WO2015156570A1 - Method for producing super-absorbent polymer - Google Patents

Method for producing super-absorbent polymer Download PDF

Info

Publication number
WO2015156570A1
WO2015156570A1 PCT/KR2015/003450 KR2015003450W WO2015156570A1 WO 2015156570 A1 WO2015156570 A1 WO 2015156570A1 KR 2015003450 W KR2015003450 W KR 2015003450W WO 2015156570 A1 WO2015156570 A1 WO 2015156570A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent polymer
super absorbent
producing
milling
resin particles
Prior art date
Application number
PCT/KR2015/003450
Other languages
French (fr)
Korean (ko)
Inventor
심유진
백충훈
김의덕
오석헌
Original Assignee
한화케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150047452A external-priority patent/KR20150116783A/en
Application filed by 한화케미칼 주식회사 filed Critical 한화케미칼 주식회사
Publication of WO2015156570A1 publication Critical patent/WO2015156570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide

Definitions

  • the present invention relates to a method for producing a super absorbent polymer.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (SAM) and absorbent gel material (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological tools, and nowadays, in addition to hygiene products such as children's paper diapers, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness-retaining agents, and steaming in the food distribution sector. It is widely used as a material for articles.
  • a method for producing such a super absorbent polymer a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known.
  • Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714.
  • a thermal polymerization method for applying polymerization to an aqueous solution and polymerizing it again, and a photopolymerization method for irradiating and polymerizing ultraviolet rays or the like are known.
  • the superabsorbent polymer is pulverized after polymerization to be used as particles. If the edges have sharp shapes, gel blocking occurs and the fluidity of the fluid decreases.
  • the problem to be solved by the present invention is to provide a superabsorbent polymer manufacturing method that can smooth the flow and gel permeability (Gel Bed Permeability) by reducing the gel blocking phenomenon by removing the surface edge of the superabsorbent polymer particles.
  • Method for producing a super absorbent polymer according to an embodiment of the present invention for solving the above problems is a step of polymerizing a monomer composition into a super absorbent polymer in a polymerization reactor, the step of pulverizing the polymerized superabsorbent resin, and the pulverized Milling the resin particles.
  • the milling step may be performed by mixing the pulverized resin particles and beads.
  • the beads may have a higher hardness than the resin particles.
  • the bead may be a ceramic material.
  • the beads may have an average diameter in the range of 1 mm to 10 mm.
  • the beads and the resin particles may be mixed in a weight ratio of 1: 0.1 to 1: 1.2.
  • the milling step may be performed using a planetary mill (rotary mill) in which the rotation and the revolution is performed at the same time.
  • the idle speed / process radius ratio of the milling step may range from 7 to 30 rpm / cm.
  • the ratio of the rotating speed to the rotating speed of the milling step may range from 0.1: 1 to 10: 1.
  • milling step may further comprise the step of separating the beads and the resin particles.
  • the milling step may be made by dry milling.
  • It may further comprise a surface crosslinking step of crosslinking the surface of the resin particles.
  • the surface crosslinking step may be performed before the milling step, after the milling step, or before or after the milling step.
  • Superabsorbent polymer according to an embodiment of the present invention for solving the above problems can be prepared by the above method.
  • the superabsorbent polymer prepared by the manufacturing method of the present invention may improve the flowability and gel permeability by reducing the edge of the gel by removing sharp edges.
  • 1 is a schematic diagram of superabsorbent polymer particles before the milling step of the superabsorbent polymer production method according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the super absorbent polymer particles after the milling step of the superabsorbent polymer production method according to an embodiment of the present invention.
  • Figure 4 is a SEM photograph of the super absorbent polymer particles according to Example 1.
  • 5 to 7 are schematic diagrams showing an apparatus for measuring gel permeability according to an embodiment of the present invention.
  • a method of preparing a super absorbent polymer includes polymerizing a monomer composition into a super absorbent polymer in a polymerization reactor, pulverizing the polymerized super absorbent polymer, and milling the pulverized resin particles. It includes.
  • the step of polymerizing the super absorbent polymer is not particularly limited, the monomer composition may be injected into the polymerizer and polymerized.
  • the polymerization can be carried out continuously using a continuous polymerization reactor.
  • the said monomer composition can be inject
  • the water-soluble ethylenically unsaturated monomer can be used without limitation as long as it is a monomer generally used in the production of superabsorbent polymers.
  • the monomer can be used at least one selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition depends on the polymerization time and reaction conditions (feed rate of the monomer composition, irradiation time of heat and / or light, irradiation range, and irradiation strength, belt width, length and moving speed, etc.). Although appropriately selected and used in consideration, in an exemplary embodiment, it may range from 40 to 60% by weight. In this case, it may be efficient in terms of solubility and economics of the monomer.
  • the monomer composition may further include one or more additives selected from the group consisting of a photopolymerization initiator, a thermal polymerization initiator and a crosslinking agent.
  • a polymerization initiator can be used, selecting the kind appropriately according to whether thermal polymerization, photopolymerization, or thermal polymerization and photopolymerization are selected in a process process.
  • the photopolymerization initiator is not particularly limited, but for example, diethoxy acetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4- (2-hydroxy ethoxy) phenyl- (2 Acetophenone derivatives such as -hydroxy) -2-propyl ketone and 1-hydroxycyclohexylphenyl ketone; Benzoin alkyl ether compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone derivatives such as methyl o-benzoyl benzoate, 4-phenyl benzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, and (4-benzoyl benzyl) trimethylammonium chloride; Thioxanthone compounds; Acyl phosphine oxide derivatives such as bis (2,4,6-trimethylbenzoyl) -
  • the thermal polymerization initiator is not particularly limited, but for example, an azo initiator, a peroxide initiator, a redox initiator or an organic halide initiator may be used alone or in combination of two or more thereof. .
  • sodium persulfate (Na 2 S 2 O 8 ) or potassium persulfate (Potassium persulfate, K 2 S 2 O 8 ) among the thermal polymerization initiators may be mentioned, but is not limited thereto.
  • the content of the photopolymerization initiator and the thermal polymerization initiator can be selected as long as it can exhibit the polymerization initiation effect.
  • the photopolymerization initiator may be included in the range of 0.005 to 0.1 parts by weight based on 100 parts by weight of the monomer
  • the thermal polymerization initiator may be included in the range of 0.01 to 0.5 parts by weight based on 100 parts by weight of the monomer, but is not limited thereto. no.
  • the crosslinking agent includes at least one functional group capable of reacting with the substituent of the monomer and at least one ethylenically unsaturated group, or two or more functional groups capable of reacting with the substituent of the monomer and / or with the substituent formed by hydrolyzing the monomer.
  • Crosslinking agents can be used.
  • the crosslinking agent is a poly (meth) acrylate of a polyol having 8 to 12 carbon atoms, a bismethacrylamide having 8 to 12 carbon atoms, a polyol having 2 to 10 carbon atoms or a poly (poly) having a polyol having 2 to 10 carbon atoms.
  • Meta) allyl ether, and the like, and more specific examples thereof include N, N'-methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, and propyleneoxy (meth) acryl.
  • the crosslinking agent in the monomer composition, if the crosslinking agent can exhibit a crosslinking effect, its content can be selected and used.
  • the crosslinking agent may be included in the range of 0.01 to 0.5 parts by weight based on 100 parts by weight of the monomer, but is not limited thereto.
  • Each of the at least two polymerization reactors may differ from each other in the composition of the monomer composition.
  • each of the at least two polymerization reactors may differ in type, content, or type and content of crosslinking agent in the monomer composition.
  • the superabsorbent polymer having completed polymerization may be introduced into a cutting device, and the superabsorbent polymer may be cut by a cutter.
  • the cutter can cut the superabsorbent resin into patterned pieces.
  • the cleaved superabsorbent polymer may further comprise the step of further grinding the ground, dried and dried polymer.
  • a temporary drying step may be further included to prevent agglomeration and the like in the milling step.
  • the apparatus which cuts and extrudes a rubbery elastic body can be used.
  • cutter type cutters, chopper type cutters, kneader type cutters, vibratory grinders, impact grinders, friction grinders, and the like can be cited, but not limited thereto.
  • a dryer and a heating furnace can be used normally.
  • hot air dryers fluidized bed dryers, airflow dryers, infrared dryers, dielectric heating dryers, and the like may be mentioned, but are not limited thereto.
  • the drying temperature is not particularly limited, but may be in the range of 100 to 200 ° C. for preventing thermal degradation and for efficient drying.
  • the superabsorbent polymer particles pulverized as described above may be pulverized by physical force to include sharp edges on the surface, and the surface may be trimmed through the milling step.
  • the milling step may be performed by mixing the pulverized resin particles and beads to apply a frictional force to process the surface of the resin particles.
  • the beads can be used as long as the hardness is higher than that of the resin particles.
  • it may be a ceramic material, but is not limited thereto. Zirconia etc. are mentioned as an example of the said ceramic material, However, It is not limited to this, Any material can be used as long as it is a substance whose hardness is higher than resin particle.
  • the beads may have a spherical shape for surface edge processing, and the average diameter may be selected according to the size of the resin particles, but may be, for example, in the range of 1 mm to 10 mm, but is not limited thereto.
  • the mixing ratio of the beads and the resin particles may range from 1: 0.1 to 1: 1.2 by weight ratio of beads: resin particles. If the mixing ratio of the beads and the resin particles is less than 1: 0.1, the surface edge processing efficiency no longer increases, and if the ratio of the beads and the resin particles is greater than 1: 1.2, the frequency of the resin particles contacting the beads may be different from each other to obtain a uniform result. have. For the same reason as above, the mixing ratio of the beads and the resin particles may range from 1: 0.2 to 1: 1.
  • the milling step can be carried out using a milling apparatus which is generally used.
  • a planetary mill which rotates and rotates at the same time can be used, but is not limited thereto.
  • the beads and the resin particles can be rubbed more smoothly to produce a uniform result.
  • the idle speed / process radius ratio of the milling step may range from 7 to 30 rpm / cm.
  • the idle speed / process radius ratio is less than 7 rpm / cm, the milling effect due to the idle is insignificant, and when the idle speed is greater than 30 rpm / cm, friction is excessively generated and the amount of fine powder is increased.
  • the ratio of rotational speed to idle speed of the milling step may range from 0.1: 1 to 10: 1.
  • the ratio of the rotational speed to the idle speed is less than 0.1: 1, the milling effect is insignificant, and when the ratio of the rotational speed is greater than 10: 1, the amount of fines generated increases, which may lower the process efficiency.
  • the method of preparing a super absorbent polymer may further include separating the beads and the resin particles after the milling step.
  • Separating the beads and the resin particles may be performed using a filter such as a sieve, a mesh, and the like, but is not limited thereto. If two filters are used with different sizes, the beads, the resin particles and the fine powder may be separated at the same time.
  • the size of the filter can be appropriately selected according to the sizes of the beads and the resin particles.
  • the milling step may consist of liquid milling using liquid media for smooth milling or dry milling without using liquid media. In an exemplary embodiment, it may be performed by dry milling, which may exclude a separate drying process and the like.
  • the method of making the superabsorbent polymer may further comprise crosslinking the surface of the superabsorbent polymer.
  • Surface crosslinking can be accomplished using, for example, ethylene glycol diglycidyl ether, water and ethanol, but is not limited thereto.
  • the surface crosslinking step may be performed before the milling step, after the milling step, or before or after the milling step.
  • Figure 1 is a schematic diagram of superabsorbent polymer particles before the milling step of the superabsorbent polymer production method according to an embodiment of the present invention
  • Figure 2 is a superabsorbent polymer after the milling step of the superabsorbent polymer production method according to an embodiment of the present invention It is a schematic diagram of a resin particle.
  • the monomer composition was added to the polymerizer, and then irradiated with ultraviolet rays through a UV irradiation apparatus, and UV polymerization was performed to prepare a hydrogel polymer.
  • the hydrogel polymer was transferred to a cutter and then cut. At this time, the water content of the cleaved hydrous gel polymer was 50% by weight.
  • the cleaved gel polymer was chopped using a meat chopper.
  • the hydrous gel polymer was then dried in a hot air dryer at 180 ° C. for 30 minutes and the dried hydrogel polymer was ground in a pin mill grinder to prepare a base polymer.
  • the base polymer prepared in Preparation Example was sprayed with a 20% ethylene carbonate aqueous solution at a rate of 5 pph in a surface crosslinking mixer, heat-treated at 180 ° C. for 30 minutes, and then mixed with a surface crosslinked resin at a silica ratio of 0.5 pph to obtain a superabsorbent polymer. Prepared.
  • the filtered base polymer was sprayed onto the powder at a rate of 5 pph in an aqueous 20% ethylene carbonate solution in a surface crosslinking mixer, and heat-treated at 180 ° C. for 30 minutes.
  • the heat-treated powder was mixed with the resin cross-linked at a Silica 0.5 pph ratio and then classified into a standard mesh of ASTM standards to prepare a super absorbent polymer having a particle size of 150 to 850 ⁇ m.
  • the base polymer obtained in Preparation Example was sprayed onto the powder at a rate of 5 pph in a 20% aqueous solution of ethylene carbonate in a surface crosslinking mixer, and heat-treated at 180 ° C. for 30 minutes.
  • the heat-treated powder was subjected to the same milling operation as in Example 1.
  • the beads were filtered by classifying 0.85 mm and 0.15 mm meshes, mixed with a resin cross-linked at a Silica 0.5 pph ratio, and classified into a standard mesh of ASTM standard to obtain a superabsorbent polymer having a particle size of 150 to 850 ⁇ m.
  • CRC Centrifuge Retention Capacity
  • AUP Absorbency Under Pressure
  • gel permeability gel permeability
  • flowability gel permeability
  • bulk density gel permeability
  • FIG. 6 is an enlarged cross-sectional view of the piston 200 in the apparatus for measuring permeability of FIG. 5
  • FIG. 7 is a plan view of a portion projected on the bottom of the piston 200 in FIGS. 5 and 6.
  • the piston 200 is positioned in the vessel 300, and the plurality of perforations 10 are formed in the piston lower portion 100 as shown in FIGS. 6 and 7.
  • the tank 500 and the vessel 300 are connected to each other, and the amount of the liquid introduced into the vessel 300 by the coke 600 is adjusted, and the lower portion of the vessel 300 is provided.
  • the mesh network 400 is formed, the lower portion of the mesh network 400 is spaced at a predetermined interval, the collection container 700 is located on the scale 800, the inflow through the mesh network 400 from the container 300
  • the flow rate may be measured using the scale 800 of the weight of the liquid.
  • Example 1 and Example 2 were extracted to prepare a sample, and the sample was uniformly spread on the bottom of the cylindrical cell 50. After placing the sampled cylindrical cell 50 on the mesh network 400 of the vessel 300, using the piston 200 to measure the gal height (H1) of the sample before swelling.
  • the piston 200 is positioned above the cylindrical cell 50, and the coke 600 of the tank 500 containing 0.9% physiological saline is opened to maintain a constant water height of 7.95 cm. do.
  • the amount of liquid passing through the gel layer through the computer and the balance 800 is measured at 1 second intervals for 1 minute as a function of time.
  • the velocity Q of the liquid passing through the swollen sample can be found in units of g / s by the linear least-squares method of weight (g) versus time (seconds).
  • K permeability (cm 2)
  • Q flow rate (g / sec)
  • H height of the swollen sample (cm)
  • liquid viscosity (P) (approximately 1 cP for the test solution used in this test)
  • A cross-sectional area for the liquid flow (28.27 cm 2 for the sample vessel used for this test)
  • liquid density (g / cm 3) (approximately 1 g / cm 3 for the test solution used for this test)
  • P hydrostatic pressure ( dynes / cm 2) (typically approximately 7,797 dynes / cm 2).
  • Comparative Examples and Examples 1 and 2 can be seen that the CRC and AUP value are similar.
  • the surface edge was removed by milling, followed by the surface cross-linking process to achieve uniform surface crosslinking, and the superabsorbent polymers were placed at even intervals and expanded in a uniform form, thus causing gel blocking.
  • the gel bed permeability was reduced.
  • the overall size of the super absorbent polymer is reduced in size, and the angular portion is reduced, thereby reducing the bulk density and improving flowability.

