WO2015159844A1 - Method for producing substrate for epitaxial growth, substrate for epitaxial growth obtained by same, and light emitting element using said substrate - Google Patents

Method for producing substrate for epitaxial growth, substrate for epitaxial growth obtained by same, and light emitting element using said substrate Download PDF

Info

Publication number
WO2015159844A1
WO2015159844A1 PCT/JP2015/061349 JP2015061349W WO2015159844A1 WO 2015159844 A1 WO2015159844 A1 WO 2015159844A1 JP 2015061349 W JP2015061349 W JP 2015061349W WO 2015159844 A1 WO2015159844 A1 WO 2015159844A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
epitaxial growth
convex
convex portion
section
Prior art date
Application number
PCT/JP2015/061349
Other languages
French (fr)
Japanese (ja)
Inventor
麻登香 ▲高▼橋
鳥山 重隆
隆史 關
涼 西村
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2015159844A1 publication Critical patent/WO2015159844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the present invention relates to a substrate manufacturing method for epitaxially growing a semiconductor layer and the like, a substrate manufactured by the manufacturing method, and a light emitting element in which a semiconductor layer is formed on the substrate.
  • Semiconductor light emitting devices generally include light emitting diodes (LEDs) and laser diodes (LDs), and are widely used in various light sources used for backlights, lighting, traffic lights, large displays, and the like.
  • LEDs light emitting diodes
  • LDs laser diodes
  • a light emitting device having a semiconductor layer such as a nitride semiconductor, normally, a buffer layer, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are epitaxially grown on a light-transmitting substrate in this order, and each of the n-type and p-type semiconductors. It is configured by forming an n-side electrode and a p-side electrode that are electrically connected to the layer.
  • light generated in the active layer is emitted to the outside of the semiconductor layer from the externally exposed surface (upper surface, side surface) of the semiconductor layer, the exposed surface (back surface, side surface) of the substrate, and the like.
  • Patent Documents 1 and 2 disclose that the semiconductor layer growth surface of the substrate is etched to form a concavo-convex pattern, thereby improving the light extraction efficiency of the light-emitting element. Further, Patent Document 2 discloses that by providing such a concavo-convex pattern on the growth surface of the semiconductor layer of the substrate, the dislocation density of the semiconductor layer is reduced and deterioration of the characteristics of the light emitting element can be suppressed.
  • JP 2010-206230 A Japanese Patent Laid-Open No. 2001-210598
  • an object of the present invention is to provide a manufacturing method for efficiently manufacturing an epitaxial growth substrate used in a light emitting device such as a semiconductor light emitting device, an epitaxial growth substrate manufactured by the manufacturing method, and light emission using the epitaxial growth substrate. It is to provide an element.
  • a method for manufacturing an epitaxial growth substrate comprising: a patterning step of forming an inorganic material film having a predetermined pattern on a substrate by screen printing; and a curing step of curing the inorganic material film.
  • the inorganic material film may be made of a sol-gel material.
  • the method for manufacturing the epitaxial growth substrate may further include a step of etching a region where the surface of the base material is exposed.
  • a buffer layer may be formed on the base material having the inorganic material film.
  • a buffer layer may be formed on the base material before the patterning step.
  • a convex portion and a concave portion generated by forming the inorganic material film of the predetermined pattern i) each having an elongated shape extending in a wavy manner in plan view; and ii) the extending direction, the bending direction, and the length may be non-uniform.
  • the base material may be a sapphire substrate.
  • an epitaxial growth substrate having a concavo-convex pattern obtained by the epitaxial growth substrate manufacturing method of the first aspect.
  • the substrate for epitaxial growth is i)
  • the projections or depressions of the concavo-convex pattern surface of the epitaxial growth substrate each have an elongated shape extending in a wavy manner in plan view, and ii)
  • the convex part or the concave part of the concavo-convex pattern surface of the epitaxial growth substrate may be uneven in extension direction, bending direction and length.
  • the extending direction of the protrusions is irregularly distributed in plan view
  • the contour line in plan view of the convex portion included in the region per unit area of the uneven pattern may include more straight sections than curved sections.
  • the width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view may be constant.
  • the curved section forms a plurality of sections by dividing a contour line in plan view of the convex portion by a length that is ⁇ (circumferential ratio) times an average value of the width of the convex portion.
  • the ratio of the linear distance between the two end points to the length of the contour line between the two end points of the section is 0.75 or less
  • the straight section may be a section that is not the curved section among the plurality of sections.
  • the curved section forms a plurality of sections by dividing a contour line in plan view of the convex portion by a length that is ⁇ (circumferential ratio) times an average value of the width of the convex portion.
  • circumferential ratio
  • one of the two angles formed by the line segment connecting one end of the section and the midpoint of the section and the line segment connecting the other end of the section and the midpoint of the section is 180 ° or less. It is a section where the angle is 120 ° or less,
  • the straight section is a section that is not the curved section among the plurality of sections,
  • the ratio of the curve section among the plurality of sections may be 70% or more.
  • the extending direction of the protrusions is irregularly distributed in plan view,
  • the width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view may be constant.
  • a Fourier transform image obtained by subjecting the unevenness analysis image obtained by analyzing the unevenness pattern with a scanning probe microscope to a two-dimensional fast Fourier transform process has an absolute value of the wave number of 0 ⁇ m ⁇ 1 .
  • a circular or annular pattern having a substantially origin at a certain origin is shown, and the circular or annular pattern exists in a region where the absolute value of the wave number is in the range of 10 ⁇ m ⁇ 1 or less. It's okay.
  • a light emitting device comprising a semiconductor layer including at least a first conductivity type layer, an active layer, and a second conductivity type layer on the epitaxial growth substrate of the second aspect.
  • the epitaxial growth substrate can be easily produced.
  • the concavo-convex pattern is formed by screen printing without using photolithography or a nanoimprint method that requires production of a mold, which requires expensive optical precision equipment and generates a large amount of waste liquid, the production of the epitaxial growth substrate of the present invention The method has a low manufacturing cost and a low environmental burden.
  • the epitaxial growth substrate of the present invention has a function as a diffraction grating substrate for improving light extraction efficiency, a light emitting device manufactured using this substrate has high light emission efficiency. Therefore, the epitaxial growth substrate of the present invention is extremely effective for the production of a light emitting device having excellent luminous efficiency.
  • FIG. 5A is an example of an AFM image of the surface of the substrate obtained by the method for manufacturing an epitaxial growth substrate of the embodiment
  • FIG. 5B is for epitaxial growth on a cutting line in the AFM image of FIG. The cross-sectional profile of a board
  • FIG. 7 is an example of a plane view analysis image (black and white image) of the substrate such as epitaxial growth according to the embodiment.
  • FIGS. 8A and 8B are diagrams for explaining an example of a method for determining a branch of a convex portion in a planar view analysis image.
  • FIG. 9A is a diagram used for explaining the first definition method of the curve section
  • FIG. 9B is a diagram used for explaining the second definition method of the curve section.
  • the manufacturing method of the substrate for epitaxial growth mainly includes a solution preparation step P1 for preparing a sol-gel material, a film of the sol-gel material is formed on the substrate by screen printing, and the substrate is uneven.
  • a pattern forming step (patterning step) P2 for forming a pattern and a curing step P3 for curing the film of the sol-gel material are included.
  • a screen printing plate for forming an uneven pattern and a manufacturing method thereof will be described with reference to FIGS. 2A to 2C, and the above steps will be described with reference to FIGS. 3A to 3C. Will be described in order.
  • a screen printing plate is obtained by applying a photosensitive resin composition on a screen or pasting a photosensitive resin composition on a screen.
  • a resin layer can be formed by attaching, a pattern can be formed on the resin layer, and then the resin layer can be crosslinked and cured.
  • it can be produced by the following resin layer forming step, exposure step, development step, and post-exposure step. These are described in detail below.
  • the photosensitive resin composition is applied to the screen 12 and dried, and laminated with a predetermined thickness to form the resin layer 14 (resin layer forming step).
  • the screen 12 can be used without particular limitation as long as it is a known screen printing screen.
  • a stainless steel or polyester screen is stretched on a flat screen mold made of a metal rod-like material such as aluminum in a square or rectangular shape.
  • the pattern is exposed by irradiating light onto the resin layer 14 on the screen 12 through the photomask 16 (exposure process).
  • a photomask 16 if it is well-known things, such as a film mask and a chrome mask, it can be used without limitation.
  • the light source a combination of a known light source such as a mercury lamp or a halogen lamp that emits ultraviolet rays or visible light and an optical filter can be used.
  • the exposure time can be freely set according to the used and photosensitive resin composition.
  • Or unexposed resin layer 14a is developed and removed (development step).
  • a developing solution if it is a well-known water or alkaline aqueous solution, it can be used without limitation.
  • the development method and development time can be freely set according to the developer used and the photosensitive resin composition.
  • the portion from which the resin layer 14a has been removed becomes an opening 18 where the screen 12 is exposed. In this way, the screen printing plate 10 is obtained.
  • the resin layer 14 may be further irradiated with light to crosslink and cure the unexposed portion of the resin layer 14 (post-exposure step).
  • the planar shape (planar pattern) of the resin layer (mask portion) 14 and the opening 18 of the screen printing plate 10 obtained as described above is not particularly limited, and is a regularly oriented pattern such as a stripe, a wavy stripe, or a zigzag. Or a regularly oriented pattern such as a dot pattern.
  • the shape may be an elongated shape extending while undulating, and the extending direction, the direction of undulation, and the extending length may be irregular.
  • the mask part 14 and the opening part 18 extending while undulating may be branched in the middle.
  • sol-gel material solution preparation process First, a solution of sol-gel material (inorganic material) is prepared.
  • sol-gel material silica, Ti-based material, ITO (indium-tin-oxide) -based material, sol-gel material such as ZnO, ZrO 2 , Al 2 O 3 can be used.
  • a metal alkoxide sica precursor is prepared as a sol-gel material.
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • tetra-i-propoxysilane tetra-n-propoxysilane
  • tetra-i-butoxysilane tetra-n-butoxysilane
  • tetra-n-butoxysilane tetra-n-butoxysilane
  • tetra- Tetraalkoxide monomers represented by tetraalkoxysilane such as sec-butoxysilane, tetra-t-butoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, Methyltriethoxysilane (MTES), ethyltriethoxysilane, propyltriethoxysilane,
  • alkyltrialkoxysilanes or dialkyldialkoxysilanes in which the alkyl group has C4-C18 carbon atoms can also be used.
  • Monomers having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy
  • Monomers having an epoxy group such as silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, monomers having a styryl group such as p-styryltrimethoxysilane, 3-methacryloxypropylmethyl
  • Monomers having a methacrylic group such as dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryl
  • the metal alkoxides may be used.
  • some or all of the alkyl group and phenyl group of these compounds may be substituted with fluorine.
  • metal acetylacetonate, metal carboxylate, oxychloride, chloride, a mixture thereof and the like can be mentioned, but not limited thereto.
  • the metal species include, but are not limited to, Ti, Sn, Al, Zn, Zr, In, and a mixture thereof in addition to Si. What mixed suitably the precursor of the said metal oxide can also be used.
  • a mesoporous convex portion may be formed by adding a surfactant to these materials.
  • silane coupling agent having a hydrolyzable group having affinity and reactivity with silica and an organic functional group having water repellency can be used as a precursor of silica.
  • silane monomers such as n-octyltriethoxysilane, methyltriethoxysilane, and methyltrimethoxysilane
  • vinylsilanes such as vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane
  • Methacrylic silane such as 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycyl Epoxy silanes such as Sidoxypropyltriethoxysilane
  • the mixing ratio thereof can be set to 1: 1, for example, as a molar ratio.
  • This sol-gel material produces amorphous silica by performing hydrolysis and polycondensation reactions.
  • an acid such as hydrochloric acid or an alkali such as ammonia is added.
  • the pH is preferably 4 or less or 10 or more.
  • the amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
  • Solvents for the sol-gel material solution include, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane and cyclohexane, benzene, toluene, xylene, mesitylene and the like Aromatic hydrocarbons, ethers such as diethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone, butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol Ether alcohols, glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Glycol ethers such as
  • sol-gel material solution polyethylene glycol, polyethylene oxide, hydroxypropyl cellulose, polyvinyl alcohol for viscosity adjustment, alkanolamine such as triethanolamine which is a solution stabilizer, ⁇ diketone such as acetylacetone, ⁇ ketoester, Formamide, dimethylformamide, dioxane and the like can be used.
  • alkanolamine such as triethanolamine which is a solution stabilizer
  • ⁇ diketone such as acetylacetone, ⁇ ketoester
  • Formamide, dimethylformamide, dioxane and the like can be used.
  • a material that generates acid or alkali by irradiating light such as energy rays typified by ultraviolet rays such as excimer UV light can be used. By adding such a material, the sol-gel material solution can be cured by irradiation with light.
  • a sol-gel material film (convex portion) 60 having a predetermined pattern is formed on the substrate 40 by screen printing using the solution of the sol-gel material (inorganic material) prepared as described above. To do.
  • the base material 40 substrates having various translucency can be used.
  • glass sapphire single crystal (Al 2 O 3 ; A plane, C plane, M plane, R plane), spinel single crystal (MgAl 2 O 4 ), ZnO single crystal, LiAlO 2 single crystal, LiGaO 2 single crystal,
  • a substrate made of a material such as oxide single crystal such as MgO single crystal, Si single crystal, SiC single crystal, SiN single crystal, GaAs single crystal, AlN single crystal, GaN single crystal and boride single crystal such as ZrB 2 is used. be able to.
  • sapphire single crystal substrates and SiC single crystal substrates are preferred.
  • the surface orientation of a base material is not specifically limited.
  • the base material may be a just substrate having an off angle of 0 degrees or a substrate having an off angle.
  • the sol-gel material film can be formed as follows. First, the screen printing plate 10 is placed on the substrate 40, and a solution of the sol-gel material is applied to the entire screen printing plate 10. Next, while pressing the squeegee 22 against the screen printing plate 10 with a constant pressure, the squeegee 22 is moved at a constant speed in a direction parallel to the substrate 40 (a direction indicated by an arrow in FIG. 3A). Then, the sol-gel material solution oozes out from the opening 18 of the screen printing plate 10 through the screen 12, and the sol-gel material film (convex) at a position corresponding to the opening 18 of the screen printing plate 10 on the substrate 40. Part) 60 is formed.
  • the shape (pattern) in plan view of the opening 18 of the screen printing plate 10 and the sol-gel material film (convex portion) 60 formed therefrom is not particularly limited, but is regularly oriented such as stripes, wavy stripes, and zigzags. It may be a regularly oriented pattern such as a pattern or a dot-like pattern. Or the convex part 60 may extend irregularly
  • the convex portion 60 extending while undulating may be branched in the middle. Between the convex parts 60, the area
  • the concave portion 70 extends along the convex portion 60, and similarly to the convex portion 60, the concave direction may have an elongated shape in which the extending direction, the waviness direction, and the extending length are irregular in plan view.
  • the height (film thickness) of the convex portion (sol-gel material film) 60 is preferably in the range of 20 nm to 10 ⁇ m.
  • the convex portion 60 made of a sol-gel material is cured.
  • the convex part 60 can be hardened by carrying out main baking.
  • the main baking is preferably performed at a temperature of 600 to 1200 ° C. for about 5 minutes to 6 hours. In this way, as shown in FIG. 3B, the convex portion 60 is cured, and the epitaxial growth substrate 100 in which the convex portion 60 and the concave portion 70 formed on the base material 40 form the concave / convex pattern 80 is formed.
  • the convex portion 60 when the convex portion 60 is made of silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time.
  • a material that generates an acid or an alkali by irradiating light such as ultraviolet rays to the sol-gel material solution
  • energy represented by ultraviolet rays such as excimer UV light is used instead of firing the convex portion 60.
  • the projection 60 can be cured by irradiating the line.
  • the surface of the convex portion 60 may be subjected to a hydrophobic treatment.
  • a known method may be used for the hydrophobizing treatment.
  • the surface is silica, it can be hydrophobized with dimethyldichlorosilane, trimethylalkoxysilane, or the like, or trimethylsilyl such as hexamethyldisilazane.
  • a method of hydrophobizing with an agent and silicone oil may be used, or a surface treatment method of metal oxide powder using supercritical carbon dioxide may be used.
  • the exposed base material surface may be etched to form a recess 70 a in the base material 40.
  • corrugated pattern 80a which consists of the convex part 60 and the recessed part 70a was formed can be formed.
  • the concave portion 70a is formed in the base material 40, the concave / convex depth of the concave / convex pattern can be increased as compared with the substrate 100 in which the base material 40 is not etched.
  • the base material 40 can be etched by RIE using a gas containing BCl 3 or the like, for example.
  • a buffer layer may be further formed on the surface of the substrate on which the uneven patterns 80 and 80a are formed as described above (the surface on which the uneven pattern is formed).
  • the epitaxial growth substrates 100b and 100c having the buffer layer 20 on the surfaces of the concave and convex patterns 80 and 80a as shown in FIGS. 4A and 4B are obtained.
  • the cross-sectional shape of the concavo-convex pattern is a relatively gentle inclined surface and has a corrugated structure, a uniform buffer layer with few defects can be formed.
  • a buffer layer may be formed on the substrate.
  • the convex portion 60 is formed on the buffer layer 20, and the region where the surface of the buffer layer 20 is exposed (the concave portion 70 b) is defined between the convex portions 60. Is done.
  • an epitaxial growth substrate 100d on which the concavo-convex pattern 80b is formed is obtained.
  • the buffer layer 20 can be formed using a known method such as a low temperature MOCVD method or a sputtering method.
  • the layer thickness of the buffer layer 20 is preferably in the range of 1 nm to 100 nm.
  • the buffer layer can be composed of Al X Ga 1-X N (0 ⁇ x ⁇ 1), and is not limited to a single layer structure. Alternatively, a multilayer structure of two or more layers in which two or more kinds having different compositions are laminated may be used.
  • the substrate for epitaxial growth which forms an uneven
  • the remaining film needs to be removed by etching by RIE or the like.
  • the inorganic material film is formed only at a predetermined position (position where the convex portion is formed) on the base material by screen printing. Since the concavo-convex pattern is formed by forming the film, there is no need for etching for removing the remaining film. Therefore, the substrate manufacturing time can be shortened by the epitaxial growth substrate manufacturing method of the present embodiment.
  • the substrate surface exposed by etching may be rough (damaged), and chemical processing may be required after etching. Since the substrate manufacturing method does not require etching, such damage does not occur, and there is no need for chemical treatment. Therefore, the substrate manufacturing process can be simplified and the manufacturing time can be shortened by the epitaxial growth substrate manufacturing method of the present embodiment.
  • the method for manufacturing an epitaxial growth substrate according to the present embodiment forms a concavo-convex pattern by screen printing as described above without using photolithography or nanoimprinting, thereby reducing the production cost of the epitaxial growth substrate and The load can be reduced.
  • the epitaxial growth substrate 100 formed by the manufacturing method as described above since the convex portion 60 is formed of an inorganic material, the epitaxial growth substrate 100 has excellent heat resistance.
  • the epitaxial growth substrates 100 and 100a to 100d shown in FIGS. 3B and 4C and FIGS. 4A to 4C formed by the manufacturing method of the present embodiment are formed on the base material 40.
  • the plurality of convex portions 60 and concave portions 70, 70 a, 70 b formed are concave / convex patterns 80, 80 a, 80 b.
  • FIG. 5A shows an example of an AFM image of the epitaxial growth substrate manufactured by the manufacturing method of the present embodiment
  • FIG. 5B shows an epitaxial growth substrate on the cutting line in the AFM image of FIG. 5A. The cross-sectional profile of is shown.
  • the cross-sectional shape of the concavo-convex pattern of the substrate for epitaxial growth is not particularly limited, but as shown in FIGS. 3B, 3C, 4A, 4B, 5C, and 5B, It may be formed of a relatively gentle inclined surface, and may have a waveform (referred to as “corrugated structure” as appropriate in this application) upward from the substrate 40. That is, the convex part 60 may have a cross-sectional shape that becomes narrower from the bottom part on the base material side toward the top part.
  • the planar shape of the concavo-convex pattern of the substrate for epitaxial growth is not particularly limited, and may be a regularly oriented pattern such as a stripe, a wavy stripe, a zigzag or a regularly oriented pattern such as FIG.
  • a an example of the AFM image of the concavo-convex pattern on the substrate surface, the convex portion (white portion) and the concave portion are wavyly extended, and the extending direction, the direction of waviness and the extending length are flat. It may be irregular in appearance.
  • the convex portion and the concave portion each have an elongated shape extending while undulating, and ii) the convex portion and the concave portion have a feature that the extending direction, the bending direction, and the length are uneven in the concavo-convex pattern.
  • the concavo-convex pattern of the substrate for epitaxial growth has the above characteristics, the concavo-convex cross section appears repeatedly even if the concavo-convex pattern 80 is cut in any direction orthogonal to the surface of the substrate 40.
  • a convex part and a recessed part may be branched in part or in the middle by planar view (refer Fig.5 (a)). In FIG.
  • the pitch of the convex portions and the concave portions appears to be uniform as a whole.
  • the concave portion 70 of the concavo-convex pattern 80 is partitioned by the convex portion 60 and extends along the convex portion 60, and similarly to the convex portion 60, the extending direction, the direction of waviness and the extending length are in plan view. It may be an irregular elongated shape.
  • the frequency distribution is such that the pitch of the unevenness becomes an annular shape in the Fourier transform image.
  • an irregular pattern that has no directivity in the direction of the projections and depressions is preferable.
  • the average pitch of the irregularities is preferably in the range of 100 nm to 10 ⁇ m, and more preferably in the range of 100 to 1500 nm. .
  • the average pitch of the unevenness is less than the lower limit, the pitch is too small with respect to the emission wavelength of the light-emitting element, so there is a tendency that light diffraction due to the unevenness does not occur, while if the upper limit is exceeded, the diffraction angle decreases, The function as a diffraction grating tends to be lost.
  • the average pitch of the irregularities is more preferably in the range of 200 to 1200 nm.
  • the average value of the uneven depth distribution is preferably in the range of 20 nm to 10 ⁇ m.
