WO2015154485A1 - 数据发送反馈、数据发送方法及装置 - Google Patents

数据发送反馈、数据发送方法及装置 Download PDF

Info

Publication number
WO2015154485A1
WO2015154485A1 PCT/CN2014/092304 CN2014092304W WO2015154485A1 WO 2015154485 A1 WO2015154485 A1 WO 2015154485A1 CN 2014092304 W CN2014092304 W CN 2014092304W WO 2015154485 A1 WO2015154485 A1 WO 2015154485A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frame
frame
receiving station
transmission
subchannel
Prior art date
Application number
PCT/CN2014/092304
Other languages
English (en)
French (fr)
Inventor
孙波
吕开颖
李楠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14888620.3A priority Critical patent/EP3179656B1/en
Priority to US15/501,952 priority patent/US10313059B2/en
Publication of WO2015154485A1 publication Critical patent/WO2015154485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission feedback, data transmission method and apparatus.
  • WLAN Wireless Local Area Network
  • IEEE802.11 the Institute of Electrical and Electronics Engineers
  • 802.11a, 802.11b, and 802.11g have been defined.
  • 802.11ah task group mainly develops WLAN network air interface standards using unlicensed bands below 1 GHz band to support new network applications such as smart grid and sensor networks.
  • the WLAN uses Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) to enable multiple sites to share wireless channels.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • the station When a station obtains access to the wireless channel and sends a wireless frame to another station, the other party may be required to feed back an acknowledgment radio frame; and a station successfully receives a radio frame sent to it, and the radio frame requests a reply confirmation.
  • the station sends an acknowledgment radio frame after a fixed interframe interval.
  • the WLAN also supports a virtual carrier detection method, that is, the site maintains a local Network Allocation Vector (NAV).
  • NAV Network Allocation Vector
  • the NAV is decremented over time, and when receiving a radio frame that is not sent to itself, the receiving station updates the local NAV with the value of the DURATION field in the received radio frame.
  • the site needs to check if its local NAV is zero. The site does not need to check the local NAV status only if the station successfully receives a radio frame and needs an acknowledgment frame (ACK).
  • ACK acknowledgment frame
  • the current data transmission feedback scheme can reply to an acknowledgement frame indicating successful reception only after the receiver successfully receives the radio frame.
  • the sender does not successfully receive the acknowledgment frame within the agreed time, it will consider that the previous radio frame transmission failed.
  • This method does not support sending a feedback frame indicating that the failure has occurred, and the sender cannot know the reception status of the radio frame in time.
  • the present invention provides a data transmission feedback, data transmission method and apparatus, at least due to technical problems such as the fact that the receiving station does not transmit the feedback frame when the transmitting frame fails to transmit the feedback frame, and the receiving station cannot know the receiving situation in time. Solve the above technical problems.
  • a data transmission feedback method including: when a radio frame reception fails, a receiving station detects whether a transmission of the radio frame on a designated subchannel in a working channel ends within a predetermined time; After detecting that the transmission ends within a predetermined time, the receiving station transmits a feedback frame to the transmitting station of the radio frame.
  • the receiving station detects whether the transmission of the radio frame on the designated subchannel in the working channel ends within a predetermined time, comprising: the receiving station receiving a physical guiding part of the radio frame from the designated subchannel; Determining, by the receiving station, the physical guiding part to obtain a specified parameter; the receiving station determining, according to the specified parameter, whether transmission of the radio frame on the designated subchannel ends within a predetermined time, and determining the receiving The site is the target receiving site for the radio frame.
  • the predetermined time is an end time of the radio frame transmission determined by the receiving station according to the specified parameter.
  • the specified parameter carries at least one of the following information: first parameter information used to indicate a target receiving station of the radio frame; and second parameter information used to determine a sending duration of the radio frame.
  • the receiving station considers that the radio frame reception fails in one of the following situations: the receiving station successfully decodes a physical guiding part corresponding to the radio frame on any one of the working channels, and Decoding the physical boot portion fails on any one of the subchannels; successfully decoding the physical boot portion corresponding to the radio frame on any subchannel within the working channel, and summing and decoding the bandwidth of all subchannels successfully decoded The obtained bandwidth is inconsistent; the physical boot portion corresponding to the radio frame is successfully decoded on any one of the subchannels in the working channel, and the data portion decoding fails.
  • the feedback frame carries at least one of the following: the radio frame reception failure, the available subchannel or available bandwidth information of the receiving station, and information for determining a retransmission parameter of the sending station.
  • the information for determining a retransmission parameter of the sending station includes at least one of: link adaptation information for assisting radio frame retransmission, radio frame retransmission mode indication, radio frame coding requiring retransmission Block indication information.
  • said radio frame comprises a physical steering portion and a data portion, wherein said physical steering portion is transmitted on one or more subchannels of said radio frame, said data portion being transmitted throughout said working channel.
  • the receiving station detecting whether the transmission of the radio frame on the designated subchannel within the working channel ends within a predetermined time comprises: the receiving station successfully decoding the physical guiding portion of the radio frame on the designated subchannel And detecting a signal strength on the designated subchannel; determining, according to the signal strength, whether the radio frame transmission on the designated subchannel ends.
  • the receiving station sends a feedback frame to the sending station of the radio frame, including: the receiving station transmitting the feedback frame on the designated subchannel whose transmission ends within a predetermined time.
  • the designated subchannel is an independent subchannel
  • the receiving, by the receiving station, sending the feedback frame on the designated subchannel whose transmission ends within a predetermined time comprises: the receiving station succeeding on the independent subchannel Decoding a physical boot portion of the radio frame, and the independent subchannel is in an idle state after a transmission time of the radio frame; the receiving station successfully decoding the physical boot portion after a preset interframe interval
  • the feedback frame is transmitted on one or more independent subchannels.
  • the data portion of the feedback frame transmitted on the plurality of independent subchannels has the same content.
  • the independent subchannel of the physical boot portion corresponding to the successful decoding of the radio frame is determined by:
  • the first parameter information capable of calculating the transmission time of the radio frame and the second parameter information of the target receiving station identification information in the physical guiding portion are successfully decoded.
  • said first parameter information comprises: a payload length of a data portion of said radio frame and a transmission rate indication used to transmit said data portion.
  • the determination is in an idle state after the end of the transmission time of the radio frame in one of the following cases: for the independent subchannel successfully decoding the physical pilot portion, the independent at the end of the transmission time of the radio frame The received signal strength of the subchannel is lower than a preset threshold and maintained for a preset time period; for independently decoding the independent subchannel of the physical guiding portion, the idle time of the independent subchannel is compared with the transmission time of the radio frame, When the difference between the two is within the preset range, the determination is in an idle state.
  • the sending by the receiving station, before sending the feedback frame on the designated subchannel whose transmission ends within a predetermined time, comprises: determining whether the local network allocation vector NAV is zero; wherein, if the determination result is yes, sending The feedback frame, otherwise the feedback frame is not sent.
  • said designated subchannel comprises: a primary channel of said radio frame.
  • a data transmitting method including: a transmitting station transmitting a first radio frame; the transmitting station receiving a feedback frame indicating that the first radio frame is failed to receive; After the frame is fed back, the sending station sends a second radio frame after the preset interframe interval, where the feedback frame is that the receiving station detects the transmission of the first radio frame on a designated subchannel in the working channel. After the end of the predetermined time, the second radio frame is a retransmission frame of the first radio frame.
  • the feedback frame carries at least one of the following: the radio frame reception failure, the available subchannel or available bandwidth information of the receiving station, and information for determining a retransmission parameter of the sending station.
  • the information for determining a retransmission parameter of the sending station includes at least one of: link adaptation information for assisting radio frame retransmission, radio frame retransmission mode indication, radio frame coding requiring retransmission Block indication information.
  • the sending, by the sending station, receiving the feedback frame indicating that the receiving fails includes: sending, by the sending station, the feedback frame on the designated subchannel that ends the transmission within the predetermined time.
  • a data transmission feedback apparatus which is applied to a receiving station of a radio frame, and includes: a detecting module configured to: when the radio frame reception fails, detect that the radio frame is specified in a working channel Whether the transmission on the subchannel ends within a predetermined time; the transmitting module is configured to transmit a feedback frame to the transmitting station of the radio frame upon detecting that the transmission ends within a predetermined time.
  • the sending module is configured to send the feedback frame on the designated subchannel whose transmission ends within a predetermined time.
  • a data transmitting apparatus which is applied to a transmitting station, and includes: a first sending module configured to send a first radio frame; and a receiving module configured to receive the first radio frame Receiving a failed feedback frame; the second sending module is configured to: after receiving the feedback frame, send a second radio frame after the preset interframe interval, wherein the feedback frame is that the receiving station detects the The transmission of the first radio frame on the designated subchannel within the working channel is issued after a predetermined time has elapsed, and the second radio frame is a retransmission frame of the first radio frame.
  • a technical means for transmitting a feedback frame to a transmitting station when a radio frame transmission fails and a specified subchannel transmission ends within a predetermined time in a working channel in which a radio frame is detected is used, and the related art is solved in the wireless