Abstract

The present invention relates to a method for producing a super-absorbent polymer. The method for producing a super-absorbent polymer according to the present invention comprises the steps of: polymerizing a monomer composition into a super-absorbent polymer in a polymerization reactor; pulverizing the polymerized super-absorbent polymer; and milling the pulverized polymer particles.

Description

고흡수성 수지 제조 방법Superabsorbent Resin Manufacturing Method
본 발명은 고흡수성 수지의 제조 방법에 관한 것이다.The present invention relates to a method for producing a super absorbent polymer.
고흡수성 수지(Super Absorbent Polymer, SAP)란 자체 무게의 500 내지 1,000 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업체마다 SAM(Super Absorbency Material), AGM(Absorbent Gel Material) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이 기저귀 등 위생 용품 이외에 원예용 토양 보수제, 토목, 건축용 지수재, 육묘용 시트, 식품 유통 분야에서의 신선도 유지제, 찜질 용품 등의 재료로 널리 사용되고 있다.Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight.As a developer, super absorbent material (SAM) and absorbent gel material (AGM) They are named differently. Such super absorbent polymers have been put into practical use as physiological tools, and nowadays, in addition to hygiene products such as children's paper diapers, horticultural soil repair agents, civil engineering, building index materials, seedling sheets, freshness-retaining agents, and steaming in the food distribution sector. It is widely used as a material for articles.
상기와 같은 고흡수성 수지를 제조하는 방법으로는 역상현탁중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 역상현탁중합에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 57-158209, 및 특개소 57-198714 등에 개시되어 있다. 수용액 중합에 의한 방법으로는 또 다시, 수용액에 열을 가하여 중합하는 열중합 방법, 및 자외선 등을 조사하여 중합하는 광중합 방법 등이 알려져 있다.As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known. Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open Nos. 56-161408, 57-158209, and 57-198714. As the method by aqueous solution polymerization, a thermal polymerization method for applying polymerization to an aqueous solution and polymerizing it again, and a photopolymerization method for irradiating and polymerizing ultraviolet rays or the like are known.
고흡수성 수지는 중합 후 분쇄하여 입자로 사용하게 되는데, 모서리 부분이 날카로운 형태를 가지게 되면 gel blocking 현상이 나타나 유체의 흐름성이 저하된다.The superabsorbent polymer is pulverized after polymerization to be used as particles. If the edges have sharp shapes, gel blocking occurs and the fluidity of the fluid decreases.
본 발명이 해결하고자 하는 과제는, 고흡수성 수지 입자의 표면 모서리를 제거하여 gel blocking 현상을 줄여 흐름성 및 겔투과성(Gel Bed Permeability)을 원활하게 할 수 있는 고흡수성 수지 제조 방법을 제공하는 것이다.The problem to be solved by the present invention is to provide a superabsorbent polymer manufacturing method that can smooth the flow and gel permeability (Gel Bed Permeability) by reducing the gel blocking phenomenon by removing the surface edge of the superabsorbent polymer particles.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned technical problem, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 고흡수성 수지의 제조 방법은 중합 반응기에서 모노머 조성물을 고흡수성 수지로 중합하는 단계, 상기 중합된 고흡수성 수지를 분쇄하는 단계, 및 상기 분쇄한 수지 입자를 밀링하는 단계를 포함할 수 있다.Method for producing a super absorbent polymer according to an embodiment of the present invention for solving the above problems is a step of polymerizing a monomer composition into a super absorbent polymer in a polymerization reactor, the step of pulverizing the polymerized superabsorbent resin, and the pulverized Milling the resin particles.
상기 밀링 단계는 분쇄한 수지 입자 및 비드(bead)를 혼합하여 수행될 수 있다.The milling step may be performed by mixing the pulverized resin particles and beads.
상기 비드는 수지 입자 대비 경도가 높을 수 있다.The beads may have a higher hardness than the resin particles.
상기 비드는 세라믹 재질일 수 있다.The bead may be a ceramic material.
상기 비드는 평균 직경이 1 mm 내지 10 mm 범위일 수 있다.The beads may have an average diameter in the range of 1 mm to 10 mm.
상기 비드와 수지 입자는 중량비로 1 : 0.1 내지 1 : 1.2 범위로 혼합될 수 있다.The beads and the resin particles may be mixed in a weight ratio of 1: 0.1 to 1: 1.2.
상기 밀링 단계는 자전과 공전이 동시에 이루어지는 플래니터리 밀(planetary mill)을 사용하여 수행될 수 있다.The milling step may be performed using a planetary mill (rotary mill) in which the rotation and the revolution is performed at the same time.
상기 밀링 단계의 공전속도/공정반경 비는 7 내지 30 rpm/cm 범위일 수 있다.The idle speed / process radius ratio of the milling step may range from 7 to 30 rpm / cm.
기 밀링 단계의 자전속도 : 공전속도의 비는 0.1 : 1 내지 10 : 1 범위일 수 있다.The ratio of the rotating speed to the rotating speed of the milling step may range from 0.1: 1 to 10: 1.
상기 밀링 단계 이후 상기 비드와 수지 입자를 분리하는 단계를 추가로 포함할 수 있다.After the milling step may further comprise the step of separating the beads and the resin particles.
상기 밀링 단계는 건식 밀링으로 이루어질 수 있다.The milling step may be made by dry milling.
상기 수지 입자의 표면을 가교하는 표면 가교 단계를 추가로 포함할 수 있다.It may further comprise a surface crosslinking step of crosslinking the surface of the resin particles.
상기 표면 가교 단계는 상기 밀링 단계 전, 밀링 단계 후, 또는 밀링 단계 전후에 수행될 수 있다.The surface crosslinking step may be performed before the milling step, after the milling step, or before or after the milling step.
상기 과제를 해결하기 위한 본 발명의 일 실시예에 따른 고흡수성 수지는 상기 방법으로 제조될 수 있다.Superabsorbent polymer according to an embodiment of the present invention for solving the above problems can be prepared by the above method.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.Specific details of other embodiments are included in the detailed description and the drawings.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.According to embodiments of the present invention has at least the following effects.
본 발명의 제조 방법으로 제조된 고흡수성 수지는 날카로운 모서리가 제거되어 gel blocking 현상을 줄여 흐름성 및 겔투과성(Gel Bed Permeability)을 향상시킬 수 있다.The superabsorbent polymer prepared by the manufacturing method of the present invention may improve the flowability and gel permeability by reducing the edge of the gel by removing sharp edges.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.The effects according to the present invention are not limited by the contents exemplified above, and more various effects are included in the present specification.
도 1은 본 발명의 일 실시예에 따른 고흡수성 수지 제조 방법의 밀링 단계 전의 고흡수성 수지 입자의 개략도이다.1 is a schematic diagram of superabsorbent polymer particles before the milling step of the superabsorbent polymer production method according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 고흡수성 수지 제조 방법의 밀링 단계 후의 고흡수성 수지 입자의 개략도이다.Figure 2 is a schematic diagram of the super absorbent polymer particles after the milling step of the superabsorbent polymer production method according to an embodiment of the present invention.
도 3은 비교예에 따른 고흡수성 수지 입자의 SEM 사진이다.3 is a SEM photograph of the super absorbent polymer particles according to the comparative example.
도 4는 실시예 1에 따른 고흡수성 수지입자의 SEM 사진이다.Figure 4 is a SEM photograph of the super absorbent polymer particles according to Example 1.
도 5 내지 7은 본 발명의 실시예에 따른 겔 투과성을 측정하는 장치의 개략적인 모식도를 도시한 도면이다.5 to 7 are schematic diagrams showing an apparatus for measuring gel permeability according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장된 것일 수 있다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims. Like reference numerals refer to like elements throughout. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity.
고흡수성 수지의 제조 방법Manufacturing method of super absorbent polymer
본 발명의 일 실시예에 따른 고흡수성 수지의 제조 방법은 중합 반응기에서 모노머 조성물을 고흡수성 수지로 중합하는 단계, 상기 중합된 고흡수성 수지를 분쇄하는 단계, 및 상기 분쇄한 수지 입자를 밀링하는 단계를 포함한다.According to one or more exemplary embodiments, a method of preparing a super absorbent polymer includes polymerizing a monomer composition into a super absorbent polymer in a polymerization reactor, pulverizing the polymerized super absorbent polymer, and milling the pulverized resin particles. It includes.