  • the average value of the depth distribution of the irregularities is more preferably in the range of 50 nm to 5 ⁇ m, and it is necessary because the average value of the depth distribution of the irregularities is less than the lower limit, the depth is too small with respect to the emission wavelength.
  • the upper limit is exceeded, the thickness of the semiconductor layer required for planarization of the surface of the semiconductor layer becomes large when a semiconductor layer is laminated on the substrate to produce a light emitting device. Therefore, the time required for manufacturing the light emitting element becomes longer.
  • the average value of the uneven depth distribution is more preferably in the range of 100 nm to 2 ⁇ m.
  • the standard deviation of the unevenness depth is preferably in the range of 10 nm to 5 ⁇ m. If the standard deviation of the depth of the unevenness is less than the lower limit, the required diffraction tends not to occur because the depth is too small with respect to the wavelength of visible light. On the other hand, if the upper limit is exceeded, the diffracted light intensity is uneven. Tend to occur.
  • the standard deviation of the unevenness depth is more preferably in the range of 25 nm to 2.5 ⁇ m.
  • the epitaxial growth layer is formed on the epitaxial growth substrate 100 on which the concavo-convex pattern having elongated convex portions and concave portions extending in an irregular direction while undulating is formed, there are the following advantages.
  • the concavo-convex inclined surface is relatively gentle, the epitaxial growth layer is uniformly laminated on the concavo-convex pattern 80, and an epitaxial layer with few defects can be formed.
  • the concavo-convex pattern has an irregular shape with no directivity in the direction of the concavo-convex, even if a defect due to the pattern occurs, a homogeneous epitaxial growth layer having no anisotropy in the defect can be formed.
  • a light emitting device is manufactured by epitaxially growing a semiconductor layer on the epitaxial growth substrate 100 having such an uneven pattern
  • the manufacturing time of the light emitting device can be shortened for the following reason.
  • a light-emitting element When a light-emitting element is manufactured using a substrate having a concavo-convex pattern, it is necessary to stack the semiconductor layer until the concavo-convex shape is filled with the semiconductor layer and the surface becomes flat, as will be described later.
  • An epitaxial growth substrate on which a concavo-convex pattern having elongated convex portions and concave portions extending in irregular directions in a wavy manner has sufficient light extraction efficiency with a concavo-convex depth of the order of several tens of nanometers.
  • the layer thickness for stacking the semiconductor layers can be reduced. Therefore, the growth time of the semiconductor layer can be shortened, and the manufacturing time of the light emitting element can be shortened.
  • the average pitch of the unevenness means the average value of the unevenness pitch when the unevenness pitch on the surface where the unevenness is formed (adjacent protrusions or adjacent recesses).
  • the average value of the pitch of such irregularities is as follows using a scanning probe microscope (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.): Measuring method: Cantilever intermittent contact method
  • Cantilever material Silicon Cantilever lever width: 40 ⁇ m
  • Cantilever tip tip diameter 10 nm
  • the average value of the uneven depth distribution and the standard deviation of the uneven depth can be calculated as follows.
  • the shape of the surface unevenness is measured by using an inspection probe microscope (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.) to measure the unevenness analysis image.
  • an arbitrary 3 ⁇ m square (3 ⁇ m long, 3 ⁇ m wide) or 10 ⁇ m square (10 ⁇ m long, 10 ⁇ m wide) measurement is performed under the above-described conditions to obtain the uneven analysis image.
  • region are each calculated
  • the number of such measurement points varies depending on the type and setting of the measurement device used.
  • the product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd. is used as the measurement device.
  • 65536 points 256 vertical points ⁇ 256 horizontal points
  • the unevenness analysis image may be subjected to flat processing including primary inclination correction.
  • the measurement region has a length of 15 times or more of the average value of the widths of the convex portions included in the measurement region. It is preferable to use a square region with a length of. And about the uneven
  • a surface including such a measurement point P and parallel to the bottom surface of the base material is defined as a reference surface (horizontal plane), and each depth value from the reference surface (a height value from the base material bottom surface at the measurement point P is measured).
  • the difference obtained by subtracting the height from the bottom surface of the substrate at the measurement point) is obtained as the data of the unevenness depth.
  • Such unevenness depth data can be obtained by automatically calculating with software or the like in the measuring device depending on the measuring device (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.) A value obtained by such automatic calculation can be used as the data of the unevenness depth.
  • the values that can be calculated by obtaining the arithmetic mean and standard deviation thereof are the average value of the unevenness depth distribution and the standard deviation of the unevenness depth, respectively. adopt.
  • the average pitch of the unevenness and the average value of the depth distribution of the unevenness can be obtained through the measurement method as described above regardless of the material of the surface on which the unevenness is formed.
  • an “irregular uneven pattern” means that a Fourier transform image obtained by performing a two-dimensional fast Fourier transform process on an unevenness analysis image obtained by analyzing the surface unevenness shape has an absolute value of wave number. It includes a quasi-periodic structure that shows a circular or annular pattern having an origin substantially at the center of 0 ⁇ m ⁇ 1 , that is, has a concavo-convex pitch distribution although it has no directivity in the direction of the concavo-convex.
  • the circular or annular pattern may have an absolute value of wave number of 10 ⁇ m ⁇ 1 or less (may be in the range of 0.1 to 10 ⁇ m ⁇ 1 , and may further be in the range of 0.667 to 10 ⁇ m ⁇ 1 , preferably May be within a range of 0.833 to 5 ⁇ m ⁇ 1 ).
  • the light scattered and / or diffracted from such a concavo-convex pattern has a relatively broad wavelength band, not light of a single or narrow band wavelength, and the scattered light and / or diffracted light is directed. There is no sex and heads in all directions. Therefore, a substrate having such a quasi-periodic structure is suitable for a substrate used for a light emitting element such as an LED as long as the uneven pitch distribution diffracts visible light.
  • “Fourier transform image shows a circular pattern” means that the pattern of bright spots in the Fourier transform image looks almost circular, and part of the outer shape is convex or Includes those that appear to be concave.
  • the Fourier transform image shows an annular pattern means that the pattern in which the bright spots are gathered in the Fourier transform image looks almost an annular shape, and the shape of the outer circle or inner circle of the ring is This includes those that appear to have a substantially circular shape, and those that appear to have a convex or concave part of the outer circle of the annulus and the inner circle.
  • a circular or annular pattern may have an absolute value of a wave number of 10 ⁇ m ⁇ 1 or less (within a range of 0.1 to 10 ⁇ m ⁇ 1 , and further within a range of 0.667 to 10 ⁇ m ⁇ 1.
  • Preferably within a range of 0.833 to 5 ⁇ m ⁇ 1 ) means that 30% or more of the bright spots constituting the Fourier transform image have a wave number of 30% or more.
  • Absolute value of 10 ⁇ m ⁇ 1 or less may be in the range of 0.1 to 10 ⁇ m ⁇ 1 , more preferably in the range of 0.667 to 10 ⁇ m ⁇ 1 , preferably in the range of 0.833 to 5 ⁇ m ⁇ 1 .
  • the epitaxial growth substrate of the embodiment is used as a substrate of a light emitting device, the wavelength dependency and directivity of light emitted from the light emitting device (light emission in a certain direction strongly) Property) can be made sufficiently small.
  • the concavo-convex pattern itself has no distribution or directivity in the pitch, the Fourier transform image also appears as a random pattern (no pattern), but the concavo-convex pattern is isotropic in the XY direction as a whole, but the distribution in the pitch is In some cases, a circular or annular Fourier transform image appears. Further, when the concavo-convex pattern has a single pitch, the ring appearing in the Fourier transform image tends to be sharp.
  • the two-dimensional fast Fourier transform processing of the unevenness analysis image can be easily performed by electronic image processing using a computer equipped with two-dimensional fast Fourier transform processing software.
  • FIG. 7 is a diagram showing an example of a planar view analysis image of the measurement region in the epitaxial growth substrate 100 according to the present embodiment.
  • the width of the convex portion (white display portion) of the planar view analysis image is referred to as “the width of the convex portion”.
  • the width of the convex portion For the average value of the widths of such convex portions, arbitrary 100 or more locations are selected from the convex portions of the planar view analysis image, and the respective directions are substantially perpendicular to the extending direction of the convex portions in plan view. It can be calculated by measuring the length from the boundary of the convex part to the boundary on the opposite side and obtaining the arithmetic average thereof.
  • the value at the position randomly extracted from the convex portion of the planar analysis image is used, but the position where the convex portion is branched.
  • the value of may not be used. Whether or not a certain region is a region related to branching in the convex portion may be determined, for example, based on whether or not the region extends more than a certain amount. More specifically, the determination may be made based on whether or not the ratio of the extension length of the region to the width of the region is a certain value (for example, 1.5) or more.
  • the extending axis of the convex portion is a virtual axis along the extending direction of the convex portion determined from the shape of the outer edge of the convex portion when the region to be determined whether to branch is excluded from the convex portion. It is.
  • the extending axis of the convex portion is a line drawn so as to pass through the approximate center point of the width of the convex portion orthogonal to the extending direction of the convex portion.
  • FIG. 8A and FIG. 8B are schematic diagrams for explaining only a part of the convex portion in the planar view analysis image, and the region S indicates the convex portion. In FIG. 8A and FIG. 8B, it is assumed that the regions A1 and A2 protruding at the midway position of the convex portion are determined as the determination target regions for branching.
  • the extending axes L1 and L2 are defined as lines passing through the approximate center point of the width of the convex portion orthogonal to the extending direction of the convex portion.
  • Such an extended axis may be defined by image processing by a computer, may be defined by an operator who performs analysis work, or is defined by both image processing by a computer and manual operation by an operator. May be.
  • the region A1 protrudes in a direction perpendicular to the extending axis L1 at a midway position of the convex portion extending along the extending axis L1.
  • FIG. 8A the region A1 protrudes in a direction perpendicular to the extending axis L1 at a midway position of the convex portion extending along the extending axis L1.
  • the region A2 protrudes in a direction perpendicular to the extending axis L2 at a midway position of the convex portion extending along the extending axis L2. It should be noted that the region that inclines and protrudes with respect to the direction orthogonal to the extending axes L1 and L2 may be determined by using the same idea as that for the regions A1 and A2 described below. .
  • the region A1 is not a branching region. Determined.
  • the length d3 in the direction passing through the region A1 and orthogonal to the extending axis L1 is one of the measurement values for calculating the average value of the widths of the protrusions.
  • the ratio of the extension length d5 of the region A2 to the width d4 of the region A2 is approximately 2 (1.5 or more)
  • the region A2 is determined to be a branching region.
  • the length d6 in the direction passing through the region A2 and orthogonal to the extending axis L2 is not one of the measurement values for calculating the average value of the widths of the protrusions.
  • the width of the protrusions in a direction substantially orthogonal to the extending direction of the protrusions of the uneven pattern 80 in a plan view may be constant. Whether or not the width of the convex portion is constant can be determined based on the width of the convex portion of 100 points or more obtained by the above measurement. Specifically, an average value of the widths of the protrusions and a standard deviation of the widths of the protrusions are calculated from the widths of the protrusions of 100 points or more.
  • the value calculated by dividing the standard deviation of the width of the convex portion by the average value of the width of the convex portion is the variation coefficient of the width of the convex portion. It is defined as The variation coefficient becomes smaller as the width of the convex portion is constant (the variation in the width is smaller). Therefore, whether or not the width of the convex portion is constant can be determined depending on whether or not the variation coefficient is equal to or less than a predetermined value. For example, it can be defined that the width of the convex portion is constant when the variation coefficient is 0.25 or less.
  • the extending directions of the convex portions (white portions) included in the concave / convex pattern are irregularly distributed in plan view. That is, the convex portion has a shape extending in an irregular direction, not a regular stripe shape or a regularly arranged dot shape.
  • the contour line in the plan view of the convex portion included in the region per unit area includes more straight sections than curved sections.
  • “including more straight sections than curved sections” means that the concave / convex pattern does not occupy a lot of sections that are winding in all sections on the contour of the convex portion. Whether or not the outline of the convex portion in plan view includes more straight sections than curved sections can be determined, for example, by using one of the following two methods of defining a curved section. .
  • the curved section is divided into a plurality of sections by dividing the outline of the convex portion in plan view by a length that is ⁇ (circumferential ratio) times the average value of the width of the convex portion.
  • circumferential ratio
  • the straight section is defined as a section other than the curved section among the plurality of sections, that is, a section where the ratio is greater than 0.75.
  • FIG. 9A is a diagram illustrating a part of the planar view analysis image of the concavo-convex pattern, and the concave portions are shown in white for convenience.
  • Region S1 represents a convex portion
  • region S2 represents a concave portion.
  • One convex portion is selected from the plurality of convex portions in the measurement region.
  • An arbitrary position on the contour X of the convex portion is determined as a start point.
  • the point A is set as the start point.
  • Reference points are provided at predetermined intervals on the contour line X of the convex portion from the start point.
  • the predetermined interval is a length that is ⁇ (circumferential ratio) / 2 times the average value of the widths of the convex portions.
  • point B, point C, and point D are sequentially set as an example.
  • Procedure 1-2 When the points A to D, which are reference points, are set on the contour line X of the convex portion, a determination target section is set.
  • the start point and the end point are reference points, and a section including a reference point serving as an intermediate point is set as a determination target.
  • the point C set second from the point A is the end point of the section. Since the distance from the point A is set to a length that is ⁇ / 2 times the average value of the width of the convex portion here, the point C is ⁇ of the average value of the width of the convex portion along the contour line X. It is a point away from the point A by a double length.
  • the point B is selected as the start point of the section
  • the point D set second from the point B is the end point of the section.
  • the target section is set in the set order, and point A is the point set first. That is, first, the section between section A and point C (section AC) is set as a section to be processed. Then, the length La of the contour X of the convex portion connecting the points A and C and the linear distance Lb between the points A and C shown in FIG. 9A are measured.
  • Procedure 1-3 A ratio (Lb / La) of the linear distance Lb to the length La is calculated using the length La and the linear distance Lb measured in the procedure 1-2.
  • the ratio is 0.75 or less, it is determined that the point B that is the midpoint of the section AC of the contour line X of the convex portion is a point existing in the curve section.
  • the ratio is larger than 0.75, it is determined that the point B is a point existing in the straight section.
  • the ratio (Lb / La) is 0.75 or less, the point B is determined to be a point existing in the curve section.
  • Procedure 1-4 When each point set in the procedure 1-1 is selected as the start point, the procedure 1-2 and the procedure 1-3 are executed.
  • Step 1-5 Steps 1-1 to 1-4 are executed for all the convex portions in the measurement region.
  • Step 1-6 The contour of the convex portion in plan view when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is 50% or more of the whole. It is determined that the line includes more straight sections than curved sections. On the other hand, when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is less than 50% of the whole, the plan view of the convex portions It is determined that the upper contour line includes more curved sections than straight sections.
  • steps 1-1 to 1-6 may be performed by a measurement function provided in the measurement apparatus, may be performed by executing analysis software or the like different from the measurement apparatus, or may be performed manually. You may go on.
  • step 1-1 ends when it is no longer possible to set points by going around the convex portion or protruding from the measurement area. do it. Further, since the ratio (Lb / La) cannot be calculated for the section outside the first set point and the last set point, it may be excluded from the above determination. Moreover, what is necessary is just to exclude the convex part in which the length of an outline is less than (pi) times the average value of the width
  • the curved section is divided into a plurality of sections by dividing an outline of the convex portion in plan view by a length that is ⁇ (circumferential ratio) times the average value of the width of the convex portion.
  • the smaller angle (the one that is 180 ° or less) is defined as a section in which the angle is 120 ° or less.
  • the straight section is defined as a section other than the curved section among the plurality of sections, that is, a section in which the angle is larger than 120 °.
  • FIG. 9B an example of a procedure for determining whether or not the contour line of the convex portion in plan view includes more straight sections than curved sections using the second definition method. explain.
  • FIG. 9B is a diagram showing a part of the planar analysis image of the same concavo-convex pattern as FIG.
  • Procedure 2-1 One convex portion is selected from the plurality of convex portions in the measurement region.
  • An arbitrary position on the contour X of the convex portion is determined as a start point.
  • the point A is set as the start point.
  • Reference points are provided at predetermined intervals on the contour line X of the convex portion from the start point.
  • the predetermined interval is a length that is ⁇ (circumferential ratio) / 2 times the average value of the widths of the convex portions.
  • point B, point C, and point D are sequentially set as an example.
  • Procedure 2-2 When the points A to D, which are reference points, are set on the contour line X of the convex portion, a determination target section is set.
  • the start point and the end point are reference points, and a section including a reference point serving as an intermediate point is set as a determination target.
  • the point C when the point A is selected as the start point of the section, the point C set second from the point A becomes the end point of the section. Since the distance from the point A is set to a length that is ⁇ / 2 times the average value of the width of the convex portion here, the point C is ⁇ of the average value of the width of the convex portion along the contour line X. It is a point away from the point A by a double length.
  • the point B is selected as the start point of the section
  • the point D set second from the point B is the end point of the section.
  • the target section is set in the set order, and point A is the point set first. That is, first, the section of point A and point C is set as a process target section. Then, the smaller angle ⁇ (the one that is 180 ° or less) of the two angles formed by the line segment AB and the line segment CB is measured.
  • Procedure 2-3 When the angle ⁇ is 120 ° or less, it is determined that the point B is a point existing in the curve section. On the other hand, when the angle ⁇ is larger than 120 °, it is determined that the point B is a point existing in the straight line section. In the example shown in FIG. 9B, since the angle ⁇ is 120 ° or less, the point B is determined as a point existing in the curve section.
  • Step 2-4 When each point set in the procedure 2-1 is selected as the start point, the procedure 2-2 and the procedure 2-3 are executed.
  • Step 2-5 Steps 2-1 to 2-4 are executed for all convex portions in the measurement region.
  • Step 2-6 The contour of the convex portion in plan view when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is 70% or more of the whole. It is determined that the line includes more straight sections than curved sections. On the other hand, when the ratio of the points determined to be in the straight section among all the points set for all the convex portions in the measurement region is less than 70% of the whole, the plan view of the convex portions It is determined that the upper contour line includes more curved sections than straight sections.
  • steps 2-1 to 2-6 may be performed by a measurement function provided in the measurement device, or may be performed by executing analysis software or the like different from the measurement device. It may be done manually.
  • step 2-1 above ends when it is no longer possible to set points by going around the convex part or protruding from the measurement area. do it. Further, since the angle ⁇ cannot be calculated for the section outside the first set point and the last set point, it may be excluded from the above determination. Moreover, what is necessary is just to exclude the convex part in which the length of an outline is less than (pi) times the average value of the width
  • the contour line X in the plan view of the convex portion includes more straight sections than the curve section in the measurement region. It can be determined whether or not.
  • the determination of “whether the contour line in the plan view of the convex portion included in the region per unit area includes more straight sections than curved sections” is epitaxial growth. The determination may be made based on one measurement region that is randomly extracted from the region of the concave / convex pattern 80 of the substrate 100 for measurement, or a plurality of different measurements in the concave / convex pattern 80 of the same substrate 100 for epitaxial growth.
  • the determination may be performed by comprehensively determining the determination result for the region.
  • the determination result of the larger one among the determination results for a plurality of different measurement regions is expressed as “the contour line in the plan view of the convex portion included in the region per unit area has more straight sections than the curved sections. You may employ
  • a solution of sol-gel material such as TiO 2 , ZnO, ZnS, ZrO, BaTiO 3 , SrTiO 2 or a fine particle dispersion may be used as the inorganic material solution used in the patterning step.
  • TiO 2 is preferred from the relationship of the film forming property and refractive index.
  • TiO 2 is preferred from the relationship of the film forming property and refractive index.
  • the inorganic material film may be formed by using a liquid phase deposition (LPD) method or the like.
  • a polysilazane solution as an inorganic material used in a patterning process.
  • the convex part formed using the polysilazane solution may be converted into ceramics (silica modification) in the curing step to form the convex part made of silica.
  • “Polysilazane” is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, N—H, etc., and ceramics such as both intermediate solid solutions SiO X N Y. It is a precursor inorganic polymer. More preferred is a compound which is converted to silica by being ceramicized at a relatively low temperature as represented by the following general formula (1) described in JP-A-8-112879.
  • R1, R2, and R3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane also referred to as PHPS
  • R 1, R 2 and R 3 are hydrogen atoms, and the hydrogen part bonded to Si is partially an alkyl group or the like.
  • Substituted organopolysilazanes are particularly preferred.
  • silicon alkoxide-added polysilazane obtained by reacting polysilazane with silicon alkoxide for example, JP-A No. 5-23827
  • glycidol-added polysilazane obtained by reacting glycidol for example, JP-A-6-122852
  • an alcohol-added polysilazane obtained by reacting an alcohol for example, JP-A-6-240208
  • a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate for example, JP-A-6-299118
  • an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex for example, JP-A-6-306329
  • metal fine particles Pressurized polysilazane (e.g., JP-A-7-196986)
  • hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used.
  • an amine or metal catalyst may be added.
  • a light emitting element can be manufactured using the substrate for epitaxial growth obtained by the manufacturing method of the substrate for epitaxial growth of the said embodiment.
  • the light emitting device 200 according to the embodiment is formed by stacking a first conductivity type layer 222, an active layer 224, and a second conductivity type layer 226 in this order on the epitaxial growth substrate 100.
  • the semiconductor layer 220 is provided.
  • the light emitting device 200 of the embodiment includes a first electrode 240 that is electrically connected to the first conductivity type layer 222 and a second electrode 260 that is electrically connected to the second conductivity type layer 226.
  • a known material used for a light-emitting element may be used.
  • a material used for a light emitting element for example, a GaN-based semiconductor material represented by a general formula In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1)
  • a GaN-based semiconductor represented by the general formula Al X Ga Y In ZN 1- AM A is used without any limitation in the light-emitting element of this embodiment. be able to.
  • GaN-based semiconductors can contain other group III elements in addition to Al, Ga, and In, and contain elements such as Ge, Si, Mg, Ca, Zn, Be, P, As, and B as required. You can also Furthermore, it is not limited to elements that are intentionally added, but may contain impurities that are inevitably contained depending on the growth conditions of the semiconductor layer, and trace impurities contained in the raw materials and reaction tube materials.