  • the frame fails to send the receiving station will not send the feedback frame, and the sending station cannot know the receiving time in time.
  • Technical problems such as the situation, so that the sending station can obtain the receiving condition of the wireless frame in time, which provides strong support for subsequent data transmission or retransmission.
  • FIG. 1 is a schematic diagram of a sending process of a feedback frame according to the related art
  • FIG. 2 is a flowchart of a data sending feedback method according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of a data transmission feedback apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a data transmitting method according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of a data transmitting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a data transmission feedback system according to a preferred embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a frame transmission principle according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a radio frame in accordance with a preferred embodiment of the present invention.
  • FIG. 2 is a flow chart of a data transmission feedback method according to an embodiment of the present invention. As shown in FIG. 2, the method includes the following processing steps:
  • Step S202 when the radio frame reception fails, the receiving station detects whether the transmission of the radio frame on the designated subchannel in the working channel ends within a predetermined time;
  • Step S204 when it is detected that the transmission ends within a predetermined time, the receiving station sends a feedback frame to the transmitting station of the radio frame.
  • the receiving station can send a feedback frame to the transmitting station when the radio frame transmission fails and the transmission on the designated subchannel within the working channel of the detected radio frame ends within a predetermined time, the base station is fundamentally solved because the radio frame cannot be transmitted. When a failure occurs, the feedback frame is sent to the sending station, so that the sending station can timely receive the reception of the wireless frame.
  • the designated subchannels may be represented as one or more subchannels, or may be represented as one or more independent subchannels using a basic bandwidth.
  • the above designated subchannel may also be the main channel.
  • the receiving station can receive the physical guiding part of the radio frame from the specified subchannel, and the receiving station parses the physical guiding part to obtain the specified parameter.
  • the receiving station determines whether the transmission of the radio frame on the designated subchannel ends within a predetermined time according to the specified parameter, and determines that the receiving station is the target receiving station of the radio frame.
  • the specified parameter carries at least one of the following information, but is not limited thereto:
  • the predetermined time may be an end time of a radio frame transmission determined by the receiving station according to the specified parameters.
  • First parameter information for indicating a target receiving station of the radio frame second parameter information for determining a transmission duration of the radio frame.
  • the determining manner of the second parameter information may include, but is not limited to, parameter information used to calculate the sending duration, or parameter information directly indicating the sending duration.
  • step S102 may be expressed as follows: the receiving station determines, according to the first parameter information, that the receiving station is a target receiving station of a radio frame; and the receiving station determines a sending duration of the radio frame according to the second parameter information; Whether the transmission of the radio frame on the designated subchannel is completed within a predetermined time is determined according to the transmission duration of the radio frame.
  • the receiving station fails to decode the physical guiding portion of the radio frame on any one of the subchannels in the working channel, and decodes on at least one subchannel in the working channel.
  • the physical guiding part of the radio frame is successful, if the physical frame part of the radio frame obtained according to the successful decoding includes the indication that the receiving station is the target receiving station, the receiving station determines the radio frame transmission duration according to the parameter indicated in the physical guiding part, and It is determined whether the transmission of the radio frame on the subchannel ends normally according to the radio frame transmission duration.
  • the receiving station sends a feedback frame to the transmitting station after detecting that the transmission of the radio frame on the at least one subchannel is normally completed.
  • the receiving station considers that the above radio frame transmission fails in one of the following cases:
  • the receiving station successfully decodes the physical guiding portion corresponding to the radio frame on any one of the subchannels in the working channel, and fails to decode the physical guiding portion on any one of the subchannels; (2) arbitrarily within the working channel Successfully decoding the physical guiding part corresponding to the radio frame on the subchannel, and the sum of the bandwidths of all subchannels successfully decoded is inconsistent with the decoded bandwidth; (3) successfully decoding the subchannel on the working channel The physical boot portion of the radio frame, but the data portion decoding failed.
  • the feedback frame carries at least one of the following information: the radio frame reception failure, the available subchannel or available bandwidth information of the receiving station, and information for determining a retransmission parameter of the sending station.
  • the information for determining the retransmission parameter of the sending station includes, but is not limited to, at least one of the following: link adaptation information for assisting radio frame retransmission, radio frame retransmission mode indication, radio frame coding block indication that needs to be retransmitted. information.
  • the specific application may also include, but is not limited to, the data transmission rate expected by the receiving station (ie, the data rate used for retransmission is recommended (the data rate is determined by the Modulation and Coding Scheme (MCS) level). Parameters such as decision code, bandwidth, delay, etc.
  • MCS Modulation and Coding Scheme
  • the transmitting station can then know the reception status of the radio frame and provide support for the optimization of data retransmission.
  • the feedback frame can be utilized.
  • the information bit carries the above information.
  • the radio frame includes a physical guiding portion and a data portion, wherein the physical guiding portion is transmitted on one or more subchannels of the radio frame, and the data portion is transmitted on the entire working channel.
  • Step S202 can be implemented in various manners, for example, by detecting signal strength on an independent subchannel that detects successful decoding of the physical guiding portion corresponding to the radio frame:
  • the receiving station When the receiving station successfully decodes the physical guiding part of the radio frame on the designated subchannel, detecting the signal strength on the designated subchannel; and determining, according to the signal strength, whether the radio frame transmission on the designated subchannel ends.
  • Step S204 can be implemented in multiple manners, for example, by using a dedicated channel, or by transmitting the feedback frame on the specified subchannel whose transmission ends within a predetermined time.
  • the designated subchannel is an independent subchannel
  • the sending of the feedback frame on the designated subchannel whose receiving station ends in a predetermined time may be expressed as follows: the receiving station is in the following process: The physical guiding part of the wireless frame is successfully decoded on the independent subchannel, and the independent subchannel is in an idle state after the transmission time of the radio frame ends; after receiving the preset interframe space, the receiving station successfully decodes one of the physical guiding parts or A feedback frame is transmitted on multiple independent subchannels. For the above feedback frames transmitted on a plurality of independent subchannels, the data portions of all the above feedback frames have the same content.
  • an independent subchannel that successfully decodes the physical guiding portion corresponding to the radio frame may be determined by successfully decoding the first one of the physical guiding portions capable of calculating the transmission time of the radio frame.
  • the parameter information and the second parameter information of the target receiving site identification information Preferably, the first parameter information comprises: a payload length of a data portion of the radio frame and a transmission rate indication used to transmit the data portion.
  • step S204 can send a feedback frame when the transmission channel is idle.
  • the radio frame is idle after the end of the transmission time of the radio frame: for successfully decoding the physical guiding part.
  • Independent subchannel when the transmission time of the radio frame ends, the received signal strength of the independent subchannel is lower than a preset threshold and maintained for a preset time period; for independently decoding the independent subchannel of the physical guiding part, the independent The idle time of the subchannel is compared with the transmission time of the above radio frame, and when the difference between the two is within a preset range, it is determined to be in an idle state, otherwise it is judged to be in a non-idle state.
  • the receiving station may further perform the following process: determining whether the local NAV is zero; wherein, the determination result is yes. In the case of a feedback frame, the feedback frame is not sent.
  • the designated subchannels described above include, but are not limited to, a primary channel of a radio frame.
  • the above feedback frame can be transmitted on the primary channel, for example, when the relevant conditions provided above are met.
  • a data sending and feedback device is further provided, which is applied to a receiving station of a radio frame, and the device is used to implement the foregoing method.
  • the device includes:
  • the detecting module 30 is configured to detect, when the radio frame reception fails, whether the transmission of the radio frame on the designated subchannel in the working channel ends within a predetermined time;
  • the sending module 32 is connected to the detecting module 30, and is configured to send a feedback frame to the transmitting station of the radio frame when detecting that the transmission ends within a predetermined time.
  • the sending module 32 is further configured to transmit the feedback frame on the designated subchannel whose transmission ends within a predetermined time.
  • each of the above modules may be implemented by software or hardware.
  • the detecting module 30 is located in the first processor
  • the sending module 32 is located in the second processing.
  • the detection module 30 and the transmission module 32 are located in the same processor.
  • a data sending method is also provided in the embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step S402 the sending station sends the first radio frame.
  • Step S404 the sending station receives a feedback frame indicating that the first radio frame fails to be received
  • Step S406 after receiving the feedback frame, the sending station sends a second radio frame after the preset interframe interval, where the feedback frame is that the receiving station detects that the first radio frame is transmitted on the designated subchannel in the working channel.
  • the second radio frame is a retransmission frame of the first radio frame.
