WO2015156164A1 - Algae inhibitor including ion complex - Google Patents

Algae inhibitor including ion complex Download PDF

Info

Publication number
WO2015156164A1
WO2015156164A1 PCT/JP2015/060065 JP2015060065W WO2015156164A1 WO 2015156164 A1 WO2015156164 A1 WO 2015156164A1 JP 2015060065 W JP2015060065 W JP 2015060065W WO 2015156164 A1 WO2015156164 A1 WO 2015156164A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
algae
inhibitor according
glutamic acid
pga
Prior art date
Application number
PCT/JP2015/060065
Other languages
French (fr)
Japanese (ja)
Inventor
弘文 白馬
柴谷 滋郎
久人 小林
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016512675A priority Critical patent/JPWO2015156164A1/en
Publication of WO2015156164A1 publication Critical patent/WO2015156164A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Definitions

  • the present invention provides an algal inhibitor containing an ion complex formed from poly- ⁇ -glutamic acid and a cationic fungicide.
  • Legionella is a bacterium that infests amoeba inhabiting artificial water with a water temperature of 20 ° C or higher, or grows together with algae and invades the human respiratory system together with aerosols, causing Legionella pneumonia and Pontiac fever It is known that Legionella bacteria tend to be generated in places such as bathtubs, cooling tower cooling water, fountains, humidifiers, etc., because they live in biofilms formed by algae and amoeba. For this reason, according to the guidelines of the Ministry of Health, Labor and Welfare, some public facilities are regularly cleaned to prevent the formation of algae and biofilms in order to prevent the generation of Legionella bacteria, and measures to prevent Legionella disease are taken.
  • Conventional methods of removing biofilms and algae include chemical cleaning methods such as hypochlorous acid, hydrogen peroxide and peracetic acid, ozone and UV disinfection methods, brushing, and water cleaning methods. Regular cleaning and maintenance are carried out.
  • chemical cleaning methods such as hypochlorous acid, hydrogen peroxide and peracetic acid, ozone and UV disinfection methods, brushing, and water cleaning methods.
  • Regular cleaning and maintenance are carried out.
  • the above-mentioned chemical disinfection method is excellent in that algae and biofilm are oxidatively decomposed and removed, there is a problem that the corrosiveness to the base material is high and the aging of the equipment is promoted.
  • the disinfection method using ozone and UV requires expensive equipment costs.
  • chemical antiseptics with low corrosive properties include nitrogen antibacterial agents such as benzalkonium chloride and polyhexamethylene biguanidine hydrochloride, and synthetic antibacterial agents such as sulfur antibacterial agents.
  • nitrogen antibacterial agents such as benzalkonium chloride and polyhexamethylene biguanidine hydrochloride
  • synthetic antibacterial agents such as sulfur antibacterial agents.
  • Biofilms and algae tend to adhere to equipment bases, inner walls, and piping surfaces of water-based equipment. For this reason, even if it disinfects by circulating the chemical
  • Patent Document 1 describes an algal inhibitor containing an isothiazoline compound and a cationic polymer. According to the present invention, it is described that by adding the algal inhibitor to aqueous water, the isothiazoline compound and the cationic polymer synergistically suppress the generation of algae and the like effectively.
  • Patent Document 2 an algal control agent in which isouron and 3- (3,4-dichlorophenyl) -1,1-dimethylurea are combined is described as an anti-algae agent for paint having a low elution property.
  • the invention described above is an algal inhibitor combining a nitrogen-based antibacterial agent and a synthetic polymer, and is expected as a highly sustainable agent.
  • these antibacterial agents are used in water-based facilities, there are concerns about leakage into rivers and residual toxicity, especially when considering use in facilities that are indirectly in contact with the human body, such as for beverages and bathtubs, Low environmental impact and low toxicity agents are required.
  • PGA ion complex poly- ⁇ -glutamic acid
  • PGAIC poly- ⁇ -glutamic acid
  • An algal inhibitor comprising a PGA ion complex formed from poly- ⁇ -glutamic acid and a cationic fungicide.
  • the cationic fungicide is a biguanide fungicide.
  • the cationic fungicide is at least one selected from the group consisting of cetylpyridinium, benzethonium, chlorhexidine, benzalkonium, laurylpyridinium, and chlorhexidine.
  • a water-absorbent sheet comprising a resin foam, a water-absorbing polymer, or a nonwoven fabric, which has been subjected to an alga-proof treatment using the algal inhibitor according to [1] to [9].
  • the present invention makes it possible to effectively suppress algae by applying an ion complex formed from poly- ⁇ -glutamic acid and a cationic bactericidal agent to an aqueous facility or compounding a base material.
  • the PGA ion complex of the present invention is a material imparted with algae generation inhibitory property to the adhesiveness and biodegradability derived from poly- ⁇ -glutamic acid, and exhibits water insolubility. It has a high ability and suppresses the loss of the algae-preventing component, thereby showing the durability of the algae-inhibiting effect. Therefore, algae and microorganisms can be continuously prevented from growing in water-based facilities such as a cooling tower, a circulating bath, a fountain, and a humidifier. As a further effect, it is possible to save the maintenance of cleaning, and to keep the equipment that is difficult to clean, such as water pipes, water pipes, and drainage pumps, out of reach.
  • the present invention provides an algal inhibitor containing an ion complex formed from poly- ⁇ -glutamic acid and a cationic fungicide.
  • PGA Poly- ⁇ -glutamic acid
  • PGA Poly- ⁇ -glutamic acid
  • PGA Poly- ⁇ -glutamic acid
  • PGA has come to be known as the main component of natto stringing, but since it is a substance produced by microorganisms, it has high affinity with microorganisms and also has adhesiveness, biodegradability, and biocompatibility .
  • the type of PGA is not particularly limited.
  • the higher one ratio is, the better the stereoregularity, the higher the strength, etc., and the better the melting point (about 150 ° C.) when dried. This melting point becomes clearer by using an ion complex.
  • L-glutamic acid is superior in biodegradability, it is preferable to use PGA having a L-glutamic acid content of 90% or more.
  • the molecular size of the PGA used is not particularly limited, but an average molecular weight of 10 kD or more is preferable. In general, the larger the molecular size, the higher the adhesion performance to the skin. On the other hand, PGA having an excessively large molecular size is expensive to produce and may be technically difficult to produce.
  • PGA poly- ⁇ -glutamic acid is obtained when glutamic acid is polymerized under normal conditions, it is preferably biosynthesized using a microorganism.
  • microorganisms that produce PGA include Bacillus subtilis (Bacillus natto), Bacillus subtilis (Sengoku soy sauce), Bacillus megaterium, Bacillus anthracis, Bacillus halodurans, and Naturalbaeagae.
  • Bacillus subtilis which is a Bacillus subtilis
  • Naturalba aegyptica which is a hyperhalophilic archaea.
  • it is preferable to use PGA produced by Naturalba aegyiaca which is a microorganism that produces PGA consisting only of L-glutamic acid.
  • the PGA ion complex of the present invention (hereinafter sometimes referred to as PGAIC) has a PGA and a cationic bactericide that is a counter cation bound by an ionic bond, and PGA exhibits water solubility, The PGA ion complex is insoluble in water.
  • the cationic fungicide contained in the PGA ion complex of the present invention is not particularly limited, but a quaternary ammonium salt and a biguanide fungicide are preferred, and a quaternary ammonium salt is more preferred.
  • quaternary ammonium salts include cetylpyridinium chloride, laurylpyridinium chloride, benzethonium chloride, benzalkonium chloride, distearyldimethylammonium chloride, stearyldimethylbenzylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, lauryl chloride. And trimethylammonium.
  • biguanide fungicides examples include chlorhexidine hydrochloride, chlorhexidine acetate, chlorhexidine gluconate, alexidine hydrochloride, alexidine acetate, alexidine gluconate and the like. Of these, cetylpyridinium chloride, laurylpyridinium chloride, benzethonium chloride, and benzalkonium chloride are preferable. These cationic fungicides may form a PGA ion complex only by one kind, or may be a PGA ion complex containing two or more kinds.
  • the PGA ion complex those containing glutamic acid constituting the PGA and the cationic fungicide in an equimolar amount or in an arbitrary molar ratio can be used.
  • those that are sufficiently modified with a cationic fungicide are preferred.
  • the proportion of the cationic bactericidal agent in PGAIC is preferably 0.5 mol times or more, more preferably 0.6 mol times or more with respect to glutamic acid constituting PGA, 0 More preferably, it is 7 mol times or more.
  • those containing equimolar or substantially equimolar amounts of glutamic acid and cationic fungicide constituting PGA are suitable.
  • substantially equimolar means that the number of moles of both is substantially equal.
  • the amount of the cationic fungicide for glutamic acid constituting PGA is 0.8 mol times or more and 1.2 mol times or less. In particular, it means 0.9 mole times or more and 1.1 mole times or less.
  • the PGA ion complex of the present invention can be produced very easily only by mixing PGA and a cationic fungicide such as a quaternary ammonium salt or a biguanide fungicide in a solvent.
  • water is suitable. This is because the raw material PGA can be dissolved well and the target compound PGA ion complex is insoluble in water, which is convenient for isolation and purification of the target product after the reaction.
  • an alcohol such as methanol or ethanol
  • an ether such as THF
  • a water-soluble organic solvent such as dimethylformamide or dimethylacetamide is reacted. It may be added to the liquid.
  • the salt may be used as PGA as a raw material.
  • the salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt. Further, even when a salt is used, it is not necessary that all carboxy groups are salts, and only a part thereof may be a salt. However, since polyvalent metal salts such as alkaline earth metal salts may have low solubility in water, a PGA free body or a monovalent metal salt of PGA is preferably used.
  • Quaternary ammonium salts or biguanide fungicides are usually present as halide salts. Therefore, in the present invention, a quaternary ammonium salt or biguanide fungicide may be added directly to the reaction solution, or the salt may be added after dissolving in an aqueous solvent.
  • the quaternary ammonium salt or biguanide fungicide is preferably used in a sufficient amount relative to PGA in order to sufficiently modify PGA.
  • the concentration of each component in the reaction solution is not particularly limited.
  • the concentration of PGA in the reaction solution can be about 0.5 w / v% or more and about 10 w / v% or less
  • the concentration of the cationic bactericidal agent can be about 1.0 w / v% or more and about 10 w / v% or less.
  • the reaction solution is preferably heated moderately to promote complex formation.
  • the heating temperature can be, for example, about 40 ° C. or higher and 80 ° C. or lower.
  • the reaction time may be adjusted as appropriate, but can usually be about 1 hour or more and 20 hours or less.
  • the PGA ion complex of the present invention is insoluble in water, it can be easily separated from an aqueous solvent by filtration or centrifugation. Further, the separated PGAIC can be washed with water to remove excess PGA, cationic fungicide, and other salts. The aqueous solvent can be easily removed by washing with acetone or the like.
  • the algal inhibitor containing the PGA ion complex according to the present invention exhibits an excellent algal inhibitory effect.
  • poly- ⁇ -glutamic acid which is at least the main skeleton of the ion complex, which is an active ingredient, is biodegradable, the burden on the environment is low even after use.
  • Cationic antibacterial agents become insoluble by ion binding with poly- ⁇ -glutamic acid, have low elution into water, and have a low environmental impact.
  • PGA ion complex since PGA ion complex has high moldability, it is an algal inhibitor that can be applied to various materials including plastic, film, fiber, wood, paper, concrete, metal, ceramic, glass and the like.
  • distributed the algal inhibitor which concerns on this invention in the solvent shows the outstanding algal inhibitory effect.
