WO2015154476A1 - 一种功放故障检测方法及装置 - Google Patents

一种功放故障检测方法及装置 Download PDF

Info

Publication number
WO2015154476A1
WO2015154476A1 PCT/CN2014/092065 CN2014092065W WO2015154476A1 WO 2015154476 A1 WO2015154476 A1 WO 2015154476A1 CN 2014092065 W CN2014092065 W CN 2014092065W WO 2015154476 A1 WO2015154476 A1 WO 2015154476A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
fault
power
information
real
Prior art date
Application number
PCT/CN2014/092065
Other languages
English (en)
French (fr)
Inventor
李永国
�田宏
白伟岐
孟海芳
李康伟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015154476A1 publication Critical patent/WO2015154476A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power amplifier fault detection method and apparatus.
  • the power amplifier (power amplifier) is one of the most powerful, most technically complex, and large number of modules in the base station system. It is inevitable that the power amplifier will malfunction during the operation. At present, there is no related alarm when the power amplifier fails, and the RRU (radio frequency is far away). Unit) is generally applied to outdoor towers or roofs. The height is very high. When there is a problem in the power amplifier, and the R&D personnel cannot determine the power amplifier problem, the disassembly and positioning is very inconvenient. The difficulty of troubleshooting is large, and the work efficiency is not high. .
  • the embodiment of the invention provides a power failure detection method and device, so as to improve the cost of troubleshooting, save a lot of manpower and material resources, and save costs.
  • an embodiment of the present invention provides a power failure detection method, including:
  • the power amplifier fault detection method further includes:
  • the real-time status information and the fault status of the power amplifier are sent to the server, and a power amplifier abnormal alarm is issued.
  • the real-time status information of the power amplifier at the time of the fault state includes an input voltage, an output voltage, an input current, an input power, an output power, a power amplifier temperature, and/or a reflected power of the power amplifier.
  • the step of acquiring real-time target information of the power amplifier at a preset time point includes:
  • the step of determining the fault state of the power amplifier according to the real-time target information of the power amplifier and the source information of the power amplifier in a non-fault state corresponding to the real-time target information of the power amplifier includes:
  • the step of acquiring real-time target information of the power amplifier at a preset time point includes:
  • the maximum compensation check value of the wireless communication system during digital predistortion is acquired at a preset time point.
  • the step of determining the fault state of the power amplifier according to the real-time target information of the power amplifier and the source information of the power amplifier in a non-fault state corresponding to the real-time target information of the power amplifier includes:
  • the maximum compensation check value determines that the power amplifier is in a fault state.
  • An embodiment of the present invention provides a power failure detection method, including:
  • obtaining the current state information of the power amplifier includes:
  • the real-time power amplifier gain of the power amplifier is obtained by using the output power and the input power.
  • comparing the current state information with the reference state information, and performing fault detection on the power amplifier according to the comparison result includes:
  • obtaining the current state information of the power amplifier includes: acquiring a maximum compensation check value in a digital pre-distortion process.
  • comparing the current state information with the reference state information, and performing fault detection on the power amplifier according to the comparison result includes:
  • the power amplifier In a case where the obtained maximum compensation check value is greater than the maximum compensation check value included in the reference state information, it is determined that the power amplifier is in a fault state.
  • the method further includes:
  • the attribute parameter information set and the fault status information are reported to the server, and a power amplifier abnormality alarm is issued.
  • the attribute parameter information set includes at least one of: an input voltage of the power amplifier, an output voltage of the power amplifier, an input current of the power amplifier, an input power of the power amplifier, and an output power of the power amplifier.
  • the temperature of the power amplifier and the reflected power of the power amplifier is not limited to: an input voltage of the power amplifier, an output voltage of the power amplifier, an input current of the power amplifier, an input power of the power amplifier, and an output power of the power amplifier.
  • the embodiment of the invention further provides a power amplifier fault detecting device, comprising:
  • the target information acquiring module is configured to acquire real-time target information of the power amplifier at a preset time point;
  • the fault obtaining module is configured to determine whether the power amplifier is in a fault state according to real-time target information of the power amplifier and source information of the power amplifier in a non-fault state corresponding to the real-time target information of the power amplifier.
  • the power amplifier fault detecting apparatus further includes:
  • Obtaining a module configured to obtain real-time status information of the power amplifier in a fault state, and save the data
  • the alarm module is configured to send the real-time status information and the fault status of the power amplifier to the server, and issue an abnormal power alarm.
  • the real-time status information of the power amplifier at the time of the fault state includes an input voltage, an output voltage, an input current, an input power, an output power, a power amplifier temperature, and/or a reflected power of the power amplifier.
  • the target information acquiring module includes:
  • a first target information acquiring submodule configured to acquire input power and output power of the power amplifier at a preset time point
  • a second target information acquiring submodule configured to acquire, according to the input power and the output power, a real-time power amplifier gain of the power amplifier at the preset time point.
  • the first target information acquiring submodule includes:
  • a first coupler disposed between the transceiver board of the wireless communication system and the power amplifier
  • a second coupler disposed between the power amplifier and a duplexer of the wireless communication system
  • An RF switch wherein an output end of the RF switch is connected to a feedback link input end of the transceiver board of the wireless communication system; wherein a coupling end of the first coupler and a coupling end of the second coupler Each is connected to an input end of the radio frequency switch;
  • a digital signal processor or a field programmable gate array adds a channel selection through the first coupler, the second coupler, and the RF switch, and reads input power and output power of the power amplifier at a preset time point .
  • the fault obtaining module includes:
  • the first fault acquisition submodule is configured to compare the power amplifier gain in the source information with the real-time power amplifier gain at the preset time point, if the power amplifier gain in the source information and the real-time power amplifier at the preset time point If the difference in gain exceeds a predetermined range, it is determined that the power amplifier is in a fault state.
  • the target information acquiring module further includes:
  • the third target information acquiring submodule is configured to acquire a maximum compensation check value of the wireless communication system during the digital predistortion process at a preset time point.
  • the fault obtaining module further includes:
  • a second fault acquisition submodule configured to compare a maximum compensation check value at the preset time point with a maximum compensation check value in the source information, if the maximum compensation state at the preset time point If the verification value is greater than the maximum compensation check value in the source information, it is determined that the power amplifier is in a fault state.
  • the embodiment of the invention further provides a power amplifier fault detecting device, comprising:
  • a first acquiring module configured to acquire current state information of the power amplifier
  • a detection module configured to compare the current state information with reference state information, and perform fault detection on the power amplifier according to a comparison result between the current state information and the reference state information, where the reference state information is State information that is placed under normal working conditions.
  • the first obtaining module comprises:
  • a first acquiring unit configured to acquire input power and output power of the power at the current time
  • a first calculating unit configured to obtain a real-time power amplifier gain of the power amplifier by using the output power and the input power.
  • the first obtaining unit comprises:
  • a first coupler disposed between the transceiver board of the wireless communication system and the power amplifier
  • a second coupler disposed between the power amplifier and a duplexer of the wireless communication system
  • An RF switch having an output end connected to a feedback link input end of the transceiver board, and an input end connected to a coupling end of the first coupler and a coupling end of the second coupler;
  • the channel selection is increased by the first coupler, the second coupler, and the radio frequency switch for reading input power and output power of the power amplifier.
  • the detecting module comprises:
  • a second calculating unit configured to calculate a difference between a power amplifier gain included in the reference state information and the real-time power amplifier gain
  • the first determining unit is configured to determine that the power amplifier is in a fault state if the difference exceeds a preset range.
  • the first obtaining module comprises: a second acquiring unit, configured to acquire a maximum compensation check value in the digital pre-distortion process.
  • the detecting module comprises:
  • a comparing unit configured to compare the obtained maximum compensation check value with a maximum compensation check value included in the reference state information
  • a second determining unit configured to determine that the power amplifier is in a fault state if the acquired maximum compensation check value is greater than a maximum compensation check value included in the reference state information.
  • the device further comprises:
  • a second acquiring module configured to acquire the attribute parameter information set of the power amplifier in the fault state
  • the reporting module is configured to report the attribute parameter information set and the fault status information to the server, and issue a power amplifier abnormality alarm.
  • the attribute parameter information set includes at least one of: an input voltage of the power amplifier, an output voltage of the power amplifier, an input current of the power amplifier, an input power of the power amplifier, an output power of the power amplifier, The temperature of the power amplifier and the reflected power of the power amplifier.