  • the feedback frame carries at least one of the following information, but is not limited thereto: radio frame reception failure, available subchannel or available bandwidth information of the receiving station, information used to determine retransmission parameters of the transmitting station .
  • the information for determining the retransmission parameter of the sending station may include, but is not limited to, at least one of the following: link adaptation information for assisting radio frame retransmission, radio frame retransmission mode indication, and retransmission required.
  • the radio frame coding block indicates information.
  • the transmitting station transmits the feedback frame on the designated subchannel that ends the transmission within the predetermined time.
  • a data sending apparatus is further provided, which is applied to a sending station. As shown in FIG. 5, the apparatus includes:
  • the first sending module 50 is configured to send the first radio frame.
  • the receiving module 52 is configured to receive a feedback frame indicating that the first radio frame fails to be received
  • the second sending module 54 is configured to: after receiving the feedback frame, send a second radio frame after the preset interframe interval, where the feedback frame is that the receiving station detects that the first radio frame is specified in the working channel.
  • the transmission on the channel is sent after the end of the predetermined time, and the second radio frame is the retransmission frame of the first radio frame.
  • This embodiment is composed of one transmitting station 100 (STA1) and one receiving station 200 (STA2). As shown in Figure 6.
  • the transmitting station 100 and the receiving station 200 support transmission and reception of 8 MHz data.
  • transmitting station 100 transmits a wireless data frame 300 to receiving station 200 over an 8 MHz working channel (400).
  • the above 8 MHz working channel (400) includes four independent subchannels (410, 420, 430, 440) of 2 MHz, and the primary channel is the lowest frequency 2 MHz independent subchannel (410).
  • the above radio frame includes a physical boot portion and a data portion.
  • the physical boot portion is repeatedly transmitted on four 2 MHz independent subchannels (410, 420, 430, 440), but the physical pilot signal has a predefined phase rotation on each adjacent independent subchannel; All 8MHz bandwidth (400) is sent.
  • the receiving station 200 When the receiving station 200 repeatedly transmits the feedback frame on the plurality of subchannels, the content of the data portion of the feedback frame transmitted on each subchannel is the same.
  • the transmitting station 100 and the receiving station 200 have negotiated a data transmission bandwidth of 8 MHz.
  • Receiving station 200 detects that the received signal strength on independent subchannel 410 is greater than a predefined threshold (ie, detecting a rise in signal level at 410) begins to receive and decode signals on separate subchannels (410, 420, 430, and 440) while indicating the channel busy. And, the receiving station 200 successfully receives and decodes the physical boot portion on the independent subchannels (410, 420, and 430), but fails to decode the physical boot portion on the independent subchannel 440.
  • a predefined threshold ie, detecting a rise in signal level at 410
  • the receiving station 200 determines that the receiving station 200 is the target receiving station based on the destination receiving station identification information indicated by the successfully decoded physical guiding portion.
  • the receiving station 200 calculates the actual transmission time of the data portion of the radio frame 300 according to the length of the radio frame data portion indicated by the successfully decoded physical pilot portion and the Modulation and Coding Scheme (MCS) index used.
  • MCS Modulation and Coding Scheme
  • the receiving station 200 sets an internal timer to cut off the time of transmission of the radio frame data portion obtained as described above.
  • the receiving station 200 continues to detect received signal strength on the independent subchannel 410 and the independent subchannel 420.
  • the receiving station 200 checks the received signal strength after the expiration of the above timer to find that the independent subchannel 410 and the independent subchannel 420 are idle.
  • the receiving station 200 repeatedly transmits the feedback frame 500 on the independent subchannel 410 and the independent subchannel 420 after the SIFS interval after the expiration of the above timer.
  • the feedback frame 500 carries information bits indicating that the receiving station 200 failed to receive the radio frame 300 and indicates that the independent subchannel 410 and the independent subchannel 420 are available.
  • Receiving station 200 detects that the received signal strength on 410 is greater than its corresponding predefined threshold, and begins receiving and decoding the signal at 410 while indicating that the primary channel is busy.
  • Receiving station 200 simultaneously detects that the reception levels on the other three independent subchannels (420, 430, and 440) are greater than the corresponding predefined thresholds, then receiving station 200 begins to receive and decode signals on separate subchannels 420, 430, and 440, respectively.
  • the independent subchannels 420, 430, and 440 are indicated to be busy, respectively.
  • the receiving station 200 successfully receives, decodes, and decodes the physical boot portion on the independent subchannels 410, 420, and 440, but fails to decode the physical boot portion on the independent subchannel 430.
  • the receiving station 200 checks the destination receiving station identification information indicated by the successfully decoded physical guiding portion, determines that it matches the own identification information, and determines that the receiving station 200 is the target receiving station.
  • the receiving station 200 finds that the transmission bandwidth of the radio frame 300 is 8 MHz through the successfully decoded physical pilot portion.
  • the receiving station 200 calculates the actual transmission time of the data portion of the radio frame 300 based on the length of the radio frame data portion indicated by the successfully decoded physical pilot portion and the modulation code set index (MCS) used.
  • MCS modulation code set index
  • Receiving station 200 continues to detect received signal strength on separate subchannels 410 and 420.
  • the receiving station 200 detects that the received signal strength on the independent subchannel 410 is below a predefined threshold and remains for a predefined period of time.
  • the receiving station 200 compares the time at which the received signal strength is lower than the predefined threshold on the independent subchannel 410 and the calculated data portion of the 300 data cutoff time, and finds that the difference is within a predefined acceptable window.
  • the receiving station 200 transmits the feedback frame 500 on the independent subchannel 410 after receiving the SIFS interval when the signal strength is lower than the predefined threshold on the independent subchannel 410.
  • the feedback frame 500 carries information bits indicating that the receiving station 200 failed to receive the radio frame 300 and indicates that the subchannel 410 is available.
  • the receiving station 200 detects that the received signal strength on the independent subchannel 410 is greater than its corresponding predefined threshold, begins to receive and decode the signal on the independent subchannel 410, while indicating that the primary channel is busy.
  • Receiving station 200 simultaneously detects that the reception level on independent subchannels 420 and 440 is greater than the corresponding predefined threshold, then receiving station 200 begins receiving and decoding signals on independent subchannel 420, while indicating independent subchannels 420, 430, 440 channels. busy.
  • the receiving station 200 successfully receives and decodes the physical pilot portion on the independent subchannels 410 and 420, and finds that the transmission bandwidth of the radio frame 300 is 8 MHz.
  • the receiving station 200 determines that the destination receiving station identification information indicated by the successfully guided physical guiding portion matches its own identification information, and determines that the receiving station 200 is the target receiving station.
  • the receiving station 200 calculates the actual transmission time of the data portion of the radio frame 300 based on the length of the radio frame data portion indicated by the successfully decoded physical pilot portion and the modulation code set index (MCS) used.
  • MCS modulation code set index
  • the receiving station 200 sets an internal timer to cut off the time of transmission of the radio frame data portion obtained as described above.
  • the receiving station 200 transmits a feedback frame 500 on the subchannel 410 after the SIFS interval after the expiration of the above timer.
  • the feedback frame 500 carries information bits indicating that the receiving station 200 failed to receive the radio frame 300 and indicates that the subchannels 410, 420 are available and the suggested MCS.
  • the receiving station 200 detects that the received signal strength on the independent subchannel 410 is greater than its corresponding predefined threshold, begins to receive and decode the signal on the independent subchannel 410, while indicating that the primary channel is busy.
  • Receiving station 200 simultaneously detects that the reception level on independent subchannels 420 and 440 is greater than the corresponding predefined threshold, then receiving station 200 begins receiving and decoding signals on independent subchannel 420, while indicating independent subchannels 420, 430, 440 channels. busy.
  • the receiving station 200 successfully receives and decodes the physical pilot portion on the independent subchannels 410 and 420, and finds that the transmission bandwidth of the radio frame 300 is 8 MHz.
  • the receiving station 200 determines that the destination receiving station identification information indicated by the successfully guided physical guiding portion matches its own identification information, and determines that the receiving station 200 is the target receiving station.
  • the receiving station 200 calculates the actual transmission time of the data portion of the radio frame 300 based on the length of the radio frame data portion indicated by the successfully decoded physical pilot portion and the modulation code set index (MCS) used.
  • MCS modulation code set index
  • the receiving station 200 sets an internal timer to cut off the time of transmission of the radio frame data portion obtained as described above.
  • the receiving station 200 detects that the channel is idle after the end of the radio frame transmission described above.
  • the receiving site checks the local NAV. If the NAV is zero, the feedback radio frame 500 is transmitted; if the NAV is non-zero, the feedback radio frame 500 is not transmitted and the reception ends.
  • the receiving station may feed back the receiving failure information to the sending station, and may provide feedback information that can be used to optimize the retransmission transmission parameter, thereby improving the retransmission success rate and bandwidth efficiency.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • a technical means for transmitting a feedback frame to a transmitting station when the radio frame transmission fails and the specified subchannel transmission ends within a predetermined time in the working channel of the radio frame is detected is solved.
  • the technical problem that the transmitting station cannot obtain the receiving situation in time due to the fact that the receiving station does not send the feedback frame when the radio frame is transmitted fails, so that the sending station can obtain the receiving condition of the radio frame in time, for subsequent data transmission or heavy
  • the biography provided strong support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据发送反馈、数据发送方法及装置,其中,上述数据发送反馈方法包括:在无线帧接收失败时,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;在检测到所述传输在预定时间内结束后,所述接收站点向所述无线帧的发送站点发送反馈帧。采用上述技术方案,解决了相关技术中,由于在无线帧发送失败时接收站点不会发送反馈帧导致的发送站点无法及时获知接收情况等技术问题,从而可以使发送站点及时获取无线帧的接收情况,为后续数据发送或重传提供了有力支撑。