고흡수성 수지를 중합하는 단계는 특별히 한정되는 것은 아니지만, 모노머 조성물을 중합기에 주입하여 중합할 수 있다. 효율적인 공정을 위하여, 연속적인 중합 반응기를 사용하여 연속식으로 중합할 수 있다. 이 경우, 고흡수성 수지를 형성하기 위하여, 벨트 상에 상기 모노머 조성물을 주입하여 중합할 수 있지만, 이것만으로 한정되는 것은 아니다.Although the step of polymerizing the super absorbent polymer is not particularly limited, the monomer composition may be injected into the polymerizer and polymerized. For efficient processing, the polymerization can be carried out continuously using a continuous polymerization reactor. In this case, in order to form superabsorbent resin, although the said monomer composition can be inject | poured and superposed | polymerized on a belt, it is not limited only to this.
모노머 조성물에 포함되는 모노머로 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 일반적으로 사용되는 단량체이면 어느 것이나 한정 없이 사용이 가능하다. 모노머는 크게 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다.As the monomer contained in the monomer composition, the water-soluble ethylenically unsaturated monomer can be used without limitation as long as it is a monomer generally used in the production of superabsorbent polymers. The monomer can be used at least one selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof.
예시적인 실시예에서, 아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산 및 2-(메타)아크릴아미드-2-메틸프로판술폰산으로 이루어진 군에서 선택되는 하나 이상의 음이온성 단량체 또는 그 염; (메타)아크릴아미드, N-치환(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 메톡시폴리에틸렌글리콜(메타)아크릴레이트 및 폴리에틸렌 글리콜(메타)아크릴레이트로 이루어진 군에서 선택되는 하나 이상의 비이온계 친수성 함유 단량체; 또는 (N,N)-디메틸아미노에틸(메타)아크릴레이트 및 (N,N)-디메틸아미노프로필(메타)아크릴아미드로 이루어진 군에서 선택되는 하나 이상의 아미노기 함유 불포화 단량체 또는 그 4급화물 등을 포함할 수 있다.In an exemplary embodiment, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid And 2- (meth) acrylamide-2-methylpropanesulfonic acid; at least one anionic monomer or salt thereof; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxy polyethylene glycol (meth) acrylate and polyethylene glycol ( One or more nonionic hydrophilic-containing monomers selected from the group consisting of meth) acrylates; Or one or more amino group-containing unsaturated monomers selected from the group consisting of (N, N) -dimethylaminoethyl (meth) acrylate and (N, N) -dimethylaminopropyl (meth) acrylamide, or quaternized products thereof. can do.
모노머 조성물 중 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건(모노머 조성물의 공급 속도, 열 및/또는 빛의 조사 시간, 조사 범위, 및 조사 강도, 벨트의 너비, 길이 및 이동 속도 등)을 고려하여 적절하게 선택하여 사용할 수 있으나, 예시적인 실시예에서, 40 내지 60 중량% 범위일 수 있다. 이 경우, 모노머의 용해도 및 경제적인 면에서 효율적일 수 있다.The concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition depends on the polymerization time and reaction conditions (feed rate of the monomer composition, irradiation time of heat and / or light, irradiation range, and irradiation strength, belt width, length and moving speed, etc.). Although appropriately selected and used in consideration, in an exemplary embodiment, it may range from 40 to 60% by weight. In this case, it may be efficient in terms of solubility and economics of the monomer.
모노머 조성물은 광중합 개시제, 열중합 개시제 및 가교제로 이루어진 군에서 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다. 중합 개시제는 공정 과정에서 열중합, 광중합, 또는 열중합 및 광중합을 선택할지에 따라 그 종류를 적절히 선택하여 사용할 수 있다.The monomer composition may further include one or more additives selected from the group consisting of a photopolymerization initiator, a thermal polymerization initiator and a crosslinking agent. A polymerization initiator can be used, selecting the kind appropriately according to whether thermal polymerization, photopolymerization, or thermal polymerization and photopolymerization are selected in a process process.
광중합 개시제는 특별히 제한되는 것은 아니지만, 예를 들어, 디에톡시 아세토페논, 2-히드록시-2-메틸-1-페닐프로판-1-온, 4-(2-히드록시 에톡시)페닐-(2-히드록시)-2-프로필 케톤, 1-히드록시시클로헥실페닐케톤 등의 아세토페논 유도체; 벤조인메틸에테르, 벤조인에틸에테르, 벤조인이소프로필에테르, 벤조인이소부틸에테르 등의 벤조인알킬에테르류 화합물; o-벤조일 안식향산 메틸, 4-페닐 벤조페논, 4-벤조일-4'-메틸-디페닐 황화물, (4-벤조일 벤질)트리메틸암모늄 염화물 등의 벤조페논 유도체; 티옥산톤(thioxanthone)계 화합물; 비스(2,4,6-트리메틸벤조일)-페닐 포스핀 옥사이드, 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥사이드 등의 아실 포스핀 옥사이드 유도체; 또는 2-히드록시 메틸 프로피온니트릴, 2,2'-(아조비스(2-메틸-N-(1,1'-비스(히드록시메틸)-2-히드록시에틸)프로피온 아미드) 등의 아조계 화합물 등을 1종 또는 2종 이상 혼합하여 사용할 수 있지만, 이들만으로 한정되는 것은 아니다.The photopolymerization initiator is not particularly limited, but for example, diethoxy acetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 4- (2-hydroxy ethoxy) phenyl- (2 Acetophenone derivatives such as -hydroxy) -2-propyl ketone and 1-hydroxycyclohexylphenyl ketone; Benzoin alkyl ether compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone derivatives such as methyl o-benzoyl benzoate, 4-phenyl benzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, and (4-benzoyl benzyl) trimethylammonium chloride; Thioxanthone compounds; Acyl phosphine oxide derivatives such as bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide and diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide; Or azo systems such as 2-hydroxy methyl propionitrile and 2,2 '-(azobis (2-methyl-N- (1,1'-bis (hydroxymethyl) -2-hydroxyethyl) propion amide) Although a compound etc. can be used 1 type or in mixture of 2 or more types, It is not limited to these.
열중합 개시제는 특별히 제한되는 것은 아니지만, 예를 들어, 아조계(azo) 개시제, 과산화물계 개시제, 레독시(redox)계 개시제 또는 유기 할로겐화물 개시제 등을 1종 또는 2종 이상 혼합하여 사용할 수 있다. 그리고, 상기 열중합 개시제 중 소디움퍼설페이트(Sodium persulfate, Na2S2O8) 또는 포타시움 퍼설페이트(Potassium persulfate, K2S2O8)를 들 수 있지만, 이들만으로 한정되는 것은 아니다.The thermal polymerization initiator is not particularly limited, but for example, an azo initiator, a peroxide initiator, a redox initiator or an organic halide initiator may be used alone or in combination of two or more thereof. . In addition, sodium persulfate (Na 2 S 2 O 8 ) or potassium persulfate (Potassium persulfate, K 2 S 2 O 8 ) among the thermal polymerization initiators may be mentioned, but is not limited thereto.
모노머 조성물에서, 광중합 개시제 및 열중합 개시제는 중합 개시 효과를 나타낼 수 있으면 그 함량은 선택하여 사용할 수 있다. 예시적인 실시예에서, 광중합 개시제는 단량체 100 중량부 대비 0.005 내지 0.1 중량부 범위로 포함될 수 있고, 열중합 개시제는 단량체 100 중량부 대비 0.01 내지 0.5 중량부 범위로 포함될 수 있지만, 이들만으로 한정되는 것은 아니다.In the monomer composition, the content of the photopolymerization initiator and the thermal polymerization initiator can be selected as long as it can exhibit the polymerization initiation effect. In an exemplary embodiment, the photopolymerization initiator may be included in the range of 0.005 to 0.1 parts by weight based on 100 parts by weight of the monomer, and the thermal polymerization initiator may be included in the range of 0.01 to 0.5 parts by weight based on 100 parts by weight of the monomer, but is not limited thereto. no.
가교제는 단량체의 치환기와 반응할 수 있는 관능기 및 에틸렌성 불포화기를 각각 1개 이상 포함하는 가교제, 또는 단량체의 치환기 및/또는 상기 단량체를 가수분해하여 형성된 치환기와 반응할 수 있는 관능기를 2 이상 포함하는 가교제를 사용할 수 있다.The crosslinking agent includes at least one functional group capable of reacting with the substituent of the monomer and at least one ethylenically unsaturated group, or two or more functional groups capable of reacting with the substituent of the monomer and / or with the substituent formed by hydrolyzing the monomer. Crosslinking agents can be used.