  • other semiconductor materials such as GaAs, GaP-based compound semiconductor, AlGaAs, InAlGaP-based compound semiconductor can also be used.
  • the n-type semiconductor layer 222 as the first conductivity type layer is stacked on the substrate 100.
  • the n-type semiconductor layer 222 may be formed of materials and structures known in the art, and may be formed of, for example, n-GaN.
  • the active layer 224 is stacked on the n-type semiconductor layer 222.
  • the active layer 224 may be formed of materials and structures known in the art, and may have, for example, a multiple quantum well (MQW) structure in which GalnN and GaN are stacked a plurality of times.
  • MQW multiple quantum well
  • the active layer 224 emits light by injection of electrons and holes.
  • a p-type semiconductor layer 226 as a second conductivity type layer is stacked on the active layer 224.
  • the p-type semiconductor layer 226 may have a structure known in the art, and may be formed of, for example, p-AlGaN and p-GaN.
  • the method for stacking the semiconductor layers is not particularly limited, and MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy).
  • MOCVD metal organic chemical vapor deposition
  • HVPE hydrogen vapor deposition
  • MBE molecular beam epitaxy
  • a known method that can grow a GaN-based semiconductor can be applied.
  • the MOCVD method is preferable from the viewpoint of layer thickness controllability and mass productivity.
  • a concavo-convex pattern 80 is formed on the surface of the substrate 100 for epitaxial growth, the surface is flattened by lateral growth of the semiconductor layer as described in JP-A-2001-210598 during the epitaxial growth of the n-type semiconductor layer. Progresses. Since the active layer needs to be formed on a flat surface, it is necessary to stack an n-type semiconductor layer until the surface becomes flat.
  • the substrate for epitaxial growth according to the embodiment has a relatively gentle cross-sectional shape of the concavo-convex pattern, and has a corrugated structure, so that the surface flattening progresses quickly and the thickness of the n-type semiconductor layer is reduced. Can do. The growth time of the semiconductor layer can be shortened.
  • the n-electrode 240 as the first electrode is formed on the n-type semiconductor layer 222 exposed by etching a part of the p-type semiconductor layer 226 and the active layer 224.
  • the n-electrode 222 may be formed of a material and structure known in the art, and is made of, for example, Ti / Al / Ti / Au or the like, and is formed by a vacuum deposition method, a sputtering method, a CVD method, or the like.
  • a p-electrode 260 as the second electrode is formed on the p-type semiconductor layer 226.
  • the p-electrode 226 may be formed of a material and structure known in the art, and may be formed of, for example, a translucent conductive film made of ITO or the like and an electrode pad made of a Ti / Au laminated body or the like.
  • the p-electrode 260 may be formed from a highly reflective material such as Ag or Al.
  • the n-electrode 240 and the p-electrode 260 can be formed by any film forming method such as a vacuum deposition method, a sputtering method, a CVD method, or the like.
  • the active layer when a voltage is applied to the first conductivity type layer and the second conductivity type layer, the active layer includes at least a first conductivity type layer, an active layer, and a second conductivity type layer.
  • the layer structure of the semiconductor layer is arbitrary as long as it emits light.
  • the optical element 200 of the embodiment configured as described above may be a face-up optical element that extracts light from the p-type semiconductor 226 side. In that case, a light-transmitting conductive material is used for the p-electrode 260. It is preferable.
  • the optical element 200 of the embodiment may be a flip-chip optical element that extracts light from the substrate 100 side. In that case, it is preferable to use a highly reflective material for the p-electrode 260. In any method, the light generated in the active layer 224 can be effectively extracted outside the device by the diffraction effect of the concave / convex pattern 80 of the substrate.
  • the semiconductor layer 220 having a low dislocation density is formed, and deterioration of the characteristics of the light emitting element 200 is suppressed.
  • the manufacturing method and optical element of the substrate for epitaxial growth of this invention are not limited to the said embodiment, It changes suitably within the range of the technical idea described in the claim. can do.
  • the epitaxial growth substrate can be produced continuously at a high speed by the epitaxial growth substrate manufacturing method of the present invention. Further, since photolithography is not used to form the concavo-convex pattern, the manufacturing cost is low and the burden on the environment is small. Furthermore, since the substrate for epitaxial growth obtained by the manufacturing method of the present invention has a function as a diffraction grating substrate that improves the light extraction efficiency, a light emitting device manufactured using this substrate has high light emission efficiency. Therefore, the epitaxial growth substrate obtained by the production method of the present invention is extremely effective for the production of a light emitting device having excellent light emission efficiency, and contributes to energy saving.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

This method for producing a substrate for epitaxial growth comprises: a patterning step wherein an inorganic material film (60) of a predetermined pattern is formed on a base (40) by screen printing; and a curing step wherein the inorganic material film (60) is cured. Provided are: a method for efficiently producing a substrate for epitaxial growth; a substrate for epitaxial growth, which is obtained by the method; and a light emitting element which uses this substrate.

Description

エピタキシャル成長用基板の製造方法及びそれより得られるエピタキシャル成長用基板並びにその基板を用いた発光素子Epitaxial growth substrate manufacturing method, epitaxial growth substrate obtained therefrom, and light-emitting device using the substrate
 本発明は、半導体層などをエピタキシャル成長させるための基板の製造方法、及びその製造方法により製造された基板並びにその基板上に半導体層が形成された発光素子に関する。 The present invention relates to a substrate manufacturing method for epitaxially growing a semiconductor layer and the like, a substrate manufactured by the manufacturing method, and a light emitting element in which a semiconductor layer is formed on the substrate.
 半導体発光素子は、一般に発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等があり、バックライト等に用いる各種光源、照明、信号機、大型ディスプレイ等に幅広く利用されている。 Semiconductor light emitting devices generally include light emitting diodes (LEDs) and laser diodes (LDs), and are widely used in various light sources used for backlights, lighting, traffic lights, large displays, and the like.
 窒化物半導体等の半導体層を有する発光素子は、通常、透光性基板上にバッファ層、n型半導体層、活性層、p型半導体層を順にエピタキシャル成長させ、n型、p型のそれぞれの半導体層に電気的に接続するn側電極、p側電極を形成することによって構成される。この発光素子において、活性層で発生した光は、半導体層の外部露出面(上面、側面)、基板の露出面(裏面、側面)などから素子外部に出射される。このような発光素子では、活性層で発生した光が半導体層と電極との界面または半導体層と基板との界面に対して所定の臨界角以上の角度で入射すると、全反射を繰り返しながら半導体層内を横方向に伝搬し、その間に光の一部は吸収され、光取り出し効率が低下する。 In a light emitting device having a semiconductor layer such as a nitride semiconductor, normally, a buffer layer, an n-type semiconductor layer, an active layer, and a p-type semiconductor layer are epitaxially grown on a light-transmitting substrate in this order, and each of the n-type and p-type semiconductors. It is configured by forming an n-side electrode and a p-side electrode that are electrically connected to the layer. In this light emitting element, light generated in the active layer is emitted to the outside of the semiconductor layer from the externally exposed surface (upper surface, side surface) of the semiconductor layer, the exposed surface (back surface, side surface) of the substrate, and the like. In such a light emitting device, when light generated in the active layer is incident on the interface between the semiconductor layer and the electrode or the interface between the semiconductor layer and the substrate at an angle greater than a predetermined critical angle, the semiconductor layer repeats total reflection. Propagating in the horizontal direction, a part of the light is absorbed during that time, and the light extraction efficiency decreases.
 そこで、基板の半導体層成長面をエッチングして凹凸パターンを形成し、それにより発光素子の光取り出し効率を向上させることが特許文献1、2に開示されている。さらに、このような凹凸パターンを基板の半導体層成長面に設けることにより、半導体層の転位密度が低減され、発光素子の特性の劣化を抑制できることが特許文献2に開示されている。 Therefore, Patent Documents 1 and 2 disclose that the semiconductor layer growth surface of the substrate is etched to form a concavo-convex pattern, thereby improving the light extraction efficiency of the light-emitting element. Further, Patent Document 2 discloses that by providing such a concavo-convex pattern on the growth surface of the semiconductor layer of the substrate, the dislocation density of the semiconductor layer is reduced and deterioration of the characteristics of the light emitting element can be suppressed.
特開2010-206230号公報JP 2010-206230 A 特開2001-210598号公報Japanese Patent Laid-Open No. 2001-210598
 上記のような半導体発光素子は、より高い生産効率で製造されることが要望されている。そこで本発明の目的は、半導体発光素子等の発光素子に用いられるエピタキシャル成長用基板を効率よく製造するための製造方法、及びその製造方法により製造されるエピタキシャル成長用基板並びに当該エピタキシャル成長用基板を用いた発光素子を提供することにある。 The semiconductor light emitting device as described above is required to be manufactured with higher production efficiency. Accordingly, an object of the present invention is to provide a manufacturing method for efficiently manufacturing an epitaxial growth substrate used in a light emitting device such as a semiconductor light emitting device, an epitaxial growth substrate manufactured by the manufacturing method, and light emission using the epitaxial growth substrate. It is to provide an element.
 本発明の第1の態様に従えば、スクリーン印刷により基材上に所定パターンの無機材料膜を形成するパターニング工程と、前記無機材料膜を硬化させる硬化工程とを有するエピタキシャル成長用基板の製造方法が提供される。 According to the first aspect of the present invention, there is provided a method for manufacturing an epitaxial growth substrate, comprising: a patterning step of forming an inorganic material film having a predetermined pattern on a substrate by screen printing; and a curing step of curing the inorganic material film. Provided.
 前記エピタキシャル成長用基板の製造方法において、前記無機材料膜がゾルゲル材料からなってよい。 In the method for manufacturing an epitaxial growth substrate, the inorganic material film may be made of a sol-gel material.
 前記エピタキシャル成長用基板の製造方法は、さらに、前記基材の表面が露出している領域をエッチングする工程をさらに含んでよい。 The method for manufacturing the epitaxial growth substrate may further include a step of etching a region where the surface of the base material is exposed.
 前記エピタキシャル成長用基板の製造方法において、前記無機材料膜を有する前記基材上にバッファ層を形成してよい。 In the method for manufacturing a substrate for epitaxial growth, a buffer layer may be formed on the base material having the inorganic material film.
 前記エピタキシャル成長用基板の製造方法において、前記パターニング工程の前に前記基材上にバッファ層を形成してよい。 In the method for manufacturing a substrate for epitaxial growth, a buffer layer may be formed on the base material before the patterning step.
 前記エピタキシャル成長用基板の製造方法において、前記所定パターンの前記無機材料膜を形成することによって生じる凸部及び凹部が、
 i)平面視で、各々、うねりながら延在する細長い形状を有し、且つ
 ii)延在方向、屈曲方向及び長さが不均一であってよい。
In the manufacturing method of the substrate for epitaxial growth, a convex portion and a concave portion generated by forming the inorganic material film of the predetermined pattern,
i) each having an elongated shape extending in a wavy manner in plan view; and ii) the extending direction, the bending direction, and the length may be non-uniform.
 前記エピタキシャル成長用基板の製造方法において、前記基材が、サファイア基板であってよい。 In the method for manufacturing a substrate for epitaxial growth, the base material may be a sapphire substrate.
 本発明の第2の態様に従えば、第1の態様のエピタキシャル成長用基板の製造方法によって得られる凹凸パターンを有するエピタキシャル成長用基板が提供される。 According to the second aspect of the present invention, there is provided an epitaxial growth substrate having a concavo-convex pattern obtained by the epitaxial growth substrate manufacturing method of the first aspect.
 前記エピタキシャル成長用基板は、
 i)前記エピタキシャル成長用基板の前記凹凸パターン面の凸部または凹部は、平面視で、各々、うねりながら延在する細長い形状を有し、且つ、
 ii)前記エピタキシャル成長用基板の前記凹凸パターン面の前記凸部または前記凹部は延在方向、屈曲方向及び長さが不均一であってよい。
The substrate for epitaxial growth is
i) The projections or depressions of the concavo-convex pattern surface of the epitaxial growth substrate each have an elongated shape extending in a wavy manner in plan view, and
ii) The convex part or the concave part of the concavo-convex pattern surface of the epitaxial growth substrate may be uneven in extension direction, bending direction and length.
 前記エピタキシャル成長用基板において、前記凸部の延在方向が、平面視上不規則に分布しており、
 前記凹凸パターンの単位面積当たりの領域に含まれる前記凸部の平面視上における輪郭線が、曲線区間よりも直線区間を多く含んでよい。
In the epitaxial growth substrate, the extending direction of the protrusions is irregularly distributed in plan view,
The contour line in plan view of the convex portion included in the region per unit area of the uneven pattern may include more straight sections than curved sections.
 前記エピタキシャル成長用基板において、前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定であってよい。 In the epitaxial growth substrate, the width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view may be constant.
 前記エピタキシャル成長用基板において、前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の両端点間の前記輪郭線の長さに対する当該両端点間の直線距離の比が0.75以下となる区間であり、
 前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間であってよい。
In the epitaxial growth substrate, the curved section forms a plurality of sections by dividing a contour line in plan view of the convex portion by a length that is π (circumferential ratio) times an average value of the width of the convex portion. The ratio of the linear distance between the two end points to the length of the contour line between the two end points of the section is 0.75 or less,
The straight section may be a section that is not the curved section among the plurality of sections.
 前記エピタキシャル成長用基板において、前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の一端及び当該区間の中点を結んだ線分と当該区間の他端及び当該区間の中点を結んだ線分とがなす2つの角度のうち180°以下となる方の角度が120°以下となる区間であり、
 前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間であり、
 前記複数の区間のうち前記曲線区間の割合が70%以上であってよい。
In the epitaxial growth substrate, the curved section forms a plurality of sections by dividing a contour line in plan view of the convex portion by a length that is π (circumferential ratio) times an average value of the width of the convex portion. In this case, one of the two angles formed by the line segment connecting one end of the section and the midpoint of the section and the line segment connecting the other end of the section and the midpoint of the section is 180 ° or less. It is a section where the angle is 120 ° or less,
The straight section is a section that is not the curved section among the plurality of sections,
The ratio of the curve section among the plurality of sections may be 70% or more.
 前記エピタキシャル成長用基板において、前記凸部の延在方向が、平面視上不規則に分布しており、
 前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定であってよい。
In the epitaxial growth substrate, the extending direction of the protrusions is irregularly distributed in plan view,
The width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view may be constant.
 前記エピタキシャル成長用基板において、前記凹凸パターンを走査型プローブ顕微鏡により解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施すことにより得られるフーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円状又は円環状の模様を示しており、且つ、前記円状又は円環状の模様が、波数の絶対値が10μm-1以下の範囲内となる領域内に存在してよい。 In the epitaxial growth substrate, a Fourier transform image obtained by subjecting the unevenness analysis image obtained by analyzing the unevenness pattern with a scanning probe microscope to a two-dimensional fast Fourier transform process has an absolute value of the wave number of 0 μm −1 . A circular or annular pattern having a substantially origin at a certain origin is shown, and the circular or annular pattern exists in a region where the absolute value of the wave number is in the range of 10 μm −1 or less. It's okay.
 本発明の第3の態様に従えば、第2の態様のエピタキシャル成長用基板の上に、第1導電型層、活性層及び第2導電型層を少なくとも含む半導体層を備える発光素子が提供される。 According to the third aspect of the present invention, there is provided a light emitting device comprising a semiconductor layer including at least a first conductivity type layer, an active layer, and a second conductivity type layer on the epitaxial growth substrate of the second aspect. .
 本発明のエピタキシャル成長用基板の製造方法において、スクリーン印刷により基材上に凹凸パターンを形成するため、エピタキシャル成長用基板を簡便に生産することができる。また、高価な光学精密機器を必要とし且つ多量の廃液を発生するフォトリソグラフィやモールドの作製が必要なナノインプリント法を用いず、スクリーン印刷により凹凸パターンを形成するため、本発明のエピタキシャル成長用基板の製造方法は製造コストが低く且つ環境への負荷が小さい。また、本発明のエピタキシャル成長用基板は光取り出し効率を向上させる回折格子基板としての機能を有するため、この基板を用いて作製された発光素子は、発光効率が高い。それゆえ本発明のエピタキシャル成長用基板は、優れた発光効率を有する発光素子の製造に極めて有効である。 In the method for manufacturing an epitaxial growth substrate according to the present invention, since the concave / convex pattern is formed on the base material by screen printing, the epitaxial growth substrate can be easily produced. In addition, since the concavo-convex pattern is formed by screen printing without using photolithography or a nanoimprint method that requires production of a mold, which requires expensive optical precision equipment and generates a large amount of waste liquid, the production of the epitaxial growth substrate of the present invention The method has a low manufacturing cost and a low environmental burden. In addition, since the epitaxial growth substrate of the present invention has a function as a diffraction grating substrate for improving light extraction efficiency, a light emitting device manufactured using this substrate has high light emission efficiency. Therefore, the epitaxial growth substrate of the present invention is extremely effective for the production of a light emitting device having excellent luminous efficiency.
実施形態のエピタキシャル成長用基板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the board | substrate for epitaxial growth of embodiment. 図2(a)~(c)は実施形態のスクリーン印刷用版の製造方法を概念的に示す図である。2A to 2C are diagrams conceptually showing a method for producing a screen printing plate according to the embodiment. 図3(a)~(c)は実施形態のエピタキシャル成長用基板の製造方法の各工程を概念的に示す図である。3A to 3C are diagrams conceptually showing each process of the method for manufacturing an epitaxial growth substrate according to the embodiment. 図4(a)~(c)はバッファ層を形成したエピタキシャル成長用基板の概略断面図である。4A to 4C are schematic sectional views of an epitaxial growth substrate on which a buffer layer is formed. 図5(a)は実施形態のエピタキシャル成長用基板の製造方法によって得られる基板の表面のAFM画像の例であり、図5(b)は図5(a)のAFM画像中の切断線上におけるエピタキシャル成長用基板の断面プロファイルを示す。FIG. 5A is an example of an AFM image of the surface of the substrate obtained by the method for manufacturing an epitaxial growth substrate of the embodiment, and FIG. 5B is for epitaxial growth on a cutting line in the AFM image of FIG. The cross-sectional profile of a board | substrate is shown. 実施形態の光学素子の概略断面図である。It is a schematic sectional drawing of the optical element of embodiment. 図7は、実施形態のエピタキシャル成長等基板の平面視解析画像(白黒画像)の一例である。FIG. 7 is an example of a plane view analysis image (black and white image) of the substrate such as epitaxial growth according to the embodiment. 図8(a)及び(b)は、平面視解析画像において凸部の分岐を判定する方法の一例について説明するための図である。FIGS. 8A and 8B are diagrams for explaining an example of a method for determining a branch of a convex portion in a planar view analysis image. 図9(a)は曲線区間の第1の定義方法を説明するために用いる図であり、図9(b)は曲線区間の第2の定義方法を説明するために用いる図である。FIG. 9A is a diagram used for explaining the first definition method of the curve section, and FIG. 9B is a diagram used for explaining the second definition method of the curve section.
 以下、本発明のエピタキシャル成長用基板の製造方法、それによって得られるエピタキシャル成長用基板、及びそのエピタキシャル成長用基板を用いた発光素子の実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of a method for manufacturing an epitaxial growth substrate of the present invention, an epitaxial growth substrate obtained thereby, and a light-emitting element using the epitaxial growth substrate will be described with reference to the drawings.
[エピタキシャル成長用基板の製造方法]
 エピタキシャル成長用基板の製造方法について説明する。実施形態のエピタキシャル成長用基板の製造方法は、図1に示すように、主に、ゾルゲル材料を調製する溶液調製工程P1、スクリーン印刷により基材にゾルゲル材料の膜を形成して、基材に凹凸パターンを形成するパターン形成工程(パターニング工程)P2、及びゾルゲル材料の膜を硬化する硬化工程P3を有する。以下に、まず凹凸パターン形成用のスクリーン印刷用版及びその製造方法について図2(a)~(c)を参照しながら説明し、上記各工程について、図3(a)~(c)を参照しながら順に説明する。
[Method for producing substrate for epitaxial growth]
A method for manufacturing the epitaxial growth substrate will be described. As shown in FIG. 1, the manufacturing method of the substrate for epitaxial growth according to the embodiment mainly includes a solution preparation step P1 for preparing a sol-gel material, a film of the sol-gel material is formed on the substrate by screen printing, and the substrate is uneven. A pattern forming step (patterning step) P2 for forming a pattern and a curing step P3 for curing the film of the sol-gel material are included. In the following, first, a screen printing plate for forming an uneven pattern and a manufacturing method thereof will be described with reference to FIGS. 2A to 2C, and the above steps will be described with reference to FIGS. 3A to 3C. Will be described in order.
<スクリーン印刷用版>
 スクリーン印刷用版は、例えば、特開2009-48163号公報に記載されるように、感光性樹脂組成物をスクリーン上に塗布するまたは感光性樹脂組成物をフィルム状にしたものをスクリーン上に貼り付けることにより樹脂層を形成し、これにパターンを形成したのち、樹脂層を架橋硬化することによって製造することができる。具体的には、下記の樹脂層形成工程、露光工程、現像工程、後露光工程により製造することができる。以下に、これらについて詳説する。
<Screen printing plate>
For example, as described in JP-A-2009-48163, a screen printing plate is obtained by applying a photosensitive resin composition on a screen or pasting a photosensitive resin composition on a screen. A resin layer can be formed by attaching, a pattern can be formed on the resin layer, and then the resin layer can be crosslinked and cured. Specifically, it can be produced by the following resin layer forming step, exposure step, development step, and post-exposure step. These are described in detail below.
 まず、図2(a)に示すように、感光性樹脂組成物をスクリーン12に塗布・乾燥し、所定の厚みで積層して樹脂層14を形成する(樹脂層形成工程)。スクリーン12は、公知のスクリーン印刷用スクリーンであれば特に限定することなく使用することができる。例えば、アルミニウム等の金属製の棒状素材を正方形或いは長方形に製作したフラットスクリーン型枠に、ステンレスやポリエステル製のスクリーンを紗張りしたものが挙げられる。 First, as shown in FIG. 2A, the photosensitive resin composition is applied to the screen 12 and dried, and laminated with a predetermined thickness to form the resin layer 14 (resin layer forming step). The screen 12 can be used without particular limitation as long as it is a known screen printing screen. For example, a stainless steel or polyester screen is stretched on a flat screen mold made of a metal rod-like material such as aluminum in a square or rectangular shape.
