WO2015159679A1 - Polarizing plate, method for manufacturing polarizing plate, liquid-crystal display, and organic electroluminescent display - Google Patents

Polarizing plate, method for manufacturing polarizing plate, liquid-crystal display, and organic electroluminescent display Download PDF

Info

Publication number
WO2015159679A1
WO2015159679A1 PCT/JP2015/059379 JP2015059379W WO2015159679A1 WO 2015159679 A1 WO2015159679 A1 WO 2015159679A1 JP 2015059379 W JP2015059379 W JP 2015059379W WO 2015159679 A1 WO2015159679 A1 WO 2015159679A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
polarizing plate
polarizer
stretching
Prior art date
Application number
PCT/JP2015/059379
Other languages
French (fr)
Japanese (ja)
Inventor
真一郎 鈴木
理英子 れん
真治 稲垣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016513697A priority Critical patent/JPWO2015159679A1/en
Publication of WO2015159679A1 publication Critical patent/WO2015159679A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators

Definitions

  • the present invention relates to a polarizing plate, a method for manufacturing a polarizing plate, a liquid crystal display device, and an organic electroluminescence display device.
  • a polarizing plate comprising an obliquely stretched optical film, in which the occurrence of physical distortion is suppressed, a method for producing such a polarizing plate, and a liquid crystal display device comprising the polarizing plate
  • the present invention relates to an organic electroluminescence display device.
  • Such a thin display has a polarizing plate.
  • the polarizing plate generally has a structure in which a polarizer is sandwiched between two optical films.
  • a technique for manufacturing a circularly polarizing plate by using an optical film stretched in an oblique direction with respect to the width direction and bonding with a polarizer by a roll-to-roll method has been proposed.
  • the optical film is stretched in an oblique direction (hereinafter also referred to as “oblique stretching”) at a predetermined angle with respect to the width direction, thereby giving a desired phase difference.
  • oblique stretching a polycarbonate or a cycloolefin resin is preferably used, but it is also proposed to use a cellulose ester resin (see, for example, Patent Document 2).
  • the present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a polarizing plate comprising an optical film stretched obliquely, and the polarizing plate in which the occurrence of physical distortion is suppressed,
  • the manufacturing method of such a polarizing plate and also providing a liquid crystal display device and an organic electroluminescent display device provided with the said polarizing plate.
  • the polarizer, the first optical film disposed on one surface of the polarizer, and the other surface of the polarizer A second optical film disposed on the polarizing plate, wherein the crossing angle ⁇ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30 to 60 °,
  • the dimensional change rate L ( ⁇ ) in the slow axis direction of the optical film 1 and the dimensional change rate L ( ⁇ + 90) in the direction perpendicular to the slow axis were adjusted to satisfy a predetermined numerical range.
  • the present inventors have found that a polarizing plate in which the occurrence of physical distortion is suppressed can be provided. That is, the subject concerning this invention is solved by the following means.
  • a polarizing plate comprising: a polarizer; a first optical film provided to face one surface of the polarizer; and a second optical film provided to face the other surface of the polarizer.
  • the crossing angle ⁇ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30-60 °
  • the dimensional change rate L ( ⁇ ) in the slow axis direction of the first optical film and the dimensional change rate L ( ⁇ + 90) in the direction perpendicular to the slow axis satisfy the following expressions (1) and (2).
  • a polarizing plate characterized by being adjusted to.
  • the dimensional change rate L (MD) in the longitudinal direction of the first optical film and the dimensional change rate L (TD) in the width direction satisfy the following formula (3).
  • the retardation value Ro (550) in the in-plane direction at a wavelength of 550 nm of the first optical film is in a range of 75 to 150 nm, according to any one of items 1 to 3, The polarizing plate as described.
  • a hard coat layer or an antiglare layer is provided on a surface on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film.
  • the polarizing plate according to any one of items up to 7.
  • a manufacturing method for manufacturing the polarizing plate according to any one of Items 1 to 8 The manufacturing method of the polarizing plate characterized by having the bonding process which bonds the said polarizer, a said 1st optical film, and a said 2nd optical film by a roll to roll system.
  • a casting step of casting a dope on a support to form a casting film A transverse stretching step of stretching the cast film having a residual solvent amount of 1 to 20% by mass in the width direction at a stretching ratio of 1.01 to 1.3 times; An oblique stretching step of stretching the casting film in an oblique direction with respect to the width direction; A heat treatment step of obtaining the first optical film by performing the following heat treatment (i) or (ii) on the cast film, The manufacturing method of the polarizing plate of Claim 9 which performs the said bonding process after the said heat processing process. (I) The end of the cast film is embossed in the range of 180 to 220 ° C., and then wound in a roll shape, and the condition is 3 to 60 ° C.
  • the cast film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while transporting the cast film with a tension of 120 to 150 N by a transport roller.
  • a liquid crystal display device comprising the polarizing plate according to any one of items 1 to 8.
  • An organic electroluminescence display device comprising the polarizing plate according to any one of items 1 to 8.
  • a polarizing plate comprising an obliquely stretched optical film, in which the occurrence of physical distortion is suppressed, a method for producing such a polarizing plate, and the polarizing plate are provided.
  • a liquid crystal display device and an organic electroluminescence display device can be provided.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
  • the dimensions of an optical film may change due to moisture absorption in an environment in which it is used, for example, in a high humidity environment.
  • the dimensional change rate in the width direction or the longitudinal direction is different from the dimensional change rate in the oblique direction.
  • the stretched optical film is stretched more than the dimensional change rate in the stretched direction.
  • the dimensional change rate in the direction (width direction or longitudinal direction) that is not increased.
  • Such characteristics tend to be observed in an optical film having a dimensional change rate in a stretching direction of a certain level or more, and is particularly remarkable when oblique stretching is performed at a high magnification.
  • the dimensional change rate in the slow axis direction of the first optical film and the dimensional change rate in the direction perpendicular to the slow axis satisfy the above formulas (1) and (2).
  • the difference in the dimensional change rate in the surface direction of the optical film can be reduced, and it is considered that physical distortion can be suppressed by reducing the stress generated in the polarizing plate.
  • the top view which shows typically schematic structure of the manufacturing apparatus of the 1st optical film used for the polarizing plate of this invention.
  • the top view which shows typically an example of the rail pattern of the extending
  • Sectional drawing which shows schematic structure of the liquid crystal display device of this invention
  • Sectional drawing which shows schematic structure of the organic electroluminescence display of this invention
  • the polarizing plate of the present invention includes a polarizer, a first optical film provided to face one surface of the polarizer, and a second optical film provided to face the other surface of the polarizer.
  • the crossing angle ⁇ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30 to 60 °, and the slow phase of the first optical film
  • the dimensional change rate L ( ⁇ ) in the axial direction and the dimensional change rate L ( ⁇ + 90) in the direction orthogonal to the slow axis are adjusted so as to satisfy the expressions (1) and (2). .
  • This feature is a technical feature common to or corresponding to each of claims 1 to 12.
  • the dimensional change rate L (MD) of the longitudinal direction of the said 1st optical film and the dimensional change rate L (TD) of the width direction satisfy
  • the first optical film preferably contains a polymer having a cellulose skeleton.
  • the retardation value Ro (550) in the in-plane direction at a wavelength of 550 nm of the first optical film is in the range of 75 to 150 nm. It is preferable from the viewpoint of visibility. Moreover, in this invention, it is preferable from a viewpoint which suppresses generation
  • the second optical film contains cellulose acetate or cellulose acetate propionate, from the viewpoint of improving the visibility and ensuring the flatness of the display device equipped with the polarizing plate.
  • these resins can be films having a high retardation expression rate per film thickness and good visibility.
  • a hard coat layer or an antiglare layer may be provided on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film. preferable. When a hard coat layer is provided, the surface of the polarizing plate can be protected, and when an antiglare layer is provided, the visibility of the reflected image is reduced and reflection of the reflected image is suppressed. can do.
  • the manufacturing method of the polarizing plate of this invention is a manufacturing method of the said polarizing plate, Comprising: Pasting which bonds the said polarizer, a said 1st optical film, and a said 2nd optical film by a roll to roll system. It has a combination process.
  • a casting process in which a dope is cast on a support to form a casting film, and the casting film having a residual solvent amount of 1 to 20% by mass is provided in the width direction by 1
  • a transverse stretching step of stretching at a draw ratio of 0.01 to 1.3 times, an oblique stretching step of stretching the cast film in an oblique direction with respect to the width direction, and the following further comprising a heat treatment step of obtaining the first optical film by performing the heat treatment of i) or (ii), and performing the bonding step after the heat treatment step.
  • the end of the cast film is embossed in the range of 180 to 220 ° C., and then wound in a roll shape, and the condition is 3 to 60 ° C. and 20% RH or less. Heat for ⁇ 5 days.
  • the cast film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while transporting the cast film with a tension of 120 to 150 N by a transport roller.
  • a liquid crystal display device of the present invention includes the polarizing plate.
  • an organic electroluminescence display device of the present invention includes the polarizing plate.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polarizing plate of the present invention includes a polarizer, a first optical film provided to face one surface of the polarizer, a second optical film provided to face the other surface of the polarizer, It has.
  • a functional layer such as a hard coat layer or an antiglare layer is provided on the surface on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film. It is good as a thing.
  • An adhesive layer may be provided between the polarizer and the first optical film and between the polarizer and the second optical film.
  • Polarizer which is a main component of a polarizing plate, is an element that allows only light of a polarization plane in a certain direction to pass through.
  • a typical known polarizer is a polyvinyl alcohol polarizing film. .
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • polarizer a polyvinyl alcohol aqueous solution can be formed and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound.
  • the thickness of the polarizer is preferably from 1 to 30 ⁇ m, more preferably from 1 to 20 ⁇ m, even more preferably from 1 to 15 ⁇ m, and even more preferably from 2 to 15 ⁇ m, from the viewpoint of thinning the polarizing plate.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%
  • the degree of polymerization is 2000 to 4000
  • the degree of saponification is 99.0 to 99.99 mol%.
  • the ethylene-modified polyvinyl alcohol is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used.
  • a polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability, and has little color unevenness, and is particularly preferably used for a large liquid crystal display device.
  • a coating type polarizer may be produced by the methods described in JP 2011-10081 A, JP 4691205 A, JP 4751481 A, and JP 4804589 A.
  • First optical film The first optical film according to the present invention is provided to face one surface of the polarizer. Since the first optical film is stretched obliquely, the crossing angle ⁇ between its slow axis and the absorption axis of the polarizer is in the range of 30 to 60 °.
  • the first optical film has a dimensional change rate L ( ⁇ ) in the slow axis direction and a dimensional change rate L ( ⁇ + 90) in the direction perpendicular to the slow axis in the following formulas (1) and (2). It has been adjusted to meet.
  • Formula (2) 0.1 (%) ⁇ L ( ⁇ ) ⁇ 1.5 (%)
  • the slow axis in the film plane is inclined with respect to the longitudinal direction (width direction), but in particular, the slow axis in the film plane is relative to the longitudinal direction (width direction).
  • the slow axis in the film plane is suitably provided in a circularly polarizing plate that converts linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
  • the optical film according to the present invention is preferably a ⁇ / 4 plate.
  • the ⁇ / 4 plate is designed such that the in-plane retardation value Ro is about 1 ⁇ 4 for a predetermined wavelength of light (usually in the visible light region).
  • the ⁇ / 4 plate has Ro (590) measured at a wavelength of 590 nm in the range of 120 to 160 nm.
  • “Retardation of approximately 1/4 in the wavelength range of visible light” means a retardation value represented by the following formula (A) measured at a wavelength of 450 nm, with a larger retardation at a wavelength of 400 to 700 nm. It is preferable that Ro (590) which is a retardation value measured at a certain Ro (450) and a wavelength of 590 nm satisfies 1 ⁇ Ro (590) / Ro (450) ⁇ 1.6. Furthermore, it is preferable that 1 ⁇ Ro (590) / Ro (450) ⁇ 1.3.
  • Ro (450) is preferably in the range of 60 to 125 nm, and the retardation value Ro (550) measured at a wavelength of 550 nm is 75 to 150 nm. In particular, it is preferably in the range of 125 to 142 nm, and Ro (590) is preferably in the range of 130 to 152 nm.
  • Formula (B) is a formula for obtaining a retardation value Rt in the film thickness direction.
  • the retardation value Rt measured at a wavelength of 550 nm is preferably in the range of 60 to 100 nm, and more preferably in the range of 70 to 90 nm.
  • nx, ny, and nz are refractive indexes nx (maximum in-plane refractive index and refractive index in slow axis direction at 23 ° C. and 55% RH, 450 nm, 550 nm, and 590 nm, respectively. ), Ny (refractive index in the direction perpendicular to the slow axis in the film plane), nz (refractive index in the film thickness direction), and d is the thickness (nm) of the film.
  • Ro and Rt can be measured using an automatic birefringence meter.
  • Ro is calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH.
  • a circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the ⁇ / 4 plate and the transmission axis (or absorption axis) of the polarizer is substantially 45 °.
  • “Substantially 45 °” means a range of 40 to 50 °.
  • the angle between the slow axis in the plane of the ⁇ / 4 plate and the transmission axis of the polarizer is preferably in the range of 41 to 49 °, more preferably in the range of 42 to 48 °, and 43 to 47.
  • a range of ° is more preferable, and a range of 44 to 46 ° is most preferable. Therefore, in order to produce a circularly polarizing plate by the roll-to-roll method, the direction of the slow axis of the optical film according to the present invention is preferably the above “substantially 45 °” direction.
  • the thickness of the first optical film according to the present invention is in the range of 15 to 50 ⁇ m and in the range of 20 to 40 ⁇ m because demand for thinner polarizing plates and display devices is increasing. More preferred. Within this range, an optical film that is thin and lightweight and has a stable winding shape can be obtained.
  • the winding length in the optical film of the present invention is preferably in the range of 1500 to 8000 m, more preferably in the range of 2000 to 6000 m.
  • the arithmetic average roughness Ra of the surface of the first optical film according to the present invention is generally in the range of 1.3 to 4.0 nm, and preferably in the range of 1.6 to 3.5 nm.
  • defect tolerance In the first optical film according to the present invention, it is preferable that there are few failures in the film (hereinafter, also referred to as defects), and the defect referred to here means that when the film is formed by the solution casting method, It refers to voids (foaming defects) in the film caused by rapid evaporation of the solvent, foreign substances in the film-forming stock solution, and foreign substances (foreign substance defects) in the film caused by foreign substances mixed in the film formation.
  • a defect having a diameter of 5 ⁇ m or more is 1 piece / 10 cm square or less in the film plane. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
  • the diameter of the above defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
  • the defect range is measured by the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope. Further, when the defect is accompanied by a change in the surface shape, such as transfer of a roller scratch or an abrasion, the size is confirmed by observing the defect with reflected light of a differential interference microscope.
  • the film may be broken starting from the defects and productivity may be reduced.
  • the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
  • the elongation at break in at least one direction is preferably 4% or more, more preferably 10% in the measurement based on JIS-K7127-1999. That's it.
  • the upper limit of the elongation at break is not particularly limited, but the elongation at break tends to decrease by performing stretching at a high stretching ratio, and pre-stretching is preferably performed in the TD direction as in the present invention. Thereafter, by performing oblique stretching, the breaking elongation is preferably 30% or less, and more preferably 20% or less.
  • the optical film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roller, calendar roller, drum, belt, coating substrate in solution casting, transport roller, etc.) during film formation. It is effective to reduce the diffusion and reflection of light on the film surface.
  • the humidity-controlled film is placed on a microscope stage in the same environment of 23 ° C. and 20% RH, and a glass plate is placed on the film and fixed.
  • the dimension (8 cm) between the two cross-shaped scratches is the slow axis.
  • the direction and the direction perpendicular to the slow axis direction are measured precisely with a microscope, and are defined as L 0 ( ⁇ ) and L 0 ( ⁇ + 90), respectively.
  • the microscope was Nikon MEASURESCOPE MM-11 (eyepiece: x10, objective lens: x3) manufactured by Nikon, and the data measuring machine was directly connected to the microscope using Nikon DP-302 DATA PROCESSOR. Output to spreadsheet software.
  • the present invention is characterized in that the dimensional change rates L ( ⁇ ) and L ( ⁇ + 90) of the first optical film thus obtained satisfy the above formulas (1) and (2). Thereby, the difference of the dimensional change in the surface direction of a 1st optical film can be reduced, and generation
  • the means for adjusting the dimensional change rate of the first optical film according to the present invention to the range represented by the above formulas (1) and (2) is not particularly limited, but the following means are adopted. It is possible to adjust by this. That is, the cast film obtained by solution casting is stretched in the width direction, and further stretched in an oblique direction with respect to the width direction, and then in the range of 180 to 220 ° C. with respect to the end of the cast film. It is possible to adjust the rate of dimensional change by heat treatment for 3 to 5 days under conditions of 60 to 80 ° C and 20% RH or less after being embossed and wound in a roll. is there. Alternatively, after stretching in an oblique direction, the cast film is heated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while the cast film is transported at a tension of 120 to 150 N by the transport roller. The dimensional change rate can be adjusted.
  • a dimensional change rate L (MD) in the longitudinal direction and a dimensional change rate L (TD) in the width direction satisfy the following formula (3). Thereby, it can be set as the polarizing plate by which generation
  • the dimensional change rates L (MD) and L (TD) can be obtained by the same method as the measurement method described above.
  • composition of first optical film As a composition of the first optical film according to the present invention, the dimensional change rate of the first optical film satisfies the above formulas (1) and (2). Any known material may be used as long as it can be used, but it is preferable to contain a polymer having a cellulose skeleton (hereinafter also referred to as “cellulose derivative”). Preferably, the content ratio of the cellulose derivative in the first optical film is 55% by mass or more, preferably 70% by mass or more.
  • a cellulose derivative is a compound using cellulose as a raw material.
  • cellulose derivatives include cellulose esters (details will be described later), cellulose ethers (for example, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cyanoethyl cellulose, etc.), cellulose ether esters (for example, acetyl methyl cellulose, acetyl ethyl cellulose, acetyl hydroxy).
  • Resins such as ethyl cellulose, benzoylhydroxypropyl cellulose, etc., cellulose carbonate (eg, cellulose ethyl carbonate, etc.), cellulose carbamate (eg, cellulose phenyl carbamate, etc.) are included, and cellulose esters are preferred.
  • cellulose derivative may be used, or a mixture of two or more types may be used.
  • the cellulose ester preferably has an acyl group having 2 to 4 carbon atoms.
  • the acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group, and a butanoyl group.
  • the ⁇ -1,4-bonded glucose unit constituting cellulose has free hydroxy groups at the 2nd, 3rd and 6th positions.
  • the cellulose ester is a polymer obtained by acylating part or all of these hydroxy groups with an acyl group.
  • the total acyl group substitution degree means the ratio in which all the hydroxy groups of cellulose located at the 2nd, 3rd and 6th positions are acylated per one glucose unit (100% acylation has a degree of substitution of 3). .
  • acyl groups include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, Examples thereof include an isobutanoyl group, a tert-butanoyl group, a cyclohexanecarbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group.
  • an acetyl group, a propionyl group, a butanoyl group, a dodecanoyl group, an octadecanoyl group, a tert-butanoyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, a cinnamoyl group, and the like are more preferable, and an acetyl group, particularly preferably A propionyl group and a butanoyl group (when the acyl group has 2 to 4 carbon atoms);
  • Specific cellulose esters include at least selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose phthalate and cellulose acetate benzoate.
  • One type is preferred.
  • cellulose esters are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • the cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
  • Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0 to 56.0%.
  • Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
  • Cellulose acetate propionate or cellulose acetate butyrate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y Those satisfying the following formulas (I) and (II) are preferred.
  • the method for measuring the degree of substitution of the acyl group can be measured according to ASTM-D817-96.
  • the weight average molecular weight Mw of the cellulose ester is preferably in the range of 80000 to 300000, and more preferably in the range of 120,000 to 250,000, from the viewpoint of controlling the elastic modulus. Within the above range, it is easy to control the elastic modulus by stretching at the time of film formation, so that the winding shape of the film is stabilized and the anti-bleeding resistance of the additive is improved.
  • the number average molecular weight (Mn) of the cellulose ester is preferably in the range of 30000 to 150,000 because the obtained optical film has high mechanical strength. Furthermore, cellulose esters having a number average molecular weight of 40,000 to 100,000 are preferably used.
  • the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester is preferably in the range of 1.4 to 3.0.
  • the weight average molecular weight Mw and number average molecular weight Mn of the cellulose ester were measured using gel permeation chromatography (GPC).
  • the measurement conditions are as follows.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • the cellulose ester according to the present invention can be produced by a known method. Generally, cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (acetic acid, propionic acid, etc.), an acid anhydride (acetic anhydride, propionic anhydride, etc.), and a catalyst (sulfuric acid, etc.). The reaction proceeds until the triester is formed. In the triester, the three hydroxy groups of the glucose unit are substituted with an organic acid acyl acid. When two kinds of organic acids are used at the same time, a mixed ester type cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate can be produced.
  • a mixed ester type cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate can be produced.
  • the cellulose triester is hydrolyzed to synthesize a cellulose ester having a desired degree of acyl substitution.
  • the cellulose ester is completed through steps such as filtration, precipitation, washing with water, dehydration, and drying.
  • the cellulose ester according to the present invention is charged with 1 g in 20 ml of pure water (electric conductivity of 0.1 ⁇ S / cm or less, pH 6.8), and has a pH of 6 to 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr.
  • the electric conductivity is preferably in the range of 1 to 100 ⁇ S / cm.
  • the cellulose ester according to the present invention can be specifically synthesized with reference to the method described in JP-A-10-45804.
  • the first optical film may contain an additive.
  • the additive include a plasticizer, an ultraviolet absorber, a retardation adjusting agent, an antioxidant, a deterioration preventing agent, a peeling aid, a surfactant, a dye, and fine particles.
  • additives other than the fine particles may be added when preparing the solution of the cellulose ether or the like, or may be added when preparing the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to a polarizing plate used in an image display device such as an organic EL display.
  • additives are preferably added in an amount of, for example, 1 to 30% by mass, preferably 1 to 20% by mass with respect to the cellulose ester.
  • a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
  • Retardation adjuster As the compound to be added for adjusting the retardation, an aromatic compound having two or more aromatic rings as described in EP 91656A2 can be used.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
  • the first optical film comprises a cellulose ester and a vinyl compound having a substituent selected from a carboxy group, a hydroxy group, an amino group, an amide group, and a sulfo group and having a weight average molecular weight in the range of 500 to 200,000. It is preferable to contain these polymers or oligomers.
  • the mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
  • the first optical film can contain fine particles as a matting agent. This makes it easier to transport and wind up when the first optical film is long.
  • the particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 ⁇ m.
  • a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
  • the fine particles those containing silicon are preferable, and silicon dioxide is particularly preferable.
  • silicon dioxide for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd.
  • commercially available products such as Aerosil 200V, R972, R972V, R974, R202, and R812 can be preferably used.
  • the polymer fine particles include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. Examples include Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.). Can do.
  • thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and alkaline earth metal salts such as calcium and magnesium may be added.
  • a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
  • the method for producing the first optical film is not particularly limited.
  • a solution casting film forming method or a melt casting film forming method is used. be able to.
  • a cellulose ester shall be used as a material of a 1st optical film.
  • the solvent contained in the dope may be a single type or a combination of two or more types. From the viewpoint of increasing production efficiency, it is preferable to use a combination of a good solvent and a poor solvent for cellulose ester.
  • a good solvent refers to a solvent that dissolves cellulose ester alone
  • a poor solvent refers to a solvent that swells cellulose ester or does not dissolve alone. Therefore, the good solvent and the poor solvent differ depending on the average acyl group substitution degree of the cellulose ester.
  • good solvents include organic halogen compounds such as dichloromethane, dioxolanes, acetone, methyl acetate, methyl acetoacetate, etc., preferably dichloromethane.
  • Examples of poor solvents include methanol, ethanol, n-butanol, cyclohexane, and cyclohexanone. In order to suppress the bleeding of the additive in the optical film constituting the roll body, methanol or ethanol is preferable.
  • the poor solvent may be one type or a mixture of two or more types.
  • the content ratio of the poor solvent having a large absolute value of the difference from the SP value (solubility parameter) of the additive is preferably the largest.
  • the good solvent is more than the poor solvent in order to increase the solubility of the cellulose ester.
  • the mixing ratio of the good solvent and the poor solvent is preferably in the range of 70 to 98% by mass for the good solvent and in the range of 2 to 30% by mass for the poor solvent.
  • the concentration of the cellulose ester in the dope is preferably higher in order to reduce the drying load, but it is difficult to filter if the concentration of the cellulose ester is too high. Therefore, the concentration of the cellulose ester in the dope is preferably in the range of 10 to 35% by mass, more preferably in the range of 15 to 25% by mass.
  • Examples of the method for dissolving the cellulose ester in a solvent include a method for dissolving under heating and pressure, a method for adding a poor solvent to the cellulose ester to swell, a method for further adding a good solvent, and a cooling dissolution method, and the like. sell.
  • the method of dissolving under heating and pressurization is preferable because it can be heated to the boiling point or higher at normal pressure. Specifically, when stirring and dissolving while heating to a temperature that is higher than the boiling point of the solvent under normal pressure and that the solvent does not boil under pressure, generation of massive undissolved material called gel or mako can be suppressed.
  • the heating temperature is preferably higher from the viewpoint of increasing the solubility of the cellulose ester, but if it is too high, it is necessary to increase the pressure and the productivity is lowered. For this reason, the heating temperature is preferably in the range of 45 to 120 ° C., more preferably in the range of 60 to 110 ° C., and still more preferably 70 to 105 ° C.
  • the obtained dope may contain insoluble matters such as impurities contained in the cellulose ester as a raw material. Such an insoluble matter can become a bright spot foreign material in the obtained film. In order to remove such insoluble matter and the like, it is preferable to further filter the obtained dope.
  • the prepared dope is cast from the slit of the pressure die onto an endless metal support (for example, a stainless belt or a rotating metal drum).
  • an endless metal support for example, a stainless belt or a rotating metal drum.
  • the die is preferably a pressure die that can adjust the slit shape of the die part and easily adjust the film thickness uniformly.
  • Examples of the pressure die include a coat hanger die and a T-die.
  • the surface of the metal support is preferably mirror-finished.
  • Casting can also be performed by preparing a plurality of dopes and casting the plurality of dopes on a smooth band or drum as a support.
  • two or more kinds of dopes may be cast on the support at the same time, or separately on the support.
  • the dope on the support side can be cast first and dried to some extent on the support, and then overlaid on the support.
  • a film having a laminated structure can be produced by appropriately combining simultaneous casting (also referred to as co-casting) and sequential casting.
  • the film may be produced by casting and laminating a solution containing cellulose acylate from a plurality of casting openings provided at intervals in the traveling direction of the metal support.
  • the methods described in JP-A Nos. 158414, 1-122419 and 11-198285 can be applied.
  • it may be formed into a film by casting a cellulose acylate solution from two casting ports.
  • JP-B-60-27562, JP-A-61-94724, JP-A-61-947245 It can be carried out by the methods described in JP-A Nos. 61-104813, 61-158413, and 6-134933.
  • the dope film is heated on a metal support to evaporate the solvent to obtain a web (casting film).
  • the dope film is preferably dried in an atmosphere in the range of 40 to 100 ° C.
  • a method of evaporating the solvent there are a method of applying air to the surface of the dope film, a method of transferring heat from the back side of the belt with a liquid, a method of transferring heat from the front and back by radiant heat, etc.
  • a method of transferring heat from the back surface of the liquid with a liquid is preferable.
  • the temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C., more preferably in the range of 11 to 30 ° C.
  • the residual solvent amount of the web when peeling at the peeling position on the metal support depends on the drying conditions and the length of the metal support, but is preferably in the range of 50 to 120% by mass.
  • a web having a large amount of residual solvent is too soft and tends to impair flatness, and wrinkles and streaks in the casting direction (MD direction) due to peeling tension tend to occur.
  • the residual solvent amount of the web at the peeling position can be set so that wrinkles and lines in the casting direction (MD direction) can be suppressed.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of the sample collected before the web or film is stretched
  • N is the mass after heating M at 115 ° C. for 1 hour.
  • the peeling tension when peeling the web from the metal support can usually be 300 N / m or less.
  • the web obtained by peeling from the metal support is dried.
  • the web may be dried while being conveyed by a large number of rollers arranged vertically, or may be dried while being conveyed while fixing both ends of the web with clips.
  • the method of drying the web may be a method of drying with hot air, infrared rays, a heating roller, microwaves, or the like, and a method of drying with hot air is preferable because it is simple.
  • the drying temperature of the web can be about 40 to 250 ° C., preferably about 40 to 160 ° C.
  • Transverse Stretching Step the web having a residual solvent amount of 1 to 20% by mass is stretched in the width direction (TD direction) within a range of a draw ratio of 1.01 to 1.3 times. ) Is carried out.
  • the transverse stretching step is preferably performed continuously after the casting step, without winding up the obtained web.
  • An optical film having a desired retardation can be obtained by stretching the web.
  • the retardation of the optical film can be controlled by adjusting the magnitude of the tension applied to the web.
  • the stretch ratio of the web is preferably in the range of 1.01 to 1.3 times, more preferably in the range of 1.07 to 1.15 times.
  • the stretching temperature of the web is preferably in the range of 120 to 200 ° C, more preferably in the range of 135 to 170 ° C.
  • the web stretching method is not particularly limited, and a tenter stretching method in which both ends of the web are fixed with clips or pins and the gap between the clips or pins is widened is preferable.
  • the amount of residual solvent in the web during the transverse stretching step is preferably in the range of 1 to 20% by mass, more preferably in the range of 3 to 20% by mass, and still more preferably in the range of 3 to 10% by mass. is there.
  • FIG. 1 is a plan view schematically showing an example of a schematic configuration of a manufacturing apparatus 1 capable of oblique stretching.
  • the manufacturing apparatus 1 includes, in order from the upstream side in the transport direction of a long film, a film feeding unit 2, a transport direction changing unit 3, a guide roll 4, a stretching unit 5, a guide roll 6, and a transport direction changing unit 7. And a film cutting device 8 and a film winding unit 9.
  • the details of the extending portion 5 will be described later.
  • the manufacturing apparatus 1 does not need to be provided with the film cutting device 8.
  • the film feeding unit 2 feeds the long transversely stretched film (casting film) after being stretched in the width direction described above and supplies it to the stretching unit 5.
  • the film feeding section 2 may be configured separately from the web film forming apparatus, or may be configured integrally. In the former case, the film is drawn out from the film feeding unit 2 by winding the film once on the core after film formation and loading the wound body (long film original fabric) into the film feeding unit 2. . On the other hand, in the latter case, after the film is formed, the film feeding unit 2 performs a lateral stretching process without winding the web, and further feeds the web to the stretching unit 5.
  • the conveyance direction changing unit 3 changes the conveyance direction of the film fed from the film feeding unit 2 to a direction toward the entrance of the stretching unit 5 as an oblique stretching tenter.
  • a conveyance direction change part 3 is comprised including the turntable which rotates the turn bar which changes the conveyance direction by, for example, returning while conveying a film, and the turn bar in the surface parallel to a film.
  • the width of the entire manufacturing apparatus 1 can be made narrower, and the film feed position and angle can be finely controlled. This makes it possible to obtain a long obliquely stretched film with small variations in film thickness and optical value. Further, if the film feeding unit 2 and the conveyance direction changing unit 3 are movable (slidable and turnable), the right and left clips (gripping tools) sandwiching both ends of the long film in the width direction in the stretching unit 5 It is possible to effectively prevent the biting into the film.
  • the above-described film feeding unit 2 may be slidable and turnable so that a long film can be fed at a predetermined angle with respect to the entrance of the stretching unit 5.
  • a configuration in which the installation of the conveyance direction changing unit 3 is omitted may be employed.
  • At least one guide roll 4 is provided on the upstream side of the stretching portion 5 in order to stabilize the track during film travel.
  • the guide roll 4 may be composed of a pair of upper and lower rolls sandwiching the film, or may be composed of a plurality of roll pairs.
  • the guide roll 4 closest to the entrance of the extending portion 5 is a driven roll that guides the travel of the film, and is rotatably supported via a bearing portion (not shown).
  • a known material can be used as the material of the guide roll 4.
  • it is preferable to reduce the weight of the guide roll 4 by applying a ceramic coat to the surface of the guide roll 4 or applying chrome plating to a light metal such as aluminum.
  • one of the rolls upstream of the guide roll 4 closest to the entrance of the extending portion 5 is nipped by pressing the rubber roll.
  • a pair of bearing portions at both ends (left and right) of the guide roll 4 closest to the entrance of the extending portion 5 includes a first tension detecting device as a film tension detecting device for detecting the tension generated in the film in the roll,
  • a second tension detecting device is provided.
  • a load cell can be used as the film tension detection device.
  • the load cell a known tensile or compression type can be used.
  • a load cell is a device that detects a load acting on an applied point by converting it into an electrical signal using a strain gauge attached to the strain generating body.
  • the load cell is installed in the left and right bearing portions of the guide roll 4 closest to the entrance of the extending portion 5, so that the force of the running film on the roll, that is, in the film traveling direction generated in the vicinity of both side edges of the film.
  • the tension is detected independently on the left and right.
  • a strain gauge may be directly attached to a support that constitutes the bearing portion of the roll, and a load, that is, a film tension may be detected based on the strain generated in the support. The relationship between the generated strain and the film tension is measured in advance and is known.
  • the position and the transport direction of the film are adjusted by, for example, the transport direction changing section 3 described above so that the left and right film tension difference of the guide roll 4 closest to the entrance of the stretching section 5 becomes equal.
  • the film can be stably held by the gripping tool at the entrance of the stretching portion 5, and the occurrence of obstacles such as detachment of the gripping tool can be reduced.
  • the physical properties in the width direction of the film after oblique stretching by the stretching portion 5 can be stabilized.
  • At least one guide roll 6 is provided on the downstream side of the stretching portion 5 in order to stabilize the track during running of the film that is obliquely stretched in the stretching portion 5.
  • the transport direction changing unit 7 changes the transport direction of the stretched film transported from the stretching unit 5 to a direction toward the film winding unit 9.
  • the film traveling direction at the entrance of the stretching portion 5 and the film traveling direction at the exit of the stretching portion 5 It is necessary to adjust the angle between the two.
  • the traveling direction of the formed film is changed by the transport direction changing unit 3 to guide the film to the inlet of the stretching unit 5 and / or the traveling direction of the film from the outlet of the stretching unit 5 Is changed by the transport direction changing unit 7 to return the film to the direction of the film winding unit 9.
  • the film formation and oblique stretching are continuously performed.
  • the traveling direction of the film is changed by the transport direction changing unit 3 and / or the transport direction changing unit 7, and the film is formed by the film forming process and the heat treatment process. 1, that is, as shown in FIG. 1, the traveling direction of the film fed out from the film feeding portion 2 (feeding direction) and the traveling direction of the film immediately before being wound up by the film winding portion 9 ( The width of the entire apparatus with respect to the film traveling direction can be reduced by matching the winding direction.
  • the transport direction changing unit 3 and the film feeding unit 2 and the film winding unit 9 are arranged so as not to interfere with each other. It is preferable to change the traveling direction of the film by the transport direction changing unit 7.
  • the transport direction changing units 3 and 7 as described above can be realized by a known method such as using an air flow roll or an air turn bar.
  • the film cutting device 8 cuts the film stretched by the stretching section 5 (long oblique stretched film) along the cross section including the width direction, and has a cutting member.
  • the cutting member is composed of, for example, a scissor or a cutter (including a slitter, a strip-shaped blade (Thomson blade)), but is not limited thereto, and in addition, a rotating circular saw, a laser irradiation device, etc. It is also possible to configure.
  • the film take-up unit 9 takes up the film conveyed from the stretching unit 5 via the conveyance direction changing unit 7, and includes, for example, a winder device, an accumulator device, a drive device, and the like. It is preferable that the film winding unit 9 has a structure that can be slid in the horizontal direction in order to adjust the film winding position.
  • the film take-up unit 9 can finely control the film take-up position and angle so that the film can be taken at a predetermined angle with respect to the exit of the stretching unit 5. Thereby, it becomes possible to obtain a long obliquely stretched film with small variations in film thickness and optical value. In addition, it is possible to effectively prevent wrinkling of the film and to improve the winding property of the film, so that the film can be wound up in a long length.
  • the film take-up unit 9 constitutes a take-up unit that takes up the film stretched and transported by the stretch unit 5 with a constant tension. Note that a take-up roll for taking up the film with a constant tension may be provided between the stretching unit 5 and the film take-up unit 9. Moreover, you may give the function as said take-up roll to the guide roll 6 mentioned above.
  • the take-up tension T (N / m) of the stretched film is preferably adjusted between 100 N / m ⁇ T ⁇ 300 N / m, preferably 150 N / m ⁇ T ⁇ 250 N / m.
  • the take-up tension is 100 N / m or less, sagging and wrinkles of the film are likely to occur, and the retardation and orientation angle profile in the film width direction are also deteriorated.
  • the take-up tension is 300 N / m or more, the variation of the orientation angle in the film width direction is deteriorated, and the width yield (taken efficiency in the width direction) is deteriorated.
  • the fluctuation of the take-up tension T it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ⁇ 5%, preferably less than ⁇ 3%.
  • the variation in the take-up tension T is ⁇ 5% or more, variations in optical characteristics in the width direction and the flow direction (conveying direction) increase.
  • the load applied to the first roll (guide roll 6) on the outlet side of the stretching section 5, that is, the film tension is measured, and the value becomes constant.
  • the method of controlling the rotational speed of the take-up roll or the take-up roll of the film take-up part 9 by a general PID control system is mentioned.
  • Examples of the method for measuring the load include a method in which a load cell is attached to the bearing portion of the guide roll 6 and a load applied to the guide roll 6, that is, a film tension is measured.
  • a load cell a known tensile type or compression type can be used.
  • the stretched film is released from the exit of the stretching section 5 after being gripped by the gripping tool of the stretching section 5, and both ends (both sides) of the film gripped by the gripping tool are trimmed as necessary. Then, the film is cut into a predetermined length by the film cutting device 8 and is wound up around a winding core (winding roll) sequentially to form a wound body of an obliquely stretched film.
  • a winding core winding roll
  • FIG. 2 is a plan view schematically showing an example of the rail pattern of the extending portion 5.
  • this is an example, and the configuration of the extending portion 5 is not limited to this.
  • the oblique stretching step is preferably performed using a tenter (an oblique stretching machine) capable of oblique stretching as the stretching portion 5.
  • This tenter is an apparatus that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it.
  • This tenter includes a heating zone Z, a pair of rails Ri and Ro on the left and right, and a number of gripping tools Ci and Co that travel along the rails Ri and Ro to convey a film (in FIG. 2, a set of gripping tools). Only). Details of the heating zone Z will be described later.
  • Each of the rails Ri and Ro is configured by connecting a plurality of rail portions with connecting portions (white circles in FIG. 2 are examples of connecting portions).
  • the gripping tool Ci / Co is composed of a clip that grips both ends of the film in the width direction.
  • the feeding direction D1 of the long film is different from the winding direction D2 of the stretched long diagonally stretched film, and forms a feeding angle ⁇ i with the winding direction D2.
  • the feeding angle ⁇ i can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
  • the rail pattern of the tenter has an asymmetric shape on the left and right. And a rail pattern can be adjusted now manually or automatically according to orientation angle (theta) given to the long diagonally stretched film which should be manufactured, a draw ratio, etc.
  • FIG. In the oblique stretching machine used in the manufacturing method of the present embodiment, it is preferable that the positions of the rail portions and the rail connecting portions constituting the rails Ri and Ro can be freely set and the rail pattern can be arbitrarily changed.
  • the tenter gripping tool Ci ⁇ Co travels at a constant speed with a constant interval from the front and rear gripping tools Ci ⁇ Co.
  • the traveling speed of the gripping tool Ci / Co can be selected as appropriate, but is usually 1 to 150 m / min.
  • the difference in travel speed between the pair of left and right grippers Ci / Co is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed on the left and right of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the left and right grippers Ci / Co is substantially the same speed. Is required.
  • a high bending rate is often required for the rail that regulates the trajectory of the gripping tool, particularly at a location where the film is transported obliquely.
  • the obliquely stretched tenter used for imparting oblique orientation to a long film can freely set the orientation angle of the film by variously changing the rail pattern, and further, the orientation axis of the film. It is preferable that the tenter be capable of orienting the (slow axis) horizontally and evenly with high precision across the film width direction and controlling the film thickness and retardation with high precision.
  • Both ends of the long film are gripped by the left and right grippers Ci ⁇ Co, and are conveyed in the heating zone Z as the grippers Ci • Co travel.
  • the left and right grips Ci / Co are opposed to a direction substantially perpendicular to the film traveling direction (feeding direction D1) at the entrance portion (position A in the drawing) of the extending portion 5, and are asymmetric rails.
  • Each travels on Ri and Ro, and the film gripped at the exit portion (position B in the figure) at the end of stretching is released.
  • the film released from the gripping tool Ci / Co is wound around the core by the film winding portion 9 described above.
  • Each of the pair of rails Ri and Ro has an endless continuous track, and the grippers Ci and Co that have released the film at the exit portion of the tenter travel on the outer rail and sequentially return to the entrance portion. It is supposed to be.
  • the left and right gripping tools Ci and Co which are opposed to each other at the position A in the figure, move as the rails run on the rails Ri and Ro.
  • the gripping tool Ci traveling on the Ri side (in-course side) has a positional relationship preceding the gripping tool Co traveling on the rail Ro side (out-course side).
  • one gripping tool Ci is first in position B at the end of film stretching.
  • the straight line connecting the gripping tools Ci and Co is inclined by an angle ⁇ L with respect to the direction substantially perpendicular to the film winding direction D2.
  • the long film is obliquely stretched at an angle of ⁇ L with respect to the width direction.
  • substantially vertical indicates that the angle is in a range of 90 ⁇ 1 °.
  • the heating zone Z of the stretching section 5 is composed of a preheating zone Z1, a stretching zone Z2, and a heat fixing zone Z3.
  • the film gripped by the gripping tool Ci / Co passes through the preheating zone Z1, the stretching zone Z2, and the heat fixing zone Z3 in this order.
  • the preheating zone Z1 and the stretching zone Z2 are separated by a partition, and the stretching zone Z2 and the heat fixing zone Z3 are separated by a partition.
  • the preheating zone Z1 refers to a section in which the gripping tool Ci / Co that grips both ends of the film travels at the left and right (in the film width direction) at a constant interval at the entrance of the heating zone Z.
  • the stretching zone Z2 refers to a section from when the gap between the gripping tools Ci and Co that grips both ends of the film opens until a predetermined gap is reached. At this time, the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
  • the heat setting zone Z3 refers to a section after the stretching zone Z2 in which the interval between the gripping tools Ci and Co is constant, and the gripping tools Ci and Co at both ends travel in parallel with each other. .
  • the stretched film passes through the heat setting zone Z3 and then passes through a section (cooling zone) in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg (° C.) of the thermoplastic resin constituting the film. May be.
  • a rail pattern that narrows the interval between the gripping tools Ci and Co facing each other in advance may be used.
  • the temperature of the preheating zone Z1 is Tg to Tg + 30 ° C.
  • the temperature of the stretching zone Z2 is Tg to Tg + 30 ° C.
  • the temperature of the heat setting zone Z3 and the cooling zone is Tg-30 to Tg + 20 ° C. with respect to the glass transition temperature Tg of the thermoplastic resin. It is preferable to set.
  • the lengths of the preheating zone Z1, the stretching zone Z2, and the heat setting zone Z3 can be appropriately selected.
  • the length of the preheating zone Z1 is normally 100 to 150% of the length of the stretching zone Z2, and the length of the heat setting zone Z3. The length is usually 50 to 100%.
  • the draw ratio R (W / Wo) in the oblique stretching step is preferably 1.3 to 3. 0.0, more preferably 1.5 to 2.8.
  • the draw ratio is in this range, the thickness unevenness in the width direction of the film is preferably reduced.
  • said draw ratio R is equal to a magnification (W2 / W1) when the interval W1 between both ends of the clip held at the tenter inlet portion becomes the interval W2 at the tenter outlet portion.
  • the method of oblique stretching in the stretching portion 5 is not limited to the above-described method.
  • the oblique stretching may be performed by simultaneous biaxial stretching as disclosed in JP-A-2008-23775. good.
  • simultaneous biaxial stretching means that both ends of the supplied long film in the width direction are gripped by each gripping tool, and the long film is transported while each gripping tool is moved, and the long film is transported.
  • This is a method of stretching a long film in an oblique direction with respect to the width direction by making the moving speed of one gripping tool different from the moving speed of the other gripping tool while keeping the direction constant.
  • oblique stretching may be performed by a method disclosed in JP2011-11434A.
  • the orientation angle ⁇ is inclined in the range of, for example, greater than 0 ° and less than 90 ° with respect to the winding direction, and at a width of at least 1300 mm, It is preferable that the variation in the in-plane retardation Ro in the width direction is 10 nm or less and the variation in the orientation angle ⁇ is 10 ° or less.
  • the in-plane retardation value Ro (550) of the long obliquely stretched film measured at a wavelength of 550 nm is preferably in the range of 60 to 220 nm, and more preferably in the range of 65 to 200 nm. More preferably, it is in the range of 75 to 150 nm.
  • the variation of the in-plane retardation Ro is 2 nm or less and preferably 1 nm or less in at least 1300 mm in the width direction.
  • the variation in the orientation angle ⁇ is preferably 10 ° or less, more preferably 5 ° or less, in at least 1300 mm in the width direction. Preferably, it is most preferably 1 ° or less.
  • a long diagonally stretched film having a variation in the orientation angle ⁇ exceeding 0.5 is bonded to a polarizer to form a circularly polarizing plate, and when this is installed in an image display device such as an organic EL display device, light leakage occurs, Contrast may be reduced.
  • the average thickness of the long obliquely stretched film obtained in the oblique stretching step is 20 to 60 ⁇ m, preferably 10 to 60 ⁇ m, more preferably 10 to 50 ⁇ m, particularly from the viewpoint of mechanical strength and thinning of the display device.
  • the thickness is preferably 15 to 35 ⁇ m.
  • the thickness unevenness in the width direction of the long obliquely stretched film affects whether or not the film can be wound, and is preferably 3 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the first optical film is obtained by performing the following heat treatment (i) or (ii) on the obliquely stretched obliquely stretched film (casting film).
  • the heat treatment process to obtain is performed.
  • the cast film is wound up to form a roll body, which is 60 to 80 ° C., 20% Heat treatment for 3-5 days under conditions of RH or lower.
  • the film after film formation and stretching is conveyed by a conveyance roller at a tension of 120 to 150 N, and the film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds via the conveyance roller.
  • the film can be heat-corrected by fixing the film stretched obliquely in a wound state or in a tensioned state, whereby the film can be thermally corrected, and the slow axis direction of the first optical film
  • the dimensional change rate L ( ⁇ ) and the dimensional change rate L ( ⁇ + 90) in the direction orthogonal to the slow axis can be adjusted to values satisfying the above equations (1) and (2).
  • the heat treatments (i) and (ii) will be described.
  • embossing is performed in which embossed portions are provided at both ends in the width direction of the film obtained after oblique stretching.
  • the embossed part is a constant film consisting of minute continuous irregularities on the film in order to prevent the back and front surfaces of the wound films from coming into close contact with each other before winding the long film. It has a width pattern.
  • one surface (for example, the upper surface) of the film is protruded in a convex shape, a relatively concave shape is formed on the other surface (for example, the lower surface) of the film corresponding to the convex shape.
  • an embossing apparatus including an embossing roller and a back roller disposed opposite to the embossing roller via a film.
  • the roller diameter of the embossing roller is preferably in the range of 5 to 20 cm, and more preferably in the range of 6 to 15 cm.
  • the roller diameter of the embossing roller is more than 20 cm, the distance between the heat source (arranged inside the embossing roller) and the surface of the embossing roller is too large, and temperature unevenness may occur on the surface of the embossing roller. Therefore, a portion having a high elastic modulus and a portion having a low elastic modulus are generated in the embossed portion to be formed, and a portion having a low elastic modulus is easily crushed.
  • the roller diameter of the embossing roller is less than 5 cm, the rotation axis is likely to be shaken, and the height of the convex portions of the embossing formed tends to vary. The embossed part formed higher than the set height tends to be crushed.
  • the material of the back roller is preferably made of metal for the purpose of uniformly cooling the film on which the embossed portion is formed.
  • metal type for example, SUS, titanium, stainless steel, chrome plating, copper and the like are preferable.
  • the metal back roller is easier to cool the film more uniformly than, for example, a rubber back roller, so that the cellulose ester is easily crystallized uniformly, and an embossed portion having high strength (high elastic modulus) is formed. Can do.
  • the clearance between the embossing roller and the back roller can be about 1 to 30 ⁇ m, preferably about 1 to 15 ⁇ m.
  • the nip pressure between the embossing roller and the back roller can be about 100 to 10,000 Pa.
  • both ends of the film in the width direction are nipped by the embossing roller and the back roller, and the both ends of the film in the width direction are embossed.
  • the surface temperature of the embossing roller is preferably in the range of 150 to 350 ° C, more preferably in the range of 160 to 300 ° C, and particularly preferably in the range of 180 to 220 ° C. If the surface temperature of the embossing roller is within the range of 150 to 350 ° C., the film can be sufficiently melted, and even when cooled, the cellulose ester can be sufficiently crystallized, and the embossed portion with high strength can be obtained. Easy to form. Moreover, the film does not melt too much, and sticking of the melt of the film to the embossing roller can be prevented.
  • the embossed portions are formed by embossing rollers at both ends in the width direction of the film
  • a temperature difference within a range of 5 to 20 ° C. is applied to the surface temperature of the embossing rollers on both sides. It is preferable to form the embossed portion. Since the first optical film is stretched obliquely, there is anisotropy in the elastic modulus at both ends in the width direction of the film, so the difference in elastic modulus is canceled and the crush resistance of the convex portion of the embossed portion is made uniform.
  • an embossed portion is formed with a high-temperature embossing roller at the end portion having a low elastic modulus, and the embossing roller surface temperature is set at a low temperature within a range of 5 to 20 ° C. at the end portion having a high elastic modulus. It is preferable to form an embossed part with a roller.
  • the surface temperature difference is more preferably in the range of 7 to 15 ° C.
  • the surface temperature of the back roller depends on the surface temperature of the embossing roller, but is preferably in the range of 30 to 100 ° C, more preferably in the range of 50 to 80 ° C.
  • the film is not rapidly cooled, the cellulose ester is easily crystallized uniformly, and an embossed part having a high elastic modulus is obtained.
  • the cellulose ester contained in the film can be easily cooled and crystallized, and the thermal expansion of the film can be suppressed to prevent undulation of the front and back surfaces of the film near the embossed portion.
  • the undulations on the front and back surfaces of the film near the embossed portion occur, the films are likely to stick to each other and the film is easily torn.
  • the film conveyance speed during embossing is preferably in the range of 50 to 120 m / min.
  • the productivity can be improved, and the pressure of the embossing roller and the heat of the embossing roller and the back roller can be easily transferred to the film, thereby being included in the film.
  • a cellulose ester is crystallized uniformly, and an embossed part with high strength is obtained.
  • the film is wound up in a roll shape at 60 to 80 ° C. under 20% RH for 3 to 5 days. Heat treatment.
  • the film can be wound using a winder.
  • the film winding method is not particularly limited, and for example, a constant torque method, a constant tension method, a taper tension method, or the like can be used.
  • the winding tension at the time of winding the film can be about 50 to 170N.
  • the period of the heat treatment may be appropriately determined depending on the set temperature. Usually, it is preferable to set the temperature relatively low so that the heat treatment effect at the outside of the winding, the center of the winding, and the core is not biased.
  • the heat treatment In order to carry out the heat treatment stably, it is preferably carried out in a place where the temperature and humidity can be adjusted, and preferably in a heat treatment chamber such as a clean room without dust.
  • the winding core for winding the antireflection film into a roll is not particularly limited as long as it is a cylindrical core, but is preferably a hollow plastic core, and the plastic material is a heat resistant plastic that can withstand heat treatment temperatures.
  • resins such as phenol resin, xylene resin, melamine resin, polyester resin, and epoxy resin can be used.
  • a thermosetting resin reinforced with a filler such as glass fiber is preferred.
  • the number of turns around these winding cores is preferably 100 turns or more, more preferably 500 turns or more, and the winding thickness is preferably 5 cm or more.
  • the roll when performing the heat treatment in a state of winding a long film, the roll is preferably rotated, and the rotation is preferably performed at a speed of 1 rotation or less per minute, and may be continuous or intermittent. Rotation may be possible. Moreover, it is preferable to perform rewinding of the roll once or more during the heating period.
  • the stop time is within 10 hours, the stop position is preferably made uniform in the circumferential direction, and the stop time is within 10 minutes. More preferred. Most preferred is continuous rotation.
  • the time required for one rotation is preferably 10 hours or less, and if it is early, it becomes a burden on the apparatus, so the range of 15 minutes to 2 hours is preferable in practice.
  • the optical film roll can be rotated during movement and storage.
  • rotation is effective as a countermeasure against black bands that occur when the storage period is long. Function.
  • the film wound in a roll is wrapped with a resin film, preferably a moisture-proof sheet deposited with aluminum on the resin film, and then the winding shaft portion is fastened with a string or rubber band, and the above heat treatment is performed.
  • a resin film preferably a moisture-proof sheet deposited with aluminum on the resin film
  • the winding shaft portion is fastened with a string or rubber band, and the above heat treatment is performed.
  • This makes it easy to maintain a humidity of 20% RH or less when heat-treating the film wound up in a roll shape, and further suppresses the occurrence of moisture absorption, foreign matter adhesion, and the like. It becomes possible to produce a high-quality first optical film.
  • the entire peripheral surface and both axial end surfaces of the film wound in a roll shape on a cylindrical core are covered with a sheet-like packaging material
  • a sheet-like packaging material An example is an embodiment in which both ends in the roll circumferential direction are overlapped with each other, and a joining portion between the ends of the packaging material is fastened with a gum tape or the like.
  • a form that is hermetically sealed is preferred. It is better to use a form in which the core part is fastened with a string or a rubber band, etc., rather than fastening the left and right ends with gummed tape multiple times as in the past and making the inside substantially sealed without gaps It is a preferable embodiment in that the roll body can be appropriately absorbed and released during storage or transportation, and the optical characteristics and physical properties of the optical film are improved.
  • packaging materials include films of polyolefin-based synthetic resins such as polyethylene and polypropylene, and films of polyester-based synthetic resins such as polyethylene terephthalate and polyethylene naphthalate.
  • the thickness of the packaging material is preferably 10 ⁇ m or more from the viewpoint of maintaining moisture permeability, and is preferably 100 ⁇ m or less from the viewpoint of handling such as rigidity.
  • the moisture permeability of a packaging material changes with the thickness of the synthetic resin film which comprises a packaging material, the moisture permeability of a packaging material can be adjusted suitably by adjusting the thickness of a synthetic resin film.
  • this packaging material is 10 g / m 2 or less per day as specified in JIS Z0208, it is possible to prevent the winding shape from being deteriorated and foreign matter failure, and to cause scratches due to it. Since it becomes difficult to produce, it is preferable.
  • the roll body of the optical film of the present invention is packaged with a packaging material having a moisture permeability of 5 g / m 2 or less per day specified by JIS Z 0208. Further, it is more preferable to package with a packaging material having a moisture permeability of 1 g / m 2 or less. Thereby, deterioration at the time of storage in the physical distribution state such as storage and transportation of the film (deterioration of winding shape, occurrence of sticking failure between films and foreign matter failure) can be further suppressed.
  • polyolefin synthetic resin films such as polyethylene and a polypropylene, and a polyethylene terephthalate
  • polyester synthetic resin films such as polyethylene naphthalate are laminated
  • a metal such as aluminum is vapor-deposited or a thin film of metal is joined to these films.
  • the thickness of the packaging material made of these composite materials is preferably 1 ⁇ m or more from the viewpoint of maintaining moisture permeability, and is preferably 50 ⁇ m or less from the viewpoint of handling such as rigidity. And since the moisture permeability of a packaging material changes with the thickness of a composite material, the moisture permeability of a packaging material can be suitably adjusted by adjusting thickness.
  • composite materials in which polyolefin-based synthetic resin films such as polyethylene and polypropylene and polyester-based synthetic resin films such as polyethylene terephthalate and polyethylene naphthalate are laminated, and whether metal such as aluminum is deposited on these films.
  • a composite material in which metal thin films are bonded and laminated can be particularly preferably used in terms of handling because high moisture permeation-preventing properties are obtained and the material is lightweight.
  • the above packaging material can exhibit the above effect by winding the roll of the optical film of the present invention at least once, but it may be wound twice or more.
  • the film is heat-corrected to reduce the dimensional change rate, and the dimensional change rate L ( ⁇ ) in the slow axis direction and the dimensional change rate L in the direction perpendicular to the slow axis.
  • the heat treatment (ii) may be performed by any apparatus as long as the apparatus has a transport roller group capable of stretching the film with the tension and heating the film in the temperature range.
  • the heat treatment is preferably performed using an apparatus having 300 to 600 conveying rollers.
  • the film is heat-corrected and the dimensional change rate is reduced.
  • the first optical film in which the dimensional change rate L ( ⁇ ) in the slow axis direction and the dimensional change rate L ( ⁇ + 90) in the direction perpendicular to the slow axis satisfy the above formulas (1) and (2). Obtainable.
  • the heat melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like.
  • the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy.
  • the plurality of raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
  • a known method can be applied to pelletization, for example, dry cellulose acylate, plasticizer, and other additives are fed to an extruder with a feeder, and kneaded using a single or twin screw extruder, It can be obtained by extruding in a strand form from a die, cooling with water or air, and cutting.
  • the additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders.
  • a small amount of additives such as fine particles and antioxidants are preferably mixed in advance in order to mix uniformly.
  • the extruder used for pelletization preferably has a method of processing at as low a temperature as possible so that pelletization is possible so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above.
  • the raw material powder can be put into a feeder as it is, supplied to an extruder, heated and melted, and then directly formed into a film without being pelletized.
  • the pellets are extruded using a single or twin screw type extruder and the melting temperature is within the range of 200 to 300 ° C.
  • the melting temperature is within the range of 200 to 300 ° C.
  • the extrusion flow rate is preferably performed stably by introducing a gear pump or the like.
  • a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
  • Stainless steel fiber sintered filter is made by compressing the stainless fiber body in a complicatedly intertwined state, and sintering and integrating the contact points. The density is changed according to the thickness and compression amount of the fiber, and the filter is filtered. The accuracy can be adjusted.
  • Additives such as plasticizers and fine particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
  • the film temperature on the touch roller side when the film is nipped by the cooling roller and the elastic touch roller is preferably in the range of Tg or more and Tg + 110 ° C. or less of the film.
  • a known elastic touch roller can be used as the elastic touch roller having an elastic surface used for such a purpose.
  • the elastic touch roller is also called a pinching rotary body, and a commercially available one can also be used.
  • the film obtained as described above passes through the step of contacting the cooling roller, and is then subjected to stretching treatment by the transverse stretching step and the oblique stretching step.
  • the stretching method a known roller stretching machine or tenter can be preferably used.
  • the stretching temperature is usually preferably in the temperature range of Tg to (Tg + 60) ° C. of the resin constituting the film.
  • the second optical film according to the present invention is provided to face the other surface of the polarizer.
  • the second optical film is preferably stretched in the longitudinal direction or the width direction, and its slow axis and the absorption axis of the polarizer are preferably parallel or orthogonal.
  • the same material as that of the first optical film can be used, and the description thereof will be omitted.
  • cellulose acetate or cellulose acetate propionate is preferable.
  • the polarizing plate may include a functional layer on the surface of the optical film disposed on the viewing side of the first optical film and the second optical film.
  • a functional layer for example, a hard coat layer made of an ultraviolet curable resin or the like, or an antiglare layer is provided.
  • the hard coat layer or antiglare layer used as the functional layer include a hard coat layer described in JP-A No. 2003-114333, JP-A No. 2004-203090, 2004-354699, and No. 2004-354828.
  • An antiglare layer can be used.
  • the hard coat layer preferably contains a cured product of an actinic radiation curable compound, and the actinic radiation curable compound includes a component containing a monomer having an ethylenically unsaturated double bond.
  • the actinic radiation curable compound include an ultraviolet curable compound and an electron beam curable compound, and a compound that is cured by ultraviolet irradiation is preferable from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness).
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
  • the dry thickness of the hard coat layer is an average layer thickness of 0.01 to 20 ⁇ m, preferably 0.5 to 10 ⁇ m. More preferably, it is in the range of 0.5 to 5 ⁇ m.
  • the method for applying the hard coat layer known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used.
  • a gravure coater a dip coater
  • a reverse coater a wire bar coater
  • a die coater a die coater
  • an ink jet method After applying the hard coat layer composition, it is dried, irradiated with active rays (also referred to as UV curing treatment)) and cured, and if necessary, it may be heat treated after curing.
  • active rays also referred to as UV curing treatment
  • the antiglare layer is a layer that blurs the outline of the image reflected on the surface of the film substrate and the outside light.
  • an image display device such as a liquid crystal display, organic EL display, plasma display, etc. It is a functional layer that prevents reflection of light and reflected images.
  • the antiglare layer may also serve as a hard coat layer.
  • the antiglare layer is preferably formed by adding and dispersing the following fine particles in the actinic radiation curable resin used for the hard coat layer.
  • the fine particles include fine particles such as inorganic fine particles and organic fine particles.
  • the inorganic fine particles include silicon oxide, magnesium oxide, and calcium carbonate.
  • the organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, polystyrene resin powder, and melamine resin powder.
  • the arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is preferably in the range of 0.3 to 1.5 ⁇ m from the viewpoint of imparting antiglare properties, and more preferably 0.35 to 1.3 ⁇ m. And particularly preferably in the range of 0.5 to 1.3 ⁇ m. Within the above range, the antiglare property and the slipperiness of the antiglare layer are satisfied, and an antiglare layer having a high hardness (4H or more) can be obtained even with a thin film.
  • the angle ⁇ between the slow axis and the absorption axis of the polarizer is in the range of 30 to 60 ° by being obliquely stretched, and the transmission axis (or absorption axis) is long.
  • a long polarizing plate can be formed by laminating with a long polarizer in a direction with a roll to roll.
  • the method for producing a polarizing plate of the present invention further includes a step of removing the embossed portion of the first optical film. It is preferable.
  • the polarizer is preferably sandwiched between the first optical film and the second optical film according to the present invention.
  • the bonding of the optical film and the polarizer is not particularly limited, but can be performed using a completely saponified polyvinyl alcohol adhesive after saponifying the optical film.
  • a photocurable adhesive is used from the point etc. which the elasticity modulus of the adhesive layer obtained is high and it is easy to suppress a deformation
  • Preferred examples of the photocurable adhesive include ( ⁇ ) cationic polymerizable compound, ( ⁇ ) photocationic polymerization initiator, and ( ⁇ ) a wavelength longer than 380 nm, as disclosed in JP 2011-08234 A. And a photo-curable adhesive composition containing each component of a photosensitizer exhibiting maximum absorption in the light of ( ⁇ ) and a naphthalene-based photosensitization aid.
  • other photocurable adhesives may be used.
  • the polarizing plate includes (1) a pretreatment step for easily adhering the surface of the optical film to which the polarizer is bonded, and (2) at least one of the adhesive surfaces of the polarizer and the optical film. (3) a bonding step of bonding the polarizer and the optical film through the obtained adhesive layer, and (4) a polarizer and the optical film through the adhesive layer. It can manufacture by the manufacturing method including the hardening process which hardens an adhesive bond layer in the bonded state. What is necessary is just to implement the pre-processing process of (1) as needed.
  • Pretreatment process In the pretreatment step, an easy adhesion treatment is performed on the adhesive surface of the optical film with the polarizer.
  • easy adhesion processing is performed on the bonding surface of each optical film with the polarizer. Examples of the easy adhesion treatment include corona treatment and plasma treatment.
  • the photocurable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the optical film.
  • the application method is not particularly limited. For example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used.
  • the method of pressurizing with a roller etc. and spreading uniformly can also be utilized.
  • Bonding process For example, when a photocurable adhesive is applied to the surface of the polarizer in the previous application step, an optical film is superimposed thereon. When a photocurable adhesive is applied to the surface of the optical film in the previous application step, a polarizer is superimposed thereon. In addition, when a photocurable adhesive is cast between the polarizer and the optical film, the polarizer and the optical film are superposed in that state.
  • the optical film is bonded to both surfaces of the polarizer, and the photocurable adhesive is used on both surfaces, the optical film is superimposed on the both surfaces of the polarizer via the photocurable adhesive.
  • the pressure is usually sandwiched between rolls from both sides.
  • the material of the roll metal, rubber or the like can be used.
  • the rollers arranged on both sides may be made of the same material or different materials.
  • the active energy ray is irradiated to the uncured photocurable adhesive to cure the adhesive layer containing the epoxy compound or the oxetane compound.
  • the overlapped polarizer and the optical film are bonded via the photocurable adhesive.
  • the active energy rays are irradiated from either one of the optical films while the optical films are superimposed on both sides of the polarizer via a photocurable adhesive. It is advantageous to simultaneously cure the photocurable adhesive on both sides.
  • active energy rays visible rays, ultraviolet rays, X-rays, electron beams and the like can be used, and since they are easy to handle and have a sufficient curing rate, electron beams or ultraviolet rays are generally preferably used.
  • the acceleration voltage is preferably in the range of 5 to 300 kV, more preferably in the range of 10 to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and the electron beam rebounds, There is a risk of damaging the polarizer.
  • the irradiation dose is in the range of 5 to 100 kGy, more preferably in the range of 10 to 75 kGy.
  • the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent optical film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.
  • Arbitrary appropriate conditions can be employ
  • the dose of ultraviolet rays in the range of 50 ⁇ 1500mJ / cm 2 in accumulated light quantity, and even more preferably in the range of 100 ⁇ 500mJ / cm 2.
  • the thickness of the adhesive layer is not particularly limited, but is usually in the range of 0.01 to 10 ⁇ m, and preferably in the range of 0.5 to 5 ⁇ m.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 10 of the present embodiment.
  • the liquid crystal display device 10 includes a liquid crystal cell 11, a polarizing plate 12 disposed on the viewing side with respect to the liquid crystal cell 11, a polarizing plate 13 disposed on the side opposite to the viewing side with respect to the liquid crystal cell 11, and a polarization
  • positioned with respect to the polarizing plate 12 at the visual recognition side are provided.
  • the liquid crystal cell 11 is configured by sandwiching a liquid crystal layer between a pair of substrates.
  • the liquid crystal cell 11 has a plurality of pixels arranged in a matrix, and performs display by turning on / off each pixel by a switching element such as a TFT (Thin Film Transistor).
  • TFT Thin Film Transistor
  • the front plate 15 serves as an exterior cover of the liquid crystal display device 10 and is a transparent substrate made of glass or resin (for example, acrylic) or a touch panel module. It is preferable that a filler (not shown) made of, for example, an ultraviolet curable resin is filled between the front plate 15 and the polarizing plate 12. By providing the filler, an air layer is prevented from being formed between the front plate 15 and the polarizing plate 12, and the interface between the front plate 15 and the air layer and between the polarizing plate 12 and the air layer are prevented. It is possible to improve the visibility of the display image by suppressing reflection of light at the interface.
  • a filler made of, for example, an ultraviolet curable resin
  • the polarizing plate 12 As the polarizing plate 12, the polarizing plate of the present invention described above is used, and a polarizer 21 that transmits predetermined linearly polarized light, and a first side that is disposed on the viewing side with respect to the polarizer 21 via an adhesive layer or the like. It has the optical film 22 and the functional layer 23 arrange
  • the functional layer 23 is composed of, for example, a hard coat layer made of an ultraviolet curable resin or an antiglare layer.
  • the polarizing plate 12 has a second optical film 24 disposed on the liquid crystal cell 11 side with respect to the polarizer 21 via an adhesive layer or the like.
  • the polarizer 21 is obtained, for example, by staining a polyvinyl alcohol film with a dichroic dye and stretching the film at a high magnification. After the polarizer 21 is subjected to alkali treatment (also referred to as saponification treatment), the first optical film 22 is bonded to one surface side through an adhesive layer or the like, and the second optical surface is bonded to the other surface side. The film 24 is bonded through an adhesive layer or the like.
  • the adhesive layer is, for example, a layer made of a polyvinyl alcohol adhesive (PVA adhesive, water glue), but may be a layer made of an ultraviolet curable adhesive (UV adhesive).
  • PVA adhesive polyvinyl alcohol adhesive
  • UV adhesive ultraviolet curable adhesive
  • These adhesives are liquid in a state where they are applied to an adhesive surface, and are bonded to each other by being dried or cured by ultraviolet irradiation after application. That is, the adhesive layer bonds the polarizer 21 and the first optical film 22, and the polarizer 21 and the second optical film 24, respectively, according to the state change from the liquid state.
  • the adhesive layer is an adhesive layer (a sheet having an adhesive on the base material) that adheres the two without causing such a change in the state of bonding the two by a change in state from the liquid state.
  • the adhesive layer ).
  • the thickness of the adhesive layer is preferably in the range of more than 0.1 ⁇ m and not more than 5 ⁇ m.
  • the polarizing plate 12 can be easily made thinner as compared with a configuration using an acrylic pressure-sensitive adhesive (thickness of about 10 ⁇ m).
  • the first optical film 22 is a layer that imparts an in-plane retardation of about 1 ⁇ 4 of the wavelength to transmitted light, and is composed of a cellulose ester film having a thickness of 20 to 60 ⁇ m that is obliquely stretched. It is preferable.
  • the angle (crossing angle) ⁇ formed between the slow axis of the first optical film 22 and the absorption axis of the polarizer 21 is in the range of 30 to 60 °, whereby linearly polarized light from the polarizer 21 is It is converted into circularly polarized light or elliptically polarized light by the first optical film 22.
  • the hard coat layer may contain an organic compound having an ultraviolet absorbing function.
  • organic UV absorber for example, Tinuvin 928 (manufactured by BASF Japan Ltd.) can be used.
  • the second optical film 24 is a cellulose ester film having a thickness of 20 to 60 ⁇ m, and is provided as a film for protecting the back side of the polarizer 21. Note that the second optical film 24 may be provided as an optical film that also serves as a retardation film having a desired optical compensation function.
  • the polarizing plate 13 includes a polarizer 31 that transmits predetermined linearly polarized light, an optical film 32 that is disposed on the viewing side (liquid crystal cell 11 side) with respect to the polarizer 31 via an adhesive layer, and a polarizer 31.
  • the optical film 33 is disposed on the opposite side (backlight side) to the viewing side via an adhesive layer.
  • the polarizers 21 and 31 are arranged so as to be in a crossed Nicols state.
  • the same thing as the polarizer 21 and the 2nd optical film 24 can be used, respectively.
  • the first optical film 22 and the second optical film 24 located on both sides of the polarizer 21 are both cellulose esters composed of a thin film having a thickness of 20 to 60 ⁇ m. Since the first optical film 22 that is obliquely stretched is disposed on the viewing side of the polarizer 21 that is a film, the first optical film 22 and the second optical film 24 absorb it. Warpage of the polarizing plate 12 due to variation in moisture can be effectively suppressed.
  • the hard coat layer or the anti-glare layer is provided as the functional layer 23 on the viewing side with respect to the first optical film 22, the surface of the polarizing plate 12 can be protected by this functional layer 23, or the antiglare function. Can be demonstrated.
  • the easily bonding layer for improving the adhesiveness of the 1st optical film 22 may be provided in the surface at the side of the polarizer 21 of the 1st optical film 22.
  • FIG. The easy adhesion layer is formed by performing an easy adhesion process on the surface of the first optical film 22.
  • the easy adhesion treatment includes corona (discharge) treatment, plasma treatment, flame treatment, itro treatment, glow treatment, ozone treatment, primer coating treatment, etc., and at least one of them may be performed.
  • corona treatment and plasma treatment are preferable as the easy adhesion treatment.
  • an overcoat layer may be formed on the functional layer 23.
  • the overcoat layer is preferably composed of an active energy ray curable resin (for example, an ultraviolet curable resin) similar to the hard coat layer described above.
  • an overcoat layer on the functional layer 23, the surface of the functional layer 23 can be protected.
  • both the overcoat layer and the functional layer 23 are hard coat layers, two hard coat layers are formed on one side of the first optical film 22, so that the surface protection of the polarizing plate 12 is ensured. Can be aimed at.
  • the overcoat layer may be composed of a hard coat layer that does not substantially contain an organic compound having an ultraviolet absorbing function or has a content (mass%) of an organic compound having an ultraviolet absorbing function that is smaller than that of the functional layer 23. preferable. In this case, it is possible to further suppress the elution of an organic compound having an ultraviolet absorption function contained in the functional layer 23 to the outside.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of the organic EL display device 50 of the present embodiment.
  • the organic EL display device 50 includes an organic EL light emitting element 51, a polarizing plate 52 disposed on the viewing side with respect to the organic EL light emitting element 51, a front plate 53 disposed on the viewing side with respect to the polarizing plate 52, It has.
  • the organic EL light emitting element 51 has a metal electrode, a TFT, an organic light emitting layer, a transparent electrode (ITO, etc.), an insulating layer, and a sealing layer in this order on a substrate using glass, polyimide, or the like.
  • the polarizing plate 52 and the front plate 53 are configured in the same manner as the polarizing plate 12 and the front plate 15 of the liquid crystal display device 10 described above.
  • the first polarizing plate 52 includes the first polarizing plate 52.
  • the optical film 62 is disposed closer to the organic EL light emitting element 51 than the polarizer 61, and the second optical film 64 is disposed closer to the viewing side than the polarizer 61.
  • the configuration is different from the liquid crystal display device 10 in that the functional layer 63 is disposed on the viewing side of the second optical film 64.
  • an organic EL display device includes an element (organic EL element) that is a light emitter by sequentially laminating a metal electrode, an organic light emitting layer, and a transparent electrode on a transparent substrate.
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene,
  • various combinations of structures such as a laminate of such a light-emitting layer and an electron injection layer made of a perylene derivative, or a stack of these hole injection layer, light-emitting layer, and electron injection layer are known. Yes.
  • holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the fluorescent material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • an organic EL display device in order to take out light emitted from the organic light emitting layer, at least one of the electrodes needs to be transparent, and is usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO). Is preferably used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
  • ITO indium tin oxide
  • the polarizing plate of the present invention can be applied to an organic EL display device composed of a large screen having a screen size of 20 inches or more, that is, a diagonal distance of 50.8 cm or more.
  • the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate.
  • the display surface of the organic EL image display device looks like a mirror surface.
  • an organic EL display device including an organic EL element having a transparent electrode on the surface side of an organic light emitting layer that emits light when a voltage is applied and a metal electrode on the back surface side of the organic light emitting layer, the surface side of the transparent electrode (visible)
  • a circularly polarizing plate on the side
  • light passing through it is transmitted through the transparent substrate, transparent electrode, and organic thin film, reflected by the metal electrode, and again transmitted through the organic thin film, transparent electrode, and transparent substrate. Since it becomes linearly polarized light again by the circularly polarizing plate, this linearly polarized light is orthogonal to the polarization direction of the polarizing plate and cannot pass through the polarizing plate.
  • the mirror surface of the metal electrode can be completely shielded.
  • Example 1 ⁇ Production of Polarizing Plate 101 >> ⁇ Production of first optical film> A first optical film ( ⁇ / 4 film) made of a cellulose ester film was produced according to the following method.
  • Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
  • Fine particle additive solution Based on the following composition, the fine particle dispersion was slowly added to a dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution. 99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion
  • a main dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtration using 244. In addition, the compound synthesize
  • the inside of the Kolben was depressurized to 4 ⁇ 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 ⁇ 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off.
  • A-1 was 1.3% by mass
  • A-2 was 13.4% by mass
  • A-3 was 13.1% by mass
  • A-4 was 31% by mass.
  • 0.7% by mass and A-5 was 40.5% by mass.
  • the average degree of substitution was 5.5.
  • Polyester was synthesized by the following steps.
  • Polyester has an ester of benzoic acid at the end of a polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid.
  • the acid value of the polyester was 0.10, and the number average molecular weight was 450.
  • the main dope was uniformly cast on a stainless steel belt support.
  • the solvent in the cast (long cast) long film was evaporated and peeled off from the stainless steel belt support (casting process).
  • the obtained film was dried to have a residual solvent amount of 10% by mass, and then stretched at a stretching ratio of 1.15 times the original width in the width direction at 170 ° C. using a tenter (horizontal Stretching step).
  • the long film is obliquely stretched at a stretching temperature of 185 ° C. and a stretching ratio of 1.7 times so that the orientation angle ⁇ is 45 ° using the manufacturing apparatus shown in FIG. A stretched film was produced (oblique stretching step).
  • the heat treatment step was performed by performing the heat treatment (i) or (ii) described above.
  • heat treatment of (i) When the heat treatment of (i) is performed, the end of the produced film is embossed within a range of 180 to 220 ° C., and then wound in a roll shape at 60 to 80 ° C., Heat treatment for 3-5 days under 20% RH or less.
  • heat treatment (i) -1 is embossed at 220 ° C., and the film wound up in a roll is covered with a moisture-proof sheet in three layers, and heated at 60 ° C. and 20% RH for 3 days. It is something to process.
  • embossing is performed at 180 ° C., the film wound up in a roll shape is covered with a moisture-proof sheet twice, and is heat-treated at 80 ° C.
  • heat treatment (ii) is one in which the film is heated at 140 ° C. for 600 seconds while being transported at a tension of 120 N by 500 transport rollers.
  • heat treatment (ii) -2 the film is heated at 170 ° C. for 40 seconds while being transported at a tension of 120 N by 500 transport rollers.
  • heat treatment (ii) -3 the film is heated at 120 ° C. for 200 seconds while being transported at a tension of 100 N by 200 transport rollers (comparative example).
  • the heat treatment of (ii) -1 was performed as a heat treatment step.
  • a 3000 m roll film was obtained as the first optical film.
  • the thickness of this film was 60 ⁇ m.
  • the following components were put into a sealed container and completely dissolved with heating and stirring.
  • the obtained solution was filtered with a filter equipped with a leaf disk filter at a temperature of 40 ° C. (boiling point of dichloromethane + 10 ° C.) to obtain a main dope.
  • the filter medium was Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. 244 was used.
  • composition of main dope Diacetylcellulose (acetyl group substitution degree: 2.32, weight average molecular weight 270,000) 70 parts by mass Cellulose acetate propionate (acetyl group substitution degree: 1.55, propionyl group substitution degree 0.91, total acyl group substitution degree 2.46, weight average molecular weight 280,000) 30 parts by mass Retardation increasing agent 4 masses Part Sugar ester (benzyl saccharose, average ester substitution degree 5.5) 11 parts by mass Dichloromethane 430 parts by mass Methanol 11 parts by mass
  • the obtained dope was uniformly cast on a stainless steel band support using a belt casting apparatus under the conditions of a dope liquid temperature of 35 ° C. and a width of 1.95 m and a final film thickness of 33 ⁇ m. .
  • the organic solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to form a web, and then the web was peeled from the stainless steel band support.
  • the obtained web was further preliminarily dried at 40 ° C. for 30 seconds so that the residual solvent amount was 5% by mass, and then the web was used as a tenter and 1.35 times the original width in the TD direction at 160 ° C. Stretched.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • the obtained film was slit to 1.6 m width, and knurled with a width of 10 mm and a height of 5 ⁇ m at both ends of the film, and wound on a core having an initial tension of 220 N / m and a final tension of 110 N / m and an inner diameter of 15.24 cm.
  • a cellulose ester film having a length of 4000 m and a dry film thickness of 33 ⁇ m was obtained as a second optical film.
  • the retardation value Ro (550) in the in-plane direction of the obtained second optical film was 50 nm, and the retardation value Rt (550) in the film thickness direction was 130 nm.
  • the following polarizer was produced with reference to Example 1 of Japanese Patent No. 4691205.
  • a laminated body in which a PVA layer having a thickness of 7 ⁇ m is formed on an amorphous PET base material is produced by air-assisted stretching at a stretching temperature of 130 ° C., and then the stretched laminated body is dyed with iodine or potassium iodide.
  • a colored laminate is produced, and the colored laminate is further stretched integrally with an amorphous PET substrate so that the total draw ratio becomes 5.94 times by stretching in boric acid water at a stretching temperature of 65 degrees.
  • the optical film laminated body (polarizer) containing the PVA layer of was obtained.
  • the amorphous PET substrate was peeled off after the polarizer was bonded to the optical film, and only the PVA layer (polarizing film) was used.
  • 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 45 parts by mass Epolide GT-301 (alicyclic epoxy resin manufactured by Daicel Chemical Industries) 40 parts by mass 1,4-butanediol diglycidyl ether 15 parts by mass Triarylsulfonium hexafluorophosphate 2.3 parts by mass 9,10-dibutoxyanthracene 0.1 parts by mass 1,4-diethoxynaphthalene 2.0 parts by mass
  • the prepared photocurable adhesive was apply
  • the application was performed under the conditions of gravure roller # 300, rotation speed 140% / line speed.
  • the photocurable adhesive prepared above was applied on the second optical film so as to have a dry thickness of 2 ⁇ m to form a photocurable adhesive layer.
  • the obtained laminate was bonded by a roll-to-roll method so that the longitudinal direction was matched with a roller machine.
  • the slow axis of the first optical film is pasted in a 45 ° oblique direction with respect to the absorption axis of the polarizer, and the slow axis of the second optical film is relative to the absorption axis of the polarizer. Laminated in parallel.
  • an antiglare layer composition having the following composition was prepared, and the thickness of the antiglare layer composition after curing was 5.0 ⁇ m on the surface (surface on the viewing side) of the first optical film of the laminate produced above. It was applied with a gravure reverse coater. After drying this in an oven at 70 ° C. for 60 seconds, the coating was cured by irradiating with ultraviolet rays so that the irradiation amount was 120 mJ / cm 2 to form an antiglare layer as a functional layer.
  • Binder resin penentaerythritol tetraacrylate, manufactured by Nippon Kayaku 40 parts by mass Binder resin (urethane acrylate, UV1700B, manufactured by Nippon Synthetic Chemical) 60 parts by mass Organic fine particles (styrene-acrylic copolymer, XX245C, average particle size 2 ⁇ m, refractive index: 1.515, manufactured by Sekisui Plastics Sales Co., Ltd.) 4 parts by mass Talc (Nanotalc D-1000, average particle size 1 ⁇ m, Japan) 3 parts by weight leveling agent (polyether-modified silicone oil, TSF4460, manufactured by Momentive Performance Materials) 0.04 parts by weight Polymerization initiator (Irg184, manufactured by BASF Japan) 6 parts by weight Solvent (toluene) 60 parts by weight Part solvent (cyclohexanone) 40 parts by mass
  • the polarizing plate on the viewing side was peeled off from a commercially available 20-inch VA mode liquid crystal display device, and the produced polarizing plates 101 to 114 were bonded to the substrate surface of the liquid crystal cell to produce a liquid crystal display device. At that time, the polarizing plates 101 to 114 were bonded so that the absorption axis was in the same direction as the polarizing plate on the viewing side that had been bonded in advance. At this time, the polarizing plates 101 to 114 were arranged so that the second optical films of the polarizing plates 101 to 114 were on the liquid crystal cell side.
  • the fluorescent lamp when the evaluator is in front of the display screen of the liquid crystal display device, the fluorescent lamp is arranged so that the fluorescent lamp is positioned on the ceiling from the evaluator's overhead to the rear. After disposing the liquid crystal display device in this way, the display screen of the liquid crystal display device was observed and evaluated according to the following criteria. ⁇ : Fluorescent lamp looks straight ⁇ : Fluorescent lamp appears to be slightly bent ⁇ : Fluorescent lamp appears to be bent ⁇ : Fluorescent lamp appears to swell greatly
  • the fluorescent lamp when the evaluator is in front of the display screen of the organic EL display device, the fluorescent lamp is arranged so that the fluorescent lamp is positioned on the ceiling from the evaluator's overhead to the rear.
  • the display screen of the organic EL display device was observed and evaluated according to the following criteria. ⁇ : Fluorescent lamp looks straight ⁇ : Fluorescent lamp appears to be slightly bent ⁇ : Fluorescent lamp appears to be bent ⁇ : Fluorescent lamp appears to swell greatly
  • the dimensional change rate L ( ⁇ ) in the slow axis direction of the first optical film and the dimensional change rate L ( ⁇ + 90) in the direction perpendicular to the slow axis are expressed by the above formula (1) and
  • the polarizing plates 101 to 104, 109 to 112, 114 of the present invention satisfying (2) are mounted on a liquid crystal display device or an organic EL display device, the occurrence of distortion of the device is suppressed, and the visibility is also improved. It was good. Therefore, in the polarizing plate of the present invention, the occurrence of physical distortion is suppressed, and it is considered that the above result was obtained.
  • the film end is embossed in the range of 180 to 220 ° C. and then wound in a roll shape.
  • the dimensional change rate L ( ⁇ ) in the slow axis direction of the first optical film and the dimensional change rate L ( ⁇ + 90) in the direction orthogonal to the slow axis represent the above formulas (1) and (2).
  • the polarizing plates 105 to 107 of the comparative examples that are not satisfied are mounted on a liquid crystal display device or an organic EL display device, the device is distorted and the visibility of the display screen is low. This is considered to be because the polarizing plate of the comparative example caused physical distortion when exposed to a high humidity environment, and also caused distortion in the liquid crystal display device or the organic EL display device.
  • the polarizing plates 108 and 113 of the comparative examples in which the crossing angle between the slow axis of the first optical film and the absorption axis of the polarizer is not in the range of 30 to 60 ° have a low display screen visibility. It has become.
  • Example 2 Production of Polarizing Plates 201 to 205 >> In the production of the polarizing plate 101 in Example 1 above, the methods of the transverse stretching process and the oblique stretching process at the time of producing the first optical film were changed in the same manner except that the methods described in Table 2 were used. 205 was produced.
  • the film obtained in the casting step was dried to have a residual solvent amount of 10% by mass, and then 1% of the original width in the width direction at 170 ° C.
  • Method A1 the film obtained in the casting step was dried to have a residual solvent amount of 10% by mass, and then the original width in the width direction at 150 ° C.
  • the film obtained in the casting step was dried to a residual solvent amount of 20% by mass, and then the width was 135 ° C.
  • Non-defective polarizing plate is 95% or more
  • Non-defective polarizing plate is 80% or more and less than 95%
  • Non-defective polarizing plate is 60% or more and less than 80%
  • Non-defective polarizing plate is less than 60%
  • the polarizing plate of the present invention in which the dimensional change rate L (MD) in the longitudinal direction and the dimensional change rate L (TD) in the width direction of the first optical film satisfy the above formula (3).
  • 101, 202, 203, and 205 were found to be excellent in polarizing plate yield.
  • it is preferable to perform a transverse stretching step when producing the first optical film and further, the residual solvent amount is 10 to 20% by mass, More preferably, the transverse stretching step is carried out under conditions of a stretching temperature of 135 to 170 ° C.
  • the stretching temperature is 150 to 170 ° C.
  • the stretching ratio is 1.1 to 1. It was found that it is more preferable to perform the transverse stretching step under the condition of 1.15.
  • the stretching temperature is 185 ° C. and the stretching ratio is 1.7 times, rather than the oblique stretching under the stretching temperature of 175 ° C. and the stretching ratio of 1.8 times.
  • Polarizers 301 to 306 were produced in the same manner as in the production of the polarizing plate 201 in Example 2, except that the substrate type of the first optical film was changed to that shown in Table 3.
  • cellulose acetate propionate (acetyl substitution degree 1.50, propionyl substitution degree 0.90, total substitution degree 2.40, weight average molecular weight 220,000) is “CAP”, cellulose acetate (acetyl substitution degree). Degree 2.85, weight average molecular weight 250,000) “TAC”, cellulose acetate (acetyl substitution degree 2.43, weight average molecular weight 200,000) “DAC”, cellulose acetate benzoate (acetyl substitution degree 1.90, benzoyl substitution) Degree 0.30, total substitution degree 2.20, weight average molecular weight 150,000) “CeBz”, methyl cellulose (methyl ether substitution degree 2.5, weight average molecular weight 150,000) “CE-1”, ethyl cellulose (ethyl ether) Substitution degree 2.5, weight average molecular weight 150,000) "CE-2”, cellulose ether benzoate Shows (ethyl ether substitution degree 2.2, benzoyl substitution degree 0.7, weight average molecular weight 150,000) as "CE
  • the material of the first optical film is It can be said that methylcellulose cannot be used.
  • Polarizers 401 and 402 were produced in the same manner as in the production of the polarizing plate 101 in Example 1 except that the base material type of the second optical film was changed to that shown in Table 4.
  • cellulose acetate (acetyl substitution degree 2.85, weight average molecular weight 250,000) is shown as “TAC”
  • cellulose acetate (acetyl substitution degree 2.43, weight average molecular weight 200,000) is shown as “DAC”. ing.
  • cellulose acetate propionate, cellulose acetate having an acetyl substitution degree of 2.43 or 2.85 can be preferably used as the material of the second optical film, and among them, cellulose acetate propionate or It has been found that cellulose acetate having an acetyl substitution degree of 2.43 is more preferable, and cellulose acetate propionate is most preferable.
  • the present invention is a polarizing plate comprising an obliquely stretched optical film, a polarizing plate in which the occurrence of physical distortion is suppressed, a method for producing such a polarizing plate, and the polarizing plate Suitable for providing a liquid crystal display device and an organic electroluminescence display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