  • the coating agent of this invention is very useful as what can form the coating film and film which have a high algal control effect.
  • Algae here refers to organisms that perform photosynthesis that live in the presence of water
  • the present invention relates to cyanobacteria that are eubacteria, unicellular algae such as red algae, green algae, diatoms, and dinoflagellates, brown algae, Euglena It can be applied to a wide range of algae such as algae. Furthermore, by suppressing the generation and growth of algae, the formation of biofilms by algae can be suppressed, and the growth of pathogenic bacteria such as Legionella that grow in the biofilm can be suppressed.
  • the algae inhibitor according to the present invention is particularly preferably applied to water-based equipment, and since antibacterial components do not flow out due to water and antibacterial sustainability is high, floating organic substances and bacteria adhere, and biofilms and algae adhere. Can be reduced. Furthermore, the PGA ion complex according to the present invention exerts an excellent bacteriostatic effect against Legionella pneumophila, which is a causative bacterium that causes Legionella pneumonia, and both gram-positive and gram-negative bacteria.
  • an algal inhibitory effect can be exhibited by forming a coating film or a film on the inner surface during production of an aqueous facility such as a pipe, pipe, or tank. Furthermore, it is possible to circulate a solution containing a PGA ion complex in an aqueous facility such as a pipe, a pipe, or a tank and apply the PGA ion complex on the surface of the facility.
  • the PGA ion complex of the present invention has adhesiveness, and the PGA ion complex is insoluble in water and does not elute into water, and also exhibits anti-algae properties as described above.
  • the PGA ion complex of the present invention is used as an anti-algae paint, it is possible to form a coating film or a film exhibiting a continuous anti-algae property by applying or spraying on a substrate or the like.
  • the PGA ion complex of the present invention can be used alone, or can be dissolved in a solvent and used in the form of a solution.
  • a solvent from the viewpoint of safety, water; alcohols such as ethanol, methanol and isopropanol; solvents of hydrocarbons such as n-hexane are preferable. In addition, ketones, esters, fatty acids, silicone oils and the like are preferable.
  • Various solvents can also be used. These solvents may be used alone or in combination of two or more.
  • the solution preferably contains 0.1 wt% or more of PGA ion complex, and preferably contains 0.1 to 20 wt%.
  • the amount is less than 0.1 wt%, the effect of preventing algae may not be sufficiently exhibited.
  • an upper limit is not specifically limited, When it melt
  • a pigment, a surfactant, a crosslinking agent, and other paint additives may be appropriately blended in addition to the PGA ion complex and the solvent.
  • an algae-proofing treatment to industrial products and substrates using the algae-proofing paint of the present invention, powder coating, brushing, spraying, dipping, dipping, coating, printing, etc.
  • the treatment may be performed by this method, and is not particularly limited.
  • examples of the base material that can be applied include ceramics, metals, metal oxides, plastics, rubbers, ores, and wood.
  • examples of ceramics include glass, ceramics, cement, refractory bricks, and firewood.
  • metals include simple metals such as iron, aluminum, zinc, magnesium, gold, silver, chromium, germanium, molybdenum, nickel, lead, platinum, silicon, titanium, thorium, tungsten, carbon steel, nickel steel,
  • the alloy include chromium steel, chromium molybdenum steel, stainless steel, aluminum alloy, brass and bronze.
  • metal oxides include alumina, silica, magnesia, tria, zirconia, iron sesquioxide, iron tetroxide, titanium oxide, calcium oxide, zinc oxide, lead oxide and the like.
  • plastics examples include general purpose plastics such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl alcohol, engineering plastics such as polyamide, polycarbonate, polyacetal, polyvinylidene fluoride, polyethersulfone, and polyamideimide, and phenolic resins. And thermosetting resins such as epoxy resins, silicone resins, and polyurethanes. Examples of ores include marble and granite.
  • the PGA ion complex of the present invention may be processed into an inner wall of a water system facility, a molded product, piping, a filter, or a water absorbent sheet.
  • the water system facilities include water conduits, water supply pipes, water distribution pipes, and water supply pipes used as water pipes.
  • it can be used for various water pipes, for example, water heaters, humidifiers, water storage tanks, cold water machines, washing machines, cooling towers, fountains, farms, plant factories, etc. be able to. It can also be used for bathroom facilities and the like, and can be processed into a bathtub, shower, jacuzzi, and the like.
  • the present invention can suppress algae generated in a filter by using it in a filter for water treatment or liquid treatment. Further, the present invention can be used for water absorbent sheets and water absorbent fibers made of a resin foam, a water absorbent polymer, or a nonwoven fabric. For example, water absorbency used in soil water retention agents, seedling beds, plant culture equipment and hydroponics. Effective in suppressing the generation and growth of algae in the sheet.
  • PGA ion complex is a biodegradable polymer, it can be used as a highly safe and low environmental load algae control agent.
  • processing methods PGA ion complex or PGA ion complex is applied to the water-based equipment, filter, water-absorbing sheet, powder coating method, brush coating, spraying method, dipping method, dipping method, coating method, printing method, etc. Can be surface treated.
  • the PGA ion complex of the present invention may be blended into a polymer resin by master batch blending, dry blending, or compounding.
  • the type of the polymer resin is not particularly limited, and can be freely selected according to the use of the resin composition.
  • resins that can be used include, for example, vinyl chloride polymers, urethane polymers, acrylic polymers, olefin polymers, ethylene polymers, propylene polymers, amide polymers, ethylene-vinyl acetate copolymers, chlorides.
  • Examples include vinylidene polymers, styrene polymers, ester polymers, nylon polymers, cellulose derivatives, carbonate polymers, fluorine resins, silicone resins, vinyl alcohol polymers, vinyl ester polymers, synthetic rubbers, natural rubbers, etc. .
  • a plasticizer, a filler, a colorant (dye, pigment, etc.), an ultraviolet absorber and the like may be appropriately blended as necessary.
  • the algae inhibitor of the present invention includes a bathtub, a pool, a sauna, a jacuzzi, a shower, a humidifier, an aquarium fish tank, a greenhouse, an indoor plant factory and other indoor equipment such as a residence, a hospital, and a public facility, a cooling tower, stored water, When applied to outdoor facilities such as fountains and farms, algae can be suppressed and generation of Legionella can be prevented.
  • the obtained water-insoluble material was collected by filtration and then washed 3 times with 30 mL of purified water. It vacuum-dried and PGAIC (3g) was collect
  • the obtained water-insoluble material was collected by filtration and then washed twice with 30 mL of purified water. It vacuum-dried and collect
  • the obtained water-insoluble material was collected by filtration and then washed twice with 30 mL of purified water. It vacuum-dried and PGAIC (3g) was collect
  • Example 1 PGAIC dissolution test
  • the PGAIC (1 wt%) produced in Production Example 1 was put in water and stirred at 600 rpm with a magnetic stirrer at 40-60 ° C and pH 7 for one week.
  • the dissolution test of PGAIC in water was performed.
  • the PGAIC dissolution test was evaluated by measuring the 1 H-NMR spectrum of the supernatant. As shown in Table 1, PGAIC and degradation products were not observed under the conditions of 40 to 60 ° C., and no elution of PGAIC was observed under any of the conditions.
  • the evaluation criteria are as follows. -: Not detected. +: Detection.
  • Example 2 Algae suppression test of PGAIC Ethanol: water mixed solutions (5: 5) containing 0.01 and 0.10% of PGAIC produced in Production Examples 2 and 3, respectively, were produced. The solution was put into a test tube, stirred, dried, washed with water, and the inner wall was coated. The water of the pond was put in, and after standing at room temperature for 2 weeks under sunlight, the growth of algae on the inner wall surface was visually evaluated. As shown in Table 2, when PGAIC was coated with a solution containing 0.1%, an algae growth inhibitory effect was observed. The evaluation criteria are as follows. -: Not detected. +: Detection.
  • Example 3 Production of PGAIC (L-PGA / CPC) Coating Film PGAIC (20 g) obtained in Production Example 1 was dissolved in ethanol to obtain a 20 wt% solution. The obtained ethanol solution was applied onto a PET film with an applicator, and the solvent was dried to prepare a PGAIC coating film having a thickness of 50 ⁇ m.
  • Example 4 Production of PGAIC (L-PGA / BAC) Coating Film A PGAIC coating film was prepared in the same manner as in Example 3 except that the PGAIC (L-PGA / BAC) obtained in Production Example 3 was used. Manufactured.
  • Example 5 Production of PGAIC (L-PGA / LPC) Coating Film A PGAIC coating film was prepared in the same manner as in Example 3 except that the PGAIC (L-PGA / LPC) obtained in Production Example 4 was used. Manufactured.
  • Example 6 Production of PGAIC (L-PGA / BTC) Coating Film A PGAIC coating film was prepared in the same manner as in Example 3 except that the PGAIC (L-PGA / BTC) obtained in Production Example 5 was used. Manufactured.
  • Example 7 Antibacterial test against Legionella
  • the antibacterial test was conducted according to JIS L1902.
  • the PGAIC coating films obtained in Examples 3 to 6 were cut into 1 cm squares and used as test pieces, and an untreated PET film was used as a control test piece.
  • the test piece After applying Legionella pneumophila GIFU 9143 to a B-CYE ⁇ agar medium at a bacterial concentration of 1.6 ⁇ 10 7 / mL, the test piece is allowed to stand and cultured at 37 ° C. for 7 days.
  • the presence or absence of formation of a halo (proliferation prevention zone) against Legionella was determined.
  • the PET film coated with PGAIC was confirmed to be halo against Legionella.
  • the evaluation criteria are as follows. The parenthesis indicates the halo width. -: Do not accept halo +: Accept halo
  • Example 8 Production of Vinyl Chloride Plate Coated with PGAIC (L-PGA / CPC)
  • the PGAIC (L-PGA / CPC) produced in Production Example 1 was dissolved in ethanol, and 0.01 wt% and 0. 10 wt% and 1.00 wt% solutions were prepared.
  • a vinyl chloride test piece cut into 5 cm ⁇ 5 cm was immersed in each solution for 5 minutes at room temperature, then taken out and air-dried at room temperature for 24 hours.
  • Example 9 Production of SUS plate coated with PGAIC (L-PGA / CPC) A SUS304 test piece was used in the same manner as in Example 8 except that a SUS304 test piece was used instead of the vinyl chloride test piece.
  • Example 10 Production of vinyl chloride plate coated with PGAIC (L-PGA / BAC) Instead of PGAIC (L-PGA / CPC) produced in Production Example 1, PGAIC (L-PGA) produced in Production Example 3 was used. / BAC) was used in the same manner as in Example 8.
  • Example 11 Production of vinyl chloride plate coated with PGAIC (L-PGA / BAC) Example 8 except that the PGAIC (L-PGA / BAC) produced in Example 3 and a test piece made of SUS304 were used. It produced similarly.
  • Example 12 Field test in drainage channel Using each test piece (made of vinyl chloride, made of SUS304) manufactured in Examples 8 to 11, the algal inhibition effect after being immersed in the drainage yard for 2 months was evaluated. did. In this test, the water temperature in the drainage yard: 20 to 31 ° C., air temperature: 20 to 36 ° C., pH: 7.4 to 7.6, BOD: 2.1 to 8.5 ppm, COD: 4.0 to 9.8 ppm The experiment was carried out under water under sunlight. Evaluation of the test piece after the field test was carried out by determining the presence or absence of algae, the amount of deposits, and the amount of biofilm by visual inspection.
  • the algae inhibitor of the present invention includes a bathtub, a pool, a sauna, a jacuzzi, a shower, a humidifier, an aquarium fish tank, a greenhouse, an indoor plant factory and other indoor equipment such as a residence, a hospital, and a public facility, a cooling tower, stored water,
  • algae control is required in outdoor facilities such as fountains and farms, it can be used for excellent algal growth suppression and Legionella growth control.