 図2(b)に示すように、フォトマスク16を介して光をスクリーン12上の樹脂層14に照射してパターンを露光する(露光工程)。フォトマスク16としては、フィルムマスク、クロムマスクなど公知のものであれば特に限定することなく使用できる。また、光源としては、紫外線、可視光線などを発する水銀灯やハロゲンランプなどの公知の光源と光学用フィルターとを組み合わせたものを用いることができる。なお、露光時間は使用する及び感光性樹脂組成物に応じて自由に設定することができる。 As shown in FIG. 2B, the pattern is exposed by irradiating light onto the resin layer 14 on the screen 12 through the photomask 16 (exposure process). As a photomask 16, if it is well-known things, such as a film mask and a chrome mask, it can be used without limitation. As the light source, a combination of a known light source such as a mercury lamp or a halogen lamp that emits ultraviolet rays or visible light and an optical filter can be used. The exposure time can be freely set according to the used and photosensitive resin composition.
 露光した樹脂層14を有するスクリーン12を現像液に漬け置きしたり、ウエスでこすったり、現像液をスプレーにより吹き付けたりすることにより、図2(c)に示すように、露光により変性した樹脂層(または未露光の樹脂層)14aを現像して除去する(現像工程)。現像液としては、公知の水やアルカリ性水溶液のものであれば特に限定することなく使用できる。また、現像方法や現像時間は、使用する現像液と感光性樹脂組成物に応じて自由に設定することができる。樹脂層14aを除去した部分は、スクリーン12が露出した開口部18となる。このようにしてスクリーン印刷用版10が得られる。なお、さらに樹脂層14に光を照射して、樹脂層14の未露光部分を架橋、硬化してもよい(後露光工程)。 Resin layer modified by exposure as shown in FIG. 2C by immersing the screen 12 having the exposed resin layer 14 in a developer, rubbing with a waste cloth, or spraying the developer with a spray. (Or unexposed resin layer) 14a is developed and removed (development step). As a developing solution, if it is a well-known water or alkaline aqueous solution, it can be used without limitation. The development method and development time can be freely set according to the developer used and the photosensitive resin composition. The portion from which the resin layer 14a has been removed becomes an opening 18 where the screen 12 is exposed. In this way, the screen printing plate 10 is obtained. Further, the resin layer 14 may be further irradiated with light to crosslink and cure the unexposed portion of the resin layer 14 (post-exposure step).
 上記のようにして得られるスクリーン印刷用版10の樹脂層(マスク部)14及び開口部18の平面形状(平面パターン)は特に限定されず、ストライプ、波形ストライプ、ジグザグのような規則正しく配向したパターンやドット状のパターン等の規則正しく配向したパターンであってもよい。あるいは、うねりながら延在する細長い形状であってもよく、それらの延在方向、うねりの方向及び延在長さは不規則であってもよい。うねりながら延在しているマスク部14及び開口部18が途中で分岐していてもよい。 The planar shape (planar pattern) of the resin layer (mask portion) 14 and the opening 18 of the screen printing plate 10 obtained as described above is not particularly limited, and is a regularly oriented pattern such as a stripe, a wavy stripe, or a zigzag. Or a regularly oriented pattern such as a dot pattern. Alternatively, the shape may be an elongated shape extending while undulating, and the extending direction, the direction of undulation, and the extending length may be irregular. The mask part 14 and the opening part 18 extending while undulating may be branched in the middle.
<ゾルゲル材料溶液調製工程>
 最初にゾルゲル材料(無機材料)の溶液を調製する。ゾルゲル材料として、特に、シリカ、Ti系の材料やITO(インジウム・スズ・オキサイド)系の材料、ZnO、ZrO、Al等のゾルゲル材料を使用し得る。例えば、基材上にシリカからなる凹凸構造体をゾルゲル法で形成する場合は、ゾルゲル材料として金属アルコキシド(シリカ前駆体)を調製する。シリカの前駆体として、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトラ-i-プロポキシシラン、テトラ-n-プロポキシシラン、テトラ-i-ブトキシシラン、テトラ-n-ブトキシシラン、テトラ-sec-ブトキシシラン、テトラ-t-ブトキシシラン等のテトラアルコキシシランに代表されるテトラアルコキシドモノマーや、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン(MTES)、エチルトリエトキシシラン、プロピルトリエトキシシラン、イソプロピルトリエトキシシラン、フェニルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリプロポキシシラン、プロピルトリプロポキシシラン、イソプロピルトリプロポキシシラン、フェニルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリイソプロポキシシラン、プロピルトリイソプロポキシシラン、イソプロピルトリイソプロポキシシラン、フェニルトリイソプロポキシシラン、トリルトリエトキシシラン等のトリアルコキシシランに代表されるトリアルコキシドモノマー、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロポキシシラン、ジメチルジ-n-ブトキシシラン、ジメチルジ-i-ブトキシシラン、ジメチルジ-sec-ブトキシシラン、ジメチルジ-t-ブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジイソプロポキシシラン、ジエチルジ-n-ブトキシシラン、ジエチルジ-i-ブトキシシラン、ジエチルジ-sec-ブトキシシラン、ジエチルジ-t-ブトキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシラン、ジプロピルジイソプロポキシシラン、ジプロピルジ-n-ブトキシシラン、ジプロピルジ-i-ブトキシシラン、ジプロピルジ-sec-ブトキシシラン、ジプロピルジ-t-ブトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソプロピルジプロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジイソプロピルジ-n-ブトキシシラン、ジイソプロピルジ-i-ブトキシシラン、ジイソプロピルジ-sec-ブトキシシラン、ジイソプロピルジ-t-ブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジイソプロポキシシラン、ジフェニルジ-n-ブトキシシラン、ジフェニルジ-i-ブトキシシラン、ジフェニルジ-sec-ブトキシシラン、ジフェニルジ-t-ブトキシシラン等のジアルコキシシランに代表されるジアルコキシドモノマーを用いることができる。さらに、アルキル基の炭素数がC4~C18であるアルキルトリアルコキシシランやジアルキルジアルコキシシランを用いることもできる。ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル基を有するモノマー、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を有するモノマー、p-スチリルトリメトキシシラン等のスチリル基を有するモノマー、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリル基を有するモノマー、3-アクリロキシプロピルトリメトキシシラン等のアクリル基を有するモノマー、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ基を有するモノマー、3-ウレイドプロピルトリエトキシシラン等のウレイド基を有するモノマー、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト基を有するモノマー、ビス(トリエトキシシリルプロピル)テトラスルフィド等のスルフィド基を有するモノマー、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するモノマー、これらモノマーを少量重合したポリマー、前記材料の一部に官能基やポリマーを導入したことを特徴とする複合材料などの金属アルコキシドを用いてもよい。また、これらの化合物のアルキル基やフェニル基の一部、あるいは全部がフッ素で置換されていてもよい。さらに、金属アセチルアセトネート、金属カルボキシレート、オキシ塩化物、塩化物や、それらの混合物などが挙げられるが、これらに限定されない。金属種としては、Si以外にTi、Sn、Al、Zn、Zr、Inなどや、これらの混合物などが挙げられるが、これらに限定されない。上記酸化金属の前駆体を適宜混合したものを用いることもできる。また、これらの材料中に界面活性剤を加えることで、メソポーラス化された凸部を形成してもよい。さらに、シリカの前駆体として、分子中にシリカと親和性、反応性を有する加水分解基および撥水性を有する有機官能基を有するシランカップリング剤を用いることができる。例えば、n-オクチルトリエトキシラン、メチルトリエトキシシラン、メチルトリメトキシシラン等のシランモノマー、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルメチルジメトキシシラン等のビニルシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリルシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトシラン、3-オクタノイルチオ-1-プロピルトリエトキシシラン等のサルファーシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン等のアミノシラン、これらモノマーを重合したポリマー等が挙げられる。
<Sol-gel material solution preparation process>
First, a solution of sol-gel material (inorganic material) is prepared. As the sol-gel material, silica, Ti-based material, ITO (indium-tin-oxide) -based material, sol-gel material such as ZnO, ZrO 2 , Al 2 O 3 can be used. For example, when an uneven structure made of silica is formed on a substrate by a sol-gel method, a metal alkoxide (silica precursor) is prepared as a sol-gel material. As precursors of silica, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), tetra-i-propoxysilane, tetra-n-propoxysilane, tetra-i-butoxysilane, tetra-n-butoxysilane, tetra- Tetraalkoxide monomers represented by tetraalkoxysilane such as sec-butoxysilane, tetra-t-butoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, isopropyltrimethoxysilane, phenyltrimethoxysilane, Methyltriethoxysilane (MTES), ethyltriethoxysilane, propyltriethoxysilane, isopropyltriethoxysilane, phenyltriethoxysilane, methyltripropoxysilane, ethyltripro Xysilane, propyltripropoxysilane, isopropyltripropoxysilane, phenyltripropoxysilane, methyltriisopropoxysilane, ethyltriisopropoxysilane, propyltriisopropoxysilane, isopropyltriisopropoxysilane, phenyltriisopropoxysilane, tolyltriethoxy Trialkoxide monomers typified by trialkoxysilane such as silane, dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldipropoxysilane, dimethyldiisopropoxysilane, dimethyldi-n-butoxysilane, dimethyldi-i-butoxysilane, dimethyldi- sec-Butoxysilane, Dimethyldi-t-butoxysilane, Diethyldimethoxysilane, Diethyldiethoxysilane, Diethyl Dipropoxysilane, Diethyldiisopropoxysilane, Diethyldi-n-butoxysilane, Diethyldi-i-butoxysilane, Diethyldi-sec-butoxysilane, Diethyldi-t-butoxysilane, Dipropyldimethoxysilane, Dipropyldiethoxysilane, Di Propyldipropoxysilane, dipropyldiisopropoxysilane, dipropyldi-n-butoxysilane, dipropyldi-i-butoxysilane, dipropyldi-sec-butoxysilane, dipropyldi-t-butoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane, diisopropyl Dipropoxysilane, diisopropyldiisopropoxysilane, diisopropyldi-n-butoxysilane, diisopropyldi-i-butoxysilane, diisopro Pildi-sec-butoxysilane, diisopropyldi-t-butoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldipropoxysilane, diphenyldiisopropoxysilane, diphenyldi-n-butoxysilane, diphenyldi-i-butoxysilane Dialkoxide monomers typified by dialkoxysilanes such as diphenyldi-sec-butoxysilane and diphenyldi-t-butoxysilane can be used. Furthermore, alkyltrialkoxysilanes or dialkyldialkoxysilanes in which the alkyl group has C4-C18 carbon atoms can also be used. Monomers having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxy Monomers having an epoxy group such as silane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, monomers having a styryl group such as p-styryltrimethoxysilane, 3-methacryloxypropylmethyl Monomers having a methacrylic group such as dimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropylene Monomers having an acrylic group such as trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltri Monomers having amino groups such as methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, Monomers having a ureido group such as 3-ureidopropyltriethoxysilane, monomers having a mercapto group such as 3-mercaptopropylmethyldimethoxysilane, and sulfoxides such as bis (triethoxysilylpropyl) tetrasulfide A monomer having an alkyl group, a monomer having an isocyanate group such as 3-isocyanatopropyltriethoxysilane, a polymer obtained by polymerizing a small amount of these monomers, a composite material characterized by introducing a functional group or polymer into a part of the material, etc. The metal alkoxides may be used. In addition, some or all of the alkyl group and phenyl group of these compounds may be substituted with fluorine. Furthermore, metal acetylacetonate, metal carboxylate, oxychloride, chloride, a mixture thereof and the like can be mentioned, but not limited thereto. Examples of the metal species include, but are not limited to, Ti, Sn, Al, Zn, Zr, In, and a mixture thereof in addition to Si. What mixed suitably the precursor of the said metal oxide can also be used. Further, a mesoporous convex portion may be formed by adding a surfactant to these materials. Furthermore, a silane coupling agent having a hydrolyzable group having affinity and reactivity with silica and an organic functional group having water repellency can be used as a precursor of silica. For example, silane monomers such as n-octyltriethoxysilane, methyltriethoxysilane, and methyltrimethoxysilane, vinylsilanes such as vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, vinylmethyldimethoxysilane, Methacrylic silane such as 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycyl Epoxy silanes such as Sidoxypropyltriethoxysilane, 3-Mercaptopropyltrimethoxysilane, Mercaptosilanes such as 3-Mercaptopropyltriethoxysilane, 3-Octanoylthio-1-pro Sulfur silane such as rutriethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl)- Examples thereof include aminosilanes such as 3-aminopropylmethyldimethoxysilane and 3- (N-phenyl) aminopropyltrimethoxysilane, and polymers obtained by polymerizing these monomers.
 ゾルゲル材料の溶液としてTEOSとMTESの混合物を用いる場合には、それらの混合比は、例えばモル比で1:1にすることができる。このゾルゲル材料は、加水分解及び重縮合反応を行わせることによって非晶質シリカを生成する。合成条件として溶液のpHを調整するために、塩酸等の酸またはアンモニア等のアルカリを添加する。pHは4以下もしくは10以上が好ましい。また、加水分解を行うために水を加えてもよい。加える水の量は、金属アルコキシド種に対してモル比で1.5倍以上にすることができる。 When a mixture of TEOS and MTES is used as the sol-gel material solution, the mixing ratio thereof can be set to 1: 1, for example, as a molar ratio. This sol-gel material produces amorphous silica by performing hydrolysis and polycondensation reactions. In order to adjust the pH of the solution as a synthesis condition, an acid such as hydrochloric acid or an alkali such as ammonia is added. The pH is preferably 4 or less or 10 or more. Moreover, you may add water in order to perform a hydrolysis. The amount of water to be added can be 1.5 times or more in molar ratio with respect to the metal alkoxide species.
 ゾルゲル材料溶液の溶媒としては、例えばメタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール等のアルコール類、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、アセトン、メチルエチルケトン、イソホロン、シクロヘキサノン等のケトン類、ブトキシエチルエーテル、ヘキシルオキシエチルアルコール、メトキシ-2-プロパノール、ベンジルオキシエタノール等のエーテルアルコール類、エチレングリコール、プロピレングリコール等のグリコール類、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のグリコールエーテル類、酢酸エチル、乳酸エチル、γ-ブチロラクトン等のエステル類、フェノール、クロロフェノール等のフェノール類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類、クロロホルム、塩化メチレン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン系溶媒、二硫化炭素等の含ヘテロ元素化合物、水、およびこれらの混合溶媒が挙げられる。特に、エタノールおよびイソプロピルアルコールが好ましく、またそれらに水を混合したものも好ましい。 Solvents for the sol-gel material solution include, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA) and butanol, aliphatic hydrocarbons such as hexane, heptane, octane, decane and cyclohexane, benzene, toluene, xylene, mesitylene and the like Aromatic hydrocarbons, ethers such as diethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, isophorone and cyclohexanone, butoxyethyl ether, hexyloxyethyl alcohol, methoxy-2-propanol and benzyloxyethanol Ether alcohols, glycols such as ethylene glycol and propylene glycol, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, Glycol ethers such as pyrene glycol monomethyl ether acetate, esters such as ethyl acetate, ethyl lactate and γ-butyrolactone, phenols such as phenol and chlorophenol, N, N-dimethylformamide, N, N-dimethylacetamide, N- Amides such as methylpyrrolidone, halogen-based solvents such as chloroform, methylene chloride, tetrachloroethane, monochlorobenzene, and dichlorobenzene, hetero-containing compounds such as carbon disulfide, water, and mixed solvents thereof can be mentioned. In particular, ethanol and isopropyl alcohol are preferable, and those in which water is mixed are also preferable.
 ゾルゲル材料溶液の添加物としては、粘度調整のためのポリエチレングリコール、ポリエチレンオキシド、ヒドロキシプロピルセルロース、ポリビニルアルコールや、溶液安定剤であるトリエタノールアミンなどのアルカノールアミン、アセチルアセトンなどのβジケトン、βケトエステル、ホルムアミド、ジメチルホルムアミド、ジオキサンなどを用いることが出来る。また、ゾルゲル材料溶液の添加物として、エキシマUV光等紫外線に代表されるエネルギー線などの光を照射することによって酸やアルカリを発生する材料を用いることができる。このような材料を添加することにより、光を照射することよってゾルゲル材料溶液を硬化させることができるようになる。 As an additive of the sol-gel material solution, polyethylene glycol, polyethylene oxide, hydroxypropyl cellulose, polyvinyl alcohol for viscosity adjustment, alkanolamine such as triethanolamine which is a solution stabilizer, β diketone such as acetylacetone, β ketoester, Formamide, dimethylformamide, dioxane and the like can be used. Further, as an additive of the sol-gel material solution, a material that generates acid or alkali by irradiating light such as energy rays typified by ultraviolet rays such as excimer UV light can be used. By adding such a material, the sol-gel material solution can be cured by irradiation with light.
<パターニング工程>
 図3(a)に示すように、上記のように調製したゾルゲル材料(無機材料)の溶液を用いて、スクリーン印刷により基材40上に所定のパターンのゾルゲル材料膜(凸部)60を形成する。基材40としては、種々の透光性を有する基板を用いることができる。例えば、ガラス、サファイア単結晶(Al;A面、C面、M面、R面)、スピネル単結晶(MgAl)、ZnO単結晶、LiAlO単結晶、LiGaO単結晶、MgO単結晶などの酸化物単結晶、Si単結晶、SiC単結晶、SiN単結晶、GaAs単結晶、AlN単結晶、GaN単結晶およびZrBなどのホウ化物単結晶などの材料からなる基板を用いることができる。これらのうち、サファイア単結晶基板及びSiC単結晶基板が好ましい。なお、基材の面方位は特に限定されない。また、基材は、オフ角が0度のジャスト基板でもよいし、オフ角を付与した基板であっても良い。
<Patterning process>
As shown in FIG. 3A, a sol-gel material film (convex portion) 60 having a predetermined pattern is formed on the substrate 40 by screen printing using the solution of the sol-gel material (inorganic material) prepared as described above. To do. As the base material 40, substrates having various translucency can be used. For example, glass, sapphire single crystal (Al 2 O 3 ; A plane, C plane, M plane, R plane), spinel single crystal (MgAl 2 O 4 ), ZnO single crystal, LiAlO 2 single crystal, LiGaO 2 single crystal, A substrate made of a material such as oxide single crystal such as MgO single crystal, Si single crystal, SiC single crystal, SiN single crystal, GaAs single crystal, AlN single crystal, GaN single crystal and boride single crystal such as ZrB 2 is used. be able to. Of these, sapphire single crystal substrates and SiC single crystal substrates are preferred. In addition, the surface orientation of a base material is not specifically limited. In addition, the base material may be a just substrate having an off angle of 0 degrees or a substrate having an off angle.
 ゾルゲル材料膜は、次のようにして形成することができる。まず、基材40上にスクリーン印刷用版10を置き、ゾルゲル材料の溶液をスクリーン印刷用版10の全体に塗布する。次いで、スキージー22を一定の圧力でスクリーン印刷用版10に押し当てながら、一定の速度で基材40に対して平行な方向(図3(a)中の矢印で示される方向)に移動させる。すると、スクリーン印刷用版10の開口部18からスクリーン12を介してゾルゲル材料の溶液が染み出して、基材40上のスクリーン印刷用版10の開口部18に対応する位置においてゾルゲル材料膜(凸部)60が形成される。スクリーン印刷用版10の開口部18及びそれより形成されるゾルゲル材料膜(凸部)60を平面視した形状(パターン)は、特に限定されないが、ストライプ、波形ストライプ、ジグザグのような規則正しく配向したパターンやドット状のパターン等の規則正しく配向したパターンであってもよい。あるいは、凸部60は、うねりながら延在し、その延在方向、うねりの方向及び延在長さが平面視上不規則であってもよい。すなわち、凸部60は、i)各々、うねりながら延在する細長い形状を有し、ii)延在方向、屈曲方向及び長さが不均一であるという特徴を有してよい。うねりながら延在している凸部60が途中で分岐していてもよい。凸部60の間においては、基材表面が露出した領域(凹部70)が区画される。凹部70は、凸部60に沿って延在し、凸部60と同様に、延在方向、うねりの方向及び延在長さが平面視上不規則な細長い形状であってよい。凸部(ゾルゲル材料膜)60の高さ(膜厚)は、20nm~10μmの範囲であることが好ましい。なお、基材40上には密着性を向上させるために、表面処理や易接着層を設けるなどをしてもよい。 The sol-gel material film can be formed as follows. First, the screen printing plate 10 is placed on the substrate 40, and a solution of the sol-gel material is applied to the entire screen printing plate 10. Next, while pressing the squeegee 22 against the screen printing plate 10 with a constant pressure, the squeegee 22 is moved at a constant speed in a direction parallel to the substrate 40 (a direction indicated by an arrow in FIG. 3A). Then, the sol-gel material solution oozes out from the opening 18 of the screen printing plate 10 through the screen 12, and the sol-gel material film (convex) at a position corresponding to the opening 18 of the screen printing plate 10 on the substrate 40. Part) 60 is formed. The shape (pattern) in plan view of the opening 18 of the screen printing plate 10 and the sol-gel material film (convex portion) 60 formed therefrom is not particularly limited, but is regularly oriented such as stripes, wavy stripes, and zigzags. It may be a regularly oriented pattern such as a pattern or a dot-like pattern. Or the convex part 60 may extend irregularly | swelling, and the extension direction, the direction of a wave | undulation, and extension length may be irregular on planar view. That is, the convex part 60 may have the characteristics that i) each has an elongated shape extending while undulating, and ii) the extending direction, the bending direction, and the length are not uniform. The convex portion 60 extending while undulating may be branched in the middle. Between the convex parts 60, the area | region (concave part 70) where the base-material surface was exposed is divided. The concave portion 70 extends along the convex portion 60, and similarly to the convex portion 60, the concave direction may have an elongated shape in which the extending direction, the waviness direction, and the extending length are irregular in plan view. The height (film thickness) of the convex portion (sol-gel material film) 60 is preferably in the range of 20 nm to 10 μm. In addition, in order to improve adhesiveness on the base material 40, you may provide a surface treatment, an easily bonding layer, etc.