  • the real-time fault state of the power amplifier is obtained by comparing the source information in a non-fault state of the power amplifier and the real-time target information of the power amplifier, so that the research and development personnel can know whether the power amplifier has a fault in time. It is convenient for timely maintenance and other follow-up work; at the same time, the power amplifier in the fault state will be alerted, and this alarm is accompanied by some information when the power amplifier fails, which greatly improves the efficiency and cost of troubleshooting, and saves a lot of manpower and material resources. ,save costs.
  • FIG. 1 is a schematic diagram showing the basic steps of a power amplifier fault detecting method according to an embodiment of the present invention
  • FIG. 2 is a flow chart of another power amplifier fault detecting method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a power amplifier failure detecting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the internal structure of a power amplifier failure detecting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of another power amplifier fault detecting apparatus according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing the structure of another power amplifier failure detecting apparatus according to a preferred embodiment of the present invention.
  • the invention is directed to the prior art that there is no relevant alarm when the power amplifier fails, and the research and development personnel cannot determine the problem of the power amplifier when the system is faulty, and the problem of disassembly and positioning is very inconvenient, and provides a power failure detection method and device, by comparing one power amplifier
  • the source information in the fault state and the real-time target information of the power amplifier obtain the real-time fault state of the power amplifier, so that the research and development personnel can know whether the power amplifier has a fault in time, and facilitate the timely processing and other subsequent processing; and at the same time, the fault state is
  • the power amplifier performs alarm prompts, and this alarm is accompanied by information about some power amplifier failures, which greatly improves the efficiency and cost of troubleshooting, saves a lot of manpower and material resources, and saves costs.
  • an embodiment of the present invention provides a power failure detection method, including:
  • Step 1 acquiring real-time target information of the power amplifier at a preset time point
  • Step 2 Determine, according to the real-time target information of the power amplifier and the source information of the power amplifier in a non-fault state corresponding to the real-time target information of the power amplifier, whether the power amplifier is in a fault state.
  • the non-fault state of the power amplifier in step 2 is the normal working state of the power amplifier
  • the state information in the normal working state of the power amplifier is the source information in step 2.
  • the source information may be the source information.
  • the power amplifier gain, gain flatness, output power, frequency response, distortion, signal-to-noise ratio, output impedance, and maximum compensation check value in the digital pre-distortion process of the power amplifier under normal working conditions are not repeated here;
  • the information related to the working (fault) state of the power amplifier is applicable in the embodiments of the present invention.
  • the source information of the same power in the normal working state is fixed (there is an error each time the source information is acquired, and the error is unavoidable in actual operation, and may be processed by multiple acquisition averaging or negligence Therefore, the source information of the power amplifier in the non-fault state can be pre-stored in a memory, and the source information can be directly called when the source information is needed, thereby avoiding the step of repeatedly acquiring and saving the process.
  • step 1 acquiring real-time target information of the power amplifier at a preset time point, wherein the real-time target information can represent status information of the power amplifier at the point; and comparing the real-time status information acquired in step 2 with the corresponding information in the source information.
  • Determining a fault state of the power amplifier such as the power amplifier is in a normal working state at the preset time point; or at the preset time point, the power amplifier is in a fault state; the method can record the power amplifier at a moment when the power amplifier fails
  • the status information greatly improves the positioning efficiency and cost.
  • the power amplifier fault detection method further includes:
  • Step 4 Obtain real-time status information of the power amplifier at the time of the fault state, and save the information;
  • Step 5 Send the real-time status information and the fault status of the power amplifier to the server, and issue a power amplifier abnormality alarm.
  • the power amplifier after detecting the power amplifier failure, performing steps 4 and 5, reporting the real-time status information and the fault status of the power amplifier to the background (server), and issuing an alarm of the power amplifier abnormal state, so that the maintenance personnel It can be clearly known that the power amplifier has a problem, and the power amplifier can be positioned and analyzed through the real-time status information of the power amplifier, and measures are taken to maintain the power amplifier in time.
  • the real-time status information of the power amplifier at the time of the fault state includes an input voltage, an output voltage, an input current, an input power, an output power, a power amplifier temperature, and/or a reflected power of the power amplifier.
  • the foregoing real-time status information is only a preferred embodiment of the present invention, and is not used to limit the protection scope of the present invention.
  • Other information related to the working status of the power amplifier is applicable in the embodiments of the present invention, such as Frequency response, distortion, signal-to-noise ratio, output impedance, etc., are not repeated here.
  • step 1 includes:
  • Step 11 Acquire an input power and an output power of the power amplifier at a preset time point
  • Step 12 Acquire a real-time power amplifier gain of the power amplifier at the preset time point according to the input power and the output power.
  • the real-time power amplifier gain of the power amplifier is real-time target information of the power amplifier; and the input power and output power of the power amplifier in step 21 can be obtained by a digital signal processor DSP or a field programmable gate array.
  • the FPGA reads at a specific time and in a specific channel; it should be noted that, in the specific embodiment of the present invention, the unit of the real-time power amplifier gain is decibel; the decibel represents a unit, that is, the ratio of two kinds of electric or acoustic power or two The ratio of voltage or current or similar volume; decibel is also a measure of the relative loudness of a sound. Decibels are expressed in dB.
  • step 2 includes:
  • Step 21 Comparing the power amplifier gain in the source information with the real-time power amplifier gain at the preset time point, if the difference between the power amplifier gain in the source information and the real-time power amplifier gain at the preset time point exceeds one The preset range, the power amplifier is in a fault state.
  • the difference between the power amplifier gain in the source information and the real-time power amplifier gain at the preset time point is within the preset range, determining that the power amplifier is in a non-fault state.
  • the preset range refers to the gain flatness of the power amplifier;
  • Gain Flatness refers to the values of the “violent increase” and “fast decrease” of the gain in a given bandwidth range, Decibel (dB) is measured.
  • Gain flatness is an indicator on the frequency characteristic curve of the amplifying circuit.
  • the ideal amplifying circuit should maintain a constant value in the passband range, but this is not the case. In a certain frequency range in the entire passband, The gain of the amplifying circuit will fluctuate and change sometimes, so there is a concept of gain flatness.
  • the gain flatness means that the fluctuation is not very large and tends to be gentle within a certain range.
  • the power amplifier gain in the source information is a power amplifier gain when the power amplifier is in a non-fault state; and the power amplifier gain in a non-fault state is compared with a real-time power amplifier fault gain, and ideally, If the above two power amplifiers have the same gain, the power amplifier works normally; if they are not equal, the power amplifier fails. However, due to the existence of gain flatness, when the difference between the above two power amplifier gains is within a preset range (gain flatness), the power amplifier works normally; otherwise, the power amplifier is in a fault state.
  • the maintenance personnel can clearly know that the power amplifier has a problem, and perform the positioning analysis through the status information of the power amplifier at this time, so as to facilitate the rapid development of the later maintenance work. .
  • step 1 comprises:
  • Step 13 Acquire a maximum compensation check value of the wireless communication system during digital predistortion at a preset time point.
  • DPD Digital Pre-Distortion
  • DPD technology is a key technology for linearizing the power amplifier
  • DPD training process of the wireless communication system There is a real-time monitoring table that detects the process of digital pre-distortion in real time.
  • a channel can be opened by the digital signal processor DSP to constantly read the peak-to-maximum compensation check value of the monitoring table during the operation of the whole machine (wireless communication system) at a specific time.
  • step 2 includes:
  • Step 22 Compare the maximum compensation check value at the preset time point with the maximum compensation check value in the source information, if the maximum compensation check value at the preset time point is greater than the source The maximum compensation check value in the information, the power amplifier is in a fault state.
  • the power amplifier is in a non-fault state.
  • the maximum compensation check value in the source information is a peak-to-maximum compensation check value of the DPD detection table of the wireless communication system (the whole machine) when the power amplifier is in a non-fault state; that is, the power amplifier Positive In the normal working state, there should be no check value greater than the maximum compensation check value. If there is a value greater than the maximum compensation check value, the power amplifier is in a fault state.
  • the fault state of the power amplifier is a power amplifier compression state.
  • the power amplifier compression alarm is reported to the background (server), and the status information of the power input and output power of the power amplifier read by the DSP or the FPGA is reported together, so that the maintenance personnel can clearly know that the power amplifier has been compressed and needs to be Taking measures to pre-process the power amplifier improves the efficiency of maintenance personnel.