Abstract

[Problem] To provide an algae inhibitor which is highly safe, and which can be broadly utilized in life-science fields requiring algae-inhibiting properties in water-based equipment such as cooling towers and circulation-type baths. [Solution] The present invention provides an algae inhibitor including a PGA ion complex formed from poly-γ-glutamic acid and a cationic bactericide. Also provided is a method in which the algae inhibitor is used to inhibit algae in a bathroom facility, a pool, a humidifier, a water tank, a plastic greenhouse, an indoor plant-cultivation facility, a cooling tower, a water storage tank, a fountain facility, or an aquaculture facility.

Description

イオンコンプレックスを含有する藻類抑制剤Algae inhibitor containing ion complex
 本発明は、ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されるイオンコンプレックスを含有する藻類抑制剤を提供する。 The present invention provides an algal inhibitor containing an ion complex formed from poly-γ-glutamic acid and a cationic fungicide.
 近年、環境衛生を維持する目的として、抗菌、抗真菌性を付与した一般生活資材の高性能化が求められている。屋外、屋内に係わらず、水場等の湿気が高い場所では、細菌、真菌類が繁殖しやすく、間接的に接触する機会が多い。特に、飲料水、浴湯を利用する場合、病原性菌により、食中毒、伝染病をもたらす危険性がある。レジオネラ菌は、水温20℃以上の人工環境水に生息するアメーバに寄生、或いは、藻類と共生して増殖する細菌であり、エアロゾルと共にヒトの呼吸器系に侵入し、レジオネラ肺炎およびポンティアック熱の原因となることが知られている。レジオネラ菌は、藻とアメーバが形成するバイオフィルム(菌膜)中で生息するため、浴槽、空調用クーリングタワー冷却水、噴水、加湿器等の場所で発生しやすい。このため、公共施設によっては、厚生労働省指針により、レジオネラ菌の発生を防止するため、藻類、バイオフィルムが形成されないよう、定期的に清掃が実施され、レジオネラ症防止対策が講じられている。従来、バイオフィルム、藻類を除去する方法としては、次亜塩素酸、過酸化水素、過酢酸による化学的消毒法、オゾン、UVによる消毒法、ブラッシング、換水のような物理的な清掃法が行われており、定期的な清掃とメンテナンスが実施されている。上記の化学的消毒法では、藻類、バイオフィルムを酸化的に分解し、除去する点で優れるものの、基材に対する腐食性が高く、設備の老朽化を促進するという問題がある。また、オゾン、UVによる消毒方法は、高価な設備コストを費やす必要がある。 In recent years, in order to maintain environmental hygiene, there has been a demand for higher performance of general life materials that are given antibacterial and antifungal properties. Regardless of whether it is outdoors or indoors, in places with high humidity such as water fields, bacteria and fungi are easy to propagate and there are many opportunities for indirect contact. In particular, when drinking water or bath water is used, there is a risk of causing food poisoning and infectious diseases due to pathogenic bacteria. Legionella is a bacterium that infests amoeba inhabiting artificial water with a water temperature of 20 ° C or higher, or grows together with algae and invades the human respiratory system together with aerosols, causing Legionella pneumonia and Pontiac fever It is known that Legionella bacteria tend to be generated in places such as bathtubs, cooling tower cooling water, fountains, humidifiers, etc., because they live in biofilms formed by algae and amoeba. For this reason, according to the guidelines of the Ministry of Health, Labor and Welfare, some public facilities are regularly cleaned to prevent the formation of algae and biofilms in order to prevent the generation of Legionella bacteria, and measures to prevent Legionella disease are taken. Conventional methods of removing biofilms and algae include chemical cleaning methods such as hypochlorous acid, hydrogen peroxide and peracetic acid, ozone and UV disinfection methods, brushing, and water cleaning methods. Regular cleaning and maintenance are carried out. Although the above-mentioned chemical disinfection method is excellent in that algae and biofilm are oxidatively decomposed and removed, there is a problem that the corrosiveness to the base material is high and the aging of the equipment is promoted. In addition, the disinfection method using ozone and UV requires expensive equipment costs.
 上記以外の、腐食性が低い化学的消毒剤としては、塩化ベンザルコニウム、ポリヘキサメチレンビグアニジン塩酸塩等の窒素系抗菌剤、硫黄系抗菌剤等の合成抗菌剤が使用されている。バイオフィルム、藻類は、水系設備の設備基材、内壁、配管表面に付着しやすい。このため、これら抗菌剤を含む薬剤を循環して消毒処置を施しても、抗菌成分が水に溶出してしまい、一時的な効果しか得られないという課題がある。 Other than the above, chemical antiseptics with low corrosive properties include nitrogen antibacterial agents such as benzalkonium chloride and polyhexamethylene biguanidine hydrochloride, and synthetic antibacterial agents such as sulfur antibacterial agents. Biofilms and algae tend to adhere to equipment bases, inner walls, and piping surfaces of water-based equipment. For this reason, even if it disinfects by circulating the chemical | medical agent containing these antibacterial agents, an antimicrobial component will elute in water and there exists a subject that only a temporary effect is acquired.
 特許文献1では、イソチアゾリン系化合物とカチオン系ポリマーを含有する藻類抑制剤が記載されている。本発明によれば、水系水に、当該藻類抑制剤を添加することで、イソチアゾリン系化合物とカチオン系ポリマーが相乗して効果的に藻の発生等を抑制することが記されている。特許文献2では、イソウロン及び3-(3,4-ジクロロフェニル)-1,1-ジメチルウレアを組み合わせた防藻剤が溶出性の低い塗料用防藻剤として記載されている。 Patent Document 1 describes an algal inhibitor containing an isothiazoline compound and a cationic polymer. According to the present invention, it is described that by adding the algal inhibitor to aqueous water, the isothiazoline compound and the cationic polymer synergistically suppress the generation of algae and the like effectively. In Patent Document 2, an algal control agent in which isouron and 3- (3,4-dichlorophenyl) -1,1-dimethylurea are combined is described as an anti-algae agent for paint having a low elution property.
 上記記載の発明は、窒素系抗菌剤と合成ポリマーを組み合わせた藻類抑制剤であり、持続性の高い剤として期待される。しかし、水系設備でこれらの抗菌剤を使用した場合、河川への漏洩、残留毒性が懸念され、特に、飲料用、浴槽用等の人体へ間接的に接触する設備での使用を鑑みた場合、低環境負荷、低毒性の剤が求められる。 The invention described above is an algal inhibitor combining a nitrogen-based antibacterial agent and a synthetic polymer, and is expected as a highly sustainable agent. However, when these antibacterial agents are used in water-based facilities, there are concerns about leakage into rivers and residual toxicity, especially when considering use in facilities that are indirectly in contact with the human body, such as for beverages and bathtubs, Low environmental impact and low toxicity agents are required.
 かかる現状を鑑みると、藻類抑制剤としては、藻類、バイオフィルムを効果的に抑制し、且つ、低環境負荷と安全性を兼ね備えた素材が求められる。 In view of the current situation, as an algae inhibitor, a material that effectively suppresses algae and biofilms and has both low environmental load and safety is required.
特開2013-14619号公報JP 2013-14619 A 特開2011-68608号公報JP 2011-68608 A
 前記背景技術に鑑み、藻類抑制剤として人体への安全性、低環境負荷、基材接着性と抗菌性を備えた素材が望まれる。 In view of the above-mentioned background art, a material having safety to human body, low environmental load, adhesion to base material and antibacterial property is desired as an algal inhibitor.
 本発明者は、上記課題を解決するために鋭意研究を重ね、ポリ-γ-グルタミン酸のイオンコンプレックス(以下、「PGAイオンコンプレックス」もしくは単に「PGAIC」と言う。)を水系設備での藻類、バイオフィルム抑制剤として適用することに着目し、本発明に至った。即ち、代表的な発明は以下の通りである。 The present inventor has intensively studied to solve the above-mentioned problems, and an ion complex of poly-γ-glutamic acid (hereinafter referred to as “PGA ion complex” or simply “PGAIC”) is used for algae and biotechnology in an aqueous facility. Focusing on application as a film inhibitor, the present invention has been achieved. That is, typical inventions are as follows.
 [1]ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されるPGAイオンコンプレックスを含有することを特徴とする藻類抑制剤。
 [2]カチオン性殺菌剤が第4級アンモニウムである、[1]に記載の藻類抑制剤。
 [3]カチオン性殺菌剤がビグアニド系殺菌剤である、[1]に記載の藻類抑制剤。
 [4]カチオン性殺菌剤が、セチルピリジニウム、ベンゼトニウム、クロルヘキシジン、ベンザルコニウム、ラウリルピリジニウムおよびクロルヘキシジンからなる群より選択される1種以上である、[1]に記載の藻類抑制剤。
 [5]前記PGAイオンコンプレックス並びにアルコール及び/又は炭化水素を含む溶液からなる、[1]~[4]のいずれかに記載の藻類抑制剤。
 [6]前記アルコールがエタノール、メタノール、イソプロパノールからなる群より選択される1種以上である、[5]記載の藻類抑制剤。
 [7]前記PGAイオンコンプレックスが溶液に0.1~20wt%含有される、[5]又は[6]に記載の藻類抑制剤。
 [8]ポリ-γ-グルタミン酸を構成するグルタミン酸のうち、L-グルタミン酸の占める割合が90%以上である、[1]~[7]のいずれかに記載の藻類抑制剤。
 [9]ポリ-γ-グルタミン酸を構成するグルタミン酸がL-グルタミン酸からなる、[1]~[8]のいずれかに記載の藻類抑制剤。
 [10] [1]~[9]に記載の藻類抑制剤が内面に塗布された導水管、送水管、配水管若しくは給水管である水道管。
 [11] [1]~[9]に記載の藻類抑制剤が内面に塗布された通水パイプ。
 [12] [1]~[9]に記載の藻類抑制剤を含有する水処理用フィルター。
 [13] [1]~[9]に記載の藻類抑制剤を用いて防藻処理された樹脂発泡体、吸水性ポリマー若しくは不織布からなる吸水性シート。
 [14] [1]~[9]に記載の藻類抑制剤を用いて浴室設備、プール、加湿器、水槽、ビニールハウス、室内植物栽培設備、クーリングタワー、貯蔵水タンク、噴水設備若しくは養殖場設備の藻類を抑制する方法。
 [15] [1]~[9]に記載の藻類抑制剤を用いて浴槽設備、プール、加湿器、水槽、ビニールハウス、室内植物栽培設備、クーリングタワー、貯蔵水タンク、噴水設備若しくは養殖場設備におけるレジオネラ菌の発生を抑制する方法。
[1] An algal inhibitor comprising a PGA ion complex formed from poly-γ-glutamic acid and a cationic fungicide.
[2] The algal inhibitor according to [1], wherein the cationic bactericidal agent is quaternary ammonium.
[3] The algal inhibitor according to [1], wherein the cationic fungicide is a biguanide fungicide.
[4] The algal inhibitor according to [1], wherein the cationic fungicide is at least one selected from the group consisting of cetylpyridinium, benzethonium, chlorhexidine, benzalkonium, laurylpyridinium, and chlorhexidine.
[5] The algae inhibitor according to any one of [1] to [4], which comprises a solution containing the PGA ion complex and alcohol and / or hydrocarbon.
[6] The algal inhibitor according to [5], wherein the alcohol is one or more selected from the group consisting of ethanol, methanol, and isopropanol.
[7] The algae inhibitor according to [5] or [6], wherein the PGA ion complex is contained in the solution in an amount of 0.1 to 20 wt%.
[8] The algae inhibitor according to any one of [1] to [7], wherein L-glutamic acid accounts for 90% or more of glutamic acid constituting poly-γ-glutamic acid.
[9] The algal inhibitor according to any one of [1] to [8], wherein the glutamic acid constituting the poly-γ-glutamic acid is L-glutamic acid.
[10] A water pipe that is a water conduit, a water pipe, a water pipe, or a water pipe coated with the algal inhibitor according to any one of [1] to [9] on its inner surface.
[11] A water pipe having the algae inhibitor described in [1] to [9] coated on the inner surface.
[12] A water treatment filter containing the algal inhibitor according to any one of [1] to [9].
[13] A water-absorbent sheet comprising a resin foam, a water-absorbing polymer, or a nonwoven fabric, which has been subjected to an alga-proof treatment using the algal inhibitor according to [1] to [9].
[14] Bathroom facilities, pools, humidifiers, water tanks, greenhouses, indoor plant cultivation facilities, cooling towers, storage water tanks, fountain facilities, or farm facilities using the algae inhibitor described in [1] to [9] A method for controlling algae.
[15] In a bathtub facility, a pool, a humidifier, a water tank, a greenhouse, an indoor plant cultivation facility, a cooling tower, a storage water tank, a fountain facility or a farm facility using the algal inhibitor according to [1] to [9] A method for suppressing the generation of Legionella.
 本発明は、ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されたイオンコンプレックスを水系設備へ塗布、又は基材へ配合加工することで、藻類の効果的な抑制を可能とする。本発明のPGAイオンコンプレックスは、ポリ-γ-グルタミン酸由来の接着性、生分解性に、藻類発生抑制性を付与した素材であり、水不溶性を示すことから、水中にありながらも基材に対する接着性が高く、防藻成分の流失性を抑えることで、藻類抑制効果の持続性を示す。したがって、クーリングタワー、循環式浴槽、噴水、加湿器等の水系設備で、藻類及び微生物の繁殖を持続的に抑制することができる。更なる効果として、清掃のメンテナンスを省力化することや、水道管、通水パイプ、排水ポンプなどの手の届かない場所にあり清掃が困難である設備でも清浄に保つことができる。 The present invention makes it possible to effectively suppress algae by applying an ion complex formed from poly-γ-glutamic acid and a cationic bactericidal agent to an aqueous facility or compounding a base material. The PGA ion complex of the present invention is a material imparted with algae generation inhibitory property to the adhesiveness and biodegradability derived from poly-γ-glutamic acid, and exhibits water insolubility. It has a high ability and suppresses the loss of the algae-preventing component, thereby showing the durability of the algae-inhibiting effect. Therefore, algae and microorganisms can be continuously prevented from growing in water-based facilities such as a cooling tower, a circulating bath, a fountain, and a humidifier. As a further effect, it is possible to save the maintenance of cleaning, and to keep the equipment that is difficult to clean, such as water pipes, water pipes, and drainage pumps, out of reach.
 本発明は、ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されたイオンコンプレックスを含有する藻類抑制剤を提供する。 The present invention provides an algal inhibitor containing an ion complex formed from poly-γ-glutamic acid and a cationic fungicide.
(PGAイオンコンプレックス)
 天然高分子である、ポリ-γ-グルタミン酸(以下、PGAと称することがある)は、グルタミン酸のα-アミノ基とγ-カルボキシル基がアミド結合で形成されたポリアミノ酸である。PGAは納豆の糸引きの主成分として知られるようになったが、微生物が産生する物質であるため、微生物との親和性が高い上に、接着性、生分解性、生体適合性をも有する。
(PGA ion complex)
Poly-γ-glutamic acid (hereinafter sometimes referred to as PGA), which is a natural polymer, is a polyamino acid in which the α-amino group and γ-carboxyl group of glutamic acid are formed by amide bonds. PGA has come to be known as the main component of natto stringing, but since it is a substance produced by microorganisms, it has high affinity with microorganisms and also has adhesiveness, biodegradability, and biocompatibility .
 PGAの種類は、特に制限されない。例えば、L-グルタミン酸のみからなるもの、D-グルタミン酸のみからなるもの、両方を含むものがあるが、何れも用いることができる。但し、一方の割合がより多い方が立体規則性に優れ、強度なども高くなり、また、よく乾燥すれば融点(約150℃)をも示す様になる。この融点は、イオンコンプレックスとすることで、より明確となる。さらに、L-グルタミン酸からなるものの方が生分解性に優れるので、L-グルタミン酸の含有割合が90%以上であるPGAを用いることが好ましい。 The type of PGA is not particularly limited. For example, there are those consisting only of L-glutamic acid, those consisting only of D-glutamic acid, and those containing both, any of which can be used. However, the higher one ratio is, the better the stereoregularity, the higher the strength, etc., and the better the melting point (about 150 ° C.) when dried. This melting point becomes clearer by using an ion complex. Furthermore, since L-glutamic acid is superior in biodegradability, it is preferable to use PGA having a L-glutamic acid content of 90% or more.
 使用するPGAの分子サイズも特に制限されないが、平均分子量で10kD以上のものが好適である。一般的に、分子サイズが大きいほど皮膚への接着性能が高くなる。一方、分子サイズが過剰に大きなPGAは製造コストが大きく、また、製造が技術的に難しい場合もあるので、通常は1,000kD以下が好ましい。 The molecular size of the PGA used is not particularly limited, but an average molecular weight of 10 kD or more is preferable. In general, the larger the molecular size, the higher the adhesion performance to the skin. On the other hand, PGA having an excessively large molecular size is expensive to produce and may be technically difficult to produce.
 PGAは、市販されているものがあればそれを用いてもよいし、別途製造してもよい。但し、通常の条件でグルタミン酸を重合するとポリ-α-グルタミン酸が得られるので、微生物を使って生合成させることが好ましい。PGAを生産する微生物としては、Bacillus subtilis(納豆菌)、Bacillus subtilis(戦国醤菌)、Bacillus megaterium、Bacillus anthracis、Bacillus halodurans、Natrialba aegyptiaca、Hydraなどがある。分子サイズの大きいPGAを製造できる微生物としては、枯草菌であるBacillus subtilisや超好塩古細菌であるNatrialba aegyptiacaがある。この中でも、L-グルタミン酸のみからなるPGAを生産する微生物であるNatrialba aegytiacaによって生産されたPGAを用いるのが好ましい。 If there is a commercially available PGA, it may be used or manufactured separately. However, since poly-α-glutamic acid is obtained when glutamic acid is polymerized under normal conditions, it is preferably biosynthesized using a microorganism. Examples of microorganisms that produce PGA include Bacillus subtilis (Bacillus natto), Bacillus subtilis (Sengoku soy sauce), Bacillus megaterium, Bacillus anthracis, Bacillus halodurans, and Naturalbaeagae. Examples of microorganisms that can produce PGA with a large molecular size include Bacillus subtilis, which is a Bacillus subtilis, and Naturalba aegyptica, which is a hyperhalophilic archaea. Among these, it is preferable to use PGA produced by Naturalba aegyiaca, which is a microorganism that produces PGA consisting only of L-glutamic acid.
 本発明のPGAイオンコンプレックス(以下、PGAICと称することがある)は、PGAとカウンターカチオンであるカチオン性殺菌剤がイオン結合により結合しており、PGAが水溶性を示すのとは対照的に、PGAイオンコンプレックスは水への不溶性を示す。 The PGA ion complex of the present invention (hereinafter sometimes referred to as PGAIC) has a PGA and a cationic bactericide that is a counter cation bound by an ionic bond, and PGA exhibits water solubility, The PGA ion complex is insoluble in water.
 本発明のPGAイオンコンプレックスに含まれるカチオン性殺菌剤は、特に制限されないが、第4級アンモニウム塩およびビグアニド系殺菌剤が好ましく、より好ましいのは第4級アンモニウム塩である。第4級アンモニウム塩としては、例えば、塩化セチルピリジニウム、塩化ラウリルピリジニウム、塩化ベンゼトニウム、塩化ベンザルコニウム、塩化ジステアリルジメチルアンモニウム、塩化ステアリルジメチルベンジルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ラウリルトリメチルアンモニウム等が挙げられる。ビグアニド系殺菌剤としては、塩酸クロルヘキシジン、酢酸クロルヘキシジン、グルコン酸クロルヘキシジン、塩酸アレキシジン、酢酸アレキシジン、グルコン酸アレキシジン等が挙げられる。この中でも、好ましくは塩化セチルピリジニウム、塩化ラウリルピリジニウム、塩化ベンゼトニウム、塩化ベンザルコニウムが挙げられる。これらのカチオン性殺菌剤は1種のみでPGAイオンコンプレックスを形成してもよいし、2種以上を含むPGAイオンコンプレックスにしてもよい。 The cationic fungicide contained in the PGA ion complex of the present invention is not particularly limited, but a quaternary ammonium salt and a biguanide fungicide are preferred, and a quaternary ammonium salt is more preferred. Examples of quaternary ammonium salts include cetylpyridinium chloride, laurylpyridinium chloride, benzethonium chloride, benzalkonium chloride, distearyldimethylammonium chloride, stearyldimethylbenzylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, lauryl chloride. And trimethylammonium. Examples of biguanide fungicides include chlorhexidine hydrochloride, chlorhexidine acetate, chlorhexidine gluconate, alexidine hydrochloride, alexidine acetate, alexidine gluconate and the like. Of these, cetylpyridinium chloride, laurylpyridinium chloride, benzethonium chloride, and benzalkonium chloride are preferable. These cationic fungicides may form a PGA ion complex only by one kind, or may be a PGA ion complex containing two or more kinds.
 本発明に係るPGAイオンコンプレックスとしては、PGAを構成するグルタミン酸とカチオン性殺菌剤とを等モルあるいは任意のモル比で含むものを用いることができるが、過剰な親水性などPGAの有する材料としての欠点を克服するために、カチオン性殺菌剤により十分に改質されているものが好適である。より具体的には、PGAICにおけるカチオン性殺菌剤の割合が、PGAを構成するグルタミン酸に対して0.5モル倍以上であることが好ましく、0.6モル倍以上であることがより好ましく、0.7モル倍以上であることがさらに好ましい。特に、PGAを構成するグルタミン酸とカチオン性殺菌剤とを等モルまたは略等モル含むものが好適である。ここで、略等モルとは、両者のモル数がほぼ等しいことを意味するが、具体的にはPGAを構成するグルタミン酸に対するカチオン性殺菌剤が0.8モル倍以上、1.2モル倍以下、特に0.9モル倍以上、1.1モル倍以下であることをいうものとする。 As the PGA ion complex according to the present invention, those containing glutamic acid constituting the PGA and the cationic fungicide in an equimolar amount or in an arbitrary molar ratio can be used. In order to overcome the disadvantages, those that are sufficiently modified with a cationic fungicide are preferred. More specifically, the proportion of the cationic bactericidal agent in PGAIC is preferably 0.5 mol times or more, more preferably 0.6 mol times or more with respect to glutamic acid constituting PGA, 0 More preferably, it is 7 mol times or more. In particular, those containing equimolar or substantially equimolar amounts of glutamic acid and cationic fungicide constituting PGA are suitable. Here, “substantially equimolar” means that the number of moles of both is substantially equal. Specifically, the amount of the cationic fungicide for glutamic acid constituting PGA is 0.8 mol times or more and 1.2 mol times or less. In particular, it means 0.9 mole times or more and 1.1 mole times or less.
 本発明のPGAイオンコンプレックスは、溶媒中、PGAと第4級アンモニウム塩もしくはビグアニド系殺菌剤等のカチオン性殺菌剤を混合するのみで、極めて容易に製造できる。 The PGA ion complex of the present invention can be produced very easily only by mixing PGA and a cationic fungicide such as a quaternary ammonium salt or a biguanide fungicide in a solvent.
 ここで使用する溶媒としては、水が好適である。原料であるPGAを良好に溶解できるからであり、また、目的化合物であるPGAイオンコンプレックスは水に対して不溶性であることから、反応後における目的物の単離精製に好都合なためである。但し、カチオン性殺菌剤の水溶性などによっては、反応液に対するそれらの溶解性を高めるために、メタノールやエタノールなどのアルコール;THFなどのエーテル;ジメチルホルムアミドやジメチルアセトアミドなどの水溶性有機溶媒を反応液に添加してもよい。しかし、反応終了後におけるPGAイオンコンプレックスの分離を考慮すれば、溶媒としては水のみを用いることが好ましい。 As the solvent used here, water is suitable. This is because the raw material PGA can be dissolved well and the target compound PGA ion complex is insoluble in water, which is convenient for isolation and purification of the target product after the reaction. However, depending on the water solubility of the cationic disinfectant, in order to increase the solubility in the reaction solution, an alcohol such as methanol or ethanol; an ether such as THF; a water-soluble organic solvent such as dimethylformamide or dimethylacetamide is reacted. It may be added to the liquid. However, considering the separation of the PGA ion complex after completion of the reaction, it is preferable to use only water as the solvent.
 原料であるPGAとしては、その塩を用いてもよい。当該塩としては、ナトリウム塩やカリウム塩などのアルカリ金属塩;カルシウム塩やマグネシウム塩などのアルカリ土類金属塩などを挙げることができる。また、塩を用いる場合であっても全てのカルボキシ基が塩となっている必要はなく、その一部のみが塩となっていてもよい。但し、アルカリ土類金属塩などの多価金属塩は、水に対する溶解性が低い場合があり得るので、好適にはPGAのフリー体またはPGAの一価金属塩を用いる。 The salt may be used as PGA as a raw material. Examples of the salt include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt. Further, even when a salt is used, it is not necessary that all carboxy groups are salts, and only a part thereof may be a salt. However, since polyvalent metal salts such as alkaline earth metal salts may have low solubility in water, a PGA free body or a monovalent metal salt of PGA is preferably used.
 第4級アンモニウム塩もしくはビグアニド系殺菌剤は、通常、ハロゲン化物塩として存在する。よって、本発明においては、反応液へ第4級アンモニウム塩もしくはビグアニド系殺菌剤を直接添加、或いは当該塩を水溶媒に溶解した上で添加すればよい。第四級アンモニウム塩もしくはビグアニド系殺菌剤は、PGAを十分に改質するため、PGAに対して十分量用いることが好ましい。 Quaternary ammonium salts or biguanide fungicides are usually present as halide salts. Therefore, in the present invention, a quaternary ammonium salt or biguanide fungicide may be added directly to the reaction solution, or the salt may be added after dissolving in an aqueous solvent. The quaternary ammonium salt or biguanide fungicide is preferably used in a sufficient amount relative to PGA in order to sufficiently modify PGA.
 本発明のPGAイオンコンプレックスは水不溶性であることから、水溶媒から容易に分離できるため、反応液における各成分の濃度は特に制限されない。例えば、反応液におけるPGAの濃度を0.5w/v%以上、10w/v%以下程度、カチオン性殺菌剤の濃度を1.0w/v%以上、10w/v%以下程度とすることができる。 Since the PGA ion complex of the present invention is insoluble in water and can be easily separated from an aqueous solvent, the concentration of each component in the reaction solution is not particularly limited. For example, the concentration of PGA in the reaction solution can be about 0.5 w / v% or more and about 10 w / v% or less, and the concentration of the cationic bactericidal agent can be about 1.0 w / v% or more and about 10 w / v% or less. .
 反応液は、コンプレックスの形成を促進するために適度に加熱することが好ましい。加熱温度は、例えば40℃以上、80℃以下程度とすることができる。反応時間は適宜調整すればよいが、通常、1時間以上、20時間以下程度とすることができる。 The reaction solution is preferably heated moderately to promote complex formation. The heating temperature can be, for example, about 40 ° C. or higher and 80 ° C. or lower. The reaction time may be adjusted as appropriate, but can usually be about 1 hour or more and 20 hours or less.
 本発明のPGAイオンコンプレックスは水不溶性であることから、濾過や遠心分離などにより水溶媒から容易に分離することができる。また、分離したPGAICは、水で洗浄することにより、過剰に用いたPGAまたはカチオン性殺菌剤、その他の塩を除去することも可能である。また、水溶媒は、アセトンなどで洗浄することにより簡便に除去できる。 Since the PGA ion complex of the present invention is insoluble in water, it can be easily separated from an aqueous solvent by filtration or centrifugation. Further, the separated PGAIC can be washed with water to remove excess PGA, cationic fungicide, and other salts. The aqueous solvent can be easily removed by washing with acetone or the like.
(藻類抑制剤)
 本発明に係るPGAイオンコンプレックスを含有する藻類抑制剤は、優れた藻類抑制効果を示す。その上、少なくともその有効成分であるイオンコンプレックスの主骨格であるポリ-γ-グルタミン酸は生分解性であるので、使用後においても環境に与える負荷が低い。カチオン性抗菌剤は、ポリ-γ-グルタミン酸とイオン結合することで、不溶性となり、水への溶出性が低く、環境負荷が低い。また、PGAイオンコンプレックスは、成形性が高いため、プラスチック、フィルム、繊維、木材、紙、コンクリート、金属、セラミック、ガラスなどを含む各種材料に適用できる藻類抑制剤である。さらに、本発明に係る藻類抑制剤を溶剤に溶解または分散したコーティング剤は、優れた藻類抑制効果を示す。本発明のコーティング剤は、高い防藻効果を有する塗膜や被膜を形成できるものとして、非常に有用である。
(Algae inhibitor)
The algal inhibitor containing the PGA ion complex according to the present invention exhibits an excellent algal inhibitory effect. In addition, since poly-γ-glutamic acid, which is at least the main skeleton of the ion complex, which is an active ingredient, is biodegradable, the burden on the environment is low even after use. Cationic antibacterial agents become insoluble by ion binding with poly-γ-glutamic acid, have low elution into water, and have a low environmental impact. Moreover, since PGA ion complex has high moldability, it is an algal inhibitor that can be applied to various materials including plastic, film, fiber, wood, paper, concrete, metal, ceramic, glass and the like. Furthermore, the coating agent which melt | dissolved or disperse | distributed the algal inhibitor which concerns on this invention in the solvent shows the outstanding algal inhibitory effect. The coating agent of this invention is very useful as what can form the coating film and film which have a high algal control effect.
 ここでいう藻類とは水存在下で生息する光合成を行う生物を指し、本発明は真正細菌であるシアノバクテリアや、紅藻類、緑藻類、珪藻類、渦鞭毛藻類等の単細胞藻類、褐藻類、ユーグレナ藻類等の幅広い藻類に適用することができる。さらに、藻類の発生、増殖を抑制することにより、藻類によるバイオフィルムの形成を抑制することができ、バイオフィルム内で繁殖するレジオネラ菌等の病原性菌の増殖を抑制することができる。 Algae here refers to organisms that perform photosynthesis that live in the presence of water, and the present invention relates to cyanobacteria that are eubacteria, unicellular algae such as red algae, green algae, diatoms, and dinoflagellates, brown algae, Euglena It can be applied to a wide range of algae such as algae. Furthermore, by suppressing the generation and growth of algae, the formation of biofilms by algae can be suppressed, and the growth of pathogenic bacteria such as Legionella that grow in the biofilm can be suppressed.
 本発明に係る藻類抑制剤はとりわけ水系設備に適用されることが好ましく、水による抗菌成分の流出がなく抗菌持続性が高いため、浮遊有機物やバクテリアが付着し、バイオフィルム、藻類が付着する効果を低減することができる。さらに、本発明に係るPGAイオンコンプレックスは、レジオネラ肺炎を引き起こす原因菌であるLegionella pneumophilaをはじめ、グラム陽性およびグラム陰性のいずれの細菌類に対しても優れた静菌効果を発揮する。 The algae inhibitor according to the present invention is particularly preferably applied to water-based equipment, and since antibacterial components do not flow out due to water and antibacterial sustainability is high, floating organic substances and bacteria adhere, and biofilms and algae adhere. Can be reduced. Furthermore, the PGA ion complex according to the present invention exerts an excellent bacteriostatic effect against Legionella pneumophila, which is a causative bacterium that causes Legionella pneumonia, and both gram-positive and gram-negative bacteria.
 本発明の藻類抑制剤を水系設備内で利用する形態としては、配管、パイプ、タンク等の水系設備の製造時に内面に塗膜もしくは被膜を形成させることにより藻類抑制効果を発現させることができる。さらに、配管、パイプ、タンク等の水系設備内にPGAイオンコンプレックスを含有する溶液を循環させ、設備表面にPGAイオンコンプレックスを塗布することが挙げられる。本発明のPGAイオンコンプレックスは接着性を有し、また、PGAイオンコンプレックスは、水に不溶性で水への溶出がなく、上記の通り、防藻性をも示す。本発明のPGAイオンコンプレックスを防藻塗料として用いる場合は、基材などに塗布や噴霧することにより、持続的な防藻性を示す塗膜や被膜を形成することが可能になる。 As a form in which the algal inhibitor of the present invention is used in an aqueous facility, an algal inhibitory effect can be exhibited by forming a coating film or a film on the inner surface during production of an aqueous facility such as a pipe, pipe, or tank. Furthermore, it is possible to circulate a solution containing a PGA ion complex in an aqueous facility such as a pipe, a pipe, or a tank and apply the PGA ion complex on the surface of the facility. The PGA ion complex of the present invention has adhesiveness, and the PGA ion complex is insoluble in water and does not elute into water, and also exhibits anti-algae properties as described above. When the PGA ion complex of the present invention is used as an anti-algae paint, it is possible to form a coating film or a film exhibiting a continuous anti-algae property by applying or spraying on a substrate or the like.
 本発明のPGAイオンコンプレックスは単独で用いることができるし、溶媒に溶解して溶液の形態で使用することもできる。溶媒としては、安全性の観点から、水;エタノール、メタノール、イソプロパノール等のアルコール類;n-ヘキサン等の炭化水素類の溶媒が好ましく、その他、ケトン類、エステル類、脂肪酸類、シリコーン油等の各種の溶媒も使用することができる。これらの溶媒は、1種のみ単独で用いてもよく、2種以上混合して用いてもよい。溶液の場合、溶液中にはPGAイオンコンプレックスが0.1wt%以上含まれていることが好ましく、0.1~20wt%含まれていることが好ましい。0.1wt%より少ないと防藻の効果が十分に発揮されない恐れがある。上限は特に限定されないが、溶媒等に溶解する場合は、当該PGAICは20wt%以下であることが好ましい。 The PGA ion complex of the present invention can be used alone, or can be dissolved in a solvent and used in the form of a solution. As a solvent, from the viewpoint of safety, water; alcohols such as ethanol, methanol and isopropanol; solvents of hydrocarbons such as n-hexane are preferable. In addition, ketones, esters, fatty acids, silicone oils and the like are preferable. Various solvents can also be used. These solvents may be used alone or in combination of two or more. In the case of a solution, the solution preferably contains 0.1 wt% or more of PGA ion complex, and preferably contains 0.1 to 20 wt%. If the amount is less than 0.1 wt%, the effect of preventing algae may not be sufficiently exhibited. Although an upper limit is not specifically limited, When it melt | dissolves in a solvent etc., it is preferable that the said PGAIC is 20 wt% or less.
 本発明のPGAイオンコンプレックスを防藻性塗料として使用する場合、PGAイオンコンプレックスと溶媒の他、適宜、顔料、界面活性剤、架橋剤、その他の塗料用添加物を配合してもよい。本発明の防藻塗料を用いて、工業製品や基材などに防藻処理を施す際には、粉体塗装法、刷け塗り、スプレイ法、ディッピング法、浸漬法、コーティング法、プリント法等の方法で処理を行ってもよく、特に限定されない。この場合、塗布しうる基材として、セラミックス、金属、金属酸化物、プラスチック、ゴム類、鉱石類、木材等を挙げることができる。具体的には、セラミックスの例として、ガラス、陶磁器、セメント、耐火煉瓦、琺瑯等を挙げることができる。金属の例としては、鉄、アルミニウム、亜鉛、マグネシウム、金、銀、クロム、ゲルマニウム、モリブデン、ニッケル、鉛、白金、ケイ素、チタン、トリウム、タングステンのような単体金属や、炭素鋼、ニッケル鋼、クロム鋼、クロムモリブデン鋼、ステンレス鋼、アルミニウム合金、黄銅、青銅等の合金を挙げることができる。金属酸化物の例としては、アルミナ、シリカ、マグネシア、トリア、ジルコニア、三二酸化鉄、四三酸化鉄、酸化チタン、酸化カルシウム、酸化亜鉛、酸化鉛等を挙げることができる。プラスチックの例としては、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリエチレンテレフタレート、ポリビニルアルコール等の汎用プラスチック、ポリアミド、ポリカーボネート、ポリアセタール、ポリフッ化ビニリデン、ポリエーテルサルフォン、ポリアミドイミド等のエンジニアプラスチック、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ポリウレタン等の熱硬化性樹脂等を挙げることができる。鉱石類としては、大理石、花崗岩等を挙げることができる。 In the case of using the PGA ion complex of the present invention as an anti-algae paint, a pigment, a surfactant, a crosslinking agent, and other paint additives may be appropriately blended in addition to the PGA ion complex and the solvent. When applying an algae-proofing treatment to industrial products and substrates using the algae-proofing paint of the present invention, powder coating, brushing, spraying, dipping, dipping, coating, printing, etc. The treatment may be performed by this method, and is not particularly limited. In this case, examples of the base material that can be applied include ceramics, metals, metal oxides, plastics, rubbers, ores, and wood. Specifically, examples of ceramics include glass, ceramics, cement, refractory bricks, and firewood. Examples of metals include simple metals such as iron, aluminum, zinc, magnesium, gold, silver, chromium, germanium, molybdenum, nickel, lead, platinum, silicon, titanium, thorium, tungsten, carbon steel, nickel steel, Examples of the alloy include chromium steel, chromium molybdenum steel, stainless steel, aluminum alloy, brass and bronze. Examples of metal oxides include alumina, silica, magnesia, tria, zirconia, iron sesquioxide, iron tetroxide, titanium oxide, calcium oxide, zinc oxide, lead oxide and the like. Examples of plastics include general purpose plastics such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyvinyl alcohol, engineering plastics such as polyamide, polycarbonate, polyacetal, polyvinylidene fluoride, polyethersulfone, and polyamideimide, and phenolic resins. And thermosetting resins such as epoxy resins, silicone resins, and polyurethanes. Examples of ores include marble and granite.