<硬化工程>
 パターニング工程後、ゾルゲル材料からなる凸部60を硬化する。凸部60は、本焼成することにより硬化させることができる。本焼成により凸部60を構成するシリカ(アモルファスシリカ)中に含まれている水酸基などが脱離してゾルゲル材料膜(凸部)がより強固となる。本焼成は、600~1200℃の温度で、5分~6時間程度行うのが良い。こうして図3(b)に示すように、凸部60が硬化して、基材40上に形成された凸部60及び凹部70が凹凸パターン80を形成しているエピタキシャル成長用基板100を形成することができる。この時、凸部60がシリカからなる場合、焼成温度、焼成時間に応じて非晶質または結晶質、または非晶質と結晶質の混合状態となる。また、ゾルゲル材料溶液に紫外線などの光を照射することによって酸やアルカリを発生する材料を添加した場合には、凸部60を焼成する代わりに、例えばエキシマUV光等の紫外線に代表されるエネルギー線を照射することによって、凸部60を硬化することができる。
<Curing process>
After the patterning step, the convex portion 60 made of a sol-gel material is cured. The convex part 60 can be hardened by carrying out main baking. By the main firing, the hydroxyl group contained in the silica (amorphous silica) constituting the convex portion 60 is detached, and the sol-gel material film (convex portion) becomes stronger. The main baking is preferably performed at a temperature of 600 to 1200 ° C. for about 5 minutes to 6 hours. In this way, as shown in FIG. 3B, the convex portion 60 is cured, and the epitaxial growth substrate 100 in which the convex portion 60 and the concave portion 70 formed on the base material 40 form the concave / convex pattern 80 is formed. Can do. At this time, when the convex portion 60 is made of silica, it becomes amorphous or crystalline, or a mixed state of amorphous and crystalline depending on the firing temperature and firing time. In addition, when a material that generates an acid or an alkali by irradiating light such as ultraviolet rays to the sol-gel material solution, energy represented by ultraviolet rays such as excimer UV light is used instead of firing the convex portion 60. The projection 60 can be cured by irradiating the line.
 また、凸部60の表面に疎水化処理を行ってもよい。疎水化処理の方法は知られている方法を用いればよく、例えば、シリカ表面であれば、ジメチルジクロルシラン、トリメチルアルコキシシラン等で疎水化処理することもできるし、ヘキサメチルジシラザンなどのトリメチルシリル化剤とシリコーンオイルで疎水化処理する方法を用いてもよいし、超臨界二酸化炭素を用いた金属酸化物粉末の表面処理方法を用いてもよい。 Further, the surface of the convex portion 60 may be subjected to a hydrophobic treatment. A known method may be used for the hydrophobizing treatment. For example, if the surface is silica, it can be hydrophobized with dimethyldichlorosilane, trimethylalkoxysilane, or the like, or trimethylsilyl such as hexamethyldisilazane. A method of hydrophobizing with an agent and silicone oil may be used, or a surface treatment method of metal oxide powder using supercritical carbon dioxide may be used.
 さらに硬化工程後に、図3(c)に示すように、露出した基材表面をエッチングして基材40に凹部70aを形成してもよい。それにより、凸部60及び凹部70aからなる凹凸パターン80aが形成されたエピタキシャル成長用基板100aを形成することができる。このエピタキシャル成長用基板100aは、基材40に凹部70aが形成されるため、基材40のエッチングを行わない基板100と比べて、凹凸パターンの凹凸深さを大きくすることができる。基材40としてサファイア基板を用いる場合、基材40のエッチングは、例えばBCl等を含むガスを用いたRIEによって行うことができる。 Further, after the curing step, as shown in FIG. 3C, the exposed base material surface may be etched to form a recess 70 a in the base material 40. Thereby, the substrate 100a for epitaxial growth in which the uneven | corrugated pattern 80a which consists of the convex part 60 and the recessed part 70a was formed can be formed. In this epitaxial growth substrate 100a, since the concave portion 70a is formed in the base material 40, the concave / convex depth of the concave / convex pattern can be increased as compared with the substrate 100 in which the base material 40 is not etched. When a sapphire substrate is used as the base material 40, the base material 40 can be etched by RIE using a gas containing BCl 3 or the like, for example.
 以上のようにして凹凸パターン80、80aを形成した基板の表面(凹凸パターンが形成された面)に、さらにバッファ層を形成してもよい。それにより、図4(a)、(b)に図示されるような、凹凸パターン80、80aの表面にバッファ層20を備えるエピタキシャル成長用基板100b、100cが得られる。凹凸パターンの断面形状が、比較的なだらかな傾斜面からなり、波形構造をなしている場合、欠陥の少ない均一なバッファ層を形成することができる。 A buffer layer may be further formed on the surface of the substrate on which the uneven patterns 80 and 80a are formed as described above (the surface on which the uneven pattern is formed). Thereby, the epitaxial growth substrates 100b and 100c having the buffer layer 20 on the surfaces of the concave and convex patterns 80 and 80a as shown in FIGS. 4A and 4B are obtained. When the cross-sectional shape of the concavo-convex pattern is a relatively gentle inclined surface and has a corrugated structure, a uniform buffer layer with few defects can be formed.
 パターニング工程の前に、基材上にバッファ層を形成してもよい。それにより、図4(c)に図示されるように、バッファ層20の上に凸部60が形成されて、凸部60の間にバッファ層20の表面が露出した領域(凹部70b)が区画される。それにより、凹凸パターン80bが形成されているエピタキシャル成長用基板100dが得られる。 </ RTI> Before the patterning step, a buffer layer may be formed on the substrate. As a result, as shown in FIG. 4C, the convex portion 60 is formed on the buffer layer 20, and the region where the surface of the buffer layer 20 is exposed (the concave portion 70 b) is defined between the convex portions 60. Is done. As a result, an epitaxial growth substrate 100d on which the concavo-convex pattern 80b is formed is obtained.
 バッファ層20は低温MOCVD法やスパッタ法等の公知の方法を用いて形成することができる。バッファ層20の層厚は1nm~100nmの範囲内であることが好ましい。バッファ層を有するエピタキシャル成長用基板100b、100c、100dの表面に半導体層をエピタキシャル成長させる場合、バッファ層により基板と半導体層の格子定数の違いが緩和されて、結晶性の高い半導体層を形成できる。GaN系の半導体層を実施形態のエピタキシャル成長用基板上にエピタキシャル成長させる場合は、バッファ層は、AlGa1―XN(0≦x≦1)で構成することができ、単層構造に限らず、組成の異なる2種類以上を積層した2層以上の多層構造であってもよい。 The buffer layer 20 can be formed using a known method such as a low temperature MOCVD method or a sputtering method. The layer thickness of the buffer layer 20 is preferably in the range of 1 nm to 100 nm. When the semiconductor layer is epitaxially grown on the surfaces of the epitaxial growth substrates 100b, 100c, and 100d having the buffer layer, the difference in lattice constant between the substrate and the semiconductor layer is relaxed by the buffer layer, so that a highly crystalline semiconductor layer can be formed. When epitaxially growing a GaN-based semiconductor layer on the epitaxial growth substrate of the embodiment, the buffer layer can be composed of Al X Ga 1-X N (0 ≦ x ≦ 1), and is not limited to a single layer structure. Alternatively, a multilayer structure of two or more layers in which two or more kinds having different compositions are laminated may be used.
 特許文献1に記載される従来技術のように通常のナノインプリント法を用いて凹凸パターンを形成するエピタキシャル成長用基板の製造方法では、モールド剥離後に基材のモールドの凸部に対応する領域に形成される残膜をRIE等でエッチングして除去必要があるが、本実施形態のエピタキシャル成長用基板の製造方法では、スクリーン印刷により基材上の所定の位置(凸部を形成する位置)にのみ無機材料膜を形成することで凹凸パターンを形成するため、残膜除去のためのエッチングの必要がない。それゆえ、本実施形態のエピタキシャル成長用基板の製造方法により、基板の製造時間を短縮することができる。また、基材表面がエッチングにさらされる場合、エッチングにより露出した基材表面が荒れる(ダメージが入る)ことがあり、エッチング後に薬液処理等が必要になることがあるが、本実施形態のエピタキシャル成長用基板の製造方法ではエッチングの必要がないため、このようなダメージが生じず、薬液処理の必要もない。それゆえ、本実施形態のエピタキシャル成長用基板の製造方法により、基板の製造プロセスを簡略化でき、製造時間を短縮することができる。 In the manufacturing method of the substrate for epitaxial growth which forms an uneven | corrugated pattern using the normal nanoimprint method like the prior art described in patent document 1, it forms in the area | region corresponding to the convex part of the mold of a base material after mold peeling. The remaining film needs to be removed by etching by RIE or the like. However, in the method for manufacturing the epitaxial growth substrate of this embodiment, the inorganic material film is formed only at a predetermined position (position where the convex portion is formed) on the base material by screen printing. Since the concavo-convex pattern is formed by forming the film, there is no need for etching for removing the remaining film. Therefore, the substrate manufacturing time can be shortened by the epitaxial growth substrate manufacturing method of the present embodiment. In addition, when the substrate surface is exposed to etching, the substrate surface exposed by etching may be rough (damaged), and chemical processing may be required after etching. Since the substrate manufacturing method does not require etching, such damage does not occur, and there is no need for chemical treatment. Therefore, the substrate manufacturing process can be simplified and the manufacturing time can be shortened by the epitaxial growth substrate manufacturing method of the present embodiment.
 また、本実施形態のエピタキシャル成長用基板の製造方法は、フォトリソグラフィやナノインプリントを用いることなく、上記のようにスクリーン印刷により凹凸パターンを形成するため、エピタキシャル成長用基板の生産コストを低減し、環境への負荷を軽減することができる。 In addition, the method for manufacturing an epitaxial growth substrate according to the present embodiment forms a concavo-convex pattern by screen printing as described above without using photolithography or nanoimprinting, thereby reducing the production cost of the epitaxial growth substrate and The load can be reduced.
 以上のような製造方法により形成されるエピタキシャル成長用基板100において、凸部60が無機材料で形成されているため、エピタキシャル成長用基板100は優れた耐熱性を有する。 In the epitaxial growth substrate 100 formed by the manufacturing method as described above, since the convex portion 60 is formed of an inorganic material, the epitaxial growth substrate 100 has excellent heat resistance.
 なお、本実施形態の製造方法により形成される図3(b)、(c)及び図4(a)~(c)に示されるエピタキシャル成長用基板100、100a~100dにおいて、基材40上に形成された複数の凸部60及び凹部70、70a、70bから凹凸パターン80、80a、80bが構成されている。 It is to be noted that the epitaxial growth substrates 100 and 100a to 100d shown in FIGS. 3B and 4C and FIGS. 4A to 4C formed by the manufacturing method of the present embodiment are formed on the base material 40. The plurality of convex portions 60 and concave portions 70, 70 a, 70 b formed are concave / convex patterns 80, 80 a, 80 b.
 図5(a)に、本実施形態の製造方法により製造されたエピタキシャル成長用基板のAFM画像の例を示し、図5(b)に図5(a)のAFM画像中の切断線上におけるエピタキシャル成長用基板の断面プロファイルを示す。 FIG. 5A shows an example of an AFM image of the epitaxial growth substrate manufactured by the manufacturing method of the present embodiment, and FIG. 5B shows an epitaxial growth substrate on the cutting line in the AFM image of FIG. 5A. The cross-sectional profile of is shown.
 エピタキシャル成長用基板の凹凸パターンの断面形状は、特に限定されないが、図3(b)、(c)、図4(a)、(b)、(c)及び図5(b)に示すように、比較的なだらかな傾斜面からなり、基材40から上方に向かって波形(本願では適宜「波形構造」と称する)をなしてよい。すなわち、凸部60が、その基材側の底部から頂部に向かって狭くなるような断面形状を有してよい。 The cross-sectional shape of the concavo-convex pattern of the substrate for epitaxial growth is not particularly limited, but as shown in FIGS. 3B, 3C, 4A, 4B, 5C, and 5B, It may be formed of a relatively gentle inclined surface, and may have a waveform (referred to as “corrugated structure” as appropriate in this application) upward from the substrate 40. That is, the convex part 60 may have a cross-sectional shape that becomes narrower from the bottom part on the base material side toward the top part.
 エピタキシャル成長用基板の凹凸パターンの平面形状は、特に限定されず、ストライプ、波形ストライプ、ジグザグのような規則正しく配向したパターンやドット状のパターン等の規則正しく配向したパターンであってもよいが、図5(a)に基板表面の凹凸パターンのAFM画像の一例を示すように、凸部(白部分)及び凹部がうねって延在しており、その延在方向、うねりの方向及び延在長さは平面視上不規則であってもよい。すなわち、i)凸部及び凹部は、各々、うねりながら延在する細長い形状を有し、ii)凸部及び凹部は凹凸パターンにおいて延在方向、屈曲方向及び長さが不均一であるという特徴を有してよい。エピタキシャル成長用基板の凹凸パターンが上記のような特徴を有する場合、凹凸パターン80を基材40の表面と直交するいずれの方向で切断しても凹凸断面が繰り返し現れることになる。また、凸部及び凹部は、平面視で、一部または全部が途中で分岐していてもよい(図5(a)参照)。なお、図5(a)では、凸部及び凹部のピッチは、全体として均一のように見える。また、凹凸パターン80の凹部70は、凸部60によって区画され、凸部60に沿って延在し、凸部60と同様に、延在方向、うねりの方向及び延在長さが平面視上不規則な細長い形状であってよい。 The planar shape of the concavo-convex pattern of the substrate for epitaxial growth is not particularly limited, and may be a regularly oriented pattern such as a stripe, a wavy stripe, a zigzag or a regularly oriented pattern such as FIG. As shown in a) an example of the AFM image of the concavo-convex pattern on the substrate surface, the convex portion (white portion) and the concave portion are wavyly extended, and the extending direction, the direction of waviness and the extending length are flat. It may be irregular in appearance. That is, i) the convex portion and the concave portion each have an elongated shape extending while undulating, and ii) the convex portion and the concave portion have a feature that the extending direction, the bending direction, and the length are uneven in the concavo-convex pattern. You may have. When the concavo-convex pattern of the substrate for epitaxial growth has the above characteristics, the concavo-convex cross section appears repeatedly even if the concavo-convex pattern 80 is cut in any direction orthogonal to the surface of the substrate 40. Moreover, a convex part and a recessed part may be branched in part or in the middle by planar view (refer Fig.5 (a)). In FIG. 5A, the pitch of the convex portions and the concave portions appears to be uniform as a whole. Further, the concave portion 70 of the concavo-convex pattern 80 is partitioned by the convex portion 60 and extends along the convex portion 60, and similarly to the convex portion 60, the extending direction, the direction of waviness and the extending length are in plan view. It may be an irregular elongated shape.
 エピタキシャル成長用基板を、例えばGaN系半導体材料から形成される発光素子の基板として用いる場合、発光素子の光取り出し効率を向上させるために、凹凸のピッチはフーリエ変換像において円環状になるような周波数分布に幅を持つものが好ましく、さらには、凹凸の向きに指向性がないような不規則な凹凸パターンが好ましい。エピタキシャル成長用基板100が発光素子の光取り出し効率を向上させる回折格子として働くために、凹凸の平均ピッチは、100nm~10μmの範囲にすることが好ましく、100~1500nmの範囲内であることがより好ましい。凹凸の平均ピッチが前記下限未満では、発光素子の発光波長に対してピッチが小さくなりすぎるため、凹凸による光の回折が生じなくなる傾向にあり、他方、上限を超えると、回折角が小さくなり、回折格子としての機能が失われてしまう傾向にある。凹凸の平均ピッチは200~1200nmの範囲内であることがさらに好ましい。 When the epitaxial growth substrate is used as a substrate of a light emitting device formed of, for example, a GaN-based semiconductor material, in order to improve the light extraction efficiency of the light emitting device, the frequency distribution is such that the pitch of the unevenness becomes an annular shape in the Fourier transform image. In particular, an irregular pattern that has no directivity in the direction of the projections and depressions is preferable. In order for the epitaxial growth substrate 100 to function as a diffraction grating that improves the light extraction efficiency of the light-emitting element, the average pitch of the irregularities is preferably in the range of 100 nm to 10 μm, and more preferably in the range of 100 to 1500 nm. . If the average pitch of the unevenness is less than the lower limit, the pitch is too small with respect to the emission wavelength of the light-emitting element, so there is a tendency that light diffraction due to the unevenness does not occur, while if the upper limit is exceeded, the diffraction angle decreases, The function as a diffraction grating tends to be lost. The average pitch of the irregularities is more preferably in the range of 200 to 1200 nm.
 凹凸の深さ分布の平均値は、20nm~10μmの範囲であることが好ましい。凹凸の深さ分布の平均値は、50nm~5μmの範囲内であることがより好ましく、凹凸の深さ分布の平均値が前記下限未満では、発光波長に対して深さが小さすぎるために必要な回折が生じなくなる傾向にあり、他方、上限を超えると、基板上に半導体層を積層して発光素子を製造する場合に、半導体層表面の平坦化に必要な半導体層の層厚が大きくなり、発光素子の製造に要する時間が長くなる。凹凸の深さ分布の平均値は100nm~2μmの範囲内であることがより好ましい。凹凸の深さの標準偏差は、10nm~5μmの範囲内であることが好ましい。凹凸の深さの標準偏差が前記下限未満では、可視光の波長に対して深さが小さすぎるために必要な回折が生じなくなる傾向にあり、他方、上限を超えると、回折光強度にむらが生じる傾向にある。凹凸の深さの標準偏差は、25nm~2.5μmの範囲内であることがより好ましい。 The average value of the uneven depth distribution is preferably in the range of 20 nm to 10 μm. The average value of the depth distribution of the irregularities is more preferably in the range of 50 nm to 5 μm, and it is necessary because the average value of the depth distribution of the irregularities is less than the lower limit, the depth is too small with respect to the emission wavelength. On the other hand, if the upper limit is exceeded, the thickness of the semiconductor layer required for planarization of the surface of the semiconductor layer becomes large when a semiconductor layer is laminated on the substrate to produce a light emitting device. Therefore, the time required for manufacturing the light emitting element becomes longer. The average value of the uneven depth distribution is more preferably in the range of 100 nm to 2 μm. The standard deviation of the unevenness depth is preferably in the range of 10 nm to 5 μm. If the standard deviation of the depth of the unevenness is less than the lower limit, the required diffraction tends not to occur because the depth is too small with respect to the wavelength of visible light. On the other hand, if the upper limit is exceeded, the diffracted light intensity is uneven. Tend to occur. The standard deviation of the unevenness depth is more preferably in the range of 25 nm to 2.5 μm.
 このようなうねりながら不規則な方向に延在する細長い凸部及び凹部を有する凹凸パターンが形成されたエピタキシャル成長用基板100上に、エピタキシャル成長層を形成する場合、次のような利点がある。まず、凹凸形状の傾斜面が比較的なだらかであるため、エピタキシャル成長層が凹凸パターン80上に均一に積層され、欠陥の少ないエピタキシャル層を形成することができる。さらに、凹凸パターンは凹凸の向きに指向性がないような不規則な形状であるため、仮にパターンに起因した欠陥が生じても欠陥に異方性が無い均質なエピタキシャル成長層を形成できる。 When the epitaxial growth layer is formed on the epitaxial growth substrate 100 on which the concavo-convex pattern having elongated convex portions and concave portions extending in an irregular direction while undulating is formed, there are the following advantages. First, since the concavo-convex inclined surface is relatively gentle, the epitaxial growth layer is uniformly laminated on the concavo-convex pattern 80, and an epitaxial layer with few defects can be formed. Furthermore, since the concavo-convex pattern has an irregular shape with no directivity in the direction of the concavo-convex, even if a defect due to the pattern occurs, a homogeneous epitaxial growth layer having no anisotropy in the defect can be formed.
 また、このような凹凸パターンを有するエピタキシャル成長用基板100上に半導体層をエピタキシャル成長させて発光素子を製造する場合、次のような利点がある。第1に、このような凹凸パターンを有するエピタキシャル成長用基板は光取り出し効率が高いため、この基板を用いて作製された発光素子は、発光効率が高い。第2に、このような凹凸パターンを有するエピタキシャル成長用基板によって回折される光は指向性がないため、この基板を用いて作製された発光素子から取り出される光は、指向性なくあらゆる方向に向かう。第3に、以下の理由により発光素子の製造時間を短縮することができる。凹凸パターンを有する基板を用いて発光素子を製造する場合、後述するように、凹凸形状が半導体層で埋められて表面が平坦になるまで半導体層を積層する必要がある。うねって不規則な方向に延在する細長い凸部及び凹部を有する凹凸パターンが形成されたエピタキシャル成長用基板は、数10ナノメートルオーダーの凹凸深さで十分な光取り出し効率を有するため、特許文献1に記載されるような従来のサブミクロン~マイクロメートルオーダーの凹凸深さの凹凸パターンを有する基板と比べて、半導体層を積層する層厚を小さくすることができる。そのため、半導体層の成長時間を短縮することができ、発光素子の製造時間を短縮できる。 Further, when a light emitting device is manufactured by epitaxially growing a semiconductor layer on the epitaxial growth substrate 100 having such an uneven pattern, there are the following advantages. First, since an epitaxial growth substrate having such a concavo-convex pattern has high light extraction efficiency, a light-emitting device manufactured using this substrate has high light emission efficiency. Second, since the light diffracted by the epitaxial growth substrate having such a concavo-convex pattern has no directivity, the light extracted from the light emitting element manufactured using this substrate goes in all directions without directivity. Third, the manufacturing time of the light emitting device can be shortened for the following reason. When a light-emitting element is manufactured using a substrate having a concavo-convex pattern, it is necessary to stack the semiconductor layer until the concavo-convex shape is filled with the semiconductor layer and the surface becomes flat, as will be described later. An epitaxial growth substrate on which a concavo-convex pattern having elongated convex portions and concave portions extending in irregular directions in a wavy manner has sufficient light extraction efficiency with a concavo-convex depth of the order of several tens of nanometers. Compared with the conventional substrate having a concavo-convex pattern with a concavo-convex depth on the order of submicron to micrometer as described in (1), the layer thickness for stacking the semiconductor layers can be reduced. Therefore, the growth time of the semiconductor layer can be shortened, and the manufacturing time of the light emitting element can be shortened.