  • FIG. 2 is a flow chart of another power amplifier failure detecting method according to an embodiment of the present invention. As shown in FIG. 2, the method may include the following processing steps:
  • Step S202 Acquire current state information of the power amplifier.
  • Step S204 Comparing the current state information with the reference state information, and performing fault detection on the power amplifier according to the comparison result between the current state information and the reference state information, wherein the reference state information is state information of the power amplifier in the normal working state.
  • obtaining current status information of the power amplifier may include the following operations:
  • Step S1 obtaining input power and output power of the power amplifier at the current time
  • Step S2 Calculate the real-time power amplifier gain of the power amplifier by using the output power and the input power.
  • the real-time power amplifier gain of the power amplifier is the real-time target information of the power amplifier, and the input power and output power of the power amplifier can be read by the DSP or the FPGA at a specific time and in a specific channel.
  • step S204 the current state information is compared with the reference state information, and the fault detection of the power amplifier according to the comparison result may include the following steps:
  • Step S3 calculating a difference between the power amplifier gain included in the reference state information and the real-time power amplifier gain
  • Step S4 In the case that the difference exceeds the preset range, it is determined that the power amplifier is in a fault state.
  • the power amplifier is determined to be in a non-fault state if the difference between the power amplifier gain in the source information and the real-time power amplifier gain at the preset time point is within a preset range.
  • obtaining current status information of the power amplifier may include the following operations:
  • Step S5 Acquire a maximum compensation check value in the digital predistortion process.
  • a channel can be opened by the DSP to continuously read the peak-to-maximum compensation check value of the monitoring table during operation of the entire machine (wireless communication system) at a specific time.
  • step S204 the current state information is compared with the reference state information, and the fault detection of the power amplifier according to the comparison result may include the following steps:
  • Step S6 comparing the obtained maximum compensation check value with the maximum compensation check value included in the reference state information
  • Step S7 In the case that the obtained maximum compensation check value is greater than the maximum compensation check value included in the reference state information, it is determined that the power amplifier is in a fault state.
  • the power amplifier if the maximum compensation check value at the preset time point is less than or equal to the maximum compensation check value in the source information, the power amplifier is in a non-fault state. That is, under the normal working state of the power amplifier, there should be no check value greater than the maximum compensation check value. If there is a value greater than the maximum compensation check value, the power amplifier is in a fault state.
  • step S4 After determining that the power amplifier is in a fault state in step S4 or step S7, the following operations may also be included:
  • Step S8 Acquire an attribute parameter information set of the power amplifier in a fault state
  • Step S9 Reporting the attribute parameter information set and the fault status information to the server, and issuing a power amplifier abnormality alarm.
  • the foregoing attribute parameter information set may include, but is not limited to, at least one of the following: an input voltage of the power amplifier, an output voltage of the power amplifier, an input current of the power amplifier, an input power of the power amplifier, an output power of the power amplifier, a temperature of the power amplifier, and The reflected power of the amplifier.
  • the real-time status information and the fault status of the power amplifier can be reported to the background (server), and the power amplifier abnormal status alarm can be issued, so that the maintenance personnel can clearly know that the power amplifier has a problem and can pass the power amplifier.
  • the real-time status information is used to locate and analyze the power amplifier, and timely measures are taken to maintain the power amplifier.
  • an embodiment of the present invention further provides a power failure detecting apparatus, including:
  • the target information obtaining module 10 is configured to acquire real-time target information of the power amplifier at a preset time point;
  • the fault obtaining module 20 is configured to determine a fault state of the power amplifier according to real-time target information of the power amplifier and source information of the power amplifier in a non-fault state corresponding to the real-time target information of the power amplifier.
  • the power amplifier fault detecting apparatus further includes:
  • Obtaining a module configured to obtain real-time status information of the power amplifier in a fault state, and save the data
  • the alarm module is configured to send the real-time status information and the fault status of the power amplifier to the server, and issue an abnormal power alarm.
  • the real-time status information of the power amplifier at the time of the fault state includes an input voltage, an output voltage, an input current, an input power, an output power, a power amplifier temperature, and a reflected power of the power amplifier.
  • the target information acquiring module 10 includes:
  • a first target information acquiring submodule configured to acquire input power and output power of the power amplifier at a preset time point
  • a second target information acquiring submodule configured to acquire, according to the input power and the output power, a real-time power amplifier gain of the power amplifier at the preset time point.
  • the first target information acquiring submodule includes:
  • a first coupler disposed between the transceiver board of the wireless communication system and the power amplifier
  • a second coupler disposed between the power amplifier and a duplexer of the wireless communication system
  • An RF switch wherein an output end of the RF switch is connected to a feedback link input end of the transceiver board of the wireless communication system; wherein a coupling end of the first coupler and a coupling end of the second coupler Each is connected to an input end of the radio frequency switch;
  • a digital signal processor or a field programmable gate array adds a channel selection through the first coupler, the second coupler, and the RF switch, and reads input power and output power of the power amplifier at a preset time point .
  • the digital signal processor or the field programmable gate array at a specific time and at a specific time.
  • the channel is read.
  • the third coupler in FIG. 4 is disposed between the power amplifier coupling end and the transceiver board of the wireless communication system, and the coupling end of the third coupler is also connected to the input end of the RF switch, and the digital signal is
  • the processor or the field programmable gate array adds a channel selection through the first coupler, the second coupler, and the RF switch, and reads the reflected power of the power amplifier through a specific channel at a preset time point.
  • the fault obtaining module 20 includes:
  • the first fault acquisition submodule is configured to compare the power amplifier gain in the source information with the real-time power amplifier gain at the preset time point, if the power amplifier gain in the source information and the real-time power amplifier at the preset time point The difference in gain exceeds the preset range, and the power amplifier is in a fault state.
  • Embodiment 1 Detecting abnormal power amplifier gain
  • Step 1 Firstly obtain the basic information of the power amplifier of the whole machine.
  • the gain of the power amplifier is recorded as G.
  • the gain flatness of the power amplifier is recorded as A.
  • Step 2 Read the power input of the power amplifier through a DSP or FPGA at a specific time and a specific channel, and record it as P1;
  • Step 3 Read the power output of the power amplifier through a DSP or FPGA at a specific time and in a specific channel, and record it as P2;
  • Step 4 Calculate the difference between P2-P1 (need to be noted, where P2 and P1 are both in dB), compared with G, the difference is in the range of A, no processing, if the difference is greater than A, proceed Next step
  • Step 5 Read the reflected power of the power amplifier through a DSP or FPGA at a specific time and in a specific channel, and record it as P3;
  • Step 6 Read the input voltage, output voltage, input current, and amplifier temperature of the power amplifier through the DSP or FPGA, and save the information together.
  • Step 7 At this time, the high layer reports the power amplifier status abnormal alarm to the background (OMMB), and saves the information in the power amplifier together, so that the maintenance personnel can clearly know that the power amplifier has a problem, and use the information to perform positioning analysis.
  • OMMB background
  • the target information acquiring module 10 further includes:
  • the third target information acquiring submodule is configured to acquire a maximum compensation check value of the wireless communication system during the digital predistortion process at a preset time point.
  • the fault acquiring module 20 further includes:
  • a second fault acquisition submodule configured to compare a maximum compensation check value at the preset time point with a maximum compensation check value in the source information, if the maximum compensation state at the preset time point The verification value is greater than the maximum compensation check value in the source information, and the power amplifier is in a fault state.
  • the fault state of the power amplifier in the second fault acquisition submodule is a power amplifier compression state.
  • Embodiment 2 Detecting power amplifier compression
  • the first step first obtain the peak maximum compensation check value of the DPD table of the whole machine, which is recorded as B;
  • the second step open a channel through the DSP, continuously read the table peak maximum compensation check value during the running of the whole machine at a specific time, recorded as C;
  • Step 3 Calculate the value of C-B. If the difference is less than 0, do not process it. If the difference is greater than 0, proceed to the next step;
  • Step 4 Read the amplifier input power, output power, reflected power, input voltage, input current, and amplifier temperature at a specific time and through a DSP or FPGA; and save the information together.
  • Step 5 At this time, the high-level report to the background (OMMB) reports the power amplifier compression alarm, and reports the saved power amplifier information together, so that the maintenance personnel can clearly know that the power amplifier has been compressed, and measures need to be taken for pre-processing.
