WO2015084059A1 - Method for preparing super absorbent resin - Google Patents

Method for preparing super absorbent resin Download PDF

Info

Publication number
WO2015084059A1
WO2015084059A1 PCT/KR2014/011788 KR2014011788W WO2015084059A1 WO 2015084059 A1 WO2015084059 A1 WO 2015084059A1 KR 2014011788 W KR2014011788 W KR 2014011788W WO 2015084059 A1 WO2015084059 A1 WO 2015084059A1
Authority
WO
WIPO (PCT)
Prior art keywords
super absorbent
polymer
absorbent polymer
producing
water
Prior art date
Application number
PCT/KR2014/011788
Other languages
French (fr)
Korean (ko)
Inventor
이승모
김영삼
오경실
양영인
김예훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140066046A external-priority patent/KR20150064649A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016557857A priority Critical patent/JP6449902B2/en
Priority to RU2016105746A priority patent/RU2636941C1/en
Priority to US14/907,470 priority patent/US9700871B2/en
Priority to EP14867984.8A priority patent/EP3078678B1/en
Priority to CN201480045362.0A priority patent/CN105722863B/en
Publication of WO2015084059A1 publication Critical patent/WO2015084059A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing a super absorbent polymer, and more particularly, to a method for preparing a super absorbent polymer in which superhydrophobic microparticles are introduced onto a superabsorbent polymer.
  • Superabsorbent Polymers are synthetic polymer materials capable of absorbing water up to 500 to 1000 times its own weight. In addition to sanitary products such as sanitary sanitary materials, it is widely used as a material for horticultural soil repair, civil engineering, building index material, seedling sheet, freshness maintaining agent in food distribution field, and steaming.
  • water is a polymerization medium, and is used in various ways, such as to facilitate dispersion of the crosslinking solution in the surface crosslinking process.
  • the residual moisture in the final product also acts as an antistatic and plasticizer for the resin, inhibiting the formation of very small superabsorbent resin dust in the application process and preventing the grinding of SAPs particles.
  • the viscosity of the resin surface increases due to the water absorbed on the surface, and irreversible agglomeration occurs between the superabsorbent polymer particles. do.
  • Korean Patent Laid-Open Publication No. 2012-0081113 discloses a method of manufacturing an absorbent resin including water-insoluble inorganic fine particles, but such a method is disclosed.
  • the present invention is to solve the problems of the prior art as described above,
  • an object of the present invention is to provide a method for preparing a superabsorbent polymer having porous superhydrophobic microparticles capable of minimizing physical property degradation due to resin damage in an application process.
  • the manufacturing method of the superabsorbent polymer according to the present invention by modifying the surface of the superabsorbent polymer hydrophobic to reduce the viscosity and cohesion due to the absorption of water, to reduce the load and control the particle size and physical properties in the manufacturing process by increasing the workability By facilitating and satisfying a high water content and a high processability at the same time, there is an advantage that the physical property degradation due to resin breakage in the application process can be minimized.
  • the method for preparing a super absorbent polymer according to the present invention is a) undergoing a step of preparing a hydrogel polymer by thermal polymerization or photopolymerization of a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
  • the polymer may be prepared by the steps and methods commonly used in the art. Specifically, in the preparation of the super absorbent polymer of the present invention, the monomer composition includes a polymerization initiator, the photopolymerization initiator is included in the photopolymerization method according to the polymerization method, and the thermal polymerization is performed in the thermal polymerization method. Initiator and the like. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator may be additionally included.
  • the thermal polymerization initiator used in the method for preparing the superabsorbent polymer according to the present invention is not particularly limited, and preferably at least one selected from the group consisting of an initiator group consisting of persulfate-based initiator, azo-based initiator, hydrogen peroxide, and ascorbic acid.
  • an initiator group consisting of persulfate-based initiator, azo-based initiator, hydrogen peroxide, and ascorbic acid.
  • persulfate-based initiators include sodium persulfate (Na2S2O8), potassium persulfate (K2S2O8), ammonium persulfate (NH4) 2S2O8, and the like.
  • initiators examples include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2, 2-azobis- (N, N-dimethylene) Isobutyramidine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl azo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azo Bis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)) etc. can be used.
  • the photopolymerization initiator used in the method for preparing the superabsorbent polymer according to the present invention is not particularly limited, but is preferably benzoin ether, dialkyl acetophenone, or hydroxyl alkyl ketone. At least one selected from the group consisting of alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, acyl phosphine and alpha-aminoketone can be used. . Meanwhile, as an example of acylphosphine, a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. .
  • the water-soluble ethylenically unsaturated monomer is not particularly limited as long as it is a monomer normally used in the preparation of the superabsorbent polymer, but preferably an anionic monomer and salts thereof, Any one or more selected from the group consisting of ionic hydrophilic-containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • the monomer composition may include a predetermined amount of fine powder, that is, a polymer or resin powder having a particle size of less than 150 ⁇ m, in the prepared superabsorbent polymer powder for the effect of resource recycling.
  • the polymer or resin powder having the particle size of less than 150 ⁇ m may be added at the initial, middle, and end stages before the start of the polymerization reaction of the monomer composition or after the start of the polymerization reaction.
  • the amount that can be added is not limited, but it is preferable to add 1 to 10 parts by weight based on 100 parts by weight of the monomer included in the monomer resin composition in order to prevent the deterioration of physical properties of the superabsorbent polymer.
  • the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately selected in consideration of the polymerization time and reaction conditions, but preferably 40 to 55% by weight. You can do When the concentration of the water-soluble ethylenically unsaturated monomer is less than 40% by weight, it is disadvantageous in terms of economy, and when it exceeds 55% by weight, the grinding efficiency may be low when the polymerized hydrous gel polymer is pulverized.
  • the method of preparing a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is not limited as long as it is a polymerization method that is commonly used.
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a reactor having a stirring shaft, such as kneader, and when the polymerization proceeds, although it can proceed in a reactor with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the hydrogel polymer obtained by supplying hot air to a reactor such as a kneader having a stirring shaft as described above or by heating the reactor to be thermally polymerized has a reactor outlet according to the shape of the stirring shaft provided in the reactor.
  • the hydrogel polymer discharged into may be in the form of several centimeters to several millimeters.
  • the size of the hydrous gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, the hydrogel polymer having a particle size of 2 to 50 mm can be obtained.
  • the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on a sheet having a width of the belt.
  • the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer on a sheet having a thickness of 0.5 to 5 cm can be obtained.
  • the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because the production efficiency is low, and when the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction does not occur evenly over the entire thickness. You may not.
  • the method for preparing a super absorbent polymer according to the present invention is subject to b) drying the hydrogel polymer.
  • Normal water content of the hydrogel polymer obtained in step a) is 30 to 60% by weight.
  • water content as used throughout the specification means the value of the water content of the water-containing gel polymer subtracted from the weight of the polymer in the dry state with respect to the total weight of the water-containing gel polymer. Specifically, it is defined as a value calculated by measuring the weight loss according to moisture evaporation in the polymer during the process of raising the temperature of the polymer through infrared heating, wherein the drying conditions are raised to a temperature of 180 °C from room temperature The total drying time was set to 20 minutes, including 5 minutes of temperature rise in such a manner as to maintain at 180 °C, to measure the moisture content.
  • drying temperature may be defined as the temperature of the heating medium supplied for drying or the temperature of the drying reactor including the heating medium and the polymer in the drying process, the drying step is preferably a drying temperature of the drying step is 150 It may be from °C to 250 °C, more preferably may proceed at a temperature of 160 °C to 200 °C.
  • the drying time may be too long, and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 ° C., only the surface of the polymer is dried too much, and a subsequent grinding step is performed. Fine powder may occur, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease.
  • the drying time is not limited to the configuration, but in consideration of the process efficiency, etc., it may proceed for 20 to 90 minutes.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration.
  • the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after the drying step may be 0.1 to 10% by weight.
  • the method for producing a super absorbent polymer according to the present invention may be further subjected to a simple grinding step before the drying step, if necessary, in order to increase the efficiency of the drying step.
  • the simple grinding step before the drying step may be such that the particle size of the polymer of the hydrogel polymer is 1 mm to 15 mm.
  • the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, and a rotary machine are used. It consists of rotary cutter mill, cutter mill, disc mill, shred crusher, crusher, chopper and disc cutter It may include any one selected from the group of grinding devices, but is not limited to the above examples.
  • the polymer when the grinding step is performed in order to increase the drying efficiency before the drying step, the polymer may be stuck to the surface of the grinder due to the high moisture content polymer. Therefore, in order to increase the efficiency of the pulverization step before drying of the hydrous gel polymer, additives that can prevent sticking during pulverization may be further used.
  • the type of the additives that can be used specifically includes, but is not limited to, the fine powder aggregation inhibitor such as steam, water, surfactants, inorganic powders such as clay or silica; Thermal polymerization initiators such as persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid, epoxy crosslinkers, diol crosslinkers, crosslinking agents including acrylates of difunctional or trifunctional or polyfunctional groups or more, and hydroxyl groups. It may be a crosslinking agent such as a compound of a monofunctional group to be included, but is not limited to the examples described above.
  • the fine powder aggregation inhibitor such as steam, water, surfactants, inorganic powders such as clay or silica
  • Thermal polymerization initiators such as persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid
  • epoxy crosslinkers diol crosslinkers, crosslinking agents including acrylates of difunctional or trifunctional or polyfunctional groups or more,
  • the manufacturing method of the super absorbent polymer according to the present invention is subjected to the drying step, and then c) grinding the dried polymer.
  • the particle size of the polymer obtained after the grinding step is 150 to 850 ⁇ m.
  • the pulverizer used to grind to such a particle size is specifically a pin mill, a hammer mill, a screw mill, a roll mill (roll mill), disk mill (disc mill) or jog mill (jog mill) and the like can be used, but is not limited thereto.
  • the method for preparing a super absorbent polymer according to the present invention is subjected to the step of d) adding particles having a property of the following i) to ii) and a surface crosslinking agent to the pulverized hydrogel polymer.
  • the surface of the superabsorbent polymer is hydrophilic, and is absorbed by capillary force, water bonding, inter-particaular diffusion, or van der Waals forces between particles when water is dried between particles when absorbed. Irreversible aggregation occurs. Therefore, water is also used essentially in the polymerization and surface crosslinking process of the superabsorbent polymer. Since the aggregation occurs, the internal load is increased, and consequently, it may be the cause of equipment failure.
  • the superabsorbent polymer in the aggregated state as described above has a disadvantage in that a disintegration process for reducing the particle size to an appropriate particle size is introduced because the particle size is not suitable for the application. In addition, since a strong force is applied in the disintegration process, there is a problem that physical properties may be degraded due to crushing of the super absorbent polymer.
  • the microparticles introduced into the superabsorbent polymer of the present invention have a particle size of 2 nm to 50 ⁇ m.
  • the microparticles may have a BET specific surface area of 300 to 1500 m 2 / g, preferably 500 to 1500 m 2 / g, more preferably 700 to 1500 m 2 / g.
  • the fine particles may have a superhydrophobicity of 125 ° or more, preferably 140 ° or more, and more preferably 145 ° or more.
  • the microparticles may have a porosity of 50% or more, preferably porosity of 90% or more.
  • the manufacturing method of the super absorbent polymer of the present invention uses the fine particles having the above characteristics, not only the influence of water on the surface of the resin can be reduced, but also the porous super hydrophobic fine particles are used, so that aggregation is remarkable. It can be reduced, and even when using a relatively small amount of fine particles, the permeability can be easily improved, high content and easy maintenance thereof.
  • the fine particles added in the method of preparing the superabsorbent polymer according to the present invention are not limited as long as they are materials having the same properties as those of i) to ii), specifically, silica, alumina, titania (TiO 2 ), and carbon ( Inorganic oxides such as carbon), inorganic compounds, organic polymers, ion exchange resins, metals, metal salts, and the like, but are not limited thereto.
  • the fine particles are preferably added in 0.001 to 1 parts by weight with respect to 100 parts by weight of the super absorbent polymer. If the amount of the fine particles is less than the above range, the hydrophobicity of the superabsorbent polymer is not sufficient. If the amount of the fine particles is more than the above range, the processability of the resin is poor.
  • it is a process of adding fine particles, used after dispersion in monomer solution, added to hydrogel after polymerization, and then dry mixed with resin particles dried first, and dispersed in water or organic solvent in which surface crosslinking solution is dissolved during surface crosslinking.
  • the surface crosslinking liquid may be separated from the dissolved water or the organic solvent and dry mixed, or dry mixing may be used for the final crosslinked product, but the present invention is not particularly limited thereto.
  • the surface crosslinking agent added in the manufacturing method of the super absorbent polymer which concerns on this invention is a compound which can react with the functional group which a polymer has, there is no limitation in the structure.
  • examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, and One or more types selected from the group consisting of 1,2-cyclohexanedimethanol can be used.
  • Ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and polyamine compounds may be ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, or pentaethylenehexamine. , At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
  • haloepoxy compound epichlorohydrin, epibromohydrin and ⁇ -methyl epichlorohydrin can be used.
  • a mono-, di-, or a polyoxazolidinone compound 2-oxazolidinone etc. can be used, for example.
  • an alkylene carbonate compound ethylene carbonate etc. can be used. These may be used alone or in combination with each other.
  • it is preferable to use including at least 1 type of polyhydric alcohol compounds among these surface crosslinking agents More preferably, C2-C10 polyhydric alcohol compounds can be used.
  • the amount of the surface crosslinking agent added to mix the surface crosslinking agent and to surface-treat the polymer particles may be appropriately selected depending on the kind of the surface crosslinking agent to be added or the reaction conditions. 0.001 to 5 parts by weight, preferably 0.01 to 3 parts by weight, and more preferably 0.05 to 2 parts by weight.
  • the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when it exceeds 5 parts by weight with respect to 100 parts by weight of the polymer, the physical properties of the super absorbent polymer may be lowered due to the excessive surface crosslinking reaction.
  • the method of adding a surface crosslinking agent to a polymer does not have the limitation of the structure.
  • the surface crosslinking agent and the polymer powder may be mixed in a reaction tank, a method of spraying the surface crosslinking agent on the polymer powder, a method of continuously supplying and mixing the polymer and the crosslinking agent into a reaction tank such as a mixer operated continuously, and the like.
  • Method for producing a super absorbent polymer according to the present invention goes through the step of e) surface crosslinking reaction.
  • the temperature of the polymer itself is It may be 20 °C to 80 °C.
  • the temperature of the polymer itself is it may be 20 °C to 80 °C.
  • the method for producing a superabsorbent polymer according to the present invention after the addition of the surface crosslinking agent, in order to proceed the temperature rise to the reaction temperature for the surface crosslinking reaction within 1 to 60 minutes, the surface crosslinking agent itself added to the polymer is heated You may.
  • the method for producing a super absorbent polymer according to the present invention is to improve the efficiency of the surface cross-linking process, when the surface cross-linking reaction proceeds after the temperature rise to the reaction temperature for the surface cross-linking reaction within 1 to 60 minutes It is possible to minimize the residual monomer content of the final superabsorbent polymer obtained, and to obtain a superabsorbent polymer having excellent physical properties.
  • the temperature of the surface crosslinking agent to be added can be adjusted to 5 ° C to 60 ° C, more preferably 10 ° C to 40 ° C.
  • the surface crosslinking reaction temperature may be defined as the total temperature of the polymer and the surface crosslinking agent added for the crosslinking reaction.
  • the heating medium may be supplied or directly heated by means such as electricity, but the present invention is not limited to the above-described example.
  • heat sources that may be used include steam, electricity, ultraviolet rays, infrared rays, and the like, and a heated thermal fluid may be used.
  • the crosslinking reaction is 1 minute to 60 minutes, preferably 5 minutes to 40 minutes, most preferably 10 minutes to 20 minutes Can proceed.
  • the crosslinking reaction time is too short (less than 1 minute)
  • a sufficient degree of crosslinking reaction may not occur
  • the crosslinking reaction time exceeds 60 minutes the physical properties of the super absorbent polymer may deteriorate due to excessive surface crosslinking reaction, Polymer shredding may occur due to prolonged residence in the reactor.
  • the monomer mixture was placed on a continuously moving conveyor belt and irradiated with ultraviolet light (irradiation amount: 2 mW / cm 2) to undergo UV polymerization for 2 minutes to obtain a hydrous gel polymer.
  • ultraviolet light irradiation amount: 2 mW / cm 2
  • the hydrogel polymer prepared according to the preparation example was cut into 5 * 5 mm size and dried in a hot air dryer at 170 ° C. for 2 hours, pulverized with a pin mill grinder and then sieve (sieve) to a particle size of 150 to 850 ⁇ m.
  • a super absorbent polymer was obtained.
  • a liquid mixture consisting of 0.75 g of ethylene carbonate and 6.75 g of water was administered as a surface crosslinking agent. Then mix for 60 seconds.
  • the mixture was reacted at 190 ° C. for 60 minutes to obtain a finely pulverized superabsorbent polymer, and again, the particle size before pulverization of the pulverized superabsorbent polymer was measured, pulverized with a pin mill grinder, and then used as a sieve size.
  • a superabsorbent polymer having a thickness of 150 to 850 ⁇ m was obtained.
  • the particle size of the used Aerogel was 30 nm, had a BET specific surface area of 500 m 2 / g, the contact angle to water was 150 °, and the porosity was 95%.
  • the particle size of the aerogel was analyzed according to ISO 13320 by using a Helium-Neon Laser Optical System (HELOS), by particle-free ultra-fast optical diffraction (Laser Diffraction).
  • HELOS Helium-Neon Laser Optical System
  • Laser Diffraction particle-free ultra-fast optical diffraction
  • the BET specific surface area and porosity were measured using a BET analyzer.
  • the contact angle of water was measured using a contact angle analyzer (KRUSS DSA100). Specifically, a double-sided tape was attached to a flat glass plate, and microparticles were applied as a monolayer thereon, followed by 5 ⁇ l of ultrapure water on a single layer. When raised, it is located in the form of a drop. At this time, the angle between the water droplet and the glass plate was measured four times, and then the average value was calculated.
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.25 g of Silica Aerogel was used.
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that 11.75 g of water in the liquid mixture was used.
  • a super absorbent polymer was obtained in the same manner as in Example 1, except that 0.25 g of Silica Aerogel and 11.75 g of water in the liquid mixture were used.
  • Superabsorbent polymer was obtained in the same manner as in Example 1, except that REOLOSIL DM-30S was used as the fine particles.
  • the particle size of REOLOSIL DM-30S used above was 7 nm, had a BET specific surface area of 230 m 2 / g, the contact angle to water was 135 °, the porosity was 20% or less, and the measurement method was the same as in Example 1 .
  • Superabsorbent polymer was obtained in the same manner as in Comparative Example 1 except that 0.25 g of REOLOSIL DM-30S was used as the fine particles.
  • REOLOSIL DM-30S was used as the fine particles, except that 11.75 g of water in the liquid mixture was used in the same manner as in Comparative Example 1 to obtain a super absorbent polymer.
  • Superabsorbent polymer was obtained by the same method as Comparative Example 1, except that 0.25 g of REOLOSIL DM-30S and 11.75 g of water in the liquid mixture were used as fine particles.
  • Superabsorbent polymer was obtained in the same manner as in Example 1 except that no fine particles were used.
  • a super absorbent polymer was obtained in the same manner as in Comparative Example 5, except that 11.75 g of the water in the liquid mixture was used.
  • the water holding capacity of each of the superabsorbent polymers prepared in Comparative Examples 1 to 6 and Examples 1 to 4 was measured.
  • the measurement of water retention capacity was based on the EDANA method WSP 241.3.
  • a particle size of 150 to 850 ⁇ m or 0.2 g of a sample with water was placed in a tea bag and precipitated in a 0.9% saline solution for 30 minutes. After dehydration for 3 minutes at 250G (gravity) centrifugal force was measured the amount of saline solution absorbed.
  • the pressure-absorbing capacity of each of the superabsorbent polymers prepared in Comparative Examples 1 to 6 and Examples 1 to 4 was measured.
  • the measurement of the pressure absorption capacity was based on the EDANA method WSP 242.3.
  • a particle size of 150 to 850 ⁇ m or 0.9 g of a sample with a fresh water was placed in a cylinder defined by EDATA, and the amount of the absorbed 0.9% saline solution for 60 minutes was measured after applying pressure with a piston and a weight of 0.7 psi.
  • Particle sizes of the finely divided superabsorbent polymers of Comparative Examples 1 to 6 and Examples 1 to 4 were measured.
  • the measurement of the superabsorbent polymer particle size was based on the EDANA method WSP 220.3. 100 g of superabsorbent polymer was divided into 850 ⁇ m, 600 ⁇ m, 300 ⁇ m, 150 ⁇ m, and a mesh of Pan, and then vibrated for 10 minutes at 1.44 mm amplitude and a frequency of 50 Hz. .
  • Table 2 shows the results of measuring particle sizes of the water-retaining capacity, the pressure-absorbing capacity, and the finely divided superabsorbent polymer of Experimental Examples 1 to 3 as described above.
  • the surface crosslinking agent in the surface crosslinking process of the superabsorbent polymer, is dissolved in water and then mixed with the superabsorbent polymer to induce even distribution and penetration into the resin surface.
  • the water used is agglomerated by increasing the viscosity of the superabsorbent polymer surface. This causes, and also, a strong force is required for the pulverization of the aggregated superabsorbent polymer, which causes disadvantages such as damage to the superabsorbent polymer.
  • the superabsorbent polymer in which the superhydrophobic particles of Example 1 were introduced and modified to be hydrophobic, is distributed in a smaller particle size than the superabsorbent polymer prepared in Comparative Example 5, and has a particle size of 850 ⁇ m or less even though there is no grinding step. By maintaining about% it can be seen that the processability increases.
  • Example 1 and Comparative Example 1 show a change in processability based on the hydrophobic difference of the superhydrophobic microparticles introduced.
  • the particle size decreases due to the decrease in the aggregation, and the particle size of the super absorbent polymers obtained from Examples 1 to 4 in which the highly hydrophobic microparticles are introduced is compared.
  • the particle size of the super absorbent polymer obtained from 4 it is distributed in the smaller one, and it turns out that there is little difference in a water holding capacity and a pressure absorbing capacity.

