WO2015158019A1 - 用于检测人体节律振动的传感器 - Google Patents

用于检测人体节律振动的传感器 Download PDF

Info

Publication number
WO2015158019A1
WO2015158019A1 PCT/CN2014/076772 CN2014076772W WO2015158019A1 WO 2015158019 A1 WO2015158019 A1 WO 2015158019A1 CN 2014076772 W CN2014076772 W CN 2014076772W WO 2015158019 A1 WO2015158019 A1 WO 2015158019A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
human body
piezoelectric film
integrated circuit
detecting
Prior art date
Application number
PCT/CN2014/076772
Other languages
English (en)
French (fr)
Inventor
曹金平
陈岩
何国祥
Original Assignee
天津普仁万合信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津普仁万合信息技术有限公司 filed Critical 天津普仁万合信息技术有限公司
Publication of WO2015158019A1 publication Critical patent/WO2015158019A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • the present invention relates to a human body detecting device, and more particularly to a sensor for detecting human body rhythm vibration.
  • the pulse wave is one of the important parameters of the human body's 13 ⁇ 41 tube system.
  • the blood flow from the ventricle into the aorta will propagate along the arterial line in the form of a wave of autonomous active roots.
  • This wave is the pulse wave.
  • the pulse wave is transmitted in the arterial line and is reversed in the branches at different downstream locations, so that the pulse wave is not only affected by the heart itself, but also by various physiological and pathological factors flowing through the arteries and branches of each level.
  • a piezoelectric device is used to convert a pulse wave into a voltage output by mechanical energy conversion to electrical energy. It is the most common method for measuring pulse wave, and the measurement of arterial pressure by a piezoelectric sensor is a well-known technique. The method is to place the piezoelectric sensor unit on the surface of the human artery. The pressure state in the blood vessel is measured by sensing the tension change of the artery. The diameter of the artery is usually 1.2 brain-3.5 hidden, in order to accurately detect the artery. The pressure change caused, the sensor needs to be covered as much as possible above the artery
  • the pulse wave sensor based on mechanical energy detection requires the inspected S to take a special attitude and take a tight pressure to overcome the interference signal to meet the blood flow ffi force can be cleared and transmitted.
  • the object of the present invention is to provide a sensor for detecting human body rhythm vibration with reasonable structure, small volume, and high integration in view of the above-mentioned deficiencies of the prior art.
  • the technical solution of the present invention is implemented as follows: a sensor for detecting human body rhythm vibration, wherein the sensor is assembled by an integrated circuit package module and a piezoelectric film disposed on the upper end surface of the integrated circuit package module in order from bottom to top.
  • the pulse contact component comprises: a vibration working cavity adapted to the piezoelectric film on the upper end surface of the integrated circuit package module: the signal input end of the package chip in the integrated circuit package module is respectively connected to the positive and negative electrodes of the piezoelectric film.
  • the integrated circuit package module is composed of a resin package casing and a multi-stage linear amplification circuit module packaged in a resin package casing: signal input of the multi-stage linear amplification circuit module
  • the positive and negative terminals are respectively connected to the positive and negative electrodes of the piezoelectric film.
  • a peripheral ring is provided on the periphery of the pulse contact, and the outer contour of the pulse 3 ⁇ 4 is adapted to the vibration: i: the contour of the g-empty.
  • the positioning ring and the pulse contact are integral knots formed by integral injection molding.
  • the pulse contact is adhesively connected to the upper end edge of the piezoelectric film through a positioning ring; the lower end edge of the piezoelectric film is adhered to the edge of the integrated circuit package block
  • the multi-stage linear amplifying circuit module for connecting the above-mentioned sensor for detecting human body rhythm vibration is provided with a positive piezoelectric signal input pin and a negative piezoelectric signal input which are extended to the resin package outer casing and which are bendable and bendable.
  • a pin a bottom surface of the piezoelectric film is a positive electrode surface, a top surface of the piezoelectric film is a negative electrode surface, and a positive piezoelectric signal input chest is bent and attached to an end surface of the resin package casing and is electrically connected to the positive electrode surface of the piezoelectric film
  • the connection ⁇ negative piezoelectric signal input pin is bent on the negative surface of the piezoelectric film and is electrically connected to the negative surface of the s electric film.