This invention addresses the problem of providing a polarizing plate that is provided with an obliquely-oriented optical film and minimizes physical distortion. Said polarizing plate (12), which comprises a polarizer (21), a first optical film (22) provided so as to face one surface of the polarizer (21), and a second optical film (24) provided so as to face the other surface of the polarizer (21), is characterized in that the slow axis of the first optical film (22) and the absorption axis of the polarizer (21) intersect at an angle (θ) in the 30-60° range and the dimensional change rate (L(θ)) of the slow-axis direction of the first optical film (22) and the dimensional change rate (L(θ+90)) of the direction perpendicular thereto are adjusted so as to satisfy relations (1) and (2). Relation (1) 0.50 ≤ L(θ)/L(θ+90) ≤ 0.95 Relation (2) 0.1 (%) ≤ L(θ) ≤ 1.5 (%)

Description

偏光板、偏光板の製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置Polarizing plate, manufacturing method of polarizing plate, liquid crystal display device, and organic electroluminescence display device
 本発明は、偏光板、偏光板の製造方法、液晶表示装置及び有機エレクトロルミネッセンス表示装置に関する。特に、斜め延伸された光学フィルムを備える偏光板であって、物理的なゆがみの発生が抑制された偏光板、そのような偏光板の製造方法、また、当該偏光板を備えた液晶表示装置及び有機エレクトロルミネッセンス表示装置に関する。 The present invention relates to a polarizing plate, a method for manufacturing a polarizing plate, a liquid crystal display device, and an organic electroluminescence display device. In particular, a polarizing plate comprising an obliquely stretched optical film, in which the occurrence of physical distortion is suppressed, a method for producing such a polarizing plate, and a liquid crystal display device comprising the polarizing plate, The present invention relates to an organic electroluminescence display device.
 近年、液晶ディスプレイや有機エレクトロルミネッセンスを利用した薄型ディスプレイ市場が急速に伸長している。特に、スマートフォンやタブレットと呼ばれる中小型モバイル機器市場の伸長が著しい。 In recent years, the market for thin displays using liquid crystal displays and organic electroluminescence has been growing rapidly. In particular, the market for small and medium-sized mobile devices called smartphones and tablets is growing significantly.
 そのような薄型ディスプレイには、偏光板が搭載されている。偏光板は、一般に、偏光子が2枚の光学フィルムで挟まれた構造をとっている。 Such a thin display has a polarizing plate. The polarizing plate generally has a structure in which a polarizer is sandwiched between two optical films.
 偏光板の製造方法としては、例えば、幅手方向に対して斜めの方向に延伸された光学フィルムを用いて、ロールtoロール方式で偏光子と貼り合わせて円偏光板を製造する技術が提案されている(例えば、特許文献1参照。)。光学フィルムは幅方向に対して所定の角度で斜め方向に延伸(以下、「斜め延伸」ともいう。)されていることで、所望の位相差が付与されている。このような光学フィルムとしては、ポリカーボネートやシクロオレフィン樹脂が好ましく用いられているが、セルロースエステル樹脂を用いることも提案されている(例えば、特許文献2参照。)。 As a method of manufacturing a polarizing plate, for example, a technique for manufacturing a circularly polarizing plate by using an optical film stretched in an oblique direction with respect to the width direction and bonding with a polarizer by a roll-to-roll method has been proposed. (For example, refer to Patent Document 1). The optical film is stretched in an oblique direction (hereinafter also referred to as “oblique stretching”) at a predetermined angle with respect to the width direction, thereby giving a desired phase difference. As such an optical film, a polycarbonate or a cycloolefin resin is preferably used, but it is also proposed to use a cellulose ester resin (see, for example, Patent Document 2).
 しかしながら、上記したような斜め延伸光学フィルムを偏光子上に積層して偏光板を作製した場合、当該偏光板の使用環境によっては偏光板に物理的なゆがみが生じる場合があった。偏光板に物理的なゆがみが生じると、当該偏光板が搭載された表示装置等にも物理的なゆがみが生じてしまうため、好ましくない。 However, when a polarizing plate is produced by laminating the above-described obliquely stretched optical film on a polarizer, physical distortion may occur in the polarizing plate depending on the usage environment of the polarizing plate. When physical distortion occurs in the polarizing plate, it is not preferable because physical distortion also occurs in a display device or the like on which the polarizing plate is mounted.
特開2006-224618号公報JP 2006-224618 A 特開2008-83307号公報JP 2008-83307 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、斜め延伸された光学フィルムを備える偏光板であって、物理的なゆがみの発生が抑制された偏光板、そのような偏光板の製造方法、また、当該偏光板を備えた液晶表示装置及び有機エレクトロルミネッセンス表示装置を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and the problem to be solved is a polarizing plate comprising an optical film stretched obliquely, and the polarizing plate in which the occurrence of physical distortion is suppressed, The manufacturing method of such a polarizing plate, and also providing a liquid crystal display device and an organic electroluminescent display device provided with the said polarizing plate.
 本発明に係る上記課題を解決すべく、上記問題の原因等について検討した結果、偏光子と、前記偏光子の一方の面に配置される第1の光学フィルムと、前記偏光子の他方の面に配置される第2の光学フィルムと、を備える偏光板であって、第1の光学フィルムの遅相軸と偏光子の吸収軸の交差角度θが30~60°の範囲内であり、第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と、遅相軸に直交する方向の寸法変化率L(θ+90)とが所定の数値範囲を満たすように調整されたことで、物理的なゆがみの発生が抑制された偏光板を提供できることを見いだした。
 すなわち、本発明に係る課題は、以下の手段により解決される。
As a result of investigating the cause of the above-mentioned problem in order to solve the above-mentioned problems according to the present invention, the polarizer, the first optical film disposed on one surface of the polarizer, and the other surface of the polarizer A second optical film disposed on the polarizing plate, wherein the crossing angle θ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30 to 60 °, The dimensional change rate L (θ) in the slow axis direction of the optical film 1 and the dimensional change rate L (θ + 90) in the direction perpendicular to the slow axis were adjusted to satisfy a predetermined numerical range. The present inventors have found that a polarizing plate in which the occurrence of physical distortion is suppressed can be provided.
That is, the subject concerning this invention is solved by the following means.
 1.偏光子と、前記偏光子の一方の面に対向して設けられる第1の光学フィルムと、前記偏光子の他方の面に対向して設けられる第2の光学フィルムと、を備える偏光板であって、
 前記第1の光学フィルムの遅相軸と偏光子の吸収軸との交差角度θが30~60°の範囲内であり、
 前記第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と、遅相軸に直交する方向の寸法変化率L(θ+90)とが下記式(1)及び(2)を満たすように調整されたことを特徴とする偏光板。
  式(1): 0.50≦L(θ)/L(θ+90)≦0.95
  式(2): 0.1(%)≦L(θ)≦1.5(%)
1. A polarizing plate comprising: a polarizer; a first optical film provided to face one surface of the polarizer; and a second optical film provided to face the other surface of the polarizer. And
The crossing angle θ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30-60 °,
The dimensional change rate L (θ) in the slow axis direction of the first optical film and the dimensional change rate L (θ + 90) in the direction perpendicular to the slow axis satisfy the following expressions (1) and (2). A polarizing plate characterized by being adjusted to.
Formula (1): 0.50 ≦ L (θ) / L (θ + 90) ≦ 0.95
Formula (2): 0.1 (%) ≦ L (θ) ≦ 1.5 (%)
 2.前記第1の光学フィルムの長手方向の寸法変化率L(MD)と、幅手方向の寸法変化率L(TD)とが下記式(3)を満たすことを特徴とする第1項に記載の偏光板。
  式(3): 0.50≦L(MD)/L(TD)<1.00
2. The dimensional change rate L (MD) in the longitudinal direction of the first optical film and the dimensional change rate L (TD) in the width direction satisfy the following formula (3). Polarizer.
Formula (3): 0.50 ≦ L (MD) / L (TD) <1.00
 3.前記第1の光学フィルムが、セルロース骨格を有するポリマーを含有することを特徴とする第1項又は第2項に記載の偏光板。 3. The polarizing plate according to item 1 or 2, wherein the first optical film contains a polymer having a cellulose skeleton.
 4.前記第1の光学フィルムの波長550nmにおける面内方向のリターデーション値Ro(550)が、75~150nmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載の偏光板。 4. The retardation value Ro (550) in the in-plane direction at a wavelength of 550 nm of the first optical film is in a range of 75 to 150 nm, according to any one of items 1 to 3, The polarizing plate as described.
 5.前記第1の光学フィルムが、セルロースアセテートプロピオネートを含有することを特徴とする第1項から第4項までのいずれか一項に記載の偏光板。 5. The polarizing plate according to any one of Items 1 to 4, wherein the first optical film contains cellulose acetate propionate.
 6.前記第2の光学フィルムの遅相軸と前記偏光子の吸収軸とが平行又は直交することを特徴とする第1項から第5項までのいずれか一項に記載の偏光板。 6. The polarizing plate according to any one of items 1 to 5, wherein a slow axis of the second optical film and an absorption axis of the polarizer are parallel or orthogonal to each other.
 7.前記第2の光学フィルムが、セルロースアセテート又はセルロースアセテートプロピオネートを含有することを特徴とする第1項から第6項までのいずれか一項に記載の偏光板。 7. The polarizing plate according to any one of Items 1 to 6, wherein the second optical film contains cellulose acetate or cellulose acetate propionate.
 8.前記第1の光学フィルム及び前記第2の光学フィルムのうち視認側に配置される光学フィルムの視認側の面に、ハードコート層又はアンチグレア層が設けられていることを特徴とする第1項から第7項までのいずれか一項に記載の偏光板。 8. From the first item, a hard coat layer or an antiglare layer is provided on a surface on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film. The polarizing plate according to any one of items up to 7.
 9.第1項から第8項までのいずれか一項に記載の偏光板を製造する製造方法であって、
 前記偏光子、前記第1の光学フィルム及び前記第2の光学フィルムを、ロールtoロール方式で貼合する貼合工程を有することを特徴とする偏光板の製造方法。
9. A manufacturing method for manufacturing the polarizing plate according to any one of Items 1 to 8,
The manufacturing method of the polarizing plate characterized by having the bonding process which bonds the said polarizer, a said 1st optical film, and a said 2nd optical film by a roll to roll system.
 10.ドープを支持体上に流延して流延膜を形成する流延工程と、
 残留溶媒量が1~20質量%の前記流延膜を、前記幅手方向に1.01~1.3倍の延伸倍率で延伸する横延伸工程と、
 前記流延膜を、前記幅手方向に対して斜め方向に延伸する斜め延伸工程と、
 前記流延膜に対して下記(i)又は(ii)の加熱処理を行うことで前記第1の光学フィルムを得る加熱処理工程と、を更に有し、
 前記加熱処理工程の後に、前記貼合工程を行うことを特徴とする第9項に記載の偏光板の製造方法。
 (i)前記流延膜の端部に対して180~220℃の範囲内でエンボス加工を施した後に、ロール状に巻き取った状態で、60~80℃、20%RH以下の条件で3~5日間加熱処理する。
 (ii)搬送ローラーにより前記流延膜を張力120~150Nで搬送しながら、前記搬送ローラーを介して前記流延膜を140~170℃で40~600秒間加熱処理する。
10. A casting step of casting a dope on a support to form a casting film;
A transverse stretching step of stretching the cast film having a residual solvent amount of 1 to 20% by mass in the width direction at a stretching ratio of 1.01 to 1.3 times;
An oblique stretching step of stretching the casting film in an oblique direction with respect to the width direction;
A heat treatment step of obtaining the first optical film by performing the following heat treatment (i) or (ii) on the cast film,
The manufacturing method of the polarizing plate of Claim 9 which performs the said bonding process after the said heat processing process.
(I) The end of the cast film is embossed in the range of 180 to 220 ° C., and then wound in a roll shape, and the condition is 3 to 60 ° C. and 20% RH or less. Heat for ~ 5 days.
(Ii) The cast film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while transporting the cast film with a tension of 120 to 150 N by a transport roller.
 11.第1項から第8項までのいずれか一項に記載の偏光板を備えていることを特徴とする液晶表示装置。 11. A liquid crystal display device comprising the polarizing plate according to any one of items 1 to 8.
 12.第1項から第8項までのいずれか一項に記載の偏光板を備えていることを特徴とする有機エレクトロルミネッセンス表示装置。 12. An organic electroluminescence display device comprising the polarizing plate according to any one of items 1 to 8.
 本発明によれば、斜め延伸された光学フィルムを備える偏光板であって、物理的なゆがみの発生が抑制された偏光板、そのような偏光板の製造方法、また、当該偏光板を備えた液晶表示装置及び有機エレクトロルミネッセンス表示装置を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 一般に、光学フィルムは、使用される環境下、例えば高湿環境下において、吸湿してしまうことで寸法が変化する場合がある。ここで、斜め延伸光学フィルムの場合、幅手方向又は長手方向の寸法変化率と、斜め方向の寸法変化率とが異なっており、具体的には、延伸方向の寸法変化率よりも、延伸していない方向(幅手方向又は長手方向)の寸法変化率が大きくなっている。このような特性は、延伸方向の寸法変化率が一定以上である光学フィルムにおいて見られる傾向であり、特に、高倍率で斜め延伸が行われた場合に顕著となる。このような、光学フィルムの面方向における寸法変化率の差異に起因して、偏光板に物理的なゆがみが生じてしまうものと考えられる。
 したがって、第1の光学フィルムの遅相軸方向の寸法変化率と遅相軸に直交する方向の寸法変化率とが上記式(1)及び(2)を満たすようにすることによって、第1の光学フィルムの面方向における寸法変化率の差を小さくすることができ、偏光板に発生する応力を低減させることで物理的なゆがみを抑制できたものと考えている。
According to the present invention, a polarizing plate comprising an obliquely stretched optical film, in which the occurrence of physical distortion is suppressed, a method for producing such a polarizing plate, and the polarizing plate are provided. A liquid crystal display device and an organic electroluminescence display device can be provided.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
In general, the dimensions of an optical film may change due to moisture absorption in an environment in which it is used, for example, in a high humidity environment. Here, in the case of an obliquely stretched optical film, the dimensional change rate in the width direction or the longitudinal direction is different from the dimensional change rate in the oblique direction. Specifically, the stretched optical film is stretched more than the dimensional change rate in the stretched direction. The dimensional change rate in the direction (width direction or longitudinal direction) that is not increased. Such characteristics tend to be observed in an optical film having a dimensional change rate in a stretching direction of a certain level or more, and is particularly remarkable when oblique stretching is performed at a high magnification. It is considered that physical distortion occurs in the polarizing plate due to the difference in the dimensional change rate in the surface direction of the optical film.
Therefore, the dimensional change rate in the slow axis direction of the first optical film and the dimensional change rate in the direction perpendicular to the slow axis satisfy the above formulas (1) and (2). The difference in the dimensional change rate in the surface direction of the optical film can be reduced, and it is considered that physical distortion can be suppressed by reducing the stress generated in the polarizing plate.
本発明の偏光板に用いられる第1の光学フィルムの製造装置の概略構成を模式的に示す平面図The top view which shows typically schematic structure of the manufacturing apparatus of the 1st optical film used for the polarizing plate of this invention. 図1に示す製造装置の延伸部のレールパターンの一例を模式的に示す平面図The top view which shows typically an example of the rail pattern of the extending | stretching part of the manufacturing apparatus shown in FIG. 本発明の液晶表示装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the liquid crystal display device of this invention 本発明の有機EL表示装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the organic electroluminescence display of this invention
 本発明の偏光板は、偏光子と、前記偏光子の一方の面に対向して設けられる第1の光学フィルムと、前記偏光子の他方の面に対向して設けられる第2の光学フィルムと、を備える偏光板であって、前記第1の光学フィルムの遅相軸と偏光子の吸収軸との交差角度θが30~60°の範囲内であり、前記第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と、遅相軸に直交する方向の寸法変化率L(θ+90)とが前記式(1)及び(2)を満たすように調整されたことを特徴とする。この特徴は、請求項1から請求項12までの各請求項に共通する又は対応する技術的特徴である。
 また、本発明においては、前記第1の光学フィルムの長手方向の寸法変化率L(MD)と、幅手方向の寸法変化率L(TD)とが前記式(3)を満たすことが好ましい。これにより、表面故障や平面性故障の発生が抑制された偏光板とすることができる。
 また、本発明においては、前記第1の光学フィルムが、セルロース骨格を有するポリマーを含有することが好ましい。これにより、第1の光学フィルムの平面性を向上させることができ、これを用いた偏光板の平面性も向上させることができる。
 また、本発明においては、前記第1の光学フィルムの波長550nmにおける面内方向のリターデーション値Ro(550)が、75~150nmの範囲内であることが、当該偏光板を搭載した表示装置の視認性の観点から好ましい。
 また、本発明においては、前記第1の光学フィルムが、セルロースアセテートプロピオネートを含有することが、偏光板の物理的なゆがみの発生を抑制する観点から好ましい。
 また、本発明においては、前記第2の光学フィルムの遅相軸と前記偏光子の吸収軸とが平行又は直交することが、ロールtoロール方式で安価かつ平面性良く製造できる観点から好ましい。
 また、本発明においては、前記第2の光学フィルムが、セルロースアセテート又はセルロースアセテートプロピオネートを含有することが、当該偏光板を搭載した表示装置の光学保障による視認性改善及び平面性確保の観点から好ましい。また、これらの樹脂は、膜厚あたりの位相差発現率が高く、視認性が良いフィルムとすることができる。
 また、本発明においては、前記第1の光学フィルム及び前記第2の光学フィルムのうち視認側に配置される光学フィルムの視認側の面に、ハードコート層又はアンチグレア層が設けられていることが好ましい。ハードコート層が設けられている場合には、偏光板の表面を保護することができ、アンチグレア層が設けられている場合には、反射像の視認性を低下させて反射像の映り込みを抑制することができる。
The polarizing plate of the present invention includes a polarizer, a first optical film provided to face one surface of the polarizer, and a second optical film provided to face the other surface of the polarizer. The crossing angle θ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30 to 60 °, and the slow phase of the first optical film The dimensional change rate L (θ) in the axial direction and the dimensional change rate L (θ + 90) in the direction orthogonal to the slow axis are adjusted so as to satisfy the expressions (1) and (2). . This feature is a technical feature common to or corresponding to each of claims 1 to 12.
Moreover, in this invention, it is preferable that the dimensional change rate L (MD) of the longitudinal direction of the said 1st optical film and the dimensional change rate L (TD) of the width direction satisfy | fill said Formula (3). Thereby, it can be set as the polarizing plate by which generation | occurrence | production of the surface failure and the planarity failure was suppressed.
In the present invention, the first optical film preferably contains a polymer having a cellulose skeleton. Thereby, the planarity of the first optical film can be improved, and the planarity of a polarizing plate using the first optical film can also be improved.
In the present invention, the retardation value Ro (550) in the in-plane direction at a wavelength of 550 nm of the first optical film is in the range of 75 to 150 nm. It is preferable from the viewpoint of visibility.
Moreover, in this invention, it is preferable from a viewpoint which suppresses generation | occurrence | production of the physical distortion of a polarizing plate that the said 1st optical film contains a cellulose acetate propionate.
In the present invention, it is preferable that the slow axis of the second optical film and the absorption axis of the polarizer are parallel or perpendicular to each other from the viewpoint that the roll-to-roll method can be manufactured inexpensively and with good flatness.
In the present invention, the second optical film contains cellulose acetate or cellulose acetate propionate, from the viewpoint of improving the visibility and ensuring the flatness of the display device equipped with the polarizing plate. To preferred. In addition, these resins can be films having a high retardation expression rate per film thickness and good visibility.
In the present invention, a hard coat layer or an antiglare layer may be provided on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film. preferable. When a hard coat layer is provided, the surface of the polarizing plate can be protected, and when an antiglare layer is provided, the visibility of the reflected image is reduced and reflection of the reflected image is suppressed. can do.
 また、本発明の偏光板の製造方法は、上記偏光板の製造方法であって、前記偏光子、前記第1の光学フィルム及び前記第2の光学フィルムを、ロールtoロール方式で貼合する貼合工程を有することを特徴とする。
 また、本発明においては、ドープを支持体上に流延して流延膜を形成する流延工程と、残留溶媒量が1~20質量%の前記流延膜を、前記幅手方向に1.01~1.3倍の延伸倍率で延伸する横延伸工程と、前記流延膜を、前記幅手方向に対して斜め方向に延伸する斜め延伸工程と、前記流延膜に対して下記(i)又は(ii)の加熱処理を行うことで前記第1の光学フィルムを得る加熱処理工程と、を更に有し、前記加熱処理工程の後に、前記貼合工程を行うことが、上記偏光板を製造する上で好ましい。
 (i)前記流延膜の端部に対して180~220℃の範囲内でエンボス加工を施した後に、ロール状に巻き取った状態で、60~80℃、20%RH以下の条件で3~5日間加熱処理する。
 (ii)搬送ローラーにより前記流延膜を張力120~150Nで搬送しながら、前記搬送ローラーを介して前記流延膜を140~170℃で40~600秒間加熱処理する。
Moreover, the manufacturing method of the polarizing plate of this invention is a manufacturing method of the said polarizing plate, Comprising: Pasting which bonds the said polarizer, a said 1st optical film, and a said 2nd optical film by a roll to roll system. It has a combination process.
Further, in the present invention, a casting process in which a dope is cast on a support to form a casting film, and the casting film having a residual solvent amount of 1 to 20% by mass is provided in the width direction by 1 A transverse stretching step of stretching at a draw ratio of 0.01 to 1.3 times, an oblique stretching step of stretching the cast film in an oblique direction with respect to the width direction, and the following ( further comprising a heat treatment step of obtaining the first optical film by performing the heat treatment of i) or (ii), and performing the bonding step after the heat treatment step. Is preferable in manufacturing.
(I) The end of the cast film is embossed in the range of 180 to 220 ° C., and then wound in a roll shape, and the condition is 3 to 60 ° C. and 20% RH or less. Heat for ~ 5 days.
(Ii) The cast film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while transporting the cast film with a tension of 120 to 150 N by a transport roller.
 また、本発明の液晶表示装置は、上記偏光板を備えていることを特徴とする。
 また、本発明の有機エレクトロルミネッセンス表示装置は、上記偏光板を備えていることを特徴とする。
In addition, a liquid crystal display device of the present invention includes the polarizing plate.
In addition, an organic electroluminescence display device of the present invention includes the polarizing plate.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
《偏光板》
 本発明の偏光板は、偏光子と、当該偏光子の一方の面に対向して設けられる第1の光学フィルムと、偏光子の他方の面に対向して設けられる第2の光学フィルムと、を備えている。
 なお、後述するように、第1の光学フィルム及び第2の光学フィルムのうち視認側に配置される光学フィルムの視認側の面に、ハードコート層又はアンチグレア層等の機能層が設けられているものとしても良い。また、偏光子と第1の光学フィルムとの間、偏光子と第2の光学フィルムとの間に、それぞれ接着層が設けられているものとしても良い。
 以下、本発明の偏光板を構成する各要素について詳細に説明する。
"Polarizer"
The polarizing plate of the present invention includes a polarizer, a first optical film provided to face one surface of the polarizer, a second optical film provided to face the other surface of the polarizer, It has.
In addition, as will be described later, a functional layer such as a hard coat layer or an antiglare layer is provided on the surface on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film. It is good as a thing. An adhesive layer may be provided between the polarizer and the first optical film and between the polarizer and the second optical film.
Hereinafter, each element which comprises the polarizing plate of this invention is demonstrated in detail.
[1]偏光子
 偏光板の主たる構成要素である偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
[1] Polarizer A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a polarization plane in a certain direction to pass through. A typical known polarizer is a polyvinyl alcohol polarizing film. . The polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
 偏光子としては、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものを用いることができる。偏光子の膜厚は偏光板の薄膜化の観点から、1~30μmが好ましく、1~20μmがより好ましく、1~15μmがより一層好ましく、2~15μmが更に好ましい。 As the polarizer, a polyvinyl alcohol aqueous solution can be formed and dyed by uniaxial stretching or dyed or uniaxially stretched and then preferably subjected to a durability treatment with a boron compound. The thickness of the polarizer is preferably from 1 to 30 μm, more preferably from 1 to 20 μm, even more preferably from 1 to 15 μm, and even more preferably from 2 to 15 μm, from the viewpoint of thinning the polarizing plate.
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量1~4モル%、重合度2000~4000、ケン化度99.0~99.99モル%のエチレン変性ポリビニルアルコールも好ましく用いられる。中でも、熱水切断温度が66~73℃であるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れている上に、色ムラが少なく、大型液晶表示装置に特に好ましく用いられる。 Further, the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is 1 to 4 mol%, the degree of polymerization is 2000 to 4000, and the degree of saponification is 99.0 to 99.99 mol%. The ethylene-modified polyvinyl alcohol is also preferably used. Among these, an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature of 66 to 73 ° C. is preferably used. A polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability, and has little color unevenness, and is particularly preferably used for a large liquid crystal display device.
 また、特開2011-100161号公報、特許第4691205号公報、特許4751481号公報、特許第4804589号公報に記載の方法で、塗布型偏光子を作製するものとしても良い。 Also, a coating type polarizer may be produced by the methods described in JP 2011-10081 A, JP 4691205 A, JP 4751481 A, and JP 4804589 A.
[2]第1の光学フィルム
 本発明に係る第1の光学フィルムは、偏光子の一方の面に対向して設けられている。第1の光学フィルムは斜め延伸されていることで、その遅相軸と偏光子の吸収軸との交差角度θが30~60°の範囲内となっている。また、第1の光学フィルムは、その遅相軸方向の寸法変化率L(θ)と遅相軸に直交する方向の寸法変化率L(θ+90)とが下記式(1)及び(2)を満たすように調整されている。
  式(1): 0.50≦L(θ)/L(θ+90)≦0.95
  式(2): 0.1(%)≦L(θ)≦1.5(%)
[2] First optical film The first optical film according to the present invention is provided to face one surface of the polarizer. Since the first optical film is stretched obliquely, the crossing angle θ between its slow axis and the absorption axis of the polarizer is in the range of 30 to 60 °. In addition, the first optical film has a dimensional change rate L (θ) in the slow axis direction and a dimensional change rate L (θ + 90) in the direction perpendicular to the slow axis in the following formulas (1) and (2). It has been adjusted to meet.
Formula (1): 0.50 ≦ L (θ) / L (θ + 90) ≦ 0.95
Formula (2): 0.1 (%) ≦ L (θ) ≦ 1.5 (%)
 本発明に係る光学フィルムは、フィルム面内の遅相軸が長手方向(幅手方向)に対して傾斜しているが、特にフィルム面内の遅相軸が長手方向(幅手方向)に対して、30~60°方向の範囲内にあるため、ある特定の波長の直線偏光を円偏光に(又は、円偏光を直線偏光に)変換する円偏光板に好適に具備される。 In the optical film according to the present invention, the slow axis in the film plane is inclined with respect to the longitudinal direction (width direction), but in particular, the slow axis in the film plane is relative to the longitudinal direction (width direction). Thus, since it is within the range of 30 to 60 °, it is suitably provided in a circularly polarizing plate that converts linearly polarized light having a specific wavelength into circularly polarized light (or circularly polarized light into linearly polarized light).
 実用的な円偏光板を製造するのに、本発明に係る光学フィルムはλ/4板であることが好ましい。λ/4板は所定の光の波長(通常、可視光領域)に対して、層の面内のリターデーション値Roが約1/4となるように設計されている。当該λ/4板は、波長590nmで測定したRo(590)が120~160nmの範囲内である。 In order to produce a practical circularly polarizing plate, the optical film according to the present invention is preferably a λ / 4 plate. The λ / 4 plate is designed such that the in-plane retardation value Ro is about ¼ for a predetermined wavelength of light (usually in the visible light region). The λ / 4 plate has Ro (590) measured at a wavelength of 590 nm in the range of 120 to 160 nm.
 「可視光の波長の範囲においておおむね1/4のリターデーション」とは、波長400から700nmにおいて長波長ほどリターデーションが大きく、波長450nmで測定した下記式(A)で表されるリターデーション値であるRo(450)と波長590nmで測定したリターデーション値であるRo(590)が、1<Ro(590)/Ro(450)≦1.6を満たすことが好ましい。更には、1<Ro(590)/Ro(450)≦1.3を満たすことが好ましい。また、λ/4板として有効に機能するためには、Ro(450)が60~125nmの範囲内であることが好ましく、波長550nmで測定したリターデーション値であるRo(550)が75~150nmの範囲内であることが好ましく、特に125~142nmの範囲内であることが好ましく、Ro(590)が130~152nmの範囲内であることが好ましい。 “Retardation of approximately 1/4 in the wavelength range of visible light” means a retardation value represented by the following formula (A) measured at a wavelength of 450 nm, with a larger retardation at a wavelength of 400 to 700 nm. It is preferable that Ro (590) which is a retardation value measured at a certain Ro (450) and a wavelength of 590 nm satisfies 1 <Ro (590) / Ro (450) ≦ 1.6. Furthermore, it is preferable that 1 <Ro (590) / Ro (450) ≦ 1.3. In order to function effectively as a λ / 4 plate, Ro (450) is preferably in the range of 60 to 125 nm, and the retardation value Ro (550) measured at a wavelength of 550 nm is 75 to 150 nm. In particular, it is preferably in the range of 125 to 142 nm, and Ro (590) is preferably in the range of 130 to 152 nm.
 なお、式(B)はフィルム厚さ方向のリターデーション値Rtを求める式である。波長550nmで測定したリターデーション値Rtは、60~100nmの範囲であることが好ましく、70~90nmの範囲であることがより好ましい。 In addition, Formula (B) is a formula for obtaining a retardation value Rt in the film thickness direction. The retardation value Rt measured at a wavelength of 550 nm is preferably in the range of 60 to 100 nm, and more preferably in the range of 70 to 90 nm.
 式(A): Ro=(n-n)×d
 式(B): Rt={(n+n)/2-n}×d
 式中、nx、ny及びnは、23℃・55%RH、450nm、550nm、590nmの各々における屈折率nx(フィルムの面内の最大の屈折率、遅相軸方向の屈折率ともいう。)、ny(フィルム面内で遅相軸に直交する方向の屈折率)、n(フィルム厚さ方向の屈折率)であり、dはフィルムの厚さ(nm)である。
Formula (A): Ro = (n x −n y ) × d
Formula (B): Rt = {(n x + n y ) / 2−n z } × d
In the formula, nx, ny, and nz are refractive indexes nx (maximum in-plane refractive index and refractive index in slow axis direction at 23 ° C. and 55% RH, 450 nm, 550 nm, and 590 nm, respectively. ), Ny (refractive index in the direction perpendicular to the slow axis in the film plane), nz (refractive index in the film thickness direction), and d is the thickness (nm) of the film.
 Ro、Rtは自動複屈折率計を用いて測定することができる。自動複屈折率計KOBRA-21AWR(王子計測機器(株)製)を用いて、23℃・55%RHの環境下で、各波長での複屈折率測定によりRoを算出する。 Ro and Rt can be measured using an automatic birefringence meter. Using an automatic birefringence meter KOBRA-21AWR (manufactured by Oji Scientific Instruments), Ro is calculated by measuring the birefringence at each wavelength in an environment of 23 ° C. and 55% RH.
 λ/4板の遅相軸と偏光子の透過軸(又は吸収軸)との角度が実質的に45°になるように積層すると円偏光板が得られる。「実質的に45°」とは、40~50°の範囲であることを意味する。λ/4板の面内の遅相軸と偏光子の透過軸との角度は、41~49°の範囲であることが好ましく、42~48°の範囲であることがより好ましく、43~47°の範囲であることが更に好ましく、44~46°の範囲であることが最も好ましい。したがって、円偏光板をロールtoロール方式で製造するには、本発明に係る光学フィルムの遅相軸の方向は、上記「実質的に45°」方向であることが好ましい。 A circularly polarizing plate is obtained by laminating so that the angle between the slow axis of the λ / 4 plate and the transmission axis (or absorption axis) of the polarizer is substantially 45 °. “Substantially 45 °” means a range of 40 to 50 °. The angle between the slow axis in the plane of the λ / 4 plate and the transmission axis of the polarizer is preferably in the range of 41 to 49 °, more preferably in the range of 42 to 48 °, and 43 to 47. A range of ° is more preferable, and a range of 44 to 46 ° is most preferable. Therefore, in order to produce a circularly polarizing plate by the roll-to-roll method, the direction of the slow axis of the optical film according to the present invention is preferably the above “substantially 45 °” direction.
 本発明に係る第1の光学フィルムの厚さは、より薄膜の偏光板及び表示装置の需要が高まっていることから、15~50μmの範囲内であり、20~40μmの範囲内であることがより好ましい。この範囲内であれば、薄膜軽量であってかつ巻き形状の安定な光学フィルムを得ることができる。 The thickness of the first optical film according to the present invention is in the range of 15 to 50 μm and in the range of 20 to 40 μm because demand for thinner polarizing plates and display devices is increasing. More preferred. Within this range, an optical film that is thin and lightweight and has a stable winding shape can be obtained.
 本発明の光学フィルムにおける巻長は、生産性を考慮すると、1500~8000mの範囲内であることが好ましく、より好ましくは2000~6000mの範囲内である。 In consideration of productivity, the winding length in the optical film of the present invention is preferably in the range of 1500 to 8000 m, more preferably in the range of 2000 to 6000 m.
[2-1]第1の光学フィルムの特性
(表面粗さ)
 本発明に係る第1の光学フィルム表面の算術平均粗さRaとしては、おおむね1.3~4.0nmの範囲内であり、好ましくは1.6~3.5nmの範囲内である。
[2-1] Characteristics of the first optical film (surface roughness)
The arithmetic average roughness Ra of the surface of the first optical film according to the present invention is generally in the range of 1.3 to 4.0 nm, and preferably in the range of 1.6 to 3.5 nm.
(故障耐性)
 本発明に係る第1の光学フィルムでは、フィルム中の故障(以下、欠点ともいう。)が少ないことが好ましく、ここでいう欠点とは、溶液流延法により製膜する場合において、乾燥時の溶媒の急激な蒸発に起因して発生するフィルム中の空洞(発泡欠点)や、製膜原液中の異物や製膜中に混入する異物に起因するフィルム中の異物(異物欠点)をいう。
(Fault tolerance)
In the first optical film according to the present invention, it is preferable that there are few failures in the film (hereinafter, also referred to as defects), and the defect referred to here means that when the film is formed by the solution casting method, It refers to voids (foaming defects) in the film caused by rapid evaporation of the solvent, foreign substances in the film-forming stock solution, and foreign substances (foreign substance defects) in the film caused by foreign substances mixed in the film formation.
 具体的にはフィルム面内に、直径5μm以上の欠点が1個/10cm四方以下であることが好ましい。更に好ましくは0.5個/10cm四方以下であり、特に好ましくは0.1個/10cm四方以下である。 Specifically, it is preferable that a defect having a diameter of 5 μm or more is 1 piece / 10 cm square or less in the film plane. More preferably, it is 0.5 piece / 10 cm square or less, and particularly preferably 0.1 piece / 10 cm square or less.
 上記欠点の直径とは、欠点が円形の場合はその直径を示し、円形でない場合は欠点の範囲を下記方法により顕微鏡で観察して決定し、その最大径(外接円の直径)とする。 The diameter of the above defect indicates the diameter when the defect is circular, and when the defect is not circular, the range of the defect is determined by observing with a microscope according to the following method, and the maximum diameter (diameter of circumscribed circle) is determined.
 欠点の範囲は、欠点が気泡や異物の場合は、欠点を微分干渉顕微鏡の透過光で観察したときの影の大きさで測定する。また、欠点が、ローラー傷の転写や擦り傷等、表面形状の変化を伴う場合には、欠点を微分干渉顕微鏡の反射光で観察して大きさを確認する。 ¡When the defect is a bubble or a foreign object, the defect range is measured by the size of the shadow when the defect is observed with the transmitted light of the differential interference microscope. Further, when the defect is accompanied by a change in the surface shape, such as transfer of a roller scratch or an abrasion, the size is confirmed by observing the defect with reflected light of a differential interference microscope.
 なお、反射光で観察する場合に、欠点の大きさが不明瞭であれば、表面にアルミや白金を蒸着して観察する。かかる欠点頻度にて表される品位に優れたフィルムを生産性良く得るには、光学フィルムの原料溶液を流延直前に高精度濾過することや、流延機周辺のクリーン度を高くすること、また、流延後の乾燥条件を段階的に設定し、効率良くかつ発泡を抑えて乾燥させることが有効である。 In addition, when observing with reflected light, if the size of the defect is not clear, aluminum or platinum is vapor-deposited on the surface for observation. In order to obtain a film excellent in the quality represented by such a defect frequency with high productivity, it is necessary to highly accurately filter the raw material solution of the optical film immediately before casting, to increase the cleanliness around the casting machine, It is also effective to set the drying conditions after casting stepwise and to dry efficiently while suppressing foaming.
 欠点の個数が1個/10cm四方より多いと、例えば、後工程での加工時等でフィルムに張力がかかると、欠点を起点としてフィルムが破断して生産性が低下する場合がある。また、欠点の直径が5μm以上になると、偏光板観察等により目視で確認でき、光学部材として用いたとき輝点が生じる場合がある。 If the number of defects is greater than 1/10 cm square, for example, if the film is tensioned during processing in a later step, the film may be broken starting from the defects and productivity may be reduced. Moreover, when the diameter of a defect becomes 5 micrometers or more, it can confirm visually by polarizing plate observation etc., and when used as an optical member, a bright spot may arise.
(破断伸度)
 また、本発明の光学フィルムは、JIS-K7127-1999に準拠した測定において、少なくとも一方向(TD方向又はMD方向)の破断伸度が、4%以上であることが好ましく、より好ましくは10%以上である。
(Elongation at break)
In the optical film of the present invention, the elongation at break in at least one direction (TD direction or MD direction) is preferably 4% or more, more preferably 10% in the measurement based on JIS-K7127-1999. That's it.
 破断伸度の上限は、特に限定されるものではないが、延伸を高延伸率で行うことにより破断伸度は低下する傾向にあり、本発明のように好ましくはTD方向に予備延伸を行った後、斜め延伸を行うことにより、破断伸度は30%以下であることが好ましく、更には20%以下であることが好ましい。 The upper limit of the elongation at break is not particularly limited, but the elongation at break tends to decrease by performing stretching at a high stretching ratio, and pre-stretching is preferably performed in the TD direction as in the present invention. Thereafter, by performing oblique stretching, the breaking elongation is preferably 30% or less, and more preferably 20% or less.
(全光線透過率)
 本発明の光学フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。また、製膜時のフィルム接触部(冷却ローラー、カレンダーローラー、ドラム、ベルト、溶液製膜における塗布基材、搬送ローラー等)の表面粗さを小さくしてフィルム表面の表面粗さを小さくすることによりフィルム表面の光の拡散や反射を低減させることが有効である。
(Total light transmittance)
The optical film of the present invention preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film. Also, reduce the surface roughness of the film surface by reducing the surface roughness of the film contact part (cooling roller, calendar roller, drum, belt, coating substrate in solution casting, transport roller, etc.) during film formation. It is effective to reduce the diffusion and reflection of light on the film surface.
[2-2]第1の光学フィルムの寸法変化率
 本発明に係る第1の光学フィルムの寸法変化率は、下記方法によって測定される。
[2-2] Dimensional Change Rate of First Optical Film The dimensional change rate of the first optical film according to the present invention is measured by the following method.
 〔1〕TD方向又はMD方向に一辺が平行となるように第1の光学フィルムを10cm四方で2枚採取し、それぞれ遅相軸方向及び当該遅相軸方向に直交する方向の寸法変化測定用とする。2点間の距離の寸法変化を測定するにあたり当該フィルムに間隔が8cmとなるように、遅相軸方向及び当該遅相軸方向に直交する方向のそれぞれについてカミソリで十字に傷を2か所つけた後、23℃・20%RHの環境下で、24時間放置する。 [1] Two 10 cm squares of the first optical film are sampled so that one side is parallel to the TD direction or MD direction, and for measuring the dimensional change in the slow axis direction and the direction perpendicular to the slow axis direction, respectively. And In measuring the dimensional change of the distance between two points, two scratches were made on the cross with a razor in each of the slow axis direction and the direction perpendicular to the slow axis direction so that the distance between the films was 8 cm. After that, it is left for 24 hours in an environment of 23 ° C. and 20% RH.
 上記調湿したフィルムを同・23℃20%RHの環境下、顕微鏡のステージに乗せて、ガラス板を乗せて固定化し、前記2点の十字の傷の間の寸法(8cm)を遅相軸方向及び当該遅相軸方向に直交する方向で顕微鏡にて精密に測定し、それぞれL(θ)及びL(θ+90)とする。 The humidity-controlled film is placed on a microscope stage in the same environment of 23 ° C. and 20% RH, and a glass plate is placed on the film and fixed. The dimension (8 cm) between the two cross-shaped scratches is the slow axis. The direction and the direction perpendicular to the slow axis direction are measured precisely with a microscope, and are defined as L 0 (θ) and L 0 (θ + 90), respectively.
 顕微鏡は、ニコン社製Nikon MEASURESCOPE MM-11(接眼レンズ:×10 対物レンズ:×3)を用い、データ測定機は、Nikon DP-302 DATA PROCESSORを用いて顕微鏡に直結し、得られたデータは表計算ソフトに出力する。 The microscope was Nikon MEASURESCOPE MM-11 (eyepiece: x10, objective lens: x3) manufactured by Nikon, and the data measuring machine was directly connected to the microscope using Nikon DP-302 DATA PROCESSOR. Output to spreadsheet software.
 〔2〕このフィルムを23℃・80%RHの環境下に移し、24時間放置した後、同23℃・80%RH温湿度環境下で、前記2点の十字の傷の間の寸法を遅相軸方向、及び当該遅相軸方向に直交する方向でそれぞれ上記顕微鏡及びデータ測定機によって測定し、それぞれL(θ)、L(θ+90)とする。 [2] The film was transferred to an environment of 23 ° C./80% RH and allowed to stand for 24 hours, and then the dimension between the two cross-shaped scratches was delayed under the environment of 23 ° C./80% RH temperature / humidity. axis direction, and were measured in a direction perpendicular to the slow axis direction by the microscope and data measuring instrument, L 1 (theta), respectively, and L 1 + 90).
 〔3〕〔1〕及び〔2〕で求めたそれぞれの寸法を下記(式a)及び(式b)へ代入し、第1の光学フィルムの寸法変化率を求め、L(θ)及びL(θ+90)とする。
  (式a): L(θ)(%)=(L(θ)-L(θ))/L(θ)×100
  (式b): L(θ+90)(%)=(L(θ+90)-L(θ+90))/L(θ+90)×100
[3] Substituting the respective dimensions obtained in [1] and [2] into the following (formula a) and (formula b) to obtain the dimensional change rate of the first optical film, and L (θ) and L ( θ + 90).
(Formula a): L (θ) (%) = (L 1 (θ) −L 0 (θ)) / L 0 (θ) × 100
(Formula b): L (θ + 90) (%) = (L 1 (θ + 90) −L 0 (θ + 90)) / L 0 (θ + 90) × 100
 本発明においては、このようにして得られた第1の光学フィルムの寸法変化率L(θ)及びL(θ+90)が上記式(1)及び(2)を満たすことを特徴としている。これにより、第1の光学フィルムの面方向における寸法変化の差異を低減し、物理的なひずみの発生を抑制することができる。 The present invention is characterized in that the dimensional change rates L (θ) and L (θ + 90) of the first optical film thus obtained satisfy the above formulas (1) and (2). Thereby, the difference of the dimensional change in the surface direction of a 1st optical film can be reduced, and generation | occurrence | production of a physical distortion can be suppressed.
 本発明に係る第1の光学フィルムの寸法変化率を、上記式(1)及び(2)で示される範囲に調整する手段としては、特に限定されるものではないが、以下の手段を採用することにより調整することが可能である。
 すなわち、溶液流延により得られた流延膜を幅手方向に延伸し、更に当該幅手方向に対して斜め方向に延伸した後に、流延膜の端部に対して180~220℃の範囲内でエンボス加工を施した後に、ロール状に巻き取った状態で、60~80℃、20%RH以下の条件で3~5日間加熱処理することで、寸法変化率を調整することが可能である。また、斜め方向に延伸した後、搬送ローラーにより流延膜を張力120~150Nで搬送しながら、搬送ローラーを介して当該流延膜を140~170℃で40~600秒間加熱処理することによっても、寸法変化率を調整できる。
The means for adjusting the dimensional change rate of the first optical film according to the present invention to the range represented by the above formulas (1) and (2) is not particularly limited, but the following means are adopted. It is possible to adjust by this.
That is, the cast film obtained by solution casting is stretched in the width direction, and further stretched in an oblique direction with respect to the width direction, and then in the range of 180 to 220 ° C. with respect to the end of the cast film. It is possible to adjust the rate of dimensional change by heat treatment for 3 to 5 days under conditions of 60 to 80 ° C and 20% RH or less after being embossed and wound in a roll. is there. Alternatively, after stretching in an oblique direction, the cast film is heated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while the cast film is transported at a tension of 120 to 150 N by the transport roller. The dimensional change rate can be adjusted.
 また、第1の光学フィルムは、長手方向の寸法変化率L(MD)と、幅手方向の寸法変化率L(TD)とが下記式(3)を満たすことが好ましい。これにより、表面故障や平面性故障の発生が抑制された偏光板とすることができる。
  式(3): 0.50≦L(MD)/L(TD)<1.00
 寸法変化率L(MD)及びL(TD)は上記した測定方法と同様の方法で求めることができる。
In the first optical film, it is preferable that a dimensional change rate L (MD) in the longitudinal direction and a dimensional change rate L (TD) in the width direction satisfy the following formula (3). Thereby, it can be set as the polarizing plate by which generation | occurrence | production of the surface failure and the planarity failure was suppressed.
Formula (3): 0.50 ≦ L (MD) / L (TD) <1.00
The dimensional change rates L (MD) and L (TD) can be obtained by the same method as the measurement method described above.
[2-3]第1の光学フィルムの組成
 本発明に係る第1の光学フィルムの組成としては、当該第1の光学フィルムの寸法変化率が上記式(1)及び(2)を満たすことのできる材料であれば従来公知のいずれの材料を含有していても良いが、セルロース骨格を有するポリマー(以下、「セルロース誘導体」ともいう。)を含有することが好ましい。好ましくは、当該第1の光学フィルム中のセルロース誘導体の含有比率が55質量%以上、好ましくは70質量%以上である。
[2-3] Composition of first optical film As a composition of the first optical film according to the present invention, the dimensional change rate of the first optical film satisfies the above formulas (1) and (2). Any known material may be used as long as it can be used, but it is preferable to contain a polymer having a cellulose skeleton (hereinafter also referred to as “cellulose derivative”). Preferably, the content ratio of the cellulose derivative in the first optical film is 55% by mass or more, preferably 70% by mass or more.
 セルロース誘導体は、セルロースを原料とする化合物である。セルロース誘導体の例には、セルロースエステル(詳細は後述)、セルロースエーテル(例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、シアノエチルセルロース等)、セルロースエーテルエステル(例えば、アセチルメチルセルロース、アセチルエチルセルロース、アセチルヒドロキシエチルセルロース、ベンゾイルヒドロキシプロピルセルロース等)、セルロースカーボネート(例えば、セルロースエチルカーボネート等)、セルロースカルバメート(例えば、セルロースフェニルカルバメート等が挙げられる)等の樹脂が含まれ、好ましくはセルロースエステルである。セルロース誘導体は、1種類であっても良いし、2種類以上の混合物であっても良い。 A cellulose derivative is a compound using cellulose as a raw material. Examples of cellulose derivatives include cellulose esters (details will be described later), cellulose ethers (for example, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, cyanoethyl cellulose, etc.), cellulose ether esters (for example, acetyl methyl cellulose, acetyl ethyl cellulose, acetyl hydroxy). Resins such as ethyl cellulose, benzoylhydroxypropyl cellulose, etc., cellulose carbonate (eg, cellulose ethyl carbonate, etc.), cellulose carbamate (eg, cellulose phenyl carbamate, etc.) are included, and cellulose esters are preferred. One type of cellulose derivative may be used, or a mixture of two or more types may be used.
 セルロースエステルとしては、炭素原子数が2~4の範囲内であるアシル基を有することが好ましい。炭素原子数が2~4の範囲内であるアシル基としては、アセチル基、プロピオニル基及びブタノイル基を挙げることができる。 The cellulose ester preferably has an acyl group having 2 to 4 carbon atoms. Examples of the acyl group having 2 to 4 carbon atoms include an acetyl group, a propionyl group, and a butanoyl group.
 セルロースを構成するβ-1,4結合しているグルコース単位は、2位、3位及び6位に遊離のヒドロキシ基を有している。セルロースエステルは、これらのヒドロキシ基の一部又は全部をアシル基によりアシル化した重合体(ポリマー)である。アシル基総置換度は、グルコース単位一つあたり、2位、3位及び6位に位置するセルロースのヒドロキシ基の全てがアシル化している割合(100%のアシル化は置換度3)を意味する。 The β-1,4-bonded glucose unit constituting cellulose has free hydroxy groups at the 2nd, 3rd and 6th positions. The cellulose ester is a polymer obtained by acylating part or all of these hydroxy groups with an acyl group. The total acyl group substitution degree means the ratio in which all the hydroxy groups of cellulose located at the 2nd, 3rd and 6th positions are acylated per one glucose unit (100% acylation has a degree of substitution of 3). .
 好ましいアシル基の例としては、アセチル基、プロピオニル基、ブタノイル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、トリデカノイル基、テトラデカノイル基、ヘキサデカノイル基、オクタデカノイル基、イソブタノイル基、tert-ブタノイル基、シクロヘキサンカルボニル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基等を挙げることができる。これらの中でも、アセチル基、プロピオニル基、ブタノイル基、ドデカノイル基、オクタデカノイル基、tert-ブタノイル基、オレオイル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基等がより好ましく、特に好ましくはアセチル基、プロピオニル基、ブタノイル基(アシル基が炭素原子数2~4である場合)である。 Examples of preferred acyl groups include acetyl, propionyl, butanoyl, heptanoyl, hexanoyl, octanoyl, decanoyl, dodecanoyl, tridecanoyl, tetradecanoyl, hexadecanoyl, octadecanoyl, Examples thereof include an isobutanoyl group, a tert-butanoyl group, a cyclohexanecarbonyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, and a cinnamoyl group. Among these, an acetyl group, a propionyl group, a butanoyl group, a dodecanoyl group, an octadecanoyl group, a tert-butanoyl group, an oleoyl group, a benzoyl group, a naphthylcarbonyl group, a cinnamoyl group, and the like are more preferable, and an acetyl group, particularly preferably A propionyl group and a butanoyl group (when the acyl group has 2 to 4 carbon atoms);
 具体的なセルロースエステルとしては、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、セルロースフタレート及びセルロースアセテートベンゾエートから選ばれる少なくとも一種であることが好ましい。 Specific cellulose esters include at least selected from cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, cellulose phthalate and cellulose acetate benzoate. One type is preferred.
 これらの中でより好ましいセルロースエステルは、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレートである。 Among these, more preferred cellulose esters are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
 セルローストリアセテートは、平均酢化度(結合酢酸量)54.0~62.5%のものが好ましく用いられ、更に好ましいのは、平均酢化度が58.0~62.5%のセルローストリアセテートである。 The cellulose triacetate preferably has an average degree of acetylation (bound acetic acid amount) of 54.0 to 62.5%, and more preferably cellulose triacetate having an average degree of acetylation of 58.0 to 62.5%. is there.
 セルロースジアセテートは、平均酢化度(結合酢酸量)51.0~56.0%が好ましく用いられる。市販品としては、(株)ダイセル製のL20、L30、L40、L50、イーストマンケミカルジャパン(株)製のCa398-3、Ca398-6、Ca398-10、Ca398-30、Ca394-60Sが挙げられる。 Cellulose diacetate preferably has an average degree of acetylation (amount of bound acetic acid) of 51.0 to 56.0%. Commercially available products include L20, L30, L40, and L50 manufactured by Daicel Corporation, and Ca398-3, Ca398-6, Ca398-10, Ca398-30, and Ca394-60S manufactured by Eastman Chemical Japan Co., Ltd. .
 セルロースアセテートプロピオネートやセルロースアセテートブチレートは、炭素原子数2~4のアシル基を置換基として有し、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(I)及び(II)を同時に満たすものが好ましい。 Cellulose acetate propionate or cellulose acetate butyrate has an acyl group having 2 to 4 carbon atoms as a substituent, the substitution degree of acetyl group is X, and the substitution degree of propionyl group or butyryl group is Y Those satisfying the following formulas (I) and (II) are preferred.
 式(I): 2.0≦X+Y≦2.95
 式(II): 0≦X≦2.5
 中でも1.9≦X≦2.5、0.1≦Y≦0.9であることが好ましい。
Formula (I): 2.0 ≦ X + Y ≦ 2.95
Formula (II): 0 ≦ X ≦ 2.5
Among them, it is preferable that 1.9 ≦ X ≦ 2.5 and 0.1 ≦ Y ≦ 0.9.
 上記アシル基の置換度の測定方法は、ASTM-D817-96に準じて測定することができる。 The method for measuring the degree of substitution of the acyl group can be measured according to ASTM-D817-96.
 セルロースエステルの重量平均分子量Mwは、弾性率を制御する観点から、80000~300000の範囲内であることが好ましく、120000~250000の範囲内であることがより好ましい。上記範囲内であると製膜時に延伸による弾性率の制御が行いやすく、フィルムの巻き形状の安定化や添加剤の耐染み出し性が向上する。 The weight average molecular weight Mw of the cellulose ester is preferably in the range of 80000 to 300000, and more preferably in the range of 120,000 to 250,000, from the viewpoint of controlling the elastic modulus. Within the above range, it is easy to control the elastic modulus by stretching at the time of film formation, so that the winding shape of the film is stabilized and the anti-bleeding resistance of the additive is improved.
 セルロースエステルの数平均分子量(Mn)は30000~150000の範囲が、得られた光学フィルムの機械的強度が高く好ましい。更に40000~100000の数平均分子量のセルロースエステルが好ましく用いられる。 The number average molecular weight (Mn) of the cellulose ester is preferably in the range of 30000 to 150,000 because the obtained optical film has high mechanical strength. Furthermore, cellulose esters having a number average molecular weight of 40,000 to 100,000 are preferably used.
 セルロースエステルの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)の値は、1.4~3.0の範囲であることが好ましい。 The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the cellulose ester is preferably in the range of 1.4 to 3.0.
 セルロースエステルの重量平均分子量Mw、数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した。 The weight average molecular weight Mw and number average molecular weight Mn of the cellulose ester were measured using gel permeation chromatography (GPC).
 測定条件は以下のとおりである。 The measurement conditions are as follows.
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いる。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corp.) Mw = 1000,000 to 500 13 calibration curves were used. Thirteen samples are used at approximately equal intervals.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでも良く、木材パルプは針葉樹でも広葉樹でも良いが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、あるいは単独で使用することができる。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 本発明に係るセルロースエステルは、公知の方法により製造することができる。一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸等)と酸無水物(無水酢酸、無水プロピオン酸等)、触媒(硫酸等)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいてはグルコース単位の三個のヒドロキシ基は、有機酸のアシル酸で置換されている。同時に二種類の有機酸を使用すると、混合エステル型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースエステルを合成する。その後、濾過、沈殿、水洗、脱水、乾燥等の工程を経て、セルロースエステルができあがる。 The cellulose ester according to the present invention can be produced by a known method. Generally, cellulose is esterified by mixing cellulose as a raw material, a predetermined organic acid (acetic acid, propionic acid, etc.), an acid anhydride (acetic anhydride, propionic anhydride, etc.), and a catalyst (sulfuric acid, etc.). The reaction proceeds until the triester is formed. In the triester, the three hydroxy groups of the glucose unit are substituted with an organic acid acyl acid. When two kinds of organic acids are used at the same time, a mixed ester type cellulose ester such as cellulose acetate propionate or cellulose acetate butyrate can be produced. Subsequently, the cellulose triester is hydrolyzed to synthesize a cellulose ester having a desired degree of acyl substitution. Thereafter, the cellulose ester is completed through steps such as filtration, precipitation, washing with water, dehydration, and drying.
 本発明に係るセルロースエステルは、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて撹拌したときのpHが6~7の範囲であり、電気伝導度が1~100μS/cmの範囲であることが好ましい。 The cellulose ester according to the present invention is charged with 1 g in 20 ml of pure water (electric conductivity of 0.1 μS / cm or less, pH 6.8), and has a pH of 6 to 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. The electric conductivity is preferably in the range of 1 to 100 μS / cm.
 本発明に係るセルロースエステルは、具体的には特開平10-45804号公報に記載の方法を参考にして合成することができる。 The cellulose ester according to the present invention can be specifically synthesized with reference to the method described in JP-A-10-45804.
[2-4]添加剤
 第1の光学フィルムには、添加剤が含有されていても良い。添加剤としては、例えば、可塑剤、紫外線吸収剤、リターデーション調整剤、酸化防止剤、劣化防止剤、剥離助剤、界面活性剤、染料、微粒子等が挙げられる。本実施形態において、微粒子以外の添加剤については上記セルロースエーテル等の溶液の調製の際に添加しても良いし、微粒子分散液の調製の際に添加しても良い。有機ELディスプレイ等の画像表示装置に使用する偏光板には、耐熱耐湿性を付与する可塑剤、酸化防止剤や紫外線吸収剤等を添加することが好ましい。
[2-4] Additive The first optical film may contain an additive. Examples of the additive include a plasticizer, an ultraviolet absorber, a retardation adjusting agent, an antioxidant, a deterioration preventing agent, a peeling aid, a surfactant, a dye, and fine particles. In the present embodiment, additives other than the fine particles may be added when preparing the solution of the cellulose ether or the like, or may be added when preparing the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber, or the like that imparts heat and moisture resistance to a polarizing plate used in an image display device such as an organic EL display.
 これらの添加剤は、例えばセルロースエステルに対して1~30質量%、好ましくは1~20質量%となるように添加されていることが好ましい。また、延伸及び乾燥中のブリードアウト等を抑制させるため、200℃における蒸気圧が1400Pa以下の化合物であることが好ましい。 These additives are preferably added in an amount of, for example, 1 to 30% by mass, preferably 1 to 20% by mass with respect to the cellulose ester. In order to suppress bleeding out during stretching and drying, a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
(リターデーション調整剤)
 リターデーションを調整するために添加する化合物は、欧州特許911656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することができる。
(Retardation adjuster)
As the compound to be added for adjusting the retardation, an aromatic compound having two or more aromatic rings as described in EP 91656A2 can be used.
 また、2種類以上の芳香族化合物を併用しても良い。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。中でも1,3,5-トリアジン環が特に好ましい。 Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. Particularly preferred is an aromatic heterocycle, and the aromatic heterocycle is generally an unsaturated heterocycle. Of these, a 1,3,5-triazine ring is particularly preferred.
(ポリマー又はオリゴマー)
 第1の光学フィルムは、セルロースエステルと、カルボキシ基、ヒドロキシ基、アミノ基、アミド基、及びスルホ基から選ばれる置換基を有しかつ重量平均分子量が500~200000の範囲内であるビニル系化合物のポリマー又はオリゴマーとを含有することが好ましい。当該セルロースエステルと、当該ポリマー又はオリゴマーとの含有量の質量比が、95:5~50:50の範囲内であることが好ましい。
(Polymer or oligomer)
The first optical film comprises a cellulose ester and a vinyl compound having a substituent selected from a carboxy group, a hydroxy group, an amino group, an amide group, and a sulfo group and having a weight average molecular weight in the range of 500 to 200,000. It is preferable to contain these polymers or oligomers. The mass ratio of the content of the cellulose ester and the polymer or oligomer is preferably in the range of 95: 5 to 50:50.
(マット剤)
 第1の光学フィルムには、マット剤として微粒子を含有させることができ、これによって、第1の光学フィルムが長尺の場合、搬送や巻き取りをしやすくすることができる。
(Matting agent)
The first optical film can contain fine particles as a matting agent. This makes it easier to transport and wind up when the first optical film is long.
 マット剤の粒径は10nm~0.1μmの1次粒子又は2次粒子であることが好ましい。1次粒子の針状比は1.1以下の略球状のマット剤が好ましく用いられる。 The particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 μm. A substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
 微粒子としては、ケイ素を含むものが好ましく、特に二酸化ケイ素が好ましい。本実施形態に好ましい二酸化ケイ素の微粒子としては、例えば、日本アエロジル(株)製のアエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されているものを挙げることができ、アエロジル200V、R972、R972V、R974、R202、R812を好ましく用いることができる。ポリマーの微粒子の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(東芝シリコーン(株)製)を挙げることができる。 As the fine particles, those containing silicon are preferable, and silicon dioxide is particularly preferable. As the fine particles of silicon dioxide preferable for this embodiment, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd. And commercially available products such as Aerosil 200V, R972, R972V, R974, R202, and R812 can be preferably used. Examples of the polymer fine particles include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. Examples include Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.). Can do.
(その他の添加剤)
 その他、カオリン、タルク、ケイソウ土、石英、炭酸カルシウム、硫酸バリウム、酸化チタン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の塩等の熱安定剤を加えても良い。更に、界面活性剤、剥離促進剤、帯電防止剤、難燃剤、滑剤、油剤等も加えても良い。
(Other additives)
In addition, thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, titanium oxide, and alumina, and alkaline earth metal salts such as calcium and magnesium may be added. Further, a surfactant, a peeling accelerator, an antistatic agent, a flame retardant, a lubricant, an oil agent and the like may be added.
[2-5]第1の光学フィルムの製造方法
 第1の光学フィルムの製造方法としては、特に限定されるものではないが、例えば、溶液流延製膜法又は溶融流延製膜法を用いることができる。
 なお、以下に説明する製造方法においては、第1の光学フィルムの材料としてセルロースエステルを用いるものとする。
[2-5] Method for Producing First Optical Film The method for producing the first optical film is not particularly limited. For example, a solution casting film forming method or a melt casting film forming method is used. be able to.
In addition, in the manufacturing method demonstrated below, a cellulose ester shall be used as a material of a 1st optical film.
[2-5-1]溶液流延製膜法による方法
 第1の光学フィルムを溶液流延製膜法で製造する場合には、(1)セルロースエステル及び添加剤等の各材料を溶剤に溶解させたドープを支持体上に流延して流延膜を形成する流延工程、(2)残留溶媒量が1~20質量%の流延膜を、幅手方向に1.01~1.3倍の延伸倍率で延伸する横延伸工程、(3)流延膜を、幅手方向に対して斜め方向に延伸する斜め延伸工程、(4)流延膜に対して、後述する(i)又は(ii)の加熱処理を行うことで第1の光学フィルムを得る加熱処理工程、を経て製造することができる。
[2-5-1] Method by the solution casting film forming method When the first optical film is produced by the solution casting film forming method, (1) each material such as cellulose ester and additives is dissolved in a solvent. A casting process in which the dope is cast on a support to form a casting film; (2) a casting film having a residual solvent amount of 1 to 20% by mass in a width direction of 1.01 to 1. Lateral stretching step of stretching at a stretching ratio of 3 times, (3) an oblique stretching step of stretching the cast film in an oblique direction with respect to the width direction, and (4) an after-mentioned (i) for the cast film. Or it can manufacture through the heat processing process of obtaining a 1st optical film by performing the heat processing of (ii).
[2-5-1-1]流延工程
 溶解釜において、セルロースエステル及び添加剤を溶剤に溶解させてドープを調製する。
[2-5-1-1] Casting step In a dissolution vessel, a cellulose ester and an additive are dissolved in a solvent to prepare a dope.
 ドープに含まれる溶剤は、1種類でも2種以上を組み合わせたものでも良い。生産効率を高める観点では、セルロースエステルの良溶剤と貧溶剤を組み合わせて用いることが好ましい。良溶剤とは、セルロースエステルを単独で溶解する溶剤をいい、貧溶剤とは、セルロースエステルを膨潤させるか、又は単独では溶解しないものをいう。そのため、良溶剤及び貧溶剤は、セルロースエステルの平均アシル基置換度によって異なる。 The solvent contained in the dope may be a single type or a combination of two or more types. From the viewpoint of increasing production efficiency, it is preferable to use a combination of a good solvent and a poor solvent for cellulose ester. A good solvent refers to a solvent that dissolves cellulose ester alone, and a poor solvent refers to a solvent that swells cellulose ester or does not dissolve alone. Therefore, the good solvent and the poor solvent differ depending on the average acyl group substitution degree of the cellulose ester.
 良溶剤の例には、ジクロロメタン等の有機ハロゲン化合物、ジオキソラン類、アセトン、酢酸メチル、及びアセト酢酸メチル等が含まれ、好ましくはジクロロメタンである。 Examples of good solvents include organic halogen compounds such as dichloromethane, dioxolanes, acetone, methyl acetate, methyl acetoacetate, etc., preferably dichloromethane.
 貧溶剤の例には、メタノール、エタノール、n-ブタノール、シクロヘキサン、及びシクロヘキサノン等が含まれる。ロール体を構成する光学フィルムにおける添加剤の染み出しを抑制するためには、メタノール又はエタノールが好ましい。 Examples of poor solvents include methanol, ethanol, n-butanol, cyclohexane, and cyclohexanone. In order to suppress the bleeding of the additive in the optical film constituting the roll body, methanol or ethanol is preferable.
 貧溶剤は、一種類でも、二種類以上の混合物であっても良い。貧溶剤が二種類以上の貧溶剤の混合物である場合、添加剤のSP値(溶解度パラメーター)との差の絶対値が大きい貧溶剤の含有割合が最も多いことが好ましい。 The poor solvent may be one type or a mixture of two or more types. When the poor solvent is a mixture of two or more kinds of poor solvents, the content ratio of the poor solvent having a large absolute value of the difference from the SP value (solubility parameter) of the additive is preferably the largest.
 良溶剤と貧溶剤を組み合わせて用いる場合、セルロースエステルの溶解性を高めるためには、良溶剤が貧溶剤よりも多いことが好ましい。良溶剤と貧溶剤の混合比率は、良溶剤が70~98質量%の範囲であり、貧溶剤が2~30質量%の範囲であることが好ましい。 When a good solvent and a poor solvent are used in combination, it is preferable that the good solvent is more than the poor solvent in order to increase the solubility of the cellulose ester. The mixing ratio of the good solvent and the poor solvent is preferably in the range of 70 to 98% by mass for the good solvent and in the range of 2 to 30% by mass for the poor solvent.
 ドープにおけるセルロースエステルの濃度は、乾燥負荷を低減するためには高い方が好ましいが、セルロースエステルの濃度が高すぎると濾過しにくい。そのため、ドープにおけるセルロースエステルの濃度は、好ましくは10~35質量%の範囲であり、より好ましくは15~25質量%の範囲である。 The concentration of the cellulose ester in the dope is preferably higher in order to reduce the drying load, but it is difficult to filter if the concentration of the cellulose ester is too high. Therefore, the concentration of the cellulose ester in the dope is preferably in the range of 10 to 35% by mass, more preferably in the range of 15 to 25% by mass.
 セルロースエステルを溶剤に溶解させる方法は、例えば加熱及び加圧下で溶解させる方法、セルロースエステルに貧溶剤を加えて膨潤させた後、良溶剤を更に加えて溶解させる方法、及び冷却溶解法等でありうる。 Examples of the method for dissolving the cellulose ester in a solvent include a method for dissolving under heating and pressure, a method for adding a poor solvent to the cellulose ester to swell, a method for further adding a good solvent, and a cooling dissolution method, and the like. sell.
 中でも、常圧における沸点以上に加熱できることから、加熱及び加圧下で溶解させる方法が好ましい。具体的には、常圧下で溶剤の沸点以上であり、かつ加圧下で溶剤が沸騰しない範囲の温度に加熱しながら撹拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を抑制できる。 Among them, the method of dissolving under heating and pressurization is preferable because it can be heated to the boiling point or higher at normal pressure. Specifically, when stirring and dissolving while heating to a temperature that is higher than the boiling point of the solvent under normal pressure and that the solvent does not boil under pressure, generation of massive undissolved material called gel or mamako can be suppressed.
 加熱温度は、セルロースエステルの溶解性を高める観点では、高い方が好ましいが、高過ぎると、圧力を高める必要があり、生産性が低下する。このため、加熱温度は、45~120℃の範囲であることが好ましく、60~110℃の範囲がより好ましく、70℃~105℃であることが更に好ましい。 The heating temperature is preferably higher from the viewpoint of increasing the solubility of the cellulose ester, but if it is too high, it is necessary to increase the pressure and the productivity is lowered. For this reason, the heating temperature is preferably in the range of 45 to 120 ° C., more preferably in the range of 60 to 110 ° C., and still more preferably 70 to 105 ° C.
 得られるドープには、例えば原料であるセルロースエステルに含まれる不純物等の不溶物が含まれることがある。このような不溶物は、得られるフィルムにおいて輝点異物となりうる。このような不溶物等を除去するために、得られたドープを更に濾過することが好ましい。 The obtained dope may contain insoluble matters such as impurities contained in the cellulose ester as a raw material. Such an insoluble matter can become a bright spot foreign material in the obtained film. In order to remove such insoluble matter and the like, it is preferable to further filter the obtained dope.
 次に、調製したドープを、加圧ダイのスリットから無端状の金属支持体(例えばステンレスベルトや回転する金属ドラムなど)上に流延させる。 Next, the prepared dope is cast from the slit of the pressure die onto an endless metal support (for example, a stainless belt or a rotating metal drum).
 ダイは、口金部分のスリット形状を調整でき、膜厚を均一に調整しやすい加圧ダイが好ましい。加圧ダイの例には、コートハンガーダイ、T-ダイ等が含まれる。金属支持体の表面は、鏡面加工されていることが好ましい。 The die is preferably a pressure die that can adjust the slit shape of the die part and easily adjust the film thickness uniformly. Examples of the pressure die include a coat hanger die and a T-die. The surface of the metal support is preferably mirror-finished.
 流延は、複数のドープを調製して、支持体としての平滑なバンド上あるいはドラム上に前記複数のドープを流延して製膜することもできる。 Casting can also be performed by preparing a plurality of dopes and casting the plurality of dopes on a smooth band or drum as a support.
 この場合、2種以上のドープを同時に支持体上に流延しても良いし、別々に支持体上に流延しても良い。別々に流延する逐次流延法の場合は、支持体側のドープを先に流延して支持体上である程度乾燥させた後に、その上に重ねて流延することができる。また、3種以上のドープを使用する場合、同時流延(共流延ともいう。)と逐次流延を適宜組み合せて流延し、積層構造のフィルムを作製することもできる。共流延若しくは逐次流延によって製膜されるこれらの方法は、乾燥されたフィルム上に塗布する方法とは異なり、積層構造の各層の境界が不明確になり、断面の観察で積層構造が明確には分かれないことがあるという特徴があり、各層間の密着性を向上させる効果がある。 In this case, two or more kinds of dopes may be cast on the support at the same time, or separately on the support. In the case of the sequential casting method in which casting is performed separately, the dope on the support side can be cast first and dried to some extent on the support, and then overlaid on the support. When three or more kinds of dopes are used, a film having a laminated structure can be produced by appropriately combining simultaneous casting (also referred to as co-casting) and sequential casting. These methods, which are formed by co-casting or sequential casting, differ from the method of coating on a dried film, and the boundary of each layer of the laminated structure becomes unclear, and the laminated structure is clear by observing the cross section. There is a feature that there is a case where there is no separation, there is an effect of improving the adhesion between each layer.
 共流延としては、公知の共流延方法を用いることができる。例えば、金属支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製しても良く、例えば特開昭61-158414号、特開平1-122419号、特開平11-198285号の各公報等に記載の方法が適応できる。また、二つの流延口からセルロースアシレート溶液を流延することによってもフィルム化することでも良く、例えば特公昭60-27562号、特開昭61-94724号、特開昭61-947245号、特開昭61-104813号、特開昭61-158413号、特開平6-134933号の各公報に記載の方法で実施できる。 As the co-casting, a known co-casting method can be used. For example, the film may be produced by casting and laminating a solution containing cellulose acylate from a plurality of casting openings provided at intervals in the traveling direction of the metal support. The methods described in JP-A Nos. 158414, 1-122419 and 11-198285 can be applied. Further, it may be formed into a film by casting a cellulose acylate solution from two casting ports. For example, JP-B-60-27562, JP-A-61-94724, JP-A-61-947245, It can be carried out by the methods described in JP-A Nos. 61-104813, 61-158413, and 6-134933.
 次に、ドープ膜を金属支持体上で加熱して溶剤を蒸発させて、ウェブ(流延膜)を得る。 Next, the dope film is heated on a metal support to evaporate the solvent to obtain a web (casting film).
 ドープ膜の乾燥は、40~100℃の範囲の雰囲気下で行うことが好ましい。ドープ膜を40~100℃の範囲の雰囲気下で乾燥させるためには、40~100℃の範囲の温風をウェブ上面に当てたり、赤外線等で加熱したりすることが好ましい。 The dope film is preferably dried in an atmosphere in the range of 40 to 100 ° C. In order to dry the dope film in an atmosphere in the range of 40 to 100 ° C., it is preferable to apply hot air in the range of 40 to 100 ° C. to the upper surface of the web or to heat it with infrared rays or the like.
 溶媒を蒸発させる方法としては、ドープ膜の表面に風を当てる方法、ベルトの裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、乾燥効率が高いことから、ベルトの裏面から液体により伝熱させる方法が好ましい。 As a method of evaporating the solvent, there are a method of applying air to the surface of the dope film, a method of transferring heat from the back side of the belt with a liquid, a method of transferring heat from the front and back by radiant heat, etc. A method of transferring heat from the back surface of the liquid with a liquid is preferable.
 次に、得られたウェブを、金属支持体上の剥離位置で剥離する。金属支持体上の剥離位置における温度は、好ましくは10~40℃の範囲であり、更に好ましくは11~30℃の範囲である。 Next, the obtained web is peeled off at the peeling position on the metal support. The temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C., more preferably in the range of 11 to 30 ° C.
 得られるウェブの面品質や透湿性、剥離性等を高める観点から、流延後、30~120秒以内で、ウェブを金属支持体から剥離することが好ましい。 From the viewpoint of improving the surface quality, moisture permeability, peelability and the like of the obtained web, it is preferable to peel the web from the metal support within 30 to 120 seconds after casting.
 金属支持体上の剥離位置で剥離する際のウェブの残留溶媒量は、乾燥条件や金属支持体の長さなどにもよるが、50~120質量%の範囲とすることが好ましい。残留溶媒量が多いウェブは、柔らか過ぎて平面性を損ないやすく、剥離張力による流延方向(MD方向)のシワやスジが発生しやすい。そのような流延方向(MD方向)のシワやスジを抑制できるように、剥離位置でのウェブの残留溶媒量が設定されうる。
 ウェブの残留溶媒量は、下記式で定義される。
The residual solvent amount of the web when peeling at the peeling position on the metal support depends on the drying conditions and the length of the metal support, but is preferably in the range of 50 to 120% by mass. A web having a large amount of residual solvent is too soft and tends to impair flatness, and wrinkles and streaks in the casting direction (MD direction) due to peeling tension tend to occur. The residual solvent amount of the web at the peeling position can be set so that wrinkles and lines in the casting direction (MD direction) can be suppressed.
The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mはウェブ又はフィルムの延伸前の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the sample collected before the web or film is stretched, and N is the mass after heating M at 115 ° C. for 1 hour.
 金属支持体からウェブを剥離する際の剥離張力は、通常、300N/m以下としうる。 The peeling tension when peeling the web from the metal support can usually be 300 N / m or less.
 金属支持体から剥離して得られたウェブを乾燥させる。ウェブの乾燥は、ウェブを、上下に配置した多数のローラーにより搬送しながら乾燥させても良いし、ウェブの両端部をクリップで固定して搬送しながら乾燥させても良い。 The web obtained by peeling from the metal support is dried. For drying the web, the web may be dried while being conveyed by a large number of rollers arranged vertically, or may be dried while being conveyed while fixing both ends of the web with clips.
 ウェブの乾燥方法は、熱風、赤外線、加熱ローラー及びマイクロ波等で乾燥する方法であって良く、簡便であることから熱風で乾燥する方法が好ましい。ウェブの乾燥温度は、40~250℃程度、好ましくは40~160℃程度としうる。 The method of drying the web may be a method of drying with hot air, infrared rays, a heating roller, microwaves, or the like, and a method of drying with hot air is preferable because it is simple. The drying temperature of the web can be about 40 to 250 ° C., preferably about 40 to 160 ° C.
[2-5-1-2]横延伸工程
 次に、残留溶媒量が1~20質量%の状態のウェブを、延伸倍率1.01~1.3倍の範囲内で幅手方向(TD方向)に延伸する横延伸工程を行う。横延伸工程は、上記流延工程を行った後に、得られたウェブを巻き取ることなく連続的に行うことが好ましい。
[2-5-1-2] Transverse Stretching Step Next, the web having a residual solvent amount of 1 to 20% by mass is stretched in the width direction (TD direction) within a range of a draw ratio of 1.01 to 1.3 times. ) Is carried out. The transverse stretching step is preferably performed continuously after the casting step, without winding up the obtained web.
 ウェブの延伸により、所望のリターデーションを有する光学フィルムを得ることができる。光学フィルムのリターデーションは、ウェブに掛かる張力の大きさを調整することで制御することができる。 An optical film having a desired retardation can be obtained by stretching the web. The retardation of the optical film can be controlled by adjusting the magnitude of the tension applied to the web.
 ウェブの延伸倍率は、好ましくは1.01~1.3倍の範囲内とし、より好ましくは1.07~1.15倍の範囲内である。 The stretch ratio of the web is preferably in the range of 1.01 to 1.3 times, more preferably in the range of 1.07 to 1.15 times.
 ウェブの延伸温度は、好ましくは120~200℃の範囲内とし、より好ましくは135~170℃の範囲内である。 The stretching temperature of the web is preferably in the range of 120 to 200 ° C, more preferably in the range of 135 to 170 ° C.
 ウェブの延伸方法は、特に制限されず、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を広げて延伸するテンター延伸法等が好ましい。 The web stretching method is not particularly limited, and a tenter stretching method in which both ends of the web are fixed with clips or pins and the gap between the clips or pins is widened is preferable.
 横延伸工程を行う際におけるウェブの残留溶媒量は、好ましくは1~20質量%の範囲内とし、より好ましくは3~20質量%の範囲内、更に好ましくは3~10質量%の範囲内である。 The amount of residual solvent in the web during the transverse stretching step is preferably in the range of 1 to 20% by mass, more preferably in the range of 3 to 20% by mass, and still more preferably in the range of 3 to 10% by mass. is there.
[2-5-1-3]斜め延伸工程
 次に、幅手方向に延伸されて得られた横延伸フィルム(流延膜)を、フィルム幅手方向に対して斜め方向に延伸する斜め延伸工程を行う。
[2-5-1-3] Diagonal Stretching Step Next, an oblique stretching step of stretching a laterally stretched film (casting film) obtained by stretching in the width direction obliquely with respect to the film width direction. I do.
 幅手方向に延伸された横延伸フィルムを更に斜め延伸するには、斜め延伸可能な装置を用いることが好ましい。斜め延伸可能な装置について説明する。 In order to further stretch the transversely stretched film stretched in the width direction, it is preferable to use an apparatus capable of oblique stretching. An apparatus capable of oblique stretching will be described.
(装置の概要)
 図1は、斜め延伸可能な製造装置1の概略構成の一例を模式的に示す平面図である。製造装置1は、長尺のフィルムの搬送方向上流側から順に、フィルム繰り出し部2と、搬送方向変更部3と、ガイドロール4と、延伸部5と、ガイドロール6と、搬送方向変更部7と、フィルム切断装置8と、フィルム巻き取り部9とを備えている。なお、延伸部5の詳細については後述する。また、斜め延伸工程後に斜め延伸フィルムを巻き取らずに次工程を行うものとしても良く、この場合には、製造装置1はフィルム巻き取り部9を備えていなくても良い。また、長尺フィルムを切断する必要がない場合には、製造装置1はフィルム切断装置8を備えていなくても良い。
(Outline of the device)
FIG. 1 is a plan view schematically showing an example of a schematic configuration of a manufacturing apparatus 1 capable of oblique stretching. The manufacturing apparatus 1 includes, in order from the upstream side in the transport direction of a long film, a film feeding unit 2, a transport direction changing unit 3, a guide roll 4, a stretching unit 5, a guide roll 6, and a transport direction changing unit 7. And a film cutting device 8 and a film winding unit 9. The details of the extending portion 5 will be described later. Moreover, it is good also as what performs the next process, without winding up an obliquely stretched film after an oblique stretch process, and the manufacturing apparatus 1 does not need to be provided with the film winding part 9 in this case. Moreover, when it is not necessary to cut | disconnect a long film, the manufacturing apparatus 1 does not need to be provided with the film cutting device 8. FIG.
 フィルム繰り出し部2は、上述した幅方向に延伸された後の長尺の横延伸フィルム(流延膜)を繰り出して延伸部5に供給するものである。このフィルム繰り出し部2は、ウェブの製膜装置と別体で構成されていても良いし、一体的に構成されても良い。前者の場合、フィルムを製膜後に一度巻芯に巻き取って巻回体(長尺フィルム原反)となったものをフィルム繰り出し部2に装填することで、フィルム繰り出し部2からフィルムが繰り出される。一方、後者の場合、フィルム繰り出し部2は、ウェブの製膜後、そのウェブを巻き取ることなく横延伸工程を行い、更に延伸部5に対して繰り出すことになる。 The film feeding unit 2 feeds the long transversely stretched film (casting film) after being stretched in the width direction described above and supplies it to the stretching unit 5. The film feeding section 2 may be configured separately from the web film forming apparatus, or may be configured integrally. In the former case, the film is drawn out from the film feeding unit 2 by winding the film once on the core after film formation and loading the wound body (long film original fabric) into the film feeding unit 2. . On the other hand, in the latter case, after the film is formed, the film feeding unit 2 performs a lateral stretching process without winding the web, and further feeds the web to the stretching unit 5.
 搬送方向変更部3は、フィルム繰り出し部2から繰り出されるフィルムの搬送方向を、斜め延伸テンターとしての延伸部5の入口に向かう方向に変更するものである。このような搬送方向変更部3は、例えばフィルムを搬送しながら折り返すことによって搬送方向を変更するターンバーや、そのターンバーをフィルムに平行な面内で回転させる回転テーブルを含んで構成されている。 The conveyance direction changing unit 3 changes the conveyance direction of the film fed from the film feeding unit 2 to a direction toward the entrance of the stretching unit 5 as an oblique stretching tenter. Such a conveyance direction change part 3 is comprised including the turntable which rotates the turn bar which changes the conveyance direction by, for example, returning while conveying a film, and the turn bar in the surface parallel to a film.
 搬送方向変更部3にてフィルムの搬送方向を上記のように変更することにより、製造装置1全体の幅をより狭くすることが可能となるほか、フィルムの送り出し位置及び角度を細かく制御することが可能となり、膜厚、光学値のバラツキが小さい長尺斜め延伸フィルムを得ることが可能となる。また、フィルム繰り出し部2及び搬送方向変更部3を移動可能(スライド可能、旋回可能)とすれば、延伸部5において長尺フィルムの幅手方向の両端部を挟む左右のクリップ(把持具)のフィルムへの噛込み不良を有効に防止することができる。 By changing the film transport direction as described above in the transport direction changing section 3, the width of the entire manufacturing apparatus 1 can be made narrower, and the film feed position and angle can be finely controlled. This makes it possible to obtain a long obliquely stretched film with small variations in film thickness and optical value. Further, if the film feeding unit 2 and the conveyance direction changing unit 3 are movable (slidable and turnable), the right and left clips (gripping tools) sandwiching both ends of the long film in the width direction in the stretching unit 5 It is possible to effectively prevent the biting into the film.
 なお、上記したフィルム繰り出し部2は、延伸部5の入口に対して所定角度で長尺フィルムを送り出せるように、スライド及び旋回可能となっていても良い。この場合は、搬送方向変更部3の設置を省略した構成とすることもできる。 In addition, the above-described film feeding unit 2 may be slidable and turnable so that a long film can be fed at a predetermined angle with respect to the entrance of the stretching unit 5. In this case, a configuration in which the installation of the conveyance direction changing unit 3 is omitted may be employed.
 ガイドロール4は、フィルムの走行時の軌道を安定させるために、延伸部5の上流側に少なくとも1本設けられている。なお、ガイドロール4は、フィルムを挟む上下一対のロール対で構成されても良いし、複数のロール対で構成されても良い。延伸部5の入口に最も近いガイドロール4は、フィルムの走行を案内する従動ロールであり、不図示の軸受部を介してそれぞれ回転自在に軸支される。ガイドロール4の材質としては、公知のものを用いることが可能である。なお、フィルムの傷つきを防止するために、ガイドロール4の表面にセラミックコートを施したり、アルミニウム等の軽金属にクロムメッキを施したりすることによってガイドロール4を軽量化することが好ましい。 At least one guide roll 4 is provided on the upstream side of the stretching portion 5 in order to stabilize the track during film travel. The guide roll 4 may be composed of a pair of upper and lower rolls sandwiching the film, or may be composed of a plurality of roll pairs. The guide roll 4 closest to the entrance of the extending portion 5 is a driven roll that guides the travel of the film, and is rotatably supported via a bearing portion (not shown). A known material can be used as the material of the guide roll 4. In order to prevent the film from being damaged, it is preferable to reduce the weight of the guide roll 4 by applying a ceramic coat to the surface of the guide roll 4 or applying chrome plating to a light metal such as aluminum.
 また、延伸部5の入口に最も近いガイドロール4よりも上流側のロールのうちの1本は、ゴムロールを圧接させてニップすることが好ましい。このようなニップロールにすることで、フィルムの流れ方向における繰出張力の変動を抑えることが可能となる。 Further, it is preferable that one of the rolls upstream of the guide roll 4 closest to the entrance of the extending portion 5 is nipped by pressing the rubber roll. By setting it as such a nip roll, it becomes possible to suppress the fluctuation | variation of the drawing tension | tensile_strength in the flow direction of a film.
 延伸部5の入口に最も近いガイドロール4の両端(左右)の一対の軸受部には、当該ロールにおいてフィルムに生じている張力を検出するためのフィルム張力検出装置として、第1張力検出装置、第2張力検出装置がそれぞれ設けられている。フィルム張力検出装置としては、例えばロードセルを用いることができる。ロードセルとしては、引張又は圧縮型の公知のものを用いることができる。ロードセルは、着力点に作用する荷重を起歪体に取り付けられた歪ゲージにより電気信号に変換して検出する装置である。 A pair of bearing portions at both ends (left and right) of the guide roll 4 closest to the entrance of the extending portion 5 includes a first tension detecting device as a film tension detecting device for detecting the tension generated in the film in the roll, A second tension detecting device is provided. For example, a load cell can be used as the film tension detection device. As the load cell, a known tensile or compression type can be used. A load cell is a device that detects a load acting on an applied point by converting it into an electrical signal using a strain gauge attached to the strain generating body.
 ロードセルは、延伸部5の入口に最も近いガイドロール4の左右の軸受部に設置されることにより、走行中のフィルムがロールに及ぼす力、すなわちフィルムの両側縁近傍に生じているフィルム進行方向における張力を左右独立に検出する。なお、ロールの軸受部を構成する支持体に歪ゲージを直接取り付けて、該支持体に生じる歪に基づいて荷重、すなわちフィルム張力を検出するようにしても良い。発生する歪とフィルム張力との関係は、あらかじめ計測され、既知であるものとする。 The load cell is installed in the left and right bearing portions of the guide roll 4 closest to the entrance of the extending portion 5, so that the force of the running film on the roll, that is, in the film traveling direction generated in the vicinity of both side edges of the film. The tension is detected independently on the left and right. In addition, a strain gauge may be directly attached to a support that constitutes the bearing portion of the roll, and a load, that is, a film tension may be detected based on the strain generated in the support. The relationship between the generated strain and the film tension is measured in advance and is known.
 フィルム繰り出し部2又は搬送方向変更部3から延伸部5に供給されるフィルムの位置及び搬送方向が、延伸部5の入口に向かう位置及び搬送方向からずれている場合、このズレ量に応じて、延伸部5の入口に最も近いガイドロール4におけるフィルムの両側縁近傍の張力に差が生じることになる。したがって、上述したようなフィルム張力検出装置を設けて上記の張力差を検出することにより、当該ズレの程度を判別することができる。つまり、フィルムの搬送位置及び搬送方向が適正であれば(延伸部5の入口に向かう位置及び方向であれば)、上記ガイドロール4に作用する荷重は軸方向の両端で粗均等になるが、適正でなければ、左右でフィルム張力に差が生じる。 When the position and the transport direction of the film supplied from the film feeding unit 2 or the transport direction changing unit 3 to the stretching unit 5 are deviated from the position toward the entrance of the stretching unit 5 and the transport direction, according to the amount of deviation, A difference will arise in the tension | tensile_strength near the both-sides edge of the film in the guide roll 4 nearest to the entrance of the extending | stretching part 5. FIG. Therefore, by providing the above-described film tension detecting device and detecting the above-described tension difference, the degree of the deviation can be determined. That is, if the transport position and transport direction of the film are appropriate (if it is the position and direction toward the entrance of the stretching unit 5), the load acting on the guide roll 4 is roughly uniform at both ends in the axial direction. If not appropriate, there will be a difference in film tension between left and right.
 したがって、延伸部5の入口に最も近いガイドロール4の左右のフィルム張力差が等しくなるように、例えば上記した搬送方向変更部3によってフィルムの位置及び搬送方向(延伸部5の入口に対する角度)を適切に調整すれば、延伸部5の入口部の把持具によるフィルムの把持が安定し、把持具外れ等の障害の発生を少なくできる。更に、延伸部5による斜め延伸後のフィルムの幅方向における物性を安定させることができる。 Therefore, the position and the transport direction of the film (angle with respect to the entrance of the stretching section 5) are adjusted by, for example, the transport direction changing section 3 described above so that the left and right film tension difference of the guide roll 4 closest to the entrance of the stretching section 5 becomes equal. When properly adjusted, the film can be stably held by the gripping tool at the entrance of the stretching portion 5, and the occurrence of obstacles such as detachment of the gripping tool can be reduced. Furthermore, the physical properties in the width direction of the film after oblique stretching by the stretching portion 5 can be stabilized.
 ガイドロール6は、延伸部5にて斜め延伸されたフィルムの走行時の軌道を安定させるために、延伸部5の下流側に少なくとも1本設けられている。 At least one guide roll 6 is provided on the downstream side of the stretching portion 5 in order to stabilize the track during running of the film that is obliquely stretched in the stretching portion 5.
 搬送方向変更部7は、延伸部5から搬送される延伸後のフィルムの搬送方向を、フィルム巻き取り部9に向かう方向に変更するものである。 The transport direction changing unit 7 changes the transport direction of the stretched film transported from the stretching unit 5 to a direction toward the film winding unit 9.
 ここで、配向角(フィルムの面内遅相軸の方向)の微調整や製品バリエーションに対応するために、延伸部5の入口でのフィルム進行方向と延伸部5の出口でのフィルム進行方向とがなす角度の調整が必要となる。この角度調整のためには、製膜したフィルムの進行方向を搬送方向変更部3によって変更してフィルムを延伸部5の入口に導く、及び/又は延伸部5の出口から出たフィルムの進行方向を搬送方向変更部7によって変更してフィルムをフィルム巻き取り部9の方向に戻すことが必要となる。 Here, in order to cope with fine adjustment of the orientation angle (in-plane slow axis direction of the film) and product variations, the film traveling direction at the entrance of the stretching portion 5 and the film traveling direction at the exit of the stretching portion 5 It is necessary to adjust the angle between the two. In order to adjust the angle, the traveling direction of the formed film is changed by the transport direction changing unit 3 to guide the film to the inlet of the stretching unit 5 and / or the traveling direction of the film from the outlet of the stretching unit 5 Is changed by the transport direction changing unit 7 to return the film to the direction of the film winding unit 9.
 また、製膜及び斜め延伸を連続して行うことが、生産性や収率の点で好ましい。製膜工程、斜め延伸工程、加熱処理工程を連続して行う場合、搬送方向変更部3及び/又は搬送方向変更部7によってフィルムの進行方向を変更し、製膜工程と加熱処理工程とでフィルムの進行方向を一致させる、つまり、図1に示すように、フィルム繰り出し部2から繰り出されるフィルムの進行方向(繰り出し方向)と、フィルム巻き取り部9にて巻き取られる直前のフィルムの進行方向(巻き取り方向)とを一致させることにより、フィルム進行方向に対する装置全体の幅を小さくすることができる。 Moreover, it is preferable from the viewpoint of productivity and yield that the film formation and oblique stretching are continuously performed. When the film forming process, the oblique stretching process, and the heat treatment process are continuously performed, the traveling direction of the film is changed by the transport direction changing unit 3 and / or the transport direction changing unit 7, and the film is formed by the film forming process and the heat treatment process. 1, that is, as shown in FIG. 1, the traveling direction of the film fed out from the film feeding portion 2 (feeding direction) and the traveling direction of the film immediately before being wound up by the film winding portion 9 ( The width of the entire apparatus with respect to the film traveling direction can be reduced by matching the winding direction.
 なお、製膜工程と加熱処理工程とでフィルムの進行方向は必ずしも一致させる必要はないが、フィルム繰り出し部2とフィルム巻き取り部9とが干渉しないレイアウトとなるように、搬送方向変更部3及び/又は搬送方向変更部7によってフィルムの進行方向を変更することが好ましい。 Although the film traveling direction does not necessarily coincide in the film forming process and the heat treatment process, the transport direction changing unit 3 and the film feeding unit 2 and the film winding unit 9 are arranged so as not to interfere with each other. It is preferable to change the traveling direction of the film by the transport direction changing unit 7.
 上記のような搬送方向変更部3、7としては、エアーフローロール又はエアーターンバーを用いる等、公知の手法で実現することができる。 The transport direction changing units 3 and 7 as described above can be realized by a known method such as using an air flow roll or an air turn bar.
 フィルム切断装置8は、延伸部5にて延伸されたフィルム(長尺斜め延伸フィルム)を、幅手方向を含む断面に沿って切断するものであり、切断部材を有している。切断部材は、例えばハサミやカッター(スリッター、帯状の刃(トムソン刃)を含む。)で構成されるが、これらに限定されるわけではなく、その他にも、回転する丸鋸やレーザー照射装置等で構成することも可能である。 The film cutting device 8 cuts the film stretched by the stretching section 5 (long oblique stretched film) along the cross section including the width direction, and has a cutting member. The cutting member is composed of, for example, a scissor or a cutter (including a slitter, a strip-shaped blade (Thomson blade)), but is not limited thereto, and in addition, a rotating circular saw, a laser irradiation device, etc. It is also possible to configure.
 フィルム巻き取り部9は、延伸部5から搬送方向変更部7を介して搬送されるフィルムを巻き取るものであり、例えばワインダー装置、アキューム装置、ドライブ装置等で構成される。フィルム巻き取り部9は、フィルムの巻き取り位置を調整すべく、横方向にスライドできる構造であることが好ましい。 The film take-up unit 9 takes up the film conveyed from the stretching unit 5 via the conveyance direction changing unit 7, and includes, for example, a winder device, an accumulator device, a drive device, and the like. It is preferable that the film winding unit 9 has a structure that can be slid in the horizontal direction in order to adjust the film winding position.
 フィルム巻き取り部9は、延伸部5の出口に対して所定角度でフィルムを引き取れるように、フィルムの引き取り位置及び角度を細かく制御できるようになっている。これにより、膜厚、光学値のバラツキが小さい長尺斜め延伸フィルムを得ることが可能となる。また、フィルムのシワの発生を有効に防止することができるとともに、フィルムの巻き取り性が向上するため、フィルムを長尺で巻き取ることが可能となる。 The film take-up unit 9 can finely control the film take-up position and angle so that the film can be taken at a predetermined angle with respect to the exit of the stretching unit 5. Thereby, it becomes possible to obtain a long obliquely stretched film with small variations in film thickness and optical value. In addition, it is possible to effectively prevent wrinkling of the film and to improve the winding property of the film, so that the film can be wound up in a long length.
 このフィルム巻き取り部9は、延伸部5にて延伸されて搬送されるフィルムを一定の張力で引き取る引取部を構成している。なお、延伸部5とフィルム巻き取り部9との間に、フィルムを一定の張力で引き取るための引取ロールを設けるようにしても良い。また、上述したガイドロール6に上記引取ロールとしての機能を持たせても良い。 The film take-up unit 9 constitutes a take-up unit that takes up the film stretched and transported by the stretch unit 5 with a constant tension. Note that a take-up roll for taking up the film with a constant tension may be provided between the stretching unit 5 and the film take-up unit 9. Moreover, you may give the function as said take-up roll to the guide roll 6 mentioned above.
 本実施形態において、延伸後のフィルムの引取張力T(N/m)は、100N/m<T<300N/m、好ましくは150N/m<T<250N/mの間で調整することが好ましい。上記の引取張力が100N/m以下では、フィルムのたるみや皺が発生しやすく、リターデーション、配向角のフィルム幅方向のプロファイルも悪化する。逆に、引取張力が300N/m以上となると、配向角のフィルム幅方向のバラツキが悪化し、幅収率(幅方向の取り効率)を悪化させてしまう。 In this embodiment, the take-up tension T (N / m) of the stretched film is preferably adjusted between 100 N / m <T <300 N / m, preferably 150 N / m <T <250 N / m. When the take-up tension is 100 N / m or less, sagging and wrinkles of the film are likely to occur, and the retardation and orientation angle profile in the film width direction are also deteriorated. On the other hand, when the take-up tension is 300 N / m or more, the variation of the orientation angle in the film width direction is deteriorated, and the width yield (taken efficiency in the width direction) is deteriorated.
 また、本実施形態においては、上記引取張力Tの変動を±5%未満、好ましくは±3%未満の精度で制御することが好ましい。上記引取張力Tの変動が±5%以上であると、幅方向及び流れ方向(搬送方向)の光学特性のバラツキが大きくなる。上記引取張力Tの変動を上記範囲内に制御する方法としては、延伸部5の出口側の最初のロール(ガイドロール6)にかかる荷重、すなわちフィルムの張力を測定し、その値が一定となるように、一般的なPID制御方式により引取ロール又はフィルム巻き取り部9の巻取ロールの回転速度を制御する方法が挙げられる。上記荷重を測定する方法としては、ガイドロール6の軸受部にロードセルを取り付け、ガイドロール6に加わる荷重、すなわちフィルムの張力を測定する方法が挙げられる。ロードセルとしては、引張型や圧縮型の公知のものを用いることができる。 In the present embodiment, it is preferable to control the fluctuation of the take-up tension T with an accuracy of less than ± 5%, preferably less than ± 3%. When the variation in the take-up tension T is ± 5% or more, variations in optical characteristics in the width direction and the flow direction (conveying direction) increase. As a method of controlling the fluctuation of the take-up tension T within the above range, the load applied to the first roll (guide roll 6) on the outlet side of the stretching section 5, that is, the film tension is measured, and the value becomes constant. Thus, the method of controlling the rotational speed of the take-up roll or the take-up roll of the film take-up part 9 by a general PID control system is mentioned. Examples of the method for measuring the load include a method in which a load cell is attached to the bearing portion of the guide roll 6 and a load applied to the guide roll 6, that is, a film tension is measured. As the load cell, a known tensile type or compression type can be used.
 延伸後のフィルムは、延伸部5の把持具による把持が開放されて、延伸部5の出口から排出され、把持具で把持されていたフィルムの両端(両側)が必要に応じてトリミングされた後に、フィルム切断装置8によって所定の長さごとに切断され、順次巻芯(巻取ロール)に巻き取られて、斜め延伸フィルムの巻回体となる。 The stretched film is released from the exit of the stretching section 5 after being gripped by the gripping tool of the stretching section 5, and both ends (both sides) of the film gripped by the gripping tool are trimmed as necessary. Then, the film is cut into a predetermined length by the film cutting device 8 and is wound up around a winding core (winding roll) sequentially to form a wound body of an obliquely stretched film.
(延伸部の詳細)
 次に、上述した延伸部5の詳細について説明する。図2は、延伸部5のレールパターンの一例を模式的に示す平面図である。ただし、これは一例であって、延伸部5の構成はこれに限定されるものではない。
(Details of stretched part)
Next, the detail of the extending | stretching part 5 mentioned above is demonstrated. FIG. 2 is a plan view schematically showing an example of the rail pattern of the extending portion 5. However, this is an example, and the configuration of the extending portion 5 is not limited to this.
 本実施形態における斜め延伸工程は、延伸部5として、斜め延伸可能なテンター(斜め延伸機)を用いて行われることが好ましい。このテンターは、長尺フィルムを、延伸可能な任意の温度に加熱し、斜め延伸する装置である。このテンターは、加熱ゾーンZと、左右で一対のレールRi・Roと、レールRi・Roに沿って走行してフィルムを搬送する多数の把持具Ci・Co(図2では、1組の把持具のみを図示)とを備えている。なお、加熱ゾーンZの詳細については後述する。レールRi・Roは、それぞれ、複数のレール部を連結部で連結して構成されている(図2中の白丸は連結部の一例である。)。把持具Ci・Coは、フィルムの幅手方向の両端を把持するクリップで構成されている。 In the present embodiment, the oblique stretching step is preferably performed using a tenter (an oblique stretching machine) capable of oblique stretching as the stretching portion 5. This tenter is an apparatus that heats a long film to an arbitrary temperature at which it can be stretched and obliquely stretches it. This tenter includes a heating zone Z, a pair of rails Ri and Ro on the left and right, and a number of gripping tools Ci and Co that travel along the rails Ri and Ro to convey a film (in FIG. 2, a set of gripping tools). Only). Details of the heating zone Z will be described later. Each of the rails Ri and Ro is configured by connecting a plurality of rail portions with connecting portions (white circles in FIG. 2 are examples of connecting portions). The gripping tool Ci / Co is composed of a clip that grips both ends of the film in the width direction.
 図2において、長尺フィルムの繰出方向D1は、延伸後の長尺斜め延伸フィルムの巻取方向D2と異なっており、巻取方向D2との間で繰出角度θiを成している。繰出角度θiは0°を超え90°未満の範囲で、所望の角度に任意に設定することができる。 In FIG. 2, the feeding direction D1 of the long film is different from the winding direction D2 of the stretched long diagonally stretched film, and forms a feeding angle θi with the winding direction D2. The feeding angle θi can be arbitrarily set to a desired angle in the range of more than 0 ° and less than 90 °.
 このように、繰出方向D1と巻取方向D2とが異なっているため、テンターのレールパターンは左右で非対称な形状となっている。そして、製造すべき長尺斜め延伸フィルムに与える配向角θ、延伸倍率等に応じて、レールパターンを手動又は自動で調整できるようになっている。本実施形態の製造方法で用いられる斜め延伸機では、レールRi・Roを構成する各レール部及びレール連結部の位置を自由に設定し、レールパターンを任意に変更できることが好ましい。 Thus, since the feeding direction D1 and the winding direction D2 are different, the rail pattern of the tenter has an asymmetric shape on the left and right. And a rail pattern can be adjusted now manually or automatically according to orientation angle (theta) given to the long diagonally stretched film which should be manufactured, a draw ratio, etc. FIG. In the oblique stretching machine used in the manufacturing method of the present embodiment, it is preferable that the positions of the rail portions and the rail connecting portions constituting the rails Ri and Ro can be freely set and the rail pattern can be arbitrarily changed.
 本実施形態において、テンターの把持具Ci・Coは、前後の把持具Ci・Coと一定間隔を保って、一定速度で走行するようになっている。把持具Ci・Coの走行速度は適宜選択できるが、通常、1~150m/minである。左右一対の把持具Ci・Coの走行速度の差は、走行速度の通常1%以下、好ましくは0.5%以下、より好ましくは0.1%以下である。これは、延伸工程出口でフィルムの左右に進行速度差があると、延伸工程出口におけるシワ、寄りが発生するため、左右の把持具Ci・Coの速度差は、実質的に同速度であることが求められるためである。一般的なテンター装置等では、チェーンを駆動するスプロケットの歯の周期、駆動モーターの周波数等に応じ、秒以下のオーダーで発生する速度ムラがあり、しばしば数%のムラを生ずるが、これらは本発明の実施形態で述べる速度差には該当しない。 In the present embodiment, the tenter gripping tool Ci · Co travels at a constant speed with a constant interval from the front and rear gripping tools Ci · Co. The traveling speed of the gripping tool Ci / Co can be selected as appropriate, but is usually 1 to 150 m / min. The difference in travel speed between the pair of left and right grippers Ci / Co is usually 1% or less, preferably 0.5% or less, more preferably 0.1% or less of the travel speed. This is because if there is a difference in the traveling speed on the left and right of the film at the exit of the stretching process, wrinkles and shifts will occur at the exit of the stretching process, so the speed difference between the left and right grippers Ci / Co is substantially the same speed. Is required. In general tenter devices, etc., there are speed irregularities that occur in the order of seconds or less depending on the period of the sprocket teeth that drive the chain, the frequency of the drive motor, etc. This does not correspond to the speed difference described in the embodiment of the invention.
 本実施形態の製造方法で用いられる斜め延伸機において、特にフィルムの搬送が斜めになる箇所において、把持具の軌跡を規制するレールには、しばしば大きい屈曲率が求められる。急激な屈曲による把持具同士の干渉、あるいは局所的な応力集中を避ける目的から、屈曲部では把持具の軌跡が曲線を描くようにすることが望ましい。 In the oblique stretching machine used in the manufacturing method of the present embodiment, a high bending rate is often required for the rail that regulates the trajectory of the gripping tool, particularly at a location where the film is transported obliquely. In order to avoid interference between gripping tools due to sudden bending or local stress concentration, it is desirable that the trajectory of the gripping tool draws a curve at the bent portion.
 このように、長尺フィルムに斜め方向の配向を付与するために用いられる斜め延伸テンターは、レールパターンを多様に変化させることにより、フィルムの配向角を自在に設定でき、更に、フィルムの配向軸(遅相軸)をフィルム幅方向に渡って左右均等に高精度に配向させることができ、かつ、高精度でフィルム厚さやリターデーションを制御できるテンターであることが好ましい。 As described above, the obliquely stretched tenter used for imparting oblique orientation to a long film can freely set the orientation angle of the film by variously changing the rail pattern, and further, the orientation axis of the film. It is preferable that the tenter be capable of orienting the (slow axis) horizontally and evenly with high precision across the film width direction and controlling the film thickness and retardation with high precision.
 次に、延伸部5での延伸動作について説明する。長尺フィルムは、その両端を左右の把持具Ci・Coによって把持され、加熱ゾーンZ内を把持具Ci・Coの走行に伴って搬送される。左右の把持具Ci・Coは、延伸部5の入口部(図中Aの位置)において、フィルムの進行方向(繰出方向D1)に対して略垂直な方向に相対しており、左右非対称なレールRi・Ro上をそれぞれ走行し、延伸終了時の出口部(図中Bの位置)で把持したフィルムを開放する。把持具Ci・Coから開放されたフィルムは、前述したフィルム巻き取り部9にて巻芯に巻き取られる。一対のレールRi・Roは、それぞれ無端状の連続軌道を有しており、テンターの出口部でフィルムの把持を開放した把持具Ci・Coは、外側のレールを走行して順次入口部に戻されるようになっている。 Next, the stretching operation in the stretching unit 5 will be described. Both ends of the long film are gripped by the left and right grippers Ci · Co, and are conveyed in the heating zone Z as the grippers Ci • Co travel. The left and right grips Ci / Co are opposed to a direction substantially perpendicular to the film traveling direction (feeding direction D1) at the entrance portion (position A in the drawing) of the extending portion 5, and are asymmetric rails. Each travels on Ri and Ro, and the film gripped at the exit portion (position B in the figure) at the end of stretching is released. The film released from the gripping tool Ci / Co is wound around the core by the film winding portion 9 described above. Each of the pair of rails Ri and Ro has an endless continuous track, and the grippers Ci and Co that have released the film at the exit portion of the tenter travel on the outer rail and sequentially return to the entrance portion. It is supposed to be.
 このとき、レールRi・Roは左右非対称であるため、図2の例では、図中Aの位置で相対していた左右の把持具Ci・Coは、レールRi・Ro上を走行するにつれて、レールRi側(インコース側)を走行する把持具CiがレールRo側(アウトコース側)を走行する把持具Coに対して先行する位置関係となる。 At this time, since the rails Ri and Ro are asymmetrical in the left and right directions, in the example of FIG. 2, the left and right gripping tools Ci and Co, which are opposed to each other at the position A in the figure, move as the rails run on the rails Ri and Ro. The gripping tool Ci traveling on the Ri side (in-course side) has a positional relationship preceding the gripping tool Co traveling on the rail Ro side (out-course side).
 すなわち、図中Aの位置でフィルムの繰出方向D1に対して略垂直な方向に相対していた把持具Ci・Coのうち、一方の把持具Ciがフィルムの延伸終了時の位置Bに先に到達したときには、把持具Ci・Coを結んだ直線がフィルムの巻取方向D2に略垂直な方向に対して、角度θLだけ傾斜している。以上の所作をもって、長尺フィルムが幅手方向に対してθLの角度で斜め延伸されることとなる。ここで、略垂直とは、90±1°の範囲にあることを示す。 That is, of the gripping tools Ci and Co that are opposed to the film feeding direction D1 at the position A in the figure, one gripping tool Ci is first in position B at the end of film stretching. When it reaches, the straight line connecting the gripping tools Ci and Co is inclined by an angle θL with respect to the direction substantially perpendicular to the film winding direction D2. With the above operation, the long film is obliquely stretched at an angle of θL with respect to the width direction. Here, “substantially vertical” indicates that the angle is in a range of 90 ± 1 °.
 次に、上記した加熱ゾーンZの詳細について説明する。延伸部5の加熱ゾーンZは、予熱ゾーンZ1、延伸ゾーンZ2及び熱固定ゾーンZ3で構成されている。延伸部5では、把持具Ci・Coによって把持されたフィルムは、予熱ゾーンZ1、延伸ゾーンZ2、熱固定ゾーンZ3を順に通過する。本実施形態では、予熱ゾーンZ1と延伸ゾーンZ2とは隔壁で区切られており、延伸ゾーンZ2と熱固定ゾーンZ3とは隔壁で区切られている。 Next, the details of the heating zone Z will be described. The heating zone Z of the stretching section 5 is composed of a preheating zone Z1, a stretching zone Z2, and a heat fixing zone Z3. In the stretching unit 5, the film gripped by the gripping tool Ci / Co passes through the preheating zone Z1, the stretching zone Z2, and the heat fixing zone Z3 in this order. In the present embodiment, the preheating zone Z1 and the stretching zone Z2 are separated by a partition, and the stretching zone Z2 and the heat fixing zone Z3 are separated by a partition.
 予熱ゾーンZ1とは、加熱ゾーンZの入口部において、フィルムの両端を把持した把持具Ci・Coが、左右で(フィルム幅方向に)一定の間隔を保ったまま走行する区間を指す。 The preheating zone Z1 refers to a section in which the gripping tool Ci / Co that grips both ends of the film travels at the left and right (in the film width direction) at a constant interval at the entrance of the heating zone Z.
 延伸ゾーンZ2とは、フィルムの両端を把持した把持具Ci・Coの間隔が開き出し、所定の間隔になるまでの区間を指す。このとき、上述のような斜め延伸が行われるが、必要に応じて斜め延伸前後において縦方向あるいは横方向に延伸しても良い。 The stretching zone Z2 refers to a section from when the gap between the gripping tools Ci and Co that grips both ends of the film opens until a predetermined gap is reached. At this time, the oblique stretching as described above is performed, but the stretching may be performed in the longitudinal direction or the transverse direction before and after the oblique stretching as necessary.
 熱固定ゾーンZ3とは、延伸ゾーンZ2より後の、把持具Ci・Coの間隔が再び一定となる区間であって、両端の把持具Ci・Coが互いに平行を保ったまま走行する区間を指す。 The heat setting zone Z3 refers to a section after the stretching zone Z2 in which the interval between the gripping tools Ci and Co is constant, and the gripping tools Ci and Co at both ends travel in parallel with each other. .
 なお、延伸後のフィルムは、熱固定ゾーンZ3を通過した後に、ゾーン内の温度がフィルムを構成する熱可塑性樹脂のガラス転移温度Tg(℃)以下に設定される区間(冷却ゾーン)を通過しても良い。このとき、冷却によるフィルムの縮みを考慮して、あらかじめ対向する把持具Ci・Coの間隔を狭めるようなレールパターンとしても良い。 The stretched film passes through the heat setting zone Z3 and then passes through a section (cooling zone) in which the temperature in the zone is set to be equal to or lower than the glass transition temperature Tg (° C.) of the thermoplastic resin constituting the film. May be. At this time, in consideration of shrinkage of the film due to cooling, a rail pattern that narrows the interval between the gripping tools Ci and Co facing each other in advance may be used.
 熱可塑性樹脂のガラス転移温度Tgに対し、予熱ゾーンZ1の温度はTg~Tg+30℃、延伸ゾーンZ2の温度はTg~Tg+30℃、熱固定ゾーンZ3及び冷却ゾーンの温度はTg-30~Tg+20℃に設定することが好ましい。 The temperature of the preheating zone Z1 is Tg to Tg + 30 ° C., the temperature of the stretching zone Z2 is Tg to Tg + 30 ° C., and the temperature of the heat setting zone Z3 and the cooling zone is Tg-30 to Tg + 20 ° C. with respect to the glass transition temperature Tg of the thermoplastic resin. It is preferable to set.
 なお、予熱ゾーンZ1、延伸ゾーンZ2及び熱固定ゾーンZ3の長さは適宜選択でき、延伸ゾーンZ2の長さに対して、予熱ゾーンZ1の長さは通常100~150%、熱固定ゾーンZ3の長さは通常50~100%である。 The lengths of the preheating zone Z1, the stretching zone Z2, and the heat setting zone Z3 can be appropriately selected. The length of the preheating zone Z1 is normally 100 to 150% of the length of the stretching zone Z2, and the length of the heat setting zone Z3. The length is usually 50 to 100%.
 また、延伸前のフィルムの幅をWo(mm)とし、延伸後のフィルムの幅をW(mm)とすると、斜め延伸工程における延伸倍率R(W/Wo)は、好ましくは1.3~3.0、より好ましくは1.5~2.8である。延伸倍率がこの範囲にあると、フィルムの幅方向の厚さムラが小さくなるので好ましい。斜め延伸テンターの延伸ゾーンZ2において、幅方向で延伸温度に差をつけると、幅方向厚さムラを更に良好なレベルにすることが可能になる。なお、上記の延伸倍率Rは、テンター入口部で把持したクリップ両端の間隔W1がテンター出口部において間隔W2となったときの倍率(W2/W1)に等しい。 Further, when the width of the film before stretching is Wo (mm) and the width of the film after stretching is W (mm), the draw ratio R (W / Wo) in the oblique stretching step is preferably 1.3 to 3. 0.0, more preferably 1.5 to 2.8. When the draw ratio is in this range, the thickness unevenness in the width direction of the film is preferably reduced. In the stretching zone Z2 of the oblique stretching tenter, if the stretching temperature is differentiated in the width direction, the thickness unevenness in the width direction can be further improved. In addition, said draw ratio R is equal to a magnification (W2 / W1) when the interval W1 between both ends of the clip held at the tenter inlet portion becomes the interval W2 at the tenter outlet portion.
 なお、延伸部5における斜め延伸の手法は、上述した手法に限定されるわけではなく、例えば特開2008-23775号公報に開示されているような、同時二軸延伸によって斜め延伸を行っても良い。なお、同時二軸延伸とは、供給される長尺フィルムの幅手方向の両端部を各把持具によって把持し、各把持具を移動させながら長尺フィルムを搬送するとともに、長尺フィルムの搬送方向を一定としたまま、一方の把持具の移動速度と他方の把持具の移動速度とを異ならせることにより、長尺フィルムを幅手方向に対して斜め方向に延伸する方法である。その他、特開2011-11434号公報に開示されているような手法で斜め延伸を行っても良い。 Note that the method of oblique stretching in the stretching portion 5 is not limited to the above-described method. For example, the oblique stretching may be performed by simultaneous biaxial stretching as disclosed in JP-A-2008-23775. good. Note that simultaneous biaxial stretching means that both ends of the supplied long film in the width direction are gripped by each gripping tool, and the long film is transported while each gripping tool is moved, and the long film is transported. This is a method of stretching a long film in an oblique direction with respect to the width direction by making the moving speed of one gripping tool different from the moving speed of the other gripping tool while keeping the direction constant. In addition, oblique stretching may be performed by a method disclosed in JP2011-11434A.
 上記斜め延伸工程により得られた長尺の斜め延伸フィルムにおいては、配向角θが巻取方向に対して、例えば0°より大きく90°未満の範囲に傾斜しており、少なくとも1300mmの幅において、幅方向の、面内リターデーションRoのバラツキが10nm以下、配向角θのバラツキが10°以下であることが好ましい。また、前記長尺斜め延伸フィルムの、波長550nmで測定した面内リターデーション値Ro(550)が、60~220nmの範囲内であることが好ましく、65~200nmの範囲内であることがより好ましく、75~150nmの範囲内であることが更に好ましい。 In the long obliquely stretched film obtained by the oblique stretching step, the orientation angle θ is inclined in the range of, for example, greater than 0 ° and less than 90 ° with respect to the winding direction, and at a width of at least 1300 mm, It is preferable that the variation in the in-plane retardation Ro in the width direction is 10 nm or less and the variation in the orientation angle θ is 10 ° or less. Further, the in-plane retardation value Ro (550) of the long obliquely stretched film measured at a wavelength of 550 nm is preferably in the range of 60 to 220 nm, and more preferably in the range of 65 to 200 nm. More preferably, it is in the range of 75 to 150 nm.
 すなわち、本実施形態の製造方法により得られた長尺斜め延伸フィルムにおいて、面内リターデーションRoのバラツキは、幅方向の少なくとも1300mmにおいて、2nm以下であり、1nm以下であることが好ましい。面内リターデーションRoのバラツキを上記範囲にすることにより、長尺斜め延伸フィルムを例えば液晶表示装置用の位相差フィルムとして用いた場合に表示品質を良好なものにすることも可能になる。 That is, in the long obliquely stretched film obtained by the production method of the present embodiment, the variation of the in-plane retardation Ro is 2 nm or less and preferably 1 nm or less in at least 1300 mm in the width direction. By setting the variation of the in-plane retardation Ro within the above range, it is possible to improve the display quality when the long obliquely stretched film is used as a retardation film for a liquid crystal display device, for example.
 また、本実施形態の製造方法により得られた長尺斜め延伸フィルムにおいて、配向角θのバラツキは、幅方向の少なくとも1300mmにおいて、10°以下であることが好ましく、5°以下であることがより好ましく、1°以下であることが最も好ましい。配向角θのバラツキが0.5を超える長尺斜め延伸フィルムを偏光子と貼り合せて円偏光板とし、これを有機EL表示装置等の画像表示装置に据え付けると、光漏れが生じ、明暗のコントラストを低下させることがある。 Further, in the long obliquely stretched film obtained by the production method of the present embodiment, the variation in the orientation angle θ is preferably 10 ° or less, more preferably 5 ° or less, in at least 1300 mm in the width direction. Preferably, it is most preferably 1 ° or less. A long diagonally stretched film having a variation in the orientation angle θ exceeding 0.5 is bonded to a polarizer to form a circularly polarizing plate, and when this is installed in an image display device such as an organic EL display device, light leakage occurs, Contrast may be reduced.
 なお、前記リターデーション値Roは、面内遅相軸方向の屈折率nxと面内で前記遅相軸に直交する方向の屈折率nyとの差にフィルムの平均厚さdを乗算した値(Ro=(nx-ny)×d)である。 The retardation value Ro is a value obtained by multiplying the difference between the refractive index nx in the in-plane slow axis direction and the refractive index ny in the plane perpendicular to the slow axis by the average thickness d of the film ( Ro = (nx−ny) × d).
 斜め延伸工程で得られた長尺斜め延伸フィルムの平均厚さは、機械的強度及び表示装置の薄型化等の観点から、20~60μm、好ましくは10~60μm、更に好ましくは10~50μm、特に好ましくは15~35μmである。また、上記長尺斜め延伸フィルムの幅方向の厚さムラは、巻き取りの可否に影響を与えるため、3μm以下であることが好ましく、2μm以下であることがより好ましい。 The average thickness of the long obliquely stretched film obtained in the oblique stretching step is 20 to 60 μm, preferably 10 to 60 μm, more preferably 10 to 50 μm, particularly from the viewpoint of mechanical strength and thinning of the display device. The thickness is preferably 15 to 35 μm. Further, the thickness unevenness in the width direction of the long obliquely stretched film affects whether or not the film can be wound, and is preferably 3 μm or less, and more preferably 2 μm or less.
[2-5-1-4]加熱処理工程
 次に、斜め延伸された斜め延伸フィルム(流延膜)に対して下記(i)又は(ii)の加熱処理を行うことで第1の光学フィルムを得る加熱処理工程を行う。
 (i)製膜、延伸後のフィルムの端部に対して180~220℃の範囲内でエンボス加工を施した後に、当該流延膜を巻き取ってロール体とし、60~80℃、20%RH以下の条件で3~5日間加熱処理する。
 (ii)搬送ローラーにより、製膜、延伸後のフィルムを張力120~150Nで搬送しながら、搬送ローラーを介して当該フィルムを140~170℃で40~600秒間加熱処理する。
[2-5-1-4] Heat treatment step Next, the first optical film is obtained by performing the following heat treatment (i) or (ii) on the obliquely stretched obliquely stretched film (casting film). The heat treatment process to obtain is performed.
(I) After embossing in the range of 180 to 220 ° C. with respect to the end of the film after film formation and stretching, the cast film is wound up to form a roll body, which is 60 to 80 ° C., 20% Heat treatment for 3-5 days under conditions of RH or lower.
(Ii) The film after film formation and stretching is conveyed by a conveyance roller at a tension of 120 to 150 N, and the film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds via the conveyance roller.
 このように、斜め延伸されたフィルムを巻き取った状態又は張力を付与した状態で固定した上で加熱処理することで、フィルムを熱矯正することができ、第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と、遅相軸に直交する方向の寸法変化率L(θ+90)とを、上記式(1)及び(2)を満たすような値に調整することができる。
 以下、(i)及び(ii)の加熱処理について説明する。
Thus, the film can be heat-corrected by fixing the film stretched obliquely in a wound state or in a tensioned state, whereby the film can be thermally corrected, and the slow axis direction of the first optical film The dimensional change rate L (θ) and the dimensional change rate L (θ + 90) in the direction orthogonal to the slow axis can be adjusted to values satisfying the above equations (1) and (2).
Hereinafter, the heat treatments (i) and (ii) will be described.
((i)の加熱処理について)
 上記(i)の加熱処理においては、まず、斜め延伸後に得られたフィルムの幅手方向両端部にエンボス部を設けるエンボス加工を施す。エンボス部とは、長尺状フィルムを巻き取る前に、巻き取られたフィルム同士の裏面と表面が完全に面同士密着するのを防止するために、フィルムに微小の連続した凹凸からなる一定の幅の文様を付けたものである。フィルムの一面(例えば上面)を凸状に突出させた際、当該フィルムの他面(例えば下面)に前記凸状に対応して相対的に凹状が形成される。
(Regarding (i) heat treatment)
In the heat treatment (i) above, first, embossing is performed in which embossed portions are provided at both ends in the width direction of the film obtained after oblique stretching. The embossed part is a constant film consisting of minute continuous irregularities on the film in order to prevent the back and front surfaces of the wound films from coming into close contact with each other before winding the long film. It has a width pattern. When one surface (for example, the upper surface) of the film is protruded in a convex shape, a relatively concave shape is formed on the other surface (for example, the lower surface) of the film corresponding to the convex shape.
 エンボス加工を施すためには、エンボスローラーと、フィルムを介してエンボスローラーと対向配置されたバックローラーとを備えるエンボス加工装置を用いて行うことが好ましい。 In order to perform the embossing, it is preferable to use an embossing apparatus including an embossing roller and a back roller disposed opposite to the embossing roller via a film.
 エンボスローラーのローラー径は、5~20cmの範囲であることが好ましく、6~15cmの範囲であることがより好ましい。エンボスローラーのローラー径が20cm超であると、(エンボスローラーの内部に配置される)熱源とエンボスローラーの表面との距離が大きすぎるため、エンボスローラーの表面において温度ムラが生じることがある。そのため、形成されるエンボス部に弾性率が高い部分と低い部分とが生じ、弾性率が低い部分がつぶれやすい。一方、エンボスローラーのローラー径が5cm未満であると、回転軸がブレやすく、形成されるエンボスの凸部の高さがばらつきやすい。設定した高さよりも高く形成されたエンボス部は、つぶれやすい傾向がある。 The roller diameter of the embossing roller is preferably in the range of 5 to 20 cm, and more preferably in the range of 6 to 15 cm. When the roller diameter of the embossing roller is more than 20 cm, the distance between the heat source (arranged inside the embossing roller) and the surface of the embossing roller is too large, and temperature unevenness may occur on the surface of the embossing roller. Therefore, a portion having a high elastic modulus and a portion having a low elastic modulus are generated in the embossed portion to be formed, and a portion having a low elastic modulus is easily crushed. On the other hand, if the roller diameter of the embossing roller is less than 5 cm, the rotation axis is likely to be shaken, and the height of the convex portions of the embossing formed tends to vary. The embossed part formed higher than the set height tends to be crushed.
 バックローラーの材質は、エンボス部が形成されたフィルムを均一に冷却させる等の理由から、金属製であることが好ましい。金属の種類は、例えばSUS、チタン、ステンレス、クロムメッキ、銅等が好ましい。金属製のバックローラーは、例えばゴム製のバックローラーよりも、フィルムを均一に冷却しやすいため、セルロースエステルを均一に結晶化させやすく、高い強度(高い弾性率)を有するエンボス部を形成することができる。 The material of the back roller is preferably made of metal for the purpose of uniformly cooling the film on which the embossed portion is formed. As the metal type, for example, SUS, titanium, stainless steel, chrome plating, copper and the like are preferable. The metal back roller is easier to cool the film more uniformly than, for example, a rubber back roller, so that the cellulose ester is easily crystallized uniformly, and an embossed portion having high strength (high elastic modulus) is formed. Can do.
 エンボスローラーとバックローラーとの間のクリアランスは、1~30μm程度とし、好ましくは1~15μm程度としうる。エンボスローラーとバックローラーとによるニップ圧は、100~10000Pa程度としうる。 The clearance between the embossing roller and the back roller can be about 1 to 30 μm, preferably about 1 to 15 μm. The nip pressure between the embossing roller and the back roller can be about 100 to 10,000 Pa.
 そして、エンボスローラーとバックローラーとで、フィルムの幅手方向両端部をニップして、フィルムの幅手方向両端部にエンボス加工を施す。 Then, both ends of the film in the width direction are nipped by the embossing roller and the back roller, and the both ends of the film in the width direction are embossed.
 エンボスローラーの表面温度は、150~350℃の範囲とすることが好ましく、160~300℃の範囲とすることがより好ましく、180~220℃の範囲内とすることが特に好ましい。エンボスローラーの表面温度が150~350℃の範囲内であれば、フィルムを十分に溶融させることができ、冷却しても、セルロースエステルを十分に結晶化させることができ、強度の高いエンボス部を形成しやすい。また、フィルムが溶融しすぎることもなく、フィルムの溶融物のエンボスローラーへの貼り付きを防ぐことができる。 The surface temperature of the embossing roller is preferably in the range of 150 to 350 ° C, more preferably in the range of 160 to 300 ° C, and particularly preferably in the range of 180 to 220 ° C. If the surface temperature of the embossing roller is within the range of 150 to 350 ° C., the film can be sufficiently melted, and even when cooled, the cellulose ester can be sufficiently crystallized, and the embossed portion with high strength can be obtained. Easy to form. Moreover, the film does not melt too much, and sticking of the melt of the film to the embossing roller can be prevented.
 第1の光学フィルムの製造においては、フィルム幅手方向の両端部にエンボスローラーによって前記エンボス部を形成するときに、両側のエンボスローラーの表面温度に5~20℃の範囲内の温度差をつけて当該エンボス部を形成することが好ましい。第1の光学フィルムは斜め延伸されることにより、フィルム幅手方向の両端部の弾性率に異方性があることから、弾性率差をキャンセルしエンボス部の凸部のつぶれ耐性を均等にするために、弾性率の低い端部には高温なエンボスローラーでエンボス部を形成し、弾性率の高い端部には、エンボスローラーの表面温度を5~20℃の範囲内低い温度で設定したエンボスローラーでエンボス部を形成することが好ましい。表面温度差は、より好ましくは7~15℃の範囲である。 In the production of the first optical film, when the embossed portions are formed by embossing rollers at both ends in the width direction of the film, a temperature difference within a range of 5 to 20 ° C. is applied to the surface temperature of the embossing rollers on both sides. It is preferable to form the embossed portion. Since the first optical film is stretched obliquely, there is anisotropy in the elastic modulus at both ends in the width direction of the film, so the difference in elastic modulus is canceled and the crush resistance of the convex portion of the embossed portion is made uniform. Therefore, an embossed portion is formed with a high-temperature embossing roller at the end portion having a low elastic modulus, and the embossing roller surface temperature is set at a low temperature within a range of 5 to 20 ° C. at the end portion having a high elastic modulus. It is preferable to form an embossed part with a roller. The surface temperature difference is more preferably in the range of 7 to 15 ° C.
 バックローラーの表面温度は、エンボスローラーの表面温度にもよるが、30~100℃の範囲とすることが好ましく、50~80℃の範囲とすることがより好ましい。バックローラーの表面温度が50~100℃の範囲内であると、フィルムが急速に冷却されず、セルロースエステルを均一に結晶化させやすく、弾性率の高いエンボス部が得られる。また、フィルムに含まれるセルロースエステルを冷却しやすく、結晶化させやすいだけでなく、フィルムの熱膨張を抑制して、エンボス部付近のフィルムの表裏面の波打ちを防止することができる。エンボス部付近のフィルムの表裏面の波打ちが生じると、フィルム同士が貼り付きやすく、フィルムが裂けやすくなる。 The surface temperature of the back roller depends on the surface temperature of the embossing roller, but is preferably in the range of 30 to 100 ° C, more preferably in the range of 50 to 80 ° C. When the surface temperature of the back roller is in the range of 50 to 100 ° C., the film is not rapidly cooled, the cellulose ester is easily crystallized uniformly, and an embossed part having a high elastic modulus is obtained. In addition, the cellulose ester contained in the film can be easily cooled and crystallized, and the thermal expansion of the film can be suppressed to prevent undulation of the front and back surfaces of the film near the embossed portion. When the undulations on the front and back surfaces of the film near the embossed portion occur, the films are likely to stick to each other and the film is easily torn.
 エンボス加工時のフィルムの搬送速度は、50~120m/分の範囲であることが好ましい。フィルムの搬送速度が80~120m/分の範囲であると、生産性が高くでき、エンボスローラーの圧力や、エンボスローラーやバックローラーの熱がフィルムに均一に伝わりやすく、それにより、フィルムに含まれるセルロースエステルを均一に結晶化させて、強度の高いエンボス部が得られる。 The film conveyance speed during embossing is preferably in the range of 50 to 120 m / min. When the film conveyance speed is in the range of 80 to 120 m / min, the productivity can be improved, and the pressure of the embossing roller and the heat of the embossing roller and the back roller can be easily transferred to the film, thereby being included in the film. A cellulose ester is crystallized uniformly, and an embossed part with high strength is obtained.
 つまり、つぶれにくいエンボス部を形成するためには、エンボスローラーでセルロースエステルを十分に溶融させて、バックローラーで溶融したセルロースエステルをゆっくりと冷却して結晶化させることが重要と考えられる。そのためには、(1)エンボスローラーの表面温度、(2)バックローラーの表面温度、(3)エンボスローラーのローラー径、及び(4)バックローラーの材質、のうち少なくとも二つ以上を種々組み合わせて調整することが好ましい。中でも、(1)エンボスローラーの表面温度と(2)バックローラーの表面温度を、それぞれ前述の範囲に調整することが好ましく、更に(3)エンボスローラー径を前述の範囲に調整することがより好ましく、更に(4)バックローラーの材質を選択することが特に好ましい。 That is, in order to form an embossed portion that is not easily crushed, it is considered important to sufficiently melt the cellulose ester with an embossing roller, and slowly cool and crystallize the melted cellulose ester with a back roller. For that purpose, various combinations of at least two of (1) the surface temperature of the embossing roller, (2) the surface temperature of the back roller, (3) the roller diameter of the embossing roller, and (4) the material of the back roller are combined. It is preferable to adjust. Among them, (1) the surface temperature of the embossing roller and (2) the surface temperature of the back roller are preferably adjusted to the above-mentioned ranges, respectively, and (3) the embossing roller diameter is more preferably adjusted to the above-mentioned ranges. Furthermore, it is particularly preferable to select (4) the material of the back roller.
 続いて、(i)の加熱処理においては、フィルムの端部に対してエンボス加工を施した後に、ロール状に巻き取った状態で60~80℃、20%RH以下の条件で3~5日間加熱処理する。 Subsequently, in the heat treatment of (i), after embossing is performed on the end of the film, the film is wound up in a roll shape at 60 to 80 ° C. under 20% RH for 3 to 5 days. Heat treatment.
 フィルムの巻き取りは、巻き取り機を用いて行うことができる。
 また、フィルムの巻き取り方法は、特に制限されず、例えば、定トルク法、定テンション法、テーパーテンション法等を用いることができる。
 フィルムを巻き取る際の、巻き取り張力は、50~170N程度とすることができる。
The film can be wound using a winder.
The film winding method is not particularly limited, and for example, a constant torque method, a constant tension method, a taper tension method, or the like can be used.
The winding tension at the time of winding the film can be about 50 to 170N.
 加熱処理の期間は、設定される温度によって適宜決定すれば良い。通常は、巻外部、巻中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に設定することが好ましい。 The period of the heat treatment may be appropriately determined depending on the set temperature. Usually, it is preferable to set the temperature relatively low so that the heat treatment effect at the outside of the winding, the center of the winding, and the core is not biased.
 加熱処理を安定して行うためには、温湿度が調整可能な場所で行うことが好ましく、塵のないクリーンルーム等の加熱処理室で行うことが好ましい。 In order to carry out the heat treatment stably, it is preferably carried out in a place where the temperature and humidity can be adjusted, and preferably in a heat treatment chamber such as a clean room without dust.
 反射防止フィルムをロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、特に限定されないが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックが好ましく、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂等の樹脂が挙げられる。またガラス繊維等の充填材により強化した熱硬化性樹脂が好ましい。 The winding core for winding the antireflection film into a roll is not particularly limited as long as it is a cylindrical core, but is preferably a hollow plastic core, and the plastic material is a heat resistant plastic that can withstand heat treatment temperatures. For example, resins such as phenol resin, xylene resin, melamine resin, polyester resin, and epoxy resin can be used. A thermosetting resin reinforced with a filler such as glass fiber is preferred.
 これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることが更に好ましく、巻き厚は5cm以上であることが好ましい。 The number of turns around these winding cores is preferably 100 turns or more, more preferably 500 turns or more, and the winding thickness is preferably 5 cm or more.
 このようにして長巻のフィルムを、巻き取った状態で前記加熱処理を行うとき、該ロールを回転させることが好ましく、回転は、1分間に1回転以下の速度が好ましく、連続でも良く断続的な回転であっても良い。また、加熱期間中に該ロールの巻き替えを1回以上行うことが好ましい。 Thus, when performing the heat treatment in a state of winding a long film, the roll is preferably rotated, and the rotation is preferably performed at a speed of 1 rotation or less per minute, and may be continuous or intermittent. Rotation may be possible. Moreover, it is preferable to perform rewinding of the roll once or more during the heating period.
 コアに巻き取られた長巻のフィルムを加熱処理中に回転させるため加熱処理室に専用の回転台を設けることが好ましい。 It is preferable to provide a dedicated turntable in the heat treatment chamber in order to rotate the long film wound around the core during the heat treatment.
 回転は、断続の場合は停止している時間を10時間以内とすることが好ましく、停止位置は、円周方向に均一となるようにすることが好ましく、停止時間は10分以内とすることがより好ましい。最も好ましくは、連続回転である。 In the case of intermittent rotation, it is preferable that the stop time is within 10 hours, the stop position is preferably made uniform in the circumferential direction, and the stop time is within 10 minutes. More preferred. Most preferred is continuous rotation.
 連続回転での回転速度は、1回転に要する時間は好ましくは10時間以下とすることであり、早いと装置的に負担となるため実質的には、15分から2時間の範囲が好ましい。 As for the rotation speed in continuous rotation, the time required for one rotation is preferably 10 hours or less, and if it is early, it becomes a burden on the apparatus, so the range of 15 minutes to 2 hours is preferable in practice.
 なお、回転機能を有する専用の台車の場合には、移動や保管中にも光学フィルムロールを回転させることができて好ましく、この場合、保管期間が長い場合に生じるブラックバンド対策として回転が有効に機能する。 In the case of a dedicated carriage having a rotation function, it is preferable that the optical film roll can be rotated during movement and storage. In this case, rotation is effective as a countermeasure against black bands that occur when the storage period is long. Function.
 なお、(i)の加熱処理においては、ロール状に巻き取ったフィルムを、防湿シートで覆った状態で、上記加熱処理を行うことが好ましい。すなわち、ロール状に巻き取ったフィルムを、樹脂フィルム、好ましくは樹脂フィルムにアルミ蒸着された防湿シートで包んだ後、巻き軸部分を紐又はゴムバンドで留めた形態とし、上記加熱処理を行うことが好ましい。
 これにより、ロール状に巻き取ったフィルムを加熱処理する際に湿度を20%RH以下の条件に維持することが容易となり、更に、フィルムの吸湿や異物の付着等の発生を抑制することができ、高品質な第1の光学フィルムを製造することが可能となる。
In addition, in the heat processing of (i), it is preferable to perform the said heat processing in the state which covered the film wound up in roll shape with the moisture proof sheet. That is, the film wound in a roll is wrapped with a resin film, preferably a moisture-proof sheet deposited with aluminum on the resin film, and then the winding shaft portion is fastened with a string or rubber band, and the above heat treatment is performed. Is preferred.
This makes it easy to maintain a humidity of 20% RH or less when heat-treating the film wound up in a roll shape, and further suppresses the occurrence of moisture absorption, foreign matter adhesion, and the like. It becomes possible to produce a high-quality first optical film.
 フィルムの包装形態の具体例としては、筒状の巻芯にロール状に巻き取られたフィルムの周面及び軸方向両端面の全体が、シート状の包装材料により覆われており、包装材料のロール周方向の両端部が互いに重ね合わせられ、これら包装材料端部同士の接合部分がガムテープ等で留められた態様が挙げられる。このような態様により、包装材料端部同士の接触部分に実質的に隙間がなく、内部へのゴミ等の侵入を防ぐようにしている。ロール状フィルムの軸方向両端部より巻芯の端部が外側に突出している場合には、当該端部周面と包装材料の軸方向両端部とが紐やゴムバンド等で留められて、緩い密閉状態となされているものである形態が好ましい。従来のように、左右両端部をガムテープで何重にも留めて、実質的に隙間がなく内部を密閉状態とするよりも、巻芯部分を紐やゴムバンド等で留めた形態とした方が、保管中又は輸送中にロール体の適度な吸湿及び放湿が可能となり、光学フィルムの光学特性及び物性の均一性を高める上で好ましい態様である。 As a specific example of the packaging form of the film, the entire peripheral surface and both axial end surfaces of the film wound in a roll shape on a cylindrical core are covered with a sheet-like packaging material, An example is an embodiment in which both ends in the roll circumferential direction are overlapped with each other, and a joining portion between the ends of the packaging material is fastened with a gum tape or the like. By such an aspect, there is substantially no gap in the contact portion between the end portions of the packaging material, and entry of dust or the like into the interior is prevented. When the end of the core protrudes outward from both ends in the axial direction of the roll film, the peripheral surface of the end and the both ends in the axial direction of the packaging material are fastened with strings, rubber bands, etc. A form that is hermetically sealed is preferred. It is better to use a form in which the core part is fastened with a string or a rubber band, etc., rather than fastening the left and right ends with gummed tape multiple times as in the past and making the inside substantially sealed without gaps It is a preferable embodiment in that the roll body can be appropriately absorbed and released during storage or transportation, and the optical characteristics and physical properties of the optical film are improved.
 このような包装材料としては、ポリエチレン及びポリプロピレン等のポリオレフィン系合成樹脂のフィルム、またポリエチレンテレフタレート及びポリエチレンナフタレート等のポリエステル系合成樹脂のフィルム等が挙げられる。また、包装材料の厚さは、透湿性を維持する観点から10μm以上であることが好ましく、また剛性等取扱い上の観点から100μm以下であることが好ましい。また、包装材料の透湿性は、包装材料を構成する合成樹脂フィルムの厚さにより変化するため、合成樹脂フィルムの厚さを調整することで、包装材料の透湿性を適宜調整することができる。 Examples of such packaging materials include films of polyolefin-based synthetic resins such as polyethylene and polypropylene, and films of polyester-based synthetic resins such as polyethylene terephthalate and polyethylene naphthalate. Further, the thickness of the packaging material is preferably 10 μm or more from the viewpoint of maintaining moisture permeability, and is preferably 100 μm or less from the viewpoint of handling such as rigidity. Moreover, since the moisture permeability of a packaging material changes with the thickness of the synthetic resin film which comprises a packaging material, the moisture permeability of a packaging material can be adjusted suitably by adjusting the thickness of a synthetic resin film.
 ここで、この包装材料の透湿度が、JIS Z0208で規定される1日あたりの透湿度が10g/m以下であれば、巻き形状の劣化や異物故障を防止でき、それに起因した傷発生が生じにくくなるので、好ましい。 Here, if the moisture permeability of this packaging material is 10 g / m 2 or less per day as specified in JIS Z0208, it is possible to prevent the winding shape from being deteriorated and foreign matter failure, and to cause scratches due to it. Since it becomes difficult to produce, it is preferable.
 なお、本発明の光学フィルムのロール体の包装形態においては、光学フィルムのロール体を、JIS Z 0208で規定される1日あたりの透湿度が5g/m以下である包装材料により包装することが好ましく、更に、透湿度が1g/m以下である包装材料により包装することがより好ましい。これにより、フィルムの保管及び輸送等の物流状態における保管時の劣化(巻き形状の劣化、フィルム同士の貼り付き故障の発生及び異物故障)をより一層抑えることができる。 In addition, in the packaging form of the roll body of the optical film of the present invention, the roll body of the optical film is packaged with a packaging material having a moisture permeability of 5 g / m 2 or less per day specified by JIS Z 0208. Further, it is more preferable to package with a packaging material having a moisture permeability of 1 g / m 2 or less. Thereby, deterioration at the time of storage in the physical distribution state such as storage and transportation of the film (deterioration of winding shape, occurrence of sticking failure between films and foreign matter failure) can be further suppressed.
 なお、JIS Z 0208で規定される1日あたりの透湿度が5g/m以下、ないし1g/m以下である包装材料としては、例えばポリエチレン及びポリプロピレン等のポリオレフィン系合成樹脂フィルムと、ポリエチレンテレフタレート及びポリエチレンナフタレート等のポリエステル系合成樹脂フィルムとが積層された複合材料、またこれらのフィルムに、アルミニウム等の金属が蒸着されるか、若しくは金属の薄膜が接合されて積層されている複合材料等が挙げられる。これらの複合材料よりなる包装材料の厚さは、透湿性を維持する観点から1μm以上であることが好ましく、また剛性等取扱い上の観点から50μm以下であることが好ましい。そして、包装材料の透湿性は、複合材料の厚さにより変化するため、厚さを調整することで、包装材料の透湿性を適宜調整することができる。 In addition, as a packaging material whose moisture permeability per day prescribed | regulated by JISZ0208 is 5 g / m < 2 > or less, thru | or 1 g / m < 2 > or less, For example, polyolefin synthetic resin films, such as polyethylene and a polypropylene, and a polyethylene terephthalate And composite materials in which polyester synthetic resin films such as polyethylene naphthalate are laminated, and composite materials in which a metal such as aluminum is vapor-deposited or a thin film of metal is joined to these films. Is mentioned. The thickness of the packaging material made of these composite materials is preferably 1 μm or more from the viewpoint of maintaining moisture permeability, and is preferably 50 μm or less from the viewpoint of handling such as rigidity. And since the moisture permeability of a packaging material changes with the thickness of a composite material, the moisture permeability of a packaging material can be suitably adjusted by adjusting thickness.
 特に、ポリエチレン及びポリプロピレン等のポリオレフィン系合成樹脂フィルムと、ポリエチレンテレフタレート及びポリエチレンナフタレート等のポリエステル系合成樹脂フィルムとが積層された複合材料、またこれらのフィルムに、アルミニウム等の金属が蒸着されるか、若しくは金属の薄膜が接合されて積層されている複合材料は、高い透湿防止性が得られる上に、材料が軽量であるため、取扱い上、特に好ましく利用することができる。 In particular, composite materials in which polyolefin-based synthetic resin films such as polyethylene and polypropylene and polyester-based synthetic resin films such as polyethylene terephthalate and polyethylene naphthalate are laminated, and whether metal such as aluminum is deposited on these films. Alternatively, a composite material in which metal thin films are bonded and laminated can be particularly preferably used in terms of handling because high moisture permeation-preventing properties are obtained and the material is lightweight.
 上記包装材料は、本発明の光学フィルムのロール体を少なくとも1重に巻くことで、前記効果を発現することができるが、2重以上巻いても良い。 The above packaging material can exhibit the above effect by winding the roll of the optical film of the present invention at least once, but it may be wound twice or more.
 このような態様により加熱処理工程を行うことで、フィルムが熱矯正され寸法変化率が低減し、遅相軸方向の寸法変化率L(θ)と遅相軸に直交する方向の寸法変化率L(θ+90)とが上記式(1)及び(2)を満たす第1の光学フィルムを得ることができる。 By performing the heat treatment process in such a manner, the film is heat-corrected to reduce the dimensional change rate, and the dimensional change rate L (θ) in the slow axis direction and the dimensional change rate L in the direction perpendicular to the slow axis. A first optical film in which (θ + 90) satisfies the above formulas (1) and (2) can be obtained.
((ii)の加熱処理について)
 上記(ii)の加熱処理においては、斜め延伸後に得られたフィルムを140~170℃の温度条件下で120~150Nの張力をかけながら、300~600本の搬送ローラーを介し40~600秒間かけて搬送させながら加熱処理する。
(Regarding heat treatment of (ii))
In the heat treatment (ii), the film obtained after oblique stretching is applied for 40 to 600 seconds through 300 to 600 conveying rollers while applying a tension of 120 to 150 N under a temperature condition of 140 to 170 ° C. Heat treatment while transporting.
 上記(ii)の加熱処理は、フィルムを上記張力で張架して上記温度範囲で加熱できる搬送ローラー群を有する装置であれば、いずれの構成の装置で行うものであっても良い。例えば、300~600本の搬送ローラーを有する装置を用いて加熱処理を行うことが好ましい。 The heat treatment (ii) may be performed by any apparatus as long as the apparatus has a transport roller group capable of stretching the film with the tension and heating the film in the temperature range. For example, the heat treatment is preferably performed using an apparatus having 300 to 600 conveying rollers.
 このような態様により加熱処理工程を行うことで、フィルムが熱矯正され、寸法変化率が低減する。これにより、遅相軸方向の寸法変化率L(θ)と遅相軸に直交する方向の寸法変化率L(θ+90)とが上記式(1)及び(2)を満たす第1の光学フィルムを得ることができる。 By performing the heat treatment process in such a manner, the film is heat-corrected and the dimensional change rate is reduced. Thus, the first optical film in which the dimensional change rate L (θ) in the slow axis direction and the dimensional change rate L (θ + 90) in the direction perpendicular to the slow axis satisfy the above formulas (1) and (2). Obtainable.
[2-5-2]溶融流延製膜法による方法
 第1の光学フィルムを溶融流延製膜法で製造する場合には、樹脂及び可塑剤等の添加剤を含む組成物を、流動性を呈する温度まで加熱溶融し、その後、流動性のセルロースエステルを含む溶融物を流延する。
[2-5-2] Method by Melt Casting Film Forming Method When the first optical film is produced by the melt casting film forming method, a composition containing an additive such as a resin and a plasticizer is used. Then, the mixture is heated and melted to a temperature exhibiting the following, and then a melt containing a flowable cellulose ester is cast.
 加熱溶融する成形法としては、更に詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法等に分類できる。これらの成形法の中では、機械的強度及び表面精度等の点から、溶融押出し法が好ましい。溶融押出し法に用いる複数の原材料は、通常、あらかじめ混錬してペレット化しておくことが好ましい。 More specifically, the heat melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these molding methods, the melt extrusion method is preferable from the viewpoint of mechanical strength and surface accuracy. The plurality of raw materials used in the melt extrusion method are usually preferably kneaded and pelletized in advance.
 ペレット化は、公知の方法を適用することができ、例えば、乾燥セルロースアシレートや可塑剤、その他添加剤をフィーダーで押出機に供給し、一軸や二軸の押出機を用いて混錬し、ダイからストランド状に押し出し、水冷又は空冷し、カッティングすることで得ることができる。 A known method can be applied to pelletization, for example, dry cellulose acylate, plasticizer, and other additives are fed to an extruder with a feeder, and kneaded using a single or twin screw extruder, It can be obtained by extruding in a strand form from a die, cooling with water or air, and cutting.
 添加剤は、押出機に供給する前に混合しておいても良く、あるいはそれぞれ個別のフィーダーで供給しても良い。なお、微粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に混合しておくことが好ましい。 The additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. A small amount of additives such as fine particles and antioxidants are preferably mixed in advance in order to mix uniformly.
 ペレット化に用いる押出機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないように、ペレット化可能でなるべく低温で加工する方式が好ましい。例えば、二軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder used for pelletization preferably has a method of processing at as low a temperature as possible so that pelletization is possible so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。もちろんペレット化せず、原材料の粉末をそのままフィーダーに投入して押出機に供給し、加熱溶融した後、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. Of course, the raw material powder can be put into a feeder as it is, supplied to an extruder, heated and melted, and then directly formed into a film without being pelletized.
 上記ペレットを一軸や二軸タイプの押出機を用いて、押し出す際の溶融温度としては200~300℃の範囲内とし、リーフディスクタイプのフィルター等で濾過して異物を除去した後、Tダイからフィルム状に流延し、冷却ローラーと弾性タッチローラーでフィルムをニップし、冷却ローラー上で固化させる。 The pellets are extruded using a single or twin screw type extruder and the melting temperature is within the range of 200 to 300 ° C. After removing foreign matter by filtering with a leaf disk type filter or the like, from the T-die The film is cast into a film, and the film is nipped with a cooling roller and an elastic touch roller, and solidified on the cooling roller.
 供給ホッパーから押出機へ導入する際は、真空下又は減圧下や不活性ガス雰囲気下で行って、酸化分解等を防止することが好ましい。 When introducing into the extruder from the supply hopper, it is preferable to carry out under vacuum or reduced pressure or in an inert gas atmosphere to prevent oxidative decomposition and the like.
 押出し流量は、ギヤポンプを導入する等して安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し、接触箇所を焼結して一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。 The extrusion flow rate is preferably performed stably by introducing a gear pump or the like. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances. Stainless steel fiber sintered filter is made by compressing the stainless fiber body in a complicatedly intertwined state, and sintering and integrating the contact points. The density is changed according to the thickness and compression amount of the fiber, and the filter is filtered. The accuracy can be adjusted.
 可塑剤や微粒子等の添加剤は、あらかじめ樹脂と混合しておいても良いし、押出機の途中で練り込んでも良い。均一に添加するために、スタチックミキサー等の混合装置を用いることが好ましい。 Additives such as plasticizers and fine particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
 冷却ローラーと弾性タッチローラーでフィルムをニップする際のタッチローラー側のフィルム温度は、フィルムのTg以上、Tg+110℃以下の範囲内とすることが好ましい。このような目的で使用する弾性体表面を有する弾性タッチローラーとしては、公知の弾性タッチローラーを使用することができる。弾性タッチローラーは、挟圧回転体ともいい、市販されているものを用いることもできる。 The film temperature on the touch roller side when the film is nipped by the cooling roller and the elastic touch roller is preferably in the range of Tg or more and Tg + 110 ° C. or less of the film. A known elastic touch roller can be used as the elastic touch roller having an elastic surface used for such a purpose. The elastic touch roller is also called a pinching rotary body, and a commercially available one can also be used.
 冷却ローラーからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roller, it is preferable to control the tension to prevent deformation of the film.
 また、上記のようにして得られたフィルムは、冷却ローラーに接する工程を通過した後、上記横延伸工程及び斜め延伸工程により延伸処理を施す。 In addition, the film obtained as described above passes through the step of contacting the cooling roller, and is then subjected to stretching treatment by the transverse stretching step and the oblique stretching step.
 延伸する方法は、公知のローラー延伸機やテンター等を好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg~(Tg+60)℃の温度範囲で行われることが好ましい。 As the stretching method, a known roller stretching machine or tenter can be preferably used. The stretching temperature is usually preferably in the temperature range of Tg to (Tg + 60) ° C. of the resin constituting the film.
[3]第2の光学フィルム
 本発明に係る第2の光学フィルムは、偏光子の他方の面に対向して設けられている。第2の光学フィルムは、長手方向又は幅手方向に延伸されていることが好ましく、その遅相軸と偏光子の吸収軸とが平行又は直交していることが好ましい。
[3] Second optical film The second optical film according to the present invention is provided to face the other surface of the polarizer. The second optical film is preferably stretched in the longitudinal direction or the width direction, and its slow axis and the absorption axis of the polarizer are preferably parallel or orthogonal.
 第2の光学フィルムの材料としては、上記第1の光学フィルムと同様の材料を用いることができるため説明を省略するが、特に、セルロースアセテート又はセルロースアセテートプロピオネートであることが好ましい。 As the material of the second optical film, the same material as that of the first optical film can be used, and the description thereof will be omitted. In particular, cellulose acetate or cellulose acetate propionate is preferable.
 上記した以外の事項については、第1の光学フィルムと同様であるので、説明を省略する。 Since matters other than those described above are the same as those of the first optical film, description thereof will be omitted.
[4]その他の構成層
 偏光板は、第1の光学フィルム及び第2の光学フィルムのうち視認側に配置される光学フィルムの視認側の面に、機能層を備えていても良い。当該機能層としては、例えば、紫外線硬化型樹脂等からなるハードコート層や、アンチグレア層が設けられる。
 機能層として用いられるハードコート層又はアンチグレア層としては、例えば、特開2003-114333号公報、特開2004-203009号公報、2004-354699号公報、2004-354828号公報等記載のハードコート層又はアンチグレア層を用いることができる。
[4] Other constituent layers The polarizing plate may include a functional layer on the surface of the optical film disposed on the viewing side of the first optical film and the second optical film. As the functional layer, for example, a hard coat layer made of an ultraviolet curable resin or the like, or an antiglare layer is provided.
Examples of the hard coat layer or antiglare layer used as the functional layer include a hard coat layer described in JP-A No. 2003-114333, JP-A No. 2004-203090, 2004-354699, and No. 2004-354828. An antiglare layer can be used.
[4-1]ハードコート層
 ハードコート層は、活性線硬化性化合物の硬化物を含有することが好ましく、活性線硬化性化合物としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられる。活性線硬化性化合物としては、紫外線硬化性化合物や電子線硬化性化合物が挙げられるが、紫外線照射により硬化する化合物が、機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。
[4-1] Hard coat layer The hard coat layer preferably contains a cured product of an actinic radiation curable compound, and the actinic radiation curable compound includes a component containing a monomer having an ethylenically unsaturated double bond. Preferably used. Examples of the actinic radiation curable compound include an ultraviolet curable compound and an electron beam curable compound, and a compound that is cured by ultraviolet irradiation is preferable from the viewpoint of excellent mechanical film strength (abrasion resistance, pencil hardness).
 紫外線硬化性化合物としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型アクリレート系樹脂が好ましい。 As the ultraviolet curable compound, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, ultraviolet curable acrylate resins are preferred.
 ハードコート層のドライ層厚としては、平均層厚0.01~20μmの範囲、好ましくは0.5~10μmの範囲である。より好ましくは、0.5~5μmの範囲である。 The dry thickness of the hard coat layer is an average layer thickness of 0.01 to 20 μm, preferably 0.5 to 10 μm. More preferably, it is in the range of 0.5 to 5 μm.
 ハードコート層の塗布方法は、例えば、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等の公知の方法を用いることができる。ハードコート層組成物塗布後、乾燥し、活性線を照射(UV硬化処理ともいう))して硬化し、更に必要に応じて、硬化後に加熱処理しても良い。 As the method for applying the hard coat layer, known methods such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method can be used. After applying the hard coat layer composition, it is dried, irradiated with active rays (also referred to as UV curing treatment)) and cured, and if necessary, it may be heat treated after curing.
[4-2]アンチグレア層
 アンチグレア層は、フィルム基材の表面に反射した像や外光の輪郭をぼかす層であり、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイといった画像表示装置等の使用時に、外光や反射像の映り込みが気にならないようにする機能層である。当該アンチグレア層はハードコート層を兼ねても良い。
[4-2] Antiglare layer The antiglare layer is a layer that blurs the outline of the image reflected on the surface of the film substrate and the outside light. When using an image display device such as a liquid crystal display, organic EL display, plasma display, etc. It is a functional layer that prevents reflection of light and reflected images. The antiglare layer may also serve as a hard coat layer.
 アンチグレア層は、前述のハードコート層に用いられる活性線硬化性樹脂中に、下記微粒子を添加して分散させることによって形成することが好ましい。微粒子としては、例えば、無機微粒子や有機微粒子といった微粒子が挙げられ、無機微粒子としては、例えば、酸化ケイ素、酸化マグネシウム又は炭酸カルシウム等を挙げることができる。また、有機粒子としては、例えば、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、ポリスチレン系樹脂粉末又はメラミン系樹脂粉末等を挙げることができる。 The antiglare layer is preferably formed by adding and dispersing the following fine particles in the actinic radiation curable resin used for the hard coat layer. Examples of the fine particles include fine particles such as inorganic fine particles and organic fine particles. Examples of the inorganic fine particles include silicon oxide, magnesium oxide, and calcium carbonate. Examples of the organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, polystyrene resin powder, and melamine resin powder.
 アンチグレア層の算術平均粗さRa(JIS B0601:1994)は、0.3~1.5μmの範囲内であることが防眩性を付与する観点から好ましく、更に好ましくは0.35~1.3μmの範囲内であり、特に好ましくは0.5~1.3μmの範囲内である。上記範囲内であれば、防眩性とアンチグレア層の滑り性を満足し、薄膜でも高硬度(4H以上)なアンチグレア層が得られるため好ましい。 The arithmetic average roughness Ra (JIS B0601: 1994) of the antiglare layer is preferably in the range of 0.3 to 1.5 μm from the viewpoint of imparting antiglare properties, and more preferably 0.35 to 1.3 μm. And particularly preferably in the range of 0.5 to 1.3 μm. Within the above range, the antiglare property and the slipperiness of the antiglare layer are satisfied, and an antiglare layer having a high hardness (4H or more) can be obtained even with a thin film.
《偏光板の製造方法》
 本発明に第1の係る光学フィルムは、斜め延伸されることによって遅相軸と偏光子の吸収軸との角度θが30~60°の範囲内であり、透過軸(又は吸収軸)が長手方向にある長尺状の偏光子とロールtoロールで貼合することで、長尺状の偏光板を形成することができる。
<< Polarizing plate manufacturing method >>
In the optical film according to the first aspect of the present invention, the angle θ between the slow axis and the absorption axis of the polarizer is in the range of 30 to 60 ° by being obliquely stretched, and the transmission axis (or absorption axis) is long. A long polarizing plate can be formed by laminating with a long polarizer in a direction with a roll to roll.
 上記第1の光学フィルムの加熱処理工程にて、(ii)の加熱処理を行う場合には、本発明の偏光板の製造方法は、第1の光学フィルムのエンボス部を除去する工程を更に有することが好ましい。 In the heat treatment step of the first optical film, when performing the heat treatment (ii), the method for producing a polarizing plate of the present invention further includes a step of removing the embossed portion of the first optical film. It is preferable.
 当該偏光板は、偏光子を本発明に係る第1の光学フィルム及び第2の光学フィルムによって挟持されることが好ましい。
 光学フィルムと偏光子との貼り合わせは、特に限定はないが、当該光学フィルムをケン化処理した後、完全ケン化型のポリビニルアルコ-ル系接着剤を用いて行うことができる。また、活性エネルギー線硬化性接着剤等を用いて貼り合わせることもできるが、得られる接着剤層の弾性率が高く、偏光板の変形を抑制しやすい点等から、光硬化性接着剤を用いる貼り合わせであることが好ましい。
In the polarizing plate, the polarizer is preferably sandwiched between the first optical film and the second optical film according to the present invention.
The bonding of the optical film and the polarizer is not particularly limited, but can be performed using a completely saponified polyvinyl alcohol adhesive after saponifying the optical film. Moreover, although it can also bond together using an active energy ray hardening adhesive etc., a photocurable adhesive is used from the point etc. which the elasticity modulus of the adhesive layer obtained is high and it is easy to suppress a deformation | transformation of a polarizing plate. It is preferable that they are bonded.
 光硬化性接着剤の好ましい例としては、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤の各成分を含有する光硬化性接着剤組成物が挙げられる。ただし、これ以外の光硬化性接着剤が用いられても良い。 Preferred examples of the photocurable adhesive include (α) cationic polymerizable compound, (β) photocationic polymerization initiator, and (γ) a wavelength longer than 380 nm, as disclosed in JP 2011-08234 A. And a photo-curable adhesive composition containing each component of a photosensitizer exhibiting maximum absorption in the light of (δ) and a naphthalene-based photosensitization aid. However, other photocurable adhesives may be used.
 以下、光硬化性接着剤を用いた偏光板の製造方法の一例を説明する。偏光板は、(1)光学フィルムの偏光子を接着する面を易接着処理する前処理工程、(2)偏光子と光学フィルムとの接着面のうち少なくとも一方に、下記の光硬化性接着剤を塗布する接着剤塗布工程、(3)得られた接着剤層を介して偏光子と光学フィルムとを貼り合せる貼合工程、及び(4)接着剤層を介して偏光子と光学フィルムとが貼り合わされた状態で接着剤層を硬化させる硬化工程、を含む製造方法によって製造することができる。(1)の前処理工程は、必要に応じて実施すれば良い。 Hereinafter, an example of a method for producing a polarizing plate using a photocurable adhesive will be described. The polarizing plate includes (1) a pretreatment step for easily adhering the surface of the optical film to which the polarizer is bonded, and (2) at least one of the adhesive surfaces of the polarizer and the optical film. (3) a bonding step of bonding the polarizer and the optical film through the obtained adhesive layer, and (4) a polarizer and the optical film through the adhesive layer. It can manufacture by the manufacturing method including the hardening process which hardens an adhesive bond layer in the bonded state. What is necessary is just to implement the pre-processing process of (1) as needed.
(前処理工程)
 前処理工程では、光学フィルムの、偏光子との接着面に易接着処理を行う。偏光子の両面にそれぞれ光学フィルムを接着させる場合は、それぞれの光学フィルムの、偏光子との接着面に易接着処理を行う。易接着処理としては、コロナ処理、プラズマ処理等が挙げられる。
(Pretreatment process)
In the pretreatment step, an easy adhesion treatment is performed on the adhesive surface of the optical film with the polarizer. When bonding an optical film to both surfaces of a polarizer, easy adhesion processing is performed on the bonding surface of each optical film with the polarizer. Examples of the easy adhesion treatment include corona treatment and plasma treatment.
(接着剤塗布工程)
 接着剤塗布工程では、偏光子と光学フィルムとの接着面のうち少なくとも一方に、上記光硬化性接着剤を塗布する。偏光子又は光学フィルムの表面に直接光硬化性接着剤を塗布する場合、その塗布方法に特別な限定はない。例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等、種々の塗工方式が利用できる。また、偏光子と光学フィルムの間に、光硬化性接着剤を流延させた後、ローラー等で加圧して均一に押し広げる方法も利用できる。
(Adhesive application process)
In the adhesive application step, the photocurable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the optical film. When the photocurable adhesive is directly applied to the surface of the polarizer or the optical film, the application method is not particularly limited. For example, various coating methods such as a doctor blade, a wire bar, a die coater, a comma coater, and a gravure coater can be used. Moreover, after casting a photocurable adhesive between a polarizer and an optical film, the method of pressurizing with a roller etc. and spreading uniformly can also be utilized.
(貼合工程)
 こうして光硬化性接着剤を塗布した後、貼合工程に供される。この貼合工程では、例えば、先の塗布工程で偏光子の表面に光硬化性接着剤を塗布した場合、そこに光学フィルムが重ね合わされる。先の塗布工程で光学フィルムの表面に光硬化性接着剤を塗布した場合は、そこに偏光子が重ね合わされる。また、偏光子と光学フィルムの間に光硬化性接着剤を流延させた場合は、その状態で偏光子と光学フィルムとが重ね合わされる。偏光子の両面に光学フィルムを接着する場合であって、両面とも光硬化性接着剤を用いる場合は、偏光子の両面にそれぞれ、光硬化性接着剤を介して光学フィルムが重ね合わされる。そして通常は、この状態で両面側からロール等で挟んで加圧することになる。ロールの材質は、金属やゴム等を用いることが可能である。両面に配置されるローラーは、同じ材質であっても良いし、異なる材質であっても良い。
(Bonding process)
Thus, after apply | coating a photocurable adhesive agent, it uses for a bonding process. In this bonding step, for example, when a photocurable adhesive is applied to the surface of the polarizer in the previous application step, an optical film is superimposed thereon. When a photocurable adhesive is applied to the surface of the optical film in the previous application step, a polarizer is superimposed thereon. In addition, when a photocurable adhesive is cast between the polarizer and the optical film, the polarizer and the optical film are superposed in that state. In the case where the optical film is bonded to both surfaces of the polarizer, and the photocurable adhesive is used on both surfaces, the optical film is superimposed on the both surfaces of the polarizer via the photocurable adhesive. In this state, the pressure is usually sandwiched between rolls from both sides. As the material of the roll, metal, rubber or the like can be used. The rollers arranged on both sides may be made of the same material or different materials.
(硬化工程)
 硬化工程では、未硬化の光硬化性接着剤に活性エネルギー線を照射して、エポキシ化合物やオキセタン化合物を含む接着剤層を硬化させる。それにより、光硬化性接着剤を介して重ね合わせた偏光子と光学フィルムとを接着させる。偏光子の両面に光学フィルムを貼合するため、偏光子の両面にそれぞれ光硬化性接着剤を介して光学フィルムを重ね合わせた状態で、いずれか一方の光学フィルム側から活性エネルギー線を照射し、両面の光硬化性接着剤を同時に硬化させるのが有利である。
(Curing process)
In the curing step, the active energy ray is irradiated to the uncured photocurable adhesive to cure the adhesive layer containing the epoxy compound or the oxetane compound. Thereby, the overlapped polarizer and the optical film are bonded via the photocurable adhesive. In order to paste the optical film on both sides of the polarizer, the active energy rays are irradiated from either one of the optical films while the optical films are superimposed on both sides of the polarizer via a photocurable adhesive. It is advantageous to simultaneously cure the photocurable adhesive on both sides.
 活性エネルギー線としては、可視光線、紫外線、X線、電子線等を用いることができ、取扱いが容易で硬化速度も十分であることから、一般的には、電子線又は紫外線が好ましく用いられる。 As the active energy rays, visible rays, ultraviolet rays, X-rays, electron beams and the like can be used, and since they are easy to handle and have a sufficient curing rate, electron beams or ultraviolet rays are generally preferably used.
 電子線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5~300kVの範囲内であり、更に好ましくは10~250kVの範囲内である。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明光学フィルムや偏光子にダメージを与えるおそれがある。照射線量としては、5~100kGyの範囲内、更に好ましくは10~75kGyの範囲内である。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明光学フィルムや偏光子にダメージを与え、機械的強度の低下や黄変を生じ、所定の光学特性を得ることができない。 Any appropriate conditions can be adopted as the electron beam irradiation conditions as long as the adhesive can be cured. For example, in the electron beam irradiation, the acceleration voltage is preferably in the range of 5 to 300 kV, more preferably in the range of 10 to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and the electron beam rebounds, There is a risk of damaging the polarizer. The irradiation dose is in the range of 5 to 100 kGy, more preferably in the range of 10 to 75 kGy. When the irradiation dose is less than 5 kGy, the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent optical film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing, thereby obtaining predetermined optical characteristics. I can't.
 紫外線の照射条件は、前記接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。紫外線の照射量は積算光量で50~1500mJ/cmの範囲内であることが好ましく、100~500mJ/cmの範囲内であるのが更に好ましい。 Arbitrary appropriate conditions can be employ | adopted for the irradiation conditions of an ultraviolet-ray, if it is the conditions which can cure | harden the said adhesive agent. Preferably the dose of ultraviolet rays in the range of 50 ~ 1500mJ / cm 2 in accumulated light quantity, and even more preferably in the range of 100 ~ 500mJ / cm 2.
 以上のようにして得られた偏光板において、接着剤層の厚さは、特に限定されないが、通常0.01~10μmの範囲内であり、好ましくは0.5~5μmの範囲内である。 In the polarizing plate obtained as described above, the thickness of the adhesive layer is not particularly limited, but is usually in the range of 0.01 to 10 μm, and preferably in the range of 0.5 to 5 μm.
《液晶表示装置》
 図3は、本実施形態の液晶表示装置10の概略の構成を示す断面図である。液晶表示装置10は、液晶セル11と、液晶セル11に対して視認側に配置される偏光板12と、液晶セル11に対して視認側とは反対側に配置される偏光板13と、偏光板13に対して視認側とは反対側に配置されるバックライト14と、偏光板12に対して視認側に配置される前面板15と、を備えている。液晶セル11は、一対の基板で液晶層を挟持して構成されている。この液晶セル11は、マトリクス状に配置される複数の画素を有しており、各画素の駆動をTFT(Thin Film Transistor)等のスイッチング素子によってON/OFFすることにより、表示を行う。
<Liquid crystal display device>
FIG. 3 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 10 of the present embodiment. The liquid crystal display device 10 includes a liquid crystal cell 11, a polarizing plate 12 disposed on the viewing side with respect to the liquid crystal cell 11, a polarizing plate 13 disposed on the side opposite to the viewing side with respect to the liquid crystal cell 11, and a polarization The backlight 14 arrange | positioned on the opposite side to the visual recognition side with respect to the board 13 and the front board 15 arrange | positioned with respect to the polarizing plate 12 at the visual recognition side are provided. The liquid crystal cell 11 is configured by sandwiching a liquid crystal layer between a pair of substrates. The liquid crystal cell 11 has a plurality of pixels arranged in a matrix, and performs display by turning on / off each pixel by a switching element such as a TFT (Thin Film Transistor).
 前面板15は、液晶表示装置10の外装カバーとなるものであり、ガラスや樹脂(例えばアクリル)からなる透明基板、又はタッチパネルモジュールである。前面板15と偏光板12との間には、例えば紫外線硬化型樹脂からなる充填材(図示略)が充填されていることが好ましい。充填材が設けられていることで、前面板15と偏光板12との間に空気層が形成されることを防止し、前面板15と空気層との界面及び偏光板12と空気層との界面での光の反射を抑制して表示画像の視認性を向上させることができる。 The front plate 15 serves as an exterior cover of the liquid crystal display device 10 and is a transparent substrate made of glass or resin (for example, acrylic) or a touch panel module. It is preferable that a filler (not shown) made of, for example, an ultraviolet curable resin is filled between the front plate 15 and the polarizing plate 12. By providing the filler, an air layer is prevented from being formed between the front plate 15 and the polarizing plate 12, and the interface between the front plate 15 and the air layer and between the polarizing plate 12 and the air layer are prevented. It is possible to improve the visibility of the display image by suppressing reflection of light at the interface.
 偏光板12は、上記した本発明の偏光板が用いられ、所定の直線偏光を透過する偏光子21と、偏光子21に対して視認側に、接着層等を介して配置される第1の光学フィルム22と、更にその視認側に配置される機能層23とを有している。上記の機能層23は、例えば紫外線硬化型樹脂からなるハードコート層や、アンチグレア層で構成される。また、偏光板12は、偏光子21に対して液晶セル11側に、接着層等を介して配置される第2の光学フィルム24を有している。 As the polarizing plate 12, the polarizing plate of the present invention described above is used, and a polarizer 21 that transmits predetermined linearly polarized light, and a first side that is disposed on the viewing side with respect to the polarizer 21 via an adhesive layer or the like. It has the optical film 22 and the functional layer 23 arrange | positioned at the visual recognition side further. The functional layer 23 is composed of, for example, a hard coat layer made of an ultraviolet curable resin or an antiglare layer. Further, the polarizing plate 12 has a second optical film 24 disposed on the liquid crystal cell 11 side with respect to the polarizer 21 via an adhesive layer or the like.
 偏光子21は、例えばポリビニルアルコールフィルムを二色性色素で染色し、高倍率延伸することで得られるものである。偏光子21は、アルカリ処理(ケン化処理ともいう。)された後、その一方の面側に第1の光学フィルム22が接着層等を介して貼り合わされ、他方の面側に第2の光学フィルム24が接着層等を介して貼り合わされる。 The polarizer 21 is obtained, for example, by staining a polyvinyl alcohol film with a dichroic dye and stretching the film at a high magnification. After the polarizer 21 is subjected to alkali treatment (also referred to as saponification treatment), the first optical film 22 is bonded to one surface side through an adhesive layer or the like, and the second optical surface is bonded to the other surface side. The film 24 is bonded through an adhesive layer or the like.
 接着層は、例えばポリビニルアルコール接着剤(PVA接着剤、水糊)からなる層であるが、紫外線硬化型の接着剤(UV接着剤)からなる層であっても良い。これらの接着剤は、接着面に塗布する状態では液体であり、塗布後に乾燥又は紫外線照射によって硬化することで、2者を接着する。つまり、接着層は、液状からの状態変化によって、偏光子21と第1の光学フィルム22、偏光子21と第2の光学フィルム24とをそれぞれ接着する。このように、接着層は、液状からの状態変化によって2者を接着する点で、そのような状態変化を起こさずに2者を接着する粘着層(基材の上に粘着剤を有するシート状の粘着層)とは異なっている。
 接着層の層厚は、0.1μm超5μm以下の範囲内であることが望ましい。この場合、アクリル系の粘着剤(厚さ10μm程度)を用いる構成に比べて、偏光板12を容易に薄型化することができる。
The adhesive layer is, for example, a layer made of a polyvinyl alcohol adhesive (PVA adhesive, water glue), but may be a layer made of an ultraviolet curable adhesive (UV adhesive). These adhesives are liquid in a state where they are applied to an adhesive surface, and are bonded to each other by being dried or cured by ultraviolet irradiation after application. That is, the adhesive layer bonds the polarizer 21 and the first optical film 22, and the polarizer 21 and the second optical film 24, respectively, according to the state change from the liquid state. In this way, the adhesive layer is an adhesive layer (a sheet having an adhesive on the base material) that adheres the two without causing such a change in the state of bonding the two by a change in state from the liquid state. The adhesive layer).
The thickness of the adhesive layer is preferably in the range of more than 0.1 μm and not more than 5 μm. In this case, the polarizing plate 12 can be easily made thinner as compared with a configuration using an acrylic pressure-sensitive adhesive (thickness of about 10 μm).
 第1の光学フィルム22は、透過光に対して波長の1/4程度の面内位相差を付与する層であって、斜め延伸が施された厚さ20~60μmのセルロースエステルフィルムで構成されていることが好ましい。第1の光学フィルム22の遅相軸と偏光子21の吸収軸とのなす角度(交差角度)θは、30~60°の範囲内であり、これによって、偏光子21からの直線偏光は、第1の光学フィルム22によって円偏光又は楕円偏光に変換される。 The first optical film 22 is a layer that imparts an in-plane retardation of about ¼ of the wavelength to transmitted light, and is composed of a cellulose ester film having a thickness of 20 to 60 μm that is obliquely stretched. It is preferable. The angle (crossing angle) θ formed between the slow axis of the first optical film 22 and the absorption axis of the polarizer 21 is in the range of 30 to 60 °, whereby linearly polarized light from the polarizer 21 is It is converted into circularly polarized light or elliptically polarized light by the first optical film 22.
 機能層23をハードコート層で構成する場合、このハードコート層によって偏光板12の表面を保護することができる。ハードコート層としては、紫外線吸収機能を持つ有機化合物を含んでいても良い。このような有機化合物(有機UV吸収剤)としては、例えばチヌビン928(BASFジャパン株式会社製)を用いることができる。 When the functional layer 23 is composed of a hard coat layer, the surface of the polarizing plate 12 can be protected by the hard coat layer. The hard coat layer may contain an organic compound having an ultraviolet absorbing function. As such an organic compound (organic UV absorber), for example, Tinuvin 928 (manufactured by BASF Japan Ltd.) can be used.
 第2の光学フィルム24は、膜厚20~60μmのセルロースエステルフィルムであり、偏光子21の裏面側を保護するフィルムとして設けられている。なお、第2の光学フィルム24は、所望の光学補償機能を有する位相差フィルムを兼ねた光学フィルムとして設けられても良い。 The second optical film 24 is a cellulose ester film having a thickness of 20 to 60 μm, and is provided as a film for protecting the back side of the polarizer 21. Note that the second optical film 24 may be provided as an optical film that also serves as a retardation film having a desired optical compensation function.
 偏光板13は、所定の直線偏光を透過する偏光子31と、偏光子31に対して視認側(液晶セル11側)に、接着層を介して配置される光学フィルム32と、偏光子31に対して視認側とは反対側(バックライト側)に、接着層を介して配置される光学フィルム33とを有している。偏光子21、31は、クロスニコル状態となるように配置されている。なお、偏光子31及び光学フィルム32、33の構成材料としては、それぞれ、偏光子21及び第2の光学フィルム24と同じものを用いることができる。 The polarizing plate 13 includes a polarizer 31 that transmits predetermined linearly polarized light, an optical film 32 that is disposed on the viewing side (liquid crystal cell 11 side) with respect to the polarizer 31 via an adhesive layer, and a polarizer 31. On the other hand, the optical film 33 is disposed on the opposite side (backlight side) to the viewing side via an adhesive layer. The polarizers 21 and 31 are arranged so as to be in a crossed Nicols state. In addition, as a constituent material of the polarizer 31 and the optical films 32 and 33, the same thing as the polarizer 21 and the 2nd optical film 24 can be used, respectively.
 上記のように、視認側の偏光板12において、偏光子21の両側に位置する第1の光学フィルム22及び第2の光学フィルム24は、両方とも、膜厚20~60μmの薄膜からなるセルロースエステルフィルムであり、かつ、偏光子21の視認側には、斜め延伸が施された第1の光学フィルム22が配置されているので、第1の光学フィルム22及び第2の光学フィルム24が吸収する水分のバラツキによる偏光板12の反りを効果的に抑えることができる。 As described above, in the polarizing plate 12 on the viewing side, the first optical film 22 and the second optical film 24 located on both sides of the polarizer 21 are both cellulose esters composed of a thin film having a thickness of 20 to 60 μm. Since the first optical film 22 that is obliquely stretched is disposed on the viewing side of the polarizer 21 that is a film, the first optical film 22 and the second optical film 24 absorb it. Warpage of the polarizing plate 12 due to variation in moisture can be effectively suppressed.
 また、第1の光学フィルム22に対して視認側に、機能層23としてハードコート層又はアンチグレア層が設けられているので、この機能層23によって偏光板12の表面を保護したり、防眩機能を発揮させたりすることができる。 Moreover, since the hard coat layer or the anti-glare layer is provided as the functional layer 23 on the viewing side with respect to the first optical film 22, the surface of the polarizing plate 12 can be protected by this functional layer 23, or the antiglare function. Can be demonstrated.
 なお、第1の光学フィルム22の偏光子21側の面には、第1の光学フィルム22の接着性を向上させるための易接着層が設けられても良い。易接着層は、第1の光学フィルム22の当該面に易接着処理を行うことによって形成される。易接着処理としては、コロナ(放電)処理、プラズマ処理、フレーム処理、イトロ処理、グロー処理、オゾン処理、プライマー塗布処理等があるが、このうち少なくとも1種が実施されれば良い。これらの易接着処理のうち、生産性の観点からは、コロナ処理、プラズマ処理が易接着処理として好ましい。 In addition, the easily bonding layer for improving the adhesiveness of the 1st optical film 22 may be provided in the surface at the side of the polarizer 21 of the 1st optical film 22. FIG. The easy adhesion layer is formed by performing an easy adhesion process on the surface of the first optical film 22. The easy adhesion treatment includes corona (discharge) treatment, plasma treatment, flame treatment, itro treatment, glow treatment, ozone treatment, primer coating treatment, etc., and at least one of them may be performed. Among these easy adhesion treatments, from the viewpoint of productivity, corona treatment and plasma treatment are preferable as the easy adhesion treatment.
 なお、偏光板12において、機能層23の上にオーバーコート層が形成されていても良い。オーバーコート層は、上記したハードコート層と同様の活性エネルギー線硬化型樹脂(例えば紫外線硬化型樹脂)で構成されることが好ましい。このように、機能層23の上にオーバーコート層を設けることにより、機能層23の表面を保護することができる。 In the polarizing plate 12, an overcoat layer may be formed on the functional layer 23. The overcoat layer is preferably composed of an active energy ray curable resin (for example, an ultraviolet curable resin) similar to the hard coat layer described above. Thus, by providing an overcoat layer on the functional layer 23, the surface of the functional layer 23 can be protected.
 また、オーバーコート層及び機能層23がともにハードコート層であれば、第1の光学フィルム22の片側にハードコート層が2層形成されていることになるので、偏光板12の表面保護を確実に図ることができる。更に、実質的に紫外線吸収機能を持つ有機化合物を含まないか、紫外線吸収機能を持つ有機化合物の含有量(質量%)が機能層23よりも少ないハードコート層でオーバーコート層を構成することが好ましい。この場合、機能層23に含まれる、紫外線吸収機能を持つ有機化合物が外部へ溶出することをより抑制することが可能となる。 If both the overcoat layer and the functional layer 23 are hard coat layers, two hard coat layers are formed on one side of the first optical film 22, so that the surface protection of the polarizing plate 12 is ensured. Can be aimed at. Further, the overcoat layer may be composed of a hard coat layer that does not substantially contain an organic compound having an ultraviolet absorbing function or has a content (mass%) of an organic compound having an ultraviolet absorbing function that is smaller than that of the functional layer 23. preferable. In this case, it is possible to further suppress the elution of an organic compound having an ultraviolet absorption function contained in the functional layer 23 to the outside.
《有機EL表示装置》
 図4は、本実施形態の有機EL表示装置50の概略の構成を示す断面図である。有機EL表示装置50は、有機EL発光素子51と、有機EL発光素子51に対して視認側に配置される偏光板52と、偏光板52に対して視認側に配置される前面板53と、を備えている。有機EL発光素子51は、ガラスやポリイミド等を用いた基板上に順に金属電極、TFT、有機発光層、透明電極(ITO等)、絶縁層、封止層を有する。
<< Organic EL display device >>
FIG. 4 is a cross-sectional view showing a schematic configuration of the organic EL display device 50 of the present embodiment. The organic EL display device 50 includes an organic EL light emitting element 51, a polarizing plate 52 disposed on the viewing side with respect to the organic EL light emitting element 51, a front plate 53 disposed on the viewing side with respect to the polarizing plate 52, It has. The organic EL light emitting element 51 has a metal electrode, a TFT, an organic light emitting layer, a transparent electrode (ITO, etc.), an insulating layer, and a sealing layer in this order on a substrate using glass, polyimide, or the like.
 偏光板52及び前面板53は、上記した液晶表示装置10の偏光板12及び前面板15と同様に構成されているものであるが、有機EL表示装置50においては、偏光板52の第1の光学フィルム62が偏光子61よりも有機EL発光素子51側に配置され、第2の光学フィルム64が偏光子61よりも視認側に配置されているものである。また、機能層63が第2の光学フィルム64の視認側に配置されている点で、上記液晶表示装置10とは構成が異なる。 The polarizing plate 52 and the front plate 53 are configured in the same manner as the polarizing plate 12 and the front plate 15 of the liquid crystal display device 10 described above. However, in the organic EL display device 50, the first polarizing plate 52 includes the first polarizing plate 52. The optical film 62 is disposed closer to the organic EL light emitting element 51 than the polarizer 61, and the second optical film 64 is disposed closer to the viewing side than the polarizer 61. Further, the configuration is different from the liquid crystal display device 10 in that the functional layer 63 is disposed on the viewing side of the second optical film 64.
 一般に、有機EL表示装置は、透明基板上に金属電極と有機発光層と透明電極とを順に積層して発光体である素子(有機EL素子)を具備している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、及び電子注入層の積層体等、種々の組み合わせの構成が知られている。 Generally, an organic EL display device includes an element (organic EL element) that is a light emitter by sequentially laminating a metal electrode, an organic light emitting layer, and a transparent electrode on a transparent substrate. Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Alternatively, various combinations of structures such as a laminate of such a light-emitting layer and an electron injection layer made of a perylene derivative, or a stack of these hole injection layer, light-emitting layer, and electron injection layer are known. Yes.
 有機EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。 In organic EL display devices, holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the fluorescent material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
 有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明であることが必要であり、通常、酸化インジウムスズ(ITO)等の透明導電体で形成した透明電極を陽極として用いていることが好ましい。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要であり、通常Mg-Ag、Al-Li等の金属電極を用いている。 In an organic EL display device, in order to take out light emitted from the organic light emitting layer, at least one of the electrodes needs to be transparent, and is usually a transparent electrode formed of a transparent conductor such as indium tin oxide (ITO). Is preferably used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.
 本発明の偏光板は、画面サイズが20インチ以上、すなわち対角線距離が50.8cm以上の大型画面からなる有機EL表示装置に適用することができる。 The polarizing plate of the present invention can be applied to an organic EL display device composed of a large screen having a screen size of 20 inches or more, that is, a diagonal distance of 50.8 cm or more.
 このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度と極めて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL画像表示装置の表示面が鏡面のように見える。 In the organic EL display device having such a configuration, the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate. The display surface of the organic EL image display device looks like a mirror surface.
 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機EL素子を含む有機EL表示装置において、透明電極の表面側(視認側)に円偏光板を設けることで、それを通過する光が、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、円偏光板によって再び直線偏光となるため、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。 In an organic EL display device including an organic EL element having a transparent electrode on the surface side of an organic light emitting layer that emits light when a voltage is applied and a metal electrode on the back surface side of the organic light emitting layer, the surface side of the transparent electrode (visible) By providing a circularly polarizing plate on the side), light passing through it is transmitted through the transparent substrate, transparent electrode, and organic thin film, reflected by the metal electrode, and again transmitted through the organic thin film, transparent electrode, and transparent substrate. Since it becomes linearly polarized light again by the circularly polarizing plate, this linearly polarized light is orthogonal to the polarization direction of the polarizing plate and cannot pass through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
[実施例1]
《偏光板101の作製》
<第1の光学フィルムの作製>
 下記の方法に従って、セルロースエステルフィルムからなる第1の光学フィルム(λ/4フィルム)を作製した。
[Example 1]
<< Production of Polarizing Plate 101 >>
<Production of first optical film>
A first optical film (λ / 4 film) made of a cellulose ester film was produced according to the following method.
(微粒子分散液の調製)
 微粒子(アエロジルR972V 日本アエロジル(株)製)       11質量部
 エタノール                             89質量部
 以上をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。
(Preparation of fine particle dispersion)
Fine particles (Aerosil R972V manufactured by Nippon Aerosil Co., Ltd.) 11 parts by weight Ethanol 89 parts by weight The above was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin.
(微粒子添加液の調製)
 以下の組成に基づいて、メチレンクロライドを入れた溶解タンクに充分撹拌しながら、上記微粒子分散液をゆっくりと添加した。更に、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
 メチレンクロライド                         99質量部
 微粒子分散液                             5質量部
(Preparation of fine particle additive solution)
Based on the following composition, the fine particle dispersion was slowly added to a dissolution tank containing methylene chloride with sufficient stirring. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
99 parts by mass of methylene chloride 5 parts by mass of fine particle dispersion
(主ドープ)
 下記組成の主ドープを調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテートを撹拌しながら投入した。これを加熱し、撹拌しながら、完全に溶解し、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープを調製した。なお、下記糖エステル及び下記ポリエステルは、以下の合成例により合成した化合物を用いた。
(Main dope)
A main dope having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate was added to a pressurized dissolution tank containing a solvent while stirring. While this was heated and stirred, it was completely dissolved, and this was dissolved in Azumi Filter Paper No. The main dope was prepared by filtration using 244. In addition, the compound synthesize | combined by the following synthesis examples was used for the following sugar ester and the following polyester.
〈主ドープの組成〉
 メチレンクロライド                        340質量部
 エタノール                             64質量部
 セルロースアセテートプロピオネート(アセチル基置換度1.50、プロピオニル基置換度0.90、総置換度2.40、重量平均分子量22万)(CAP)  100質量部
 糖エステル                            5.0質量部
 ポリエステル                           5.0質量部
 微粒子添加液                             1質量部
<Composition of main dope>
Methylene chloride 340 parts by mass Ethanol 64 parts by mass Cellulose acetate propionate (acetyl group substitution degree 1.50, propionyl group substitution degree 0.90, total substitution degree 2.40, weight average molecular weight 220,000) (CAP) 100 parts by mass Sugar ester 5.0 parts by weight Polyester 5.0 parts by weight Particulate additive solution 1 part by weight
(糖エステルの合成)
 以下の工程により、糖エステルを合成した。
(Synthesis of sugar esters)
A sugar ester was synthesized by the following steps.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 撹拌装置、還流冷却器、温度計及び窒素ガス導入管を備えた四頭コルベンに、ショ糖34.2g(0.1モル)、無水安息香酸180.8g(0.6モル)、ピリジン379.7g(4.8モル)を仕込み、撹拌下に窒素ガス導入管から窒素ガスをバブリングさせながら昇温し、70℃で5時間エステル化反応を行った。 Four-headed Kolben equipped with a stirrer, a reflux condenser, a thermometer, and a nitrogen gas inlet tube were charged with 34.2 g (0.1 mol) of sucrose, 180.8 g (0.6 mol) of benzoic anhydride, 379. 7 g (4.8 mol) was charged, the temperature was raised while bubbling nitrogen gas from a nitrogen gas introduction tube with stirring, and an esterification reaction was carried out at 70 ° C. for 5 hours.
 次に、コルベン内を4×10Pa以下に減圧し、60℃で過剰のピリジンを留去した後に、コルベン内を1.3×10Pa以下に減圧し、120℃まで昇温させ、無水安息香酸、生成した安息香酸の大部分を留去した。 Next, the inside of the Kolben was depressurized to 4 × 10 2 Pa or less, and after excess pyridine was distilled off at 60 ° C., the inside of the Kolben was depressurized to 1.3 × 10 Pa or less and the temperature was raised to 120 ° C. Most of the acid and benzoic acid formed were distilled off.
 最後に、分取したトルエン層に水100gを添加し、常温で30分間水洗後、トルエン層を分取し、減圧下(4×10Pa以下)、60℃でトルエンを留去させ、化合物A-1、A-2、A-3、A-4及びA-5の混合物(糖エステル)を得た。 Finally, 100 g of water is added to the collected toluene layer, and after washing with water at room temperature for 30 minutes, the toluene layer is separated, and toluene is distilled off at 60 ° C. under reduced pressure (4 × 10 2 Pa or less). A mixture (sugar ester) of A-1, A-2, A-3, A-4 and A-5 was obtained.
 得られた混合物をHPLC及びLC-MASSで解析したところ、A-1が1.3質量%、A-2が13.4質量%、A-3が13.1質量%、A-4が31.7質量%、A-5が40.5質量%であった。平均置換度は5.5であった。 The obtained mixture was analyzed by HPLC and LC-MASS. As a result, A-1 was 1.3% by mass, A-2 was 13.4% by mass, A-3 was 13.1% by mass, and A-4 was 31% by mass. 0.7% by mass and A-5 was 40.5% by mass. The average degree of substitution was 5.5.
(HPLC-MSの測定条件)
 1)LC部
 装置:日本分光(株)製カラムオーブン(JASCO CO-965)、ディテクター(JASCO UV-970-240nm)、ポンプ(JASCO PU-980)、デガッサ-(JASCO DG-980-50)
 カラム:Inertsil ODS-3 粒子径5μm 4.6×250mm(ジーエルサイエンス(株)製)
 カラム温度:40℃
 流速:1ml/min
 移動相:THF(1%酢酸):HO(50:50)
 注入量:3μl
 2)MS部
 装置:LCQ DECA(Thermo Quest(株)製)
 イオン化法:エレクトロスプレーイオン化(ESI)法
 Spray Voltage:5kV
 Capillary温度:180℃
 Vaporizer温度:450℃
(Measurement conditions for HPLC-MS)
1) LC section Equipment: Column oven (JASCO CO-965) manufactured by JASCO Corporation, detector (JASCO UV-970-240 nm), pump (JASCO PU-980), degasser (JASCO DG-980-50)
Column: Inertsil ODS-3 Particle size 5 μm 4.6 × 250 mm (manufactured by GL Sciences Inc.)
Column temperature: 40 ° C
Flow rate: 1 ml / min
Mobile phase: THF (1% acetic acid): H 2 O (50:50)
Injection volume: 3 μl
2) MS unit Device: LCQ DECA (manufactured by Thermo Quest Co., Ltd.)
Ionization method: Electrospray ionization (ESI) method Spray Voltage: 5 kV
Capillary temperature: 180 ° C
Vaporizer temperature: 450 ° C
(ポリエステルの合成)
 以下の工程により、ポリエステルを合成した。
(Synthesis of polyester)
Polyester was synthesized by the following steps.
 1,2-プロピレングリコール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中230℃になるまで、撹拌しながら徐々に昇温する。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロピレングリコールを減圧留去することにより、ポリエステルを得た。ポリエステルは、1,2-プロピレングリコール、無水フタル酸及びアジピン酸が縮合して形成されたポリエステル鎖の末端に安息香酸のエステルを有する。ポリエステルの酸価は0.10、数平均分子量は450であった。 251 g of 1,2-propylene glycol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and slow cooling tube The flask is charged and gradually heated with stirring until it reaches 230 ° C. in a nitrogen stream. After dehydration condensation for 15 hours, unreacted 1,2-propylene glycol was distilled off under reduced pressure at 200 ° C. after completion of the reaction to obtain a polyester. Polyester has an ester of benzoic acid at the end of a polyester chain formed by condensation of 1,2-propylene glycol, phthalic anhydride and adipic acid. The acid value of the polyester was 0.10, and the number average molecular weight was 450.
(長尺フィルムの作製)
 次いで、無端ベルト流延装置を用い、ステンレスベルト支持体上に均一に流延した。
(Production of long film)
Then, using an endless belt casting apparatus, it was cast uniformly on a stainless belt support.
 無端ベルト流延装置では、上記主ドープをステンレススティールベルト支持体上に均一に流延した。ステンレススティールベルト支持体上で、流延(キャスト)した長尺フィルム中の溶媒を蒸発させ、ステンレススティールベルト支持体上から剥離した(流延工程)。得られたフィルムを乾燥させて残留溶媒量を10質量%にした後、テンターを用いて、170℃の条件で幅手方向の元幅に対して1.15倍の延伸倍率で延伸した(横延伸工程)。 In the endless belt casting apparatus, the main dope was uniformly cast on a stainless steel belt support. On the stainless steel belt support, the solvent in the cast (long cast) long film was evaporated and peeled off from the stainless steel belt support (casting process). The obtained film was dried to have a residual solvent amount of 10% by mass, and then stretched at a stretching ratio of 1.15 times the original width in the width direction at 170 ° C. using a tenter (horizontal Stretching step).
 その後搬送させ、図1で示した製造装置を用いて、配向角θが45°となるように、延伸温度185℃、延伸倍率1.7倍として長尺フィルムを斜め延伸して、長尺斜め延伸フィルムを作製した(斜め延伸工程)。 Thereafter, the long film is obliquely stretched at a stretching temperature of 185 ° C. and a stretching ratio of 1.7 times so that the orientation angle θ is 45 ° using the manufacturing apparatus shown in FIG. A stretched film was produced (oblique stretching step).
 更に、上記した(i)又は(ii)の加熱処理を行うことで加熱処理工程を行った。 Furthermore, the heat treatment step was performed by performing the heat treatment (i) or (ii) described above.
 (i)の加熱処理を行う場合には、作製したフィルムの端部に対して180~220℃の範囲内でエンボス加工を施した後に、ロール状に巻き取った状態で、60~80℃、20%RH以下の条件で3~5日間加熱処理する。
 表1において、加熱処理(i)-1は、220℃でエンボス加工を行い、ロール状に巻き取ったフィルムを防湿シートで3重に巻いて覆い、60℃20%RHの条件で3日間加熱処理するものである。また、加熱処理(i)-2は、180℃でエンボス加工を行い、ロール状に巻き取ったフィルムを防湿シートで2重に巻いて覆い、80℃5%RHの条件で5日間加熱処理するものである。また、加熱処理(i)-3は、170℃でエンボス加工を行い、ロール状に巻き取ったフィルムを防湿シートで1重に巻いて覆い、50℃20%RHの条件で2日間加熱処理するものである(比較例)。
 なお、防湿シートとしては、厚さ30μmのポリエチレン樹脂フィルムにアルミニウムが蒸着されているフィルムを用いた。
When the heat treatment of (i) is performed, the end of the produced film is embossed within a range of 180 to 220 ° C., and then wound in a roll shape at 60 to 80 ° C., Heat treatment for 3-5 days under 20% RH or less.
In Table 1, heat treatment (i) -1 is embossed at 220 ° C., and the film wound up in a roll is covered with a moisture-proof sheet in three layers, and heated at 60 ° C. and 20% RH for 3 days. It is something to process. In the heat treatment (i) -2, embossing is performed at 180 ° C., the film wound up in a roll shape is covered with a moisture-proof sheet twice, and is heat-treated at 80 ° C. and 5% RH for 5 days. Is. In the heat treatment (i) -3, embossing is performed at 170 ° C., the film wound in a roll is covered with a moisture-proof sheet and covered with a moisture-proof sheet, and heat-treated at 50 ° C. and 20% RH for 2 days. (Comparative example).
In addition, as a moisture-proof sheet | seat, the film by which aluminum was vapor-deposited on the 30-micrometer-thick polyethylene resin film was used.
 (ii)の加熱処理を行う場合には、作製したフィルムを搬送ローラーにより張力120~150Nで搬送しながら、搬送ローラーを介してフィルムを140~170℃で40~600秒間加熱処理する。
 表1において、加熱処理(ii)-1は、500本の搬送ローラーにより張力120Nで搬送しながら、フィルムを140℃で600秒間加熱するものである。また、加熱処理(ii)-2は、500本の搬送ローラーにより張力120Nで搬送しながら、フィルムを170℃で40秒間加熱するものである。また、加熱処理(ii)-3は、200本の搬送ローラーにより張力100Nで搬送しながら、フィルムを120℃で200秒間加熱するものである(比較例)。
In the case of performing the heat treatment (ii), the film is heated at 140 to 170 ° C. for 40 to 600 seconds through the conveyance roller while the produced film is conveyed at a tension of 120 to 150 N by the conveyance roller.
In Table 1, heat treatment (ii) -1 is one in which the film is heated at 140 ° C. for 600 seconds while being transported at a tension of 120 N by 500 transport rollers. In the heat treatment (ii) -2, the film is heated at 170 ° C. for 40 seconds while being transported at a tension of 120 N by 500 transport rollers. In the heat treatment (ii) -3, the film is heated at 120 ° C. for 200 seconds while being transported at a tension of 100 N by 200 transport rollers (comparative example).
 偏光板101の作製においては、加熱処理工程として(ii)-1の加熱処理を行った。当該加熱処理工程を行うことで、第1の光学フィルムとして、3000mのロール状のフィルムを得た。このフィルムの厚さは60μmであった。 In producing the polarizing plate 101, the heat treatment of (ii) -1 was performed as a heat treatment step. By performing the heat treatment step, a 3000 m roll film was obtained as the first optical film. The thickness of this film was 60 μm.
<第2の光学フィルムの作製>
 下記の方法に従って、セルロースエステルフィルムからなる第2の光学フィルムを作製した。
<Production of second optical film>
According to the following method, the 2nd optical film which consists of a cellulose-ester film was produced.
(微粒子分散希釈液の調製)
 10質量部のアエロジルR812(日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L)と、90質量部のエタノールとをディゾルバーで30分間撹拌混合した後、高圧分散機であるマントンゴーリンを用いて分散させて、微粒子分散液を調製した。
(Preparation of fine particle dispersion)
10 parts by weight Aerosil R812 (manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L) and 90 parts by weight of ethanol were stirred and mixed with a dissolver for 30 minutes, and then high pressure disperser Manton Gorin Was used to prepare a fine particle dispersion.
 得られた微粒子分散液に、88質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合して、希釈した。得られた溶液をアドバンテック東洋社製ポリプロピレンワインドカートリッジフィルターTCW-PPS-1Nで濾過して、微粒子分散希釈液を得た。 Into the obtained fine particle dispersion, 88 parts by mass of dichloromethane was added with stirring, and the mixture was diluted by stirring and mixing with a dissolver for 30 minutes. The obtained solution was filtered through a polypropylene wind cartridge filter TCW-PPS-1N manufactured by Advantech Toyo Co., Ltd. to obtain a fine particle dispersion dilution.
(インライン添加液の調製)
 100質量部のジクロロメタンに、36質量部の前記作製した微粒子分散希釈液を撹拌しながら加えて30分間更に撹拌した後、6質量部のジアセチルセルロース(アセチル基置換度2.32、重量平均分子量27万)を撹拌しながら加えて60分間更に撹拌した。得られた溶液を、日本精線(株)製ファインメットNFで濾過して、インライン添加液を得た。濾材は、公称濾過精度20μmのものを用いた。
(Preparation of inline additive solution)
To 100 parts by mass of dichloromethane, 36 parts by mass of the prepared fine particle dispersion diluted liquid was added with stirring and further stirred for 30 minutes, and then 6 parts by mass of diacetyl cellulose (acetyl group substitution degree: 2.32, weight average molecular weight 27). Was added with stirring, and further stirred for 60 minutes. The obtained solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to obtain an in-line additive solution. The filter medium having a nominal filtration accuracy of 20 μm was used.
(ドープの調製)
 下記成分を密閉容器に投入し、加熱及び撹拌しながら完全に溶解させた。得られた溶液を、リーフディスクフィルターを装着した濾過器にて、温度40℃(ジクロロメタンの沸点+10℃)で濾過して、主ドープを得た。濾材は、安積濾紙(株)製の安積濾紙No.244を使用した。
(Preparation of dope)
The following components were put into a sealed container and completely dissolved with heating and stirring. The obtained solution was filtered with a filter equipped with a leaf disk filter at a temperature of 40 ° C. (boiling point of dichloromethane + 10 ° C.) to obtain a main dope. The filter medium was Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. 244 was used.
〈主ドープの組成〉
 ジアセチルセルロース(アセチル基置換度:2.32、重量平均分子量27万)
                                   70質量部
 セルロースアセテートプロピオネート(アセチル基置換度:1.55、プロピオニル基置換度0.91、総アシル基置換度2.46、重量平均分子量28万)   30質量部
 リターデーション上昇剤                        4質量部
 糖エステル(ベンジルサッカロース、平均エステル置換度5.5)    11質量部
 ジクロロメタン                          430質量部
 メタノール                             11質量部
<Composition of main dope>
Diacetylcellulose (acetyl group substitution degree: 2.32, weight average molecular weight 270,000)
70 parts by mass Cellulose acetate propionate (acetyl group substitution degree: 1.55, propionyl group substitution degree 0.91, total acyl group substitution degree 2.46, weight average molecular weight 280,000) 30 parts by mass Retardation increasing agent 4 masses Part Sugar ester (benzyl saccharose, average ester substitution degree 5.5) 11 parts by mass Dichloromethane 430 parts by mass Methanol 11 parts by mass
 100質量部の主ドープと、インライン添加液2.5質量部とを、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合して、ドープを得た。 100 parts by mass of the main dope and 2.5 parts by mass of the in-line additive solution were sufficiently mixed with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ) to obtain a dope.
 上記のリターデーション上昇剤としては、以下の化合物を使用した。 The following compounds were used as the retardation increasing agent.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(製膜・延伸・乾燥)
 得られたドープを、ベルト流延装置を用いてステンレスバンド支持体上に、ドープの液温度35℃、幅1.95mの条件で、最終膜厚が33μmとなる条件で均一に流延させた。ステンレスバンド支持体上で、得られたドープ膜中の有機溶媒を、残留溶媒量が100質量%になるまで蒸発させてウェブを形成した後、ステンレスバンド支持体からウェブを剥離した。得られたウェブを、40℃で更に30秒間予備乾燥させて残留溶媒量を5質量%にした後、ウェブをテンターで、160℃の条件でTD方向の元幅に対して1.35倍に延伸した。
(Film formation / stretching / drying)
The obtained dope was uniformly cast on a stainless steel band support using a belt casting apparatus under the conditions of a dope liquid temperature of 35 ° C. and a width of 1.95 m and a final film thickness of 33 μm. . On the stainless steel band support, the organic solvent in the obtained dope film was evaporated until the residual solvent amount reached 100% by mass to form a web, and then the web was peeled from the stainless steel band support. The obtained web was further preliminarily dried at 40 ° C. for 30 seconds so that the residual solvent amount was 5% by mass, and then the web was used as a tenter and 1.35 times the original width in the TD direction at 160 ° C. Stretched.
 テンターで延伸後、130℃で5分間緩和を行った後、乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。得られたフィルムを、1.6m幅にスリットし、フィルム両端に幅10mmで高さ5μmのナーリング加工を施し、初期張力220N/m、終張力110N/mで内径15.24cmのコアに巻き取り、長さ4000m、乾燥膜厚33μmのセルロースエステルフィルムを第2の光学フィルムとして得た。得られた第2の光学フィルムの面内方向のリターデーション値Ro(550)は50nm、膜厚方向のリターデーション値Rt(550)は130nmであった。 After stretching with a tenter, relaxation was performed at 130 ° C. for 5 minutes, and then drying was completed while the drying zone was being conveyed by a number of rollers. The drying temperature was 130 ° C. and the transport tension was 100 N / m. The obtained film was slit to 1.6 m width, and knurled with a width of 10 mm and a height of 5 μm at both ends of the film, and wound on a core having an initial tension of 220 N / m and a final tension of 110 N / m and an inner diameter of 15.24 cm. A cellulose ester film having a length of 4000 m and a dry film thickness of 33 μm was obtained as a second optical film. The retardation value Ro (550) in the in-plane direction of the obtained second optical film was 50 nm, and the retardation value Rt (550) in the film thickness direction was 130 nm.
<偏光板の作製>
 上記のようにして得られた第1の光学フィルム及び第2の光学フィルムを、偏光子の両面に貼り合わせて、偏光板を作製した。
<Preparation of polarizing plate>
The 1st optical film and 2nd optical film which were obtained as mentioned above were bonded together on both surfaces of the polarizer, and the polarizing plate was produced.
(偏光子の作製)
 特許第4691205号実施例1を参考にして下記偏光子を作製した。
 非晶性PET基材に7μm厚のPVA層が製膜された積層体を延伸温度130℃の空中補助延伸によって延伸積層体を作製し、次に、延伸積層体をヨウ素、ヨウ化カリウムによって染色して着色積層体を作製し、更に着色積層体を延伸温度65度のホウ酸水中延伸によって総延伸倍率が5.94倍になるように非晶性PET基材と一体に延伸された3μm厚のPVA層を含む光学フィルム積層体(偏光子)を得た。非晶性PET基材は偏光子を光学フィルムと貼り合わせた後剥離して、PVA層(偏光膜)のみ使用した。
(Production of polarizer)
The following polarizer was produced with reference to Example 1 of Japanese Patent No. 4691205.
A laminated body in which a PVA layer having a thickness of 7 μm is formed on an amorphous PET base material is produced by air-assisted stretching at a stretching temperature of 130 ° C., and then the stretched laminated body is dyed with iodine or potassium iodide. A colored laminate is produced, and the colored laminate is further stretched integrally with an amorphous PET substrate so that the total draw ratio becomes 5.94 times by stretching in boric acid water at a stretching temperature of 65 degrees. The optical film laminated body (polarizer) containing the PVA layer of was obtained. The amorphous PET substrate was peeled off after the polarizer was bonded to the optical film, and only the PVA layer (polarizing film) was used.
(光硬化性接着剤の調製)
 下記成分を混合した後、脱泡して、光硬化性接着剤を調製した。なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合し、下記にはトリアリールスルホニウムヘキサフルオロホスフェートの固形分量を表示した。
(Preparation of photocurable adhesive)
After mixing the following components, defoaming was performed to prepare a photocurable adhesive. Triarylsulfonium hexafluorophosphate was blended as a 50% propylene carbonate solution, and the solid content of triarylsulfonium hexafluorophosphate was shown below.
  3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート                               45質量部
  エポリードGT-301(ダイセル化学社製の脂環式エポキシ樹脂)  40質量部
  1,4-ブタンジオールジグリシジルエーテル            15質量部
  トリアリールスルホニウムヘキサフルオロホスフェート       2.3質量部
  9,10-ジブトキシアントラセン                0.1質量部
  1,4-ジエトキシナフタレン                  2.0質量部
3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 45 parts by mass Epolide GT-301 (alicyclic epoxy resin manufactured by Daicel Chemical Industries) 40 parts by mass 1,4-butanediol diglycidyl ether 15 parts by mass Triarylsulfonium hexafluorophosphate 2.3 parts by mass 9,10-dibutoxyanthracene 0.1 parts by mass 1,4-diethoxynaphthalene 2.0 parts by mass
(偏光子及び光学フィルムの貼り合わせ)
 第1の光学フィルム上に、上記調製した光硬化性接着剤を、マイクログラビアコーターを用いて乾燥厚さが5μmになるように塗布して、光硬化性接着剤層を形成した。塗布は、グラビアローラ#300、回転速度140%/ライン速度の条件で行った。
(Lamination of polarizer and optical film)
On the 1st optical film, the prepared photocurable adhesive was apply | coated so that dry thickness might be set to 5 micrometers using a micro gravure coater, and the photocurable adhesive layer was formed. The application was performed under the conditions of gravure roller # 300, rotation speed 140% / line speed.
 同様に、第2の光学フィルム上に、上記調製した光硬化性接着剤を、乾燥厚さ2μmとなるように塗布して光硬化性接着剤層を形成した。 Similarly, the photocurable adhesive prepared above was applied on the second optical film so as to have a dry thickness of 2 μm to form a photocurable adhesive layer.
 上記作製した偏光子の一方の面に、光硬化性接着剤層が形成された第1の光学フィルムを配置し、他方の面に、光硬化性接着剤層が形成された第2の光学フィルムを配置して、第1の光学フィルム/光硬化性接着剤層/偏光子/光硬化性接着剤層/第2の光学フィルムの積層物を得た。得られた積層物を、ローラー機で長手方向を合わせるようにして、ロールtoロール方式で貼り合わせた。貼り合わせた結果、第1の光学フィルムの遅相軸は偏光子の吸収軸に対して45°斜め方向に貼合され、第2の光学フィルムの遅相軸は偏光子の吸収軸に対して平行に貼合された。 A second optical film in which a first optical film having a photocurable adhesive layer formed thereon is disposed on one surface of the produced polarizer and a photocurable adhesive layer is formed on the other surface. Were arranged to obtain a laminate of the first optical film / photocurable adhesive layer / polarizer / photocurable adhesive layer / second optical film. The obtained laminate was bonded by a roll-to-roll method so that the longitudinal direction was matched with a roller machine. As a result of pasting, the slow axis of the first optical film is pasted in a 45 ° oblique direction with respect to the absorption axis of the polarizer, and the slow axis of the second optical film is relative to the absorption axis of the polarizer. Laminated in parallel.
 貼り合わせた積層物の両面側から、電子線を照射して、光硬化性接着剤層を硬化させて積層体を得た。ライン速度は20m/min、加速電圧は250kV、照射線量は20kGyとした。 An electron beam was applied from both sides of the laminated laminate so that the photocurable adhesive layer was cured to obtain a laminate. The line speed was 20 m / min, the acceleration voltage was 250 kV, and the irradiation dose was 20 kGy.
 更に、下記組成のアンチグレア層用組成物を調製し、上記作製した積層体の第1の光学フィルムの表面(視認側の面)に、アンチグレア層用組成物を硬化後の膜厚5.0μmとなるようグラビアリバースコーターにより塗布した。これを70℃のオーブンで60秒間乾燥させた後、紫外線を照射量が120mJ/cmとなるように照射して塗膜を硬化させ、機能層としてのアンチグレア層を形成した。 Further, an antiglare layer composition having the following composition was prepared, and the thickness of the antiglare layer composition after curing was 5.0 μm on the surface (surface on the viewing side) of the first optical film of the laminate produced above. It was applied with a gravure reverse coater. After drying this in an oven at 70 ° C. for 60 seconds, the coating was cured by irradiating with ultraviolet rays so that the irradiation amount was 120 mJ / cm 2 to form an antiglare layer as a functional layer.
 バインダー樹脂(ペンタエリスリトールテトラアクリレート、日本化薬製)
                                   40質量部
 バインダー樹脂(ウレタンアクリレート、UV1700B、日本合成化学製)
                                   60質量部
 有機微粒子(スチレン-アクリル共重合体、XX245C、平均粒子径2μm、屈折率:1.515、積水化成品販売社製)                   4質量部
 タルク(ナノタルクD-1000、平均粒子径1μm、日本タルク社製)  3質量部
 レベリング剤(ポリエーテル変性シリコーンオイル、TSF4460、モメンティブ パフォーマンス マテリアルズ社製)                0.04質量部
 重合開始剤(Irg184、BASFジャパン社製)           6質量部
 溶剤(トルエン)                          60質量部
 溶剤(シクロヘキサノン)                      40質量部
Binder resin (pentaerythritol tetraacrylate, manufactured by Nippon Kayaku)
40 parts by mass Binder resin (urethane acrylate, UV1700B, manufactured by Nippon Synthetic Chemical)
60 parts by mass Organic fine particles (styrene-acrylic copolymer, XX245C, average particle size 2 μm, refractive index: 1.515, manufactured by Sekisui Plastics Sales Co., Ltd.) 4 parts by mass Talc (Nanotalc D-1000, average particle size 1 μm, Japan) 3 parts by weight leveling agent (polyether-modified silicone oil, TSF4460, manufactured by Momentive Performance Materials) 0.04 parts by weight Polymerization initiator (Irg184, manufactured by BASF Japan) 6 parts by weight Solvent (toluene) 60 parts by weight Part solvent (cyclohexanone) 40 parts by mass
 このようにして、偏光板101を作製した。 Thus, a polarizing plate 101 was produced.
《偏光板102~113の作製》
 上記偏光板101の作製において、第1の光学フィルムの偏光子の吸収軸に対する遅相軸の交差角度θを表1に記載の値に変更し、加熱処理工程を表1に記載の方法に変更した以外は同様にして、偏光板102~113を作製した。
<< Production of polarizing plates 102 to 113 >>
In the production of the polarizing plate 101, the crossing angle θ of the slow axis with respect to the absorption axis of the polarizer of the first optical film is changed to the value shown in Table 1, and the heat treatment process is changed to the method shown in Table 1. Polarizers 102 to 113 were produced in the same manner except that.
《偏光板114の作製》
 上記偏光板101の作製において、偏光子に第2の光学フィルムを貼合する際に、第2の光学フィルムの遅相軸が偏光子の吸収軸に対して直交するように貼合した以外は同様にして、偏光板114を作製した。
<< Production of Polarizing Plate 114 >>
In the production of the polarizing plate 101, when the second optical film is bonded to the polarizer, except that the slow axis of the second optical film is orthogonal to the absorption axis of the polarizer. Similarly, a polarizing plate 114 was produced.
《偏光板101~114の評価》
 上記作製した偏光板101~114に対して以下の評価を行った。下記(3)~(6)の評価については、あらかじめ偏光板101~114を用いて下記のようにして液晶表示装置及び有機EL表示装置を作製し、当該表示装置を用いて評価を行ったものである。各評価結果を表1に示す。
<< Evaluation of polarizing plates 101-114 >>
The following evaluations were performed on the manufactured polarizing plates 101 to 114. For the following evaluations (3) to (6), liquid crystal display devices and organic EL display devices were prepared in advance as described below using polarizing plates 101 to 114, and evaluation was performed using the display devices. It is. Each evaluation result is shown in Table 1.
(液晶表示装置の作製)
 市販の20インチのVAモード液晶表示装置から視認側の偏光板を剥がし、上記作製した偏光板101~114を液晶セルの基板面に貼合して、液晶表示装置を作製した。その際、偏光板101~114の貼合は、あらかじめ貼合されていた視認側の偏光板と吸収軸が同一方向となるように行った。このとき、偏光板101~114の第2の光学フィルムが液晶セル側となるように、偏光板101~114を配置した。
(Production of liquid crystal display device)
The polarizing plate on the viewing side was peeled off from a commercially available 20-inch VA mode liquid crystal display device, and the produced polarizing plates 101 to 114 were bonded to the substrate surface of the liquid crystal cell to produce a liquid crystal display device. At that time, the polarizing plates 101 to 114 were bonded so that the absorption axis was in the same direction as the polarizing plate on the viewing side that had been bonded in advance. At this time, the polarizing plates 101 to 114 were arranged so that the second optical films of the polarizing plates 101 to 114 were on the liquid crystal cell side.
(有機EL表示装置の作製)
 偏光板101~114を用いて、特開2013-109869の段落[0180]~[0186]と同様の方法で有機EL表示装置を作製した。このとき、偏光板101~114の第1の光学フィルムが有機EL発光素子側となるように、偏光板101~114を配置した。
(Production of organic EL display device)
Using the polarizing plates 101 to 114, organic EL display devices were produced in the same manner as in paragraphs [0180] to [0186] of JP2013-109869A. At this time, the polarizing plates 101 to 114 were arranged so that the first optical films of the polarizing plates 101 to 114 were on the organic EL light emitting element side.
(1)第1の光学フィルムの加熱処理工程前後の寸法変化率の測定
 上記「第1の光学フィルムの寸法変化率」に記載の測定方法により、各偏光板101~114に用いられた第1の光学フィルムの加熱処理工程前後について、それぞれL(θ)、L(θ+90)、L(MD)及びL(TD)を測定した。測定結果から、L(θ)/L(θ+90)及びL(MD)/L(TD)のそれぞれの値を算出した。
(1) Measurement of the dimensional change rate before and after the heat treatment step of the first optical film The first optical film used for each of the polarizing plates 101 to 114 by the measurement method described in the above “dimensional change rate of the first optical film”. L (θ), L (θ + 90), L (MD) and L (TD) were measured before and after the heat treatment step of the optical film. From the measurement results, respective values of L (θ) / L (θ + 90) and L (MD) / L (TD) were calculated.
(2)第1の光学フィルムの光学値の測定
 偏光板101~114に用いられる第1の光学フィルムのリターデーション値Ro、Rtを、自動複屈折率計KOBRA-21AWR(王子計測機器(株)製)を用いて、23℃・55%RHの環境下で、各波長での複屈折率測定により算出した。
(2) Measurement of optical value of first optical film Retardation values Ro and Rt of the first optical film used for the polarizing plates 101 to 114 were measured using an automatic birefringence meter KOBRA-21AWR (Oji Scientific Instruments) And the birefringence measurement at each wavelength in an environment of 23 ° C. and 55% RH.
(3)液晶表示装置に搭載した場合の画像のゆがみ
 作製した液晶表示装置を40℃90%RHの条件に100時間置いた後に、23℃55%RHの条件に置き、液晶表示装置を次のようにして観察した。
 すなわち、液晶表示装置を床から80cmの高さの机上に、表示画面が鉛直方向上向きとなるように配置し、床から3mの高さの天井部に、昼色光直管蛍光灯(FLR40S・D/M-X パナソニック株式会社製)40W×2本を1セットとして、1.5m間隔で10セット配置した。この場合、評価者が液晶表示装置の表示画面の正面にいるときに、評価者の頭上より後方に向けて天井部に蛍光灯が位置するように配置した。
 液晶表示装置をこのように配置した上で、液晶表示装置の表示画面を観察し、下記の基準で評価した。
  ◎:蛍光灯が真っ直ぐに見える
  ○:蛍光灯が若干曲がったように見えるところがある
  △:蛍光灯が曲がって見える
  ×:蛍光灯が大きくうねって見える
(3) Image distortion when mounted on a liquid crystal display device After the prepared liquid crystal display device is placed under conditions of 40 ° C. and 90% RH for 100 hours, the liquid crystal display device is placed under the conditions of 23 ° C. and 55% RH. Observed in this way.
In other words, the liquid crystal display device is placed on a desk 80 cm high from the floor so that the display screen faces vertically upward, and a daylight direct fluorescent lamp (FLR40S • D is placed on the ceiling 3 m high from the floor. (/ MX manufactured by Panasonic Corporation) 40W × 2 sets were set as 10 sets at intervals of 1.5 m. In this case, when the evaluator is in front of the display screen of the liquid crystal display device, the fluorescent lamp is arranged so that the fluorescent lamp is positioned on the ceiling from the evaluator's overhead to the rear.
After disposing the liquid crystal display device in this way, the display screen of the liquid crystal display device was observed and evaluated according to the following criteria.
◎: Fluorescent lamp looks straight ○: Fluorescent lamp appears to be slightly bent △: Fluorescent lamp appears to be bent ×: Fluorescent lamp appears to swell greatly
(4)液晶表示装置に搭載した場合の画面の視認性
 上記のような液晶表示装置のサンプルを、各偏光板101~114につき、20個ずつ作製した。そして、耐久試験として、液晶表示装置の各サンプルを40℃90%RHで100時間置いた後に、偏光顕微鏡を用いて画面中心部と画面周辺部とで視認性の差異を観察した。その結果を下記の基準で評価した。
  ◎:周辺部輝度アップ(視認性劣化)が、サンプル20個中で0個であった
  ○:周辺部輝度アップ(視認性劣化)が、サンプル20個中で1~2個であった
  △:周辺部輝度アップ(視認性劣化)が、サンプル20個中で3~5個であった
  ×:周辺部輝度アップ(視認性劣化)が、サンプル20個中で6個以上であった
(4) Visibility of Screen when Mounted on Liquid Crystal Display Device Twenty samples of the liquid crystal display device as described above were produced for each of the polarizing plates 101 to 114. As a durability test, each sample of the liquid crystal display device was placed at 40 ° C. and 90% RH for 100 hours, and then a difference in visibility was observed between the screen center and the screen periphery using a polarizing microscope. The results were evaluated according to the following criteria.
◎: Peripheral brightness increase (visibility degradation) was 0 in 20 samples. ○: Peripheral brightness increase (visibility degradation) was 1-2 in 20 samples. △: Peripheral brightness increase (visibility degradation) was 3-5 in 20 samples. X: Peripheral brightness increase (visibility degradation) was 6 or more in 20 samples.
(5)有機EL表示装置に搭載した場合の装置のゆがみ
 作製した有機EL表示装置を40℃90%RHの条件に100時間置いた後に、23℃55%RHの条件に置き、有機EL表示装置を次のようにして観察した。
 すなわち、有機EL表示装置を床から80cmの高さの机上に、表示画面が鉛直方向上向きとなるように配置し、床から3mの高さの天井部に、昼色光直管蛍光灯(FLR40S・D/M-X パナソニック株式会社製)40W×2本を1セットとして、1.5m間隔で10セット配置した。この場合、評価者が有機EL表示装置の表示画面の正面にいるときに、評価者の頭上より後方に向けて天井部に蛍光灯が位置するように配置した。
 有機EL表示装置をこのように配置した上で、有機EL表示装置の表示画面を観察し、下記の基準で評価した。
  ◎:蛍光灯が真っ直ぐに見える
  ○:蛍光灯が若干曲がったように見えるところがある
  △:蛍光灯が曲がって見える
  ×:蛍光灯が大きくうねって見える
(5) Distortion of device when mounted on organic EL display device After the produced organic EL display device is placed under the condition of 40 ° C and 90% RH for 100 hours, it is placed under the condition of 23 ° C and 55% RH and the organic EL display device Was observed as follows.
That is, the organic EL display device is placed on a desk 80 cm high from the floor so that the display screen is vertically upward, and a daylight direct fluorescent lamp (FLR40S · (D / MX Panasonic Corporation) 40W × 2 were set as one set, and 10 sets were arranged at intervals of 1.5 m. In this case, when the evaluator is in front of the display screen of the organic EL display device, the fluorescent lamp is arranged so that the fluorescent lamp is positioned on the ceiling from the evaluator's overhead to the rear.
After arranging the organic EL display device in this way, the display screen of the organic EL display device was observed and evaluated according to the following criteria.
◎: Fluorescent lamp looks straight ○: Fluorescent lamp appears to be slightly bent △: Fluorescent lamp appears to be bent ×: Fluorescent lamp appears to swell greatly
(6)有機EL表示装置に搭載した場合の画面の視認性
 作製した有機EL表示装置を40℃90%RHの条件に100時間置いた後に、23℃55%RHの条件に置き、有機EL表示装置を観察した。その結果を下記の基準で評価した。
  ◎:作製したEL表示装置を見たときに、自分や背景の画像が全く見えない
  ○:作製したEL表示装置を見たときに、自分や背景の画像が余り見えない
  △:作製したEL表示装置を見たときに、表示装置の画像とともに自分や背景の画像が見えるが実害性は低い
  ×:作製したEL表示装置を見たときに、表示装置の画像とともに自分や背景の画像がはっきり見え、実害性がある
(6) Visibility of the screen when mounted on an organic EL display device After the prepared organic EL display device is placed under conditions of 40 ° C. and 90% RH for 100 hours, the organic EL display is placed under conditions of 23 ° C. and 55% RH. The apparatus was observed. The results were evaluated according to the following criteria.
◎: When viewing the fabricated EL display device, the image of myself or the background is not visible at all. ○: When viewing the fabricated EL display device, the image of itself or the background is not very visible. △: Produced EL display. When you look at the device, you can see the image of yourself and the background along with the image of the display device, but the actual harm is low. , Harmful
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示されるように、第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と遅相軸に直交する方向の寸法変化率L(θ+90)とが上記式(1)及び(2)を満たす本発明の偏光板101~104、109~112、114は、液晶表示装置又は有機EL表示装置に搭載した場合に、当該装置のゆがみの発生が抑制されており、視認性も良好であった。したがって、本発明の偏光板は、物理的なゆがみの発生が抑制されており、これにより上記のような結果が得られたものと考えられる。
 このような本発明の偏光板を得るためには、斜め延伸工程の後に、フィルムの端部に対して180~220℃の範囲内でエンボス加工を施した後に、ロール状に巻き取った状態で、60~80℃、20%RH以下の条件で3~5日間加熱処理する加熱処理(i)、又は、搬送ローラーによりフィルムを張力120~150Nで搬送しながら、搬送ローラーを介して当該フィルムを140~170℃で40~600秒間加熱処理する加熱処理(ii)を行うことが好ましいことが分かった。
As shown in Table 1, the dimensional change rate L (θ) in the slow axis direction of the first optical film and the dimensional change rate L (θ + 90) in the direction perpendicular to the slow axis are expressed by the above formula (1) and When the polarizing plates 101 to 104, 109 to 112, 114 of the present invention satisfying (2) are mounted on a liquid crystal display device or an organic EL display device, the occurrence of distortion of the device is suppressed, and the visibility is also improved. It was good. Therefore, in the polarizing plate of the present invention, the occurrence of physical distortion is suppressed, and it is considered that the above result was obtained.
In order to obtain such a polarizing plate of the present invention, after the oblique stretching step, the film end is embossed in the range of 180 to 220 ° C. and then wound in a roll shape. Heat treatment (i) for 3 to 5 days under the conditions of 60 to 80 ° C. and 20% RH or less, or the film is conveyed through the conveyance roller while being conveyed at a tension of 120 to 150 N by the conveyance roller. It was found that it is preferable to perform heat treatment (ii) in which heat treatment is performed at 140 to 170 ° C. for 40 to 600 seconds.
 これに対し、第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と遅相軸に直交する方向の寸法変化率L(θ+90)とが上記式(1)及び(2)を満たしていない比較例の偏光板105~107は、液晶表示装置又は有機EL表示装置に搭載した場合に、当該装置にゆがみが発生しており、表示画面の視認性が低い。これは、比較例の偏光板が、高湿環境下に晒されることで物理的なゆがみを発生し、液晶表示装置又は有機EL表示装置にもゆがみを発生させたためと考えられる。 On the other hand, the dimensional change rate L (θ) in the slow axis direction of the first optical film and the dimensional change rate L (θ + 90) in the direction orthogonal to the slow axis represent the above formulas (1) and (2). When the polarizing plates 105 to 107 of the comparative examples that are not satisfied are mounted on a liquid crystal display device or an organic EL display device, the device is distorted and the visibility of the display screen is low. This is considered to be because the polarizing plate of the comparative example caused physical distortion when exposed to a high humidity environment, and also caused distortion in the liquid crystal display device or the organic EL display device.
 なお、第1の光学フィルムの遅相軸と偏光子の吸収軸との交差角度が30~60°の範囲内にない比較例の偏光板108、113は、表示画面の視認性が低い結果となっている。 In addition, the polarizing plates 108 and 113 of the comparative examples in which the crossing angle between the slow axis of the first optical film and the absorption axis of the polarizer is not in the range of 30 to 60 ° have a low display screen visibility. It has become.
[実施例2]
《偏光板201~205の作製》
 上記実施例1における偏光板101の作製において、第1の光学フィルム作製時の横延伸工程及び斜め延伸工程の方法を、表2に記載の方法に変更した以外は同様にして、偏光板201~205を作製した。
[Example 2]
<< Production of Polarizing Plates 201 to 205 >>
In the production of the polarizing plate 101 in Example 1 above, the methods of the transverse stretching process and the oblique stretching process at the time of producing the first optical film were changed in the same manner except that the methods described in Table 2 were used. 205 was produced.
 なお、表2においては、横延伸工程において、流延工程で得られたフィルムを乾燥させて残留溶媒量を10質量%にした後、170℃の条件で幅手方向の元幅に対して1.15倍の延伸倍率で延伸した場合を「方法A1」、流延工程で得られたフィルムを乾燥させて残留溶媒量を10質量%にした後、150℃の条件で幅手方向の元幅に対して1.10倍の延伸倍率で延伸した場合を「方法A2」、流延工程で得られたフィルムを乾燥させて残留溶媒量を20質量%にした後、135℃の条件で幅手方向の元幅に対して1.07倍の延伸倍率で延伸した場合を「方法A3」、流延工程で得られたフィルムを乾燥させて残留溶媒量を1質量%にした後、130℃の条件で幅手方向の元幅に対して1.05倍の延伸倍率で延伸した場合を「方法A4」、横延伸工程自体を行っていない場合を「なし」として示している。 In Table 2, in the transverse stretching step, the film obtained in the casting step was dried to have a residual solvent amount of 10% by mass, and then 1% of the original width in the width direction at 170 ° C. When the film was stretched at a draw ratio of 15 times, “Method A1”, the film obtained in the casting step was dried to have a residual solvent amount of 10% by mass, and then the original width in the width direction at 150 ° C. When the film was stretched at a stretching ratio of 1.10 times with respect to “Method A2,” the film obtained in the casting step was dried to a residual solvent amount of 20% by mass, and then the width was 135 ° C. When the film was stretched at a draw ratio of 1.07 times the original width in the direction “Method A3”, the film obtained in the casting step was dried to make the residual solvent amount 1% by mass, The case where the film was stretched at a draw ratio of 1.05 times the original width in the width direction under the conditions 4 ", it shows a case that has not been the transverse stretching itself as" none ".
 また、表2において、斜め延伸工程において、延伸温度185℃、延伸倍率1.7倍としてフィルムを斜め延伸した場合を「方法B1」、延伸温度175℃、延伸倍率1.8倍としてフィルムを斜め延伸した場合を「方法B2」として示している。 Also, in Table 2, when the film was obliquely stretched at a stretching temperature of 185 ° C. and a stretching ratio of 1.7 times in the oblique stretching step, “Method B1”, the film was slanted at a stretching temperature of 175 ° C. and a stretching ratio of 1.8 times. The stretched case is indicated as “Method B2”.
《偏光板201~205の評価》
 上記作製した偏光板201~205に対して、実施例1と同様にして、第1の光学フィルムの加熱処理工程前後の寸法変化率、第1の光学フィルムの光学値、液晶表示装置に搭載した場合の装置のゆがみ、画面の視認性、有機EL表示装置に搭載した場合の装置のゆがみ、画面の視認性について評価を行った。更に、作製した偏光板201~205に対して、下記のようにして偏光板収率の評価も行った。評価結果を表2に示す。なお、表2には、上記実施例1における偏光板101の評価結果も併せて示す。
<< Evaluation of polarizing plates 201-205 >>
In the same manner as in Example 1, the dimensional change rate before and after the heat treatment step of the first optical film, the optical value of the first optical film, and the liquid crystal display device were mounted on the prepared polarizing plates 201 to 205. The distortion of the device in the case, the visibility of the screen, the distortion of the device when mounted on the organic EL display device, and the visibility of the screen were evaluated. Further, the polarizing plate yield was evaluated for the produced polarizing plates 201 to 205 as follows. The evaluation results are shown in Table 2. In Table 2, the evaluation results of the polarizing plate 101 in Example 1 are also shown.
(偏光板収率)
 作製した偏光板101、201~205の表面を目視にて観察し、表面故障や平面性故障のないものを良品とした。偏光板50枚を作製した時の良品、不良品の割合を算出し、下記の基準で評価した。
  ◎:良品の偏光板が95%以上
  ○:良品の偏光板が80%以上95%未満
  △:良品の偏光板が60%以上80%未満
  ×:良品の偏光板が60%未満
(Polarizing plate yield)
The surfaces of the produced polarizing plates 101 and 201 to 205 were visually observed, and those having no surface failure or flatness failure were regarded as non-defective products. The ratio of non-defective products and defective products when 50 polarizing plates were produced was calculated and evaluated according to the following criteria.
◎: Non-defective polarizing plate is 95% or more ○: Non-defective polarizing plate is 80% or more and less than 95% △: Non-defective polarizing plate is 60% or more and less than 80% ×: Non-defective polarizing plate is less than 60%
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示されるように、第1の光学フィルムの長手方向の寸法変化率L(MD)と幅手方向の寸法変化率L(TD)とが上記式(3)を満たす本発明の偏光板101、202、203、205は、偏光板収率に優れることが分かった。
 また、そのような偏光板101、202、203、205を得るためには、第1の光学フィルムを作製する際に横延伸工程を行うことが好ましく、更に、残留溶媒量10~20質量%、延伸温度135~170℃、延伸倍率1.07~1.15倍の条件で横延伸工程を行うことがより好ましく、残留溶媒量10質量%、延伸温度150~170℃、延伸倍率1.1~1.15の条件で横延伸工程を行うことが更に好ましいことが分かった。
As shown in Table 2, the polarizing plate of the present invention in which the dimensional change rate L (MD) in the longitudinal direction and the dimensional change rate L (TD) in the width direction of the first optical film satisfy the above formula (3). 101, 202, 203, and 205 were found to be excellent in polarizing plate yield.
Further, in order to obtain such polarizing plates 101, 202, 203, 205, it is preferable to perform a transverse stretching step when producing the first optical film, and further, the residual solvent amount is 10 to 20% by mass, More preferably, the transverse stretching step is carried out under conditions of a stretching temperature of 135 to 170 ° C. and a stretching ratio of 1.07 to 1.15, and the residual solvent amount is 10% by mass, the stretching temperature is 150 to 170 ° C., and the stretching ratio is 1.1 to 1. It was found that it is more preferable to perform the transverse stretching step under the condition of 1.15.
 また、第1の光学フィルムを作製する際の斜め延伸工程において、延伸温度175℃、延伸倍率1.8倍の条件で斜め延伸するよりも、延伸温度185℃、延伸倍率1.7倍の条件で斜め延伸した方が、偏光板を液晶表示装置に搭載した場合に、装置のゆがみの発生が抑制され、表示画面の視認性が良好になることが分かった。 Further, in the oblique stretching step for producing the first optical film, the stretching temperature is 185 ° C. and the stretching ratio is 1.7 times, rather than the oblique stretching under the stretching temperature of 175 ° C. and the stretching ratio of 1.8 times. When the polarizing plate is mounted on the liquid crystal display device, it is found that when the polarizing plate is mounted on the liquid crystal display device, distortion of the device is suppressed and the visibility of the display screen is improved.
[実施例3]
《偏光板301~306の作製》
 上記実施例2における偏光板201の作製において、第1の光学フィルムの基材種を、表3に記載のものに変更した以外は同様にして、偏光板301~306を作製した。
[Example 3]
<< Production of Polarizing Plates 301 to 306 >>
Polarizers 301 to 306 were produced in the same manner as in the production of the polarizing plate 201 in Example 2, except that the substrate type of the first optical film was changed to that shown in Table 3.
 なお、表3においては、セルロースアセテートプロピオネート(アセチル置換度1.50、プロピオニル置換度0.90、総置換度2.40、重量平均分子量22万)を「CAP」、セルロースアセテート(アセチル置換度2.85、重量平均分子量25万)を「TAC」、セルロースアセテート(アセチル置換度2.43、重量平均分子量20万)を「DAC」、セルロースアセテートベンゾエート(アセチル置換度1.90、ベンゾイル置換度0.30、総置換度2.20、重量平均分子量15万)を「CeBz」、メチルセルロース(メチルエーテル置換度2.5、重量平均分子量15万)を「CE-1」、エチルセルロース(エチルエーテル置換度2.5、重量平均分子量15万)を「CE-2」、セルロースエーテルベンゾエート(エチルエーテル置換度2.2、ベンゾイル置換度0.7、重量平均分子量15万)を「CEBz」として示している。 In Table 3, cellulose acetate propionate (acetyl substitution degree 1.50, propionyl substitution degree 0.90, total substitution degree 2.40, weight average molecular weight 220,000) is “CAP”, cellulose acetate (acetyl substitution degree). Degree 2.85, weight average molecular weight 250,000) “TAC”, cellulose acetate (acetyl substitution degree 2.43, weight average molecular weight 200,000) “DAC”, cellulose acetate benzoate (acetyl substitution degree 1.90, benzoyl substitution) Degree 0.30, total substitution degree 2.20, weight average molecular weight 150,000) “CeBz”, methyl cellulose (methyl ether substitution degree 2.5, weight average molecular weight 150,000) “CE-1”, ethyl cellulose (ethyl ether) Substitution degree 2.5, weight average molecular weight 150,000) "CE-2", cellulose ether benzoate Shows (ethyl ether substitution degree 2.2, benzoyl substitution degree 0.7, weight average molecular weight 150,000) as "CEBz".
《偏光板301~306の評価》
 上記作製した偏光板301~306に対して、実施例1と同様にして、第1の光学フィルムの加熱処理工程前後の寸法変化率、第1の光学フィルムの光学値、液晶表示装置に搭載した場合の装置のゆがみ、画面の視認性、有機EL表示装置に搭載した場合の装置のゆがみ、画面の視認性について評価を行った。評価結果を表3に示す。なお、表3には、上記実施例2における偏光板201の評価結果も併せて示す。
<< Evaluation of polarizing plates 301 to 306 >>
The produced polarizing plates 301 to 306 were mounted in the liquid crystal display device in the same manner as in Example 1, the rate of dimensional change before and after the heat treatment step of the first optical film, the optical value of the first optical film, and the liquid crystal display device. The distortion of the device in the case, the visibility of the screen, the distortion of the device when mounted on the organic EL display device, and the visibility of the screen were evaluated. The evaluation results are shown in Table 3. Table 3 also shows the evaluation results of the polarizing plate 201 in Example 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3に示されるように、第1の光学フィルムの材料として、セルロースアセテートプロピオネート又はセルロースアセテートベンゾエートを用いることが、偏光板の物理的なゆがみを抑制する観点から好ましいことが分かった。
 また、第1の光学フィルムの材料としてメチルセルロースを用いると、遅相軸方向の寸法変化率L(θ)が上記式(2)を満たさないため、本発明においては第1の光学フィルムの材料にメチルセルロースを用いることはできないといえる。
As shown in Table 3, it was found that it is preferable to use cellulose acetate propionate or cellulose acetate benzoate as the material of the first optical film from the viewpoint of suppressing physical distortion of the polarizing plate.
Further, when methylcellulose is used as the material of the first optical film, the dimensional change rate L (θ) in the slow axis direction does not satisfy the above formula (2). Therefore, in the present invention, the material of the first optical film is It can be said that methylcellulose cannot be used.
[実施例4]
《偏光板401、402の作製》
 上記実施例1における偏光板101の作製において、第2の光学フィルムの基材種を、表4の記載のものに変更した以外は同様にして、偏光板401、402を作製した。
[Example 4]
<< Production of Polarizing Plates 401 and 402 >>
Polarizers 401 and 402 were produced in the same manner as in the production of the polarizing plate 101 in Example 1 except that the base material type of the second optical film was changed to that shown in Table 4.
 なお、表4においては、セルロースアセテート(アセチル置換度2.85、重量平均分子量25万)を「TAC」、セルロースアセテート(アセチル置換度2.43、重量平均分子量20万)を「DAC」として示している。 In Table 4, cellulose acetate (acetyl substitution degree 2.85, weight average molecular weight 250,000) is shown as “TAC”, and cellulose acetate (acetyl substitution degree 2.43, weight average molecular weight 200,000) is shown as “DAC”. ing.
《偏光板401、402の評価》
 上記作製した偏光板401、402に対して、実施例1と同様にして、液晶表示装置に搭載した場合の装置のゆがみ、画面の視認性について評価を行った。評価結果を表4に示す。なお、表4には、上記実施例1における偏光板101の評価結果も併せて示す。
<< Evaluation of Polarizing Plates 401 and 402 >>
The produced polarizing plates 401 and 402 were evaluated in the same manner as in Example 1 for device distortion and screen visibility when mounted on a liquid crystal display device. The evaluation results are shown in Table 4. Table 4 also shows the evaluation results of the polarizing plate 101 in Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4に示すように、第2の光学フィルムの材料として、セルロースアセテートプロピオネート、アセチル置換度2.43又は2.85のセルロースアセテートを好ましく用いることができ、中でも、セルロースアセテートプロピオネート又はアセチル置換度2.43のセルロースアセテートがより好ましく、セルロースアセテートプロピオネートが最も好ましいことが分かった。 As shown in Table 4, cellulose acetate propionate, cellulose acetate having an acetyl substitution degree of 2.43 or 2.85 can be preferably used as the material of the second optical film, and among them, cellulose acetate propionate or It has been found that cellulose acetate having an acetyl substitution degree of 2.43 is more preferable, and cellulose acetate propionate is most preferable.
 以上のように、本発明は、斜め延伸された光学フィルムを備える偏光板であって、物理的なゆがみの発生が抑制された偏光板、そのような偏光板の製造方法、また、当該偏光板を備えた液晶表示装置及び有機エレクトロルミネッセンス表示装置を提供することに適している。 As described above, the present invention is a polarizing plate comprising an obliquely stretched optical film, a polarizing plate in which the occurrence of physical distortion is suppressed, a method for producing such a polarizing plate, and the polarizing plate Suitable for providing a liquid crystal display device and an organic electroluminescence display device.
 1  製造装置
 2  フィルム繰り出し部
 3、7 搬送方向変更部
 4、6 ガイドロール
 5  延伸部
 8  フィルム切断装置
 9  フィルム巻き取り部
 10 液晶表示装置
 11 液晶セル
 12、13、52 偏光板
 14 バックライト
 15、53 前面板
 21、31、61 偏光子
 22、62 第1の光学フィルム
 23、63 機能層
 24、64 第2の光学フィルム
 32、33 光学フィルム
 50 有機EL表示装置
 51 有機EL発光素子
 Ci、Co 把持具
 D1 繰出方向
 D2 巻取方向
 Ri、Ro レール
 W、Wo 幅
 Z1 予熱ゾーン
 Z2 延伸ゾーン
 Z3 熱固定ゾーン
 θi 繰出角度
 θL 角度
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Film delivery part 3, 7 Conveyance direction change part 4, 6 Guide roll 5 Stretching part 8 Film cutting apparatus 9 Film winding part 10 Liquid crystal display device 11 Liquid crystal cell 12, 13, 52 Polarizing plate 14 Backlight 15, 53 Front plate 21, 31, 61 Polarizer 22, 62 First optical film 23, 63 Functional layer 24, 64 Second optical film 32, 33 Optical film 50 Organic EL display device 51 Organic EL light emitting device Ci, Co Tool D1 Feeding direction D2 Winding direction Ri, Ro Rail W, Wo Width Z1 Preheating zone Z2 Stretching zone Z3 Heat fixing zone θi Feeding angle θL Angle