Abstract

The present invention relates to a method for preparing a super absorbent resin comprising the steps of: a) thermally polymerizing or photopolymerizing a monomer composition, which contains water soluble ethylene-based unsaturated monomers and a polymerization initiator, to prepare a hydrous gel polymer; b) drying the hydrous gel polymer; c) grinding the dried hydrous gel polymer; d) adding particles and a surface crosslinking agent having the following properties of i) and ii) to the ground hydrous gel polymer; and e) performing a surface crosslinking reaction. i) BET specific surface area of 300 to 1500 m2/g, ii) porosity of 50% or higher

Description

고흡수성 수지의 제조방법Manufacturing method of super absorbent polymer
본 발명은 고흡수성 수지의 제조방법에 관한 것으로서, 보다 자세하게는 고흡수성 수지 상에 초소수성 미세입자가 도입된 고흡수성 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a super absorbent polymer, and more particularly, to a method for preparing a super absorbent polymer in which superhydrophobic microparticles are introduced onto a superabsorbent polymer.
고흡수성 수지(Superabsorbent Polymers, SAPs)란 자체 무게의 5백 내지 1천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로, 생리용구로 실용화되기 시작해서, 현재는 어린이용 종이기저귀, 생리용 위생재 등의 위생용품 외에 원예용 토양보수제, 토목, 건축용 지수재, 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다.Superabsorbent Polymers (SAPs) are synthetic polymer materials capable of absorbing water up to 500 to 1000 times its own weight. In addition to sanitary products such as sanitary sanitary materials, it is widely used as a material for horticultural soil repair, civil engineering, building index material, seedling sheet, freshness maintaining agent in food distribution field, and steaming.
이러한 고흡수성 수지의 제조공정에서 물은 중합 매체이며, 표면가교과정에서 가교액의 분산을 용이하게 하는 등 다양하게 사용된다. 또한 최종 제품의 잔류 수분은 수지에 대한 정전기 방지제 및 가소제의 역할을 하여, 응용공정에서 아주 작은 고흡수성 수지 미립자 (dust) 형성을 억제하고 SAPs 입자의 분쇄를 방지한다. 그러나 일반적으로, 고흡수성 수지에 소량이라 할지라도 물을 첨가 시, 표면에 흡수된 물에 의하여 수지 표면의 점도가 (stickiness) 증가하며, 고흡수성 수지 입자간의 비가역적 응집이 (irreversible agglomeration) 발생하게 된다. 이러한 점도 증가와 응집은, 제조 및 응용공정에서의 부하증가 등 가공성 (processability)을 감소시키며, 결과적으로 고흡수성 수지의 입도 증가, 물성 감소 및 생산성의 저하를 유발하게 된다. 지금까지, 고흡수성 수지에 대한 연구는 중합 공정 및 이를 통한 흡수능 향상, 그리고 고흡수성 수지의 표면 특성 또는 가압 흡수능의 증가를 위한 표면 가교에 대한 연구가 주를 이루었으며, 투과도의 향상 또는 고흡수성 수지의 보관 시에 굳는 것을 방지(anti-caking) 등 일부 문제해결을 위하여 표면 특성 변화 연구가 진행된 바 있다. In the manufacturing process of such a super absorbent polymer, water is a polymerization medium, and is used in various ways, such as to facilitate dispersion of the crosslinking solution in the surface crosslinking process. The residual moisture in the final product also acts as an antistatic and plasticizer for the resin, inhibiting the formation of very small superabsorbent resin dust in the application process and preventing the grinding of SAPs particles. In general, however, even if a small amount of the superabsorbent polymer is added, the viscosity of the resin surface increases due to the water absorbed on the surface, and irreversible agglomeration occurs between the superabsorbent polymer particles. do. This increase in viscosity and agglomeration reduce processability, such as an increase in load in manufacturing and application processes, resulting in an increase in the particle size of the superabsorbent polymer, a decrease in physical properties, and a decrease in productivity. Until now, research on super absorbent polymers has mainly focused on the polymerization process and the improvement of the absorbency thereof, and the surface crosslinking for increasing the surface properties of the superabsorbent polymers or the pressurized absorbent capacity. In order to solve some problems such as anti-caking during storage, studies on surface properties have been conducted.
이와 관련하여, 종래에는 한국 공개 특허 제 2012-0081113호 등에서, 수불용성 무기 미립자를 포함하는 흡수성 수지의 제조방법 등을 개시하고 있으나, 이러한 In this regard, in the related art, Korean Patent Laid-Open Publication No. 2012-0081113 discloses a method of manufacturing an absorbent resin including water-insoluble inorganic fine particles, but such a method is disclosed.
종래의 기술로는 고흡수성 수지의 표면의 수분이 증가하면, 표면의 점도가 증가하게 되어 위에서 언급한 응집, 가공성 및 생산성의 감소가 발생하는 등의 문제가 발생하여, 고함수율과 고가공성을 동시에 만족하는 고흡수성 수지에 대한 개발의 필요성이 요구되고 있는 실정이다.According to the prior art, when the moisture on the surface of the super absorbent polymer increases, the viscosity of the surface increases, causing problems such as the above-mentioned agglomeration, workability, and a decrease in productivity, resulting in high water content and high processability. There is a need for development of a satisfactory superabsorbent polymer.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, The present invention is to solve the problems of the prior art as described above,
고흡수성 수지의 표면을 소수성으로 개질하여 수분 흡수에 따른 점도 및 응집도를 감소함으로써, 가공성 증가를 통한 제조 공정에서의 부하감소 및 입도 및 물성 제어를 용이하게 하고, 고함수율과 고가공성을 동시에 만족하게 함으로써, 응용공정에서의 수지 파손에 따른 물성저하를 최소화할 수 있는 다공성 초소수성 미세입자가 도입된 고흡수성 수지의 제조방법을 제공하는데 그 목적이 있다.By modifying the surface of the superabsorbent polymer to hydrophobicity to reduce the viscosity and cohesion due to water absorption, it is easy to reduce the load in the manufacturing process and increase the particle size and physical properties by increasing the workability, and to satisfy the high water content and high processability at the same time Accordingly, an object of the present invention is to provide a method for preparing a superabsorbent polymer having porous superhydrophobic microparticles capable of minimizing physical property degradation due to resin damage in an application process.
상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,
a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계; b) 상기 함수겔상 중합체를 건조하는 단계; c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계; d) 상기 분쇄된 함수겔상 중합체에 하기 i) 내지 ii)의 특성을 갖는 입자와 표면 가교제를 첨가하는 단계; 및 e) 표면 가교 반응을 진행하는 단계를 포함하는 고흡수성 수지의 제조방법을 제공한다.a) preparing a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator; b) drying the hydrogel polymer; c) grinding the dried hydrogel polymer; d) adding particles and a surface crosslinking agent having the properties of i) to ii) to the pulverized hydrogel polymer; And e) provides a method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction.
i) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),i) a BET specific surface area of 300 to 1500 m 2 / g,
ii) 50% 이상의 공극률(porosity)ii) porosity of at least 50%
본 발명에 따른 고흡수성 수지의 제조방법에 의하면, 고흡수성 수지의 표면을 소수성으로 개질하여 수분 흡수에 따른 점도 및 응집도를 감소함으로써, 가공성 증가를 통한 제조 공정에서의 부하감소 및 입도 및 물성 제어를 용이하게 하고, 고함수율과 고가공성을 동시에 만족하게 함으로써, 응용공정에서의 수지 파손에 따른 물성저하를 최소화할 수 있다는 장점이 있다.According to the manufacturing method of the superabsorbent polymer according to the present invention, by modifying the surface of the superabsorbent polymer hydrophobic to reduce the viscosity and cohesion due to the absorption of water, to reduce the load and control the particle size and physical properties in the manufacturing process by increasing the workability By facilitating and satisfying a high water content and a high processability at the same time, there is an advantage that the physical property degradation due to resin breakage in the application process can be minimized.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명에 따른 고흡수성 수지의 제조방법은, Method for producing a super absorbent polymer according to the present invention,
a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계; b) 상기 함수겔상 중합체를 건조하는 단계; c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계; d) 상기 분쇄된 함수겔상 중합체에 하기 i) 내지 ii)의 특성을 갖는 입자와 표면 가교제를 첨가하는 단계; 및 e) 표면 가교 반응을 진행하는 단계를 포함한다.a) preparing a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator; b) drying the hydrogel polymer; c) grinding the dried hydrogel polymer; d) adding particles and a surface crosslinking agent having the properties of i) to ii) to the pulverized hydrogel polymer; And e) performing a surface crosslinking reaction.
i) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),i) a BET specific surface area of 300 to 1500 m 2 / g,
ii) 50% 이상의 공극률(porosity)ii) porosity of at least 50%
먼저, 본 발명에 따른 고흡수성 수지의 제조 방법은 a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계를 거친다.First, the method for preparing a super absorbent polymer according to the present invention is a) undergoing a step of preparing a hydrogel polymer by thermal polymerization or photopolymerization of a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator.
본 발명의 고흡수성 수지 제조를 위해서는, 당해 기술 분야에서 통상 사용되는 단계 및 방법으로 중합체를 준비할 수 있다. 구체적으로, 본 발명의 고흡수성 수지 제조에 있어서, 상기 단량체 조성물은 중합개시제를 포함하는데, 중합 방법에 따라 광중합 방법에 의할 경우에는 광중합 개시제를 포함하고, 열중합 방법에 의할 경우에는 열중합 개시제 등을 포함할 수 있다. 다만, 광중합 방법에 의하더라도, 자외선 조사 등의 조사에 의해 일정량의 열이 발생하고, 또한 발열 반응인 중합 반응의 진행에 따라 어느 정도의 열이 발생하므로, 추가적으로 열중합 개시제를 포함할 수도 있다.For preparing the super absorbent polymer of the present invention, the polymer may be prepared by the steps and methods commonly used in the art. Specifically, in the preparation of the super absorbent polymer of the present invention, the monomer composition includes a polymerization initiator, the photopolymerization initiator is included in the photopolymerization method according to the polymerization method, and the thermal polymerization is performed in the thermal polymerization method. Initiator and the like. However, even with the photopolymerization method, since a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated in accordance with the progress of the polymerization reaction, which is an exothermic reaction, a thermal polymerization initiator may be additionally included.
본 발명에 따른 고흡수성 수지의 제조 방법에 사용되는 열중합 개시제는 특별한 제한은 없으나, 바람직하게는 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산으로 이루어진 개시제 군에서 선택되는 하나 이상을 사용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨(Sodium persulfate; Na2S2O8), 과황산칼륨(Potassium persulfate; K2S2O8), 과황산암모늄(Ammonium persulfate; (NH4)2S2O8) 등이 있으며, 아조(Azo)계 개시제의 예로는 2, 2-아조비스-(2-아미디노프로판)이염산 염(2, 2-azobis(2-amidinopropane) dihydrochloride), 2, 2-아조비스-(N, N-디메틸렌)이소부티라마이딘 디하이드로클로라이드(2,2-azobis-(N, N-dimethylene)isobutyramidine dihydrochloride), 2-(카바모일아조)이소부티로니트릴(2-(carbamoylazo)isobutylonitril), 2, 2-아조비스[2-(2-이미다졸린-2-일)프로판] 디하이드로클로라이드(2,2-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride), 4,4-아조비스-(4-시아노발레릭산)(4,4-azobis-(4-cyanovaleric acid)) 등을 사용할 수 있다. The thermal polymerization initiator used in the method for preparing the superabsorbent polymer according to the present invention is not particularly limited, and preferably at least one selected from the group consisting of an initiator group consisting of persulfate-based initiator, azo-based initiator, hydrogen peroxide, and ascorbic acid. Can be used. Specifically, examples of persulfate-based initiators include sodium persulfate (Na2S2O8), potassium persulfate (K2S2O8), ammonium persulfate (NH4) 2S2O8, and the like. Examples of initiators include 2, 2-azobis- (2-amidinopropane) dihydrochloride (2, 2-azobis (2-amidinopropane) dihydrochloride), 2, 2-azobis- (N, N-dimethylene) Isobutyramidine dihydrochloride (2,2-azobis- (N, N-dimethylene) isobutyramidine dihydrochloride), 2- (carbamoyl azo) isobutyronitrile (2- (carbamoylazo) isobutylonitril), 2,2-azo Bis [2- (2-imidazolin-2-yl) propane] dihydrochloride (2,2-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride), 4,4-azobis- (4-cyanovaleric acid) (4,4-azobis- (4-cyanovaleric acid)) etc. can be used.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법에 사용되는 광중합 개시제로는 특별한 제한은 없으나, 바람직하게는 벤조인 에테르(benzoin ether), 디알킬아세토페논(dialkyl acetophenone), 하이드록실 알킬케톤(hydroxyl alkylketone), 페닐글리옥실레이트(phenyl glyoxylate), 벤질디메틸케탈(Benzyl Dimethyl Ketal), 아실포스핀(acyl phosphine) 및 알파-아미노케톤(α-aminoketone)으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체예로, 상용하는 lucirin TPO, 즉, 2,4,6-트리메틸-벤조일-트리메틸 포스핀 옥사이드(2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide)를 사용할 수 있다. In addition, the photopolymerization initiator used in the method for preparing the superabsorbent polymer according to the present invention is not particularly limited, but is preferably benzoin ether, dialkyl acetophenone, or hydroxyl alkyl ketone. At least one selected from the group consisting of alkylketone, phenyl glyoxylate, benzyl dimethyl ketal, acyl phosphine and alpha-aminoketone can be used. . Meanwhile, as an example of acylphosphine, a commercially available lucirin TPO, that is, 2,4,6-trimethyl-benzoyl-trimethyl phosphine oxide can be used. .