  • OMMB background
  • FIG. 5 is a block diagram showing the structure of another power amplifier failure detecting apparatus according to an embodiment of the present invention.
  • the power amplifier fault detecting apparatus may include: a first acquiring module 30, configured to acquire current state information of the power amplifier; and a detecting module 40, configured to compare current state information with reference state information, according to current state information. The result of the comparison with the reference state information is used to detect the fault of the power amplifier, wherein the reference state information is state information of the power amplifier in the normal working state.
  • the first obtaining module 30 may include: a first acquiring unit (not shown) for acquiring input power and output power of the power amplifier at the current time; the first calculating unit (not shown), The output power and input power are used to obtain the real-time power amplifier gain of the power amplifier.
  • the first obtaining unit may include: a first coupler disposed between the transceiver board of the wireless communication system and the power amplifier; and a second coupler disposed between the power amplifier and the duplexer of the wireless communication system; a switch, the output end of which is connected to the feedback link input end of the transceiver board, and the input end thereof is connected to the coupling end of the first coupler and the coupling end of the second coupler; wherein, through the first coupler, The two couplers and the RF switch add channel selection for reading the input power and output power of the power amplifier.
  • the detecting module 40 may include: a second calculating unit (not shown) for calculating a difference between the power amplifier gain and the real-time power amplifier gain included in the reference state information; the first determining unit (not shown in the figure) Shown), for determining that the power amplifier is in a fault state if the difference exceeds a preset range.
  • the first obtaining module 30 may include: a second acquiring unit (not shown) for acquiring a maximum compensation check value in the digital pre-distortion process.
  • the detecting module 40 may include: a comparing unit (not shown) for comparing the obtained maximum compensation check value with a maximum compensation check value included in the reference state information; (not shown in the figure), in the case that the acquired maximum compensation check value is greater than the maximum compensation check value included in the reference state information, it is determined that the power amplifier is in a fault state.
  • a comparing unit for comparing the obtained maximum compensation check value with a maximum compensation check value included in the reference state information
  • the foregoing apparatus may further include: a second obtaining module 50, configured to acquire an attribute parameter information set in a fault state; and a reporting module 60, configured to set the attribute parameter information and the fault status information. Reported to the server and sent an amp abnormal alarm.
  • the foregoing attribute parameter information set may include, but is not limited to, at least one of the following: an input voltage of the power amplifier, an output voltage of the power amplifier, an input current of the power amplifier, an input power of the power amplifier, an output power of the power amplifier, a temperature of the power amplifier, and The reflected power of the amplifier.
  • the real-time fault state of the power amplifier is obtained by comparing the source information in a non-fault state of the power amplifier and the real-time target information of the power amplifier, so that the research and development personnel can know whether the power amplifier has a fault in time. It is convenient for timely maintenance and other follow-up work; at the same time, the power amplifier in the fault state will be alerted, and this alarm is accompanied by information about the failure of some power amplifiers, which greatly improves the efficiency and cost of troubleshooting, and saves a lot of manpower. Material resources, cost savings.