  • the multi-stage linear amplifying circuit module has a power input chest that extends to the outside of the resin package, a grounding lead m, and a signal output pin - the above
  • the pulse contact is composed of a silicone fixing platform and a silicone contact disposed on the silica gel drawing platform, and the outer contour of the silicone fixing platform is adapted to the contour of the vibration working chamber; The height of the silicone contact is 1 ⁇ 10 hidden; at the same time, the end of the silicone contact with the human body is an arc structure or a suction cup structure or a u-shaped structure.
  • the invention cleverly integrates the circuit board into the sensor module, so that the main components of the entire sensor module are highly integrated and packaged into one whole, and the integrated design is realized, and the sensor has high consistency and transplantation. High in nature and small in size, saving space for the development of new products, leaving more space for other functions.
  • the curved contact end of the silicon contact can well connect the pulse vibration signal, and the silicon-silicon pulse vibration transmission surface at the bottom of the platform is drawn, and the pulse vibration signal is completely transmitted to the piezoelectric film, thereby improving The sensitivity of the sensor.
  • the invention is very suitable for measuring human vital signs, such as heartbeat, pulse of various parts, breathing, hunger and tremor, etc., and can also be used for detecting fetal heart sounds or other micro-vibrations.
  • Figure 1 is a schematic view of the structure of the present invention:
  • FIG. 1 is a schematic view showing the assembly structure of an integrated circuit board and a piezoelectric thin crucible according to the present invention
  • Figure 3 is a schematic exploded view of the present invention.
  • integrated circuit package module 1 resin package casing 13, multi-stage linear amplifier circuit module 1 b, positive piezoelectric signal input pin 1c, negative piezoelectric signal input pin W, power input pin 1e, pick her Chest 1 f, signal output pin 1g, piezoelectric film 2, pulse contact 3, silicone fixed platform 3a, silicone contact 3b, vibrating working chamber positioning ring 5.
  • a sensor for detecting human body rhythm vibration is provided by an integrated electric chrome package module 1 and a HI electric film disposed on the upper end surface of the integrated circuit package module 1 in order from bottom to top. 2 and the pulse contact 3; on the upper end of the integrated circuit package module 1 is provided with a vibration working chamber 4 adapted to the piezoelectric film 2; the signal input terminal of the chip packaged in the integrated circuit package module 1 is positive and negative bifurcation and piezoelectric film 2 positive and negative connections
  • the integrated circuit package block 1 is composed of a resin package outer portion and a multi-stage linear amplification circuit module 1b packaged in the resin package outer casing 1a: the vibration working chamber is integrally formed on the resin package outer casing 1a, and is multi-stage The positive and negative terminals of the signal input end of the linear amplifying circuit module 1 b are respectively connected to the positive and negative electrodes of the film 2.
  • the multi-stage linear amplifying circuit module 1 b mainly performs multi-stage amplification of the charge signal detected by the piezoelectric film 1, so that the weak pulse pulsation signal can be amplified to an output of a sufficient magnitude after being converted into an electric signal by the piezoelectric film 2. signal.
  • a positioning ring is provided on the periphery of the pulse contact 3.
  • the outer contour of the pulse contact 3 is adapted to the contour of the vibration working chamber 4, and the present embodiment
  • PVC is selected as the material of the positioning ring 5.
  • the positioning ring 5 and the pulse head 3 are preferably an integral structure of integrated injection molding.
  • the pulse contact 3 is adhesively connected to the upper end edge of the piezoelectric film 2 through the positioning ring 5: the lower end edge of the piezoelectric film 2 is bonded to the rim of the integrated circuit package module 1 , the E-electrode film 2 is clamped between the positioning ring 5 and the integrated circuit package module 1 to maintain a tight state
  • the multi-stage linear amplifying circuit module 1 b is provided with a positive piezoelectric signal input chest 1c and a negative piezoelectric signal input pin 1 d which are extended to the outside of the resin package casing 1a, the piezoelectric
  • the bottom surface of the film 2 is a positive electrode surface
  • the top surface of the electric film 1 is a negative electrode surface