 本発明のPGAイオンコンプレックスを水系設備の内壁、成型品、配管、フィルター、吸水シートへ加工して使用してもよい。具体的には水系設備としては、水道管として用いられる導水管、送水管、配水管、給水管が挙げられる。さらには、各種通水パイプに用いることができ、例えば給湯器、加湿器、貯水タンク、冷水機、洗濯機、冷却塔、噴水、養殖場、植物工場等、水を通水するパイプに適用することができる。浴室設備等に用いることもでき、浴槽、シャワー、ジャグジー等に処理することもできる。 The PGA ion complex of the present invention may be processed into an inner wall of a water system facility, a molded product, piping, a filter, or a water absorbent sheet. Specifically, examples of the water system facilities include water conduits, water supply pipes, water distribution pipes, and water supply pipes used as water pipes. Furthermore, it can be used for various water pipes, for example, water heaters, humidifiers, water storage tanks, cold water machines, washing machines, cooling towers, fountains, farms, plant factories, etc. be able to. It can also be used for bathroom facilities and the like, and can be processed into a bathtub, shower, jacuzzi, and the like.
 本発明は水処理もしくは液体処理のフィルターに用いることにより、フィルターに発生する藻類を抑制することができる。また、本発明を樹脂発泡体、吸水性ポリマー、若しくは不織布からなる吸水性シートや吸水性繊維に用いることができ、例えば土壌保水剤や育苗ベッド、植物培養設備や水耕栽培において用いられる吸水性シートの藻類発生・増殖抑制に効果を発揮する。 The present invention can suppress algae generated in a filter by using it in a filter for water treatment or liquid treatment. Further, the present invention can be used for water absorbent sheets and water absorbent fibers made of a resin foam, a water absorbent polymer, or a nonwoven fabric. For example, water absorbency used in soil water retention agents, seedling beds, plant culture equipment and hydroponics. Effective in suppressing the generation and growth of algae in the sheet.
 PGAイオンコンプレックスは生分解性を有するポリマーであることから、安全性の高い、低環境負荷の防藻抑制剤として利用できる。加工法としては、前記水系設備やフィルター、吸水性シートに対して、PGAイオンコンプレックス又はPGAイオンコンプレックスを粉体塗装法、刷け塗り、スプレイ法、ディッピング法、浸漬法、コーティング法、プリント法等により表面処理することができる。 Since the PGA ion complex is a biodegradable polymer, it can be used as a highly safe and low environmental load algae control agent. As processing methods, PGA ion complex or PGA ion complex is applied to the water-based equipment, filter, water-absorbing sheet, powder coating method, brush coating, spraying method, dipping method, dipping method, coating method, printing method, etc. Can be surface treated.
 さらに、本発明のPGAイオンコンプレックスをマスターバッチブレンド、ドライブレンド、コンパウンド化により、高分子樹脂へ配合することが挙げられる。本発明のPGAイオンコンプレックスを高分子樹脂等に配合した防藻資材として使用する場合、高分子樹脂の種類には特に制約はなく、樹脂組成物の用途等に応じて自由に選ぶことができる。使用し得る樹脂の具体例としては、例えば、塩化ビニル系ポリマー、ウレタン系ポリマー、アクリル系ポリマー、オレフィン系ポリマー、エチレン系ポリマー、プロピレン系ポリマー、アミド系ポリマー、エチレン-酢酸ビニル共重合体、塩化ビニリデン系ポリマー、スチレン系ポリマー、エステル系ポリマー、ナイロン系ポリマー、セルロース誘導体、カーボネート系ポリマー、フッ素系樹脂、シリコーン系樹脂、ビニルアルコール系ポリマー、ビニルエステル系ポリマー、合成ゴム、天然ゴムなどが挙げられる。樹脂組成物には、必要に応じて、可塑剤、充填剤、着色剤(染料、顔料など)、紫外線吸収剤等を適宜配合してもよい。 Furthermore, the PGA ion complex of the present invention may be blended into a polymer resin by master batch blending, dry blending, or compounding. When the PGA ion complex of the present invention is used as an algal control material blended with a polymer resin or the like, the type of the polymer resin is not particularly limited, and can be freely selected according to the use of the resin composition. Specific examples of resins that can be used include, for example, vinyl chloride polymers, urethane polymers, acrylic polymers, olefin polymers, ethylene polymers, propylene polymers, amide polymers, ethylene-vinyl acetate copolymers, chlorides. Examples include vinylidene polymers, styrene polymers, ester polymers, nylon polymers, cellulose derivatives, carbonate polymers, fluorine resins, silicone resins, vinyl alcohol polymers, vinyl ester polymers, synthetic rubbers, natural rubbers, etc. . In the resin composition, a plasticizer, a filler, a colorant (dye, pigment, etc.), an ultraviolet absorber and the like may be appropriately blended as necessary.
 本発明の藻類抑制剤は、住居、病院、公共施設等における浴槽、プール、サウナ、ジャグジー、シャワー、加湿器、観賞魚用水槽、ビニールハウス、室内植物工場等の屋内設備、クーリングタワー、貯蔵水、噴水、養殖場等の屋外設備に適用すれば、藻類を抑制し、レジオネラ菌の発生を防止することができる。 The algae inhibitor of the present invention includes a bathtub, a pool, a sauna, a jacuzzi, a shower, a humidifier, an aquarium fish tank, a greenhouse, an indoor plant factory and other indoor equipment such as a residence, a hospital, and a public facility, a cooling tower, stored water, When applied to outdoor facilities such as fountains and farms, algae can be suppressed and generation of Legionella can be prevented.
 以下の実施例により、本発明を更に詳細に説明するが、本発明は、これらに何ら限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
(製造例1)PGAIC(IC100)の製造
 超好塩古細菌ナトリアルバ・エジプチアキア(N.aegyptiaca)由来の平均分子量1000kDのポリ-γ-L-グルタミン酸ナトリウム塩(40g)を精製水に溶解し、18w/v%の溶液とした。当該溶液へ60℃に保温した塩化セチルピリジニウム(CPC)の0.2M水溶液(1551g)を加えた。原料であるポリ-γ-L-グルタミン酸ナトリウム塩(本ポリマーの含量90%以上)の水溶液から、CPC添加直後に水不溶性材料が形成されることを確認した後、さらに60℃で4時間保温した。得られた水不溶性材料を濾別回収した後、1000mLの精製水で計3回洗浄した。さらにアセトンで洗浄することにより脱水した後、真空乾燥し、粉末としてPGAIC(93g)を回収した。得られたPGAICのH-NMRの結果から、L-PGAとセチルピリジニウムが100:100のモル比で結合していることが確認された。
(Production Example 1) Production of PGAIC (IC100) Poly-γ-L-glutamic acid sodium salt (40 g) having an average molecular weight of 1000 kD derived from the hyperhalophilic archaeon Natrialva edipitiaca was dissolved in purified water, and 18 w / V% solution. A 0.2M aqueous solution (1551 g) of cetylpyridinium chloride (CPC) kept at 60 ° C. was added to the solution. After confirming that a water-insoluble material was formed immediately after the addition of CPC from an aqueous solution of the raw material poly-γ-L-glutamic acid sodium salt (the content of the polymer is 90% or more), the mixture was further kept at 60 ° C. for 4 hours. . The obtained water-insoluble material was collected by filtration and then washed three times with 1000 mL of purified water. Furthermore, it dehydrated by washing | cleaning with acetone, Then, it vacuum-dried and collect | recovered PGAIC (93g) as a powder. From the result of 1 H-NMR of the obtained PGAIC, it was confirmed that L-PGA and cetylpyridinium were bonded at a molar ratio of 100: 100.
(製造例2)PGAIC(IC60)の製造
 超好塩古細菌ナトリアルバ・エジプチアキア(N.aegyptiaca)由来の平均分子量1000kDのポリ-γ-L-グルタミン酸ナトリウム塩(80g)を精製水に溶解し、2w/v%の溶液とした。当該溶液へ、2.0Mの塩酸(80g)を加え、pH4に調整した後、塩化セチルピリジニウム(CPC)の0.2M水溶液(668g)を加えた。原料であるポリ-γ-L-グルタミン酸ナトリウム塩の水溶液から、CPC添加直後に水不溶性材料が形成されることを確認した後、60℃で4時間攪拌した。得られた水不溶性材料を濾別回収した後、600mLの精製水で計3回洗浄した。洗浄後、湿体の水不溶性材料を真空乾燥し、粉末としてPGAIC(67g)を回収した。得られたPGAICのH-NMRの結果から、L-PGAとセチルピリジニウムが100:60のモル比で結合していることが確認された。
(Production Example 2) Production of PGAIC (IC60) Poly-γ-L-glutamic acid sodium salt (80 g) having an average molecular weight of 1000 kD derived from the hyperhalophilic archaeon Natrialva edipitiaca (80 g) was dissolved in purified water. / V% solution. To the solution, 2.0 M hydrochloric acid (80 g) was added to adjust the pH to 4, and then a 0.2 M aqueous solution (668 g) of cetylpyridinium chloride (CPC) was added. After confirming that a water-insoluble material was formed immediately after CPC addition from an aqueous solution of poly-γ-L-glutamic acid sodium salt as a raw material, the mixture was stirred at 60 ° C. for 4 hours. The obtained water-insoluble material was collected by filtration and then washed three times with 600 mL of purified water. After washing, the wet water-insoluble material was vacuum dried to recover PGAIC (67 g) as a powder. From the result of 1 H-NMR of the obtained PGAIC, it was confirmed that L-PGA and cetylpyridinium were bonded at a molar ratio of 100: 60.
(製造例3) PGAIC(L-PGA/BAC)の製造
 超好塩古細菌ナトリアルバ・エジプチアキア(N.aegyptiaca)由来の平均分子量1000kDのポリ-γ-L-グルタミン酸ナトリウム塩(1g)を精製水に溶解し、2w/v%の溶液とした。当該溶液へ塩化ベンザルコニウム(BAC)の0.3M水溶液(26g)を加えた。原料であるポリ-γ-L-グルタミン酸ナトリウム塩の水溶液から、BAC添加直後に水不溶性材料が形成されることを確認した後、さらに25℃で2時間攪拌した。得られた水不溶性材料を濾別回収した後、30mLの精製水で計3回洗浄した。真空乾燥し、PGAIC(3g)を回収した。得られたPGAICのH-NMRの結果から、L-PGAとベンザルコニウムが100:100のモル比で結合していることが確認された。
(Production Example 3) Production of PGAIC (L-PGA / BAC) Poly-γ-L-glutamic acid sodium salt (1 g) having an average molecular weight of 1000 kD derived from the hyperhalophilic archaeon Natrialva Egyptiacia (1 g) in purified water Dissolved to give a 2 w / v% solution. To the solution was added a 0.3M aqueous solution (26 g) of benzalkonium chloride (BAC). After confirming that a water-insoluble material was formed immediately after the addition of BAC from an aqueous solution of the raw material poly-γ-L-glutamic acid sodium salt, the mixture was further stirred at 25 ° C. for 2 hours. The obtained water-insoluble material was collected by filtration and then washed 3 times with 30 mL of purified water. It vacuum-dried and PGAIC (3g) was collect | recovered. From the result of 1 H-NMR of the obtained PGAIC, it was confirmed that L-PGA and benzalkonium were bound at a molar ratio of 100: 100.
(製造例4) PGAIC(L-PGA/LPC)の製造
 超好塩古細菌ナトリアルバ・エジプチアキア(N.aegyptiaca)由来の平均分子量1000kDのポリ-γ-L-グルタミン酸ナトリウム塩(2g)を精製水に溶解し、18w/v%の溶液とした。当該溶液へ塩化ラウリルピリジニウム(LPC)の0.6M水溶液(28g)を加えた。原料であるポリ-γ-L-グルタミン酸ナトリウム塩の水溶液から、LPC添加直後に水不溶性材料が形成されることを確認した後、さらに25℃で2時間攪拌した。得られた水不溶性材料を濾別回収した後、30mLの精製水で計2回洗浄した。真空乾燥し、PGAIC(4g)を回収した。得られたPGAICのH-NMRの結果から、L-PGAとラウリルピリジニウムが100:100のモル比で結合していることが確認された。