예시적인 실시예에서, 가교제는 탄소수 8 내지 12의 비스아크릴아미드, 탄소수 8 내지 12의 비스메타아크릴아미드, 탄소수 2 내지 10의 폴리올의 폴리(메타)아크릴레이트 또는 탄소수 2 내지 10의 폴리올의 폴리(메타)알릴에테르 등을 들 수 있고, 보다 구체적인 예로는, N,N'-메틸렌비스(메타)아크릴레이트, 에틸렌옥시(메타)아크릴레이트, 폴리에틸렌옥시(메타)아크릴레이트, 프로필렌옥시(메타)아크릴레이트, 글리세린 디아크릴레이트, 글리세린 트리아크릴레이트, 트리메티롤 트리아크릴레이트, 트리알릴아민, 트리아릴시아누레이트, 트리알릴이소시아네이트, 폴리에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜로 또는 이들의 2종 이상의 혼합물을 들 수 있지만, 이들만으로 한정되는 것은 아니다.In an exemplary embodiment, the crosslinking agent is a poly (meth) acrylate of a polyol having 8 to 12 carbon atoms, a bismethacrylamide having 8 to 12 carbon atoms, a polyol having 2 to 10 carbon atoms or a poly (poly) having a polyol having 2 to 10 carbon atoms. Meta) allyl ether, and the like, and more specific examples thereof include N, N'-methylenebis (meth) acrylate, ethyleneoxy (meth) acrylate, polyethyleneoxy (meth) acrylate, and propyleneoxy (meth) acryl. Glycerol diacrylate, glycerin triacrylate, trimethol triacrylate, triallylamine, triarylcyanurate, triallyl isocyanate, polyethylene glycol, diethylene glycol, propylene glycol, or mixtures of two or more thereof Although these are mentioned, It is not limited only to these.
모노머 조성물에서, 가교제는 가교 효과를 나타낼 수 있으면 그 함량은 선택하여 사용할 수 있다. 예시적인 실시예에서, 가교제는 단량체 100 중량부 대비 0.01 내지 0.5 중량부 범위로 포함될 수 있지만, 이것만으로 한정되는 것은 아니다.In the monomer composition, if the crosslinking agent can exhibit a crosslinking effect, its content can be selected and used. In an exemplary embodiment, the crosslinking agent may be included in the range of 0.01 to 0.5 parts by weight based on 100 parts by weight of the monomer, but is not limited thereto.
적어도 2개의 중합 반응기 각각은 모노머 조성물의 조성이 서로 상이할 수 있다. 예시적인 실시예에서, 적어도 2개의 중합 반응기 각각은 모노머 조성물에서 가교제의 종류, 함량, 또는 종류 및 함량이 상이할 수 있다.Each of the at least two polymerization reactors may differ from each other in the composition of the monomer composition. In an exemplary embodiment, each of the at least two polymerization reactors may differ in type, content, or type and content of crosslinking agent in the monomer composition.
중합이 완료된 고흡수성 수지는 절단 장치에 투입되어, 커터로 고흡수성 수지를 절단하는 단계를 거칠 수 있다.The superabsorbent polymer having completed polymerization may be introduced into a cutting device, and the superabsorbent polymer may be cut by a cutter.
이 경우, 커터는 고흡수성 수지를 패터닝된 조각으로 절단할 수 있다.In this case, the cutter can cut the superabsorbent resin into patterned pieces.
절단이 완료된 고흡수성 수지는 분쇄, 건조 및 건조된 중합체를 추가 분쇄하는 단계를 추가로 더 포함할 수 있다. 경우에 따라서는 분쇄 공정 전에, 가건조 단계를 추가로 포함하여 분쇄 공정에서 뭉침 등을 방지할 수 있다.The cleaved superabsorbent polymer may further comprise the step of further grinding the ground, dried and dried polymer. In some cases, before the milling step, a temporary drying step may be further included to prevent agglomeration and the like in the milling step.
분쇄 방법으로는 특별히 한정되는 것은 아니지만, 예를 들어, 고무상 탄성체를 절단, 압출하는 장치를 이용할 수 있다. 예시적인 실시예에서, 커터형 절단기, 쵸퍼형 절단기, 니더형 절단기, 진동식 분쇄기, 충격식 분쇄기, 마찰형 분쇄기 등을 들 수 있지만 이들만으로 한정되는 것은 아니다.Although it does not specifically limit as a grinding | pulverization method, For example, the apparatus which cuts and extrudes a rubbery elastic body can be used. In an exemplary embodiment, cutter type cutters, chopper type cutters, kneader type cutters, vibratory grinders, impact grinders, friction grinders, and the like can be cited, but not limited thereto.
건조 방법으로는 통상 건조기와 가열로를 이용할 수 있다. 예시적인 실시예에서, 열풍 건조기, 유동층 건조기, 기류 건조기, 적외선 건조기, 유전가열 건조기 등을 들 수 있지만 이들만으로 한정되는 것은 아니다. 건조 온도는 특별히 제한되는 것은 아니지만, 열열화를 방지하고 효율적인 건조를 위하여 100 내지 200 ℃범위일 수 있다.As a drying method, a dryer and a heating furnace can be used normally. In an exemplary embodiment, hot air dryers, fluidized bed dryers, airflow dryers, infrared dryers, dielectric heating dryers, and the like may be mentioned, but are not limited thereto. The drying temperature is not particularly limited, but may be in the range of 100 to 200 ° C. for preventing thermal degradation and for efficient drying.
상기와 같이 분쇄한 고흡수성 수지 입자는 물리적 힘에 의하여 분쇄되어, 표면에 날카로운 모서리를 포함할 수 있고, 상기 밀링 단계를 통하여 표면을 다듬을 수 있다.The superabsorbent polymer particles pulverized as described above may be pulverized by physical force to include sharp edges on the surface, and the surface may be trimmed through the milling step.
밀링 단계는 분쇄한 수지 입자 및 마찰력을 가하여 상기 수지 입자의 표면을 가공하기 위한 비드(bead)를 혼합하여 수행될 수 있다.The milling step may be performed by mixing the pulverized resin particles and beads to apply a frictional force to process the surface of the resin particles.
상기 비드는 수지 입자 대비 경도가 높은 것이면 어느 것이나 사용이 가능하다. 예를 들어, 세라믹 재질일 수 있지만, 이것만으로 한정되는 것은 아니다. 상기 세라믹 재질의 예로, 지르코니아 등을 들 수 있지만, 이것으로 한정되는 것은 아니고, 수지 입자보다 경도가 높은 물질이면 어느 것이나 사용할 수 있다.The beads can be used as long as the hardness is higher than that of the resin particles. For example, it may be a ceramic material, but is not limited thereto. Zirconia etc. are mentioned as an example of the said ceramic material, However, It is not limited to this, Any material can be used as long as it is a substance whose hardness is higher than resin particle.
상기 비드는 표면 모서리 가공을 위하여 구 형태일 수 있고, 평균 직경은 수지 입자의 사이즈에 따라 선택이 가능하지만, 예를 들어, 1 mm 내지 10 mm 범위일 수 있으나, 이것만으로 한정되는 것은 아니다.The beads may have a spherical shape for surface edge processing, and the average diameter may be selected according to the size of the resin particles, but may be, for example, in the range of 1 mm to 10 mm, but is not limited thereto.
상기 비드와 수지 입자의 혼합 비율은 비드 : 수지 입자의 중량비로 1 : 0.1 내지 1 : 1.2 범위일 수 있다. 비드와 수지 입자의 혼합 비율이 1 : 0.1 미만인 경우에는 표면 모서리 가공 효율이 더 이상 높아지지 않고, 1 : 1.2 초과인 경우에는 수지 입자가 비드와 접하는 빈도가 서로 상이하여 균일한 결과물을 얻지 못할 수 있다. 상기와 같은 이유로, 비드와 수지 입자의 혼합 비율은 1 : 0.2 내지 1 : 1 범위일 수 있다.The mixing ratio of the beads and the resin particles may range from 1: 0.1 to 1: 1.2 by weight ratio of beads: resin particles. If the mixing ratio of the beads and the resin particles is less than 1: 0.1, the surface edge processing efficiency no longer increases, and if the ratio of the beads and the resin particles is greater than 1: 1.2, the frequency of the resin particles contacting the beads may be different from each other to obtain a uniform result. have. For the same reason as above, the mixing ratio of the beads and the resin particles may range from 1: 0.2 to 1: 1.
상기 밀링 단계는 일반적으로 사용되는 밀링 장치를 사용하여 수행될 수 있다. 예를 들어, 자전과 공전이 동시에 이루어지는 플래니터리 밀(planetary mill)을 사용할 수 있지만, 이것만으로 한정되는 것은 아니다. 상기와 같이, 자전과 공전이 동시에 이루어질 경우, 비드와 수지 입자가 더욱 원활하게 마찰하며 균일한 결과물을 제조할 수 있다.The milling step can be carried out using a milling apparatus which is generally used. For example, a planetary mill which rotates and rotates at the same time can be used, but is not limited thereto. As described above, when the rotation and the revolution is made at the same time, the beads and the resin particles can be rubbed more smoothly to produce a uniform result.
예시적인 실시예에서, 밀링 단계의 공전속도/공정반경 비는 7 내지 30 rpm/cm 범위일 수 있다. 공전속도/공정반경 비가 7 rpm/cm 미만인 경우에는 공전에 의한 밀링 효과가 미미하고, 30 rpm/cm 초과인 경우에는 마찰이 과하게 발생하여 미분 발생량이 증가하게 된다.In an exemplary embodiment, the idle speed / process radius ratio of the milling step may range from 7 to 30 rpm / cm. When the idle speed / process radius ratio is less than 7 rpm / cm, the milling effect due to the idle is insignificant, and when the idle speed is greater than 30 rpm / cm, friction is excessively generated and the amount of fine powder is increased.
다른 예시적인 실시예에서, 밀링 단계의 자전속도 : 공전속도의 비는 0.1 : 1 내지 10 : 1 범위일 수 있다. 자전속도 : 공전속도의 비가 0.1 : 1 미만인 경우에는 밀링 효과가 미미하고, 10 : 1 초과인 경우에는 미분 발생량이 증가하게 되어 공정 효율을 저하시킬 수 있다.In another exemplary embodiment, the ratio of rotational speed to idle speed of the milling step may range from 0.1: 1 to 10: 1. When the ratio of the rotational speed to the idle speed is less than 0.1: 1, the milling effect is insignificant, and when the ratio of the rotational speed is greater than 10: 1, the amount of fines generated increases, which may lower the process efficiency.
예시적인 실시예에서, 고흡수성 수지의 제조 방법은 상기 밀링 단계 이후에 상기 비드와 수지 입자를 분리하는 단계를 추가로 포함할 수 있다.In an exemplary embodiment, the method of preparing a super absorbent polymer may further include separating the beads and the resin particles after the milling step.
상기 비드와 수지 입자를 분리하는 단계는 체, 그물망 등과 같은 필터를 사용하여 수행될 수 있으나, 이들만으로 한정되는 것은 아니다. 상기 필터를 사이즈를 상이하게 하여 2 개를 사용하면, 상기 비드, 수지 입자 및 미분을 동시에 분리할 수도 있다. 상기 필터의 사이즈는 상기 비드 및 수지 입자의 사이즈에 따라 적절하게 선택할 수 있다.Separating the beads and the resin particles may be performed using a filter such as a sieve, a mesh, and the like, but is not limited thereto. If two filters are used with different sizes, the beads, the resin particles and the fine powder may be separated at the same time. The size of the filter can be appropriately selected according to the sizes of the beads and the resin particles.
상기 밀링 단계는 밀링을 원활하게 하기 위한 액상 미디어를 사용하는 액상 밀링 또는 액상 미디어를 사용하지 않는 건식 밀링으로 이루어질 수 있다. 예시적인 실시예에서, 별도의 건조 공정 등을 배제할 수 있는 건식 밀링으로 수행될 수 있다.The milling step may consist of liquid milling using liquid media for smooth milling or dry milling without using liquid media. In an exemplary embodiment, it may be performed by dry milling, which may exclude a separate drying process and the like.
예시적인 실시예에서, 고흡수성 수지의 제조 방법은 고흡수성 수지의 표면을 가교하는 단계를 추가로 포함할 수 있다.In an exemplary embodiment, the method of making the superabsorbent polymer may further comprise crosslinking the surface of the superabsorbent polymer.
표면 가교는, 예를 들어, 에틸렌 글리콜 디글리시딜 에테르, 물 및 에탄올을 이용하여 이루어질 수 있으나, 이것만으로 한정되는 것은 아니다.Surface crosslinking can be accomplished using, for example, ethylene glycol diglycidyl ether, water and ethanol, but is not limited thereto.
상기 표면 가교 단계는 밀링 단계 전, 밀링 단계 후, 또는 밀링 단계 전후에 수행될 수 있다.The surface crosslinking step may be performed before the milling step, after the milling step, or before or after the milling step.
고흡수성 수지 입자Super Absorbent Resin Particles
이하, 도면을 참조하여 본 발명의 고흡수성 수지 입자에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the superabsorbent polymer particle of this invention is demonstrated with reference to drawings.
도 1은 본 발명의 일 실시예에 따른 고흡수성 수지 제조 방법의 밀링 단계 전의 고흡수성 수지 입자의 개략도이고, 도 2는 본 발명의 일 실시예에 따른 고흡수성 수지 제조 방법의 밀링 단계 후의 고흡수성 수지 입자의 개략도이다.1 is a schematic diagram of superabsorbent polymer particles before the milling step of the superabsorbent polymer production method according to an embodiment of the present invention, Figure 2 is a superabsorbent polymer after the milling step of the superabsorbent polymer production method according to an embodiment of the present invention It is a schematic diagram of a resin particle.
도 1을 참조하면, 밀링 단계를 거치기 전의 고흡수성 수지 입자의 경우, 표면 가교 공정에서 특정 모서리 부분에 가교가 왕성하게 진행되어 날카롭게 돌출되는 부분이 발생되는 것을 볼 수 있다. Referring to Figure 1, in the case of the super absorbent polymer particles before the milling step, it can be seen that the cross-linking is vigorously progressed to a specific edge portion in the surface cross-linking process to generate a sharp projecting portion.
반면에, 도 2를 참조하면 밀링 단계를 거치면서, 상기 도 1과 같이 날카롭게 돌출되는 부분이 제거되는 것을 볼 수 있다.On the other hand, referring to FIG. 2, it can be seen that the sharply protruding portion is removed as shown in FIG. 1 through the milling step.
제조예Production Example
50% 가성소다 수용액(NaOH) 77.778g 및 물 88.84g을 혼합한 후 아크릴산 100g, 가교제로 폴리에틸렌글리콜디아크릴레이트0.115g, UV 개시제로 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.033g을 혼합하여 친수성 단량체의 농도가 45 중량%인 단량체 조성물을 제조하였다. After mixing 77.778 g of 50% aqueous sodium hydroxide solution (NaOH) and 88.84 g of water, 100 g of acrylic acid, 0.115 g of polyethylene glycol diacrylate as a crosslinking agent, diphenyl (2,4,6-trimethylbenzoyl) -phosphine jade as a UV initiator 0.033 g of the seeds were mixed to prepare a monomer composition having a concentration of 45% by weight of the hydrophilic monomer.
이후, 단량체 조성물을 중합기에 투입한 후, UV조사 장치를 통해 자외선을 조사하고 UV 중합을 진행하여 함수 겔 중합체를 제조하였다. Thereafter, the monomer composition was added to the polymerizer, and then irradiated with ultraviolet rays through a UV irradiation apparatus, and UV polymerization was performed to prepare a hydrogel polymer.
이후, 함수 겔 중합체를 절단기로 이송한 후, 절단하였다. 이때 절단된 함수 겔 중합체의 함수율은 50 중량%였다.Thereafter, the hydrogel polymer was transferred to a cutter and then cut. At this time, the water content of the cleaved hydrous gel polymer was 50% by weight.
상기 절단된 겔 중합체를 미트 쵸퍼(meat chopper)를 이용해 쵸핑(chopping)하였다. 이어서, 함수 겔 중합체를 180℃ 온도의 열풍건조기에서 30분 동안 건조하고, 건조된 함수 겔 중합체를 핀밀 분쇄기로 분쇄하여 베이스 폴리머를 제조하였다.The cleaved gel polymer was chopped using a meat chopper. The hydrous gel polymer was then dried in a hot air dryer at 180 ° C. for 30 minutes and the dried hydrogel polymer was ground in a pin mill grinder to prepare a base polymer.
비교예Comparative example
상기 제조예에서 제조된 베이스 폴리머를 표면 가교 믹서에서 20% 에틸렌 카보네이트 수용액을 5 pph 비율로 분무시키고, 180℃에서 30분간 열처리한 후 Silica 0.5 pph비율로 표면가교된 수지와 혼합하여 고흡수성 수지를 제조하였다.The base polymer prepared in Preparation Example was sprayed with a 20% ethylene carbonate aqueous solution at a rate of 5 pph in a surface crosslinking mixer, heat-treated at 180 ° C. for 30 minutes, and then mixed with a surface crosslinked resin at a silica ratio of 0.5 pph to obtain a superabsorbent polymer. Prepared.
실시예 1Example 1
용기 안에 상기 제조예에서 얻은 베이스 폴리머 55g과 지르코니아 5mm 사이즈 비드를 55g 채우고, Planetary bead mill을 사용하여 자전속도: 공전속도의 비 5 : 1, 20 rpm/cm으로 30분간 밀링 작업 후 망체 0.85mm와 0.15mm로 분급하여 비드를 걸러냈다. 55 g of the base polymer obtained in the above example and 55 g of the zirconia 5 mm beads were filled in a container, and the planetary bead mill was used for 30 minutes of milling at a rotational speed of 5: 1 and 20 rpm / cm. The beads were filtered by classifying at 0.15 mm.
걸러진 베이스 폴리머를 표면가교 믹서에서 20% 에틸렌 카보네이트 수용액을 5 pph 비율로 파우더에 분무시켰고, 180℃에서 30분간 열처리 하였다. 열처리된 파우더를 Silica 0.5 pph비율로 표면가교된 수지와 혼합한 후 ASTM 규격의 표준 망체로 분급하여 150 내지 850㎛의 입자 크기를 가지는 고흡수성 수지를 제조하였다.The filtered base polymer was sprayed onto the powder at a rate of 5 pph in an aqueous 20% ethylene carbonate solution in a surface crosslinking mixer, and heat-treated at 180 ° C. for 30 minutes. The heat-treated powder was mixed with the resin cross-linked at a Silica 0.5 pph ratio and then classified into a standard mesh of ASTM standards to prepare a super absorbent polymer having a particle size of 150 to 850 μm.
실시예 2Example 2
상기 제조예에서 얻은 베이스 폴리머를 표면가교 믹서에서 20% 에틸렌 카보네이트 수용액을 5 pph 비율로 파우더에 분무시켰고, 180℃에서 30분간 열처리 하였다. 열처리된 파우더는 상기 실시예 1과 동일한 밀링작업을 거쳤다. 망체 0.85mm와 0.15mm로 분급하여 비드를 걸러내고, Silica 0.5 pph비율로 표면가교된 수지와 혼합한 후 ASTM 규격의 표준 망체로 분급하여 150 내지 850㎛의 입자 크기를 가지는 고흡수성 수지를 얻었다.The base polymer obtained in Preparation Example was sprayed onto the powder at a rate of 5 pph in a 20% aqueous solution of ethylene carbonate in a surface crosslinking mixer, and heat-treated at 180 ° C. for 30 minutes. The heat-treated powder was subjected to the same milling operation as in Example 1. The beads were filtered by classifying 0.85 mm and 0.15 mm meshes, mixed with a resin cross-linked at a Silica 0.5 pph ratio, and classified into a standard mesh of ASTM standard to obtain a superabsorbent polymer having a particle size of 150 to 850 μm.
실험예 1Experimental Example 1
상기 비교예에서 제조된 베이스 폴리머의 SEM이미지를 측정하여 하기 도 3에 나타내었으며, 상기 실시예 1에서 제조된 베이스 폴리머의 SEM이미지를 측정하여 하기 도 4에 나타내었다.The SEM image of the base polymer prepared in Comparative Example was measured and shown in FIG. 3, and the SEM image of the base polymer prepared in Example 1 was measured and shown in FIG. 4.
도 3 및 4를 참조하면, 도 3의 베이스 폴리머의 입자는 표면 모서리가 각지고 날카로운 것을 확인할 수 있다. 이와 달리, 도 4의 베이스 폴리머의 입자는 모서리가 라운드화 되고 상대적으로 날카롭지 않은 것을 확인할 수 있다.3 and 4, it can be seen that the particles of the base polymer of FIG. On the contrary, it can be seen that the particles of the base polymer of FIG. 4 have rounded corners and are not relatively sharp.
실험예 2Experimental Example 2
상기 비교예, 실시예 1 및 실시예 2에서 제조된 베이스 폴리머 각각의 CRC(Centrifuge Retention Capacity), AUP(Absorbency Under Pressure), 겔투과성, 흐름성 및 부피밀도를 측정하였으며, 그 결과는 하기 표 1과 같다. CRC 및 AUP는 각각 EDANA WSP 241.2. R3, EDANA WSP 242.2. R3 규격으로 측정하였으며, 흐름성과 부피밀도는 ASTM D 1895-96 규격으로 측정하였다. The Centrifuge Retention Capacity (CRC), Absorbency Under Pressure (AUP), gel permeability, flowability, and bulk density of each of the base polymers prepared in Comparative Examples, Examples 1 and 2 were measured, and the results are shown in Table 1 below. Same as CRC and AUP are EDANA WSP 241.2. R3, EDANA WSP 242.2. It was measured according to the R3 standard, flowability and bulk density was measured according to the ASTM D 1895-96 standard.
한편, 겔투과성은 도 5의 장치를 이용하여 측정할 수 있다. 보다 구체적으로 도 6에는 도 5의 갤투과성 측정 장치에서 피스톤(200)을 확대한 단면도이고, 도 7은 도 5 및 6에서 피스톤(200) 밑부분에 타광된 부분의 평면도를 도시한 도면이다.In addition, gel permeability can be measured using the apparatus of FIG. More specifically, FIG. 6 is an enlarged cross-sectional view of the piston 200 in the apparatus for measuring permeability of FIG. 5, and FIG. 7 is a plan view of a portion projected on the bottom of the piston 200 in FIGS. 5 and 6.
도 5에서와 같이, 용기(300)안에는 피스톤(200)이 위치하고, 피스톤은 도 6 및 7과 같이 피스톤 하부(100)에 다수개의 타공(10)이 형성되어 있다.As shown in FIG. 5, the piston 200 is positioned in the vessel 300, and the plurality of perforations 10 are formed in the piston lower portion 100 as shown in FIGS. 6 and 7.
다시 도 5를 참조하면, 탱크(500)와 용기(300)는 서로 연결되고, 코크(600)에 의해 용기(300)로 유입되는 액체의 양을 조절할 수 있게 되어 있으며, 용기(300)의 하부에는 메쉬망(400)이 형성되고, 메쉬망(400)의 하부에는 일정간격 이격되어 저울(800) 상부에 수집 컨테이너(700)가 위치하여, 용기(300)로부터 메쉬망(400)을 통해 유입되는 액체의 무게를 저울(800)을 이용하여 유량을 측정할 수 있다.Referring back to FIG. 5, the tank 500 and the vessel 300 are connected to each other, and the amount of the liquid introduced into the vessel 300 by the coke 600 is adjusted, and the lower portion of the vessel 300 is provided. The mesh network 400 is formed, the lower portion of the mesh network 400 is spaced at a predetermined interval, the collection container 700 is located on the scale 800, the inflow through the mesh network 400 from the container 300 The flow rate may be measured using the scale 800 of the weight of the liquid.
한편, 상기 비교예, 실시예 1 및 실시예 2에서 제조된 베이스 폴리머를 2.0g추출하여 샘플을 준비하고, 상기 샘플을 원통형 셀(50)의 바닥에 균일하게 펼쳐 둔다. 상기 샘플이 펼쳐진 원통형 셀(50)을 용기(300)의 메쉬망(400) 상에 배치한 이후, 피스톤(200)을 이용하여 팽윤 전의 샘플의 갤 높이를(H1) 측정한다. Meanwhile, 2.0 g of the base polymer prepared in Comparative Examples, Example 1 and Example 2 was extracted to prepare a sample, and the sample was uniformly spread on the bottom of the cylindrical cell 50. After placing the sampled cylindrical cell 50 on the mesh network 400 of the vessel 300, using the piston 200 to measure the gal height (H1) of the sample before swelling.
이어서, 피스톤(200)을 빼고, 상기 샘플이 펼쳐진 원통형 셀(50)을 용기(300)의 메쉬망(400) 상에 배치하고, 0.9% 생리식염수를 부어주면서, 60분 동안 팽윤 시킨다. 60분 후, 용기(300)안에 피스톤(200)을 위치시켜, 팽윤 후의 피스톤 높이(H2)를 측정하여, 팽윤 전의 피스톤(200)의 높이(H1)와 팽윤 후의 피스톤(200)의 높이(H2)의 차를 측정하여 팽윤된 겔층 높이(H=H2-H1)를 측정한다.Subsequently, the piston 200 is removed, and the sample-folded cylindrical cell 50 is placed on the mesh network 400 of the container 300 and swollen for 60 minutes while pouring 0.9% saline. After 60 minutes, the piston 200 is placed in the container 300, the piston height H2 after swelling is measured, and the height H1 of the piston 200 before swelling and the height H2 of the piston 200 after swelling. The difference between the s) is measured to determine the height of the swollen gel layer (H = H2-H1).
다음으로, 도 5와 같이, 원통형 셀(50) 상부에 피스톤(200)위치시키고, 0.9% 생리식염수가 담긴 탱크(500)의 코크(600)를 열어 물의 높이를 7.95cm로 일정하게 유지하여 투입한다. 0.3psi 무게에 해당하는 피스톤(200)으로 압력을 가해주면서, 컴퓨터와 저울(800)을 통해 겔 층을 통과하는 액체의 양을 시간의 함수로 1분 동안 1초 간격으로 측정한다. 팽윤된 샘플을 통과하는 액체의 속도 Q는 무게(g) 대 시간 (초) 의 선형 최소-제곱법으로 g/s의 단위로 구할 수 있다. Next, as shown in FIG. 5, the piston 200 is positioned above the cylindrical cell 50, and the coke 600 of the tank 500 containing 0.9% physiological saline is opened to maintain a constant water height of 7.95 cm. do. While applying pressure to the piston 200 corresponding to a 0.3 psi weight, the amount of liquid passing through the gel layer through the computer and the balance 800 is measured at 1 second intervals for 1 minute as a function of time. The velocity Q of the liquid passing through the swollen sample can be found in units of g / s by the linear least-squares method of weight (g) versus time (seconds).
투과도(㎠)는 다음의 방정식으로 수득한다:Permeability (cm 2) is obtained by the following equation:
K = [Q * H * μ /[A * ρ * P]K = [Q * H * μ / [A * ρ * P]
여기서, K = 투과도(㎠), Q = 유속(g/sec), H = 팽윤된 샘플의 높이(cm), μ = 액체 점도(P)(당해 시험에 사용되는 시험 용액의 경우 대략 1cP), A = 액체 유동에 대해 단면적(당해 시험에 사용되는 샘플 용기에 대해 28.27㎠), ρ = 액체 밀도(g/㎤)(당해 시험에 사용되는 시험 용액에 대해 대략 1g/㎤), P = 정수압(dynes/㎠)(통상적으로 대략 7,797dynes/㎠)이다. 정수압은 P = ρ*g*h로부터 계산되며, 여기서, ρ = 액체 밀도(g/㎤), g = 중력 가속도, 통상적으로 981cm/sec2, h = 유체 높이, 7.95cm이다.Where K = permeability (cm 2), Q = flow rate (g / sec), H = height of the swollen sample (cm), μ = liquid viscosity (P) (approximately 1 cP for the test solution used in this test), A = cross-sectional area for the liquid flow (28.27 cm 2 for the sample vessel used for this test), ρ = liquid density (g / cm 3) (approximately 1 g / cm 3 for the test solution used for this test), P = hydrostatic pressure ( dynes / cm 2) (typically approximately 7,797 dynes / cm 2). The hydrostatic pressure is calculated from P = ρ * g * h, where ρ = liquid density (g / cm 3), g = gravity acceleration, typically 981 cm / sec 2 , h = fluid height, 7.95 cm.
표 1
CRC (g/g) 0.7 psi AUP (g/g) 겔투과성(x 10-8 cm2) 흐름성(g/sec) 부피밀도(g/ml)
비교예1 33 22 8 10 0.68
실시예1 33 24 14 11 0.66
실시예2 33 21 10 11 0.66
Table 1
CRC (g / g) 0.7 psi AUP (g / g) Gel Permeability (x 10 -8 cm 2 ) Flowability (g / sec) Bulk density (g / ml)
Comparative Example 1 33 22 8 10 0.68
Example 1 33 24 14 11 0.66
Example 2 33 21 10 11 0.66
상기 표 1에서와 같이, 비교예와 실시예 1 및 2는 CRC와 AUP값이 유사한 것을 볼 수 있다. 실시예 1의 경우, 표면 모서리를 밀링에 의해 제거한 후 표면가교 공정을 진행하여 균일한 표면 가교가 되었고, 고흡수성 수지들이 균일한 간격으로 위치하고, 균일한 형태로 팽창된 상태로 되어, gel blocking현상을 줄이고, 겔투과성(Gel Bed Permeability)이 향상된 것을 볼 수 있다. 또한, 밀링 작업을 통해 전반적으로 고흡수성 수지의 사이즈(size)가 전반적으로 줄어들고, 각진 부분이 줄어 부피밀도의 감소와 흐름성이 개선된 것을 볼 수 있다.As shown in Table 1, Comparative Examples and Examples 1 and 2 can be seen that the CRC and AUP value are similar. In the case of Example 1, the surface edge was removed by milling, followed by the surface cross-linking process to achieve uniform surface crosslinking, and the superabsorbent polymers were placed at even intervals and expanded in a uniform form, thus causing gel blocking. To reduce the gel bed permeability. In addition, through the milling operation, the overall size of the super absorbent polymer is reduced in size, and the angular portion is reduced, thereby reducing the bulk density and improving flowability.
이상 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be manufactured in various forms, and a person of ordinary skill in the art to which the present invention pertains has the technical idea of the present invention. However, it will be understood that other specific forms may be practiced without changing the essential features. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (14)

  1. 중합 반응기에서 모노머 조성물을 고흡수성 수지로 중합하는 단계;Polymerizing the monomer composition into a super absorbent polymer in a polymerization reactor;
    상기 중합된 고흡수성 수지를 분쇄하는 단계; 및Pulverizing the polymerized superabsorbent polymer; And
    상기 분쇄한 수지 입자를 밀링하는 단계를 포함하는 고흡수성 수지의 제조 방법.Method for producing a super absorbent polymer comprising the step of milling the pulverized resin particles.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 밀링 단계는 분쇄한 수지 입자 및 비드(bead)를 혼합하여 수행되는 고흡수성 수지의 제조 방법.The milling step is a method of producing a super absorbent polymer is performed by mixing the pulverized resin particles and beads (bead).
  3. 제 2 항에 있어서,The method of claim 2,
    상기 비드는 수지 입자 대비 경도가 높은 고흡수성 수지의 제조 방법.The beads are a method of producing a super absorbent polymer having a higher hardness than the resin particles.
  4. 제 2 항에 있어서,The method of claim 2,
    상기 비드는 세라믹 재질인 고흡수성 수지의 제조 방법.The bead is a ceramic manufacturing method of a super absorbent polymer.
  5. 제 2 항에 있어서,The method of claim 2,
    상기 비드는 평균 직경이 1 mm 내지 10 mm 범위인 고흡수성 수지의 제조 방법.The beads are a method of producing a super absorbent polymer having an average diameter in the range of 1 mm to 10 mm.
  6. 제 2 항에 있어서,The method of claim 2,
    상기 비드와 수지 입자는 중량비로 1 : 0.1 내지 1 : 1.2 범위로 혼합되는 고흡수성 수지의 제조 방법.The beads and the resin particles are mixed in a weight ratio of 1: 0.1 to 1: 1.2 method for producing a super absorbent polymer.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 밀링 단계는 자전과 공전이 동시에 이루어지는 플래니터리 밀(planetary mill)을 사용하여 수행되는 고흡수성 수지의 제조 방법.The milling step is a method of producing a super absorbent polymer is carried out using a planetary mill (planetary mill) is the rotation and revolving at the same time.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 밀링 단계의 공전속도/공정반경 비는 7 내지 30 rpm/cm 범위인 고흡수성 수지의 제조 방법.Revolving speed / process radius ratio of the milling step is a method for producing a super absorbent polymer in the range of 7 to 30 rpm / cm.
  9. 제 7 항에 있어서,The method of claim 7, wherein
    상기 밀링 단계의 자전속도 : 공전속도의 비는 0.1 : 1 내지 10 : 1 범위인 고흡수성 수지의 제조 방법.Method of producing a super absorbent polymer in the ratio of the rotational speed: the revolution speed of the milling step is in the range of 0.1: 1 to 10: 1.
  10. 제 2 항에 있어서,The method of claim 2,
    상기 밀링 단계 이후 상기 비드와 수지 입자를 분리하는 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.After the milling step further comprising the step of separating the beads and the resin particles super absorbent polymer production method.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 밀링 단계는 건식 밀링으로 이루어지는 고흡수성 수지의 제조 방법.The milling step is a method of producing a super absorbent polymer consisting of dry milling.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 수지 입자의 표면을 가교하는 표면 가교 단계를 추가로 포함하는 고흡수성 수지의 제조 방법.Method for producing a super absorbent polymer further comprising a surface crosslinking step of crosslinking the surface of the resin particles.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 표면 가교 단계는 상기 밀링 단계 전, 밀링 단계 후, 또는 밀링 단계 전후에 수행되는 고흡수성 수지의 제조 방법.The surface crosslinking step is carried out before the milling step, after the milling step, or before and after the milling step of producing a super absorbent polymer.
  14. 제 1 항 내지 제 13 항 중 어느 한 항에 따른 방법으로 제조되는 고흡수성 수지.Superabsorbent polymer prepared by the method according to any one of claims 1 to 13.
PCT/KR2015/003450 2014-04-08 2015-04-07 Method for producing super-absorbent polymer WO2015156570A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0041817 2014-04-08
KR20140041817 2014-04-08
KR10-2015-0047452 2015-04-03
KR1020150047452A KR20150116783A (en) 2014-04-08 2015-04-03 Method for preparing super absorbent polymer

Publications (1)

Publication Number Publication Date
WO2015156570A1 true WO2015156570A1 (en) 2015-10-15

Family

ID=54288086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003450 WO2015156570A1 (en) 2014-04-08 2015-04-07 Method for producing super-absorbent polymer

Country Status (1)

Country Link
WO (1) WO2015156570A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665300B1 (en) * 2004-09-07 2007-01-04 주식회사 케이씨텍 Ceria slurry for chemical mechanical polishing and its fabrication method
KR20100023334A (en) * 2008-08-21 2010-03-04 한국지질자원연구원 Fabrication method of caco3 nanoparticles using beads milling
KR20110136597A (en) * 2010-06-15 2011-12-21 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20130038597A (en) * 2011-10-10 2013-04-18 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20130053015A (en) * 2011-11-14 2013-05-23 (주) 디에이치홀딩스 Manufacturing method for highly concentrated and dispersed carbon nano tube dispersion solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665300B1 (en) * 2004-09-07 2007-01-04 주식회사 케이씨텍 Ceria slurry for chemical mechanical polishing and its fabrication method
KR20100023334A (en) * 2008-08-21 2010-03-04 한국지질자원연구원 Fabrication method of caco3 nanoparticles using beads milling
KR20110136597A (en) * 2010-06-15 2011-12-21 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20130038597A (en) * 2011-10-10 2013-04-18 주식회사 엘지화학 Preparation method of super absorbent polymer
KR20130053015A (en) * 2011-11-14 2013-05-23 (주) 디에이치홀딩스 Manufacturing method for highly concentrated and dispersed carbon nano tube dispersion solution

Similar Documents

Publication Publication Date Title
WO2015084059A1 (en) Method for preparing super absorbent resin
US10821418B2 (en) Super absorbent polymer
KR101393681B1 (en) Preparation method of super absorbent polymer
EP3070114B1 (en) Superabsorbent polymer and method for preparing the same
WO2015115821A1 (en) Apparatus for cutting super absorbent polymer and method for preparing super absorbent polymer using same
EP3424988B1 (en) Superabsorbent polymer and method for preparing same
WO2016200054A1 (en) Super-absorbent resin and method for preparing same
WO2016175427A1 (en) Method for preparing super absorbent resin
EP2826807A2 (en) Super absorbent polymer and method for manufacturing same
BR112014015719B1 (en) method of preparing a superabsorbent polymer
WO2017010660A1 (en) Method for preparing superabsorbent resin and superabsorbent resin prepared thereby
WO2016175428A1 (en) Method for preparing super absorbent resin
KR102215025B1 (en) Preparation method of super absorbent polymer and super absorbent polymer obtained by the method
WO2016200010A1 (en) High water-absorbent resin having crush resistance and method for manufacturing same
US10829630B2 (en) Super absorbent polymer
KR20110138962A (en) Polymerization reactores for the preparation of super absorbent polymer and preparation method thereof using the same
WO2015088246A1 (en) Apparatus for preparing super-absorbent resin and method for preparing super-absorbent resin using same
KR20140092112A (en) Preparation method for super absorbent polymer
JP2017505833A (en) Superabsorbent resin cutting device and method for producing superabsorbent resin using the same
WO2015156570A1 (en) Method for producing super-absorbent polymer
WO2016111446A1 (en) Method for preparing superabsorbent polymer treated with water dispersion solution containing microparticles
WO2015199363A1 (en) Super absorbent polymer containing water-soluble salt and preparation method therefor
WO2015156545A1 (en) Super-absorbent polymer and method for producing same
TWI589597B (en) Method for preparing super absorbent polymer
WO2016003240A1 (en) Super-absorbent resin and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15776459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15776459

Country of ref document: EP

Kind code of ref document: A1