  • the power amplifier fault detecting apparatus provided by the embodiment of the present invention is a device applying the above method, and all embodiments of the foregoing methods are applicable to the device, and all of the same or similar beneficial effects can be achieved.
  • a power amplifier fault detection method and apparatus provided by an embodiment of the present invention have the following beneficial effects: enabling a research and development personnel to know in time whether the power amplifier has a fault, and facilitating timely follow-up processing such as maintenance; At the same time, the power amplifier in the fault state is alerted, and the alarm is accompanied by information about the failure of the power amplifier, which greatly improves the efficiency and cost of troubleshooting, saves a lot of manpower and material resources, and saves costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种功放故障检测方法及装置,获取功放的当前状态信息;将当前状态信息与参考状态信息进行比较,根据当前状态信息与参考状态信息的比较结果对功放进行故障检测,其中,参考状态信息为功放在正常工作状态下的状态信息,根据本发明实施例所提供的技术方案,便于及时进行维修等后续处理工作,极大的提高了故障排查的效率和成本,节省了大量人力物力,节约成本。

Description

一种功放故障检测方法及装置 技术领域
本发明涉及无线通信技术领域,特别涉及一种功放故障检测方法及装置。
背景技术
随着无线通信系统的发展,基站系统的规模日趋庞大。功率放大器(功放)是基站系统中功率最大、技术最复杂、数量较多的模块之一,功放在运行过程中出现故障是不可避免的,目前功放出现故障没有相关告警,而RRU(射频拉远单元)一般应用在户外高塔或屋顶上,高度很高,在功放出现问题,而研发人员又不能确定是功放问题时,拆卸定位很不方便,故障排除的难度系数较大,工作效率不高。
发明内容
本发明实施例提供了一种功放故障检测方法及装置,以提高故障排查的效率的成本,节省了大量人力物力,节约成本。
为了达到上述目的,本发明实施例提供一种功放故障检测方法,包括:
在一预设时间点获取所述功放的实时目标信息;
根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放是否处于故障状态。
可选地,若所述功放处于故障状态,所述功放故障检测方法还包括:
获取处于故障状态时刻的功放的实时状态信息,并保存;
将所述功放的实时状态信息及故障状态发送给服务器,并发出功放异常告警。
可选地,所述故障状态时刻的功放的实时状态信息包括功放的输入电压、输出电压、输入电流、输入功率、输出功率、功放温度和/或反射功率。
可选地,所述在一预设时间点获取所述功放的实时目标信息的步骤包括:
在一预设时间点获取所述功放的输入功率和输出功率;
根据所述输入功率和所述输出功率获取所述预设时间点处所述功放的实时功放增益。
可选地,根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放的故障状态的步骤包括:
将所述源信息中的功放增益与所述预设时间点处的实时功放增益比较,若源信息中的功放增益与所述预设时间点处的实时功放增益的差值超出一预设范围,则确定所述功放处于故障状态。
可选地,所述在一预设时间点获取所述功放的实时目标信息的步骤包括:
在一预设时间点获取所述无线通信系统在数字预失真过程中的最大补偿校验值。
可选地,根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放的故障状态的步骤包括:
将所述预设时间点处的最大补偿校验值与所述源信息中的最大补偿校验值进行比较,若所述预设时间点处的最大补偿校验值大于所述源信息中的最大补偿校验值,则确定所述功放处于故障状态。
本发明实施例提供一种功放故障检测方法,包括:
获取功放的当前状态信息;
将所述当前状态信息与参考状态信息进行比较,根据所述当前状态信息与所述参考状态信息的比较结果对所述功放进行故障检测,其中,所述参考状态信息为所述功放在正常工作状态下的状态信息。
可选地,获取所述功放的所述当前状态信息包括:
获取所述功放在当前时刻的输入功率和输出功率;
采用所述输出功率与所述输入功率求取所述功放的实时功放增益。
可选地,将所述当前状态信息与所述参考状态信息进行比较,根据所述比较结果对所述功放进行故障检测包括:
计算在所述参考状态信息中所包含的功放增益与所述实时功放增益的差值;
在所述差值超出预设范围的情况下,确定所述功放处于故障状态。
可选地,获取所述功放的所述当前状态信息包括:获取在数字预失真过程中的最大补偿校验值。
可选地,将所述当前状态信息与所述参考状态信息进行比较,根据所述比较结果对所述功放进行故障检测包括:
将获取到的最大补偿校验值与所述参考状态信息中所包含的最大补偿校验值进行比较;
在获取到的最大补偿校验值大于所述参考状态信息中所包含的最大补偿校验值的情况下,确定所述功放处于故障状态。
可选地,在确定所述功放处于所述故障状态之后,还包括:
获取所述功放在所述故障状态下的属性参数信息集合;
将所述属性参数信息集合以及故障状态信息上报至服务器,并发出功放异常告警。
可选地,所述属性参数信息集合包括以下至少之一:所述功放的输入电压、所述功放的输出电压、所述功放的输入电流、所述功放的输入功率、所述功放的输出功率、所述功放的温度、所述功放的反射功率。
本发明实施例还提供一种功放故障检测装置,包括:
目标信息获取模块,设置为在一预设时间点获取所述功放的实时目标信息;
故障获取模块,设置为根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放是否处于故障状态。
可选地,上述功放故障检测装置还包括:
获取模块,设置为获取处于故障状态时刻的功放的实时状态信息,并保存;
告警模块,设置为将所述功放的实时状态信息及故障状态发送给服务器,并发出功放异常告警。
可选地,所述故障状态时刻的功放的实时状态信息包括功放的输入电压、输出电压、输入电流、输入功率、输出功率、功放温度和/或反射功率。
可选地,所述目标信息获取模块包括:
第一目标信息获取子模块,设置为在一预设时间点获取所述功放的输入功率和输出功率;
第二目标信息获取子模块,设置为根据所述输入功率和所述输出功率获取所述预设时间点处所述功放的实时功放增益。
可选地,所述第一目标信息获取子模块包括:
第一耦合器,设置于无线通信系统的收发信单板和所述功放之间;
第二耦合器,设置于所述功放和所述无线通信系统的双工器之间;
射频开关,所述射频开关的输出端与所述无线通信系统的收发信单板的反馈链路输入端连接;其中,所述第一耦合器的耦合端和所述第二耦合器的耦合端均连接到所述射频开关的输入端;
一数字信号处理器或现场可编程门阵列通过所述第一耦合器、第二耦合器及所述射频开关增加一通道选择,在一预设时间点读取所述功放的输入功率和输出功率。
可选地,所述故障获取模块包括:
第一故障获取子模块,设置为将所述源信息中的功放增益与所述预设时间点处的实时功放增益比较,若源信息中的功放增益与所述预设时间点处的实时功放增益的差值超出一预设范围,则确定所述功放处于故障状态。
可选地,所述目标信息获取模块还包括:
第三目标信息获取子模块,设置为在一预设时间点获取所述无线通信系统在数字预失真过程中的最大补偿校验值。
可选地,所述故障获取模块还包括:
第二故障获取子模块,设置为将所述预设时间点处的最大补偿校验值与所述源信息中的最大补偿校验值进行比较,若所述预设时间点处的最大补偿校验值大于所述源信息中的最大补偿校验值,则确定所述功放处于故障状态。
本发明实施例还提供一种功放故障检测装置,包括:
第一获取模块,用于获取功放的当前状态信息;
检测模块,用于将所述当前状态信息与参考状态信息进行比较,根据所述当前状态信息与所述参考状态信息的比较结果对所述功放进行故障检测,其中,所述参考状态信息为所述功放在正常工作状态下的状态信息。
优选地,所述第一获取模块包括:
第一获取单元,用于获取所述功放在当前时刻的输入功率和输出功率;
第一计算单元,用于采用所述输出功率与所述输入功率求取所述功放的实时功放增益。
优选地,所述第一获取单元包括:
第一耦合器,设置于无线通信系统的收发信单板与所述功放之间;
第二耦合器,设置于所述功放与所述无线通信系统的双工器之间;
射频开关,其输出端与所述收发信单板的反馈链路输入端相连接,其输入端与所述第一耦合器的耦合端以及所述第二耦合器的耦合端相连接;
其中,通过所述第一耦合器、第二耦合器以及所述射频开关增加通道选择,用于读取所述功放的输入功率和输出功率。
优选地,所述检测模块包括:
第二计算单元,用于计算在所述参考状态信息中所包含的功放增益与所述实时功放增益的差值;
第一确定单元,用于在所述差值超出预设范围的情况下,确定所述功放处于故障状态。
优选地,所述第一获取模块包括:第二获取单元,用于获取在数字预失真过程中的最大补偿校验值。