또한, 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 상기 수용성 에틸렌계 불포화 단량체로는 고흡수성 수지의 제조에 통상 사용되는 단량체라면 특별한 제한은 없으나, 바람직하게는 음이온성 단량체와 그 염, 비이온계 친수성 함유 단량체, 및 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택되는 어느 하나 이상을 사용할 수 있다. 구체적으로는 아크릴산, 메타아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄술폰산, 2-메타아크릴로일에탄술폰산, 2-(메타)아크릴로일프로판술폰산, 또는 2-(메타)아크릴아미드-2-메틸프로판 술폰산의 음이온성 단량체와 그 염; (메타)아크릴아미드, N-치환(메타)아크릴레이트, 2-히드록시에틸(메타)아크릴레이트, 2-히드록시프로필(메타)아크릴레이트, 메톡시폴리에틸렌글리콜(메타)아크릴레이트 또는 폴리에틸렌 글리콜(메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (N, N)-디메틸아미노에틸(메타)아크릴레이트 또는 (N, N)-디메틸아미노프로필(메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4급화물로 이루어진 군에서 선택된 어느 하나 이상을 바람직하게 사용할 수 있고, 더욱 바람직하게는 아크릴산 또는 그 염을 사용할 수 있는데, 아크릴산 또는 그 염을 단량체로 하는 경우, 특히 흡수성이 향상된 고흡수성 수지를 얻을 수 있다는 장점이 있다.In addition, in the manufacturing method of the superabsorbent polymer according to the present invention, the water-soluble ethylenically unsaturated monomer is not particularly limited as long as it is a monomer normally used in the preparation of the superabsorbent polymer, but preferably an anionic monomer and salts thereof, Any one or more selected from the group consisting of ionic hydrophilic-containing monomers, amino group-containing unsaturated monomers and quaternized compounds thereof can be used. Specifically, acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethanesulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, or 2 Anionic monomers of-(meth) acrylamide-2-methylpropane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxy polyethylene glycol (meth) acrylate or polyethylene glycol ( Nonionic hydrophilic-containing monomers of meth) acrylate; And an amino group-containing unsaturated monomer of (N, N) -dimethylaminoethyl (meth) acrylate or (N, N) -dimethylaminopropyl (meth) acrylamide and a quaternized product thereof. It can be used easily, and more preferably acrylic acid or salts thereof may be used. In the case of using acrylic acid or salts thereof as a monomer, there is an advantage in that a super absorbent polymer having improved water absorption can be obtained.
그리고, 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 자원 재활용에 따른 효과를 위해 상기 단량체 조성물에는 제조된 고흡수성 수지 분말 중 미분, 즉 입도가 150㎛ 미만인 중합체 또는 수지 분말을 일정량 포함시킬 수 있으며, 구체적으로는 단량체 조성물의 중합 반응 시작 전, 또는 중합 반응 시작 후 초기, 중기, 말기 단계에서 상기 입도가 150㎛ 미만인 중합체 또는 수지 분말을 추가할 수 있다. 이 때 추가 가능한 양은 한정은 없으나, 단량체 수지 조성물에 포함된 단량체 100 중량부에 대해 1 내지 10 중량부를 추가하는 것이 최종 제조되는 고흡수성 수지의 물성 저하 방지를 위해 바람직하다.In the method for preparing a super absorbent polymer according to the present invention, the monomer composition may include a predetermined amount of fine powder, that is, a polymer or resin powder having a particle size of less than 150 μm, in the prepared superabsorbent polymer powder for the effect of resource recycling. In detail, specifically, the polymer or resin powder having the particle size of less than 150 μm may be added at the initial, middle, and end stages before the start of the polymerization reaction of the monomer composition or after the start of the polymerization reaction. In this case, the amount that can be added is not limited, but it is preferable to add 1 to 10 parts by weight based on 100 parts by weight of the monomer included in the monomer resin composition in order to prevent the deterioration of physical properties of the superabsorbent polymer.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 단량체 조성물 중 수용성 에틸렌계 불포화 단량체의 농도는 중합 시간 및 반응 조건 등을 고려하여 적절히 선택하여 사용할 수 있으나, 바람직하게는 40 내지 55 중량%로 할 수 있다. 수용성 에틸렌계 불포화 단량체의 농도가 40 중량% 미만인 경우, 경제성 면에서 불리하며, 55 중량% 초과하는 경우, 중합 된 함수겔상 중합체의 분쇄 시 분쇄 효율이 낮게 나타날 수 있다.On the other hand, in the method for producing a super absorbent polymer according to the present invention, the concentration of the water-soluble ethylenically unsaturated monomer in the monomer composition may be appropriately selected in consideration of the polymerization time and reaction conditions, but preferably 40 to 55% by weight. You can do When the concentration of the water-soluble ethylenically unsaturated monomer is less than 40% by weight, it is disadvantageous in terms of economy, and when it exceeds 55% by weight, the grinding efficiency may be low when the polymerized hydrous gel polymer is pulverized.
이와 같은 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 방법 또한 통상 사용 되는 중합 방법이면, 그 구성의 한정이 없다. 구체적으로, 중합 방법은 중합 에너지 원에 따라 크게 열중합 및 광중합으로 나뉘며, 통상 열중합을 진행하는 경우, 니더(kneader)와 같은 교반축을 가진 반응기에서 진행 될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반응기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.The method of preparing a hydrogel polymer by thermally polymerizing or photopolymerizing such a monomer composition is not limited as long as it is a polymerization method that is commonly used. Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a reactor having a stirring shaft, such as kneader, and when the polymerization proceeds, Although it can proceed in a reactor with a conveyor belt possible, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
예를 들어, 상술한 바와 같이 교반축을 구비한 니더(kneader)와 같은 반응기에, 열풍을 공급하거나 반응기를 가열하여 열중합을 하여 얻어진 함수겔상 중합체는 반응기에 구비된 교반축의 형태에 따라, 반응기 배출구로 배출되는 함수겔상 중합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함수겔상 중합체의 크기는 주입되는 모노머 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 입도가 2 내지 50 mm 인 함수겔상 중합체가 얻어질 수 있다.For example, the hydrogel polymer obtained by supplying hot air to a reactor such as a kneader having a stirring shaft as described above or by heating the reactor to be thermally polymerized has a reactor outlet according to the shape of the stirring shaft provided in the reactor. The hydrogel polymer discharged into may be in the form of several centimeters to several millimeters. Specifically, the size of the hydrous gel polymer obtained may vary depending on the concentration and the injection speed of the monomer composition to be injected, the hydrogel polymer having a particle size of 2 to 50 mm can be obtained.
또한, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반응기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비를 가진 시트 상의 함수겔상 중합체일 수 있다. 이때, 중합체 시트의 두께는 주입되는 모노머 조성물의 농도 및 주입속도에 따라 달라지나, 통상 0.5 내지 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다.In addition, when photopolymerization is carried out in a reactor having a movable conveyor belt as described above, the form of the hydrogel polymer generally obtained may be a hydrogel gel polymer on a sheet having a width of the belt. At this time, the thickness of the polymer sheet depends on the concentration and the injection speed of the monomer composition to be injected, but it is preferable to supply the monomer composition so that a polymer on a sheet having a thickness of 0.5 to 5 cm can be obtained. When the monomer composition is supplied to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because the production efficiency is low, and when the thickness of the polymer on the sheet exceeds 5 cm, the polymerization reaction does not occur evenly over the entire thickness. You may not.
이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 b) 상기 함수겔상 중합체를 건조하는 단계를 거친다.Thereafter, the method for preparing a super absorbent polymer according to the present invention is subject to b) drying the hydrogel polymer.
상기 a) 단계에서 얻어진 함수겔상 중합체의 통상 함수율은 30 내지 60 중량%이다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수겔상 중합체 중량에 대해, 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 중량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 중합체의 온도를 올려 건조하는 과정에서 중합체 중의 수분증발에 따른 무게감소분을 측정하여 계산된 값으로 정의하는데, 이때, 건조 조건은 상온에서 180℃까지 온도를 상승시킨 뒤 180℃에서 유지하는 방식으로 총 건조시간은 온도상승단계 5분을 포함하여 20분으로 설정하여, 함수율을 측정한다.Normal water content of the hydrogel polymer obtained in step a) is 30 to 60% by weight. On the other hand, the term "water content" as used throughout the specification means the value of the water content of the water-containing gel polymer subtracted from the weight of the polymer in the dry state with respect to the total weight of the water-containing gel polymer. Specifically, it is defined as a value calculated by measuring the weight loss according to moisture evaporation in the polymer during the process of raising the temperature of the polymer through infrared heating, wherein the drying conditions are raised to a temperature of 180 ℃ from room temperature The total drying time was set to 20 minutes, including 5 minutes of temperature rise in such a manner as to maintain at 180 ℃, to measure the moisture content.
본 명세서 전체에서 "건조 온도"는 건조를 위해 공급되는 열매체의 온도 또는 건조 공정에서 열매체 및 중합체를 포함한 건조 반응기의 온도로 정의될 수 있으며, 이러한 건조 단계는 바람직하게 상기 건조단계의 건조 온도는 150℃ 내지 250℃일 수 있고, 더욱 바람직하게는 160℃ 내지 200℃의 온도에서 진행될 수 있다.Throughout this specification "drying temperature" may be defined as the temperature of the heating medium supplied for drying or the temperature of the drying reactor including the heating medium and the polymer in the drying process, the drying step is preferably a drying temperature of the drying step is 150 It may be from ℃ to 250 ℃, more preferably may proceed at a temperature of 160 ℃ to 200 ℃.
건조 온도가 150℃ 미만인 경우, 건조 시간이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하 될 우려가 있고, 건조 온도가 250℃를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 한편, 건조 시간의 경우에는 그 구성의 한정은 없으나 공정 효율 등을 고려하여, 20분 내지 90분 동안 진행될 수 있다.If the drying temperature is less than 150 ° C., the drying time may be too long, and the physical properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 ° C., only the surface of the polymer is dried too much, and a subsequent grinding step is performed. Fine powder may occur, and there is a fear that the physical properties of the superabsorbent polymer to be finally formed decrease. On the other hand, the drying time is not limited to the configuration, but in consideration of the process efficiency, etc., it may proceed for 20 to 90 minutes.
그리고, 이와 같은 건조 단계의 건조 방법 역시, 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 0.1 내지 10 중량%일 수 있다.In addition, if the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after the drying step may be 0.1 to 10% by weight.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법은 건조 단계의 효율을 높이기 위하여, 필요에 따라서, 건조 단계의 전에 간단히 분쇄하는 단계를 더 거칠 수 있다. 상기 건조 단계의 전에 간단히 분쇄하는 단계는 함수겔상 중합체의 중합체의 입도가 1mm 내지 15mm로 되도록 분쇄할 수 있다. 이 때, 중합체의 입도가 1mm 미만이 되게 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 어려우며, 또한 분쇄된 입자 간에 서로 응집되는 현상이 나타날 수도 있으며, 입도가 15mm 초과하도록 분쇄하는 경우, 분쇄에 따른 추후 건조 단계 효율 증대의 효과가 미미해진다.On the other hand, the method for producing a super absorbent polymer according to the present invention may be further subjected to a simple grinding step before the drying step, if necessary, in order to increase the efficiency of the drying step. The simple grinding step before the drying step may be such that the particle size of the polymer of the hydrogel polymer is 1 mm to 15 mm. At this time, it is technically difficult to pulverize the polymer to a particle size of less than 1 mm due to the high water content of the hydrogel polymer, and also may be agglomerated phenomenon between the pulverized particles, when pulverizing to a particle size exceeding 15 mm, The effect of increasing the efficiency of the subsequent drying step is negligible.
상기 건조 단계의 전에 간단히 분쇄하는 단계에 있어서, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절단기(Vertical pulverizer), 터보 커터(Turbo cutter), 터보 글라인더(Turbo grinder), 회전 절단식 분쇄기(Rotary cutter mill), 절단식 분쇄기(Cutter mill), 원판 분쇄기(Disc mill), 조각 파쇄기(Shred crusher), 파쇄기(Crusher), 초퍼(chopper) 및 원판식 절단기(Disc cutter)로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다.In the simple grinding step before the drying step, the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, and a rotary machine are used. It consists of rotary cutter mill, cutter mill, disc mill, shred crusher, crusher, chopper and disc cutter It may include any one selected from the group of grinding devices, but is not limited to the above examples.
이와 같이 건조 단계 전에 건조 효율을 높이기 위해서 분쇄하는 단계를 거치는 경우, 함수율이 높은 중합체로 인해, 분쇄기 표면에 들러붙는 현상이 나타날 수도 있다. 따라서, 이와 같은 함수겔상 중합체의 건조 전 분쇄 단계의 효율을 높이기 위해, 분쇄 시, 들러붙는 것을 방지할 수 있는 첨가제 등을 추가로 사용할 수 있다. 구체적으로 사용 가능한 첨가제의 종류는 그 구성의 한정은 없으나, 스팀, 물, 계면활성제, 클레이(Clay) 나 실리카(Silica) 등의 무기 분말 등과 같은 미분 응집 방지제; 과황산염계 개시제, 아조계 개시제, 과산화수소, 및 아스코르빈산와 같은 열중합 개시제, 에폭시계 가교제, 디올(diol)류 가교제, 2 관능기 또는 3 관능기 이상의 다관능기의 아크릴레이트를 포함하는 가교제, 수산화기를 포함하는 1관능기의 화합물과 같은 가교제일 수 있으나, 상술한 예에 한정되지 않는다.As such, when the grinding step is performed in order to increase the drying efficiency before the drying step, the polymer may be stuck to the surface of the grinder due to the high moisture content polymer. Therefore, in order to increase the efficiency of the pulverization step before drying of the hydrous gel polymer, additives that can prevent sticking during pulverization may be further used. The type of the additives that can be used specifically includes, but is not limited to, the fine powder aggregation inhibitor such as steam, water, surfactants, inorganic powders such as clay or silica; Thermal polymerization initiators such as persulfate initiators, azo initiators, hydrogen peroxide, and ascorbic acid, epoxy crosslinkers, diol crosslinkers, crosslinking agents including acrylates of difunctional or trifunctional or polyfunctional groups or more, and hydroxyl groups. It may be a crosslinking agent such as a compound of a monofunctional group to be included, but is not limited to the examples described above.
이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 상기 건조 단계를 거친 후, c) 상기 건조된 중합체를 분쇄하는 단계를 거친다. 상기 분쇄 단계 후 얻어지는 중합체의 입도는 150 내지 850㎛ 이다. 본 발명에 따른 고흡수성 수지의 제조 방법에 있어서, 이와 같은 입도로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀(pin mill), 해머 밀(hammer mill), 스크류 밀(screw mill), 롤 밀(roll mill), 디스크 밀(disc mill) 또는 조그 밀(jog mill) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.Thereafter, the manufacturing method of the super absorbent polymer according to the present invention is subjected to the drying step, and then c) grinding the dried polymer. The particle size of the polymer obtained after the grinding step is 150 to 850㎛. In the manufacturing method of the superabsorbent polymer according to the present invention, the pulverizer used to grind to such a particle size is specifically a pin mill, a hammer mill, a screw mill, a roll mill (roll mill), disk mill (disc mill) or jog mill (jog mill) and the like can be used, but is not limited thereto.
이 후, 본 발명에 따른 고흡수성 수지의 제조 방법은 d) 상기 분쇄된 함수겔상 중합체에 하기 i) 내지 ii)의 특성을 갖는 입자와 표면 가교제를 첨가하는 단계를 거친다. Thereafter, the method for preparing a super absorbent polymer according to the present invention is subjected to the step of d) adding particles having a property of the following i) to ii) and a surface crosslinking agent to the pulverized hydrogel polymer.
i) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),i) a BET specific surface area of 300 to 1500 m 2 / g,
ii) 50% 이상의 공극률(porosity)ii) porosity of at least 50%
일반적으로 고흡수성 수지의 표면은 친수성을 띄며, 수분 흡수 후 건조시 입자 사이에 존재하는 물에 의한 모세관력, 수소결합, 고분자 상호 부분 확산(inter-particaular diffusion) 또는 입자간의 반데르발스 힘 등에 의하여 비가역적 응집이 발생하게 된다. 따라서, 고흡수성 수지의 중합 및 표면 가교 공정에서도 필수적으로 물을 사용하게 되는데, 이에 따른 응집이 발생하기 때문에, 내부 부하를 증가시키며, 결과적으로 장비 고장의 원인이 될 수 있다. 또한, 상기와 같이 응집된 상태의 고흡수성 수지는 입도가 응용에 부적합하게 크기 때문에, 이를 적정 입도로 줄이는 해쇄 공정을 도입해야 하는 단점이 있다. 또한 상기 해쇄 공정에서 강한 힘이 가해지므로 고흡수성 수지 파쇄에 따른 물성하락이 발생할 수 있다는 문제점이 존재하였다.In general, the surface of the superabsorbent polymer is hydrophilic, and is absorbed by capillary force, water bonding, inter-particaular diffusion, or van der Waals forces between particles when water is dried between particles when absorbed. Irreversible aggregation occurs. Therefore, water is also used essentially in the polymerization and surface crosslinking process of the superabsorbent polymer. Since the aggregation occurs, the internal load is increased, and consequently, it may be the cause of equipment failure. In addition, the superabsorbent polymer in the aggregated state as described above has a disadvantage in that a disintegration process for reducing the particle size to an appropriate particle size is introduced because the particle size is not suitable for the application. In addition, since a strong force is applied in the disintegration process, there is a problem that physical properties may be degraded due to crushing of the super absorbent polymer.
상기와 같은 문제점을 해결하기 위하여, 고흡수성 수지의 표면에 존재하며, 수지 입자간의 직접적인 응집을 방해하는 역할을 할 수 있는 다양한 미세입자를 도입하려는 시도가 있었으나, 미세입자가 과량이 도입될 경우 응집은 방지되나, 고흡수성 수지의 흡수특성이 감소한다는 단점이 있었다.In order to solve the above problems, there have been attempts to introduce a variety of microparticles present on the surface of the superabsorbent polymer and may serve to hinder direct agglomeration between the resin particles. Is prevented, but has the disadvantage that the absorption characteristics of the super absorbent polymer is reduced.
상기와 같은 문제점을 해결하기 위하여, 본 발명의 고흡수성 수지에 도입되는 미세입자는 2 ㎚ ~ 50 ㎛의 입도를 갖는다. 또한 상기 미세입자는 300 내지 1500 m2/g, 바람직하게는 500 내지 1500 m2/g, 보다 바람직하게는 700 내지 1500 m2/g 의 BET 비표면적 (specific surface area)을 가질 수 있다. 또한 상기 미세입자는 물에 대한 접촉각이 125° 이상의 초소수성을, 바람직하게는 140° 이상의 초소수성을, 보다 바람직하게는 145° 이상의 초소수성을 가질 수 있다. 또한 상기 미세입자는 50% 이상의 공극률(porosity)을, 바람직하게는 90% 이상의 공극률(porosity)을 가질 수 있다. 본 발명의 고흡수성 수지의 제조방법은 상기와 같은 특징을 가진 미세입자를 사용하기 때문에, 수지 표면에 있는 물의 영향을 감소시킬 수 있을 뿐만 아니라, 다공성 초소수성 미세입자를 사용하기 때문에, 응집을 현저하게 감소시킬 수 있고, 상대적으로 소량의 미세입자를 사용하여도 투과도가 쉽게 향상되고, 고함수량 및 이의 유지가 용이할 수 있다. In order to solve the above problems, the microparticles introduced into the superabsorbent polymer of the present invention have a particle size of 2 nm to 50 μm. In addition, the microparticles may have a BET specific surface area of 300 to 1500 m 2 / g, preferably 500 to 1500 m 2 / g, more preferably 700 to 1500 m 2 / g. In addition, the fine particles may have a superhydrophobicity of 125 ° or more, preferably 140 ° or more, and more preferably 145 ° or more. In addition, the microparticles may have a porosity of 50% or more, preferably porosity of 90% or more. Since the manufacturing method of the super absorbent polymer of the present invention uses the fine particles having the above characteristics, not only the influence of water on the surface of the resin can be reduced, but also the porous super hydrophobic fine particles are used, so that aggregation is remarkable. It can be reduced, and even when using a relatively small amount of fine particles, the permeability can be easily improved, high content and easy maintenance thereof.
본 발명에 따른 고흡수성 수지의 제조방법에서 첨가되는 미세입자는 상기 i) 내지 ii)와 같은 특성을 갖는 물질이라면 그 성분의 한정이 없으며, 구체적으로 실리카, 알루미나, 티타니아(TiO2), 탄소(Carbon) 등의 무기 산화물, 무기화합물, 유기고분자, 이온교환수지, 금속, 금속염 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.The fine particles added in the method of preparing the superabsorbent polymer according to the present invention are not limited as long as they are materials having the same properties as those of i) to ii), specifically, silica, alumina, titania (TiO 2 ), and carbon ( Inorganic oxides such as carbon), inorganic compounds, organic polymers, ion exchange resins, metals, metal salts, and the like, but are not limited thereto.
또한, 미세입자는 고흡수성 수지 100 중량부에 대해 0.001 내지 1 중량부로 첨가되는 것이 바람직하다. 미세입자의 포함량이 상기 범위보다 적으면 고흡수성 수지의 소수성이 충분하지 않고, 상기 범위보다 많으면 수지의 가공성이 떨어지게 된다.In addition, the fine particles are preferably added in 0.001 to 1 parts by weight with respect to 100 parts by weight of the super absorbent polymer. If the amount of the fine particles is less than the above range, the hydrophobicity of the superabsorbent polymer is not sufficient. If the amount of the fine particles is more than the above range, the processability of the resin is poor.
또한 미세입자를 첨가하는 공정으로, 모노머 용액 내 분산 후 사용, 중합 후 함수젤 상에 첨가 후, 1차 건조된 수지입자에 건식 혼합, 표면 가교 시 표면 가교액이 녹아 있는 물 또는 유기 용매 내 분산 후 혼합, 표면 가교 시 표면 가교액이 녹아 있는 물 또는 유기용매와 분리되어 건식 혼합, 또는 표면가교가 된 최종 제품에 건식 혼합 등의 방법을 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.In addition, it is a process of adding fine particles, used after dispersion in monomer solution, added to hydrogel after polymerization, and then dry mixed with resin particles dried first, and dispersed in water or organic solvent in which surface crosslinking solution is dissolved during surface crosslinking. After mixing and surface crosslinking, the surface crosslinking liquid may be separated from the dissolved water or the organic solvent and dry mixed, or dry mixing may be used for the final crosslinked product, but the present invention is not particularly limited thereto.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법에서 첨가되는 표면 가교제는 중합체가 갖는 관능기와 반응 가능한 화합물이라면 그 구성의 한정이 없다. 상기 표면 가교제로서는 바람직하게는 생성되는 고흡수성 수지의 특성을 향상시키기 위해, 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물류; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가 금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.In addition, as long as the surface crosslinking agent added in the manufacturing method of the super absorbent polymer which concerns on this invention is a compound which can react with the functional group which a polymer has, there is no limitation in the structure. As said surface crosslinking agent, Preferably, in order to improve the characteristic of the superabsorbent polymer produced | generated, a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And it may be used one or more selected from the group consisting of alkylene carbonate compounds.
구체적으로, 다가 알콜 화합물의 예로는 모노-, 디-, 트리-, 테트라- 또는 폴리에틸렌 글리콜, 모노프로필렌글리콜, 1,3-프로판디올, 디프로필렌 글리콜, 2,3,4-트리메틸-1,3-펜탄디올, 폴리프로필렌 글리콜, 글리세롤, 폴리글리세롤, 2-부텐-1,4-디올, 1,4-부탄디올, 1,3-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 및 1,2-사이클로헥산디메탄올로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.Specifically, examples of the polyhydric alcohol compound include mono-, di-, tri-, tetra- or polyethylene glycol, monopropylene glycol, 1,3-propanediol, dipropylene glycol, 2,3,4-trimethyl-1,3 -Pentanediol, polypropylene glycol, glycerol, polyglycerol, 2-butene-1,4-diol, 1,4-butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, and One or more types selected from the group consisting of 1,2-cyclohexanedimethanol can be used.