 本願において、凹凸の平均ピッチとは、凹凸が形成されている表面における凹凸のピッチ(隣り合う凸部同士又は隣り合う凹部同士の間隔)を測定した場合において、凹凸のピッチの平均値のことをいう。このような凹凸のピッチの平均値は、走査型プローブ顕微鏡(例えば、株式会社日立ハイテクサイエンス製の製品名「E-sweep」等)を用いて、下記条件:
 測定方式:カンチレバー断続的接触方式
 カンチレバーの材質:シリコン
 カンチレバーのレバー幅:40μm
 カンチレバーのチップ先端の直径:10nm
により、表面の凹凸を解析して凹凸解析画像を測定した後、かかる凹凸解析画像中における、任意の隣り合う凸部同士又は隣り合う凹部同士の間隔を100点以上測定し、その算術平均を求めることにより算出できる。
In the present application, the average pitch of the unevenness means the average value of the unevenness pitch when the unevenness pitch on the surface where the unevenness is formed (adjacent protrusions or adjacent recesses). Say. The average value of the pitch of such irregularities is as follows using a scanning probe microscope (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.):
Measuring method: Cantilever intermittent contact method Cantilever material: Silicon Cantilever lever width: 40μm
Cantilever tip tip diameter: 10 nm
After measuring the unevenness of the surface and measuring the unevenness analysis image, measure 100 or more intervals between any adjacent protrusions or adjacent recesses in the unevenness analysis image, and obtain the arithmetic average Can be calculated.
 また、本願において、凹凸の深さ分布の平均値及び凹凸深さの標準偏差は以下のようにして算出できる。表面の凹凸の形状を、査型プローブ顕微鏡(例えば、株式会社日立ハイテクサイエンス製の製品名「E-sweep」等)を用いて凹凸解析画像を測定する。凹凸解析の際、前述の条件で任意の3μm角(縦3μm、横3μm)または10μm角(縦10μm、横10μm)の測定領域を測定して凹凸解析画像を求める。その際に測定領域内の16384点(縦128点×横128点)以上の測定点における凹凸高さのデータをナノメートルスケールでそれぞれ求める。なお、このような測定点の数は、用いる測定装置の種類や設定によっても異なるものではあるが、例えば、測定装置として上述の株式会社日立ハイテクサイエンス製の製品名「E-sweep」を用いた場合には、10μm角の測定領域内において65536点(縦256点×横256点)の測定(256×256ピクセルの解像度での測定)を行うことができる。ここで、凹凸解析画像には、測定精度を高めるために、1次傾き補正を含むフラット処理が施されてもよい。また、以下に述べる凹凸形状に関する種々の解析において十分な測定精度を担保するためには、測定領域は、当該測定領域に含まれる凸部の幅の平均値の15倍以上の長さを1辺の長さとする正方形状の領域とするのがよい。そして、このようにして測定される凹凸高さ(単位:nm)に関して、先ず、全測定点のうち、基材の底面(凹凸パターンが形成された面の反対側の面)からの高さが最も高い測定点Pを求める。そして、かかる測定点Pを含み且つ基材の底面と平行な面を基準面(水平面)として、その基準面からの深さの値(測定点Pにおける基材底面からの高さの値から各測定点における基材底面からの高さを差し引いた差分)を凹凸深さのデータとして求める。なお、このような凹凸深さデータは、測定装置(例えば株式会社日立ハイテクサイエンス製の製品名「E-sweep」)によっては測定装置中のソフト等により自動的に計算して求めることができ、このような自動的に計算して求められた値を凹凸深さのデータとして利用できる。 In the present application, the average value of the uneven depth distribution and the standard deviation of the uneven depth can be calculated as follows. The shape of the surface unevenness is measured by using an inspection probe microscope (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.) to measure the unevenness analysis image. At the time of the unevenness analysis, an arbitrary 3 μm square (3 μm long, 3 μm wide) or 10 μm square (10 μm long, 10 μm wide) measurement is performed under the above-described conditions to obtain the uneven analysis image. In that case, the data of the unevenness | corrugation height in the measurement point more than 16384 points (vertical 128 points x horizontal 128 points) in a measurement area | region are each calculated | required by a nanometer scale. The number of such measurement points varies depending on the type and setting of the measurement device used. For example, the product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd. is used as the measurement device. In this case, 65536 points (256 vertical points × 256 horizontal points) can be measured (measured at a resolution of 256 × 256 pixels) in a measurement area of 10 μm square. Here, in order to increase the measurement accuracy, the unevenness analysis image may be subjected to flat processing including primary inclination correction. Moreover, in order to ensure sufficient measurement accuracy in various analyzes related to the uneven shape described below, the measurement region has a length of 15 times or more of the average value of the widths of the convex portions included in the measurement region. It is preferable to use a square region with a length of. And about the uneven | corrugated height (unit: nm) measured in this way, first, the height from the bottom face (surface on the opposite side of the surface where the uneven | corrugated pattern was formed) of all the measurement points is the height. The highest measurement point P is obtained. Then, a surface including such a measurement point P and parallel to the bottom surface of the base material is defined as a reference surface (horizontal plane), and each depth value from the reference surface (a height value from the base material bottom surface at the measurement point P is measured). The difference obtained by subtracting the height from the bottom surface of the substrate at the measurement point) is obtained as the data of the unevenness depth. Such unevenness depth data can be obtained by automatically calculating with software or the like in the measuring device depending on the measuring device (for example, product name “E-sweep” manufactured by Hitachi High-Tech Science Co., Ltd.) A value obtained by such automatic calculation can be used as the data of the unevenness depth.
 このようにして、各測定点における凹凸深さのデータを求めた後、その算術平均及び標準偏差を求めることにより算出できる値をそれぞれ凹凸の深さ分布の平均値及び凹凸深さの標準偏差として採用する。本明細書において、凹凸の平均ピッチ及び凹凸の深さ分布の平均値は、凹凸が形成されている表面の材料に関わらず、上記のような測定方法を通じて求めることができる。 In this way, after obtaining the unevenness depth data at each measurement point, the values that can be calculated by obtaining the arithmetic mean and standard deviation thereof are the average value of the unevenness depth distribution and the standard deviation of the unevenness depth, respectively. adopt. In this specification, the average pitch of the unevenness and the average value of the depth distribution of the unevenness can be obtained through the measurement method as described above regardless of the material of the surface on which the unevenness is formed.
 また、本願において「不規則な凹凸パターン」とは、表面の凹凸の形状を解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施して得られるフーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円または円環状の模様を示すような、すなわち、上記凹凸の向きの指向性はないものの凹凸のピッチの分布は有するような疑似周期構造を含む。該円状又は円環状の模様は、波数の絶対値が10μm-1以下(0.1~10μm-1の範囲内としてもよく、更に0.667~10μm-1の範囲内としてもよく、好ましくは0.833~5μm-1の範囲内としてもよい)の範囲内となる領域内に存在してよい。このような凹凸パターンから散乱及び/または回折される光は、単一のまたは狭い帯域の波長の光ではなく、比較的広域の波長帯を有し、散乱光及び/または回折される光は指向性がなく、あらゆる方向に向かう。それゆえ、このような疑似周期構造を有する基板は、その凹凸ピッチの分布が可視光線を回折する限り、LEDのような発光素子に使用される基板に好適である。 In addition, in the present application, an “irregular uneven pattern” means that a Fourier transform image obtained by performing a two-dimensional fast Fourier transform process on an unevenness analysis image obtained by analyzing the surface unevenness shape has an absolute value of wave number. It includes a quasi-periodic structure that shows a circular or annular pattern having an origin substantially at the center of 0 μm −1 , that is, has a concavo-convex pitch distribution although it has no directivity in the direction of the concavo-convex. The circular or annular pattern may have an absolute value of wave number of 10 μm −1 or less (may be in the range of 0.1 to 10 μm −1 , and may further be in the range of 0.667 to 10 μm −1 , preferably May be within a range of 0.833 to 5 μm −1 ). The light scattered and / or diffracted from such a concavo-convex pattern has a relatively broad wavelength band, not light of a single or narrow band wavelength, and the scattered light and / or diffracted light is directed. There is no sex and heads in all directions. Therefore, a substrate having such a quasi-periodic structure is suitable for a substrate used for a light emitting element such as an LED as long as the uneven pitch distribution diffracts visible light.
 なお、凹凸解析画像に2次元高速フーリエ変換処理を施して得られるフーリエ変換像において、輝点が集合することにより模様が観測される。そのため、ここでの「フーリエ変換像が円状の模様を示す」とは、フーリエ変換像において輝点が集合した模様がほぼ円形の形状に見えることを意味し、外形の一部が凸状又は凹状となっているように見えるものも含む。また、「フーリエ変換像が円環状の模様を示す」とは、フーリエ変換像において輝点が集合した模様がほぼ円環状に見えることを意味し、環の外側の円や内側の円の形状がほぼ円形の形状に見えるものも含み且つかかる環の外側の円や内側の円の外形の一部が凸状又は凹状となっているように見えるものも含む。また、「円状又は円環状の模様が、波数の絶対値が10μm-1以下(0.1~10μm-1の範囲内としてもよく、更に0.667~10μm-1の範囲内としてもよく、好ましくは0.833~5μm-1の範囲内としてもよい)の範囲内となる領域内に存在する」とは、フーリエ変換像を構成する輝点のうちの30%以上の輝点が波数の絶対値が10μm-1以下(0.1~10μm-1の範囲内としてもよく、更に0.667~10μm-1の範囲内としてもよく、好ましくは0.833~5μm-1の範囲内としてもよい)の範囲内となる領域内に存在することをいう。上記条件を満たすように凹凸パターンを形成することにより、実施形態のエピタキシャル成長用基板を発光素子の基板として用いた場合に、発光素子からの発光の波長依存性及び指向性(一定の方向に強く発光する性質)を十分に小さくすることができる。 In the Fourier transform image obtained by subjecting the unevenness analysis image to the two-dimensional fast Fourier transform process, a pattern is observed by gathering bright spots. Therefore, here, “Fourier transform image shows a circular pattern” means that the pattern of bright spots in the Fourier transform image looks almost circular, and part of the outer shape is convex or Includes those that appear to be concave. In addition, “the Fourier transform image shows an annular pattern” means that the pattern in which the bright spots are gathered in the Fourier transform image looks almost an annular shape, and the shape of the outer circle or inner circle of the ring is This includes those that appear to have a substantially circular shape, and those that appear to have a convex or concave part of the outer circle of the annulus and the inner circle. Further, “a circular or annular pattern may have an absolute value of a wave number of 10 μm −1 or less (within a range of 0.1 to 10 μm −1 , and further within a range of 0.667 to 10 μm −1. , Preferably within a range of 0.833 to 5 μm −1 ) ”means that 30% or more of the bright spots constituting the Fourier transform image have a wave number of 30% or more. Absolute value of 10 μm −1 or less (may be in the range of 0.1 to 10 μm −1 , more preferably in the range of 0.667 to 10 μm −1 , preferably in the range of 0.833 to 5 μm −1 . It may be present in a region that falls within the range. By forming the concavo-convex pattern so as to satisfy the above conditions, when the epitaxial growth substrate of the embodiment is used as a substrate of a light emitting device, the wavelength dependency and directivity of light emitted from the light emitting device (light emission in a certain direction strongly) Property) can be made sufficiently small.
 なお、凹凸パターンとフーリエ変換像との関係について、次のことが分かっている。凹凸パターン自体にピッチに分布や指向性がない場合には、フーリエ変換像もランダムなパターン(模様がない)で現れるが、凹凸パターンがXY方向に全体として等方的であるがピッチに分布がある場合には、円又は円環状のフーリエ変換像が現れる。また、凹凸パターンが単一のピッチを有する場合には、フーリエ変換像に現れる円環がシャープになる傾向がある。 The following is known about the relationship between the concave-convex pattern and the Fourier transform image. If the concavo-convex pattern itself has no distribution or directivity in the pitch, the Fourier transform image also appears as a random pattern (no pattern), but the concavo-convex pattern is isotropic in the XY direction as a whole, but the distribution in the pitch is In some cases, a circular or annular Fourier transform image appears. Further, when the concavo-convex pattern has a single pitch, the ring appearing in the Fourier transform image tends to be sharp.
 前記凹凸解析画像の2次元高速フーリエ変換処理は、2次元高速フーリエ変換処理ソフトウエアを備えたコンピュータを用いた電子的な画像処理によって容易に行うことができる。 The two-dimensional fast Fourier transform processing of the unevenness analysis image can be easily performed by electronic image processing using a computer equipped with two-dimensional fast Fourier transform processing software.
 なお、凸部を白、凹部を黒で表示するように凹凸解析画像が処理されることで、図7に示すような平面視解析画像(白黒画像)が得られる。図7は、本実施形態に係るエピタキシャル成長用基板100における測定領域の平面視解析画像の一例を示す図である。 It should be noted that the planar analysis image (black and white image) as shown in FIG. 7 is obtained by processing the concave / convex analysis image so that the convex portion is displayed in white and the concave portion is displayed in black. FIG. 7 is a diagram showing an example of a planar view analysis image of the measurement region in the epitaxial growth substrate 100 according to the present embodiment.
 平面視解析画像の凸部(白表示部)の幅のことを「凸部の幅」という。このような凸部の幅の平均値は、平面視解析画像の凸部のうちから任意の100以上の箇所を選択し、それぞれについて凸部の延在方向に対して平面視上略直交する方向における凸部の境界から反対側の境界までの長さを測定し、その算術平均を求めることにより算出できる。 The width of the convex portion (white display portion) of the planar view analysis image is referred to as “the width of the convex portion”. For the average value of the widths of such convex portions, arbitrary 100 or more locations are selected from the convex portions of the planar view analysis image, and the respective directions are substantially perpendicular to the extending direction of the convex portions in plan view. It can be calculated by measuring the length from the boundary of the convex part to the boundary on the opposite side and obtaining the arithmetic average thereof.
 なお、凸部の幅の平均値を算出する際には、上述の通り、平面視解析画像の凸部から無作為に抽出された位置における値を使用するが、凸部が分岐している位置の値は使用しなくてもよい。凸部において、ある領域が分岐に係る領域であるか否かは、例えば、当該領域が一定以上延在しているか否かによって判定されてもよい。より具体的には、当該領域の幅に対する当該領域の延在長さの比が一定(例えば1.5)以上であるか否かによって判定されてもよい。 In addition, when calculating the average value of the width of the convex portion, as described above, the value at the position randomly extracted from the convex portion of the planar analysis image is used, but the position where the convex portion is branched. The value of may not be used. Whether or not a certain region is a region related to branching in the convex portion may be determined, for example, based on whether or not the region extends more than a certain amount. More specifically, the determination may be made based on whether or not the ratio of the extension length of the region to the width of the region is a certain value (for example, 1.5) or more.
 図8(a)及び8(b)を用いて、ある方向に延在する凸部の中途位置において当該凸部の延在軸線に略直交する方向に突き出た領域について、当該領域が分岐か否かを判定する方法の一例を説明する。ここで、凸部の延在軸線とは、分岐か否かの判定対象領域を凸部から除外した場合において、凸部の外縁の形状から定まる凸部の延在方向に沿った仮想的な軸線である。より具体的には、凸部の延在軸線とは、凸部の延在方向に直交する凸部の幅の略中心点を通るように引かれた線である。図8(a)及び図8(b)は、いずれも平面視解析画像における凸部の一部のみを抜き出して説明する概要図であり、領域Sは、凸部を示している。図8(a)及び図8(b)では、凸部の中途位置において突出した領域A1、A2が、分岐か否かの判定対象領域として定められているものとする。この場合、凸部から領域A1、A2を除外した場合において、凸部の延在方向に直交する凸部の幅の略中心点を通る線として、延在軸線L1、L2が規定される。このような延在軸線は、コンピュータによる画像処理により規定されてもよいし、解析作業を実施する作業者によって規定されてもよいし、コンピュータによる画像処理及び作業者による手作業の両方によって規定されてもよい。図8(a)では、領域A1は、延在軸線L1に沿って延在する凸部の中途位置において、延在軸線L1に直交する方向に突出している。図8(b)では、領域A2は、延在軸線L2に沿って延在する凸部の中途位置において、延在軸線L2に直交する方向に突出している。なお、延在軸線L1、L2に直交する方向に対して傾斜して突出する領域についても、以下に述べる領域A1、A2についての考え方と同様の考え方を用いて分岐か否かを判定すればよい。 8 (a) and 8 (b), whether or not the region branches in the middle of the convex portion extending in a certain direction and protruding in a direction substantially perpendicular to the extending axis of the convex portion. An example of a method for determining whether will be described. Here, the extending axis of the convex portion is a virtual axis along the extending direction of the convex portion determined from the shape of the outer edge of the convex portion when the region to be determined whether to branch is excluded from the convex portion. It is. More specifically, the extending axis of the convex portion is a line drawn so as to pass through the approximate center point of the width of the convex portion orthogonal to the extending direction of the convex portion. FIG. 8A and FIG. 8B are schematic diagrams for explaining only a part of the convex portion in the planar view analysis image, and the region S indicates the convex portion. In FIG. 8A and FIG. 8B, it is assumed that the regions A1 and A2 protruding at the midway position of the convex portion are determined as the determination target regions for branching. In this case, when the regions A1 and A2 are excluded from the convex portion, the extending axes L1 and L2 are defined as lines passing through the approximate center point of the width of the convex portion orthogonal to the extending direction of the convex portion. Such an extended axis may be defined by image processing by a computer, may be defined by an operator who performs analysis work, or is defined by both image processing by a computer and manual operation by an operator. May be. In FIG. 8A, the region A1 protrudes in a direction perpendicular to the extending axis L1 at a midway position of the convex portion extending along the extending axis L1. In FIG. 8B, the region A2 protrudes in a direction perpendicular to the extending axis L2 at a midway position of the convex portion extending along the extending axis L2. It should be noted that the region that inclines and protrudes with respect to the direction orthogonal to the extending axes L1 and L2 may be determined by using the same idea as that for the regions A1 and A2 described below. .
 上記判定方法によれば、領域A1の幅d1に対する領域A1の延在長さd2の比は、およそ0.5(1.5未満)であるため、領域A1は、分岐に係る領域ではないと判定される。この場合、領域A1を通り且つ延在軸線L1に直交する方向における長さd3は、凸部の幅の平均値を算出するための測定値の1つとされる。一方、領域A2の幅d4に対する領域A2の延在長さd5の比は、およそ2(1.5以上)であるため、領域A2は、分岐に係る領域であると判定される。この場合には、領域A2を通り且つ延在軸線L2に直交する方向における長さd6は、凸部の幅の平均値を算出するための測定値の1つとはされない。 According to the above determination method, since the ratio of the extension length d2 of the region A1 to the width d1 of the region A1 is approximately 0.5 (less than 1.5), the region A1 is not a branching region. Determined. In this case, the length d3 in the direction passing through the region A1 and orthogonal to the extending axis L1 is one of the measurement values for calculating the average value of the widths of the protrusions. On the other hand, since the ratio of the extension length d5 of the region A2 to the width d4 of the region A2 is approximately 2 (1.5 or more), the region A2 is determined to be a branching region. In this case, the length d6 in the direction passing through the region A2 and orthogonal to the extending axis L2 is not one of the measurement values for calculating the average value of the widths of the protrusions.
 本実施形態のエピタキシャル成長用基板100において、凹凸パターン80の凸部の延在方向に対して平面視上略直交する方向における凸部の幅が一定であってよい。凸部の幅が一定であるか否かは、上述の測定によって得られた100点以上の凸部の幅に基づいて判定できる。具体的には、100点以上の凸部の幅から、凸部の幅の平均値及び凸部の幅の標準偏差を算出する。そして、凸部の幅の標準偏差を凸部の幅の平均値で割ることで算出される値(凸部の幅の標準偏差/凸部の幅の平均値)を凸部の幅の変動係数と定義する。この変動係数は、凸部の幅が一定である(幅の変動が少ない)ほど、小さい値となる。よって、変動係数が所定値以下であるか否かによって、凸部の幅が一定であるか否かを判定できる。例えば、変動係数が0.25以下である場合に凸部の幅が一定であると定義することができる。 In the epitaxial growth substrate 100 of the present embodiment, the width of the protrusions in a direction substantially orthogonal to the extending direction of the protrusions of the uneven pattern 80 in a plan view may be constant. Whether or not the width of the convex portion is constant can be determined based on the width of the convex portion of 100 points or more obtained by the above measurement. Specifically, an average value of the widths of the protrusions and a standard deviation of the widths of the protrusions are calculated from the widths of the protrusions of 100 points or more. Then, the value calculated by dividing the standard deviation of the width of the convex portion by the average value of the width of the convex portion (standard deviation of the width of the convex portion / average value of the width of the convex portion) is the variation coefficient of the width of the convex portion. It is defined as The variation coefficient becomes smaller as the width of the convex portion is constant (the variation in the width is smaller). Therefore, whether or not the width of the convex portion is constant can be determined depending on whether or not the variation coefficient is equal to or less than a predetermined value. For example, it can be defined that the width of the convex portion is constant when the variation coefficient is 0.25 or less.
 また、図7に示すように、本実施形態に係るエピタキシャル成長用基板100において、凹凸パターンに含まれる凸部(白部分)の延在方向は、平面視上不規則に分布している。すなわち、凸部は、規則正しく並んだストライプ状や規則正しく配置されたドット形状等ではなく、不規則な方向に延在した形状となっている。また、測定領域、すなわち凹凸パターンの所定の領域において、単位面積当たりの領域に含まれる凸部の平面視上における輪郭線は、曲線区間よりも直線区間を多く含んでいる。 Further, as shown in FIG. 7, in the epitaxial growth substrate 100 according to the present embodiment, the extending directions of the convex portions (white portions) included in the concave / convex pattern are irregularly distributed in plan view. That is, the convex portion has a shape extending in an irregular direction, not a regular stripe shape or a regularly arranged dot shape. In addition, in the measurement region, that is, the predetermined region of the concavo-convex pattern, the contour line in the plan view of the convex portion included in the region per unit area includes more straight sections than curved sections.