(Production Example 4) Production of PGAIC (L-PGA / LPC) Poly-γ-L-glutamic acid sodium salt (2 g) having an average molecular weight of 1000 kD derived from the hyperhalophilic archaeon Natrialva Ediptiaca is used as purified water. It melt | dissolved and it was set as the solution of 18 w / v%. To the solution was added a 0.6 M aqueous solution (28 g) of laurylpyridinium chloride (LPC). After confirming that a water-insoluble material was formed immediately after LPC addition from an aqueous solution of poly-γ-L-glutamic acid sodium salt as a raw material, the mixture was further stirred at 25 ° C. for 2 hours. The obtained water-insoluble material was collected by filtration and then washed twice with 30 mL of purified water. It vacuum-dried and collect | recovered PGAIC (4g). From the result of 1 H-NMR of the obtained PGAIC, it was confirmed that L-PGA and laurylpyridinium were bonded at a molar ratio of 100: 100.
(製造例5) PGAIC(L-PGA/BTC)の製造
 超好塩古細菌ナトリアルバ・エジプチアキア(N.aegyptiaca)由来の平均分子量1000kDのポリ-γ-L-グルタミン酸ナトリウム塩(1g)を精製水に溶解し、18w/v%の溶液とした。塩化ベンゼトニウム(BTC)の0.2M水溶液(32g)を加えた。原料であるポリ-γ-L-グルタミン酸ナトリウム塩の水溶液から、BTC添加直後に水不溶性材料が形成されることを確認した後、さらに25℃で2時間攪拌した。得られた水不溶性材料を濾別回収した後、30mLの精製水で計2回洗浄した。真空乾燥し、PGAIC(3g)を回収した。得られたPGAICのH-NMRの結果から、L-PGAとベンゼトニウムが100:100のモル比で結合していることが確認された。
(Production Example 5) Production of PGAIC (L-PGA / BTC) Poly-γ-L-glutamic acid sodium salt (1 g) having an average molecular weight of 1000 kD derived from the hyperhalophilic archaeon Natrialva Egyptiacia (1 g) was added to purified water. It melt | dissolved and it was set as the solution of 18 w / v%. A 0.2M aqueous solution of benzethonium chloride (BTC) (32 g) was added. After confirming that a water-insoluble material was formed immediately after addition of BTC from an aqueous solution of poly-γ-L-glutamic acid sodium salt as a raw material, the mixture was further stirred at 25 ° C. for 2 hours. The obtained water-insoluble material was collected by filtration and then washed twice with 30 mL of purified water. It vacuum-dried and PGAIC (3g) was collect | recovered. From the result of 1 H-NMR of the obtained PGAIC, it was confirmed that L-PGA and benzethonium were bound at a molar ratio of 100: 100.
(実施例1)PGAICの溶出試験
 製造例1で製造したPGAIC(1wt%)を水中に入れ、40~60℃、pH7の条件で、一週間、マグネティックスターラーにて、600rpmで攪拌した時の、PGAICの水への溶出試験を行った。PGAICの溶出試験の評価は、上澄み液のH-NMRスペクトルを測定して実施した。表1に示す通り、40~60℃の条件では、PGAIC、分解物は観測されず、いずれの条件もPGAICの溶出は認められなかった。
評価基準は、以下の通りである。
 -:未検出。
 +:検出。
(Example 1) PGAIC dissolution test The PGAIC (1 wt%) produced in Production Example 1 was put in water and stirred at 600 rpm with a magnetic stirrer at 40-60 ° C and pH 7 for one week. The dissolution test of PGAIC in water was performed. The PGAIC dissolution test was evaluated by measuring the 1 H-NMR spectrum of the supernatant. As shown in Table 1, PGAIC and degradation products were not observed under the conditions of 40 to 60 ° C., and no elution of PGAIC was observed under any of the conditions.
The evaluation criteria are as follows.
-: Not detected.
+: Detection.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例2)PGAICの藻類抑制試験
 製造例2、3で製造したPGAICをそれぞれ0.01、0.10%含有するエタノール:水混合溶液(5:5)を作製した。当該溶液を試験管内部に入れ、攪拌後、乾燥、水で洗浄し内壁をコーティングした。池の水を入れ、日照条件下、2週間、室温で放置後、内壁表面の藻の繁殖を目視で評価した。表2に示す通り、PGAICは、0.1%含有する溶液をコートした場合、藻の繁殖抑制効果が認められた。
評価基準は、以下の通りである。
 -:未検出。
 +:検出。
(Example 2) Algae suppression test of PGAIC Ethanol: water mixed solutions (5: 5) containing 0.01 and 0.10% of PGAIC produced in Production Examples 2 and 3, respectively, were produced. The solution was put into a test tube, stirred, dried, washed with water, and the inner wall was coated. The water of the pond was put in, and after standing at room temperature for 2 weeks under sunlight, the growth of algae on the inner wall surface was visually evaluated. As shown in Table 2, when PGAIC was coated with a solution containing 0.1%, an algae growth inhibitory effect was observed.
The evaluation criteria are as follows.
-: Not detected.
+: Detection.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例3) PGAIC(L-PGA/CPC)コーティングフィルムの製造
 製造例1で得られたPGAIC(20g)をエタノールに溶解し、20wt%の溶液とした。得られたエタノール溶液をアプリケータにてPETフィルム上に塗布し、溶剤を乾燥させることで、厚さ50μmのPGAICコーティングフィルムを作製した。
Example 3 Production of PGAIC (L-PGA / CPC) Coating Film PGAIC (20 g) obtained in Production Example 1 was dissolved in ethanol to obtain a 20 wt% solution. The obtained ethanol solution was applied onto a PET film with an applicator, and the solvent was dried to prepare a PGAIC coating film having a thickness of 50 μm.
(実施例4) PGAIC(L-PGA/BAC)コーティングフィルムの製造
 製造例3で得られたPGAIC(L-PGA/BAC)を用いた以外は、上記実施例3と同様にしてPGAICコーティングフィルムを製造した。
Example 4 Production of PGAIC (L-PGA / BAC) Coating Film A PGAIC coating film was prepared in the same manner as in Example 3 except that the PGAIC (L-PGA / BAC) obtained in Production Example 3 was used. Manufactured.
(実施例5) PGAIC(L-PGA/LPC)コーティングフィルムの製造
 製造例4で得られたPGAIC(L-PGA/LPC)を用いた以外は、上記実施例3と同様にしてPGAICコーティングフィルムを製造した。
Example 5 Production of PGAIC (L-PGA / LPC) Coating Film A PGAIC coating film was prepared in the same manner as in Example 3 except that the PGAIC (L-PGA / LPC) obtained in Production Example 4 was used. Manufactured.
(実施例6) PGAIC(L-PGA/BTC)コーティングフィルムの製造
 製造例5で得られたPGAIC(L-PGA/BTC)を用いた以外は、上記実施例3と同様にしてPGAICコーティングフィルムを製造した。
Example 6 Production of PGAIC (L-PGA / BTC) Coating Film A PGAIC coating film was prepared in the same manner as in Example 3 except that the PGAIC (L-PGA / BTC) obtained in Production Example 5 was used. Manufactured.
(実施例7) レジオネラ菌に対する抗菌性試験
 JIS L 1902に従い、抗菌性試験を行った。実施例3~6で得られたPGAICコーティングフィルムを1cm角に切り取り、試験片とし、未処理のPETフィルムを対照の試験片として用いた。レジオネラ菌(Legionella pneumophila GIFU9143)を菌濃度1.6×10/mLにて、B-CYEα寒天培地に塗布した後、試験片を静置し、37℃にて7日間培養し、試験片のレジオネラ菌に対するハロー(増殖防止帯)の形成の有無を判定した。その結果、表3に示す通り、PGAICを塗布したPETフィルムは、レジオネラ菌に対し、ハローが確認された。
 評価基準は、以下の通りである。尚、括弧内は、ハロー幅を示す。
 -:ハローを認めず
 +:ハローを認める
(Example 7) Antibacterial test against Legionella The antibacterial test was conducted according to JIS L1902. The PGAIC coating films obtained in Examples 3 to 6 were cut into 1 cm squares and used as test pieces, and an untreated PET film was used as a control test piece. After applying Legionella pneumophila GIFU 9143 to a B-CYEα agar medium at a bacterial concentration of 1.6 × 10 7 / mL, the test piece is allowed to stand and cultured at 37 ° C. for 7 days. The presence or absence of formation of a halo (proliferation prevention zone) against Legionella was determined. As a result, as shown in Table 3, the PET film coated with PGAIC was confirmed to be halo against Legionella.
The evaluation criteria are as follows. The parenthesis indicates the halo width.
-: Do not accept halo +: Accept halo
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例8) PGAIC(L-PGA/CPC)をコートした塩化ビニル板の作製
 製造例1で製造したPGAIC(L-PGA/CPC)をエタノールに溶解し、それぞれ、0.01wt%、0.10wt%、1.00wt%の溶液を作製した。各溶液に、5cm×5cmに切断した塩化ビニル製テストピースを室温で5分間浸漬した後、取り出し、室温で24時間、風乾した。
Example 8 Production of Vinyl Chloride Plate Coated with PGAIC (L-PGA / CPC) The PGAIC (L-PGA / CPC) produced in Production Example 1 was dissolved in ethanol, and 0.01 wt% and 0. 10 wt% and 1.00 wt% solutions were prepared. A vinyl chloride test piece cut into 5 cm × 5 cm was immersed in each solution for 5 minutes at room temperature, then taken out and air-dried at room temperature for 24 hours.
(実施例9) PGAIC(L-PGA/CPC)をコートしたSUS板の作製
 塩化ビニル製テストピースの代わりに、SUS304製テストピースを使用した以外は、実施例8と同様にして製造した。
(Example 9) Production of SUS plate coated with PGAIC (L-PGA / CPC) A SUS304 test piece was used in the same manner as in Example 8 except that a SUS304 test piece was used instead of the vinyl chloride test piece.
(実施例10) PGAIC(L-PGA/BAC)をコートした塩化ビニル板の作製
 製造例1で製造したPGAIC(L-PGA/CPC)の代わりに、製造例3で製造したPGAIC(L-PGA/BAC)を用いた以外は、実施例8と同様にして作製した。
(Example 10) Production of vinyl chloride plate coated with PGAIC (L-PGA / BAC) Instead of PGAIC (L-PGA / CPC) produced in Production Example 1, PGAIC (L-PGA) produced in Production Example 3 was used. / BAC) was used in the same manner as in Example 8.
(実施例11) PGAIC(L-PGA/BAC)をコートした塩化ビニル板の作製
 実施例3で製造したPGAIC(L-PGA/BAC)、SUS304製テストピースを使用した以外は、実施例8と同様にして作製した。
(Example 11) Production of vinyl chloride plate coated with PGAIC (L-PGA / BAC) Example 8 except that the PGAIC (L-PGA / BAC) produced in Example 3 and a test piece made of SUS304 were used. It produced similarly.
(実施例12) 排水溝内でのフィールドテスト
 実施例8~11で製造した各テストピース(塩化ビニル製、SUS304製)を用いて、排水構内で2ヶ月間浸漬した後の藻類抑制効果を評価した。本試験は、排水構内の水温:20~31℃、気温:20~36℃、pH:7.4~7.6、BOD:2.1~8.5ppm、COD:4.0~9.8ppm、日照下の水中条件で実施した。フィールドテスト後のテストピースの評価は、目視による藻の有無、付着物量、バイオフィルム量を求めて行った。その結果、表4に示す通り、塩化ビニル板では、コントロールよりもPGAICをコートした場合、藻の付着が少ないことを確認した。一方、SUS板では、PGAICをコートしたテストピースには、藻の付着がほとんど見られなかった。
評価基準は、以下の通りである。
 ×:大量の藻の付着が見られる。
 △:少量の藻の付着が見られる。
 ○:藻の付着が僅かに見られる。
 ◎:藻の付着がほとんど見られない。
(Example 12) Field test in drainage channel Using each test piece (made of vinyl chloride, made of SUS304) manufactured in Examples 8 to 11, the algal inhibition effect after being immersed in the drainage yard for 2 months was evaluated. did. In this test, the water temperature in the drainage yard: 20 to 31 ° C., air temperature: 20 to 36 ° C., pH: 7.4 to 7.6, BOD: 2.1 to 8.5 ppm, COD: 4.0 to 9.8 ppm The experiment was carried out under water under sunlight. Evaluation of the test piece after the field test was carried out by determining the presence or absence of algae, the amount of deposits, and the amount of biofilm by visual inspection. As a result, as shown in Table 4, when the PGAIC was coated on the vinyl chloride plate than the control, it was confirmed that the adhesion of algae was small. On the other hand, with the SUS plate, the adhesion of algae was hardly seen on the test piece coated with PGAIC.
The evaluation criteria are as follows.
X: Adherence of a large amount of algae is observed.
Δ: A small amount of algae attached.
○: Slightly attached algae
A: Almost no algae attached.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の藻類抑制剤は、住居、病院、公共施設等における浴槽、プール、サウナ、ジャグジー、シャワー、加湿器、観賞魚用水槽、ビニールハウス、室内植物工場等の屋内設備、クーリングタワー、貯蔵水、噴水、養殖場等の屋外設備において防藻性が要求される分野において、すぐれた藻類増殖抑制、レジオネラ菌繁殖抑制に利用することができる。
 