Description

数据发送反馈、数据发送方法及装置 技术领域
本发明涉及通信领域,尤其是涉及一种数据发送反馈、数据发送方法及装置。
背景技术
目前,在无线网络领域,无线局域网(Wireless Local Area Network,简称为WLAN)快速发展,对WLAN的应用需求日益增长。电气和电子工程师协会工业规范IEEE802.11组中,先后定义了802.11a,802.11b,802.11g等一系列标准最普通的WLAN技术,随后又陆续出现了其他任务组,致力于发展涉及现有802.11技术改进的规范。其中,802.11ah任务组主要制订使用1GHz频段以下免许可频段的WLAN网络空口标准,用于支持智能电网及传感器网络等新的网络应用。
无线局域网的采用带有冲突避免的载波侦听多路访问机制(Carrier Sense Multiple Access with Collision Avoidance,简称为CSMA/CA)使多个站点共享无线信道。当一个站点获得无线信道的访问权限并向另一个站点发送无线帧时,可以要求对方反馈一个确认无线帧;而一个站点在成功接收到一个发给其的无线帧,并且该无线帧要求回复确认无线帧时,该站点会在固定的帧间间隔后发送确认无线帧。
同时,无线局域网还支持虚拟载波检测方法,即站点维护一个本地的网络分配矢量(Network Allocation Vector,简称为NAV)。NAV随时间递减,当接收到一个不是发送给自己的无线帧时,接收站点用所接收到的无线帧中的持续时间(DURATION)域的值更新本地NAV。而当本地NAV不为零时,站点不能竞争信道进行数据传输。站点在发送数据前,都需要检查其本地NAV是否为零。只有当站点成功接收到一个无线帧并且需要反馈确认帧(ACK)时,站点才不需要检查本地NAV状态。
如图1所示,目前的数据发送反馈方案只有当接收方成功接收到无线帧后才可以回复一个指示成功接收的确认帧。当发送方没有在约定时间内成功接收到确认帧时,会认为之前的无线帧发送失败。这种方法不支持发送指示失败的反馈帧,发送方无法及时获知无线帧的接收情况。
针对相关技术中的上述问题,尚无有效地解决方案。
发明内容
针对相关技术中,由于在无线帧发送失败时接收站点不会发送反馈帧导致的发送站点无法及时获知接收情况等技术问题,本发明提供了一种数据发送反馈、数据发送方法及装置,以至少解决上述技术问题。
根据本发明的一个实施例,提供了一种数据发送反馈方法,包括:在无线帧接收失败时,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;在检测到所述传输在预定时间内结束后,所述接收站点向所述无线帧的发送站点发送反馈帧。
优选地,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束,包括:所述接收站点从所述指定子信道上接收所述无线帧的物理引导部分;所述接收站点解析所述物理引导部分,得到指定参数;所述接收站点根据所述指定参数确定所述无线帧在所述指定子信道上的传输是否在预定时间内结束,以及确定所述接收站点为所述无线帧的目标接收站点。
优选地,所述预定时间为所述接收站点根据所述指定参数确定的无线帧传输的结束时间。
优选地,所述指定参数中携带有以下至少之一信息:用于指示所述无线帧的目标接收站点的第一参数信息;用于确定所述无线帧的发送时长的第二参数信息。
优选地,所述接收站点在以下之一情况下认为所述无线帧接收失败:所述接收站点在所述工作信道内的任意一个子信道上成功解码所述无线帧对应的物理引导部分,且在任意一个子信道上解码所述物理引导部分失败;在所述工作信道内的任意子信道上成功解码所述无线帧对应的物理引导部分,且成功解码的所有子信道的带宽之和与解码得到的带宽不一致;在所述工作信道内的任意一个子信道上成功解码所述无线帧对应的物理引导部分,且数据部分解码失败。
优选地,所述反馈帧携带有以下至少之一信息:所述无线帧接收失败、所述接收站点的可用子信道或可用带宽信息、用于确定所述发送站点的重传参数的信息。
优选地,所述用于确定所述发送站点的重传参数的信息包括以下至少之一:协助无线帧重新传输的链路自适应信息、无线帧重传方式指示、需要重传的无线帧编码块指示信息。
优选地,所述无线帧包括物理引导部分和数据部分,其中,所述物理引导部分在所述无线帧的一个或多个子信道上发送,所述数据部分在整个所述工作信道上发送。
优选地,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束包括:所述接收站点在所述指定子信道上成功解码所述无线帧的物理引导部分时,检测所述指定子信道上的信号强度;根据所述信号强度判断所述指定子信道上的无线帧传输是否结束。
优选地,所述接收站点向所述无线帧的发送站点发送反馈帧,包括:所述接收站点在在预定时间内传输结束的所述指定子信道上发送所述反馈帧。
优选地,所述指定子信道为独立子信道,所述接收站点在在预定时间内传输结束的所述指定子信道上发送所述反馈帧包括:所述接收站点在所述独立子信道上成功解码所述无线帧的物理引导部分,并且所述独立子信道在所述无线帧的传输时间结束后处于空闲状态;所述接收站点在预设帧间间隔后,在成功解码所述物理引导部分的一个或多个独立子信道上发送所述反馈帧。
优选地,在多个独立子信道上发送的所述反馈帧的数据部分内容相同。
优选地,通过以下方式确定成功解码所述无线帧对应的物理引导部分的独立子信道:
成功解码所述物理引导部分中能够计算所述无线帧的传输时间的第一参数信息和目标接收站点识别信息的第二参数信息。
优选地,所述第一参数信息包括:所述无线帧的数据部分的负载长度和传输所述数据部分使用的传输速率指示。
优选地,在以下之一情况下确定在所述无线帧的传输时间结束后处于空闲状态:对于成功解码所述物理引导部分的独立子信道,在所述无线帧的传输时间结束时,该独立子信道的接收信号强度低于预设门限并保持预设时间段;对于成功解码所述物理引导部分的独立子信道,将该独立子信道的空闲时间与所述无线帧的传输时间进行比较,在两者差值在预设范围时,判定处于空闲状态。
优选地,所述接收站点在在预定时间内传输结束的所述指定子信道上发送所述反馈帧之前包括:判断本地网络分配矢量NAV是否为零;其中,在判断结果为是的情况下发送所述反馈帧,否则不发送所述反馈帧。
优选地,所述指定子信道包括:所述无线帧的主信道。
根据本发明的又一个实施例,提供了一种数据发送方法,包括:发送站点发送第一无线帧;所述发送站点接收指示所述第一无线帧接收失败的反馈帧;在接收到所述反馈帧后,所述发送站点在预设帧间间隔后发送第二无线帧,其中,所述反馈帧为所述接收站点检测到所述第一无线帧在工作信道内指定子信道上的传输在预定时间内结束后发出,所述第二无线帧为所述第一无线帧的重传帧。
优选地,所述反馈帧携带有以下至少之一信息:所述无线帧接收失败、所述接收站点的可用子信道或可用带宽信息、用于确定所述发送站点的重传参数的信息。
优选地,所述用于确定所述发送站点的重传参数的信息包括以下至少之一:协助无线帧重新传输的链路自适应信息、无线帧重传方式指示、需要重传的无线帧编码块指示信息。
优选地,所述发送站点接收指示接收失败的反馈帧包括:所述发送站点在在所述预定时间内传输结束的所述指定子信道上发送所述反馈帧。
根据本发明的再一个实施例,提供了一种数据发送反馈装置,应用于无线帧的接收站点,包括:检测模块,设置为在无线帧接收失败时,检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;发送模块,设置为在检测到所述传输在预定时间内结束时,向所述无线帧的发送站点发送反馈帧。
优选地,所述发送模块,设置为在预定时间内传输结束的所述指定子信道上发送所述反馈帧。
根据本发明的再一个实施例,提供了一种数据发送装置,应用于发送站点,包括:第一发送模块,设置为发送第一无线帧;接收模块,设置为接收指示所述第一无线帧接收失败的反馈帧;第二发送模块,设置为在接收到所述反馈帧后,在预设帧间间隔后发送第二无线帧,其中,所述反馈帧为所述接收站点检测到所述第一无线帧在工作信道内指定子信道上的传输在预定时间内结束后发出,所述第二无线帧为所述第一无线帧的重传帧。