 本実施形態において、「曲線区間よりも直線区間を多く含む」とは、凸部の輪郭線上の全区間において曲がりくねった区間が大勢を占めるような凹凸パターンとはなっていないことを意味する。凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否かについては、例えば以下に示す2つの曲線区間の定義方法のうち何れか一方を用いることで判定することができる。 In the present embodiment, “including more straight sections than curved sections” means that the concave / convex pattern does not occupy a lot of sections that are winding in all sections on the contour of the convex portion. Whether or not the outline of the convex portion in plan view includes more straight sections than curved sections can be determined, for example, by using one of the following two methods of defining a curved section. .
<曲線区間の第1の定義方法>
 曲線区間の第1の定義方法では、曲線区間は、凸部の平面視上における輪郭線を凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成した場合において、区間の両端点間の輪郭線の長さに対する両端点間の直線距離の比が0.75以下となる区間として定義される。また、直線区間は、上記複数の区間のうち曲線区間以外の区間、すなわち上記比が0.75より大きい区間として定義される。以下、図9(a)を参照して、上記第1の定義方法を用いて凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否かを判定する手順の一例について説明する。図9(a)は、凹凸パターンの平面視解析画像の一部を示す図であり、便宜上、凹部を白塗りで示している。領域S1は凸部を示し、領域S2は凹部を示している。
<First definition method of curve section>
In the first definition method of the curved section, the curved section is divided into a plurality of sections by dividing the outline of the convex portion in plan view by a length that is π (circumferential ratio) times the average value of the width of the convex portion. When formed, it is defined as a section in which the ratio of the straight line distance between the two end points to the length of the contour line between the two end points of the section is 0.75 or less. Further, the straight section is defined as a section other than the curved section among the plurality of sections, that is, a section where the ratio is greater than 0.75. Hereinafter, with reference to FIG. 9A, an example of a procedure for determining whether or not the contour line of the convex portion in plan view includes more straight sections than curved sections using the first definition method. explain. FIG. 9A is a diagram illustrating a part of the planar view analysis image of the concavo-convex pattern, and the concave portions are shown in white for convenience. Region S1 represents a convex portion, and region S2 represents a concave portion.
 手順1-1
 測定領域内の複数の凸部から、一の凸部が選択される。当該凸部の輪郭線X上の任意の位置がスタート点として決定される。図9(a)では、一例として点Aがスタート点として設定されている。当該スタート点から、凸部の輪郭線X上に、所定の間隔で基準点が設けられる。ここでは、所定の間隔は、凸部の幅の平均値のπ(円周率)/2倍の長さである。図9(a)では、一例として点B,点C及び点Dが順次設定される。
Procedure 1-1
One convex portion is selected from the plurality of convex portions in the measurement region. An arbitrary position on the contour X of the convex portion is determined as a start point. In FIG. 9A, as an example, the point A is set as the start point. Reference points are provided at predetermined intervals on the contour line X of the convex portion from the start point. Here, the predetermined interval is a length that is π (circumferential ratio) / 2 times the average value of the widths of the convex portions. In FIG. 9A, point B, point C, and point D are sequentially set as an example.
 手順1-2
 基準点である点A~Dが凸部の輪郭線X上に設定されると、判定対象の区間が設定される。ここでは、始点及び終点が基準点であり、中間点となる基準点を含む区間が判定対象として設定される。図9(a)の例では、区間の始点として点Aが選択された場合には、点Aから数えて2番目に設定された点Cが区間の終点となる。点Aからの間隔は、ここでは凸部の幅の平均値のπ/2倍の長さに設定されているため、点Cは、輪郭線Xに沿って凸部の幅の平均値のπ倍の長さだけ点Aから離れた点である。同様に、区間の始点として点Bが選択された場合には、点Bから数えて2番目に設定された点Dが区間の終点となる。なお、ここでは、設定された順に対象となる区間が設定されるとし、点Aが最初に設定された点であるとする。すなわち、最初に、点A及び点Cの区間(区間AC)が処理対象の区間とされる。そして、図9(a)に示された、点A及び点Cを結ぶ凸部の輪郭線Xの長さLaと、点A及び点Cの間の直線距離Lbとが測定される。
Procedure 1-2
When the points A to D, which are reference points, are set on the contour line X of the convex portion, a determination target section is set. Here, the start point and the end point are reference points, and a section including a reference point serving as an intermediate point is set as a determination target. In the example of FIG. 9A, when the point A is selected as the start point of the section, the point C set second from the point A is the end point of the section. Since the distance from the point A is set to a length that is π / 2 times the average value of the width of the convex portion here, the point C is π of the average value of the width of the convex portion along the contour line X. It is a point away from the point A by a double length. Similarly, when the point B is selected as the start point of the section, the point D set second from the point B is the end point of the section. Here, it is assumed that the target section is set in the set order, and point A is the point set first. That is, first, the section between section A and point C (section AC) is set as a section to be processed. Then, the length La of the contour X of the convex portion connecting the points A and C and the linear distance Lb between the points A and C shown in FIG. 9A are measured.
 手順1-3
 手順1-2で測定された長さLa及び直線距離Lbを用いて、長さLaに対する直線距離Lbの比(Lb/La)が計算される。当該比が0.75以下となる場合に、凸部の輪郭線Xの区間ACの中点となる点Bが曲線区間に存在する点であると判定される。一方、上記比が0.75よりも大きい場合には、点Bが直線区間に存在する点であると判定される。なお、図9(a)に示した例では、上記比(Lb/La)は0.75以下となるため、点Bは曲線区間に存在する点であると判定される。
Procedure 1-3
A ratio (Lb / La) of the linear distance Lb to the length La is calculated using the length La and the linear distance Lb measured in the procedure 1-2. When the ratio is 0.75 or less, it is determined that the point B that is the midpoint of the section AC of the contour line X of the convex portion is a point existing in the curve section. On the other hand, when the ratio is larger than 0.75, it is determined that the point B is a point existing in the straight section. In the example shown in FIG. 9A, since the ratio (Lb / La) is 0.75 or less, the point B is determined to be a point existing in the curve section.
 手順1-4
 手順1-1で設定された各点がそれぞれ始点として選択された場合について、手順1-2及び手順1-3が実行される。
Procedure 1-4
When each point set in the procedure 1-1 is selected as the start point, the procedure 1-2 and the procedure 1-3 are executed.
 手順1-5
 測定領域内の全ての凸部について、手順1-1~手順1-4が実行される。
Step 1-5
Steps 1-1 to 1-4 are executed for all the convex portions in the measurement region.
 手順1-6
 測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の50%以上の場合に、凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むと判定される。一方、測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の50%未満の場合には、凸部の平面視上における輪郭線が直線区間よりも曲線区間を多く含むと判定される。
Step 1-6
The contour of the convex portion in plan view when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is 50% or more of the whole. It is determined that the line includes more straight sections than curved sections. On the other hand, when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is less than 50% of the whole, the plan view of the convex portions It is determined that the upper contour line includes more curved sections than straight sections.
 上記手順1-1~手順1-6の処理は、測定装置に備わっている測定機能により行ってもよいし、上記測定装置とは異なる解析用ソフトウエア等の実行により行ってもよいし、手動で行ってもよい。 The processes in steps 1-1 to 1-6 may be performed by a measurement function provided in the measurement apparatus, may be performed by executing analysis software or the like different from the measurement apparatus, or may be performed manually. You may go on.
 なお、上記手順1-1において凸部の輪郭線上に点が設定される処理は、凸部を1周したり、測定領域からはみ出したりすることによって、それ以上点を設定できなくなった場合に終了すればよい。また、最初に設定された点と最後に設定された点の外側の区間については、上記比(Lb/La)を算出できないため、上記判定の対象外とすればよい。また、輪郭線の長さが凸部の幅の平均値のπ倍に満たない凸部については、上記判定の対象外とすればよい。 Note that the process of setting points on the contour of the convex portion in step 1-1 ends when it is no longer possible to set points by going around the convex portion or protruding from the measurement area. do it. Further, since the ratio (Lb / La) cannot be calculated for the section outside the first set point and the last set point, it may be excluded from the above determination. Moreover, what is necessary is just to exclude the convex part in which the length of an outline is less than (pi) times the average value of the width | variety of a convex part.
<曲線区間の第2の定義方法>
 曲線区間の第2の定義方法では、曲線区間は、凸部の平面視上における輪郭線を凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成した場合において、区間の一端(点A)及び当該区間の中点(点B)を結んだ線分(線分AB)と当該区間の他端(点C)及び当該区間の中点(点B)を結んだ線分(線分CB)とがなす2つの角度のうち小さい方(180°以下となる方)の角度が120°以下となる区間として定義される。また、直線区間は、上記複数の区間のうち曲線区間以外の区間、すなわち上記角度が120°よりも大きい区間として定義される。以下、図9(b)を参照して、上記第2の定義方法を用いて凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否かを判定する手順の一例について説明する。図9(b)は、図9(a)と同一の凹凸パターンの平面視解析画像の一部を示す図である。
<Second definition method of curve section>
In the second definition method of the curved section, the curved section is divided into a plurality of sections by dividing an outline of the convex portion in plan view by a length that is π (circumferential ratio) times the average value of the width of the convex portion. When formed, a line segment (line segment AB) connecting one end (point A) of the section and the midpoint (point B) of the section, the other end (point C) of the section, and the midpoint (point of the section) Of the two angles formed by the line segment (line segment CB) connecting B), the smaller angle (the one that is 180 ° or less) is defined as a section in which the angle is 120 ° or less. The straight section is defined as a section other than the curved section among the plurality of sections, that is, a section in which the angle is larger than 120 °. Hereinafter, with reference to FIG. 9B, an example of a procedure for determining whether or not the contour line of the convex portion in plan view includes more straight sections than curved sections using the second definition method. explain. FIG. 9B is a diagram showing a part of the planar analysis image of the same concavo-convex pattern as FIG.
 手順2-1
 測定領域内の複数の凸部から、一の凸部が選択される。当該凸部の輪郭線X上の任意の位置がスタート点として決定される。図9(b)では、一例として点Aがスタート点として設定されている。当該スタート点から、凸部の輪郭線X上に、所定の間隔で基準点が設けられる。ここでは、所定の間隔は、凸部の幅の平均値のπ(円周率)/2倍の長さである。図9(b)では、一例として点B,点C及び点Dが順次設定される。
Procedure 2-1
One convex portion is selected from the plurality of convex portions in the measurement region. An arbitrary position on the contour X of the convex portion is determined as a start point. In FIG. 9B, as an example, the point A is set as the start point. Reference points are provided at predetermined intervals on the contour line X of the convex portion from the start point. Here, the predetermined interval is a length that is π (circumferential ratio) / 2 times the average value of the widths of the convex portions. In FIG. 9B, point B, point C, and point D are sequentially set as an example.
 手順2-2
 基準点である点A~Dが凸部の輪郭線X上に設定されると、判定対象の区間が設定される。ここでは、始点及び終点が基準点であり、中間点となる基準点を含む区間が判定対象として設定される。図9(b)の例では、区間の始点として点Aが選択された場合には、点Aから数えて2番目に設定された点Cが区間の終点となる。点Aからの間隔は、ここでは凸部の幅の平均値のπ/2倍の長さに設定されているため、点Cは、輪郭線Xに沿って凸部の幅の平均値のπ倍の長さだけ点Aから離れた点である。同様に、区間の始点として点Bが選択された場合には、点Bから数えて2番目に設定された点Dが区間の終点となる。なお、ここでは、設定された順に対象となる区間が設定されるとし、点Aが最初に設定された点であるとする。すなわち、最初に、点A及び点Cの区間が処理対象の区間とされる。そして、線分ABと線分CBとがなす2つの角度のうち小さい方(180°以下となる方)の角度θが測定される。
Procedure 2-2
When the points A to D, which are reference points, are set on the contour line X of the convex portion, a determination target section is set. Here, the start point and the end point are reference points, and a section including a reference point serving as an intermediate point is set as a determination target. In the example of FIG. 9B, when the point A is selected as the start point of the section, the point C set second from the point A becomes the end point of the section. Since the distance from the point A is set to a length that is π / 2 times the average value of the width of the convex portion here, the point C is π of the average value of the width of the convex portion along the contour line X. It is a point away from the point A by a double length. Similarly, when the point B is selected as the start point of the section, the point D set second from the point B is the end point of the section. Here, it is assumed that the target section is set in the set order, and point A is the point set first. That is, first, the section of point A and point C is set as a process target section. Then, the smaller angle θ (the one that is 180 ° or less) of the two angles formed by the line segment AB and the line segment CB is measured.
 手順2-3
 角度θが120°以下となる場合には、点Bが曲線区間に存在する点であると判定される。一方、角度θが120°よりも大きい場合には、点Bが直線区間に存在する点であると判定される。なお、図9(b)に示した例では、角度θは120°以下となるため、点Bは曲線区間に存在する点と判定される。
Procedure 2-3
When the angle θ is 120 ° or less, it is determined that the point B is a point existing in the curve section. On the other hand, when the angle θ is larger than 120 °, it is determined that the point B is a point existing in the straight line section. In the example shown in FIG. 9B, since the angle θ is 120 ° or less, the point B is determined as a point existing in the curve section.
 手順2-4
 手順2-1で設定された各点がそれぞれ始点として選択された場合について、手順2-2及び手順2-3が実行される。
Step 2-4
When each point set in the procedure 2-1 is selected as the start point, the procedure 2-2 and the procedure 2-3 are executed.
 手順2-5
 測定領域内の全ての凸部について、手順2-1~手順2-4が実行される。
Step 2-5
Steps 2-1 to 2-4 are executed for all convex portions in the measurement region.
 手順2-6
 測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の70%以上の場合に、凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むと判定される。一方、測定領域内の全ての凸部について設定された全ての点のうち直線区間に存在する点であると判定された点の割合が全体の70%未満の場合には、凸部の平面視上における輪郭線が直線区間よりも曲線区間を多く含むと判定される。
Step 2-6
The contour of the convex portion in plan view when the proportion of the points determined to be in the straight line segment among all the points set for all the convex portions in the measurement region is 70% or more of the whole. It is determined that the line includes more straight sections than curved sections. On the other hand, when the ratio of the points determined to be in the straight section among all the points set for all the convex portions in the measurement region is less than 70% of the whole, the plan view of the convex portions It is determined that the upper contour line includes more curved sections than straight sections.
 上記手順2-1~2-6の処理は、測定装置に備わっている測定機能により行ってもよいし、上記測定装置とは異なる解析用ソフトウエア等を実行することにより行ってもよいし、手動で行ってもよい。 The processing of steps 2-1 to 2-6 may be performed by a measurement function provided in the measurement device, or may be performed by executing analysis software or the like different from the measurement device. It may be done manually.
 なお、上記手順2-1において凸部の輪郭線上に点が設定される処理は、凸部を1周したり、測定領域からはみ出したりすることによって、それ以上点を設定できなくなった場合に終了すればよい。また、最初に設定された点と最後に設定された点の外側の区間については、上記角度θを算出できないため、上記判定の対象外とすればよい。また、輪郭線の長さが凸部の幅の平均値のπ倍に満たない凸部については、上記判定の対象外とすればよい。 Note that the process of setting points on the contour of the convex part in step 2-1 above ends when it is no longer possible to set points by going around the convex part or protruding from the measurement area. do it. Further, since the angle θ cannot be calculated for the section outside the first set point and the last set point, it may be excluded from the above determination. Moreover, what is necessary is just to exclude the convex part in which the length of an outline is less than (pi) times the average value of the width | variety of a convex part.
 以上述べたように、曲線区間の第1及び第2の定義方法の何れか一方を用いることで、測定領域について、凸部の平面視上における輪郭線Xが曲線区間よりも直線区間を多く含むか否かを判定することができる。なお、あるエピタキシャル成長用基板100の凹凸パターン80について、「単位面積当たりの領域に含まれる凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否か」の判定は、エピタキシャル成長用基板100の凹凸パターン80の領域から無作為に抽出して測定した一つの測定領域に基づいて判定することにより行ってもよいし、同一のエピタキシャル成長用基板100の凹凸パターン80における複数の異なる測定領域についての判定結果を総合的に判定することにより行ってもよい。この場合、例えば、複数の異なる測定領域についての判定結果のうち多い方の判定結果を、「単位面積当たりの領域に含まれる凸部の平面視上における輪郭線が曲線区間よりも直線区間を多く含むか否か」の判定結果として採用してもよい。 As described above, by using one of the first and second definition methods of the curve section, the contour line X in the plan view of the convex portion includes more straight sections than the curve section in the measurement region. It can be determined whether or not. In addition, for the uneven pattern 80 of a certain substrate 100 for epitaxial growth, the determination of “whether the contour line in the plan view of the convex portion included in the region per unit area includes more straight sections than curved sections” is epitaxial growth. The determination may be made based on one measurement region that is randomly extracted from the region of the concave / convex pattern 80 of the substrate 100 for measurement, or a plurality of different measurements in the concave / convex pattern 80 of the same substrate 100 for epitaxial growth. The determination may be performed by comprehensively determining the determination result for the region. In this case, for example, the determination result of the larger one among the determination results for a plurality of different measurement regions is expressed as “the contour line in the plan view of the convex portion included in the region per unit area has more straight sections than the curved sections. You may employ | adopt as a determination result of "whether it is included".
 なお、上記実施形態において、パターニング工程において用いる無機材料の溶液として、TiO、ZnO、ZnS、ZrO、BaTiO、SrTiO等のゾルゲル材料の溶液または微粒子分散液を用いてもよい。このうち、成膜性や屈折率の関係からTiOが好ましい。このうち、成膜性や屈折率の関係からTiOが好ましい。液相堆積法(LPD:Liquid Phase Deposition)などを用いて無機材料膜を形成してもよい。 In the above-described embodiment, a solution of sol-gel material such as TiO 2 , ZnO, ZnS, ZrO, BaTiO 3 , SrTiO 2 or a fine particle dispersion may be used as the inorganic material solution used in the patterning step. Among, TiO 2 is preferred from the relationship of the film forming property and refractive index. Among, TiO 2 is preferred from the relationship of the film forming property and refractive index. The inorganic material film may be formed by using a liquid phase deposition (LPD) method or the like.
 また、パターンニング工程において用いる無機材料として、ポリシラザン溶液を用いてもよい。ポリシラザン溶液を用いて形成した凸部を硬化工程においてセラミックス化(シリカ改質)して、シリカからなる凸部を形成してもよい。なお、「ポリシラザン」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。特開平8-112879号公報に記載されている下記の一般式(1)で表されるような比較的低温でセラミック化してシリカに変性する化合物がより好ましい。 Moreover, you may use a polysilazane solution as an inorganic material used in a patterning process. The convex part formed using the polysilazane solution may be converted into ceramics (silica modification) in the curing step to form the convex part made of silica. “Polysilazane” is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 made of Si—N, Si—H, N—H, etc., and ceramics such as both intermediate solid solutions SiO X N Y. It is a precursor inorganic polymer. More preferred is a compound which is converted to silica by being ceramicized at a relatively low temperature as represented by the following general formula (1) described in JP-A-8-112879.
 一般式(1):
   -Si(R1)(R2)-N(R3)-
 式中、R1、R2、R3は、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。
General formula (1):
—Si (R1) (R2) —N (R3) —
In the formula, R1, R2, and R3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 上記一般式(1)で表される化合物の中で、R1、R2及びR3のすべてが水素原子であるパーヒドロポリシラザン(PHPSともいう)や、Siと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンが特に好ましい。 Among the compounds represented by the general formula (1), perhydropolysilazane (also referred to as PHPS) in which all of R 1, R 2 and R 3 are hydrogen atoms, and the hydrogen part bonded to Si is partially an alkyl group or the like. Substituted organopolysilazanes are particularly preferred.
 低温でセラミック化するポリシラザンの別の例としては、ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報)等を用いることもできる。 As another example of polysilazane to be ceramicized at a low temperature, silicon alkoxide-added polysilazane obtained by reacting polysilazane with silicon alkoxide (for example, JP-A No. 5-23827), glycidol-added polysilazane obtained by reacting glycidol ( For example, JP-A-6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (for example, JP-A-6-240208), a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate ( For example, JP-A-6-299118), an acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (for example, JP-A-6-306329), and metal fine particles are added. Metal fine particles Pressurized polysilazane (e.g., JP-A-7-196986) and the like can also be used.
 ポリシラザン溶液の溶媒としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。酸化珪素化合物への改質を促進するために、アミンや金属の触媒を添加してもよい。 As the solvent of the polysilazane solution, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used. In order to promote the modification to a silicon oxide compound, an amine or metal catalyst may be added.
[発光素子]
 上記実施形態のエピタキシャル成長用基板の製造方法により得られるエピタキシャル成長用基板を用いて発光素子を製造することができる。実施形態の発光素子200は、図6に示すように、エピタキシャル成長用基板100上に、第1導電型層222と、活性層224と、第2導電型層226とをこの順に積層して形成された半導体層220を備える。さらに、実施形態の発光素子200は、第1導電型層222に電気的に接続する第1電極240、及び第2導電型層226に電気的に接続する第2電極260を備える。
[Light emitting element]
A light emitting element can be manufactured using the substrate for epitaxial growth obtained by the manufacturing method of the substrate for epitaxial growth of the said embodiment. As shown in FIG. 6, the light emitting device 200 according to the embodiment is formed by stacking a first conductivity type layer 222, an active layer 224, and a second conductivity type layer 226 in this order on the epitaxial growth substrate 100. The semiconductor layer 220 is provided. Furthermore, the light emitting device 200 of the embodiment includes a first electrode 240 that is electrically connected to the first conductivity type layer 222 and a second electrode 260 that is electrically connected to the second conductivity type layer 226.