优选地,所述检测模块包括:
比较单元,用于将获取到的最大补偿校验值与所述参考状态信息中所包含的最大补偿校验值进行比较;
第二确定单元,用于在获取到的最大补偿校验值大于所述参考状态信息中所包含的最大补偿校验值的情况下,确定所述功放处于故障状态。
优选地,所述装置还包括:
第二获取模块,用于获取所述功放在所述故障状态下的属性参数信息集合;
上报模块,用于将所述属性参数信息集合以及故障状态信息上报至服务器,并发出功放异常告警。
优选地,所述属性参数信息集合包括以下至少之一:所述功放的输入电压、所述功放的输出电压、所述功放的输入电流、所述功放的输入功率、所述功放的输出功率、所述功放的温度、所述功放的反射功率。
本发明的上述技术方案至少具有如下有益效果:
本发明实施例的功放故障检测方法中,通过对比一功放非故障状态下的源信息和上述功放的实时目标信息,获取该功放的实时故障状态,使研发人员能够及时了解该功放是否存在故障,便于及时进行维修等后续处理工作;同时将对处于故障状态的功放进行告警提示,且此告警附带部分功放出故障时的信息,极大的提高了故障排查的效率和成本,节省了大量人力物力,节约成本。
附图说明
图1表示本发明实施例的功放故障检测方法的基本步骤示意图;
图2是根据本发明实施例的另一种功放故障检测方法的流程图;
图3表示本发明实施例的功放故障检测装置的结构原理图;
图4表示本发明实施例的功放故障检测装置的内部结构示意图;
图5是根据本发明实施例的另一种功放故障检测装置的结构框图;
图6是根据本发明优选实施例的另一种功放故障检测装置的结构框图。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
本发明针对现有技术中功放出现故障时没有相关告警,系统故障时研发人员不能确定是功放的问题,拆卸定位很不方便的问题,提供一种功放故障检测方法及装置,通过对比一功放非故障状态下的源信息和上述功放的实时目标信息,获取该功放的实时故障状态,使研发人员能够及时了解该功放是否存在故障,便于及时进行维修等后续处理工作;同时将对处于故障状态的功放进行告警提示,且此告警附带部分功放出故障时的信息,极大的提高了故障排查的效率和成本,节省了大量人力物力,节约成本。
如图1所示,本发明实施例提供一种功放故障检测方法,包括:
步骤1,在一预设时间点获取所述功放的实时目标信息;
步骤2,根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放是否处于故障状态。
本发明上述实施例中,步骤2中的功放非故障状态即该功放的正常工作状态,该功放正常工作状态下的状态信息即为步骤2中的源信息;具体的,该源信息可以为该功放正常工作状态下的功放增益、增益平坦度、输出功率、频率响应、失真度、信噪比、输出阻抗及数字预失真过程中最大补偿校验值等等,在此不一一赘述;跟所述功放的工作(故障)状态相关的信息在本发明实施例中均适用。需要说明的是,同一功放在正常工作状态下的源信息为固定的(每次获取源信息会存在误差,该误差在实际操作中不可避免,可通过多次获取求平均,或忽略的方式处理),故可将该非故障状态下的所述功放的源信息预存到一个存储器中,需要该源信息时直接调用即可,避免了重复获取的步骤,节约了工序。
步骤1中获取在一预设时间点获取功放的实时目标信息,该实时目标信息能够表示该功放在该点的状态信息;步骤2获取的实时状态信息和所述源信息中的对应信息进行比较,确定该功放的故障状态,如在该预设时间点,所述功放处于正常工作状态;或在该预设时间点,所述功放处于故障状态;该方法能够在功放出现故障的瞬间记录功放的状态信息,极大的提高了定位效率和成本。
具体的,本发明上述实施例中,若所述功放处于故障状态,所述功放故障检测方法还包括:
步骤4,获取处于故障状态时刻的功放的实时状态信息,并保存;
步骤5,将所述功放的实时状态信息及故障状态发送给服务器,并发出功放异常告警。
本发明具体实施例中,在检测出功放故障后,执行步骤4和步骤5,将所述功放的实时状态信息及故障状态上报到后台(服务器),并发出功放异常状态告警,这样维护人员便可以清楚地知道是该功放出了问题,并可以通过该功放的实时状态信息对该功放进行定位分析,及时采取措施对该功放进行维护。
具体的,所述故障状态时刻的功放的实时状态信息包括功放的输入电压、输出电压、输入电流、输入功率、输出功率、功放温度和/或反射功率。本发明具体实施例中,上述实时状态信息仅为本发明的较佳实施例,不用于限制本发明的保护范围,其他的跟功放的工作状态相关的信息在本发明实施例中均适用,如频率响应、失真度、信噪比、输出阻抗等,在此不一一赘述。
本发明的上述实施例中,步骤1包括:
步骤11,在一预设时间点获取所述功放的输入功率和输出功率;
步骤12,根据所述输入功率和所述输出功率获取所述预设时间点处所述功放的实时功放增益。
本发明的具体实施例中,所述功放的实时功放增益就是所述功放的实时目标信息;步骤21中的功放的输入功率和输出功率的获取可通过数字信号处理器DSP或现场可编程门阵列FPGA在特定的时间、特定的通道读取;需要说明的是,本发明具体实施例中,实时功放增益的单位为分贝;分贝表示一种单位,即两种电或声功率之比或两种电压或电流值或类似声量之比;分贝还是一种测量声音相对响度的单位。分贝用dB表示。
承续上例,本发明具体实施例中,步骤2包括:
步骤21,将所述源信息中的功放增益与所述预设时间点处的实时功放增益比较,若源信息中的功放增益与所述预设时间点处的实时功放增益的差值超出一预设范围,所述功放处于故障状态。
具体的,若所述源信息中的功放增益与所述预设时间点处的实时功放增益的差值在所述预设范围内,则确定所述功放处于非故障状态。
本发明具体实施例中,预设范围是指所述功放的增益平坦度;增益平坦度(Gain Flatness)是指在给定带宽范围内的增益“剧烈增加”和“快速下降”的数值,以分贝(dB)衡量。增益平坦度是放大电路频率特性曲线上的一个指标,理想的放大电路,在通频带范围内,增益应当保持一个恒定值,但实际上不是这样,在整个通频带中的某段频率范围上,放大电路的增益会有起伏变化,有时候变化还很大,故存在一个增益平坦度的概念;增益平坦度好,就是指在一定范围内起伏不是很大,趋于平缓。
较佳的,本发明实施例中,所述源信息中的功放增益就是该功放处于非故障状态时的功放增益;将非故障状态时的功放增益与实时功放故障增益比较,理想状态下,应该是上述两个功放增益相等,则功放正常工作;不相等,则功放故障。但是由于增益平坦度的存在,当上述两个功放增益的差值在一预设范围(增益平坦度)内,功放正常工作;否则,功放处于故障状态。具体的,记录故障状态时的功放的状态信息,保存、上报并告警,维护人员能够清楚地知道是功放出了问题,并通过此时功放的状态信息进行定位分析,方便后期维护工作的快速展开。
本发明的另一实施例中,步骤1包括:
步骤13,在一预设时间点获取所述无线通信系统在数字预失真过程中的最大补偿校验值。
本发明上述实施例中,DPD(Digital Pre-Distortion):简单来说就是数字预失真;DPD技术是对功放进行线性化处理的一门关键技术;在无线通信系统的数字预失真DPD训练过程中存在一实时监控表格,该监控表格实时检测数字预失真的过程。步骤23中可通过数字信号处理器DSP开辟一个通道,在特定的时间不断读取整机(无线通信系统)运行过程中监控表格的峰值-最大补偿校验值。
承续上例,本发明具体实施例中,步骤2包括:
步骤22,将所述预设时间点处的最大补偿校验值与所述源信息中的最大补偿校验值进行比较,若所述预设时间点处的最大补偿校验值大于所述源信息中的最大补偿校验值,所述功放处于故障状态。
具体的,若所述预设时间点处的最大补偿校验值小于或者等于所述源信息中的最大补偿校验值,所述功放处于非故障状态。
本发明具体实施例中,所述源信息中的最大补偿校验值就是该功放处于非故障状态时所述无线通信系统(整机)的DPD检测表格峰值-最大补偿校验值;即该功放正 常工作状态下,不应存在大于该最大补偿校验值的校验值。若存在大于所述最大补偿校验值的值,则功放处于故障状态。
具体的,该具体实施例下,所述功放的故障状态为功放压缩状态。此时,向后台(服务器)上报功放压缩告警,并将通过DSP或FPGA读取的功放输入功率、输出功率等等状态信息一并上报,这样维护人员便可以清楚地知道是功放已经压缩,需要采取措施对功放进行预处理,提高了维护人员的工作效率。
图2是根据本发明实施例的另一种功放故障检测方法的流程图。如图2所示,该方法可以包括以下处理步骤:
步骤S202:获取功放的当前状态信息;
步骤S204:将当前状态信息与参考状态信息进行比较,根据当前状态信息与参考状态信息的比较结果对功放进行故障检测,其中,参考状态信息为功放在正常工作状态下的状态信息。
优选地,在步骤S202中,获取功放的当前状态信息可以包括以下操作:
步骤S1:获取功放在当前时刻的输入功率和输出功率;
步骤S2:采用输出功率与输入功率求取功放的实时功放增益。
在优选实施例中,功放的实时功放增益即为功放的实时目标信息,可以通过DSP或FPGA在特定的时间、特定的通道读取功放的输入功率和输出功率。
优选地,在步骤S204中,将当前状态信息与参考状态信息进行比较,根据比较结果对功放进行故障检测可以包括以下步骤:
步骤S3:计算在参考状态信息中所包含的功放增益与实时功放增益的差值;
步骤S4:在差值超出预设范围的情况下,确定功放处于故障状态。
在优选实施例中,若源信息中的功放增益与预设时间点处的实时功放增益的差值在预设范围内,则确定功放处于非故障状态。
优选地,在步骤S202中,获取功放的当前状态信息可以包括以下操作:
步骤S5:获取在数字预失真过程中的最大补偿校验值。
在优选实施例中,可以通过DSP开辟一个通道,在特定的时间不断读取整机(无线通信系统)运行过程中监控表格的峰值-最大补偿校验值。
优选地,在步骤S204中,将当前状态信息与参考状态信息进行比较,根据比较结果对功放进行故障检测可以包括步骤:
步骤S6:将获取到的最大补偿校验值与参考状态信息中所包含的最大补偿校验值进行比较;
步骤S7:在获取到的最大补偿校验值大于参考状态信息中所包含的最大补偿校验值的情况下,确定功放处于故障状态。