  • the positive electrode piezoelectric signal input pin 1c is bent and attached to the end surface of the resin package casing la to be electrically connected to the positive electrode surface of the piezoelectric film ⁇ .
  • the negative electrode piezoelectric signal input chest Id bends and fits on the negative electrode surface of the piezoelectric thin film 2 and the negative electrode of the piezoelectric film 2 is electrically connected.
  • the multi-turn linear amplifying circuit module 1 b is further provided with a resin package casing.
  • the power input pin 1e, the ground pin 1f, and the signal output pin 1g on the outer side of la have such a structure, and have the following remarkable advantages: ⁇ )
  • the resin package case 13 is packaged with a multi-stage linear amplifying circuit module lb, so that the multi-stage
  • the linear amplifying circuit module 1 b has the advantages of high waterproof, dustproof, anti-interference and micro power consumption: (2)
  • the strength and area of the flat surface of the resin package casing 1a and the end face form a vibration cracking chamber 4, which provides work for the piezoelectric film 2.
  • the resin package casing 1 a cooperates with the negative electrode of the piezoelectric film 2 to intelligently shield the positive electrode of the piezoelectric thin Kang 2, (4) very important, the multi-stage linear amplification circuit module 1 b through resin seal
  • the package 1a is packaged and integrated into the sensor, which not only transmits the charge signal of the piezoelectric film 2 to the multi-stage linear amplification circuit block lb through the shortest distance, thereby effectively reducing the loss and external interference, making the measurement more precise and more used.
  • the original sensor The multi-level linear amplifying circuit module 1 b is set, generally integrated in the main control! li, so that in the actual sales, the customer purchases the sensor, it needs to be purchased accordingly or equipped with multi-level linear Amplifying the 3 ⁇ 4 way module 1b is not only inconvenient to use, but also needs to provide customers with professional knowledge. This product leaves a complex impression on the application and affects sales performance.
  • the pulse fling head 3 is composed of a silicone fixing platform 3a and a silicone contact 3b disposed on the silicone fixing platform 3a, and the outer contour of the silicone fixing platform 3a is adapted to the contour of the vibration working chamber 4.
  • the height of the silicone contact 3b is 1 to 10
  • the end of the silicone contact 3b contacting the human body is an arc structure or a suction S-shaped structure or a U-shaped structure, specifically, according to the to-be-checked
  • the height and shape of the i bit 3 ⁇ 4 and the data to be detected are adaptively adjusted.
  • the height of the silicone contact 3b is preferably 1 to 5 mm, and the shape of the end is preferably a convex curved structure.
  • the position to be detected is located in the abdomen of the human body and is used to measure data such as the abdominal artery or the fetal heart sound
  • the height of the silicone contact 3b is preferably 5 to 10
  • the end shape is preferably a concave suction cup structure: when to be detected
  • the position is located in the neck of the human body, and when the carotid artery data is measured, the height of the silicone etching head 3b is preferably 3 to 10!
  • the brain, the end shape is chosen as a concave U-shaped structure.
  • the above is only a preferred embodiment, and the height and end shape of the silicone etch head 3b can be adaptively adjusted depending on the specific case.
  • the Jing shape of the 61 rubber contacts 3b listed in this embodiment may also adopt other structures suitable for the position to be detected by the human body, such as a spherical structure or a V-shaped structure.
  • the shape and appropriate height of the silicone contact 3b adapted to the body to be tested> not only makes the human body feel comfortable when it comes into contact with the silicone contact 3b, but also receives the pulse vibration signal well.
  • the flexible silicone fixing platform 33 is just adapted to the size of the vibrating working chamber 4, and the human body pulse beats the silicone contact 3b to make the vibration transmitting surface of the silicone fixing platform 3a and the piezoelectric film 2 along the piezoelectric film vibrating stroke.
  • the working chamber 4 produces a natural bump, which causes the tantalum film 2 to generate a charge signal for output.
  • the senor of the present invention for detecting human rhythm vibration is incorporated on an external positioning device, such as a wristband. Adjust the position of the silicone etch head 3b and connect the external data collection instrument to collect the pulse data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种用于检测人体节律振动的传感器,其由集成电路封装模块(1)及由下至上依序贴合设置在集成电路封装模块(1)上端面的压电薄膜(2)和脉搏触头(3)组成。在集成电路封装模块(1)上端面设有与压电薄膜(2)相适应的振动工作腔(4)。集成电路封装模块(1)内封装芯片的信号输入端正负极分别与压电薄膜(2)的正负极连接。该传感器体积小、集成度高,用于人体节律振动的监测。