 半導体層220の材料として、発光素子に用いられる公知の材料を用いてよい。発光素子に用いられる材料として、例えば、一般式InAlGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表されるGaN系半導体材料が多数知られており、本実施形態の発光素子においても、それら周知のGaN系半導体を含めて一般式AlGaIn1-Aで表わされるGaN系半導体を何ら制限なく用いることができる。GaN系半導体は、Al、GaおよびIn以外に他のIII族元素を含有することができ、必要に応じてGe、Si、Mg、Ca、Zn、Be、P、AsおよびBなどの元素を含有することもできる。さらに、意識的に添加した元素に限らず、半導体層の成長条件等に依存して必然的に含まれる不純物、並びに原料、反応管材質に含まれる微量不純物を含む場合もある。上記窒化物半導体以外に、GaAs、GaP系化合物半導体、AlGaAs、InAlGaP系化合物半導体等の他の半導体材料も用いることができる。 As a material of the semiconductor layer 220, a known material used for a light-emitting element may be used. As a material used for a light emitting element, for example, a GaN-based semiconductor material represented by a general formula In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) In the light emitting device of the present embodiment, a GaN-based semiconductor represented by the general formula Al X Ga Y In ZN 1- AM A is used without any limitation in the light-emitting element of this embodiment. be able to. GaN-based semiconductors can contain other group III elements in addition to Al, Ga, and In, and contain elements such as Ge, Si, Mg, Ca, Zn, Be, P, As, and B as required. You can also Furthermore, it is not limited to elements that are intentionally added, but may contain impurities that are inevitably contained depending on the growth conditions of the semiconductor layer, and trace impurities contained in the raw materials and reaction tube materials. In addition to the nitride semiconductor, other semiconductor materials such as GaAs, GaP-based compound semiconductor, AlGaAs, InAlGaP-based compound semiconductor can also be used.
 第1導電型層としてのn型半導体層222は、基板100上に積層される。n型半導体層222は、当該技術において公知の材料及び構造で形成されてよく、例えば、n-GaNから形成されてよい。活性層224はn型半導体層222の上に積層される。活性層224は、当該技術において公知の材料及び構造で形成されてよく、例えば、GalnN及びGaNを複数回積層した多重量子井戸(MQW)構造を有してよい。活性層224は電子及び正孔の注入により発光する。第2導電型層としてのp型半導体層226は、活性層224上に積層される。p型半導体層226は、当該技術において公知の構造を有してよく、例えば、p-AlGaN及びp-GaNから形成されてよい。半導体層(n型半導体層、活性層及びp型半導体層)の積層方法は特に限定されず、MOCVD(有機金属化学気相成長法)、HVPE(ハイドライド気相成長法)、MBE(分子線エピタキシー法)、などGaN系半導体を成長させることができる公知の方法を適用できる。層厚制御性、量産性の観点からMOCVD法が好ましい。 The n-type semiconductor layer 222 as the first conductivity type layer is stacked on the substrate 100. The n-type semiconductor layer 222 may be formed of materials and structures known in the art, and may be formed of, for example, n-GaN. The active layer 224 is stacked on the n-type semiconductor layer 222. The active layer 224 may be formed of materials and structures known in the art, and may have, for example, a multiple quantum well (MQW) structure in which GalnN and GaN are stacked a plurality of times. The active layer 224 emits light by injection of electrons and holes. A p-type semiconductor layer 226 as a second conductivity type layer is stacked on the active layer 224. The p-type semiconductor layer 226 may have a structure known in the art, and may be formed of, for example, p-AlGaN and p-GaN. The method for stacking the semiconductor layers (n-type semiconductor layer, active layer and p-type semiconductor layer) is not particularly limited, and MOCVD (metal organic chemical vapor deposition), HVPE (hydride vapor deposition), MBE (molecular beam epitaxy). A known method that can grow a GaN-based semiconductor can be applied. The MOCVD method is preferable from the viewpoint of layer thickness controllability and mass productivity.
 エピタキシャル成長用基板100の表面には凹凸パターン80が形成されているが、n型半導体層のエピタキシャル成長中に、特開2001-210598号公報に記載されるような半導体層の横方向成長による表面の平坦化が進行する。活性層は平坦な面上に形成する必要があるため、表面が平坦になるまでn型半導体層を積層する必要がある。実施形態のエピタキシャル成長用基板は凹凸パターンの断面形状が比較的なだらかな傾斜面からなり、波形構造をなしているため、表面の平坦化の進行が速く、n型半導体層の層厚を小さくすることができる。半導体層の成長時間を短縮することができる。 Although a concavo-convex pattern 80 is formed on the surface of the substrate 100 for epitaxial growth, the surface is flattened by lateral growth of the semiconductor layer as described in JP-A-2001-210598 during the epitaxial growth of the n-type semiconductor layer. Progresses. Since the active layer needs to be formed on a flat surface, it is necessary to stack an n-type semiconductor layer until the surface becomes flat. The substrate for epitaxial growth according to the embodiment has a relatively gentle cross-sectional shape of the concavo-convex pattern, and has a corrugated structure, so that the surface flattening progresses quickly and the thickness of the n-type semiconductor layer is reduced. Can do. The growth time of the semiconductor layer can be shortened.
 第1電極としてのn電極240は、p型半導体層226及び活性層224の一部をエッチングして露出したn型半導体層222上に形成される。n電極222は、当該技術において公知の材料及び構造で形成されてよく、例えば、Ti/Al/Ti/Au等から構成され、真空蒸着法、スパッタリング法、CVD法等により形成される。第2電極としてのp電極260は、p型半導体層226上に形成される。p電極226は、当該技術において公知の材料及び構造で形成されてよく、例えば、ITO等からなる透光性導電膜とTi/Au積層体等からなる電極パッドから形成されてよい。p電極260はAg、Al等の高反射性材料から形成されてもよい。n電極240及びp電極260は、真空蒸着法、スパッタリング法、CVD法等の任意の成膜法により形成することができる。 The n-electrode 240 as the first electrode is formed on the n-type semiconductor layer 222 exposed by etching a part of the p-type semiconductor layer 226 and the active layer 224. The n-electrode 222 may be formed of a material and structure known in the art, and is made of, for example, Ti / Al / Ti / Au or the like, and is formed by a vacuum deposition method, a sputtering method, a CVD method, or the like. A p-electrode 260 as the second electrode is formed on the p-type semiconductor layer 226. The p-electrode 226 may be formed of a material and structure known in the art, and may be formed of, for example, a translucent conductive film made of ITO or the like and an electrode pad made of a Ti / Au laminated body or the like. The p-electrode 260 may be formed from a highly reflective material such as Ag or Al. The n-electrode 240 and the p-electrode 260 can be formed by any film forming method such as a vacuum deposition method, a sputtering method, a CVD method, or the like.
 なお、第1導電型層、活性層及び第2導電型層を少なくとも含み、第1導電型層及び第2導電型層に電圧が印加されると、電子及び正孔の再結合により活性層にて光が発せられるものであれば、半導体層の層構成は任意である。 In addition, when a voltage is applied to the first conductivity type layer and the second conductivity type layer, the active layer includes at least a first conductivity type layer, an active layer, and a second conductivity type layer. The layer structure of the semiconductor layer is arbitrary as long as it emits light.
 以上のように構成された実施形態の光学素子200は、p型半導体226側から光を取り出すフェイスアップ方式の光学素子であってよく、その場合はp電極260に透光性導電材料を使用することが好ましい。実施形態の光学素子200は、基板100側から光を取り出すフリップチップ方式の光学素子であってもよく、その場合はp電極260に高反射材料を使用することが好ましい。いずれの方式であっても、基板の凹凸パターン80による回折効果により、活性層224で生じた光を素子外部に有効に取り出すことができる。 The optical element 200 of the embodiment configured as described above may be a face-up optical element that extracts light from the p-type semiconductor 226 side. In that case, a light-transmitting conductive material is used for the p-electrode 260. It is preferable. The optical element 200 of the embodiment may be a flip-chip optical element that extracts light from the substrate 100 side. In that case, it is preferable to use a highly reflective material for the p-electrode 260. In any method, the light generated in the active layer 224 can be effectively extracted outside the device by the diffraction effect of the concave / convex pattern 80 of the substrate.
 また、光学素子200において、基板100に凹凸パターン80が形成されているため、転位密度の少ない半導体層220が形成され、発光素子200の特性の劣化が抑制される。 Further, in the optical element 200, since the concave / convex pattern 80 is formed on the substrate 100, the semiconductor layer 220 having a low dislocation density is formed, and deterioration of the characteristics of the light emitting element 200 is suppressed.
 以上、本発明を実施形態により説明してきたが、本発明のエピタキシャル成長用基板の製造方法及び光学素子は上記実施形態に限定されず、特許請求の範囲に記載した技術的思想の範囲内で適宜改変することができる。 As mentioned above, although this invention was demonstrated by embodiment, the manufacturing method and optical element of the substrate for epitaxial growth of this invention are not limited to the said embodiment, It changes suitably within the range of the technical idea described in the claim. can do.
 本発明のエピタキシャル成長用基板の製造方法により、エピタキシャル成長用基板を高速で連続的に生産することができる。また、凹凸パターンの形成にフォトリソグラフィを用いないため、製造コストが低く、環境への負荷が小さい。さらに、本発明の製造方法によって得られたエピタキシャル成長用基板は光取り出し効率を向上させる回折格子基板としての機能を有するため、この基板を用いて作製された発光素子は、発光効率が高い。それゆえ本発明の製造方法によって得られたエピタキシャル成長用基板は、優れた発光効率を有する発光素子の製造に極めて有効であり、省エネルギーにも貢献する。 The epitaxial growth substrate can be produced continuously at a high speed by the epitaxial growth substrate manufacturing method of the present invention. Further, since photolithography is not used to form the concavo-convex pattern, the manufacturing cost is low and the burden on the environment is small. Furthermore, since the substrate for epitaxial growth obtained by the manufacturing method of the present invention has a function as a diffraction grating substrate that improves the light extraction efficiency, a light emitting device manufactured using this substrate has high light emission efficiency. Therefore, the epitaxial growth substrate obtained by the production method of the present invention is extremely effective for the production of a light emitting device having excellent light emission efficiency, and contributes to energy saving.
 10 スクリーン印刷用版、 20 バッファ層、 40 基材
 60 凸部、 70 凹部、 80 凹凸パターン
100 エピタキシャル成長用基板、200 発光素子、220 半導体層
DESCRIPTION OF SYMBOLS 10 Screen printing plate, 20 Buffer layer, 40 Base material 60 Convex part, 70 Concave part, 80 Concave / convex pattern 100 Epitaxial growth substrate, 200 Light emitting element, 220 Semiconductor layer

Claims (15)

  1.  スクリーン印刷により基材上に所定パターンの無機材料膜を形成するパターニング工程と、
     前記無機材料膜を硬化させる硬化工程とを有するエピタキシャル成長用基板の製造方法。
    A patterning step of forming an inorganic material film of a predetermined pattern on a substrate by screen printing;
    A method for manufacturing an epitaxial growth substrate, comprising: a curing step for curing the inorganic material film.
  2.  前記無機材料膜がゾルゲル材料からなることを特徴とする請求項1に記載のエピタキシャル成長用基板の製造方法。 The method for manufacturing a substrate for epitaxial growth according to claim 1, wherein the inorganic material film is made of a sol-gel material.
  3.  前記基材の表面が露出している領域をエッチングする工程をさらに含むことを特徴とする請求項1または2に記載のエピタキシャル成長用基板の製造方法。 3. The method for manufacturing an epitaxial growth substrate according to claim 1, further comprising a step of etching a region where a surface of the base material is exposed.
  4.  前記無機材料膜を有する前記基材上にバッファ層を形成することを特徴とする請求項1~3のいずれか一項に記載のエピタキシャル成長用基板の製造方法。 The method for producing a substrate for epitaxial growth according to any one of claims 1 to 3, wherein a buffer layer is formed on the base material having the inorganic material film.
  5.  前記パターニング工程の前に前記基材上にバッファ層を形成することを特徴とする請求項1または2に記載のエピタキシャル成長用基板の製造方法。 3. The method for manufacturing a substrate for epitaxial growth according to claim 1, wherein a buffer layer is formed on the base material before the patterning step.
  6.  前記基材上に前記所定パターンの前記無機材料膜を形成することによって生じる凸部及び凹部が、
     i)平面視で、各々、うねりながら延在する細長い形状を有し、且つ
     ii)延在方向、屈曲方向及び長さが不均一であることを特徴とする請求項1~5のいずれか一項に記載のエピタキシャル成長用基板の製造方法。
    Convex portions and concave portions generated by forming the inorganic material film of the predetermined pattern on the base material,
    6. The method according to claim 1, wherein i) each has an elongated shape extending in a wavy manner in plan view, and ii) the extending direction, the bending direction, and the length are not uniform. The manufacturing method of the board | substrate for epitaxial growth as described in a term.
  7.  前記基材が、サファイア基板であることを特徴とする請求項1~6のいずれか一項に記載のエピタキシャル成長用基板の製造方法。 The method for manufacturing a substrate for epitaxial growth according to any one of claims 1 to 6, wherein the base material is a sapphire substrate.
  8.  請求項1~7のいずれか一項に記載のエピタキシャル成長用基板の製造方法によって得られる凹凸パターンを有するエピタキシャル成長用基板。 An epitaxial growth substrate having a concavo-convex pattern obtained by the method for manufacturing an epitaxial growth substrate according to any one of claims 1 to 7.
  9.  i)前記エピタキシャル成長用基板の前記凹凸パターン面の凸部または凹部は、平面視で、各々、うねりながら延在する細長い形状を有し、且つ、
     ii)前記エピタキシャル成長用基板の前記凹凸パターン面の前記凸部または前記凹部は延在方向、屈曲方向及び長さが不均一であることを特徴とする請求項8に記載のエピタキシャル成長用基板。
    i) The projections or depressions of the concavo-convex pattern surface of the epitaxial growth substrate each have an elongated shape extending in a wavy manner in plan view, and
    The substrate for epitaxial growth according to claim 8, wherein the projecting portion or the recessed portion of the concavo-convex pattern surface of the substrate for epitaxial growth has a non-uniform extension direction, bending direction, and length.
  10.  前記凸部の延在方向が、平面視上不規則に分布しており、
     前記凹凸パターンの単位面積当たりの領域に含まれる前記凸部の平面視上における輪郭線が、曲線区間よりも直線区間を多く含む請求項9に記載のエピタキシャル成長用基板。
    The extending direction of the protrusions is irregularly distributed in plan view,
    The epitaxial growth substrate according to claim 9, wherein a contour line in plan view of the convex portion included in a region per unit area of the uneven pattern includes more straight sections than curved sections.
  11.  前記凸部の延在方向に対して平面視上略直交する方向における前記凸部の幅が一定である請求項10に記載のエピタキシャル成長用基板。 The substrate for epitaxial growth according to claim 10, wherein a width of the convex portion in a direction substantially orthogonal to the extending direction of the convex portion in a plan view is constant.
  12.  前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の両端点間の前記輪郭線の長さに対する当該両端点間の直線距離の比が0.75以下となる区間であり、
     前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間である、請求項10又は11に記載のエピタキシャル成長用基板。
    In the case where the curved section is formed by dividing a contour line in plan view of the convex portion by a length that is π (circumferential ratio) times the average value of the width of the convex portion, A section in which a ratio of a linear distance between the two end points to a length of the contour line between the two end points is 0.75 or less;
    The epitaxial growth substrate according to claim 10, wherein the straight section is a section that is not the curved section among the plurality of sections.
  13.  前記曲線区間は、前記凸部の平面視上における輪郭線を前記凸部の幅の平均値のπ(円周率)倍の長さで区切ることで複数の区間を形成する場合において、区間の一端及び当該区間の中点を結んだ線分と当該区間の他端及び当該区間の中点を結んだ線分とがなす2つの角度のうち180°以下となる方の角度が120°以下となる区間であり、
     前記直線区間は、前記複数の区間のうち前記曲線区間ではない区間であり、
     前記複数の区間のうち前記曲線区間の割合が70%以上である、
    請求項10又は11に記載のエピタキシャル成長用基板。
    In the case where the curved section is formed by dividing a contour line in plan view of the convex portion by a length that is π (circumferential ratio) times the average value of the width of the convex portion, Of the two angles formed by the line segment connecting one end and the midpoint of the section and the line segment connecting the other end of the section and the midpoint of the section, the angle that is 180 ° or less is 120 ° or less. And
    The straight section is a section that is not the curved section among the plurality of sections,
    The ratio of the curve section among the plurality of sections is 70% or more.
    The substrate for epitaxial growth according to claim 10 or 11.
  14.  前記凹凸パターンを走査型プローブ顕微鏡により解析して得られる凹凸解析画像に2次元高速フーリエ変換処理を施すことにより得られるフーリエ変換像が、波数の絶対値が0μm-1である原点を略中心とする円状又は円環状の模様を示しており、且つ、前記円状又は円環状の模様が、波数の絶対値が10μm-1以下の範囲内となる領域内に存在する、請求項8~13のいずれか一項に記載のエピタキシャル成長用基板。 A Fourier transform image obtained by performing a two-dimensional fast Fourier transform process on a concavo-convex analysis image obtained by analyzing the concavo-convex pattern with a scanning probe microscope is substantially centered on the origin where the absolute value of the wave number is 0 μm −1. A circular or annular pattern is shown, and the circular or annular pattern exists in a region where the absolute value of the wave number is in the range of 10 μm −1 or less. The substrate for epitaxial growth according to any one of the above.
  15.  請求項8~14のいずれか一項に記載のエピタキシャル成長用基板上に、第1導電型層、活性層及び第2導電型層を少なくとも含む半導体層を備える発光素子。 15. A light emitting device comprising a semiconductor layer including at least a first conductivity type layer, an active layer, and a second conductivity type layer on the epitaxial growth substrate according to any one of claims 8 to 14.
PCT/JP2015/061349 2014-04-16 2015-04-13 Method for producing substrate for epitaxial growth, substrate for epitaxial growth obtained by same, and light emitting element using said substrate WO2015159844A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-084530 2014-04-16
JP2014084530 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159844A1 true WO2015159844A1 (en) 2015-10-22

Family

ID=54324050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061349 WO2015159844A1 (en) 2014-04-16 2015-04-13 Method for producing substrate for epitaxial growth, substrate for epitaxial growth obtained by same, and light emitting element using said substrate

Country Status (2)

Country Link
TW (1) TW201605720A (en)
WO (1) WO2015159844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436371B2 (en) 2018-07-09 2024-02-21 ソウル バイオシス カンパニー リミテッド light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240006552A1 (en) * 2020-11-18 2024-01-04 Enkris Semiconductor, Inc. Light-emitting device and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185498A (en) * 1999-12-27 2001-07-06 Toyoda Gosei Co Ltd Growth method of group iii nitride-based compound semiconductor film and group iii nitride-based compaund semiconductor element
JP2005109424A (en) * 2003-02-14 2005-04-21 Osram Opto Semiconductors Gmbh Method for manufacturing many semiconductor substrates, and electronic semiconductor substrate
JP2005223154A (en) * 2004-02-05 2005-08-18 Nichia Chem Ind Ltd Semiconductor substrate, method for forming the same and semiconductor element
WO2011007878A1 (en) * 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 Diffraction grating, organic el element using same, and method for manufacturing said diffraction grating and organic el element
JP2013121713A (en) * 2011-11-11 2013-06-20 Jx Nippon Oil & Energy Corp Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001185498A (en) * 1999-12-27 2001-07-06 Toyoda Gosei Co Ltd Growth method of group iii nitride-based compound semiconductor film and group iii nitride-based compaund semiconductor element
JP2005109424A (en) * 2003-02-14 2005-04-21 Osram Opto Semiconductors Gmbh Method for manufacturing many semiconductor substrates, and electronic semiconductor substrate
JP2005223154A (en) * 2004-02-05 2005-08-18 Nichia Chem Ind Ltd Semiconductor substrate, method for forming the same and semiconductor element
WO2011007878A1 (en) * 2009-07-16 2011-01-20 Jx日鉱日石エネルギー株式会社 Diffraction grating, organic el element using same, and method for manufacturing said diffraction grating and organic el element
JP2013121713A (en) * 2011-11-11 2013-06-20 Jx Nippon Oil & Energy Corp Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436371B2 (en) 2018-07-09 2024-02-21 ソウル バイオシス カンパニー リミテッド light emitting device

Also Published As

Publication number Publication date
TW201605720A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6129322B2 (en) Semiconductor light emitting device and optical film
KR101763460B1 (en) Optical substrate, semiconductor light-emitting element, and method for producing semiconductor light-emitting element
AU2014376585B2 (en) Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate
JP6002427B2 (en) LED substrate and manufacturing method thereof
CN108389944B (en) Substrate for semiconductor light emitting element and semiconductor light emitting element
US20150333233A1 (en) Light emitting device
JP5843016B2 (en) LED device and manufacturing method thereof
JP6280637B2 (en) Epitaxial growth substrate and light emitting device using the same
JP2014130871A (en) Light emitting device
WO2015159844A1 (en) Method for producing substrate for epitaxial growth, substrate for epitaxial growth obtained by same, and light emitting element using said substrate
JP2014138081A (en) Light emitting device, wavelength conversion-light diffusion element, method for manufacturing the same, and composition for forming light diffusion ceramic layer
WO2016148190A1 (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having said substrate or said light-emitting element
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
US20160225942A1 (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
KR101097888B1 (en) Patterned substrate for gan-based semiconductor light emitting diode and manufacturing method
WO2015163315A1 (en) Epitaxial growth substrate production method, epitaxial growth substrate obtained thereby, and light-emitting element using same substrate
JP7238897B2 (en) PROJECTED STRUCTURE, SUBSTRATE FOR LIGHT EMITTING DEVICE, MANUFACTURING METHOD THEREOF, AND LIGHT EMITTING DEVICE
JP2016072619A (en) Method for manufacturing substrate with convex structure, and substrate with convex structure
WO2015159843A1 (en) Method for producing substrate for epitaxial growth, substrate for epitaxial growth obtained by same, and light emitting element using said substrate
WO2015147134A1 (en) Epitaxial growth substrate production method, epitaxial growth substrate obtained therefrom, and light-emitting element using said substrate
JP2014160713A (en) Led device manufacturing method
JP2014127495A (en) Led device and method for manufacturing the same
JP6206336B2 (en) Semiconductor light emitting device substrate, semiconductor light emitting device, method for manufacturing semiconductor light emitting device substrate, and method for manufacturing semiconductor light emitting device
JP2015204376A (en) Method for manufacturing substrate for epitaxial growth, substrate for epitaxial growth obtained thereby, and light-emitting element arranged by use thereof
JP2014041955A (en) Led device and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP