WO2015159663A1 - Humidity measurement device - Google Patents

Humidity measurement device Download PDF

Info

Publication number
WO2015159663A1
WO2015159663A1 PCT/JP2015/059025 JP2015059025W WO2015159663A1 WO 2015159663 A1 WO2015159663 A1 WO 2015159663A1 JP 2015059025 W JP2015059025 W JP 2015059025W WO 2015159663 A1 WO2015159663 A1 WO 2015159663A1
Authority
WO
WIPO (PCT)
Prior art keywords
relative humidity
state
characteristic
measured
characteristic deterioration
Prior art date
Application number
PCT/JP2015/059025
Other languages
French (fr)
Japanese (ja)
Inventor
有毅 磯谷
浩昭 星加
余語 孝之
崇裕 三木
丈夫 細川
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2016513692A priority Critical patent/JP6294960B2/en
Publication of WO2015159663A1 publication Critical patent/WO2015159663A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to a humidity measuring device installed in an intake system of an internal combustion engine of an automobile.
  • a humidity measuring device is one of sensors that are attached to the intake system of an automobile internal combustion engine to improve fuel efficiency and environmental performance.
  • the humidity measuring device includes a relative humidity measuring element, a temperature measuring element provided in the vicinity of the relative humidity measuring element, and a circuit unit for controlling the relative humidity measuring element and the temperature measuring element.
  • the absolute moisture content is calculated using the output of the measuring element, and a signal corresponding to the absolute moisture content is transmitted to the outside.
  • the gas to be measured flowing through the main air passage contains contaminants such as dust that could not be trapped by the air cleaner, and the relative humidity is measured by attaching the contaminants to the moisture sensitive film.
  • the accuracy is deteriorated and the calculation accuracy of the absolute water content in the humidity measuring device is deteriorated.
  • Patent document 1 is mentioned as a prior art which suppresses the deterioration of the precision by fouling substance adhesion to a relative humidity measuring element.
  • the detection unit is heated to a predetermined temperature to perform so-called zero point correction (zero point adjustment), while the detection unit is condensed to form a so-called 100% R.D. H value correction (100 percent R.H value adjustment), zero adjustment and 100% R.H.
  • H value correction 100 percent R.H value adjustment
  • H value adjustment 100% R.H.
  • Patent Literature 1 even if the humidity sensor continues to be used for a certain period of time and the measured value is deviated, the humidity sensor can be calibrated easily and quickly at the measurement site.
  • a humidity measuring device attached to an intake system of an internal combustion engine of an automobile tends to have a higher mounting density in the humidity measuring device with downsizing and multi-functionality. Therefore, when the relative humidity measuring element is heated to a high temperature, a large amount of heat is transmitted to a processing circuit such as an LSI or a microcomputer provided in the humidity measuring device. In particular, since these processing circuits are vulnerable to heat, if the relative humidity measuring element is heated too high, there is a possibility that the processing circuit will fail or malfunction. Therefore, it is not desirable to heat the relative humidity measuring element to a high temperature.
  • the detection unit when zero adjustment is performed, the detection unit is heated to a critical temperature of water of 370.946 ° C.
  • Patent Document 1 leaves room for improvement with respect to the above-described problems.
  • An object of the present invention is to provide a humidity measuring device with high reliability even in the state of contaminant adhesion and the deterioration state of the relative humidity measuring device.
  • the humidity measuring device of the present invention is a humidity measuring device that calculates an absolute moisture amount using a relative humidity signal and a temperature signal, and the absolute moisture amount calculated in the first state and the second state.
  • the estimated value of relative humidity in the second state is calculated using the temperature measured in step 2, and the characteristic deterioration amount in the second state is compared by comparing the estimated value and the actual value of relative humidity measured in the second state.
  • a correction unit that corrects a measured value of relative humidity using the characteristic deterioration amount.
  • the present invention it is possible to provide a highly reliable humidity measuring device even in a pollutant attached state or a deteriorated state of the relative humidity measuring device.
  • 1 is a perspective view of a relative humidity measuring device housing including a main air passage according to an embodiment of the present invention.
  • 1 is a perspective view of a relative humidity measuring device housing according to an embodiment of the present invention.
  • 1 is a perspective view of a relative humidity measuring device housing according to an embodiment of the present invention.
  • casing by one Example of this invention The block diagram which shows the structure by one Example of this invention.
  • the humidity measuring device 22 in the first embodiment includes a housing support 11, a screw hole 12, a connector 13, and a housing 14.
  • the humidity measuring device 22 is inserted from an insertion hole provided in the main air passage wall 2 so that the main bypass 16 can take in part of the intake air flowing through the main air passage 1.
  • the humidity detection device 22 is fixed to the mounting base 3 with screws inserted into the screw holes 12 via the housing support portion 11. A gap generated when the humidity detecting device 22 is fixed to the mounting base 3 is filled with the O-ring 18.
  • the relative humidity measuring element 27 ⁇ / b> A is provided in the sub-bypass 17 branched from the main bypass 16. Since most of the contaminated matter taken into the main bypass 16 travels straight due to inertial force, the entry of the contaminated matter into the sub bypass 17 can be suppressed. For this reason, by providing the relative humidity measuring element 27A in the sub-bypass 17, it is possible to suppress the deterioration of the relative humidity measuring element 27A due to adhesion of the contaminated material.
  • the control device 21 includes a temperature signal processing unit 26B, a relative humidity signal processing unit 27B, an absolute water content calculating unit 28B, a characteristic diagnosis processing unit 29A, a relative humidity correction amount calculating unit 29B, It has an output unit 26C, a relative humidity output unit 27C, and an absolute water content calculation unit 28C.
  • the corresponding temperature 26 is output by the temperature output unit 26C
  • the output of the relative humidity measuring element 27A is received and processed by the relative humidity signal processing unit 27B.
  • the relative humidity output unit 27C outputs the corresponding relative humidity 27.
  • the absolute water content calculation unit 28B is executed using the output of the temperature signal processing unit 26B and the output of the relative humidity signal processing unit 27B, and the corresponding absolute water content 28 is output by the absolute water content output unit 28C.
  • the vertical axis represents the characteristic deterioration amount
  • the horizontal axis represents the relative humidity (hereinafter referred to as reference relative humidity) of the measured environment atmosphere.
  • the relative humidity measuring element 27A is soiled or deteriorates with time, for example, the first measurement point 31 having a negative characteristic deterioration amount or the second measurement point 32 having a positive characteristic deterioration amount is taken.
  • the output characteristic 30 is changed.
  • the state of characteristic deterioration is not limited to the output characteristic 30, but a positive characteristic deterioration amount in all relative humidity regions. It is also possible to correct various output characteristics such as an output characteristic having, an output characteristic that rises to the right, and a non-linear characteristic.
  • Characterization is achieved by executing an absolute water content calculation process, a relative humidity estimation process during temperature control, and a characteristics diagnosis process.
  • the gas in the measured environment atmosphere is exchanged in the measured environment atmosphere state grasping step ST1 during the absolute moisture amount calculation process.
  • the relationship between the absolute water content, the relative humidity, and the temperature is obtained by the following mathematical formula 1.
  • the present invention focuses on the fact that the absolute moisture content does not change when the gas in the ambient atmosphere to be measured is not exchanged.
  • Equation 1 SH is the absolute moisture content [g / kg] of the measured environment atmosphere, RH is the relative humidity [% RH] of the measured environment atmosphere, Temp is the temperature [° C.] of the measured environment atmosphere, and Press is the measured value.
  • the atmospheric pressure is atmospheric pressure [Pa].
  • the measurement environment atmosphere exchange state determination step ST2 it is determined whether or not the gas in the measurement environment atmosphere is exchanged based on the result of the measurement environment atmosphere state grasping step ST1. If it is determined in the measurement environment atmosphere exchange state determination step ST2 that the gas in the measurement environment atmosphere has been exchanged, the process ends without performing the subsequent processing. On the other hand, if it is determined that the gas in the measured environment atmosphere is not replaced in the measured environment atmosphere exchange state determination step ST2, the process proceeds to the temperature measurement and relative humidity measurement step ST3.
  • the case where it is determined that the gas in the ambient atmosphere to be measured has not been exchanged is, for example, when the engine is stopped, such as during idling stop, keyless entry, or smart entry. It is also possible to determine whether or not the gas in the ambient atmosphere to be measured has been exchanged by measuring the flow rate of the fluid flowing through the main air passage 1 with an air flow sensor or the like.
  • Measurement step ST3 performs temperature measurement step ST3A and relative humidity measurement step ST3B in parallel.
  • Absolute water content calculation step ST4 calculates the absolute water content by applying the temperature obtained in temperature measurement step ST3A and the relative humidity obtained in relative humidity measurement step ST3B to Equation 1. At this time, the pressure is 1 atm (101325 [Pa]).
  • the data acquisition step ST5 is started in the relative humidity estimation process.
  • the temperature control step ST6 for controlling the gas temperature of the ambient atmosphere to be measured by controlling the heating temperature of the heating element 25, and the measurement step ST7 are performed in parallel with the temperature control step ST6.
  • a temperature measurement step ST7A for measuring the gas temperature in the measurement environment atmosphere with the temperature measurement element 26A
  • a relative humidity measurement step ST7B for measuring the relative humidity of the gas in the measurement environment atmosphere with the relative humidity measurement element 27A. Do it in parallel.
  • the temperature control step ST6 is not limited to heating the heat generating element 25, and may be cooling by stopping the heating of the heat generating element 25. Then, the temperature control by the heating element 25 may be performed with a target temperature of the gas in the atmosphere to be measured that can be realized.
  • Equation 1 when Equation 1 is transformed, the following Equation 2 for calculating the relative humidity is obtained.
  • Equation 3 Assuming that the state before the temperature control step ST6 is the state A and the state during the temperature control step ST6 is the state B, the following Equation 3 for estimating the relative humidity in the state B is obtained.
  • RH Bestimate is the relative humidity [% RH] of the measured ambient atmosphere in state B.
  • Temp A is a temperature [° C.] of the measured environment atmosphere in the state A
  • ⁇ Temp is a temperature difference [° C.] between the temperature of the measured environment atmosphere and the Temp A in the state B.
  • Relative humidity estimation value calculation step ST8 applies the absolute water content in state A obtained in absolute water content calculation step ST4 and the temperature in state B obtained in temperature measurement step ST7A to Equation 3 so that An estimated value 31B of relative humidity is calculated. This is based on the fact that the absolute moisture content does not change between the state A and the state B when the gas in the atmosphere to be measured is not in the exchange state, so that the ideal relative humidity output characteristic 33 is obeyed.
  • Press is set to 1 atm (101325 [Pa]). That is, the estimated relative humidity value calculating step ST8 calculates the estimated relative humidity value 31B in the state B from the measured actual humidity value 31A in the state A.
  • the state A is a temperature of 25 ° C., but this is not the case.
  • the relative humidity difference calculation step ST9 includes an estimated value 31B of the relative humidity in the state B calculated in the estimated relative humidity value calculation step ST8 and an actual measured value 32A of the relative humidity in the state B actually measured in the relative humidity measurement step ST7B. And the characteristic deterioration amount 34 in the state B is calculated from the difference between the actually measured value and the estimated value.
  • the characteristic diagnosis process for example, when the characteristic deterioration amount 34 is equal to or greater than a certain threshold value, it is determined whether or not the detection accuracy of the relative humidity detection element has deteriorated to the extent that correction is necessary, and the process proceeds to relative humidity correction.
  • Relative humidity correction is achieved by executing a relative humidity output correction process based on the result of the characteristic diagnosis.
  • the reference point 40A corresponds to the measurement point in the state A
  • the first diagnosis point 40B corresponds to the measurement point in the state B.
  • the relative humidity output correction process has a difference correction step ST10.
  • the difference correction step ST10 the measurement error in the state B can be reduced by correcting the characteristic deterioration amount 34 in the state B with respect to the relative humidity in the state B.
  • the difference correction step ST10 corrects the entire relative humidity and obtains the relative humidity output characteristic 42 in which the first diagnostic point is combined, thereby reducing the measurement error in the state B. .
  • the characteristic deterioration amount is calculated using the estimated value and the actual measurement value after the temperature control, and the memory in the relative humidity measuring device has reference data for the specific relative humidity value. Instead, the amount of error can be reduced by correcting the characteristic deterioration amount in the entire relative humidity at an arbitrary relative humidity.
  • the relative humidity value it is difficult to control the relative humidity value to an arbitrary value.
  • the control is performed so that the relative humidity is 0% which is relatively easy to control, it is necessary to heat the measurement environment atmosphere to a high temperature.
  • the temperature of the gas in the ambient atmosphere to be measured is controlled, and the characteristic deterioration amount is calculated from the estimated value and the measured value of the relative humidity after the temperature control. It is possible to calculate the characteristic deterioration amount.
  • the relative humidity value since it is difficult to control the relative humidity value to an arbitrary value, when the relative humidity output in a certain state is compared with the reference value, the point at which the characteristic deterioration amount is obtained is limited.
  • the estimated relative humidity value after actual temperature control and the actual measurement value are used. Therefore, it is possible to obtain the characteristic deterioration amount at various relative humidity.
  • the first embodiment of the present invention it is possible to provide a humidity measuring apparatus with high accuracy and reliability without heating to a high temperature.
  • a second embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the first embodiment is omitted.
  • the difference calculation frequency diagnosis step ST11 is executed.
  • the difference calculation frequency diagnosis step ST11 determines whether or not the immediately preceding characteristic deterioration amount calculation process is the first time, and if it is determined to be the first time, the characteristic deterioration amount calculation process is performed to calculate the characteristic deterioration amount at the next point. The process proceeds to the measurement environment atmosphere exchange state determination step ST17 via the first time confluence point P2.
  • the measurement environment atmosphere exchange state determination step ST17 it is determined whether or not the gas in the measurement environment atmosphere is exchanged based on the result of the measurement atmosphere state grasping step 16. If it is determined in the measurement environment atmosphere exchange state determination step ST17 that the gas in the measurement environment atmosphere has been exchanged, the process proceeds to the confluence point P3 at the end of the correction process and ends. On the other hand, when it is determined in the measurement environment atmosphere exchange state determination step ST17 that the gas in the measurement environment atmosphere has not been exchanged, the process proceeds to the process merging point P1 when the correction process is continued.
  • the heating temperature control of the heating element 25 is performed in ST6 so that the temperature is different from the first time, and in parallel with ST6, ST7, ST8, ST9 Execute. Thereby, the characteristic deterioration amount in relative humidity different from the first time is calculated.
  • the process proceeds to the characteristic deterioration amount calculation step ST12 of the measured environment relative humidity 0%.
  • the characteristic deterioration amount calculation step ST12 of the measured environment relative humidity of 0% is performed by applying two points of the first diagnosis point 40B and the second diagnosis point 40C to Equation 4 to thereby calculate the relative humidity output characteristic 40 at the time of characteristic deterioration. Ask for.
  • y is the characteristic deterioration amount [% RH]
  • RH is the relative humidity [% RH] of the measured environment
  • RH 1 is the relative humidity [% RH] at the first diagnostic point 40B
  • RH 2 is the second diagnosis.
  • Er1 is the characteristic deterioration amount [% RH] at the first diagnosis point 40B
  • Er2 is the characteristic deterioration amount [% RH] at the second diagnosis point 40C.
  • Characteristic deterioration amount correction step 13 performs zero point adjustment by correcting the characteristic deterioration amount 41 when the relative humidity of the measurement environment atmosphere is 0% over the entire relative humidity, and obtains the relative humidity output characteristic 43 after the zero point adjustment.
  • correction other than the zero point (relative humidity 0%) is also performed. Therefore, the correction amount at an arbitrary relative humidity is calculated using the correction amount calculation formula shown in Equation 5 using the slope of Equation 4. calculate.
  • Equation 5 u is the correction amount [% RH], and RH 1 is the relative humidity at the first diagnostic point 40B [ % RH], RH 2 is the relative humidity [% RH in the second diagnostic point 40C], E r1 is characteristic deterioration amount in the first diagnostic point 40B [% RH], the E r2 characteristic in said second diagnostic point 40C Deterioration amount [% RH].
  • the characteristic deterioration amount correction step 14 uses Equation 5 to set the relative humidity output characteristic 43 after the zero adjustment as a base point relative to 0% relative humidity, and uses the slope of the relative humidity output characteristic 43 to cover the entire relative humidity. A correction amount can be calculated. Thereby, the relative humidity output characteristic 44 is obtained.
  • the process proceeds to the correction process continuation determination step ST15 to determine whether or not to continue the correction process. If it is determined in the correction process continuation determination step ST15 that the correction process is to end, the process proceeds to the confluence point P3 at the end of the correction process, and the characteristic diagnosis and the relative humidity correction are ended.
  • the process proceeds to the measured environment atmosphere exchange state determination step ST17 via the merging point P2 during the characteristic deterioration amount calculation process. Thereafter, the same steps as those for obtaining the second diagnostic point 40C are executed, and the third and subsequent diagnostic points are obtained.
  • a linear function equation is derived using the least square method, the relative humidity 0% using Equation 4, and the entire relative humidity region using Equation 5. Correct for.
  • the method for correcting the entire relative humidity is not limited to the derivation of the linear function expression by the least square method, but multidimensional function approximation and the slope between the characteristic diagnostic points are respectively used. Even if various methods are employed, such as the estimation of the characteristic deterioration amount 41 when the relative humidity of the measured environment atmosphere is 0% is calculated using two characteristic diagnosis points closest to the relative humidity of the measured environment atmosphere Good.
  • the third and subsequent diagnostic points are obtained after the characteristic deterioration amount calculation step ST12 and the characteristic deterioration amount correction steps ST13 and ST14.
  • the present invention is not necessarily limited to this. Then, the characteristic deterioration amount calculation step ST12 and the characteristic deterioration amount correction steps ST13 and ST14 may be performed to correct the entire relative humidity.
  • the characteristic deterioration characteristic is calculated using the characteristic deterioration amount at a plurality of relative humidity
  • the relative humidity correction amount is calculated based on the characteristic deterioration characteristic at the plurality of relative humidity.
  • the correction can be performed in the relative humidity of the entire region, and the relative humidity can be detected with high accuracy.
  • the relative humidity value it is difficult to control the relative humidity value to an arbitrary value.
  • the control is performed so that the relative humidity is 100% which is relatively easy to control, it is necessary to cool the measured environment atmosphere to a low temperature.
  • the temperature of the gas in the ambient atmosphere to be measured is controlled, and the characteristic deterioration amount is calculated from the estimated value and the measured value of the relative humidity after the temperature control. It is possible to calculate the characteristic deterioration amount.
  • the point where the characteristic deterioration amount is obtained is limited.
  • the estimated value and the actual measurement value of the relative humidity after temperature control are used, so that it is possible to obtain the characteristic deterioration amount at various relative humidity. Therefore, the characteristic deterioration amounts at a plurality of points can be obtained without changing the relative humidity value widely, and the diagnosis time can be shortened.
  • the characteristic deterioration amount calculation step ST12 and the characteristic deterioration amount correction steps ST13 and ST14 are performed in parallel with the temperature control step ST6.
  • the present invention is not limited to this.
  • a third embodiment of the present invention will be described with reference to FIG.
  • the control executor is different but the same processing is indicated by adding 'at the end and omitting the description similarly. .
  • a part or all of the calculation and correction performed by the relative humidity measuring device are executed by the control device.
  • each process except for the measured atmosphere state grasping step ST1 and the measured atmosphere state grasping step ST16 may be performed in the control device, and the share of the processing is lost. Any assignment can be made if it is done without any problem. Thereby, processing can be performed without concentrating on a certain control execution person, and the load of both a relative humidity measuring device control apparatus and a control apparatus can be reduced.
  • a fourth embodiment of the present invention will be described with reference to FIGS. Note that a description of the same configurations as in the first to third embodiments will be omitted.
  • an intake air flow rate measuring device and a relative humidity detecting device are integrated into a single housing in the same housing.
  • an intake air flow rate detection element 115, a humidity detection element 27A, a temperature detection element 26B, an intake air temperature measurement element 109, a chip package connector 113, and a large-scale integrated circuit 116 are integrally resin-molded to form a chip package 114. Is forming.
  • the chip package 114 is supported by the housing 101 by insert molding in the housing 101.
  • the multifunctional intake air flow rate measuring device includes a connector 100, a housing 101, a housing support 102, a top cover 103, a front cover 105A, a back cover 105B, and a main air passage.
  • a first bypass 106 that takes in a portion of the intake air flowing through 1
  • a second bypass 107 in which a relative humidity measuring element 27A and a temperature measuring element 26A are arranged, a chip package 114 that is insert-molded in the housing 101,
  • a lead frame 112 for electrical connection The front cover 105A has an air intake port 107B for the second bypass 107, and detects the moisture content of the air taken in from the intake port 107B using the relative humidity measuring element 27A and the temperature measuring element 26A.
  • the air flow measuring device and the relative humidity measuring device are integrated in the same housing, so that the environment to be measured is determined by the signal of the intake air flow measuring device 115 in the relative humidity measuring device. It is possible to know whether the gas in the atmosphere is exchanged. Therefore, as shown in FIG. 12, all the correction processes can be performed only in the relative humidity measuring device 22 without performing the measured atmosphere state grasping step 16 by the control device 21, and the control device 21 is conscious of the correction processing. The output value of the relative humidity measuring device 22 can be used without doing so.
  • a fifth embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the fourth embodiment is omitted.
  • the fifth embodiment of the present invention has a multi-functional configuration in which a pressure measuring device is integrally provided in the same housing in addition to an intake air flow rate measuring device and a relative humidity detecting device.
  • the pressure detection element 110 mounted on the control circuit board 111 is mounted at a location located outside the main air passage 1 of the housing 101.
  • the housing 101 has a third bypass 108 communicating with the main air passage, and the pressure detecting element 101 measures the pressure of the air taken into the third bypass.
  • the pressures of the mathematical formulas 1, 2 and 3 each time, and the pressure is set to 1 atm 101325 [Pa], which is more accurate than the case where a fixed value is used. Can be improved.
  • the present technique is also effective when the atmospheric pressure changes during the execution of the correction process.
  • the absolute moisture amount used in the relative humidity estimated value calculation step ST8 is not the absolute moisture amount obtained in the absolute moisture amount calculation step ST4, but the temperature and relative humidity obtained in the measurement step ST7. It is set as the structure calculated every time using. As a result, the difference from the absolute water content when the previous characteristic diagnosis was performed can be made small, and the accuracy can be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

The purpose of the present invention is to provide a humidity measurement device that is highly reliable even when contaminants are adhered thereto or a relative humidity measurement device has deteriorated. In order to achieve said purpose, this humidity measurement device calculates absolute moisture volumes by using relative humidity signals and temperature signals and is characterized by comprising: a characteristics diagnostic unit that calculates an estimated relative humidity value in a second state, using an absolute moisture volume calculated in a first state and a temperature measured in the second state, and calculates the amount of deterioration in characteristics in the second state, by comparing this estimated value and an actual measurement value for relative humidity measured in the second state; and a correction unit that corrects relative humidity measurement values by using said amount of deterioration in characteristics.

Description

湿度測定装置Humidity measuring device
 本発明は、自動車の内燃機関の吸気系に設置する湿度測定装置に関する。 The present invention relates to a humidity measuring device installed in an intake system of an internal combustion engine of an automobile.
 燃費の向上、及び、環境性能向上の為に自動車の内燃機関の吸気系に取り付けられるセンサの1つとして湿度測定装置が挙げられる。湿度測定装置は、相対湿度測定素子と、相対湿度測定素子の近傍に設けられる温度測定素子と、相対湿度測定素子と温度測定素子を制御する回路部と、を有し、相対湿度測定素子と温度測定素子の出力を用いて絶対水分量を算出し、絶対水分量に対応する信号を外部に送信している。 A humidity measuring device is one of sensors that are attached to the intake system of an automobile internal combustion engine to improve fuel efficiency and environmental performance. The humidity measuring device includes a relative humidity measuring element, a temperature measuring element provided in the vicinity of the relative humidity measuring element, and a circuit unit for controlling the relative humidity measuring element and the temperature measuring element. The absolute moisture content is calculated using the output of the measuring element, and a signal corresponding to the absolute moisture content is transmitted to the outside.
 ここで、主空気通路を流れる被測定気体中には、エアクリーナーでトラップしきれなかったダストなどの汚損物が含まれており、この汚損物が感湿膜に付着することで相対湿度の測定精度が悪化してしまい、ひいては湿度測定装置における絶対水分量の算出精度が悪化してしまうという課題が存在する。相対湿度測定素子への汚損物付着による精度悪化を抑制する従来技術として、特許文献1が挙げられる。 Here, the gas to be measured flowing through the main air passage contains contaminants such as dust that could not be trapped by the air cleaner, and the relative humidity is measured by attaching the contaminants to the moisture sensitive film. There is a problem that the accuracy is deteriorated and the calculation accuracy of the absolute water content in the humidity measuring device is deteriorated. Patent document 1 is mentioned as a prior art which suppresses the deterioration of the precision by fouling substance adhesion to a relative humidity measuring element.
 特許文献1は、検知部を所定温度に加熱していわゆる零点補正(零点調整)をする一方
、検知部を結露させていわゆる100%R.H値補正(100パーセントR.H値調整)をし、さらにその零点調整および100%R.H値調整における調整値により湿度算出直線の勾配を補正することにより、湿度センサの校正をなす技術を開示している。
In Patent Document 1, the detection unit is heated to a predetermined temperature to perform so-called zero point correction (zero point adjustment), while the detection unit is condensed to form a so-called 100% R.D. H value correction (100 percent R.H value adjustment), zero adjustment and 100% R.H. A technique for calibrating a humidity sensor by correcting the slope of a humidity calculation line with an adjustment value in H value adjustment is disclosed.
 特許文献1によれば、湿度センサを一定期間使用し続けて計測値にずれが生じたとしても、計測現場において簡易・迅速に湿度センサの校正が成し得る。 According to Patent Literature 1, even if the humidity sensor continues to be used for a certain period of time and the measured value is deviated, the humidity sensor can be calibrated easily and quickly at the measurement site.
特開2002-156348号公報JP 2002-156348 A
 自動車の内燃機関の吸気系に取り付けられる湿度測定装置は、小型化や多機能化に伴い湿度測定装置内の実装密度が大きくなる傾向にある。そのため相対湿度測定素子を高温に加熱すると、湿度測定装置内に設けられるLSIやマイコンなどの処理回路により多くの熱が伝達されることになる。特にこれらの処理回路は熱に弱いため、相対湿度測定素子を高温に加熱しすぎると処理回路の故障、もしくは誤動作を引き起こす可能性がある。そのため、相対湿度測定素子を高温に加熱することは望ましくない。 A humidity measuring device attached to an intake system of an internal combustion engine of an automobile tends to have a higher mounting density in the humidity measuring device with downsizing and multi-functionality. Therefore, when the relative humidity measuring element is heated to a high temperature, a large amount of heat is transmitted to a processing circuit such as an LSI or a microcomputer provided in the humidity measuring device. In particular, since these processing circuits are vulnerable to heat, if the relative humidity measuring element is heated too high, there is a possibility that the processing circuit will fail or malfunction. Therefore, it is not desirable to heat the relative humidity measuring element to a high temperature.
 特許文献1によれば、零点調整を行う場合には、水の臨界温度370.946℃まで検知部を加熱するとされている。 According to Patent Document 1, when zero adjustment is performed, the detection unit is heated to a critical temperature of water of 370.946 ° C.
 そのため、特許文献1は、上述した課題に対して改良の余地が残されている。 Therefore, Patent Document 1 leaves room for improvement with respect to the above-described problems.
 本発明の目的は、汚染物質付着状態や相対湿度測定装置の劣化状態においても信頼性の高い湿度測定装置を提供することである。 An object of the present invention is to provide a humidity measuring device with high reliability even in the state of contaminant adhesion and the deterioration state of the relative humidity measuring device.
 上記目的を達成するため、本発明の湿度測定装置は、相対湿度信号と温度信号を用いて絶対水分量を算出する湿度測定装置において、第一の状態で算出した絶対水分量と第二の状態で測定した温度を用いて第二の状態における相対湿度の推定値を算出し、該推定値と第二の状態で測定した相対湿度の実測値を比較することにより第二の状態における特性悪化量を算出する特性診断部と、前記特性悪化量を用いて相対湿度の測定値を補正する補正部と、を備えることを特徴とする。 In order to achieve the above object, the humidity measuring device of the present invention is a humidity measuring device that calculates an absolute moisture amount using a relative humidity signal and a temperature signal, and the absolute moisture amount calculated in the first state and the second state. The estimated value of relative humidity in the second state is calculated using the temperature measured in step 2, and the characteristic deterioration amount in the second state is compared by comparing the estimated value and the actual value of relative humidity measured in the second state. And a correction unit that corrects a measured value of relative humidity using the characteristic deterioration amount.
 本発明によれば、汚染物質付着状態や相対湿度測定装置の劣化状態においても信頼性の高い湿度測定装置を提供することができる。 According to the present invention, it is possible to provide a highly reliable humidity measuring device even in a pollutant attached state or a deteriorated state of the relative humidity measuring device.
本発明の一実施例による主空気通路を含む相対湿度測定装置筐体の傾斜図1 is a perspective view of a relative humidity measuring device housing including a main air passage according to an embodiment of the present invention. 本発明の一実施例による相対湿度測定装置筐体の傾斜図1 is a perspective view of a relative humidity measuring device housing according to an embodiment of the present invention. 本発明の一実施例による相対湿度測定装置筐体の傾斜図1 is a perspective view of a relative humidity measuring device housing according to an embodiment of the present invention. 本発明の一実施例による相対湿度測定装置筐体の側面図The side view of the relative humidity measuring device housing | casing by one Example of this invention 本発明の一実施例による構成を示すブロック図The block diagram which shows the structure by one Example of this invention. 本発明の一実施例による特性診断処理及び相対湿度補正量を説明する説明図Explanatory drawing explaining the characteristic diagnosis process and relative humidity correction amount by one Example of this invention 本発明の一実施例による特性診断処理及び相対湿度補正量を説明する説明図Explanatory drawing explaining the characteristic diagnosis process and relative humidity correction amount by one Example of this invention 本発明の一実施例による特性診断処理及び相対湿度補正量算出処理を示すアクティビティ図Activity diagram showing characteristic diagnosis processing and relative humidity correction amount calculation processing according to an embodiment of the present invention 本発明の一実施例による相対湿度補正方法を説明する説明図Explanatory drawing explaining the relative humidity correction method by one Example of this invention 本発明の一実施例による特性診断処理及び相対湿度補正量算出処理を示すアクティビティ図Activity diagram showing characteristic diagnosis processing and relative humidity correction amount calculation processing according to an embodiment of the present invention 本発明の一実施例による特性診断処理及び相対湿度補正量算出処理を示すアクティビティ図Activity diagram showing characteristic diagnosis processing and relative humidity correction amount calculation processing according to an embodiment of the present invention 本発明の一実施例による相対湿度補正方法を説明する説明図Explanatory drawing explaining the relative humidity correction method by one Example of this invention 本発明の一実施例による吸入空気流量測定装置筐体の正面図及び断面図The front view and sectional drawing of the housing | casing of an intake air flow rate measuring device by one Example of this invention 本発明の一実施例によるチップパッケージの傾斜図1 is an inclined view of a chip package according to an embodiment of the present invention. 本発明の一実施例による特性診断処理及び相対湿度補正量算出処理を示すアクティビティ図Activity diagram showing characteristic diagnosis processing and relative humidity correction amount calculation processing according to an embodiment of the present invention 本発明の一実施例による特性診断処理及び相対湿度補正量算出処理を示すアクティビティ図Activity diagram showing characteristic diagnosis processing and relative humidity correction amount calculation processing according to an embodiment of the present invention
 以下、本発明の実施の形態を図に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の第一実施例について、図1から図7を用いて説明する。 A first embodiment of the present invention will be described with reference to FIGS.
 図1、図2(a)、図2(b)、図3に示すように、第一実施例における湿度測定装置
22は、ハウジング支持部11と、ネジ穴12と、コネクタ13と、ハウジング14と、カバー15と、主空気通路1を流れる吸入空気の一部を取り込むメインバイパス16と、ハウジング14とカバー15により形成されるサブバイパス17と、発熱素子25と、温度測定素子26Aと、相対湿度測定素子27Aと、制御素子23を有する。
As shown in FIGS. 1, 2 (a), 2 (b), and 3, the humidity measuring device 22 in the first embodiment includes a housing support 11, a screw hole 12, a connector 13, and a housing 14. A cover 15, a main bypass 16 that takes in a portion of the intake air flowing through the main air passage 1, a sub-bypass 17 formed by the housing 14 and the cover 15, a heating element 25, a temperature measuring element 26A, A humidity measuring element 27A and a control element 23 are provided.
 湿度測定装置22は、主空気通路1を流れる吸入空気の一部をメインバイパス16が取り込めるように主空気通路壁2に設けられる挿入孔から挿入される。湿度検出装置22は
、ハウジング支持部11を介してネジ穴12に挿入されたネジにより取付台座3に固定される。湿度検出装置22を取付台座3に固定する際に生じる隙間は、Oリング18により埋められる。
The humidity measuring device 22 is inserted from an insertion hole provided in the main air passage wall 2 so that the main bypass 16 can take in part of the intake air flowing through the main air passage 1. The humidity detection device 22 is fixed to the mounting base 3 with screws inserted into the screw holes 12 via the housing support portion 11. A gap generated when the humidity detecting device 22 is fixed to the mounting base 3 is filled with the O-ring 18.
 相対湿度測定素子27Aは、メインバイパス16から分岐するサブバイパス17内に設けられる構成としている。メインバイパス16内に取り込まれた汚損物のほとんどは慣性力により直進するため、サブバイパス17への汚損物の侵入を抑制することができる。そのため、相対湿度測定素子27Aをサブバイパス17内に設けることにより、相対湿度測定素子27Aの汚損物の付着による劣化を抑制することが可能となる。 The relative humidity measuring element 27 </ b> A is provided in the sub-bypass 17 branched from the main bypass 16. Since most of the contaminated matter taken into the main bypass 16 travels straight due to inertial force, the entry of the contaminated matter into the sub bypass 17 can be suppressed. For this reason, by providing the relative humidity measuring element 27A in the sub-bypass 17, it is possible to suppress the deterioration of the relative humidity measuring element 27A due to adhesion of the contaminated material.
 図4に示すように、制御装置21は温度信号処理部26Bと、相対湿度信号処理部27Bと絶対水分量算出部28Bと、特性診断処理部29Aと、相対湿度補正量算出部29Bと、温度出力部26Cと、相対湿度出力部27Cと、絶対水分量算出部28Cと、を有する。温度測定素子26Aの出力を温度信号処理部26Bで受け取って処理した後、温度出力部26Cにより対応する温度26が出力され、相対湿度測定素子27Aの出力を相対湿度信号処理部27Bで受け取って処理した後、相対湿度出力部27Cにより対応する相対湿度27が出力される。また、温度信号処理部26Bの出力と、相対湿度信号処理部27Bの出力を用いて絶対水分量算出部28Bが実行され、絶対水分量出力部28Cにより対応する絶対水分量28が出力される。 As shown in FIG. 4, the control device 21 includes a temperature signal processing unit 26B, a relative humidity signal processing unit 27B, an absolute water content calculating unit 28B, a characteristic diagnosis processing unit 29A, a relative humidity correction amount calculating unit 29B, It has an output unit 26C, a relative humidity output unit 27C, and an absolute water content calculation unit 28C. After the output of the temperature measuring element 26A is received and processed by the temperature signal processing unit 26B, the corresponding temperature 26 is output by the temperature output unit 26C, and the output of the relative humidity measuring element 27A is received and processed by the relative humidity signal processing unit 27B. After that, the relative humidity output unit 27C outputs the corresponding relative humidity 27. Further, the absolute water content calculation unit 28B is executed using the output of the temperature signal processing unit 26B and the output of the relative humidity signal processing unit 27B, and the corresponding absolute water content 28 is output by the absolute water content output unit 28C.
 汚損物の付着や劣化による相対湿度測定素子の出力特性の悪化について、図5(a)を用いて説明する。図5(a)において、縦軸は特性悪化量、横軸は被測定環境雰囲気の相対湿度(以降、基準相対湿度と表記する。)を示す。相対湿度測定素子27Aに汚染物質
が付着したり、相対湿度測定素子27Aが経時劣化することにより相対湿度の出力特性が悪化すると、相対湿度測定素子27Aは基準相対湿度に対して低く測定したり、基準相対湿度に対して高く測定したりして計測誤差が生じる。そのため、相対湿度測定素子27Aが汚損、或いは経時劣化すると、例えば、マイナスの特性悪化量を有する第一の測定点31や、プラスの特性悪化量を有する第二の測定点32をとるような、出力特性30に変化する。以下、特性悪化時の相対湿度の出力特性30を例として補正を行う場合を述べるが
、本補正においては特性悪化の状態は出力特性30に限らず、すべての相対湿度領域でプラスの特性悪化量を有する出力特性や、右肩上がりの出力特性や、非線形の特性など、種種の出力特性についても補正することができる。
Deterioration of the output characteristics of the relative humidity measuring element due to the adhesion and deterioration of soiling substances will be described with reference to FIG. In FIG. 5A, the vertical axis represents the characteristic deterioration amount, and the horizontal axis represents the relative humidity (hereinafter referred to as reference relative humidity) of the measured environment atmosphere. When the contaminant is attached to the relative humidity measuring element 27A or the relative humidity measuring element 27A deteriorates with time, the relative humidity measuring element 27A measures lower than the reference relative humidity. Measurement errors occur when measuring higher than the reference relative humidity. Therefore, when the relative humidity measuring element 27A is soiled or deteriorates with time, for example, the first measurement point 31 having a negative characteristic deterioration amount or the second measurement point 32 having a positive characteristic deterioration amount is taken. The output characteristic 30 is changed. Hereinafter, a description will be given of a case where correction is performed by taking the output characteristic 30 of the relative humidity at the time of characteristic deterioration as an example. In this correction, the state of characteristic deterioration is not limited to the output characteristic 30, but a positive characteristic deterioration amount in all relative humidity regions. It is also possible to correct various output characteristics such as an output characteristic having, an output characteristic that rises to the right, and a non-linear characteristic.
 第一実施例における特性診断並びに出力補正について、図6と図7を用いて説明する。 The characteristic diagnosis and output correction in the first embodiment will be described with reference to FIGS.
 特性診断は、絶対水分量算出プロセスと、温度制御中相対湿度推定プロセスと、特性診断プロセスとを実行することにより達成する。 Characterization is achieved by executing an absolute water content calculation process, a relative humidity estimation process during temperature control, and a characteristics diagnosis process.
 まず、絶対水分量算出プロセス中の被測定環境雰囲気状態把握ステップST1において被測定環境雰囲気の気体が交換されているか否かを把握する。ここで、一般に絶対水分量と相対湿度と温度の関係性は、下記の数式1によって求まる。本発明は、被測定環境雰囲気の気体が交換されていない場合、絶対水分量は変化しないという点に着目した。 First, it is determined whether or not the gas in the measured environment atmosphere is exchanged in the measured environment atmosphere state grasping step ST1 during the absolute moisture amount calculation process. Here, in general, the relationship between the absolute water content, the relative humidity, and the temperature is obtained by the following mathematical formula 1. The present invention focuses on the fact that the absolute moisture content does not change when the gas in the ambient atmosphere to be measured is not exchanged.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
数式1において、SHは被測定環境雰囲気の絶対水分量[g/kg]、RHは被測定環境
雰囲気の相対湿度[%RH]、Tempは被測定環境雰囲気の温度[℃]、Pressは
被測定環境雰囲気の大気圧[Pa]である。
In Equation 1, SH is the absolute moisture content [g / kg] of the measured environment atmosphere, RH is the relative humidity [% RH] of the measured environment atmosphere, Temp is the temperature [° C.] of the measured environment atmosphere, and Press is the measured value. The atmospheric pressure is atmospheric pressure [Pa].
 被測定環境雰囲気交換状態判断ステップST2は、被測定環境雰囲気状態把握ステップST1の結果に基づき被測定環境雰囲気の気体が交換されているか否かを判断する。被測定環境雰囲気交換状態判断ステップST2で被測定環境雰囲気の気体が交換されていると判断した場合には、以降の処理を行わず終了する。一方で、被測定環境雰囲気交換状態判断ステップST2で被測定環境雰囲気の気体が交換されていないと判断した場合においては、温度測定及び相対湿度測定ステップST3に進む。 In the measurement environment atmosphere exchange state determination step ST2, it is determined whether or not the gas in the measurement environment atmosphere is exchanged based on the result of the measurement environment atmosphere state grasping step ST1. If it is determined in the measurement environment atmosphere exchange state determination step ST2 that the gas in the measurement environment atmosphere has been exchanged, the process ends without performing the subsequent processing. On the other hand, if it is determined that the gas in the measured environment atmosphere is not replaced in the measured environment atmosphere exchange state determination step ST2, the process proceeds to the temperature measurement and relative humidity measurement step ST3.
 被測定環境雰囲気の気体が交換されていないと判断する場合としては、例えばアイドリングストップ中やキーレスエントリー時、スマートエントリー時等、エンジンが停止中の場合が挙げられる。また、エアフローセンサ等で主空気通路1を流れる流体の流量を測定することで、被測定環境雰囲気の気体が交換されているか否かを判断することも可能である。 The case where it is determined that the gas in the ambient atmosphere to be measured has not been exchanged is, for example, when the engine is stopped, such as during idling stop, keyless entry, or smart entry. It is also possible to determine whether or not the gas in the ambient atmosphere to be measured has been exchanged by measuring the flow rate of the fluid flowing through the main air passage 1 with an air flow sensor or the like.
 測定ステップST3は、温度測定ステップST3A、相対湿度測定ステップST3Bを並行に行う。 Measurement step ST3 performs temperature measurement step ST3A and relative humidity measurement step ST3B in parallel.
 絶対水分量算出ステップST4は、温度測定ステップST3Aで得られた温度と、相対湿度測定ステップST3Bで得られた相対湿度とを数式1に当てはめることで絶対水分量を算出する。この際、Pressは1気圧(101325[Pa])とする。 Absolute water content calculation step ST4 calculates the absolute water content by applying the temperature obtained in temperature measurement step ST3A and the relative humidity obtained in relative humidity measurement step ST3B to Equation 1. At this time, the pressure is 1 atm (101325 [Pa]).
 次に、相対湿度推定プロセスでデータ取得ステップST5が開始される。データ取得ステップST5では、発熱素子25の加熱温度を制御することで被測定環境雰囲気の気体温度を制御する温度制御ステップST6と、温度制御ステップST6と並行に測定ステップST7を行う。測定ステップST7では、温度測定素子26Aにより被測定環境雰囲気の気体温度を測定する温度測定ステップST7Aと、相対湿度測定素子27Aにより被測定環境雰囲気の気体の相対湿度を測定する相対湿度測定ステップST7Bを並行に行う。尚
、温度制御ステップST6においては、発熱素子25の加熱に限定されず、発熱素子25の加熱を中止することによる冷却でも良い。そして、実現可能な被測定雰囲気の気体の目標温度を持たせて発熱素子25による温度制御を行っても良い。
Next, the data acquisition step ST5 is started in the relative humidity estimation process. In the data acquisition step ST5, the temperature control step ST6 for controlling the gas temperature of the ambient atmosphere to be measured by controlling the heating temperature of the heating element 25, and the measurement step ST7 are performed in parallel with the temperature control step ST6. In the measurement step ST7, a temperature measurement step ST7A for measuring the gas temperature in the measurement environment atmosphere with the temperature measurement element 26A, and a relative humidity measurement step ST7B for measuring the relative humidity of the gas in the measurement environment atmosphere with the relative humidity measurement element 27A. Do it in parallel. Note that the temperature control step ST6 is not limited to heating the heat generating element 25, and may be cooling by stopping the heating of the heat generating element 25. Then, the temperature control by the heating element 25 may be performed with a target temperature of the gas in the atmosphere to be measured that can be realized.
 ここで数式1を変形すると相対湿度を算出する以下の数式2が得られる。温度制御ステップST6前の状態を状態A、温度制御ステップST6中の状態を状態Bとすると、状態Bにおける相対湿度を推定する以下の数式3が得られる。 Here, when Equation 1 is transformed, the following Equation 2 for calculating the relative humidity is obtained. Assuming that the state before the temperature control step ST6 is the state A and the state during the temperature control step ST6 is the state B, the following Equation 3 for estimating the relative humidity in the state B is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
数式3においてRHBestimateは状態Bにおける被測定環境雰囲気の相対湿度[%RH]
、TempAは状態Aにおける被測定環境雰囲気の温度[℃]、ΔTempは状態Bにお
ける被測定環境雰囲気の温度とTempAの温度差 [℃]である。
In Equation 3, RH Bestimate is the relative humidity [% RH] of the measured ambient atmosphere in state B.
, Temp A is a temperature [° C.] of the measured environment atmosphere in the state A, and ΔTemp is a temperature difference [° C.] between the temperature of the measured environment atmosphere and the Temp A in the state B.
 相対湿度推定値算出ステップST8は、絶対水分量算出ステップST4で得られた状態Aにおける絶対水分量と、温度測定ステップST7Aで得られた状態Bにおける温度を数式3に当てはめることで、状態Bにおける相対湿度の推定値31Bを算出する。これは、被測定雰囲気の気体が交換状態でない場合、絶対水分量は状態Aと状態Bで変化しないため、理想的な相対湿度出力特性33に従うことを利用している。この際、絶対水分量算出ステップST4と同様に、Pressは1気圧(101325[Pa])とする。すなわ
ち、相対湿度推定値算出ステップST8は、状態Aにおける相対湿度の実測値31Aから
、状態Bにおける相対湿度の推定値31Bを算出する。尚、図5(b)では状態Aは温度25℃の場合を仮定しているが、この限りではない。
Relative humidity estimation value calculation step ST8 applies the absolute water content in state A obtained in absolute water content calculation step ST4 and the temperature in state B obtained in temperature measurement step ST7A to Equation 3 so that An estimated value 31B of relative humidity is calculated. This is based on the fact that the absolute moisture content does not change between the state A and the state B when the gas in the atmosphere to be measured is not in the exchange state, so that the ideal relative humidity output characteristic 33 is obeyed. At this time, as in the absolute water content calculation step ST4, Press is set to 1 atm (101325 [Pa]). That is, the estimated relative humidity value calculating step ST8 calculates the estimated relative humidity value 31B in the state B from the measured actual humidity value 31A in the state A. In FIG. 5B, it is assumed that the state A is a temperature of 25 ° C., but this is not the case.
 次に、特性診断プロセスにおいて相対湿度差分算出ステップST9が行われる。相対湿度差分算出ステップST9は、相対湿度推定値算出ステップST8で算出された状態Bにおける相対湿度の推定値31Bと、相対湿度測定ステップST7Bで実際に測定された状態Bにおける相対湿度の実測値32Aを比較し、実測値と推定値の差分から状態Bにおける特性悪化量34を算出する。 Next, a relative humidity difference calculating step ST9 is performed in the characteristic diagnosis process. The relative humidity difference calculation step ST9 includes an estimated value 31B of the relative humidity in the state B calculated in the estimated relative humidity value calculation step ST8 and an actual measured value 32A of the relative humidity in the state B actually measured in the relative humidity measurement step ST7B. And the characteristic deterioration amount 34 in the state B is calculated from the difference between the actually measured value and the estimated value.
 特性診断プロセスでは、例えば特性悪化量34がある閾値以上の場合に、補正が必要な程度相対湿度検出素子の検出精度が悪化しているか否かを判断し、相対湿度補正へと進む
In the characteristic diagnosis process, for example, when the characteristic deterioration amount 34 is equal to or greater than a certain threshold value, it is determined whether or not the detection accuracy of the relative humidity detection element has deteriorated to the extent that correction is necessary, and the process proceeds to relative humidity correction.
 相対湿度補正について、図7を用いて説明する。相対湿度補正は、特性診断での結果に基づき、相対湿度出力補正プロセスを実行することにより達成する。ここで、基準点40Aは、状態Aにおける測定点に該当し、第一の診断点40Bは、状態Bにおける測定点に該当する。 The relative humidity correction will be described with reference to FIG. Relative humidity correction is achieved by executing a relative humidity output correction process based on the result of the characteristic diagnosis. Here, the reference point 40A corresponds to the measurement point in the state A, and the first diagnosis point 40B corresponds to the measurement point in the state B.
 相対湿度出力補正プロセスは差分補正ステップST10を有する。差分補正ステップST10は、状態Bにおける特性悪化量34を状態Bにおける相対湿度に対して補正をすることで、状態Bにおける測定誤差を低減することが可能となる。或いは、差分補正ステップST10は、相対湿度全域に対して補正をし、第一の診断点を合わせこんだ相対湿度出力特性42を得ることで、状態Bにおける測定誤差を低減することが可能となる。 The relative humidity output correction process has a difference correction step ST10. In the difference correction step ST10, the measurement error in the state B can be reduced by correcting the characteristic deterioration amount 34 in the state B with respect to the relative humidity in the state B. Alternatively, the difference correction step ST10 corrects the entire relative humidity and obtains the relative humidity output characteristic 42 in which the first diagnostic point is combined, thereby reducing the measurement error in the state B. .
 本発明の第一実施例では、温度制御後における推定値と実測値を用いて特性悪化量を算出しており、相対湿度測定装置内のメモリに固有の相対湿度値における基準データを持たせることなく、任意の相対湿度で相対湿度全域の特性悪化量を補正して誤差量を軽減することが可能となる。 In the first embodiment of the present invention, the characteristic deterioration amount is calculated using the estimated value and the actual measurement value after the temperature control, and the memory in the relative humidity measuring device has reference data for the specific relative humidity value. Instead, the amount of error can be reduced by correcting the characteristic deterioration amount in the entire relative humidity at an arbitrary relative humidity.
 また、相対湿度値を任意の値に制御することは難しく、例えば比較的制御が簡単な相対湿度0%とする制御を行うとすると高温に被測定環境雰囲気を加熱する必要があるところ
、本発明の第一実施例では、被測定環境雰囲気の気体の温度を制御し、温度制御後の相対湿度の推定値と実測値とから特性悪化量を算出する構成としているため、高温に加熱せずとも特性悪化量を算出することが可能となる。
In addition, it is difficult to control the relative humidity value to an arbitrary value. For example, when the control is performed so that the relative humidity is 0% which is relatively easy to control, it is necessary to heat the measurement environment atmosphere to a high temperature. In the first embodiment, the temperature of the gas in the ambient atmosphere to be measured is controlled, and the characteristic deterioration amount is calculated from the estimated value and the measured value of the relative humidity after the temperature control. It is possible to calculate the characteristic deterioration amount.
 さらに、相対湿度値を任意の値に制御することは難しいため、ある状態における相対湿度出力を基準値と比較する構成とすると、特性悪化量を求められる点が限られてしまうところ、本発明の第一実施例では、温度制御後の相対湿度の推定値と実測値を用いる構成としているため、種種の相対湿度での特性悪化量を求めることが可能となる。 Furthermore, since it is difficult to control the relative humidity value to an arbitrary value, when the relative humidity output in a certain state is compared with the reference value, the point at which the characteristic deterioration amount is obtained is limited. In the first embodiment, the estimated relative humidity value after actual temperature control and the actual measurement value are used. Therefore, it is possible to obtain the characteristic deterioration amount at various relative humidity.
 そのため、本発明の第一実施例によれば、高温に加熱することなく精度及び信頼性の高い湿度測定装置を提供することができる。 Therefore, according to the first embodiment of the present invention, it is possible to provide a humidity measuring apparatus with high accuracy and reliability without heating to a high temperature.
 本発明の第二実施例について、図8(a)と図9を用いて説明する。なお、第一実施例と同様の構成については説明を省略する。 A second embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the first embodiment is omitted.
 図8(a)に示すように、相対湿度差分算出ステップST9が実行された後、差分計算回数診断ステップST11が実行される。差分計算回数診断ステップST11は、直前の特性悪化量の算出処理が初回か否かを判断し、初回であると判断した場合、次点での特性悪化量を算出するべく、特性悪化量算出処理初回時合流ポイントP2を経由して被測定環境雰囲気交換状態判断ステップST17に進む。 As shown in FIG. 8A, after the relative humidity difference calculation step ST9 is executed, the difference calculation frequency diagnosis step ST11 is executed. The difference calculation frequency diagnosis step ST11 determines whether or not the immediately preceding characteristic deterioration amount calculation process is the first time, and if it is determined to be the first time, the characteristic deterioration amount calculation process is performed to calculate the characteristic deterioration amount at the next point. The process proceeds to the measurement environment atmosphere exchange state determination step ST17 via the first time confluence point P2.
 被測定環境雰囲気交換状態判断ステップST17は、被測定雰囲気状態把握ステップ16の結果に基づき、被測定環境雰囲気の気体が交換されているか否かを判断する。被測定環境雰囲気交換状態判断ステップST17において被測定環境雰囲気の気体が交換されていると判断した場合は、補正処理終了時合流ポイントP3へ遷移して終了する。一方、被測定環境雰囲気交換状態判断ステップST17において被測定環境雰囲気の気体が交換されていないと判断した場合は、補正処理継続時処理合流ポイントP1へ遷移する。P1へ遷移した後は、初回時と相対湿度が異なるようにするため、初回時とは異なる温度となるよう発熱素子25の加熱温度制御をST6で行い、ST6と並行してST7、ST8、ST9を実行する。これにより、初回時とは異なる相対湿度における特性悪化量を算出する
In the measurement environment atmosphere exchange state determination step ST17, it is determined whether or not the gas in the measurement environment atmosphere is exchanged based on the result of the measurement atmosphere state grasping step 16. If it is determined in the measurement environment atmosphere exchange state determination step ST17 that the gas in the measurement environment atmosphere has been exchanged, the process proceeds to the confluence point P3 at the end of the correction process and ends. On the other hand, when it is determined in the measurement environment atmosphere exchange state determination step ST17 that the gas in the measurement environment atmosphere has not been exchanged, the process proceeds to the process merging point P1 when the correction process is continued. After the transition to P1, in order to make the relative humidity different from the first time, the heating temperature control of the heating element 25 is performed in ST6 so that the temperature is different from the first time, and in parallel with ST6, ST7, ST8, ST9 Execute. Thereby, the characteristic deterioration amount in relative humidity different from the first time is calculated.
 ここで、差分計算回数診断ステップST11において特性悪化量の計算が初回以降であると判断した場合、被測定環境相対湿度0%の特性悪化量算出ステップST12に進む。被測定環境相対湿度0%の特性悪化量算出ステップST12は、第一の診断点40Bと、第二の診断点40Cの2点を数式4に当てはめることで、特性悪化時の相対湿度出力特性40を求める。 Here, when it is determined in the difference calculation number diagnosis step ST11 that the characteristic deterioration amount is calculated after the first time, the process proceeds to the characteristic deterioration amount calculation step ST12 of the measured environment relative humidity 0%. The characteristic deterioration amount calculation step ST12 of the measured environment relative humidity of 0% is performed by applying two points of the first diagnosis point 40B and the second diagnosis point 40C to Equation 4 to thereby calculate the relative humidity output characteristic 40 at the time of characteristic deterioration. Ask for.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
ここで、yは特性悪化量[%RH]、RHは被測定環境の相対湿度[%RH]、RH1
第一の診断点40Bにおける相対湿度[%RH]、RH2は第二の診断点40Cにおける
相対湿度[%RH]、Er1は第一の診断点40Bにおける特性悪化量[%RH]、Er2
第二の診断点40Cにおける特性悪化量[%RH]である。この数式4のRHに0を代入することにより、被測定環境雰囲気の相対湿度が0%の際の特性悪化量41が算出される
Here, y is the characteristic deterioration amount [% RH], RH is the relative humidity [% RH] of the measured environment, RH 1 is the relative humidity [% RH] at the first diagnostic point 40B, and RH 2 is the second diagnosis. Relative humidity [% RH] at point 40C, Er1 is the characteristic deterioration amount [% RH] at the first diagnosis point 40B, and Er2 is the characteristic deterioration amount [% RH] at the second diagnosis point 40C. By substituting 0 for RH in Equation 4, the characteristic deterioration amount 41 when the relative humidity of the ambient atmosphere to be measured is 0% is calculated.
 特性悪化量算出ステップST12の後に、特性悪化量補正ステップ13、14に進む。 After the characteristic deterioration amount calculation step ST12, the process proceeds to the characteristic deterioration amount correction steps 13 and 14.
 特性悪化量補正ステップ13は、測定環境雰囲気の相対湿度が0%の際の特性悪化量41を相対湿度全域に補正することにより零点調整を行い、零点調整後の相対湿度出力特性43を得る。 Characteristic deterioration amount correction step 13 performs zero point adjustment by correcting the characteristic deterioration amount 41 when the relative humidity of the measurement environment atmosphere is 0% over the entire relative humidity, and obtains the relative humidity output characteristic 43 after the zero point adjustment.
 特性悪化量補正ステップ14は、零点(相対湿度0%)以外に関しても補正を行う為、数式4の傾きを利用し、数式5に示す補正量算出式を用いて任意の相対湿度における補正量を算出する。 In the characteristic deterioration amount correction step 14, correction other than the zero point (relative humidity 0%) is also performed. Therefore, the correction amount at an arbitrary relative humidity is calculated using the correction amount calculation formula shown in Equation 5 using the slope of Equation 4. calculate.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
数式5に置いてuは補正量[%RH]、RH1は第一の診断点40Bにおける相対湿度[
%RH]、RH2は第二の診断点40Cにおける相対湿度[%RH]、Er1は第一の診断
点40Bにおける特性悪化量[%RH]、Er2は第二の診断点40Cにおける特性悪化量
[%RH]である。
In Equation 5, u is the correction amount [% RH], and RH 1 is the relative humidity at the first diagnostic point 40B [
% RH], RH 2 is the relative humidity [% RH in the second diagnostic point 40C], E r1 is characteristic deterioration amount in the first diagnostic point 40B [% RH], the E r2 characteristic in said second diagnostic point 40C Deterioration amount [% RH].
 特性悪化量補正ステップ14は、数式5を用いることにより、零点調整後の相対湿度出力特性43に対して相対湿度0%を基点とし、相対湿度出力特性43の傾きを利用して相対湿度全域に対する補正量が算出できる。これにより相対湿度出力特性44を得る。 The characteristic deterioration amount correction step 14 uses Equation 5 to set the relative humidity output characteristic 43 after the zero adjustment as a base point relative to 0% relative humidity, and uses the slope of the relative humidity output characteristic 43 to cover the entire relative humidity. A correction amount can be calculated. Thereby, the relative humidity output characteristic 44 is obtained.
 次に、補正処理継続判断ステップST15に進み、補正処理を継続するか否かの判断を行う。補正処理継続判断ステップST15で補正処理を終了すると判断した場合は、補正処理終了時合流ポイントP3へ遷移して特性診断並びに相対湿度補正を終了する。 Next, the process proceeds to the correction process continuation determination step ST15 to determine whether or not to continue the correction process. If it is determined in the correction process continuation determination step ST15 that the correction process is to end, the process proceeds to the confluence point P3 at the end of the correction process, and the characteristic diagnosis and the relative humidity correction are ended.
 一方、補正処理継続判断ステップST15で補正処理を継続すると判断した場合は、特性悪化量算出処理時合流ポイントP2を経由して被測定環境雰囲気交換状態判断ステップST17に進む。その後、第二の診断点40Cを得るのと同様のステップを実行し、第三以降の診断点を得る。 On the other hand, if it is determined that the correction process is to be continued in the correction process continuation determination step ST15, the process proceeds to the measured environment atmosphere exchange state determination step ST17 via the merging point P2 during the characteristic deterioration amount calculation process. Thereafter, the same steps as those for obtaining the second diagnostic point 40C are executed, and the third and subsequent diagnostic points are obtained.
 ここで特性診断点が3点以上得られた場合は、最小2乗法を用いて1次関数式を導出し
、数式4を用いた相対湿度0%の合わせ込み、数式5を用いた相対湿度全域に対する補正を行う。なお、特性診断点が3つ以上得られた場合において相対湿度全域に対する補正を行う方法は最小2乗法による1次関数式導出に限らず、多次元関数近似や各特性診断点間の傾きを夫々保持し、被測定環境雰囲気の相対湿度が0%の際の特性悪化量41推定は被測定環境雰囲気の相対湿度に最も近い特性診断点2点により算出する等、種種の方法を採用してもよい。
Here, when three or more characteristic diagnosis points are obtained, a linear function equation is derived using the least square method, the relative humidity 0% using Equation 4, and the entire relative humidity region using Equation 5. Correct for. Note that when three or more characteristic diagnostic points are obtained, the method for correcting the entire relative humidity is not limited to the derivation of the linear function expression by the least square method, but multidimensional function approximation and the slope between the characteristic diagnostic points are respectively used. Even if various methods are employed, such as the estimation of the characteristic deterioration amount 41 when the relative humidity of the measured environment atmosphere is 0% is calculated using two characteristic diagnosis points closest to the relative humidity of the measured environment atmosphere Good.
 なお、特性悪化量算出ステップST12、特性悪化量補正ステップST13、ST14を経てから第三以降の診断点を得る構成としているが、必ずしもこれに限られるものでなく、例えば、可能な範囲で診断点を得たのち、特性悪化量算出ステップST12、特性悪化量補正ステップST13、ST14を行い相対湿度全域に対する補正を行う構成としてもよい。 Note that the third and subsequent diagnostic points are obtained after the characteristic deterioration amount calculation step ST12 and the characteristic deterioration amount correction steps ST13 and ST14. However, the present invention is not necessarily limited to this. Then, the characteristic deterioration amount calculation step ST12 and the characteristic deterioration amount correction steps ST13 and ST14 may be performed to correct the entire relative humidity.
 本発明の第二実施例では、複数の相対湿度における特性悪化量を用いて特性悪化特性を算出し、複数の相対湿度における特性悪化特性に基づいて相対湿度の補正量を算出していることから、全領域の相対湿度において補正を行うことが可能であり、高精度に相対湿度を検出することが可能である。 In the second embodiment of the present invention, the characteristic deterioration characteristic is calculated using the characteristic deterioration amount at a plurality of relative humidity, and the relative humidity correction amount is calculated based on the characteristic deterioration characteristic at the plurality of relative humidity. The correction can be performed in the relative humidity of the entire region, and the relative humidity can be detected with high accuracy.
 また、相対湿度値を任意の値に制御することは難しく、例えば比較的制御が簡単な相対湿度100%とする制御を行うとすると低温に被測定環境雰囲気を冷却する必要があるところ、本発明の第一実施例では、被測定環境雰囲気の気体の温度を制御し、温度制御後の相対湿度の推定値と実測値とから特性悪化量を算出する構成としているため、低温に冷却せずとも特性悪化量を算出することが可能となる。 Further, it is difficult to control the relative humidity value to an arbitrary value. For example, when the control is performed so that the relative humidity is 100% which is relatively easy to control, it is necessary to cool the measured environment atmosphere to a low temperature. In the first embodiment, the temperature of the gas in the ambient atmosphere to be measured is controlled, and the characteristic deterioration amount is calculated from the estimated value and the measured value of the relative humidity after the temperature control. It is possible to calculate the characteristic deterioration amount.
 さらに、相対湿度値を任意の値に制御することは難しいため、相対湿度出力を予め定められた基準相対湿度値と比較する構成とすると、特性悪化量を求められる点が限られてしまうところ、本発明の第一実施例では、温度制御後の相対湿度の推定値と実測値を用いる構成としているため、種種の相対湿度での特性悪化量を求めることが可能となる。そのため、広く相対湿度の値を変えずとも複数点の特性悪化量を求めることができ、診断時間を短縮することが可能である。 Furthermore, since it is difficult to control the relative humidity value to an arbitrary value, when the relative humidity output is compared with a predetermined reference relative humidity value, the point where the characteristic deterioration amount is obtained is limited. In the first embodiment of the present invention, the estimated value and the actual measurement value of the relative humidity after temperature control are used, so that it is possible to obtain the characteristic deterioration amount at various relative humidity. Therefore, the characteristic deterioration amounts at a plurality of points can be obtained without changing the relative humidity value widely, and the diagnosis time can be shortened.
 なお、第二実施例では、温度制御ステップST6と並行して特性悪化量算出ステップST12、特性悪化量補正ステップST13、ST14を行う構成としているが、必ずしもこれに限られるものでなく、例えば、温度制御ステップST6の間に測定された複数の診断点における相対湿度の差分値をマイコン等に保存し、温度制御ステップ6が終了した後に保存された差分値を用いて特性悪化量を補正する構成としてもよい。 In the second embodiment, the characteristic deterioration amount calculation step ST12 and the characteristic deterioration amount correction steps ST13 and ST14 are performed in parallel with the temperature control step ST6. However, the present invention is not limited to this. As a configuration in which differential values of relative humidity at a plurality of diagnostic points measured during the control step ST6 are stored in a microcomputer or the like, and the characteristic deterioration amount is corrected using the differential values stored after the temperature control step 6 is completed. Also good.
 本発明の第三実施例について図8(b)を用いて説明する。なお、第一実施例及び第二実施例と同様の構成については説明を省略すると共に、制御実行者は違うが同一の処理を示す符号には末尾に‘を付加し、同様に説明を省略する。 A third embodiment of the present invention will be described with reference to FIG. In addition, while omitting the description of the same configuration as the first embodiment and the second embodiment, the control executor is different but the same processing is indicated by adding 'at the end and omitting the description similarly. .
 第三実施例では、相対湿度測定装置が実行していた算出、補正の一部、或いは全部を制御装置に実行させている。 In the third embodiment, a part or all of the calculation and correction performed by the relative humidity measuring device are executed by the control device.
 図8(b)に示すように被測定雰囲気状態把握ステップST1、及び、被測定雰囲気状態把握ステップST16を除いた夫々の処理を制御装置内で行っても良く、その分担は処理が欠落すること無く行われる場合においてはどのような割り当てでも良い。これにより
、処理をある制御実行者に集中させることなく実行でき、相対湿度測定装置制御装置、及び、制御装置の双方の負荷を軽減することができる。
As shown in FIG. 8 (b), each process except for the measured atmosphere state grasping step ST1 and the measured atmosphere state grasping step ST16 may be performed in the control device, and the share of the processing is lost. Any assignment can be made if it is done without any problem. Thereby, processing can be performed without concentrating on a certain control execution person, and the load of both a relative humidity measuring device control apparatus and a control apparatus can be reduced.
 本発明の第四実施例について図10から図12を用いて説明する。なお、第一実施例から第三実施例と同様の構成については説明を省略する。 A fourth embodiment of the present invention will be described with reference to FIGS. Note that a description of the same configurations as in the first to third embodiments will be omitted.
 本発明の第四実施例では、吸入空気流量測定装置と相対湿度検出装置を同一のハウジング内に一体に設ける多機能型の構成としている。図11に示すように、吸入空気流量検出素子115、湿度検出素子27A、温度検出素子26B、吸入空気温度測定素子109、チップパッケージコネクタ113、大規模集積回路116が一体に樹脂モールドされチップパッケージ114を形成している。チップパッケージ114は、ハウジング101にインサートモールドすることによりハウジング101に支持される。 In the fourth embodiment of the present invention, an intake air flow rate measuring device and a relative humidity detecting device are integrated into a single housing in the same housing. As shown in FIG. 11, an intake air flow rate detection element 115, a humidity detection element 27A, a temperature detection element 26B, an intake air temperature measurement element 109, a chip package connector 113, and a large-scale integrated circuit 116 are integrally resin-molded to form a chip package 114. Is forming. The chip package 114 is supported by the housing 101 by insert molding in the housing 101.
 図10に示すように、多機能型の吸入空気流量測定装置は、コネクタ100と、ハウジング101と、ハウジング支持部102と、上面カバー103と、前面カバー105Aと
、背面カバー105Bと、主空気通路1を流れる吸入空気の一部を取り込む第一バイパス106と、相対湿度測定素子27A並びに温度測定素子26Aが配置される第二バイパス107と、ハウジング101にインサートモールドされたチップパッケージ114と、外部と電気的に接続するためのリードフレーム112と、を有している。前面カバー105Aは第二バイパス107への空気の取り込み口107Bを有していて、取り込み口107Bから取り込まれた空気の水分量を相対湿度測定素子27A並びに温度測定素子26Aを用いて検出する。
As shown in FIG. 10, the multifunctional intake air flow rate measuring device includes a connector 100, a housing 101, a housing support 102, a top cover 103, a front cover 105A, a back cover 105B, and a main air passage. A first bypass 106 that takes in a portion of the intake air flowing through 1, a second bypass 107 in which a relative humidity measuring element 27A and a temperature measuring element 26A are arranged, a chip package 114 that is insert-molded in the housing 101, And a lead frame 112 for electrical connection. The front cover 105A has an air intake port 107B for the second bypass 107, and detects the moisture content of the air taken in from the intake port 107B using the relative humidity measuring element 27A and the temperature measuring element 26A.
 本発明の第四実施例では、同一のハウジング内に空気流量測定装置と相対湿度測定装置を集約する構成をとることにより、相対湿度測定装置内の吸入空気流量測定装置115の信号により被測定環境雰囲気の気体が交換されているか否かを知ることができる。そのため、図12に示したように被測定雰囲気状態把握ステップ16を制御装置21で行わずに補正処理の全てを相対湿度測定装置22内のみで行うことができ、制御装置21では補正処理を意識すること無く相対湿度測定装置22の出力値を用いることができる。 In the fourth embodiment of the present invention, the air flow measuring device and the relative humidity measuring device are integrated in the same housing, so that the environment to be measured is determined by the signal of the intake air flow measuring device 115 in the relative humidity measuring device. It is possible to know whether the gas in the atmosphere is exchanged. Therefore, as shown in FIG. 12, all the correction processes can be performed only in the relative humidity measuring device 22 without performing the measured atmosphere state grasping step 16 by the control device 21, and the control device 21 is conscious of the correction processing. The output value of the relative humidity measuring device 22 can be used without doing so.
 本発明の第五実施例について図10から図12を用いて説明する。なお、第四実施例と同様の構成については説明を省略する。 A fifth embodiment of the present invention will be described with reference to FIGS. The description of the same configuration as that of the fourth embodiment is omitted.
 本発明の第五実施例は、吸入空気流量測定装置、相対湿度検出装置に加えて圧力測定装置を同一のハウジング内に一体に設ける多機能型の構成としている。図10に示されるように、制御回路基板111に搭載された圧力検出素子110はハウジング101の主空気通路1外に位置する箇所に搭載される。ハウジング101は、主空気通路と連通する第三のバイパス108を有しており、第三のバイパスに取り込まれた空気の圧力を圧力検出素子101で測定する。 The fifth embodiment of the present invention has a multi-functional configuration in which a pressure measuring device is integrally provided in the same housing in addition to an intake air flow rate measuring device and a relative humidity detecting device. As shown in FIG. 10, the pressure detection element 110 mounted on the control circuit board 111 is mounted at a location located outside the main air passage 1 of the housing 101. The housing 101 has a third bypass 108 communicating with the main air passage, and the pressure detecting element 101 measures the pressure of the air taken into the third bypass.
 本発明の第五実施例によれば、数式1及び数式2、数式3のPressを都度適切に設定することができ、Pressを1気圧101325[Pa]と固定値を利用する場合よりも精度を向上させることができる。また、補正処理実行中に気圧が変化する場合においても本手法は有効なものとなる。 According to the fifth embodiment of the present invention, it is possible to appropriately set the pressures of the mathematical formulas 1, 2 and 3 each time, and the pressure is set to 1 atm 101325 [Pa], which is more accurate than the case where a fixed value is used. Can be improved. The present technique is also effective when the atmospheric pressure changes during the execution of the correction process.
 本発明の第六実施例について説明する。なお、第二実施例或いは第三実施例と同様の構成については説明を省略する。 A sixth embodiment of the present invention will be described. Note that the description of the same configuration as in the second embodiment or the third embodiment is omitted.
 本発明の第六実施例では、相対湿度推定値算出ステップST8にて用いる絶対水分量を
、絶対水分量算出ステップST4で得られた絶対水分量ではなく、測定ステップST7で得られる温度と相対湿度を用いて都度算出する構成としている。これにより前回特性診断を行った際の絶対水分量との差分を小さく取ることができ、より精度を向上させることができる。
In the sixth embodiment of the present invention, the absolute moisture amount used in the relative humidity estimated value calculation step ST8 is not the absolute moisture amount obtained in the absolute moisture amount calculation step ST4, but the temperature and relative humidity obtained in the measurement step ST7. It is set as the structure calculated every time using. As a result, the difference from the absolute water content when the previous characteristic diagnosis was performed can be made small, and the accuracy can be further improved.
1          主空気通路
2          主空気通路壁
3          相対湿度測定装置取付台座
11         ハウジング支持部
12         ネジ穴
13         コネクタ
14         ハウジング
15         カバー
16         メインバイパス
16A        メインバイパスA口
16B        メインバイパスB口
17         サブバイパス
17A        サブバイパスA口
17B        サブバイパスB口
18         Оリング
21         制御装置
22         相対湿度測定装置
23         相対湿度測定装置制御装置
24         発熱素子駆動部
25         発熱素子
26         温度
26A        温度測定素子
26B        温度信号処理部
26C        温度出力部
27         相対湿度
27A        相対湿度測定素子
27B        相対湿度信号処理部
27C        相対湿度出力部
28         絶対水分量
28B        絶対水分量算出部
28C        絶対水分量出力部
29A        特性診断処理部
29B        相対湿度補正量算出部
30         出力特性
31         第一の測定点
31A        状態Aにおける相対湿度の実測値
31B      状態Bにおける相対湿度の推定値
32         第二の測定点
32A      状態Bにおける相対湿度の実測値
33         理想的な相対湿度出力値
34         特性悪化量
40         特性悪化時の相対湿度出力特性
40A        特性診断ステップを実行する際の基準点
40B        第一の診断点
40C        第二の診断点
41         被測定環境雰囲気の相対湿度が0%の際の特性悪化量
42         第一の診断点を合わせこんだ相対湿度出力特性
43      零点調整後の相対湿度出力特性
44      出力特性の傾きを0とし、相対湿度全域に対して補正した相対湿度出力特性
100        コネクタ
101        ハウジング
102        ハウジング支持部
103        上面カバー
104        Oリング
105A     前面カバー
105B     背面カバー
106        第一バイパス
107        第二バイパス
107B     取り込み口
108        第三バイパス
109        吸入空気温度測定素子
110        圧力測定素子
111        制御回路基板
112        リードフレーム
113        チップパッケージコネクタ
114        チップパッケージ
115        吸入空気流量測定素子
116        大規模集積回路
ST1        被測定雰囲気状態把握ステップ
ST1’     被測定雰囲気状態把握ステップ
ST2        被測定環境雰囲気交換状態判断ステップ
ST2’     被測定環境雰囲気交換状態判断ステップ
ST3        測定ステップ
ST3A     温度測定ステップ
ST3B     相対湿度測定ステップ
ST4        絶対水分量算出ステップ
ST4’     絶対水分量算出ステップ
ST5        データ取得ステップ
ST5’     温度制御中データ取得ステップ
ST6        温度制御ステップ
ST6’     温度制御ステップ
ST7        測定ステップ
ST7A     温度測定ステップ
ST7B     相対湿度測定ステップ
ST8        相対湿度推定値算出ステップ
ST8’     相対湿度推定値算出ステップ
ST9      相対湿度差分算出ステップ
ST9’     相対湿度差分算出ステップ
ST10     差分補正ステップ
ST11     差分計算回数診断ステップ
ST11’    差分計算回数診断ステップ
ST12     被測定環境相対湿度0%の特性悪化量算出ステップ
ST12’    被測定環境相対湿度0%の特性悪化量算出ステップ
ST13     特性悪化量補正ステップ
ST13’    特性悪化量補正ステップ
ST14     特性悪化量補正ステップ
ST14’    特性悪化量補正ステップ
ST15     補正処理継続判断ステップ
ST15’    補正処理継続判断ステップ
ST16     被測定雰囲気状態把握ステップ
ST17     被測定環境雰囲気交換状態判断ステップ
ST17’    被測定環境雰囲気交換状態判断ステップ
P1         補正処理継続時合流ポイント
P1’        補正処理継続時処理合流ポイント
P2      特性悪化量算出処理初回時合流ポイント
P2’      相対湿度差分算出初回時合流ポイント
P3         補正処理終了時合流ポイント
P3’        補正処理終了時処合流ポイント
DESCRIPTION OF SYMBOLS 1 Main air passage 2 Main air passage wall 3 Relative humidity measuring device mounting base 11 Housing support part 12 Screw hole 13 Connector 14 Housing 15 Cover 16 Main bypass 16A Main bypass A port 16B Main bypass B port 17 Sub bypass 17A Sub bypass A port 17B Sub-bypass B port 18 O-ring 21 Controller 22 Relative humidity measuring device 23 Relative humidity measuring device controller 24 Heating element drive unit 25 Heating element 26 Temperature 26A Temperature measuring element 26B Temperature signal processing unit 26C Temperature output unit 27 Relative humidity 27A Relative humidity measuring element 27B Relative humidity signal processing unit 27C Relative humidity output unit 28 Absolute moisture Amount 28B Absolute moisture amount calculation unit 28C Absolute moisture amount output unit 29A Characteristic diagnosis processing unit 29B Relative humidity correction amount calculation unit 30 Output characteristic 31 First measurement point 31A Measured value of relative humidity in state A 31B Relative humidity in state B Estimated value 32 Second measurement point 32A Measured value of relative humidity in state B 33 Ideal relative humidity output value 34 Characteristic deterioration amount 40 Relative humidity output characteristic 40A when characteristic deteriorates Reference point 40B when executing characteristic diagnosis step First diagnostic point 40C Second diagnostic point 41 Characteristic deterioration amount 42 when relative humidity of measured environment atmosphere is 0% Relative humidity output characteristic 43 incorporating first diagnostic point Relative humidity output after zero adjustment Characteristic 44 Output characteristic slope is 0, relative humidity Relative humidity output characteristics corrected for the entire area 100 Connector 101 Housing 102 Housing support 103 Top cover 104 O-ring 105A Front cover 105B Rear cover 106 First bypass 107 Second bypass 107B Inlet 108 Third bypass 109 Measurement of intake air temperature Element 110 Pressure measurement element 111 Control circuit board 112 Lead frame 113 Chip package connector 114 Chip package 115 Intake air flow rate measurement element 116 Large scale integrated circuit ST1 Measurement atmosphere state grasping step ST1 'Measurement atmosphere state grasping step ST2 Measurement environment atmosphere Replacement State Judgment Step ST2 'Measurement Environment Atmosphere Exchange State Determination Step ST3 Measurement step ST3A Temperature measurement step ST3B Relative humidity measurement step ST4 Absolute moisture content calculation step ST4 ′ Absolute moisture content calculation step ST5 Data acquisition step ST5 ′ Temperature control data acquisition step ST6 Temperature control step ST6 ′ Temperature control step ST7 Measurement Step ST7A Temperature measurement step ST7B Relative humidity measurement step ST8 Relative humidity estimation value calculation step ST8 ′ Relative humidity estimation value calculation step ST9 Relative humidity difference calculation step ST9 ′ Relative humidity difference calculation step ST10 Difference correction step ST11 Difference calculation frequency diagnosis step ST11 ′ Difference calculation frequency diagnosis step ST12 Characteristic deterioration amount calculation step ST12 ′ to be measured environment relative humidity 0% Characteristic deterioration amount calculation step ST13 of constant environment relative humidity 0% Characteristic deterioration amount correction step ST13 ′ Characteristic deterioration amount correction step ST14 Characteristic deterioration amount correction step ST14 ′ Characteristic deterioration amount correction step ST15 Correction processing continuation determination step ST15 ′ Correction processing continuation determination Step ST16 Measured atmosphere state grasping step ST17 Measured environment atmosphere exchange state determination step ST17 ′ Measured environment atmosphere exchange state determination step P1 Convergence point P1 ′ when correction processing is continued Processing point P2 when continuation of correction process Characteristic deterioration calculation process Time merging point P2 'Relative humidity difference calculation first time merging point P3 Completion processing end merging point P3' Compensation processing end merging point

Claims (6)

  1.  相対湿度信号と温度信号を用いて絶対水分量を算出する湿度測定装置において、
     第一の状態で算出した絶対水分量と第二の状態で測定した温度を用いて第二の状態における相対湿度の推定値を算出し、該推定値と第二の状態で測定した相対湿度の実測値を比較することにより第二の状態における特性悪化量を算出する特性診断部と、
     前記特性悪化量を用いて相対湿度の測定値を補正する補正部と、を備えることを特徴とする湿度測定装置。
    In a humidity measuring device that calculates the absolute moisture content using a relative humidity signal and a temperature signal,
    Using the absolute moisture content calculated in the first state and the temperature measured in the second state, an estimated value of the relative humidity in the second state is calculated, and the estimated value and the relative humidity measured in the second state are calculated. A characteristic diagnosis unit that calculates a characteristic deterioration amount in the second state by comparing the measured values;
    A humidity measuring device comprising: a correction unit that corrects a measured value of relative humidity using the characteristic deterioration amount.
  2.  前記特性診断部は、複数の状態における特性悪化量を算出し、
     前記補正部は、前記複数の状態における特性悪化量を用いて相対湿度の測定値を補正することを特徴とする請求項1に記載の湿度測定装置。
    The characteristic diagnosis unit calculates characteristic deterioration amounts in a plurality of states,
    The humidity measuring apparatus according to claim 1, wherein the correction unit corrects a measured value of relative humidity using the characteristic deterioration amounts in the plurality of states.
  3.  発熱部の発熱温度を制御することにより前記第一の状態から前記第二の状態とすることを特徴とする請求項1または請求項2に記載の湿度測定装置。 3. The humidity measuring apparatus according to claim 1, wherein the second state is changed from the first state by controlling a heat generation temperature of the heat generating portion.
  4.  前記補正部は、最小二乗法により求められる誤差特性を用いて前記出力を補正することを特徴とする請求項2に記載の湿度測定装置。 The humidity measuring apparatus according to claim 2, wherein the correction unit corrects the output using an error characteristic obtained by a least square method.
  5.  前記特性診断部は、被測定環境雰囲気の気体が交換状態でないと判断した場合に前記特性悪化量を算出することを特徴とする請求項1乃至請求項4の何れかに記載の湿度測定装置。 The humidity measuring device according to any one of claims 1 to 4, wherein the characteristic diagnosis unit calculates the characteristic deterioration amount when it is determined that the gas in the ambient atmosphere to be measured is not in an exchanged state.
  6.  前記補正部は、前記特性悪化量がある値以上の場合に補正を行うことを特徴とする請求項1乃至請求項5の何れかに記載の湿度測定装置。 6. The humidity measuring apparatus according to claim 1, wherein the correction unit performs correction when the characteristic deterioration amount is a certain value or more.
PCT/JP2015/059025 2014-04-16 2015-03-25 Humidity measurement device WO2015159663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513692A JP6294960B2 (en) 2014-04-16 2015-03-25 Humidity measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-084157 2014-04-16
JP2014084157 2014-04-16

Publications (1)

Publication Number Publication Date
WO2015159663A1 true WO2015159663A1 (en) 2015-10-22

Family

ID=54323875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059025 WO2015159663A1 (en) 2014-04-16 2015-03-25 Humidity measurement device

Country Status (2)

Country Link
JP (1) JP6294960B2 (en)
WO (1) WO2015159663A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201293A (en) * 2016-04-29 2017-11-09 株式会社デンソー Determination device
JP2018124115A (en) * 2017-01-31 2018-08-09 株式会社デンソー Humidity measurement device, internal combustion engine controller, and abnormality detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199641A (en) * 1998-12-29 2000-07-18 Daikin Ind Ltd Relative humidity detector and air conditioning indoor unit having the same
JP2007333750A (en) * 2000-10-20 2007-12-27 Fisher & Paykel Healthcare Ltd System and method of automatically inspecting accuracy of gas absolute humidity sensor for aspiration
JP2013529776A (en) * 2010-06-22 2013-07-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Humidity sensor inspection method and sensor module therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230508B2 (en) * 2009-03-31 2013-07-10 アズビル株式会社 Degradation diagnosis method for humidity sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199641A (en) * 1998-12-29 2000-07-18 Daikin Ind Ltd Relative humidity detector and air conditioning indoor unit having the same
JP2007333750A (en) * 2000-10-20 2007-12-27 Fisher & Paykel Healthcare Ltd System and method of automatically inspecting accuracy of gas absolute humidity sensor for aspiration
JP2013529776A (en) * 2010-06-22 2013-07-22 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Humidity sensor inspection method and sensor module therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEIJI HANZAWA ET AL.: "Developments in Precision Power Train Sensors", HITACHI HYORON, vol. 95, no. 11, 1 November 2013 (2013-11-01), pages 763 - 767 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201293A (en) * 2016-04-29 2017-11-09 株式会社デンソー Determination device
JP2018124115A (en) * 2017-01-31 2018-08-09 株式会社デンソー Humidity measurement device, internal combustion engine controller, and abnormality detector

Also Published As

Publication number Publication date
JPWO2015159663A1 (en) 2017-04-13
JP6294960B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6386589B2 (en) Humidity measuring device
JP4177183B2 (en) Thermal air flow meter
JP6464709B2 (en) Air flow meter
WO2013105124A1 (en) Flow rate measurement device
JP5914388B2 (en) Thermal fluid measuring device
US10754361B2 (en) Flow rate control apparatus, flow rate control method, and program for a flow rate control apparatus
JP6686276B2 (en) Air flow meter
JP2006242748A (en) Heating resistor type air flow measurement apparatus and its measurement error correction method
JP6294960B2 (en) Humidity measuring device
US8656764B2 (en) Flow-rate measuring apparatus
JP2006343136A (en) Partial pressure detector of steam, suction flow rate detector of engine and internal pressure detector of collector
US7096723B2 (en) Method and device for determining the throughput of a flowing medium
US10724881B2 (en) Thermal air flow meter with adjustment of pulsation correction function
WO2018142775A1 (en) Humidity measurement device, control device for internal-combustion engine, and abnormality detection device
JP4279130B2 (en) Heating resistor type fluid flow measuring device
JP6582769B2 (en) Electronics
JP6201901B2 (en) Air flow measurement device
CN111954793A (en) Thermal flowmeter
WO2019107217A1 (en) Intake air amount measuring device and method
KR20210076086A (en) Method, system and computer program for offset correction of yaw rate sensor signal of yaw rate sensor
JP2010190715A (en) Air flow rate measuring apparatus
JP2021103150A (en) Measurement control device
JP2003004496A (en) Flow rate measuring instrument
JP2008045455A (en) Temperature estimation device and engine control system
WO2022230300A1 (en) Physical quantity detection device, signal processing device, and signal processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780399

Country of ref document: EP

Kind code of ref document: A1