在优选实施例中,若预设时间点处的最大补偿校验值小于或者等于源信息中的最大补偿校验值,功放处于非故障状态。即该功放正常工作状态下,不应存在大于该最大补偿校验值的校验值。若存在大于所述最大补偿校验值的值,则功放处于故障状态。
优选地,在步骤S4或步骤S7,确定功放处于故障状态之后,还可以包括以下操作:
步骤S8:获取功放在故障状态下的属性参数信息集合;
步骤S9:将属性参数信息集合以及故障状态信息上报至服务器,并发出功放异常告警。
在优选实施过程中,上述属性参数信息集合可以包括但不限于以下至少之一:功放的输入电压、功放的输出电压、功放的输入电流、功放的输入功率、功放的输出功率、功放的温度、功放的反射功率。
在优选实施例中,可以将功放的实时状态信息及故障状态上报到后台(服务器),并发出功放异常状态告警,这样维护人员便可以清楚地知道是该功放出了问题,并可以通过该功放的实时状态信息对该功放进行定位分析,及时采取措施对该功放进行维护。
为了更好的实现上述目的,如图3所示,本发明实施例还提供一种功放故障检测装置,包括:
目标信息获取模块10,设置为在一预设时间点获取所述功放的实时目标信息;
故障获取模块20,设置为根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放的故障状态。
本发明具体实施例中,上述功放故障检测装置还包括:
获取模块,设置为获取处于故障状态时刻的功放的实时状态信息,并保存;
告警模块,设置为将所述功放的实时状态信息及故障状态发送给服务器,并发出功放异常告警。
具体的,所述故障状态时刻的功放的实时状态信息包括功放的输入电压、输出电压、输入电流、输入功率、输出功率、功放温度和反射功率。
本发明的上述实施例中,所述目标信息获取模块10包括:
第一目标信息获取子模块,设置为在一预设时间点获取所述功放的输入功率和输出功率;
第二目标信息获取子模块,设置为根据所述输入功率和所述输出功率获取所述预设时间点处所述功放的实时功放增益。
具体的,如图4所示,所述第一目标信息获取子模块包括:
第一耦合器,设置于无线通信系统的收发信单板和所述功放之间;
第二耦合器,设置于所述功放和所述无线通信系统的双工器之间;
射频开关,所述射频开关的输出端与所述无线通信系统的收发信单板的反馈链路输入端连接;其中,所述第一耦合器的耦合端和所述第二耦合器的耦合端均连接到所述射频开关的输入端;
一数字信号处理器或现场可编程门阵列通过所述第一耦合器、第二耦合器及所述射频开关增加一通道选择,在一预设时间点读取所述功放的输入功率和输出功率。
需要说明的是,本发明实施例中的其他与该功放相关的,如反射功率、输入电压、输出电压等信息,均可通过该数字信号处理器或现场可编程门阵列在特定的时间、特定的通道读取。如图4中的第三耦合器,设置于功放耦合端与无线通信系统的收发信单板之间,同时第三耦合器的耦合端也连接到所述射频开关的输入端,则数字信号处 理器或现场可编程门阵列通过所述第一耦合器、第二耦合器及所述射频开关增加一通道选择,在一预设时间点,通过特定的通道读取所述功放的反射功率。
本发明具体实施例中,所述故障获取模块20包括:
第一故障获取子模块,设置为将所述源信息中的功放增益与所述预设时间点处的实时功放增益比较,若源信息中的功放增益与所述预设时间点处的实时功放增益的差值超出所述预设范围,所述功放处于故障状态。
具体实施例一:检测功放增益异常
步骤一:首先获取此整机的功放基本信息,功放增益记为G,此功放的增益平坦度记为A
步骤二:通过DSP或FPGA在特定的时间、特定的通道读取功放输入功率,记为P1;
步骤三:通过DSP或FPGA在特定的时间、特定的通道读取功放输出功率,记为P2;
步骤四:计算P2-P1的差值(需要说明是,此处P2和P1的单位均为dB),与G比较,差值在A的范围内,不做处理,若差值大于A,进行下一步
步骤五:通过DSP或者FPGA在特定的时间、特定的通道读取功放反射功率,记为P3;
步骤六:通过DSP或FPGA读取此时功放的输入电压、输出电压、输入电流、功放温度,并将这些信息一并保存
步骤七:此时高层向后台(OMMB)上报功放状态异常告警,并将保存在功放信息一并上报,这样维护人员便可以清楚地知道是功放出了问题,并通过这些信息进行定位分析。
本发明又一实施例中,所述目标信息获取模块10还包括:
第三目标信息获取子模块,设置为在一预设时间点获取所述无线通信系统在数字预失真过程中的最大补偿校验值。
承续上例,本发明实施例中,所述故障获取模块20还包括:
第二故障获取子模块,设置为将所述预设时间点处的最大补偿校验值与所述源信息中的最大补偿校验值进行比较,若所述预设时间点处的最大补偿校验值大于所述源信息中的最大补偿校验值,所述功放处于故障状态。
具体的,所述第二故障获取子模块中的所述功放的故障状态为功放压缩状态。
具体实施例2:检测功放压缩
第一步:首先获取此整机的DPD表格峰值最大补偿校验值,记为B;
第二步:通过DSP开辟一个通道,在特定的时间不断读取整机运行过程中表格峰值最大补偿校验值,记为C;
第三步:计算C-B的值,若差值小于0,不做处理,若差值大于0,进行下一步操作;
第四步:通过DSP或者FPGA在特定的时间、特定的通道读取功放输入功率、输出功率、反射功率、输入电压、输入电流和功放温度;并将这些信息一并保存
第五步:此时高层向后台(OMMB)上报功放压缩告警,并将保存的功放信息一并上报,这样维护人员便可以清楚地知道是功放已经压缩,需采取措施进行预处理。
图5是根据本发明实施例的另一种功放故障检测装置的结构框图。如图5所示,该功放故障检测装置可以包括:第一获取模块30,用于获取功放的当前状态信息;检测模块40,用于将当前状态信息与参考状态信息进行比较,根据当前状态信息与参考状态信息的比较结果对功放进行故障检测,其中,参考状态信息为功放在正常工作状态下的状态信息。
优选地,第一获取模块30可以包括:第一获取单元(图中未示出),用于获取功放在当前时刻的输入功率和输出功率;第一计算单元(图中未示出),用于采用输出功率与输入功率求取功放的实时功放增益。
优选地,第一获取单元可以包括:第一耦合器,设置于无线通信系统的收发信单板与功放之间;第二耦合器,设置于功放与无线通信系统的双工器之间;射频开关,其输出端与收发信单板的反馈链路输入端相连接,其输入端与第一耦合器的耦合端以及第二耦合器的耦合端相连接;其中,通过第一耦合器、第二耦合器以及射频开关增加通道选择,用于读取功放的输入功率和输出功率。
优选地,检测模块40可以包括:第二计算单元(图中未示出),用于计算在参考状态信息中所包含的功放增益与实时功放增益的差值;第一确定单元(图中未示出),用于在差值超出预设范围的情况下,确定功放处于故障状态。
优选地,第一获取模块30可以包括:第二获取单元(图中未示出),用于获取在数字预失真过程中的最大补偿校验值。
优选地,检测模块40可以包括:比较单元(图中未示出),用于将获取到的最大补偿校验值与参考状态信息中所包含的最大补偿校验值进行比较;第二确定单元(图中未示出),用于在获取到的最大补偿校验值大于参考状态信息中所包含的最大补偿校验值的情况下,确定功放处于故障状态。
优选地,如图6所示,上述装置还可以包括:第二获取模块50,用于获取功放在故障状态下的属性参数信息集合;上报模块60,用于将属性参数信息集合以及故障状态信息上报至服务器,并发出功放异常告警。
在优选实施过程中,上述属性参数信息集合可以包括但不限于以下至少之一:功放的输入电压、功放的输出电压、功放的输入电流、功放的输入功率、功放的输出功率、功放的温度、功放的反射功率。
本发明实施例提供的功放故障检测方法中,通过对比一功放非故障状态下的源信息和上述功放的实时目标信息,获取该功放的实时故障状态,使研发人员能够及时了解该功放是否存在故障,便于及时进行维修等后续处理工作;同时将对处于故障状态的功放进行告警提示,且此告警附带部分功放出故障时的信息,极大的提高了故障排查的效率和成本,节省了大量人力物力,节约成本。
需要说明的是,本发明实施例提供的功放故障检测装置是应用上述方法的装置,则上述方法的所有实施例均适用于该装置,且均能达到相同或相似的有益效果。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
工业实用性
如上所述,本发明实施例提供的一种功放故障检测方法及装置具有以下有益效果:使得研发人员能够及时了解该功放是否存在故障,便于及时进行维修等后续处理工作; 同时将对处于故障状态的功放进行告警提示,且此告警附带部分功放出故障时的信息,极大的提高了故障排查的效率和成本,节省了大量人力物力,节约成本。

Claims (30)

  1. 一种功放故障检测方法,包括:
    在一预设时间点获取所述功放的实时目标信息;
    根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放是否处于故障状态。
  2. 根据权利要求1所述的功放故障检测方法,其中,若所述功放处于故障状态,所述功放故障检测方法还包括:
    获取处于故障状态时刻的功放的实时状态信息,并保存;
    将所述功放的实时状态信息及故障状态发送给服务器,并发出功放异常告警。
  3. 根据权利要求2所述的功放故障检测方法,其中,所述故障状态时刻的功放的实时状态信息包括功放的输入电压、输出电压、输入电流、输入功率、输出功率、功放温度和/或反射功率。
  4. 根据权利要求1所述的功放故障检测方法,其中,所述在一预设时间点获取所述功放的实时目标信息的步骤包括:
    在一预设时间点获取所述功放的输入功率和输出功率;
    根据所述输入功率和所述输出功率获取所述预设时间点处所述功放的实时功放增益。
  5. 根据权利要求4所述的功放故障检测方法,其中,根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放的故障状态的步骤包括:
    将所述源信息中的功放增益与所述预设时间点处的实时功放增益比较,若源信息中的功放增益与所述预设时间点处的实时功放增益的差值超出一预设范围,则确定所述功放处于故障状态。