또한, 에폭시 화합물로는 에틸렌 글리콜 디글리시딜 에테르 및 글리시돌 등을 사용할 수 있으며, 폴리아민 화합물류로는 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라아민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 폴리에틸렌이민 및 폴리아미드폴리아민로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다.Ethylene glycol diglycidyl ether and glycidol may be used as the epoxy compound, and polyamine compounds may be ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, or pentaethylenehexamine. , At least one selected from the group consisting of polyethyleneimine and polyamide polyamine can be used.
그리고, 할로에폭시 화합물로는 에피클로로히드린, 에피브로모히드린 및 α-메틸에피클로로히드린을 사용할 수 있다. 한편, 모노-, 디- 또는 폴리옥사졸리디논 화합물로는 예를 들어 2-옥사졸리디논 등을 사용할 수 있다. 그리고, 알킬렌 카보네이트 화합물로는 에틸렌 카보네이트 등을 사용할 수 있다. 이들을 각각 단독으로 사용하거나 서로 조합하여 사용할 수도 있다. 한편, 표면 가교 공정의 효율을 높이기 위해, 이들 표면 가교제 중에서 1 종 이상의 다가 알코올 화합물을 포함하여 사용하는 것이 바람직하며, 더욱 바람직하게는 탄소수 2 내지 10의 다가 알코올 화합물류를 사용할 수 있다.As the haloepoxy compound, epichlorohydrin, epibromohydrin and α-methyl epichlorohydrin can be used. In addition, as a mono-, di-, or a polyoxazolidinone compound, 2-oxazolidinone etc. can be used, for example. And as an alkylene carbonate compound, ethylene carbonate etc. can be used. These may be used alone or in combination with each other. On the other hand, in order to raise the efficiency of a surface crosslinking process, it is preferable to use including at least 1 type of polyhydric alcohol compounds among these surface crosslinking agents, More preferably, C2-C10 polyhydric alcohol compounds can be used.
그리고, 상기와 같이 표면 가교제를 혼합하여, 중합체 입자를 표면 처리하기 위해 첨가되는 표면 가교제의 함량은 구체적으로 추가되는 표면 가교제의 종류나 반응 조건에 따라 적절히 선택될 수 있지만, 통상 중합체100 중량부에 대해, 0.001 내지 5 중량부, 바람직하게는 0.01 내지 3 중량부, 더욱 바람직하게는 0.05 내지 2중량부를 사용할 수 있다.In addition, the amount of the surface crosslinking agent added to mix the surface crosslinking agent and to surface-treat the polymer particles may be appropriately selected depending on the kind of the surface crosslinking agent to be added or the reaction conditions. 0.001 to 5 parts by weight, preferably 0.01 to 3 parts by weight, and more preferably 0.05 to 2 parts by weight.
표면 가교제의 함량이 지나치게 적으면, 표면 가교 반응이 거의 일어나지 않으며, 중합체 100 중량부에 대해, 5 중량부를 초과하는 경우, 과도한 표면 가교 반응으로 인해 오히려 고흡수성 수지의 물성이 저하될 수 있다.When the content of the surface crosslinking agent is too small, the surface crosslinking reaction hardly occurs, and when it exceeds 5 parts by weight with respect to 100 parts by weight of the polymer, the physical properties of the super absorbent polymer may be lowered due to the excessive surface crosslinking reaction.
이때, 표면 가교제를 중합체에 첨가하는 방법은 그 구성의 한정은 없다. 표면 가교제와 중합체 분말을 반응조에 넣고 혼합하거나, 중합체 분말에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서와 같은 반응조에 중합체와 가교제를 연속적으로 공급하여 혼합하는 방법 등을 사용할 수 있다.At this time, the method of adding a surface crosslinking agent to a polymer does not have the limitation of the structure. The surface crosslinking agent and the polymer powder may be mixed in a reaction tank, a method of spraying the surface crosslinking agent on the polymer powder, a method of continuously supplying and mixing the polymer and the crosslinking agent into a reaction tank such as a mixer operated continuously, and the like.
본 발명에 따른 고흡수성 수지의 제조 방법은 e) 표면 가교 반응을 진행하는 단계를 거친다.Method for producing a super absorbent polymer according to the present invention goes through the step of e) surface crosslinking reaction.
그리고, 본 발명의 다른 구현예에 따라, 표면 가교제를 첨가한 후 표면 가교 반응을 위한 반응 온도로의 승온을 1분 내지 60 분 내로 진행하기 위해, 바람직하게 표면 가교제 첨가 시, 중합체 자체의 온도는 20℃ 내지 80℃일 수 있다. 상기와 같이 중합체 자체의 온도를 나타내기 위해, 비교적 고온으로 진행되는 건조 단계 이 후에 이루어지는 공정을 연속적으로 진행하고, 공정 7시간을 단축하거나, 또는 공정 시간을 단축하기 어려운 경우에는 별도로 중합체를 가열할 수도 있다.And, according to another embodiment of the present invention, in order to proceed the temperature increase to the reaction temperature for the surface crosslinking reaction after the addition of the surface crosslinking agent within 1 to 60 minutes, preferably, when the surface crosslinking agent is added, the temperature of the polymer itself is It may be 20 ℃ to 80 ℃. In order to indicate the temperature of the polymer itself as described above, if the process is continuously carried out after the drying step proceeds to a relatively high temperature, and if it is difficult to shorten the process 7 hours, or shorten the process time, it is possible to heat the polymer separately. It may be.
또한, 본 발명에 따른 고흡수성 수지의 제조 방법은, 표면 가교제를 첨가한 후 표면 가교 반응을 위한 반응 온도로의 승온을 1분 내지 60분 내로 진행하기 위해, 중합체에 첨가되는 표면 가교제 자체를 가열할 수도 있다.In addition, the method for producing a superabsorbent polymer according to the present invention, after the addition of the surface crosslinking agent, in order to proceed the temperature rise to the reaction temperature for the surface crosslinking reaction within 1 to 60 minutes, the surface crosslinking agent itself added to the polymer is heated You may.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법은 표면 가교 반응을 위한 반응 온도로의 승온을 1분 내지 60분 내에 진행한 후, 표면 가교 반응을 진행하는 경우, 표면 가교 공정의 효율을 개선할 수 있어, 최종 얻어지는 고흡수성 수지의 잔존 단량체 함량을 최소화하고, 우수한 물성을 가진 고흡수성 수지를 얻을 수 있다. 이 때, 첨가되는 표면 가교제의 온도는 5℃ 내지 60℃, 더욱 바람직하게는 10℃ 내지 40℃로 조절할 수 있다. 상기 표면 가교제의 온도가 5℃ 미만인 경우, 표면 가교제 승온에 따른 표면 가교 반응으로의 승온 속도 단축의 효과가 미미하고, 표면 가교제의 온도가 60℃를 초과하는 경우, 표면 가교제가 중합체에 골고루 분산되지 않을 수 있다. 본 명세서 전체에서, 표면 가교 반응 온도는 가교반응을 위한 첨가되는 표면 가교제와 중합체의 전체 온도로 정의될 수 있다.On the other hand, the method for producing a super absorbent polymer according to the present invention is to improve the efficiency of the surface cross-linking process, when the surface cross-linking reaction proceeds after the temperature rise to the reaction temperature for the surface cross-linking reaction within 1 to 60 minutes It is possible to minimize the residual monomer content of the final superabsorbent polymer obtained, and to obtain a superabsorbent polymer having excellent physical properties. At this time, the temperature of the surface crosslinking agent to be added can be adjusted to 5 ° C to 60 ° C, more preferably 10 ° C to 40 ° C. When the temperature of the surface crosslinking agent is less than 5 ° C., the effect of shortening the temperature increase rate to the surface crosslinking reaction according to the temperature of the surface crosslinking agent is insignificant, and when the temperature of the surface crosslinking agent exceeds 60 ° C., the surface crosslinking agent is not evenly dispersed in the polymer. You may not. Throughout this specification, the surface crosslinking reaction temperature may be defined as the total temperature of the polymer and the surface crosslinking agent added for the crosslinking reaction.
그리고, 표면 가교 반응을 위한 승온 수단으로는, 그 구성의 한정이 없다. 구체적으로, 열매체를 공급하거나, 전기 등의 수단으로 직접 가열할 수 있으나, 본 발명이 상술한 예에 한정되는 것은 아니다. 구체적으로 사용될 수 있는 열원으로는 스팀, 전기, 자외선, 적외선 등이 있으며, 가열된 열유체 등을 사용할 수도 있다.And there is no limitation in the structure as a temperature raising means for surface crosslinking reaction. Specifically, the heating medium may be supplied or directly heated by means such as electricity, but the present invention is not limited to the above-described example. Specifically, heat sources that may be used include steam, electricity, ultraviolet rays, infrared rays, and the like, and a heated thermal fluid may be used.
한편, 본 발명에 따른 고흡수성 수지의 제조 방법에서, 가교 반응을 위한 승온이 이루어진 후, 가교 반응은 1분 내지 60분 바람직하게는 5분 내지 40분, 가장 바람직하게는 10분 내지 20분 동안 진행될 수 있다. 가교 반응 시간이 1분 미만으로 지나치게 짧은 경우, 충분한 정도의 가교 반응이 일어나지 않을 수 있고, 가교 반응 시간이 60분을 초과하는 경우, 과도한 표면 가교 반응으로 고흡수성 수지의 물성이 오히려 나빠질 수 있고, 반응기에서 장기 체류로 인한 중합체 파쇄가 일어날 수 있다.On the other hand, in the manufacturing method of the super absorbent polymer according to the present invention, after the temperature rise for the crosslinking reaction is made, the crosslinking reaction is 1 minute to 60 minutes, preferably 5 minutes to 40 minutes, most preferably 10 minutes to 20 minutes Can proceed. When the crosslinking reaction time is too short (less than 1 minute), a sufficient degree of crosslinking reaction may not occur, and when the crosslinking reaction time exceeds 60 minutes, the physical properties of the super absorbent polymer may deteriorate due to excessive surface crosslinking reaction, Polymer shredding may occur due to prolonged residence in the reactor.
이하 본 발명을 실시예에 기초하여 더욱 상세하게 설명하지만, 하기에 개시되는 본 발명의 실시 형태는 어디까지 예시로써, 본 발명의 범위는 이들의 실시 형태에 한정되지 않는다. 본 발명의 범위는 특허청구범위에 표시되었고, 더욱이 특허 청구범위 기록과 균등한 의미 및 범위 내에서의 모든 변경을 함유하고 있다. 또한, 이하의 실시예, 비교예에서 함유량을 나타내는 "%" 및 "부"는 특별히 언급하지 않는 한 질량 기준이다.Hereinafter, the present invention will be described in more detail with reference to Examples, but embodiments of the present invention disclosed below are exemplified to the last, and the scope of the present invention is not limited to these embodiments. The scope of the invention is indicated in the appended claims, and moreover contains all modifications within the meaning and range equivalent to the claims. In addition, "%" and "part" which show content in a following example and a comparative example are a mass reference | standard unless there is particular notice.
실시예Example
제조예: 함수겔상 중합체의 제조Preparation Example: Preparation of Water-Soluble Gel Polymer
아크릴산 100g, 가교제로 폴리에틸렌글리콜디아크릴레이트 0.3 g, 개시제로 디페닐(2,4,6-트리메틸벤조일)-포스핀 옥시드 0.033g, 가성소다(NaOH) 38.9g, 및 물 103.9g의 비율로 혼합하여, 단량체 농도가 50 중량%인 단량체 혼합물을 준비하였다.100 g of acrylic acid, 0.3 g polyethylene glycol diacrylate as crosslinking agent, 0.033 g diphenyl (2,4,6-trimethylbenzoyl) -phosphine oxide as initiator, 38.9 g caustic soda (NaOH), and 103.9 g water By mixing, a monomer mixture having a monomer concentration of 50% by weight was prepared.
이후, 상기 단량체 혼합물을 연속 이동하는 콘베이어 벨트상에 투입하고 자외선을 조사(조사량: 2mW/㎠)하여 2분 동안 UV 중합을 진행하여 함수겔 중합체를 얻었다.Thereafter, the monomer mixture was placed on a continuously moving conveyor belt and irradiated with ultraviolet light (irradiation amount: 2 mW / cm 2) to undergo UV polymerization for 2 minutes to obtain a hydrous gel polymer.
실시예: 고흡수성 수지의 제조EXAMPLES Preparation of Super Absorbent Polymers
[실시예 1]Example 1
상기 제조예에 따라 준비된 함수겔상 중합체를 5*5mm 크기로 잘라서 170℃ 온도의 열풍건조기에서 2시간 동안 건조하고, 핀밀 분쇄기로 분쇄한 후 시브(sieve)를 이용하여 입경 크기가 150 내지 850 ㎛의 고흡수성 수지를 얻었다. 상기 고흡수성 수지 250 g에 다공성 초소수성 미세입자 silica Aerogel (AeroZelTM, JIOS 사) 0.15g을 1000 RPM으로 60초간 혼합한 후, 표면 가교제로 에틸렌 카보네이트 0.75g과 물 6.75g로 구성된 액상 혼합물을 투여한 뒤 60초간 혼합하였다. 이 후, 상기 혼합물을 190 ℃ 에서 60분간 반응하여 미분쇄 고흡수성 수지를 얻었으며, 다시, 상기 미분쇄 고흡수성 수지의 분쇄전 입도를 측정하고, 핀밀 분쇄기로 분쇄한 후 시브를 이용하여 입경 크기가 150 내지 850 ㎛의 고흡수성 수지를 얻었다. 상기에서 사용한 Aerogel의 입도는 30 nm 이고, 500 m2/g 의 BET 비표면적을 갖고, 물에 대한 접촉각은 150°이고, 공극률은 95%이었다.The hydrogel polymer prepared according to the preparation example was cut into 5 * 5 mm size and dried in a hot air dryer at 170 ° C. for 2 hours, pulverized with a pin mill grinder and then sieve (sieve) to a particle size of 150 to 850 μm. A super absorbent polymer was obtained. After mixing 0.15 g of porous superhydrophobic fine particle silica Aerogel (AeroZelTM, JIOS Co., Ltd.) at 1000 RPM for 60 seconds to 250 g of the superabsorbent polymer, a liquid mixture consisting of 0.75 g of ethylene carbonate and 6.75 g of water was administered as a surface crosslinking agent. Then mix for 60 seconds. Thereafter, the mixture was reacted at 190 ° C. for 60 minutes to obtain a finely pulverized superabsorbent polymer, and again, the particle size before pulverization of the pulverized superabsorbent polymer was measured, pulverized with a pin mill grinder, and then used as a sieve size. A superabsorbent polymer having a thickness of 150 to 850 µm was obtained. The particle size of the used Aerogel was 30 nm, had a BET specific surface area of 500 m 2 / g, the contact angle to water was 150 °, and the porosity was 95%.