Claims (12)

  1.  偏光子と、前記偏光子の一方の面に対向して設けられる第1の光学フィルムと、前記偏光子の他方の面に対向して設けられる第2の光学フィルムと、を備える偏光板であって、
     前記第1の光学フィルムの遅相軸と偏光子の吸収軸との交差角度θが30~60°の範囲内であり、
     前記第1の光学フィルムの遅相軸方向の寸法変化率L(θ)と、遅相軸に直交する方向の寸法変化率L(θ+90)とが下記式(1)及び(2)を満たすように調整されたことを特徴とする偏光板。
      式(1): 0.50≦L(θ)/L(θ+90)≦0.95
      式(2): 0.1(%)≦L(θ)≦1.5(%)
    A polarizing plate comprising: a polarizer; a first optical film provided to face one surface of the polarizer; and a second optical film provided to face the other surface of the polarizer. And
    The crossing angle θ between the slow axis of the first optical film and the absorption axis of the polarizer is in the range of 30-60 °,
    The dimensional change rate L (θ) in the slow axis direction of the first optical film and the dimensional change rate L (θ + 90) in the direction perpendicular to the slow axis satisfy the following expressions (1) and (2). A polarizing plate characterized by being adjusted to.
    Formula (1): 0.50 ≦ L (θ) / L (θ + 90) ≦ 0.95
    Formula (2): 0.1 (%) ≦ L (θ) ≦ 1.5 (%)
  2.  前記第1の光学フィルムの長手方向の寸法変化率L(MD)と、幅手方向の寸法変化率L(TD)とが下記式(3)を満たすことを特徴とする請求項1に記載の偏光板。
      式(3): 0.50≦L(MD)/L(TD)<1.00
    The dimensional change rate L (MD) in the longitudinal direction and the dimensional change rate L (TD) in the width direction of the first optical film satisfy the following formula (3). Polarizer.
    Formula (3): 0.50 ≦ L (MD) / L (TD) <1.00
  3.  前記第1の光学フィルムが、セルロース骨格を有するポリマーを含有することを特徴とする請求項1又は請求項2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the first optical film contains a polymer having a cellulose skeleton.
  4.  前記第1の光学フィルムの波長550nmにおける面内方向のリターデーション値Ro(550)が、75~150nmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の偏光板。 The retardation value Ro (550) in the in-plane direction at a wavelength of 550 nm of the first optical film is in the range of 75 to 150 nm, according to any one of claims 1 to 3. The polarizing plate as described.
  5.  前記第1の光学フィルムが、セルロースアセテートプロピオネートを含有することを特徴とする請求項1から請求項4までのいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, wherein the first optical film contains cellulose acetate propionate.
  6.  前記第2の光学フィルムの遅相軸と前記偏光子の吸収軸とが平行又は直交することを特徴とする請求項1から請求項5までのいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 5, wherein a slow axis of the second optical film and an absorption axis of the polarizer are parallel or orthogonal to each other.
  7.  前記第2の光学フィルムが、セルロースアセテート又はセルロースアセテートプロピオネートを含有することを特徴とする請求項1から請求項6までのいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 6, wherein the second optical film contains cellulose acetate or cellulose acetate propionate.
  8.  前記第1の光学フィルム及び前記第2の光学フィルムのうち視認側に配置される光学フィルムの視認側の面に、ハードコート層又はアンチグレア層が設けられていることを特徴とする請求項1から請求項7までのいずれか一項に記載の偏光板。 The hard coat layer or the anti-glare layer is provided on the surface on the viewing side of the optical film disposed on the viewing side of the first optical film and the second optical film. The polarizing plate according to claim 7.
  9.  請求項1から請求項8までのいずれか一項に記載の偏光板を製造する製造方法であって、
     前記偏光子、前記第1の光学フィルム及び前記第2の光学フィルムを、ロールtoロール方式で貼合する貼合工程を有することを特徴とする偏光板の製造方法。
    A manufacturing method for manufacturing the polarizing plate according to any one of claims 1 to 8,
    The manufacturing method of the polarizing plate characterized by having the bonding process which bonds the said polarizer, a said 1st optical film, and a said 2nd optical film by a roll to roll system.
  10.  ドープを支持体上に流延して流延膜を形成する流延工程と、
     残留溶媒量が1~20質量%の前記流延膜を、前記幅手方向に1.01~1.3倍の延伸倍率で延伸する横延伸工程と、
     前記流延膜を、前記幅手方向に対して斜め方向に延伸する斜め延伸工程と、
     前記流延膜に対して下記(i)又は(ii)の加熱処理を行うことで前記第1の光学フィルムを得る加熱処理工程と、を更に有し、
     前記加熱処理工程の後に、前記貼合工程を行うことを特徴とする請求項9に記載の偏光板の製造方法。
     (i)前記流延膜の端部に対して180~220℃の範囲内でエンボス加工を施した後に、ロール状に巻き取った状態で、60~80℃、20%RH以下の条件で3~5日間加熱処理する。
     (ii)搬送ローラーにより前記流延膜を張力120~150Nで搬送しながら、前記搬送ローラーを介して前記流延膜を140~170℃で40~600秒間加熱処理する。
    A casting step of casting a dope on a support to form a casting film;
    A transverse stretching step of stretching the cast film having a residual solvent amount of 1 to 20% by mass in the width direction at a stretching ratio of 1.01 to 1.3 times;
    An oblique stretching step of stretching the casting film in an oblique direction with respect to the width direction;
    A heat treatment step of obtaining the first optical film by performing the following heat treatment (i) or (ii) on the cast film,
    The method for producing a polarizing plate according to claim 9, wherein the bonding step is performed after the heat treatment step.
    (I) The end of the cast film is embossed in the range of 180 to 220 ° C., and then wound in a roll shape, and the condition is 3 to 60 ° C. and 20% RH or less. Heat for ~ 5 days.
    (Ii) The cast film is heat-treated at 140 to 170 ° C. for 40 to 600 seconds through the transport roller while transporting the cast film with a tension of 120 to 150 N by a transport roller.
  11.  請求項1から請求項8までのいずれか一項に記載の偏光板を備えていることを特徴とする液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to any one of claims 1 to 8.
  12.  請求項1から請求項8までのいずれか一項に記載の偏光板を備えていることを特徴とする有機エレクトロルミネッセンス表示装置。 An organic electroluminescence display device comprising the polarizing plate according to any one of claims 1 to 8.
PCT/JP2015/059379 2014-04-16 2015-03-26 Polarizing plate, method for manufacturing polarizing plate, liquid-crystal display, and organic electroluminescent display WO2015159679A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513697A JPWO2015159679A1 (en) 2014-04-16 2015-03-26 Polarizing plate, manufacturing method of polarizing plate, liquid crystal display device, and organic electroluminescence display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014084155 2014-04-16
JP2014-084155 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159679A1 true WO2015159679A1 (en) 2015-10-22