通过本发明,采用在无线帧发送失败且在检测到无线帧的工作信道内指定子信道传输在预定时间内结束时,向发送站点发送反馈帧的技术手段,解决了相关技术中,由于在无线帧发送失败时接收站点不会发送反馈帧导致的发送站点无法及时获知接收 情况等技术问题,从而可以使发送站点及时获取无线帧的接收情况,为后续数据发送或重传提供了有力支撑。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为根据相关技术的反馈帧的发送流程示意图;
图2为根据本发明实施例的数据发送反馈方法的流程图;
图3为根据本发明实施例的数据发送反馈装置的结构框图;
图4为根据本发明实施例的数据发送方法的流程图;
图5为根据本发明实施例的数据发送装置的结构框图;
图6为根据本发明优选实施例的数据发送反馈系统的架构示意图;
图7为根据本发明优选实施例的独立子信道划分示意图;
图8为根据本发明实施例的帧发送原理示意图;
图9为根据本发明优选实施例的无线帧结构示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图2为根据本发明实施例的数据发送反馈方法的流程图。如图2所示,该方法包括以下处理步骤:
步骤S202,在无线帧接收失败时,接收站点检测无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;
步骤S204,在检测到上述传输在预定时间内结束时,接收站点向无线帧的发送站点发送反馈帧。
由于在无线帧发送失败且检测到无线帧的工作信道内指定子信道上传输在预定时间内结束时,接收站点可以向发送站点发送反馈帧,因此,从根本上解决了由于不能在无线帧发送失败时,向发送站点发送反馈帧而导致的问题,从而使得发送站点可以及时获取无线帧的接收情况。
在一个优选实施例中,上述指定子信道可以为表现为一个或多个子信道,也可以表现为一个或多个使用基本带宽的独立子信道。上述指定子信道也可以为主信道。
步骤S202的实现方式有多种,在一个优选实施方式中,可以通过以下方式实现:接收站点从上述指定子信道上接收上述无线帧的物理引导部分;接收站点解析上述物理引导部分,得到指定参数;接收站点根据上述指定参数确定无线帧在上述指定子信道上的传输是否在预定时间内结束,以及确定接收站点为无线帧的目标接收站点。此时,上述指定参数中携带有以下至少之一信息,但不限于此:
在一个实施例中,上述预定时间可以为接收站点根据指定参数确定的无线帧传输的结束时间。
用于指示无线帧的目标接收站点的第一参数信息;用于确定无线帧的发送时长的第二参数信息。其中,对于后者,即第二参数信息的确定方式可以包括但不限于:用于计算发送时长的参数信息,或者直接指示上述发送时长的参数信息。
基于上述参数信息,步骤S102可以表现为以下形式:接收站点根据上述第一参数信息确定上述接收站点为无线帧的目标接收站点;接收站点根据上述第二参数信息确定无线帧的发送时长;接收站点根据无线帧的发送时长确定无线帧在上述指定子信道上的传输是否在预定时间内结束。
为了更好地理解步骤S202-S204,以下结合一个优选实施过程详细说明:接收站点在工作信道内任意一个子信道上解码无线帧的物理引导部分失败,同时在工作信道内至少一个子信道上解码无线帧的物理引导部分成功时,如果根据成功解码得到的无线帧物理引导部分内包含指示接收站点是目标接收站点时,接收站点根据上述物理引导部分内指示的参数确定计算无线帧发送时长,并根据上述无线帧发送时长判断无线帧在子信道上的传输是否正常结束。接收站点在检测到无线帧在至少一个子信道上的传输正常结束后,向发送站点发送反馈帧。
在本实施例中,接收站点在以下之一情况下认为上述无线帧发送失败:
(1)接收站点在上述工作信道内的任意一个子信道上成功解码无线帧对应的物理引导部分,且在任意一个子信道上解码上述物理引导部分失败;(2)在上述工作信道内的任意子信道上成功解码上述无线帧对应的物理引导部分,且成功解码的所有子信道的带宽之和与解码得到的带宽不一致;(3)在上述工作信道内的任意一个子信道上成功解码所述无线帧对应的物理引导部分,但是数据部分解码失败。
在本实施例中,上述反馈帧携带有以下至少之一信息:上述无线帧接收失败、上述接收站点的可用子信道或可用带宽信息、用于确定上述发送站点的重传参数的信息。其中,用于确定发送站点的重传参数的信息包括但不限于以下至少之一:协助无线帧重新传输的链路自适应信息、无线帧重传方式指示、需要重传的无线帧编码块指示信息。在具体应用时还可以包括但不限于:接收站点所期望的数据传输速率(即建议重传所使用的数据速率(该数据速率是由调制与编码策略(Modulation and Coding Scheme,以下简称MCS)等级决定的)、错误代码、带宽、延时等参数。这样发送站点便可以及时获知无线帧的接收情况以及为进行数据重传的优化提供有力支持。在一个优选实施例中,可以利用反馈帧的信息位携带上述信息。
在本实施例中,无线帧包括物理引导部分和数据部分,其中,物理引导部分在上述无线帧的一个或多个子信道上发送,上述数据部分在整个上述工作信道上发送。
步骤S202的实现方式有多种,例如可以通过在检测到成功解码上述无线帧对应的物理引导部分的独立子信道上检测信号强度来实现:
所述接收站点在指定子信道上成功解码所述无线帧的物理引导部分时,检测指定子信道上的信号强度;根据该信号强度判断指定子信道上的无线帧传输是否结束。
步骤S204的实现方式有多种,例如可以通过一个专用信道发送,也可以在通过以下方式实现:接收站点在预定时间内传输结束的上述指定子信道上发送上述反馈帧。
在本实施例的一个优选实施方式中,上述指定子信道为独立子信道,此时接收站点在预定时间内传输结束的上述指定子信道上发送上述反馈帧可以表现为以下处理过程:接收站点在上述独立子信道上成功解码无线帧的物理引导部分,并且上述独立子信道在无线帧的传输时间结束后处于空闲状态;接收站点在预设帧间间隔后,在成功解码物理引导部分的一个或多个独立子信道上发送反馈帧。对于在多个独立子信道上发送的上述反馈帧,所有上述反馈帧的数据部分内容相同。
在本实施例中,可以通过以下方式确定成功解码上述无线帧对应的物理引导部分的独立子信道:成功解码上述物理引导部分中能够计算上述无线帧的传输时间的第一 参数信息和目标接收站点识别信息的第二参数信息。优选地,第一参数信息包括:无线帧的数据部分的负载长度和传输上述数据部分使用的传输速率指示。
从上述处理过程可以看出,步骤S204可以在发送信道空闲时发送反馈帧,此时可以在以下之一情况下确定在上述无线帧的传输时间结束后处于空闲状态:对于成功解码上述物理引导部分的独立子信道,在上述无线帧的传输时间结束时,该独立子信道的接收信号强度低于预设门限并保持预设时间段;对于成功解码上述物理引导部分的独立子信道,将该独立子信道的空闲时间与上述无线帧的传输时间进行比较,在两者差值在预设范围时,判定处于空闲状态,否则判断处于非空闲状态。
在一个优选实施例中,接收站点在在预定时间内传输结束的所述指定子信道上发送反馈帧之前,还可以执行以下处理过程:判断本地NAV是否为零;其中,在判断结果为是的情况下发送反馈帧,否则不发送反馈帧。
在一个优选实施例中,上述指定子信道包括但不限于无线帧的主信道。例如在满足上面提供的相关条件时,可以在主信道上发送上述反馈帧。
在本实施例中,还提供一种数据发送反馈装置,应用于无线帧的接收站点,该装置用于实现上述方法,如图3所示,该装置包括:
检测模块30,设置为在无线帧接收失败时,检测无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;
发送模块32,连接至检测模块30,设置为在检测到上述传输在预定时间内结束时,向无线帧的发送站点发送反馈帧。
在一个优选实施过程中,发送模块32,还设置为在预定时间内传输结束的上述指定子信道上发送上述反馈帧。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下形式实现,但不限于此:检测模块30位于第一处理器中,发送模块32位于第二处理器中;检测模块30和发送模块32位于同一处理器中。
本发明实施例中还提供了一种数据发送方法,如图4所示,该方法包括:
步骤S402,发送站点发送第一无线帧;