Description

用于检渊人体节律振动的传感器 技术领域
本发明涉及一种人体检测设备,更具体地说,尤其涉及一种用于检澱人体节律振动的 传感器。
背景技术
脉搏波是人体心 1¾1管系统的重要参数之一。当心脏周期性的收缩和舒张时,心室射入 主动脉的血流将以波的形式自主主动根部出发沿动脉管系传播,这种波就是脉搏波。脉搏 波在动脉管系中传输,并在下游不同位置的各级分支中不断反 ,使脉搏波不仅要受到心 脏本身的影响, 同时还会受到流经各级动脉及分支中各种生理病理因素抝血管阻力、 管 壁弹性和血液黏性等的影响,因而从下游外周动脉反射回来的反射波强度和波形隨不同的 生理病理因素变化将会有很大差异 因此从脉搏波中提取人体的生理病理信息作为临床谂 断和治疗的依据, 历来都受到中外医学界的重视。
现有技术中,使用压电村料制作的装置,通过机械能向电能的转换将脉搏波转换为电 压输出. 是最常见的脉搏波测量方法, 以压电传感器测定动脉压力变动是公知技术 其实 现方式为通过将压电式传感器单元放置人体动脉表面..匕通过感受动脉带来张力变化来测 定血管内的压力状态 动脉直径通常为 1 .2腦- 3.5隱, 为了能够精确的检査到动脉引起的 压力变化, 需要将传感器尽量覆盖在动脉的上方
在传统的脉搏波检测中,干扰与舒适度常常是一个主要问题。为满足在生活场合中迸 行连续监测, 功耗也是一个主要问题。
传统上基于机械能检测的脉搏波传感器要求被检 S者采取特 ¾姿态,并采取紧压的方 式, 以克躐干扰信号, 满足血流 ffi力可以被清哳的传导和识别。
发明内容
本发明的目的在于针对上述现有技术的不足, 提供 ·····'种结构合理、体积小、集成度高 的用于检测人体节律振动的传感器
本发明的技术方案是这样实现的:一神 ^于检测人体节律振动的传感器,其中该传感 器由集成电路封装模块及由下至上依序贴合设置在集成电路封装模块上端面的压电薄膜 和脉搏触头组成:在集成电路封装模块上端面设有与压电薄膜相适应的振动工作腔:集成 电路封装模块内封装芯片的信号输入端正负极分别.与压电薄膜的正负极连接。
上述的用于检测人体节律振动的传感器中,所述集成电路封装模块由树脂封装外壳和 封装在树脂封装外壳内的多级线性放大电路模块组成:多级线性放大电路模块的信号输入 端正负极分别与压电薄膜的正负极连接。
上.述的用于捡测人体节律振动的传感器中, 所述脉搏触头外围设有^位环,所述脉搏 ¾的外轮廓与振动 :i:作 g空的轮廓相适应。
上述的用干检 ¾人体节律振动的传感器中,所述定位环和脉搏触头为一体化压注成型 的整体结抅。
上述的用于检测人体节律振动的传感器中,所述脉搏触头通过定位环与压电薄膜的上 端面边缘粘结连接; 所述压电薄膜的下端面边缘与集成电路封装摸块的边缘粘结连接 上述的用于检测人体节律振动的传感器中 所述多级线性放大电路模块上设有延仲至 树脂封装外壳外倒且可弯折的正极压电信号输入引脚和负极压电信号输入引脚,所述压电 薄膜底面为正极面 所述压电薄膜的顶面为负极面, 正极压电信号输入引胸弯折贴合在树 脂封装外壳端面上且与压电薄膜正极面导通连接 <负极压电信号输入引脚弯祈贴合在压电 薄膜负极面上且与 s电薄膜负极面导通连接。
上述的用于检测人体节律振动的传感器中,所述多级线性放大电路模块上 ¾有延伸至 树脂封装外壳外倒的电源输入引胸.、 接地引 m和信号输出引脚- 上述的用于检溺人体节律振动的传感器中,所述的脉搏触头由硅胶固定平台和设置在 硅胶画定平台上的硅胶触头组成, 所述硅胶固定平台的外轮廓与振动工作腔的轮廓相适 应; 进一步地, 所述硅胶触头高度为 1〜10隱; 同时所述硅胶触头与人体相接蝕的端部为 弧形结构或吸盘形结构或 u形结构。