상기 Aerogel의 입도의 측정은 ISO 13320에 따라서, HELOS(Helium-Neon Laser Optical System)를 사용하여, 무변수 초고속 광회절법(Laser Diffraction)에 의하여 입도를 분석하였다. BET 비표면적 및 공극률은 BET analyzer를 이용하였다. 물에 대한 접촉각의 측정은 contact angle analyzer (KRUSS DSA100)를 사용하였으며, 구체적으로 평평한 유리판에 양면 테이프를 붙인 후 그 위에 미세입자를 단일층(Monolayer)으로 도포한 후, 초순수 5 ㎕를 단일층 위에 올리면 방울 형태로 위치하며, 이때 물방울과 유리판이 이루는 각도를 4회 반복하여 측정한 후 평균값을 계산하였다.The particle size of the aerogel was analyzed according to ISO 13320 by using a Helium-Neon Laser Optical System (HELOS), by particle-free ultra-fast optical diffraction (Laser Diffraction). The BET specific surface area and porosity were measured using a BET analyzer. The contact angle of water was measured using a contact angle analyzer (KRUSS DSA100). Specifically, a double-sided tape was attached to a flat glass plate, and microparticles were applied as a monolayer thereon, followed by 5 μl of ultrapure water on a single layer. When raised, it is located in the form of a drop. At this time, the angle between the water droplet and the glass plate was measured four times, and then the average value was calculated.
[실시예 2] Example 2
Silica Aerogel의 양을 0.25g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.A super absorbent polymer was obtained in the same manner as in Example 1, except that 0.25 g of Silica Aerogel was used.
[실시예 3] Example 3
액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.A super absorbent polymer was obtained in the same manner as in Example 1, except that 11.75 g of water in the liquid mixture was used.
[실시예 4] Example 4
Silica Aerogel의 양을 0.25g, 액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.A super absorbent polymer was obtained in the same manner as in Example 1, except that 0.25 g of Silica Aerogel and 11.75 g of water in the liquid mixture were used.
[비교예 1] Comparative Example 1
미세입자로 REOLOSIL DM-30S를 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다. 상기에서 사용한 REOLOSIL DM-30S의 입도는 7nm 이고, 230 m2/g 의 BET 비표면적을 갖고, 물에 대한 접촉각은 135°이고, 공극률은 20% 이하였으며, 측정방법은 실시예 1에서와 같다.Superabsorbent polymer was obtained in the same manner as in Example 1, except that REOLOSIL DM-30S was used as the fine particles. The particle size of REOLOSIL DM-30S used above was 7 nm, had a BET specific surface area of 230 m 2 / g, the contact angle to water was 135 °, the porosity was 20% or less, and the measurement method was the same as in Example 1 .
[비교예 2] Comparative Example 2
미세입자로 REOLOSIL DM-30S를 0.25g 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.Superabsorbent polymer was obtained in the same manner as in Comparative Example 1 except that 0.25 g of REOLOSIL DM-30S was used as the fine particles.
[비교예 3] Comparative Example 3
미세입자로 REOLOSIL DM-30S를, 액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.REOLOSIL DM-30S was used as the fine particles, except that 11.75 g of water in the liquid mixture was used in the same manner as in Comparative Example 1 to obtain a super absorbent polymer.
[비교예 4] [Comparative Example 4]
미세입자로 REOLOSIL DM-30S를 0.25g, 액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 비교예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.Superabsorbent polymer was obtained by the same method as Comparative Example 1, except that 0.25 g of REOLOSIL DM-30S and 11.75 g of water in the liquid mixture were used as fine particles.
[비교예 5] [Comparative Example 5]
미세입자를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.Superabsorbent polymer was obtained in the same manner as in Example 1 except that no fine particles were used.
[비교예 6] Comparative Example 6
액상 혼합물 내 물의 양을 11.75g 사용한 것을 제외하고는 비교예 5와 동일한 방법으로 수행하여 고흡수성 수지를 얻었다.A super absorbent polymer was obtained in the same manner as in Comparative Example 5, except that 11.75 g of the water in the liquid mixture was used.
상기 실시예 1 내지 4 및 비교예 1 내지 6의 구성을 하기 표 1에 나타내었다.The configurations of Examples 1 to 4 and Comparative Examples 1 to 6 are shown in Table 1 below.
표 1
입자 종류 입자 사용량(g) 액상 혼합물
에틸렌 카보네이트(g) 물(g)
실시예 1 Aerogel 0.15 0.75 6.75
실시예 2 0.25 6.75
실시예 3 0.15 11.75
실시예 4 0.25 11.75
비교예 1 REOLOSILDM-30S 0.15 6.75
비교예 2 0.25 6.75
비교예 3 0.15 11.75
비교예 4 0.25 11.75
비교예 5 - - 6.75
비교예 6 11.75
Table 1
Particle type Particle Usage (g) Liquid mixture
Ethylene carbonate (g) Water (g)
Example 1 Aerogel 0.15 0.75 6.75
Example 2 0.25 6.75
Example 3 0.15 11.75
Example 4 0.25 11.75
Comparative Example 1 REOLOSILDM-30S 0.15 6.75
Comparative Example 2 0.25 6.75
Comparative Example 3 0.15 11.75
Comparative Example 4 0.25 11.75
Comparative Example 5 - - 6.75
Comparative Example 6 11.75
실험예: 물성 평가Experimental Example: Evaluation of Properties
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4에 따른 고흡수성 수지 의 물성을 평가하기 위해 하기와 같은 시험을 진행하였다. In order to evaluate the physical properties of the superabsorbent polymers according to Comparative Examples 1 to 6 and Examples 1 to 4, the following test was conducted.
실험예 1: 보수능 (CRC, Centrifugal Retention Capacity)Experimental Example 1: Centrifugal Retention Capacity (CRC)
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4로 준비된 고흡수성 수지 각각에 대한 보수능을 측정하였다. 보수능의 측정은 EDANA 법 WSP 241.3을 기준으로 하였다. 준비된 고흡수성 수지 중 입도 150 내지 850 ㎛ 또는 기분급된 시료 0.2g을 티백에 넣고 0.9 % 염수 용액에 30분간 침전시켰다. 이후 250G(gravity)의 원심력으로 3분간 탈수한 후 염수 용액이 흡수된 양을 측정하였다.The water holding capacity of each of the superabsorbent polymers prepared in Comparative Examples 1 to 6 and Examples 1 to 4 was measured. The measurement of water retention capacity was based on the EDANA method WSP 241.3. In the prepared superabsorbent polymer, a particle size of 150 to 850 μm or 0.2 g of a sample with water was placed in a tea bag and precipitated in a 0.9% saline solution for 30 minutes. After dehydration for 3 minutes at 250G (gravity) centrifugal force was measured the amount of saline solution absorbed.
실험예 2: 가압흡수능 (AUP, Absorption Under Pressure)Experimental Example 2: Absorption Under Pressure (AUP)
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4로 준비된 고흡수성 수지 각각에 대한 가압흡수능을 측정하였다. 가압흡수능의 측정은 EDANA 법 WSP 242.3을 기준으로 하였다. 준비된 고흡수성 수지 중 입도 150 내지 850 ㎛ 또는 기분급된 시료 0.9g을 EDATA에서 규정하는 실린더에 넣고 피스톤과 추로 0.7 psi의 압력을 가한 후에 0.9 % 염수 용액을 60분간 흡수한 양을 측정하였다.The pressure-absorbing capacity of each of the superabsorbent polymers prepared in Comparative Examples 1 to 6 and Examples 1 to 4 was measured. The measurement of the pressure absorption capacity was based on the EDANA method WSP 242.3. In the prepared superabsorbent polymer, a particle size of 150 to 850 μm or 0.9 g of a sample with a fresh water was placed in a cylinder defined by EDATA, and the amount of the absorbed 0.9% saline solution for 60 minutes was measured after applying pressure with a piston and a weight of 0.7 psi.
실험예 3: 미분쇄 고흡수성 수지 입도Experimental Example 3: Finely ground superabsorbent polymer particle size
상기 비교예 1 내지 비교예 6 및 실시예 1 내지 실시예 4의 미분쇄 고흡수성 수지에 대한 입도를 측정하였다. 고흡수성 수지 입도의 측정은 EDANA 법 WSP 220.3을 기준으로 하였다. 고흡수성 수지 100g을 850㎛, 600㎛, 300㎛, 150㎛, Pan의 Mesh로 구분하여 1.44 mm 진폭, 진동수 50 Hz로 10분간 진동한 후, 각 체의 상부에 체류량의 비율로 함량을 측정하였다.Particle sizes of the finely divided superabsorbent polymers of Comparative Examples 1 to 6 and Examples 1 to 4 were measured. The measurement of the superabsorbent polymer particle size was based on the EDANA method WSP 220.3. 100 g of superabsorbent polymer was divided into 850 μm, 600 μm, 300 μm, 150 μm, and a mesh of Pan, and then vibrated for 10 minutes at 1.44 mm amplitude and a frequency of 50 Hz. .
상기와 같이 실험예 1 내지 3의 보수능, 가압흡수능 및 미분쇄 고흡수성 수지의 입도를 측정한 결과를 표 2에 나타내었다.Table 2 shows the results of measuring particle sizes of the water-retaining capacity, the pressure-absorbing capacity, and the finely divided superabsorbent polymer of Experimental Examples 1 to 3 as described above.
표 2
보수능(g/g) 가압흡수능(g/g) 입도분호(%)
150㎛이하 150~300㎛ 300~600㎛ 600~850㎛ 850㎛ 이상
실시예 1 33.9 20.3 0.0 2.3 28.3 43.9 25.5
실시예 2 33.1 19.5 0.7 11.3 52.5 31.4 4.1
실시예 3 33.3 22.1 0.0 0.6 11.2 20.2 68.0
실시예 4 31.1 20.0 0.0 1.0 29.3 38.7 31.0
비교예 1 33.7 21.3 0.2 2.3 19.8 29.0 48.7
비교예 2 34.5 19.6 0.5 8.4 46.2 36.2 8.7
비교예 3 32.2 22.7 0.0 0.4 5.2 7.3 87.1
비교예 4 32.3 21.5 0.0 0.5 5.6 8.5 85.4
비교예 5 34.1 23.8 0.0 1.7 15.5 27.7 55.1
비교예 6 32.7 24.0 0.0 0.9 6.0 10.9 82.2
TABLE 2
Water retention capacity (g / g) Pressure Absorption Capacity (g / g) Particle size classification (%)
150㎛ or less 150 ~ 300㎛ 300 ~ 600㎛ 600 ~ 850㎛ More than 850㎛
Example 1 33.9 20.3 0.0 2.3 28.3 43.9 25.5
Example 2 33.1 19.5 0.7 11.3 52.5 31.4 4.1
Example 3 33.3 22.1 0.0 0.6 11.2 20.2 68.0
Example 4 31.1 20.0 0.0 1.0 29.3 38.7 31.0
Comparative Example 1 33.7 21.3 0.2 2.3 19.8 29.0 48.7
Comparative Example 2 34.5 19.6 0.5 8.4 46.2 36.2 8.7
Comparative Example 3 32.2 22.7 0.0 0.4 5.2 7.3 87.1
Comparative Example 4 32.3 21.5 0.0 0.5 5.6 8.5 85.4
Comparative Example 5 34.1 23.8 0.0 1.7 15.5 27.7 55.1
Comparative Example 6 32.7 24.0 0.0 0.9 6.0 10.9 82.2
상기 표 2의 결과를 바탕으로, 표면에 초소수성 미세입자가 도입된 고흡수성 수지는, 표면의 소수성이 증가함에 따라 응집이 감소하며, 결과적으로 가공성이 증가함을 알 수 있다.Based on the results of Table 2, the superabsorbent polymer in which the superhydrophobic microparticles are introduced to the surface, the aggregation decreases as the hydrophobicity of the surface increases, and as a result, the workability increases.
일반적으로 고흡수성 수지의 표면가교공정에서는 표면 가교제를 물에 용해한 후 고흡수성 수지와 혼합함으로써, 수지 표면에 고른 분포 및 침투를 유도하는데, 이때 사용된 물은 고흡수성 수지 표면의 점성을 증가하여 응집이 일어나는 원인이 되며, 또한 응집된 고흡수성 수지의 분쇄에는 강한 힘이 요구되어, 이로 인한 고흡수성 수지의 손상 등의 단점이 발생하게 되는데,In general, in the surface crosslinking process of the superabsorbent polymer, the surface crosslinking agent is dissolved in water and then mixed with the superabsorbent polymer to induce even distribution and penetration into the resin surface. In this case, the water used is agglomerated by increasing the viscosity of the superabsorbent polymer surface. This causes, and also, a strong force is required for the pulverization of the aggregated superabsorbent polymer, which causes disadvantages such as damage to the superabsorbent polymer.
실시예 1의 초소수성 입자가 도입되어 소수성으로 개질된 고흡수성 수지는, 비교예 5을 통하여 제조된 고흡수성 수지보다 입도가 작은 쪽에 분포하는 것으로, 분쇄 공정이 없음에도 850 ㎛ 이하의 입도가 75% 가량 유지됨으로써 가공성이 증가함을 확인할 수 있다.The superabsorbent polymer, in which the superhydrophobic particles of Example 1 were introduced and modified to be hydrophobic, is distributed in a smaller particle size than the superabsorbent polymer prepared in Comparative Example 5, and has a particle size of 850 µm or less even though there is no grinding step. By maintaining about% it can be seen that the processability increases.
또한, 실시예 1과 비교예 1은 도입된 초소수성 미세입자의 소수성 차이에 기반한 가공성의 변화를 나타낸다. 초소수성 미세입자의 양을 동일하게 사용할 경우, 응집 감소에 따른 입도의 감소는 소수성이 높은 미세입자를 도입한 실시예 1 내지 실시예 4로 부터 얻어진 고흡수성 수지의 입도가 비교예 1 내지 비교예 4로부터 얻어진 고흡수성 수지의 입도에 비하여, 더 작은 쪽에 분포하며, 보수능 및 가압 흡수능의 차이가 적음을 알 수 있다.In addition, Example 1 and Comparative Example 1 show a change in processability based on the hydrophobic difference of the superhydrophobic microparticles introduced. When the same amount of the superhydrophobic microparticles is used, the particle size decreases due to the decrease in the aggregation, and the particle size of the super absorbent polymers obtained from Examples 1 to 4 in which the highly hydrophobic microparticles are introduced is compared. Compared with the particle size of the super absorbent polymer obtained from 4, it is distributed in the smaller one, and it turns out that there is little difference in a water holding capacity and a pressure absorbing capacity.

Claims (21)

  1. a) 수용성 에틸렌계 불포화 단량체 및 중합개시제를 포함하는 단량체 조성물을 열중합 또는 광중합하여 함수겔상 중합체를 준비하는 단계;a) preparing a hydrogel polymer by thermally polymerizing or photopolymerizing a monomer composition comprising a water-soluble ethylenically unsaturated monomer and a polymerization initiator;
    b) 상기 함수겔상 중합체를 건조하는 단계;b) drying the hydrogel polymer;
    c) 상기 건조된 함수겔상 중합체를 분쇄하는 단계;c) grinding the dried hydrogel polymer;
    d) 상기 분쇄된 함수겔상 중합체에 하기 i) 내지 ii)의 특성을 갖는 입자와 표면 가교제를 첨가하는 단계; 및 d) adding particles and a surface crosslinking agent having the properties of i) to ii) to the pulverized hydrogel polymer; And
    e) 표면 가교 반응을 진행하는 단계를 포함하는 고흡수성 수지의 제조방법.e) a method for producing a super absorbent polymer comprising the step of performing a surface crosslinking reaction.
    i) 300 내지 1500 m2/g 의 BET 비표면적 (specific surface area),i) a BET specific surface area of 300 to 1500 m 2 / g,
    ii) 50% 이상의 공극률(porosity)ii) porosity of at least 50%
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 입자는 2 ㎚ ~ 50 ㎛의 입도를 가지는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The particles have a particle size of 2 nm ~ 50 ㎛ characterized in that the manufacturing method of the super absorbent polymer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 입자는 물에 대한 접촉각이 125°이상의 초소수성을 가지는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The particle has a contact angle with respect to water has a super hydrophobicity of 125 ° or more, characterized in that for producing a super absorbent polymer.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 입자는 2 ㎚ ~ 50 ㎛의 입도 및 물에 대한 접촉각이 125°이상의 초소수성을 가지는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The particles are a method of producing a super absorbent polymer, characterized in that the particle size of 2 nm ~ 50 ㎛ and the contact angle to water has a super hydrophobicity of 125 ° or more.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자는 500 내지 1500 m2/g 의 BET 비표면적 (specific surface area)을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particles have a BET specific surface area (500 to 1500 m 2 / g) method of producing a super absorbent polymer, characterized in that.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자는 700 내지 1500 m2/g 의 BET 비표면적 (specific surface area)을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particles have a BET specific surface area (700-1500 m 2 / g) method of producing a super absorbent polymer, characterized in that.
  7. 청구항 3 또는 청구항 4에 있어서,The method according to claim 3 or 4,
    상기 미세입자는 물에 대한 접촉각이 140°이상의 초소수성을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particles are a method of producing a super absorbent polymer, characterized in that the contact angle to the water has a super hydrophobicity of 140 ° or more.
  8. 청구항 3 또는 청구항 4에 있어서,The method according to claim 3 or 4,
    상기 미세입자는 물에 대한 접촉각이 145°이상의 초소수성을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particles are a method of producing a super absorbent polymer, characterized in that the contact angle to water has a superhydrophobicity of 145 ° or more.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자는 90% 이상의 공극률(porosity)을 갖는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particles are a method of producing a super absorbent polymer, characterized in that having a porosity (porosity) of 90% or more.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자는 고흡수성 수지 100중량부에 대하여 0.001 내지 1 중량부로 포함되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particles are contained in an amount of 0.001 to 1 part by weight based on 100 parts by weight of the super absorbent polymer.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자는 실리카, 알루미나, 탄소(Carbon) 및 티타니아(TiO2)로 이루어지는 군에서 선택되는 1종 이상인 것을 특징으로 하는 고흡수성 수지의 제조 방법.The fine particle is a method for producing a super absorbent polymer, characterized in that at least one member selected from the group consisting of silica, alumina, carbon (Carbon) and titania (TiO 2 ).
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 b)의 건조 단계 전에, 함수겔상 중합체를 입도가 1mm 내지 15mm로 분쇄하는 단계를 더 포함하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.Before the drying step of step b), the method of producing a super absorbent polymer, characterized in that it further comprises the step of grinding the hydrogel polymer to a particle size of 1mm to 15mm.
  13. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 b)의 건조 단계는 150℃ 내지 250℃의 온도에서 진행되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The drying step of step b) is a method for producing a super absorbent polymer, characterized in that at a temperature of 150 ℃ to 250 ℃.
  14. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 c)의 분쇄 단계는, 함수겔상 중합체를 입도가 150 내지 850㎛로 분쇄하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.The grinding step of step c), the method for producing a super absorbent polymer, characterized in that the hydrogel polymer is pulverized to a particle size of 150 to 850㎛.
  15. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 d)의 표면 가교제는 다가 알콜 화합물; 에폭시 화합물; 폴리아민 화합물; 할로에폭시 화합물; 할로에폭시 화합물의 축합 산물; 옥사졸린 화합물; 모노-, 디- 또는 폴리옥사졸리디논 화합물; 환상 우레아 화합물; 다가금속염; 및 알킬렌 카보네이트 화합물로 이루어진 군으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 고흡수성 수지의 제조 방법.The surface crosslinking agent of step d) is a polyhydric alcohol compound; Epoxy compounds; Polyamine compounds; Haloepoxy compound; Condensation products of haloepoxy compounds; Oxazoline compounds; Mono-, di- or polyoxazolidinone compounds; Cyclic urea compounds; Polyvalent metal salts; And an alkylene carbonate compound. The method for producing superabsorbent polymer, characterized in that at least one selected from the group consisting of.
  16. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 d)의 표면 가교제는 분쇄된 중합체 100 중량부에 대해 0.001 내지 5 중량부가 첨가되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.Method for producing a super absorbent polymer, characterized in that the surface cross-linking agent of step d) is added to 0.001 to 5 parts by weight based on 100 parts by weight of the pulverized polymer.
  17. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 d)에서, 상기 표면 가교제를 첨가하는 단계에서 상기 중합체의 표면 온도는 60 내지 90℃ 인 것을 특징으로 하는 고흡수성 수지의 제조 방법.In the step d), the surface temperature of the polymer in the step of adding the surface cross-linking agent is a method for producing a super absorbent polymer, characterized in that 60 to 90 ℃.
  18. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 d)에서, 첨가되는 표면 가교제의 온도는 5 내지 40℃인 것을 특징으로 하는 고흡수성 수지의 제조 방법.In the step d), the temperature of the surface cross-linking agent to be added is a method of producing a super absorbent polymer, characterized in that 5 to 40 ℃.
  19. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 e)에서, 상기 표면 가교 반응은 10 분 내지 120 분 간 진행되는 것을 특징으로 하는 고흡수성 수지의 제조 방법.In the step e), the surface crosslinking reaction is a method for producing a super absorbent polymer, characterized in that for 10 minutes to 120 minutes.
  20. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 e)에서, 스팀, 전기, 자외선 및 적외선으로 이루어진 열원군에서 선택되는 어느 하나 이상을 조사하여 승온하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.In the step e), the method of manufacturing a super absorbent polymer, characterized in that the temperature is raised by irradiating any one or more selected from a heat source group consisting of steam, electricity, ultraviolet rays and infrared rays.
  21. 청구항 1에 있어서,The method according to claim 1,
    상기 단계 e)의 표면 가교 반응 단계 후에, 고흡수성 수지를 150 내지 850 ㎛의 입도로 다시 분쇄하는 단계를 더 포함하는 것을 특징으로 하는 고흡수성 수지의 제조 방법.After the surface crosslinking reaction step of step e), the method of producing a super absorbent polymer, characterized in that further comprising the step of pulverizing the superabsorbent resin again to a particle size of 150 to 850 ㎛.
PCT/KR2014/011788 2013-12-03 2014-12-03 Method for preparing super absorbent resin WO2015084059A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016557857A JP6449902B2 (en) 2013-12-03 2014-12-03 Method for producing superabsorbent resin
RU2016105746A RU2636941C1 (en) 2013-12-03 2014-12-03 Method of producing super-absorbing resin
US14/907,470 US9700871B2 (en) 2013-12-03 2014-12-03 Method for preparing super absorbent resin
EP14867984.8A EP3078678B1 (en) 2013-12-03 2014-12-03 Method for preparing super absorbent resin
CN201480045362.0A CN105722863B (en) 2013-12-03 2014-12-03 Method for preparing super absorbent resin