The algae inhibitor of the present invention includes a bathtub, a pool, a sauna, a jacuzzi, a shower, a humidifier, an aquarium fish tank, a greenhouse, an indoor plant factory and other indoor equipment such as a residence, a hospital, and a public facility, a cooling tower, stored water, In fields where algae control is required in outdoor facilities such as fountains and farms, it can be used for excellent algal growth suppression and Legionella growth control.

Claims (15)

  1.  ポリ-γ-グルタミン酸とカチオン性殺菌剤から形成されるPGAイオンコンプレックスを含有することを特徴とする藻類抑制剤。 An algae inhibitor comprising a PGA ion complex formed from poly-γ-glutamic acid and a cationic fungicide.
  2.  カチオン性殺菌剤が第4級アンモニウムである、請求項1に記載の藻類抑制剤。 The algal inhibitor according to claim 1, wherein the cationic bactericidal agent is quaternary ammonium.
  3.  カチオン性殺菌剤がビグアニド系殺菌剤である、請求項1に記載の藻類抑制剤。 The algal inhibitor according to claim 1, wherein the cationic bactericide is a biguanide bactericide.
  4.  カチオン性殺菌剤が、セチルピリジニウム、ベンゼトニウム、クロルヘキシジン、ベンザルコニウム、ラウリルピリジニウムおよびクロルヘキシジンからなる群より選択される1種以上である、請求項1に記載の藻類抑制剤。 The algal inhibitor according to claim 1, wherein the cationic fungicide is at least one selected from the group consisting of cetylpyridinium, benzethonium, chlorhexidine, benzalkonium, laurylpyridinium, and chlorhexidine.
  5.  前記PGAイオンコンプレックス並びにアルコール及び/又は炭化水素を含む溶液からなる、請求項1~4のいずれか一項に記載の藻類抑制剤。 The algae inhibitor according to any one of claims 1 to 4, comprising a solution containing the PGA ion complex and alcohol and / or hydrocarbon.
  6.  前記アルコールがエタノール、メタノール、イソプロパノールからなる群より選択される1種以上である、請求項5記載の藻類抑制剤。 The algal inhibitor according to claim 5, wherein the alcohol is at least one selected from the group consisting of ethanol, methanol, and isopropanol.
  7.  前記PGAイオンコンプレックスが溶液に0.1~20wt%含有される、請求項5又は6に記載の藻類抑制剤。 The algae inhibitor according to claim 5 or 6, wherein the PGA ion complex is contained in the solution in an amount of 0.1 to 20 wt%.
  8.  ポリ-γ-グルタミン酸を構成するグルタミン酸のうち、L-グルタミン酸の占める割合が90%以上である、請求項1~7のいずれか一項に記載の藻類抑制剤。 The algal inhibitor according to any one of Claims 1 to 7, wherein the proportion of L-glutamic acid in the glutamic acid constituting poly-γ-glutamic acid is 90% or more.
  9.  ポリ-γ-グルタミン酸を構成するグルタミン酸がL-グルタミン酸からなる、請求項1~8のいずれか一項に記載の藻類抑制剤。 The algal inhibitor according to any one of claims 1 to 8, wherein the glutamic acid constituting the poly-γ-glutamic acid comprises L-glutamic acid.
  10.  請求項1~9に記載の藻類抑制剤が内面に塗布された導水管、送水管、配水管若しくは給水管である水道管。 A water pipe which is a water conduit, water pipe, water pipe or water pipe coated with the algal inhibitor according to any one of claims 1 to 9.
  11.  請求項1~9に記載の藻類抑制剤が内面に塗布された通水パイプ。 A water flow pipe coated with the algae inhibitor according to claim 1 on its inner surface.
  12.  請求項1~9に記載の藻類抑制剤を含有する水処理用フィルター。 A water treatment filter containing the algal inhibitor according to any one of claims 1 to 9.
  13.  請求項1~9に記載の藻類抑制剤を用いて防藻処理された樹脂発泡体、吸水性ポリマー若しくは不織布からなる吸水性シート。 A water-absorbent sheet comprising a resin foam, a water-absorbing polymer or a nonwoven fabric which has been subjected to an alga-proof treatment using the algae inhibitor according to claim 1.
  14.  請求項1~9に記載の藻類抑制剤を用いて浴室設備、プール、加湿器、水槽、ビニールハウス、室内植物栽培設備、クーリングタワー、貯蔵水タンク、噴水設備若しくは養殖場設備の藻類を抑制する方法。 A method for suppressing algae in a bathroom facility, a pool, a humidifier, a water tank, a greenhouse, an indoor plant cultivation facility, a cooling tower, a storage water tank, a fountain facility, or a farm facility using the algae inhibitor according to claim 1 .
  15.  請求項1~9に記載の藻類抑制剤を用いて浴槽設備、プール、加湿器、水槽、ビニールハウス、室内植物栽培設備、クーリングタワー、貯蔵水タンク、噴水設備若しくは養殖場設備におけるレジオネラ菌の発生を抑制する方法。
     
    Generation of Legionella in bathtub facilities, pools, humidifiers, aquariums, greenhouses, indoor plant cultivation facilities, cooling towers, storage water tanks, fountain facilities or aquaculture facilities using the algal inhibitor of claims 1-9 How to suppress.
PCT/JP2015/060065 2014-04-08 2015-03-31 Algae inhibitor including ion complex WO2015156164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016512675A JPWO2015156164A1 (en) 2014-04-08 2015-03-31 Algae inhibitor containing ion complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-079141 2014-04-08
JP2014079141 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015156164A1 true WO2015156164A1 (en) 2015-10-15

Family

ID=54287741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060065 WO2015156164A1 (en) 2014-04-08 2015-03-31 Algae inhibitor including ion complex

Country Status (2)

Country Link
JP (1) JPWO2015156164A1 (en)
WO (1) WO2015156164A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178254A (en) * 2017-12-29 2018-06-19 深圳地天国际生物工程科技有限公司 A kind of water purification, removing toxic substances pulvis and its manufacture craft for aquaculture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159607A (en) * 1998-11-27 2000-06-13 Aquas Corp Agent for controlling algae and control of algae
JP2002020206A (en) * 2000-04-13 2002-01-23 Nissan Chem Ind Ltd Antiseptic mildewproofing algicidal agent
JP2002275006A (en) * 2001-03-19 2002-09-25 K I Chemical Industry Co Ltd Bactericidal and algaecidal composition and method for killing bacteria and algae
JP2010222496A (en) * 2009-03-24 2010-10-07 Kochi Univ Pga ion complex
JP2014122203A (en) * 2012-11-21 2014-07-03 Toyobo Co Ltd Antifungal agent and coating agent
WO2014126099A1 (en) * 2013-02-12 2014-08-21 東洋紡株式会社 Virus-inactivating agent
WO2015001997A1 (en) * 2013-07-05 2015-01-08 東洋紡株式会社 Hygiene product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000159607A (en) * 1998-11-27 2000-06-13 Aquas Corp Agent for controlling algae and control of algae
JP2002020206A (en) * 2000-04-13 2002-01-23 Nissan Chem Ind Ltd Antiseptic mildewproofing algicidal agent
JP2002275006A (en) * 2001-03-19 2002-09-25 K I Chemical Industry Co Ltd Bactericidal and algaecidal composition and method for killing bacteria and algae
JP2010222496A (en) * 2009-03-24 2010-10-07 Kochi Univ Pga ion complex
JP2014122203A (en) * 2012-11-21 2014-07-03 Toyobo Co Ltd Antifungal agent and coating agent
WO2014126099A1 (en) * 2013-02-12 2014-08-21 東洋紡株式会社 Virus-inactivating agent
WO2015001997A1 (en) * 2013-07-05 2015-01-08 東洋紡株式会社 Hygiene product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKOTO ASHIUCHI: "Stereoselective Biosynthesis and Chemical Reforming of Poly-gamma-Glutamate", REP. GRANT. RES., 2011, pages 1 - 5 *

Also Published As

Publication number Publication date
JPWO2015156164A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP2021138730A (en) Surface disinfectant having residual sterilization characteristics
US20030114342A1 (en) Compositions comprising quaternary ammonium compounds and dendritic polymers with antimicrobial activity
TW201709819A (en) Anti-microbial composition
TW200425835A (en) Polymer emulsions resistant to biodeterioration
JPH11512718A (en) Methods and compositions for inhibiting biofouling using amides
Gizer et al. Biofouling and mitigation methods: A review
JP2011520825A5 (en)
JP2002529482A (en) Disinfectant composition and disinfection method using the same
WO2015156164A1 (en) Algae inhibitor including ion complex
AU2007217968B2 (en) Method of inhibiting the growth of microorganism in aqueous systems using a composition comprising lysozyme
JPH11512720A (en) Methods and compositions for controlling biofouling using polyglycol fatty acid esters
JP5466904B2 (en) Cleaning method for medical equipment
US20220322671A1 (en) Methods to reduce contamination, biofilm and fouling from water systems, surfaces, and products
JP4475920B2 (en) Microbial control agent and microorganism control method
CA2259384C (en) Methods and compositions for controlling biofouling using combinations of an ionene polymer and a salt of dodecylamine
JP4447164B2 (en) Biocontamination control method and composition using aminomethylphosphonic acid
JP6606831B2 (en) Agricultural material manufacturing method
AU2013231824B2 (en) Biocidal compositions and their use in the control of microorganisms in aqueous and water containing systems
JP7207895B2 (en) Biofilm formation inhibitor and method for inhibiting biofilm formation
JP5513776B2 (en) Biofilm remover composition
CN107072201B (en) Biofilm formation inhibitor and/or remover, and biofilm formation inhibiting method and/or removing method
CN108219991A (en) A kind of dirt for cleaning WC pans and the killing effect Allopelagic sterilizing type toilet cleaner to closestool bacterium
JP2004517201A (en) Reactive preparation with antimicrobial polymer
ERDEM et al. Quantitative microbiological analysis of biofilm communities from the surfaces of different cooling tower materials
WO2023250347A1 (en) Methods to reduce contamination, biofilm, and fouling from water systems and surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777165

Country of ref document: EP

Kind code of ref document: A1