本发明采用上述结构后,将 *成电路板巧妙地结合在传感器模块中, 使得整个传感器 模块的各主要部件高度集成封装成一个整体, 实现一体化设计, 这种结构的传感器一致性 高, 移植性高,体积小, 为新产品的研发节省结构空间, 可以留余更多的空间给其它功能。 同时, 硅 触头的弧形接触端, 能够很好地接坆脉搏振动信号, 并利^硅胶画定平台底部 的硅晈脉搏振动传递面, 将脉搏振动信号完全传递到压电薄膜上, 从而提高了传感器的灵 敏度。 本发明非常适用于捡测人体生命体征, 如心跳、 各部位脉搏、 呼吸、 飢肉霞颤等, 也可以用于-捡测孕妇胎心音或其它微振动 ,
附图说明
下面结合附图中 δ勺实施例对本发 ί乍进一步的详细说明,但并不'构成对本发明的任何 限制。
图 1是本发明的结构示意图:
图 1是本发明集成电路扳和压电薄嫫的装配结构示意图;
图 3是本发明的分解结构示意图。 图中: 集成电路封装模块 1、 树脂封装外壳 13、 多级线性放大电路模块 1 b、 正极压 电信号输入引脚 1c、负极压电信号输入引脚 W、 电源输入引脚 1e、接她引胸 1 f、 信号输 出引脚 1g、 压电薄膜 2、 脉搏触头 3、 硅胶固定平台 3a、 硅胶触头 3b、振动工作腔 定 位环 5。
具体实施方式
参阅图 1所示,本发明的一种用于检測人体节律振动的传感器, 该传感器由集成电铬 封装模块 1及由下至上依序贴合设置在集成电路封装模块 1上端面的 HI电薄膜 2和脉搏触 头 3组成; 在集成电路封装模块 1上端面设有与压电薄膜 2相适应的振动工作腔 4; 集成 电路封装模块 1内封装芯片的信号输入端正负极分剁与压电薄膜 2的正负极连接
具体地 所述集成电路封装瀵块 1由树脂封装外 ¾ la和封装在树.脂封装外壳 la内的 多级线性放大电路模块 1b组成:振动工作腔 一体成型在树脂封装外壳 1a上,多级线性 放大电路模块 1 b的信号输入端正负极分别与压屯.薄膜 2的正负极连接。 多级线性放大电 路模块 1 b主要对压电薄膜 1检测到的电荷信号进行多级放大, 使微弱的脉搏搌动信号通 过压电薄膜 2转换成电信号后, 能够放大到足够量级的输出信号。
在本实施例中,为方便连接,并保证测量的准确性, 在脉搏触 ¾ 3外围设有定位环 5. 所述脉搏触头 3的外轮廓与振动工作腔 4的轮廓相适应,本实施例中选^ PVC作为定位环 5的材质。 为使结构简洁同时更加方便安狻, 定位环 5和脉搏 头 3优选为一体化压注成 型的整体结构。在本实施例中,脉搏触头 3通过定位环 5与压电薄膜 2的上端面边缘粘结 连接: 所述压电薄膜 2的下端面边缘与集成电路封装模块 1的攰缘粘结连接 这样, E电 薄膜 2夹紧在定位环 5和集成电路封装模块 1之间保持绷紧状态
同时,在多级线性放大电路模块 1 b上设有延忡至树脂封装外壳 la外侧且可弯折的正 极压电信号输入引胸 1c和负极压电信号输入引脚 1 d, 所述压电薄膜 2底面为正极面, 所 述 电薄膜 1的顶面为负极面, 正极压电信号输入引脚 1c弯折贴合在树脂封装外壳 la 端面上 Ji与压电薄膜 τ正极面导通连接, 负极压电信号输入引胸 Id弯折貼合在压电薄隳 2负极面上 j 与压电薄膜 2负极函导通连接 在多绂线性放大电路模块 1 b上还设有延伸 至树脂封装外壳 la外侧的电源输入引脚 1e、 接地引脚 1 f和信号输出引脚 