitive three-dimensional sensor according to claim 3, wherein the dot spacer is made of a material that is not elastically deformable.
  5.  前記スペーサ接着層が、ホットメルト系接着剤又は活性エネルギー線硬化性樹脂から形成されている、請求項1~4のいずれか1項に記載の静電容量式3次元センサ。 The capacitive three-dimensional sensor according to any one of claims 1 to 4, wherein the spacer adhesive layer is formed of a hot melt adhesive or an active energy ray curable resin.
  6.  前記ドットスペーサの各々の高さが30~150μmである、請求項1~5のいずれか1項に記載の静電容量式3次元センサ。 6. The capacitive three-dimensional sensor according to claim 1, wherein each of the dot spacers has a height of 30 to 150 μm.
PCT/JP2015/061564 2014-04-16 2015-04-15 Capacitive three-dimensional sensor WO2015159914A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016513812A JP6489710B2 (en) 2014-04-16 2015-04-15 Capacitance type 3D sensor
CN201580007343.3A CN105980970B (en) 2014-04-16 2015-04-15 Electrostatic capacity type three-dimension sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084940 2014-04-16
JP2014-084940 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159914A1 true WO2015159914A1 (en) 2015-10-22

Family

ID=54324118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061564 WO2015159914A1 (en) 2014-04-16 2015-04-15 Capacitive three-dimensional sensor

Country Status (3)

Country Link
JP (1) JP6489710B2 (en)
CN (1) CN105980970B (en)
WO (1) WO2015159914A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020196863A1 (en) * 2019-03-28 2020-10-01

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194799A (en) * 1996-01-16 1997-07-29 Toray Ind Inc Bonding of article having rough surface
JP2010272105A (en) * 2009-04-22 2010-12-02 Hitachi Displays Ltd Input device and display having the same
WO2013132736A1 (en) * 2012-03-09 2013-09-12 ソニー株式会社 Sensor device, input device, and electronic apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011081578A (en) * 2009-10-07 2011-04-21 Hitachi Displays Ltd Display device
JP5520633B2 (en) * 2010-02-25 2014-06-11 株式会社ジャパンディスプレイ Display device with touch panel
WO2012121064A1 (en) * 2011-03-08 2012-09-13 富士フイルム株式会社 Resistive multi-touch panel and electrode sheet to be used in resistive multi-touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09194799A (en) * 1996-01-16 1997-07-29 Toray Ind Inc Bonding of article having rough surface
JP2010272105A (en) * 2009-04-22 2010-12-02 Hitachi Displays Ltd Input device and display having the same
WO2013132736A1 (en) * 2012-03-09 2013-09-12 ソニー株式会社 Sensor device, input device, and electronic apparatus

Also Published As

Publication number Publication date
CN105980970B (en) 2019-09-03
JP6489710B2 (en) 2019-03-27
CN105980970A (en) 2016-09-28
JPWO2015159914A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5298209B2 (en) Capacitance type sensor sheet and manufacturing method thereof
JP6144422B2 (en) Touch panel and manufacturing method thereof
EP3073236B1 (en) Pressure sensor
TWI639934B (en) Touch panel and manufacturing method thereof
JP7321155B2 (en) Force touch sensor and force touch sensor module
JP6257088B2 (en) Capacitance type three-dimensional sensor and manufacturing method thereof
WO2014046160A1 (en) Touch panel, and touch panel production method
JP5699111B2 (en) Resistive touch panel and touch panel device
JP5839470B2 (en) Pointing device and manufacturing method thereof
JP2016115178A (en) Flexible laminate, manufacturing method thereof, and capacitive three-dimensional sensor
JP6195969B2 (en) Touch sensor, touch device, and method of manufacturing touch sensor
JP6489710B2 (en) Capacitance type 3D sensor
JP2020193840A (en) Pressure sensitive touch sensor and pressure sensitive touch sensor module
JP7232263B2 (en) Force touch sensor and force touch sensor module
JP6938073B1 (en) Touch sensor and electronic device, and manufacturing method of touch sensor
JP6202750B2 (en) Capacitance type 3D sensor
JP6233977B2 (en) Capacitance type three-dimensional sensor and manufacturing method thereof
JP6040121B2 (en) Capacitance type 3D sensor
JP2016218560A (en) Capacitance type three-dimensional sensor and manufacturing method thereof
JP7209519B2 (en) Force touch sensor and force touch sensor module
JP6562555B2 (en) Capacitance type 3D sensor
JP2019114208A (en) Pressure sensitive touch sensor
JP2018005673A (en) Electrostatic capacitance type three-dimensional sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780212

Country of ref document: EP

Kind code of ref document: A1