步骤S404,发送站点接收指示第一无线帧接收失败的反馈帧;
步骤S406,在接收到反馈帧后,发送站点在预设帧间间隔后发送第二无线帧,其中,上述反馈帧为接收站点检测到第一无线帧在工作信道内指定子信道上的传输在预定时间内结束后发出,第二无线帧为第一无线帧的重传帧。
在一个优选实施例中,上述反馈帧携带有以下至少之一信息,但不限于此:无线帧接收失败、接收站点的可用子信道或可用带宽信息、用于确定发送站点的重传参数的信息。
其中,对于用于确定所述发送站点的重传参数的信息,可以包括但不限于以下至少之一:协助无线帧重新传输的链路自适应信息、无线帧重传方式指示、需要重传的无线帧编码块指示信息。
在一个优选实施过程中,发送站点在在所述预定时间内传输结束的所述指定子信道上发送所述反馈帧。
在本实施例中,还提供了一种数据发送装置,应用于发送站点,如图5所示该装置包括:
第一发送模块50,设置为发送第一无线帧;
接收模块52,设置为接收指示所述第一无线帧接收失败的反馈帧;
第二发送模块54,设置为在接收到所述反馈帧后,在预设帧间间隔后发送第二无线帧,其中,上述反馈帧为接收站点检测到第一无线帧在工作信道内指定子信道上的传输在预定时间内结束后发出,第二无线帧为第一无线帧的重传帧。
为了更好地理解上述实施例,以下结合优选实施例详细说明。
实施例一
本实施例是由一个发送站点100(STA1),一个接收站点200(STA2)组成。如图6所示。
发送站点100和接收站点200支持8MHz数据的发送和接收。
如图8所示,发送站点100在8MHz工作信道(400)上向接收站点200发送一个无线数据帧300。如图7所示,其中基本带宽为2MHz,上述8MHz工作信道(400)包含4个2MHz的独立子信道(410,420,430,440),主信道是频率最低的2MHz独立子信道(410)。
如图9所示,上述无线帧包含物理引导部分和数据部分。物理引导部分在4个2MHz独立子信道(410,420,430,440)上重复发送,但是物理引导信号在每个相邻的独立子信道上都有一个预定义的相位旋转;其中数据部分在全部8MHz带宽(400)上发送。
接收站点200在多个子信道上重复发送反馈帧时,在每个子信道上发送的反馈帧的数据部分的内容都相同。
发送站点100和接收站点200已经协商数据发送带宽为8MHz。
接收站点200检测到独立子信道410上的接收信号强度大于预定义门限(即检测到在410上信号电平升高)开始在独立子信道(410,420,430和440)上接收并解码信号,同时指示信道忙。并且,接收站点200成功接收、解码独立子信道(410,420和430)上的物理引导部分,但是在独立子信道440上解码物理引导部分失败。
接收站点200根据成功解码的物理引导部分指示的目的接收站点识别信息判定接收站点200为目标接收站点。
接收站点200根据成功解码的物理引导部分指示的无线帧数据部分长度和所使用的调制编码集(Modulation and Coding Scheme,以下简称MCS)索引计算得到无线帧300的数据部分的实际传输时间。
接收站点200设置一个内部定时器为上述计算得到的无线帧数据部分传输的截止时间。
接收站点200继续在独立子信道410和独立子信道420上检测接收信号强度。
接收站点200在上述定时器到期后检查接收信号强度发现独立子信道410和独立子信道420空闲。
接收站点200在上述定时器到期后的SIFS间隔后在独立子信道410和独立子信道420上重复发送反馈帧500。
反馈帧500中携带信息位,指示接收站点200接收无线帧300失败,并且指示独立子信道410和独立子信道420可用。
实施例二
接收站点200检测到410上的接收信号强度大于其对应的预定义门限,开始在410上接收并解码信号,同时指示主信道忙。
接收站点200同时检测到其他3个独立子信道(420,430和440)上的接收水平大于对应的预定义门限,则接收站点200开始分别在独立子信道420、430和440上接收并解码信号,同时分别指示独立子信道420、430和440信道忙。
接收站点200成功接收、解码独立子信道410,420和440上的物理引导部分,但是在独立子信道430上解码物理引导部分失败。
接收站点200检查成功解码的物理引导部分指示的目的接收站点识别信息,确定其与自己的识别信息相符,遂判定接收站点200为目标接收站点。
接收站点200通过成功解码的物理引导部分,发现无线帧300的发送带宽是8MHz。
接收站点200根据成功解码的物理引导部分指示的无线帧数据部分长度和所使用的调制编码集索引(MCS)计算得到无线帧300的数据部分的实际传输时间。
接收站点200继续在独立子信道410和420上检测接收信号强度。
接收站点200检测到独立子信道410上的接收信号强度低于预定义门限并保持一段预定义时间。
接收站点200比较独立子信道410上接收信号强度低于预定义门限的时间和上述计算得到的300的数据部分传输的截止时间,发现其差在一个预定义的可接受窗口内。
接收站点200在独立子信道410上接收信号强度低于预定义门限时的SIFS间隔后,在独立子信道410上发送反馈帧500。
反馈帧500中携带信息位,指示接收站点200接收无线帧300失败,并且指示子信道410可用。
实施例三
接收站点200检测到独立子信道410上的接收信号强度大于其对应的预定义门限,开始在独立子信道410上接收并解码信号,同时指示主信道忙。
接收站点200同时检测到独立子信道420和440上的接收水平大于对应的预定义门限,则接收站点200开始在独立子信道420上接收并解码信号,同时指示独立子信道420、430、440信道忙。
接收站点200成功接收、解码独立子信道410和420上的物理引导部分,并发现无线帧300的发送带宽是8MHz。
接收站点200判定成功解码的物理引导部分指示的目的接收站点识别信息与自己的识别信息相符,遂判定接收站点200为目标接收站点。
接收站点200根据成功解码的物理引导部分指示的无线帧数据部分长度和所使用的调制编码集索引(MCS)计算得到无线帧300的数据部分的实际传输时间。
接收站点200设置一个内部定时器为上述计算得到的无线帧数据部分传输的截止时间。
接收站点200在上述定时器到期后在SIFS间隔后在子信道410上发送反馈帧500。
反馈帧500中携带信息位,指示接收站点200接收无线帧300失败,并且指示子信道410、420可用以及建议的MCS。
实施例四
接收站点200检测到独立子信道410上的接收信号强度大于其对应的预定义门限,开始在独立子信道410上接收并解码信号,同时指示主信道忙。
接收站点200同时检测到独立子信道420和440上的接收水平大于对应的预定义门限,则接收站点200开始在独立子信道420上接收并解码信号,同时指示独立子信道420、430、440信道忙。
接收站点200成功接收、解码独立子信道410和420上的物理引导部分,并发现无线帧300的发送带宽是8MHz。
接收站点200判定成功解码的物理引导部分指示的目的接收站点识别信息与自己的识别信息相符,遂判定接收站点200为目标接收站点。
接收站点200根据成功解码的物理引导部分指示的无线帧数据部分长度和所使用的调制编码集索引(MCS)计算得到无线帧300的数据部分的实际传输时间。
接收站点200设置一个内部定时器为上述计算得到的无线帧数据部分传输的截止时间。
接收站点200在上述无线帧传输结束后检测信道为空闲。
接收站点检查本地NAV。如果NAV为零,则发送反馈无线帧500;如果NAV非零,则不发送反馈无线帧500,接收结束。
综上所述,本发明实施例实现了以下有益效果:
接收站点在接收无线帧失败时,可以向发送站点反馈接收失败信息,并可以提供可用于优化重传传输参数的反馈信息,提高了重传成功率和带宽效率。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,采用在无线帧发送失败且在检测到无线帧的工作信道内指定子信道传输在预定时间内结束时,向发送站点发送反馈帧的技术手段,解决了相关技术中,由于在无线帧发送失败时接收站点不会发送反馈帧导致的发送站点无法及时获知接收情况等技术问题,从而可以使发送站点及时获取无线帧的接收情况,为后续数据发送或重传提供了有力支撑。

Claims (24)

  1. 一种数据发送反馈方法,包括:
    在无线帧接收失败时,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;
    在检测到所述传输在预定时间内结束后,所述接收站点向所述无线帧的发送站点发送反馈帧。
  2. 根据权利要求1所述的方法,其中,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束,包括:
    所述接收站点从所述指定子信道上接收所述无线帧的物理引导部分;
    所述接收站点解析所述物理引导部分,得到指定参数;
    所述接收站点根据所述指定参数确定所述无线帧在所述指定子信道上的传输是否在预定时间内结束,以及确定所述接收站点为所述无线帧的目标接收站点。
  3. 根据权利要求2所述的方法,其中,所述预定时间为所述接收站点根据所述指定参数确定的无线帧传输的结束时间。
  4. 根据权利要求3所述的方法,其中,所述指定参数中携带有以下至少之一信息:
    用于指示所述无线帧的目标接收站点的第一参数信息;用于确定所述无线帧的发送时长的第二参数信息。
  5. 根据权利要求1所述的方法,其中,所述接收站点在以下之一情况下认为所述无线帧接收失败:
    所述接收站点在所述工作信道内的任意一个子信道上成功解码所述无线帧对应的物理引导部分,且在任意一个子信道上解码所述物理引导部分失败;
    在所述工作信道内的任意子信道上成功解码所述无线帧对应的物理引导部分,且成功解码的所有子信道的带宽之和与解码得到的带宽不一致;
    在所述工作信道内的任意一个子信道上成功解码所述无线帧对应的物理引导部分,且数据部分解码失败。
  6. 根据权利要求1所述的方法,其中,所述反馈帧携带有以下至少之一信息:
    所述无线帧接收失败、所述接收站点的可用子信道或可用带宽信息、用于确定所述发送站点的重传参数的信息。
  7. 根据权利要求6所述的方法,其中,所述用于确定所述发送站点的重传参数的信息包括以下至少之一:
    协助无线帧重新传输的链路自适应信息、无线帧重传方式指示、需要重传的无线帧编码块指示信息。
  8. 根据权利要求1所述的方法,其中,所述无线帧包括物理引导部分和数据部分,其中,所述物理引导部分在所述无线帧的一个或多个子信道上发送,所述数据部分在整个所述工作信道上发送。
  9. 根据权利要求1所述的方法,其中,接收站点检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束包括:
    所述接收站点在所述指定子信道上成功解码所述无线帧的物理引导部分时,检测所述指定子信道上的信号强度;
    根据所述信号强度判断所述指定子信道上的无线帧传输是否结束。
  10. 根据权利要求1所述的方法,其中,所述接收站点向所述无线帧的发送站点发送反馈帧,包括:
    所述接收站点在在预定时间内传输结束的所述指定子信道上发送所述反馈帧。
  11. 根据权利要求10所述的方法,其中,所述指定子信道为独立子信道,所述接收站点在在预定时间内传输结束的所述指定子信道上发送所述反馈帧包括:
    所述接收站点在所述独立子信道上成功解码所述无线帧的物理引导部分,并且所述独立子信道在所述无线帧的传输时间结束后处于空闲状态;所述接收站点在预设帧间间隔后,在成功解码所述物理引导部分的一个或多个独立子信道上发送所述反馈帧。
  12. 根据权利要求11所述的方法,其中,在多个独立子信道上发送的所述反馈帧的数据部分内容相同。
  13. 根据权利要求11所述的方法,其中,通过以下方式确定成功解码所述无线帧对应的物理引导部分的独立子信道:
    成功解码所述物理引导部分中能够计算所述无线帧的传输时间的第一参数信息和目标接收站点识别信息的第二参数信息。
  14. 根据权利要求13所述的方法,其中,所述第一参数信息包括:所述无线帧的数据部分的负载长度和传输所述数据部分使用的传输速率指示。
  15. 根据权利要求11所述的方法,其中,在以下之一情况下确定在所述无线帧的传输时间结束后处于空闲状态:
    对于成功解码所述物理引导部分的独立子信道,在所述无线帧的传输时间结束时,该独立子信道的接收信号强度低于预设门限并保持预设时间段;
    对于成功解码所述物理引导部分的独立子信道,将该独立子信道的空闲时间与所述无线帧的传输时间进行比较,在两者差值在预设范围时,判定处于空闲状态。
  16. 根据权利要求1所述的方法,其中,所述接收站点在在预定时间内传输结束的所述指定子信道上发送所述反馈帧之前包括:
    判断本地网络分配矢量NAV是否为零;其中,在判断结果为是的情况下发送所述反馈帧,否则不发送所述反馈帧。
  17. 根据权利要求1至16中任一项所述的方法,其中,所述指定子信道包括:所述无线帧的主信道。
  18. 一种数据发送方法,包括:
    发送站点发送第一无线帧;
    所述发送站点接收指示所述第一无线帧接收失败的反馈帧;
    在接收到所述反馈帧后,所述发送站点在预设帧间间隔后发送第二无线帧,其中,所述反馈帧为所述接收站点检测到所述第一无线帧在工作信道内指定子信道上的传输在预定时间内结束后发出,所述第二无线帧为所述第一无线帧的重传帧。
  19. 根据权利要求18所述的方法,其中,所述反馈帧携带有以下至少之一信息:
    所述无线帧接收失败、所述接收站点的可用子信道或可用带宽信息、用于确定所述发送站点的重传参数的信息。
  20. 根据权利要求18所述的方法,其中,所述用于确定所述发送站点的重传参数的信息包括以下至少之一:
    协助无线帧重新传输的链路自适应信息、无线帧重传方式指示、需要重传的无线帧编码块指示信息。
  21. 根据权利要求18所述的方法,其中,所述发送站点接收指示接收失败的反馈帧包括:
    所述发送站点在在所述预定时间内传输结束的所述指定子信道上发送所述反馈帧。
  22. 一种数据发送反馈装置,应用于无线帧的接收站点,包括:
    检测模块,设置为在无线帧接收失败时,检测所述无线帧在工作信道内指定子信道上的传输是否在预定时间内结束;
    发送模块,设置为在检测到所述传输在预定时间内结束时,向所述无线帧的发送站点发送反馈帧。
  23. 根据权利要求22所述的装置,其中,所述发送模块,设置为在预定时间内传输结束的所述指定子信道上发送所述反馈帧。
  24. 一种数据发送装置,应用于发送站点,包括:
    第一发送模块,设置为发送第一无线帧;
    接收模块,设置为接收指示所述第一无线帧接收失败的反馈帧;
    第二发送模块,设置为在接收到所述反馈帧后,在预设帧间间隔后发送第二无线帧,其中,所述反馈帧为所述接收站点检测到所述第一无线帧在工作信道内指定子信道上的传输在预定时间内结束后发出,所述第二无线帧为所述第一无线帧的重传帧。
PCT/CN2014/092304 2014-08-06 2014-11-26 数据发送反馈、数据发送方法及装置 WO2015154485A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14888620.3A EP3179656B1 (en) 2014-08-06 2014-11-26 Data transmission feedback, data transmission method and device
US15/501,952 US10313059B2 (en) 2014-08-06 2014-11-26 Data sending feedback method and apparatus, and data sending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410385338.3 2014-08-06
CN201410385338.3A CN105337705B (zh) 2014-08-06 2014-08-06 数据发送反馈、数据发送方法及装置