1g 采用这种 结构, 具有下述的显著优点: Π )树脂封装外壳 13封装多级线性放大电路模块 lb, 使多 级线性放大电路模块 1 b具有高度防水防尘、 防干扰和微功耗的优点: (2 ) 树脂封装外壳 1a的平板强度和面积及端面形成振动工诈腔 4,为压电薄膜 2提供了工作所需的必要条件, 一物多用 - 使得结构进一歩精简; (3 ) 树脂封装外壳 1 a与压电薄膜 2的负极配合巧妙实 现对压电薄康 2正极的屏蔽, ( 4 ) 非常重要的, 将多级线性放大电路模块 1 b通过树脂封 装外壳 1a封装后集成于传感器中, 不仅使压电薄膜 2的电荷信号通过最短距离传输至多 级线性放大电路懊块 lb, 有效地减少了损耗和外界干扰, 使得测量更如精准, 而且使用 更加方便,不再需要额外配置放大电铬,大大提高用于检溯人体节律振动的传感器的稳 性,精密度, 微型化, 大大降低了器件的功耗和产品综合成本, 微型化程度超过了现有已 知的 ffi电薄膜式用于检测人体节律 动的传感器
原有传感器. 多级线性放大电路模块 1 b是^置的, 一般集成在主控 ! li上 这样, 就使得在实际销售时,客户购买传感器,就需要相应地购买或者为其配备多级线性放大 ¾ 路模块 1b, 不仅使用不方便, 而且还需要给客户培训专业使用知识, 这种产品给客户留 下应用复杂的印象, 影响销售业绩
进一步地,本实施例中脉搏 ftil头 3由硅胶固定平台 3a和设置在硅胶固定平台 3a上的 硅胶触头 3b组成,所述硅胶固定平台 3a的外轮廓与振动工^腔 4的轮廓相适应;弁且所 述硅胶触头 3b的高度为 1〜10隱,所述硅胶触头 3b与人体相接触的端部为弧形结构或吸 S形结构或 U形结构, 具体地, 根据待检 i 位 ¾及待检测数据的不同,高度和形状会进行 适应性的调节, 例如检测手腕脉搏时, 硅胶触头 3b的高度范围优选为 1〜5mm, 端部形状 优选为外凸的弧形结构; 待检测位置位于人体腹部,用于测量腹动脉或孕妇胎心音等数 据时, 硅胶触头 3b的高度范围优选为 5〜10画, 端部形状优选为内凹的吸盘结构: 当待 检测位置位于人体颈部,用于澱量颈动脉数据时,硅胶蝕头 3b的高度范围优选为 3〜10!腦, 端部形状忧选为内凹的 U形结构。 当然, 上述仅是优选实施方式, 根据具体情况, 硅胶蝕 头 3b 的高度及端部形状均可以进行适应性的调节。 同时, 本实施例中所列 61胶触头 3b 的靖部形状, 也可以采用其它与人体待检测位置相适应的结构 例如球面结构或 V形结构 等。硅胶触头 3b与人体待捡测部相适应的形状及适当的高度> 不仅使人体与硅胶触头 3b 相接触时感觉舒服, 而且能够很好地接收脉搏振动信号。 同 β寸, 柔性的硅胶固定平台 33 刚好与振动工作腔 4 的大小相适应, 人体脉搏跳动挤压硅胶触头 3b使硅胶 定平台 3a 的振动传递面和压电薄膜 2沿压电薄膜振动行程工作腔 4产生自然凸起,挤压使 ϋ电薄膜 2产生电荷信号进行输出。
使用时,将本发明的用于检测人体节律振动的传感器结合在外部定位设备上,例如腕 带。 调整好硅胶蝕头 3b的位置, 连接外部数据收集仪器, 即可进行脉搏数据的收集。
以上所举实施例为本发明的较洼实施方式,仅用来方便说明本发明,并非对本发明作 任何形式上的限制.任何所.厲技术领域中具有通常知识者,若在不鋭离本发明所提技术特 征的范围内,利用本发明所揭示技术內容所作出局部更动或修饰的等效实施例,并且未脱 离本发明的技术特征内容, 均仍厲于本发明技术特征的范围内。