Family

ID=54323890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059379 WO2015159679A1 (en) 2014-04-16 2015-03-26 Polarizing plate, method for manufacturing polarizing plate, liquid-crystal display, and organic electroluminescent display

Country Status (3)

Country Link
JP (1) JPWO2015159679A1 (en)
TW (1) TWI570463B (en)
WO (1) WO2015159679A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130656A1 (en) * 2016-01-29 2017-08-03 住友化学株式会社 Production method for polarizing plates
JP2017138582A (en) * 2016-01-29 2017-08-10 住友化学株式会社 Method for manufacturing polarizing plate
WO2018025717A1 (en) * 2016-08-03 2018-02-08 住友化学株式会社 Laminate film
JP2018180163A (en) * 2017-04-07 2018-11-15 コニカミノルタ株式会社 Optical film, polarizing plate, display device, and method for manufacturing optical film
JP2019008252A (en) * 2017-06-28 2019-01-17 日東電工株式会社 Retardation film, circular polarization plate and manufacturing method of retardation film
JP2020149059A (en) * 2020-05-16 2020-09-17 日東電工株式会社 Optical laminate and method for manufacturing the same, and image display device using the optical laminate
CN113478795A (en) * 2021-07-14 2021-10-08 沈勇 Method for preparing phase difference compensation optical film
JP7015950B1 (en) 2021-03-26 2022-02-14 日東電工株式会社 Method for manufacturing stretched film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022024A1 (en) * 2017-07-25 2019-01-31 日本ゼオン株式会社 Production method for polarizing plate and production method for display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249418A (en) * 2005-02-08 2006-09-21 Fuji Photo Film Co Ltd Cellulose acylate film and polarizing plate, retardation film, optical compensation film, antireflection film using the same, and image displaying device
JP2008083307A (en) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249418A (en) * 2005-02-08 2006-09-21 Fuji Photo Film Co Ltd Cellulose acylate film and polarizing plate, retardation film, optical compensation film, antireflection film using the same, and image displaying device
JP2008083307A (en) * 2006-09-27 2008-04-10 Konica Minolta Opto Inc Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130656A1 (en) * 2016-01-29 2017-08-03 住友化学株式会社 Production method for polarizing plates
JP2017138582A (en) * 2016-01-29 2017-08-10 住友化学株式会社 Method for manufacturing polarizing plate
WO2018025717A1 (en) * 2016-08-03 2018-02-08 住友化学株式会社 Laminate film
JP2018180163A (en) * 2017-04-07 2018-11-15 コニカミノルタ株式会社 Optical film, polarizing plate, display device, and method for manufacturing optical film
JP2019008252A (en) * 2017-06-28 2019-01-17 日東電工株式会社 Retardation film, circular polarization plate and manufacturing method of retardation film
JP2020149059A (en) * 2020-05-16 2020-09-17 日東電工株式会社 Optical laminate and method for manufacturing the same, and image display device using the optical laminate
JP7217723B2 (en) 2020-05-16 2023-02-03 日東電工株式会社 Optical layered body, manufacturing method thereof, and image display device using the optical layered body
JP7015950B1 (en) 2021-03-26 2022-02-14 日東電工株式会社 Method for manufacturing stretched film
JP2022150149A (en) * 2021-03-26 2022-10-07 日東電工株式会社 Manufacturing method of stretched film
CN113478795A (en) * 2021-07-14 2021-10-08 沈勇 Method for preparing phase difference compensation optical film

Also Published As

Publication number Publication date
TW201602655A (en) 2016-01-16
JPWO2015159679A1 (en) 2017-04-13
TWI570463B (en) 2017-02-11

Similar Documents

Publication Publication Date Title
WO2015159679A1 (en) Polarizing plate, method for manufacturing polarizing plate, liquid-crystal display, and organic electroluminescent display
JP6229664B2 (en) Optical film roll, manufacturing method thereof, polarizing plate and display device
US9064826B2 (en) Organic electroluminescent display device and circularly polarizing plate
JP6623737B2 (en) Method and apparatus for manufacturing optical film
JP6617494B2 (en) Manufacturing method of obliquely stretched film
JP6003894B2 (en) Circularly polarizing plate and stereoscopic image display device
US20160025900A1 (en) Organic electroluminescent display device and method for manufacturing same
JP6935840B2 (en) Method for manufacturing diagonally stretched film
JP6923048B2 (en) Method for manufacturing diagonally stretched film
WO2014148327A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
JP6699655B2 (en) Method for producing obliquely stretched film
JP7321005B2 (en) Polarizing plate with retardation layer and image display device using the same
JP2016136171A (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
TWI816868B (en) Polarizing plate with retardation layer and image display device using the polarizing plate with retardation layer
JP2017015845A (en) Optical film, circularly polarizing plate, and organic electroluminescence display
JP2016114874A (en) Optical film, circular polarization plate and organic electroluminescence display
JP2018180163A (en) Optical film, polarizing plate, display device, and method for manufacturing optical film
WO2016132893A1 (en) Method for producing elongated obliquely stretched film
JP2016177238A (en) Optical film, circularly polarizing plate, and touch panel display device
TW202037940A (en) Polarizing plate with retardation layer and image display device using the same
WO2022215407A1 (en) Production method for polarizing plate protection film
WO2010146910A1 (en) Long gradient phase difference film, method for manufacturing long gradient phase difference film, polarizing plate, and liquid crystal display device
JP2016080876A (en) Optical film, circularly polarizing plate, and organic electroluminescence display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513697

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780213

Country of ref document: EP

Kind code of ref document: A1