Publications (1)

Publication Number Publication Date
WO2015154485A1 true WO2015154485A1 (zh) 2015-10-15

Family

ID=54287237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092304 WO2015154485A1 (zh) 2014-08-06 2014-11-26 数据发送反馈、数据发送方法及装置

Country Status (4)

Country Link
US (1) US10313059B2 (zh)
EP (1) EP3179656B1 (zh)
CN (1) CN105337705B (zh)
WO (1) WO2015154485A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3162152B1 (en) 2014-06-27 2024-10-09 Samsung Electronics Co., Ltd. Method and device for transmitting data
WO2016009278A2 (en) 2014-06-27 2016-01-21 Techflux, Ltd. Method and device for transmitting data
US20170099664A1 (en) * 2015-10-01 2017-04-06 Nokia Solutions And Networks Oy Method, apparatus and computer program for transmission scheduling
CN110741589B (zh) * 2017-06-20 2022-06-17 瑞典爱立信有限公司 用于在无线通信网络中通信的设备和方法
CN111294858B (zh) * 2019-04-22 2021-08-03 展讯通信(上海)有限公司 数据传输方法及装置
US11109408B2 (en) 2019-08-16 2021-08-31 Techflux, Inc. Method and device for uplink transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662798A (zh) * 2009-09-22 2010-03-03 北京科技大学 无线传感器网络低功耗邀请重传方法及其装置
CN101734265A (zh) * 2009-12-23 2010-06-16 卡斯柯信号有限公司 一种嵌入式车载信号设备状态监视方法及装置
JP2010193039A (ja) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp 通信装置、通信システムおよび通信制御方法
CN102761399A (zh) * 2011-04-27 2012-10-31 中兴通讯股份有限公司 一种信道反馈信息的传输方法和系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7720043B2 (en) * 2002-11-20 2010-05-18 Qualcomm Incorporated Use of idle frames for early transmission of negative acknowledgement of frame receipt
CN1832391A (zh) * 2005-03-11 2006-09-13 松下电器产业株式会社 多天线通信系统中的自适应重传方法和设备
BRPI0605639B1 (pt) 2005-06-09 2019-01-22 Samsung Electronics Co Ltd transmissão de dados
KR100657333B1 (ko) * 2005-08-27 2006-12-14 삼성전자주식회사 무선채널 품질 측정방법 및 그 측정장치
KR100708204B1 (ko) * 2005-11-07 2007-04-16 삼성전자주식회사 무선랜에서 스테이션들간의 매체 접근에 대한 공정성을보장하는 방법 및 장치
CN101414893B (zh) * 2007-10-16 2011-05-04 大唐移动通信设备有限公司 一种修正信道质量指示的方法及系统
KR101452504B1 (ko) * 2008-06-18 2014-10-23 엘지전자 주식회사 Vht 무선랜 시스템에서의 채널 접속 방법 및 이를지원하는 스테이션
US9924512B1 (en) * 2009-03-24 2018-03-20 Marvell International Ltd. OFDMA with block tone assignment for WLAN
US9337961B2 (en) * 2010-06-15 2016-05-10 Qualcomm Incorporated Method and apparatus for sending very high throughput WLAN acknowledgment frames
CN101925192B (zh) * 2010-07-27 2013-07-24 新邮通信设备有限公司 一种信道接入方法
CN102595449B (zh) * 2011-01-07 2016-09-28 中兴通讯股份有限公司 一种实现大带宽载波空闲状态检测的方法和系统
US8797881B2 (en) * 2011-06-13 2014-08-05 Cisco Technology, Inc. Coexistence mechanism for multiple channels
CN102882660B (zh) * 2011-07-12 2017-05-03 中兴通讯股份有限公司 一种信道反馈信息的传输方法和系统
US9491779B2 (en) * 2011-08-07 2016-11-08 Lg Electronics Inc. Method of channel access in wireless local area network and apparatus for the same
US8924807B2 (en) * 2011-12-28 2014-12-30 Qualcomm Incorporated Method and apparatus for acknowledgement using a group identifier
CN103378929B (zh) * 2012-04-23 2018-07-24 中兴通讯股份有限公司 无线帧的接收方法及装置
CN103929214B (zh) * 2013-01-16 2016-02-24 普天信息技术研究院有限公司 一种数据传输方法
CN103248462B (zh) * 2013-04-25 2019-01-15 中兴通讯股份有限公司 无线局域网中数据重传的方法、设备及系统
US10257806B2 (en) * 2013-11-11 2019-04-09 Marvell World Trade Ltd. Medium access control for multi-channel OFDM in a wireless local area network
US9215055B2 (en) * 2013-11-27 2015-12-15 Marvell World Trade Ltd. Medium access protection and bandwidth negotiation in a wireless local area network
US20170208153A1 (en) * 2014-08-04 2017-07-20 Intel IP Corporation Wireless device, method, and computer readable media for a high efficiency signal-a field in a high efficiency wireless local-area network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010193039A (ja) * 2009-02-17 2010-09-02 Mitsubishi Electric Corp 通信装置、通信システムおよび通信制御方法
CN101662798A (zh) * 2009-09-22 2010-03-03 北京科技大学 无线传感器网络低功耗邀请重传方法及其装置
CN101734265A (zh) * 2009-12-23 2010-06-16 卡斯柯信号有限公司 一种嵌入式车载信号设备状态监视方法及装置
CN102761399A (zh) * 2011-04-27 2012-10-31 中兴通讯股份有限公司 一种信道反馈信息的传输方法和系统

Also Published As

Publication number Publication date
CN105337705A (zh) 2016-02-17
EP3179656A1 (en) 2017-06-14
EP3179656B1 (en) 2020-01-01
EP3179656A4 (en) 2017-08-16
US10313059B2 (en) 2019-06-04
US20170230146A1 (en) 2017-08-10
CN105337705B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
CN108200780B (zh) 用于授权辅助接入的退避过程的系统和方法
US11057258B2 (en) Data channel and control/management channel separation
KR101871093B1 (ko) 프레임을 수신하는 방법 및 장치
KR101903998B1 (ko) 저속 무선 네트워크에서 롱 패킷들에 대한 개선된 단편화
US20140293868A1 (en) Method and apparatus for providing feedback
WO2015154485A1 (zh) 数据发送反馈、数据发送方法及装置
US11343030B2 (en) Method for repeated transmission, and terminal device
US20180027549A1 (en) Uplink control information transmitting method and apparatus
KR102208133B1 (ko) 송신 타입 및 ue 처리 능력에 따른 송신 지연
WO2016049850A1 (zh) 一种上行数据的传输方法及相关设备
JP7230225B2 (ja) 伝送リソース検出方法、伝送リソース決定方法と通信機器
EP2984867A1 (en) Method and device for generating and transmitting an ndp cf_end control frame in a wireless communication system
EP3553989B1 (en) Data transmission method and apparatus
JP2010041596A (ja) 無線通信装置
KR20180124838A (ko) 업링크 제어정보를 발송하기 위한 방법, 단말기 및 기지국
US20220052815A1 (en) Transmission Mode Determining Method and Apparatus
US10038543B2 (en) Many to one communications protocol
CN105451358A (zh) 一种上行传输方法、基站及终端
US20170064695A1 (en) Transmission parameter control for immediate response frames
JP6390789B2 (ja) 基地局、端末、無線通信システム、基地局の制御方法および端末の制御方法
WO2018028675A1 (zh) 随机接入信号配置方法、装置、设备、系统和存储介质
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
TWI815850B (zh) 分時多工(tdm)存取下的即時回應
CN108667578B (zh) 通信方法和通信设备
CN106576015B (zh) 一种数据传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014888620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014888620

Country of ref document: EP