Claims

1 .一种用于检测人体节律振动的传感器,其特征在于,该传感器由集成电路封装模块 ( 1 )及由下至上依序贴合设置在集成电路封装模块( 1 )上端面的压电薄膜( 2 )和脉搏 触头( 3 )组成;在集成电路封装模块( 1 )上端面设有与压电薄膜( 2 )相适应的振动工 作腔( 4 );集成电路封装模块( 1 )内封装芯片的信号输入端正负极分别与压电薄膜( 2 ) 的正负极连接。
2 .根据权利要求 1所述的用于检测人体节律振动的传感器,其特征在于,所述集成 电路封装模块( 1 )由树脂封装外壳( )和封装在树脂封装外壳( )内的多级线性放 大电路模块( )组成;多级线性放大电路模块( )的信号输入端正负极分别与压电薄 膜( 2 )的正负极连接。
3 .根据权利要求 1或 2所述的用于检测人体节律振动的传感器,其特征在于,所述 脉搏触头( 3 )外围设有定位环( 5 ) ,所述脉搏触头( 3 )的外轮廓与振动工作腔( 4 )的 轮廓相适应。
4 .根据权利要求 3所述的用于检测人体节律振动的传感器,其特征在于,所述定位 环( 5 )和脉搏触头( 3 )为一体化压注成型的整体结构。
5 .根据权利要求 3所述的用于检测人体节律振动的传感器,其特征在于,所述脉搏 触头( 3 )通过定位环( 5 )与压电薄膜( 2 )的上端面边缘粘结连接;所述压电薄膜( 2 ) 的下端面边缘与集成电路封装模块( 1 )的边缘粘结连接。
6 .根据权利要求 2所述的用于检测人体节律振动的传感器,其特征在于,所述多级 线性放大电路模块( )上设有延伸至树脂封装外壳( )外侧且可弯折的正极压电信号 输入引脚( )和负极压电信号输入引脚( 1 d ) ,所述压电薄膜( 2 )底面为正极面,所述 压电薄膜( 2 )的顶面为负极面,正极压电信号输入引脚( )弯折贴合在树脂封装外壳
( 1 a )端面上且与压电薄膜( 2 )正极面导通连接,负极压电信号输入引脚( 1 d )弯折贴 合在压电薄膜( 2 )负极面上且与压电薄膜( 2 )负极面导通连接。
7 .根据权利要求 2或 6所述的用于检测人体节律振动的传感器,其特征在于,所述 多级线性放大电路模块( 1 b )上设有延伸至树脂封装外壳( 1 a )外侧的电源输入引脚( 1 e 接地引脚( 1 f )和信号输出引脚( 1 g I
8 .根据权利要求 3所述的用于检测人体节律振动的传感器,其特征在于,所述的脉 搏触头( 3 )由硅胶固定平台( (3a )和设置在硅胶固定平台( (3a )上的硅胶触头( (3b )组 成,所述硅胶固定平台(3a )的外轮廓与振动工作腔(4 )的轮廓相适应。
9 .根据权利要求 8所述的用于检测人体节律振动的传感器,其特征在于,所述硅胶 触头(3b )高度为 1 ~ "! Onrn
10 .根据权利要求 8所述的用于检测人体节律振动的传感器,其特征在于,所述硅胶 触头(3b )与人体相接触的端部为弧形结构或吸盘形结构或 U形结构。
PCT/CN2014/076772 2014-04-14 2014-05-05 用于检测人体节律振动的传感器 WO2015158019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410148326.9 2014-04-14
CN201410148326.9A CN103932685B (zh) 2014-04-14 2014-04-14 用于检测人体节律振动的传感器

Publications (1)

Publication Number Publication Date
WO2015158019A1 true WO2015158019A1 (zh) 2015-10-22

Family

ID=51180766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076772 WO2015158019A1 (zh) 2014-04-14 2014-05-05 用于检测人体节律振动的传感器

Country Status (2)