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0149440 2013-12-03
KR20130149440 2013-12-03
KR10-2014-0066046 2014-05-30
KR1020140066046A KR20150064649A (en) 2013-12-03 2014-05-30 a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
KR1020140172232A KR101507287B1 (en) 2013-12-03 2014-12-03 a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
KR10-2014-0172232 2014-12-03

Publications (1)

Publication Number Publication Date
WO2015084059A1 true WO2015084059A1 (en) 2015-06-11

Family

ID=53028941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011788 WO2015084059A1 (en) 2013-12-03 2014-12-03 Method for preparing super absorbent resin

Country Status (2)

Country Link
KR (1) KR101507287B1 (en)
WO (1) WO2015084059A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078679A4 (en) * 2013-12-03 2016-11-30 Lg Chemical Ltd Superabsorbent polymer and preparation method therefor
CN106661235A (en) * 2015-07-10 2017-05-10 株式会社Lg化学 Method for preparing superabsorbent resin and superabsorbent resin prepared thereby
US20170137581A1 (en) * 2015-04-28 2017-05-18 Lg Chem, Ltd. Method for preparing super absorbent resin
EP3243859A4 (en) * 2015-01-07 2018-01-17 LG Chem, Ltd. Super absorbent resin having improved solidification resistance, and method for preparing same
CN108137725A (en) * 2016-03-11 2018-06-08 株式会社Lg化学 The manufacturing method and super absorbent polymer of super absorbent polymer
US20180312680A1 (en) * 2016-03-11 2018-11-01 Lg Chem, Ltd. Super absorbent polymer
US10632451B2 (en) 2016-03-24 2020-04-28 Lg Chem, Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
CN112969529A (en) * 2018-11-14 2021-06-15 巴斯夫欧洲公司 Process for producing superabsorbers
CN113544167A (en) * 2019-03-08 2021-10-22 住友精化株式会社 Water-absorbent resin particles and method for producing same
CN116019963A (en) * 2022-12-02 2023-04-28 江苏弘生生物工程有限公司 Preparation method of medical silica gel foam dressing

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101910098B1 (en) * 2015-01-05 2018-10-19 주식회사 엘지화학 Preparation method of improved superabsorbent polymer(sap) treated with aqueous dispersion comprising nanoparticles and superabsorbent polymer(sap) prepared thereby
KR101960041B1 (en) * 2015-04-28 2019-03-19 주식회사 엘지화학 a Method for Preparing of the Superabsorbent Polymer (SAP) Resin
KR101855353B1 (en) 2015-06-09 2018-05-08 주식회사 엘지화학 Preparation method for super absorbent polymer and super absorbent polymer prepared therefrom
KR101749723B1 (en) * 2015-06-09 2017-06-21 주식회사 엘지화학 Preparation method of wet-strength enhanced absorbent core
WO2016200112A1 (en) * 2015-06-09 2016-12-15 주식회사 엘지화학 Method for manufacturing absorbent core having enhanced wet strength
KR101919985B1 (en) * 2015-06-10 2018-11-19 주식회사 엘지화학 Superabsorbent Polymers having Attrition Resistant And Method Of Preparing The Same
KR101949994B1 (en) 2015-10-14 2019-02-19 주식회사 엘지화학 Super absorbent polymer granule and preparation method thereof
WO2017104999A1 (en) * 2015-12-14 2017-06-22 주식회사 엘지화학 Crush resistant highly absorbent resin, and method and composition for preparing same
KR20170070801A (en) * 2015-12-14 2017-06-22 주식회사 엘지화학 Attrition resistant superabsorbent polymers, a method of preparing the same and composition for preparing the same
KR102025892B1 (en) 2016-02-17 2019-09-26 주식회사 엘지화학 A method of preparing superabsorbent polymers with improved anti-caking property
KR102075737B1 (en) 2016-03-11 2020-02-10 주식회사 엘지화학 Preparation method for super absorbent polymer, and super absorbent polymer
KR101959547B1 (en) 2016-03-25 2019-03-18 주식회사 엘지화학 Preparation method for super absorbent polymer
KR102242700B1 (en) * 2016-04-20 2021-04-21 한화솔루션 주식회사 Super absorbent polymer and method for preparing the same
KR101953764B1 (en) * 2016-11-04 2019-03-04 주식회사 엘지화학 Super absorbent polymer and preparation method thereof
KR102112832B1 (en) * 2017-03-02 2020-05-19 주식회사 엘지화학 Super absorbent polymer and its preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990028909A (en) * 1995-07-12 1999-04-15 마루오 기헤이 Synthetic Resin Additives and Synthetic Resin Compositions
JP2004002145A (en) * 2002-01-18 2004-01-08 Basf Ag Mixture of hydrogel forming polymer and building material
JP2009057496A (en) * 2007-08-31 2009-03-19 San-Dia Polymer Ltd Water absorptive resin particle, absorbent and absorptive article
JP2012052080A (en) * 2010-09-02 2012-03-15 Ko Tamihiro Moisture absorption or moisture absorption/desorption resin pellet
WO2012070845A2 (en) * 2010-11-22 2012-05-31 Lg Chem, Ltd. Preparation method of superabsorbent polymer
KR20120081113A (en) 2009-09-30 2012-07-18 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbent and method for producing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501698A (en) 2006-08-31 2010-01-21 ビーエーエスエフ ソシエタス・ヨーロピア Superabsorbent polymer with excellent gel integrity, absorption capacity, and permeability
JP5485805B2 (en) 2010-06-15 2014-05-07 住友精化株式会社 Water absorbent resin
KR101495779B1 (en) * 2010-11-30 2015-02-25 주식회사 엘지화학 Preparation method of super absorbent polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990028909A (en) * 1995-07-12 1999-04-15 마루오 기헤이 Synthetic Resin Additives and Synthetic Resin Compositions
JP2004002145A (en) * 2002-01-18 2004-01-08 Basf Ag Mixture of hydrogel forming polymer and building material
JP2009057496A (en) * 2007-08-31 2009-03-19 San-Dia Polymer Ltd Water absorptive resin particle, absorbent and absorptive article
KR20120081113A (en) 2009-09-30 2012-07-18 가부시키가이샤 닛폰 쇼쿠바이 Particulate water absorbent and method for producing same
JP2012052080A (en) * 2010-09-02 2012-03-15 Ko Tamihiro Moisture absorption or moisture absorption/desorption resin pellet
WO2012070845A2 (en) * 2010-11-22 2012-05-31 Lg Chem, Ltd. Preparation method of superabsorbent polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3078678A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9669385B2 (en) 2013-12-03 2017-06-06 Lg Chem, Ltd. Superabsorbent polymer
EP3078679A4 (en) * 2013-12-03 2016-11-30 Lg Chemical Ltd Superabsorbent polymer and preparation method therefor
US10486135B2 (en) 2015-01-07 2019-11-26 Lg Chem, Ltd. Super absorbent resin having improved solidification resistance, and method for preparing same
EP3243859A4 (en) * 2015-01-07 2018-01-17 LG Chem, Ltd. Super absorbent resin having improved solidification resistance, and method for preparing same
US11484863B2 (en) 2015-01-07 2022-11-01 Lg Chem, Ltd. Super absorbent resin having improved solidification resistance, and method for preparing same
US20170137581A1 (en) * 2015-04-28 2017-05-18 Lg Chem, Ltd. Method for preparing super absorbent resin
US10294334B2 (en) * 2015-04-28 2019-05-21 Lg Chem, Ltd. Method for preparing super absorbent resin
CN106661235A (en) * 2015-07-10 2017-05-10 株式会社Lg化学 Method for preparing superabsorbent resin and superabsorbent resin prepared thereby
EP3321306B1 (en) 2015-07-10 2022-12-28 LG Chem, Ltd. Method for preparing superabsorbent resin and superabsorbent resin prepared thereby
CN108137725A (en) * 2016-03-11 2018-06-08 株式会社Lg化学 The manufacturing method and super absorbent polymer of super absorbent polymer
US10829630B2 (en) * 2016-03-11 2020-11-10 Lg Chem, Ltd. Super absorbent polymer
US10920023B2 (en) 2016-03-11 2021-02-16 Lg Chem, Ltd. Manufacturing method of super absorbent polymer and super absorbent polymer
EP3333198A4 (en) * 2016-03-11 2018-11-07 LG Chem, Ltd. Method for preparing highly absorbent resin, and highly absorbent resin
US11492451B2 (en) 2016-03-11 2022-11-08 Lg Chem, Ltd. Manufacturing method of super absorbent polymer and super absorbent polymer
US20180312680A1 (en) * 2016-03-11 2018-11-01 Lg Chem, Ltd. Super absorbent polymer
US10632451B2 (en) 2016-03-24 2020-04-28 Lg Chem, Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer prepared thereby
CN112969529A (en) * 2018-11-14 2021-06-15 巴斯夫欧洲公司 Process for producing superabsorbers
CN112969529B (en) * 2018-11-14 2023-11-10 巴斯夫欧洲公司 Method for producing superabsorbents
CN113544167A (en) * 2019-03-08 2021-10-22 住友精化株式会社 Water-absorbent resin particles and method for producing same
CN116019963A (en) * 2022-12-02 2023-04-28 江苏弘生生物工程有限公司 Preparation method of medical silica gel foam dressing
CN116019963B (en) * 2022-12-02 2023-09-22 江苏弘生生物工程有限公司 Preparation method of medical silica gel foam dressing

Also Published As

Publication number Publication date
KR101507287B1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
WO2015084059A1 (en) Method for preparing super absorbent resin
WO2016175427A1 (en) Method for preparing super absorbent resin
WO2016111447A1 (en) Super absorbent resin having improved solidification resistance, and method for preparing same
WO2016200041A1 (en) Method for preparing superabsorbent resin comprising fine powder re-assembled body of superabsorbent resin, and superabsorbent resin prepared thereby
WO2017010660A1 (en) Method for preparing superabsorbent resin and superabsorbent resin prepared thereby
WO2016175428A1 (en) Method for preparing super absorbent resin
KR101536332B1 (en) Super Absorbent Polymer Resin and the Method for Preparing of the Same
WO2016200010A1 (en) High water-absorbent resin having crush resistance and method for manufacturing same
KR101495779B1 (en) Preparation method of super absorbent polymer
JP6449902B2 (en) Method for producing superabsorbent resin
KR101704789B1 (en) Super absorbent polymer
JP2016540106A5 (en)
KR20180075309A (en) Preparation method of porous super absorbent polymer
WO2016104926A1 (en) Attrition-resistant superabsorbent polymer and method for producing same
WO2020145533A1 (en) Method for producing super absorbent polymer
KR20140036866A (en) Preparation method for super absorbent polymer
KR101595037B1 (en) Preparation method for super absorbent polymer
KR20170106157A (en) Super absorbent polymer
WO2016111446A1 (en) Method for preparing superabsorbent polymer treated with water dispersion solution containing microparticles
KR20210038081A (en) Preparation method of super absorbent polymer
WO2016099103A1 (en) Super absorbent resin for absorbing blood or high viscosity liquid and method for preparing same
WO2015199363A1 (en) Super absorbent polymer containing water-soluble salt and preparation method therefor
KR102073953B1 (en) Attrition resistant superabsorbent polymers, a method of preparing the same and composition for preparing the same
WO2015084060A1 (en) Superabsorbent polymer and preparation method therefor
WO2015083999A1 (en) High absorbable resin and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557857

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014867984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014867984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14907470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016105746

Country of ref document: RU

Kind code of ref document: A