Country Link
CN (1) CN103932685B (zh)
WO (1) WO2015158019A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105433905A (zh) * 2015-12-03 2016-03-30 杨松 采集人体震动信号的穿戴设备及采集人体生理信号的方法
TWI682767B (zh) * 2018-10-12 2020-01-21 鋐雩科技有限公司 震動感測裝置
CN109480795A (zh) * 2018-10-12 2019-03-19 青岛中物云传智能科技有限公司 一种睡眠检测装置
CN109452931B (zh) * 2018-12-13 2024-06-11 南京航空航天大学 一种压电式皮肤检测器
CN110090022A (zh) * 2019-05-07 2019-08-06 传世未来(北京)信息科技有限公司 生物振动信号监测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592360A (ja) * 1982-06-28 1984-01-07 Sharp Corp Lsiパツケ−ジ
CN201831884U (zh) * 2010-10-19 2011-05-18 艾华锋 一种新型24小时心血管远程监护仪
US20120029306A1 (en) * 2010-07-27 2012-02-02 Carefusion 303, Inc. Vital-signs monitor with encapsulation arrangement
JP4988034B2 (ja) * 2000-07-12 2012-08-01 セイコーインスツル株式会社 脈検出装置及び超音波診断装置
CN103228205A (zh) * 2011-01-20 2013-07-31 日东电工株式会社 用于光电体积描记测量的装置和方法
CN103462595A (zh) * 2013-09-22 2013-12-25 天津万合星辰信息技术有限公司 一种便携式传感器组件
CN203815439U (zh) * 2014-04-14 2014-09-10 天津万合星辰信息技术有限公司 一种用于检测人体节律振动的传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005062924A2 (en) * 2003-12-23 2005-07-14 Empirical Technologies Corporation Transducer for converting heartbeat pulsations to electrical signal
CN2790407Y (zh) * 2005-05-10 2006-06-28 北京奥瑞赛斯传感技术有限公司 数字式胎儿心音测量装置
CN102860822A (zh) * 2012-10-24 2013-01-09 马千里 腕式心电血压测量设备
CN103393417B (zh) * 2013-08-05 2014-12-10 中南林业科技大学 一种指脉测试电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592360A (ja) * 1982-06-28 1984-01-07 Sharp Corp Lsiパツケ−ジ
JP4988034B2 (ja) * 2000-07-12 2012-08-01 セイコーインスツル株式会社 脈検出装置及び超音波診断装置
US20120029306A1 (en) * 2010-07-27 2012-02-02 Carefusion 303, Inc. Vital-signs monitor with encapsulation arrangement
CN201831884U (zh) * 2010-10-19 2011-05-18 艾华锋 一种新型24小时心血管远程监护仪
CN103228205A (zh) * 2011-01-20 2013-07-31 日东电工株式会社 用于光电体积描记测量的装置和方法
CN103462595A (zh) * 2013-09-22 2013-12-25 天津万合星辰信息技术有限公司 一种便携式传感器组件
CN203815439U (zh) * 2014-04-14 2014-09-10 天津万合星辰信息技术有限公司 一种用于检测人体节律振动的传感器

Also Published As

Publication number Publication date
CN103932685A (zh) 2014-07-23
CN103932685B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
EP3566036B1 (en) Blood pressure measurement system using force resistive sensor array
US7179228B2 (en) Cuffless system for measuring blood pressure
WO2015158019A1 (zh) 用于检测人体节律振动的传感器
CN107260206B (zh) 基于mems声传感原理的电子式听诊器
US20070203416A1 (en) Blood pressure cuffs
CN103637787A (zh) 血压实时测量装置以及实时测量脉搏波传输时间差的方法
CN105212965B (zh) 一种无袖带血压连续监测系统
CN103637788B (zh) 血压实时测量装置
CN101427923A (zh) 生物医用压力传感器
WO2015039373A1 (zh) 一种便携式传感器组件
CN210612114U (zh) 震动感测装置、血压测量装置、及心肺效能监控装置
WO2017117739A1 (zh) 睡眠监测系统
CN106236130A (zh) 一种基于mems技术的电子式听诊器
CN103431848A (zh) 一种便携式无源传感器
CN107530008B (zh) 传感器单元
CN103637789B (zh) 血压实时测量装置
WO2012145938A1 (zh) 一种压电血压传感器
CN106073735A (zh) 一种用于连续检测人体血压的集成电路结构
CN203815439U (zh) 一种用于检测人体节律振动的传感器
KR102554695B1 (ko) 혈압 측정 디바이스 및 방법
Neuman Measurement of blood pressure [tutorial]
CN113331863B (zh) 基于拍型仿生纤毛的高灵敏度mems心音心电一体化检测传感器
US20190313918A1 (en) Arterial pulse signal measurement device and pressure sensor
CN113476020A (zh) 一种基于f-p的无源脉搏测量装置
CN103519801A (zh) 一种柯氏音电子血压计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889498

Country of ref document: EP

Kind code of ref document: A1