  6. 根据权利要求1所述的功放故障检测方法,其中,所述在一预设时间点获取所述功放的实时目标信息的步骤包括:
    在一预设时间点获取所述无线通信系统在数字预失真过程中的最大补偿校验值。
  7. 根据权利要求6所述的功放故障检测方法,其中,根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放的故障状态的步骤包括:
    将所述预设时间点处的最大补偿校验值与所述源信息中的最大补偿校验值进行比较,若所述预设时间点处的最大补偿校验值大于所述源信息中的最大补偿校验值,则确定所述功放处于故障状态。
  8. 一种功放故障检测装置,包括:
    目标信息获取模块,设置为在一预设时间点获取所述功放的实时目标信息;
    故障获取模块,设置为根据所述功放的实时目标信息和与所述功放的实时目标信息对应的处于非故障状态下的所述功放的源信息,确定所述功放是否处于故障状态。
  9. 根据权利要求8所述的功放故障检测装置,其中,还包括:
    获取模块,设置为获取处于故障状态时刻的功放的实时状态信息,并保存;
    告警模块,设置为将所述功放的实时状态信息及故障状态发送给服务器,并发出功放异常告警。
  10. 根据权利要求9所述的功放故障检测装置,其中,所述故障状态时刻的功放的实时状态信息包括功放的输入电压、输出电压、输入电流、输入功率、输出功率、功放温度和/或反射功率。
  11. 根据权利要求8所述的功放故障检测装置,其中,所述目标信息获取模块包括:
    第一目标信息获取子模块,设置为在一预设时间点获取所述功放的输入功率和输出功率;
    第二目标信息获取子模块,设置为根据所述输入功率和所述输出功率获取所述预设时间点处所述功放的实时功放增益。
  12. 根据权利要求11所述的功放故障检测装置,其中,所述第一目标信息获取子模块包括:
    第一耦合器,设置于无线通信系统的收发信单板和所述功放之间;
    第二耦合器,设置于所述功放和所述无线通信系统的双工器之间;
    射频开关,所述射频开关的输出端与所述无线通信系统的收发信单板的反馈链路输入端连接;其中,所述第一耦合器的耦合端和所述第二耦合器的耦合端均连接到所述射频开关的输入端;
    一数字信号处理器或现场可编程门阵列通过所述第一耦合器、第二耦合器及所述射频开关增加一通道选择,在一预设时间点读取所述功放的输入功率和输出功率。
  13. 根据权利要求11所述的功放故障检测装置,其中,所述故障获取模块包括:
    第一故障获取子模块,设置为将所述源信息中的功放增益与所述预设时间点处的实时功放增益比较,若源信息中的功放增益与所述预设时间点处的实时功放增益的差值超出一预设范围,则确定所述功放处于故障状态。
  14. 根据权利要求8所述的功放故障检测装置,其中,所述目标信息获取模块还包括:
    第三目标信息获取子模块,设置为在一预设时间点获取所述无线通信系统在数字预失真过程中的最大补偿校验值。
  15. 根据权利要求14所述的功放故障检测装置,其中,所述故障获取模块还包括:
    第二故障获取子模块,设置为将所述预设时间点处的最大补偿校验值与所述源信息中的最大补偿校验值进行比较,若所述预设时间点处的最大补偿校验值大于所述源信息中的最大补偿校验值,则确定所述功放处于故障状态。
  16. 一种功放故障检测方法,包括:
    获取功放的当前状态信息;
    将所述当前状态信息与参考状态信息进行比较,根据所述当前状态信息与所述参考状态信息的比较结果对所述功放进行故障检测,其中,所述参考状态信息为所述功放在正常工作状态下的状态信息。
  17. 根据权利要求16所述的功放故障检测方法,其中,获取所述功放的所述当前状态信息包括:
    获取所述功放在当前时刻的输入功率和输出功率;
    采用所述输出功率与所述输入功率求取所述功放的实时功放增益。
  18. 根据权利要求17所述的功放故障检测方法,其中,将所述当前状态信息与所述参考状态信息进行比较,根据所述比较结果对所述功放进行故障检测包括:
    计算在所述参考状态信息中所包含的功放增益与所述实时功放增益的差值;
    在所述差值超出预设范围的情况下,确定所述功放处于故障状态。
  19. 根据权利要求16所述的功放故障检测方法,其中,获取所述功放的所述当前状态信息包括:获取在数字预失真过程中的最大补偿校验值。
  20. 根据权利要求19所述的功放故障检测方法,其中,将所述当前状态信息与所述参考状态信息进行比较,根据所述比较结果对所述功放进行故障检测包括:
    将获取到的最大补偿校验值与所述参考状态信息中所包含的最大补偿校验值进行比较;
    在获取到的最大补偿校验值大于所述参考状态信息中所包含的最大补偿校验值的情况下,确定所述功放处于故障状态。
  21. 根据权利要求18或20所述的功放故障检测方法,其中,在确定所述功放处于所述故障状态之后,还包括:
    获取所述功放在所述故障状态下的属性参数信息集合;
    将所述属性参数信息集合以及故障状态信息上报至服务器,并发出功放异常告警。
  22. 根据权利要求21所述的功放故障检测方法,其中,所述属性参数信息集合包括以下至少之一:所述功放的输入电压、所述功放的输出电压、所述功放的输入电流、所述功放的输入功率、所述功放的输出功率、所述功放的温度、所述功放的反射功率。
  23. 一种功放故障检测装置,包括:
    第一获取模块,用于获取功放的当前状态信息;
    检测模块,用于将所述当前状态信息与参考状态信息进行比较,根据所述当前状态信息与所述参考状态信息的比较结果对所述功放进行故障检测,其中,所述参考状态信息为所述功放在正常工作状态下的状态信息。
  24. 根据权利要求23所述的功放故障检测装置,其中,所述第一获取模块包括:
    第一获取单元,用于获取所述功放在当前时刻的输入功率和输出功率;
    第一计算单元,用于采用所述输出功率与所述输入功率求取所述功放的实时功放增益。
  25. 根据权利要求24所述的功放故障检测装置,其中,所述第一获取单元包括:
    第一耦合器,设置于无线通信系统的收发信单板与所述功放之间;
    第二耦合器,设置于所述功放与所述无线通信系统的双工器之间;
    射频开关,其输出端与所述收发信单板的反馈链路输入端相连接,其输入端与所述第一耦合器的耦合端以及所述第二耦合器的耦合端相连接;
    其中,通过所述第一耦合器、第二耦合器以及所述射频开关增加通道选择,用于读取所述功放的输入功率和输出功率。
  26. 根据权利要求24所述的功放故障检测装置,其中,所述检测模块包括:
    第二计算单元,用于计算在所述参考状态信息中所包含的功放增益与所述实时功放增益的差值;
    第一确定单元,用于在所述差值超出预设范围的情况下,确定所述功放处于故障状态。
  27. 根据权利要求23所述的功放故障检测装置,其中,所述第一获取模块包括:第二获取单元,用于获取在数字预失真过程中的最大补偿校验值。
  28. 根据权利要求27所述的功放故障检测装置,其中,所述检测模块包括:
    比较单元,用于将获取到的最大补偿校验值与所述参考状态信息中所包含的最大补偿校验值进行比较;
    第二确定单元,用于在获取到的最大补偿校验值大于所述参考状态信息中所包含的最大补偿校验值的情况下,确定所述功放处于故障状态。
  29. 根据权利要求26或28所述的功放故障检测装置,其中,所述装置还包括:
    第二获取模块,用于获取所述功放在所述故障状态下的属性参数信息集合;
    上报模块,用于将所述属性参数信息集合以及故障状态信息上报至服务器,并发出功放异常告警。
  30. 根据权利要求29所述的功放故障检测装置,其中,所述属性参数信息集合包括以下至少之一:所述功放的输入电压、所述功放的输出电压、所述功放的输入电流、所述功放的输入功率、所述功放的输出功率、所述功放的温度、所述功放的反射功率。
PCT/CN2014/092065 2014-07-11 2014-11-24 一种功放故障检测方法及装置 WO2015154476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410331857.1A CN105282776A (zh) 2014-07-11 2014-07-11 一种功放故障检测方法及装置
CN201410331857.1 2014-07-11

Publications (1)

Publication Number Publication Date
WO2015154476A1 true WO2015154476A1 (zh) 2015-10-15

Family

ID=54287230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092065 WO2015154476A1 (zh) 2014-07-11 2014-11-24 一种功放故障检测方法及装置

Country Status (2)

Country Link
CN (1) CN105282776A (zh)
WO (1) WO2015154476A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109783050A (zh) * 2019-02-28 2019-05-21 努比亚技术有限公司 一种声音调整方法、移动终端和存储介质
CN111308303A (zh) * 2020-02-19 2020-06-19 Tcl移动通信科技(宁波)有限公司 一种移动终端射频功率放大器检测方法及装置
CN111796156A (zh) * 2019-04-03 2020-10-20 亚德诺半导体国际无限责任公司 功率放大器故障检测器
CN112986734A (zh) * 2021-02-19 2021-06-18 北京首钢自动化信息技术有限公司 一种语音通讯系统的故障检测装置
WO2023142787A1 (zh) * 2022-01-28 2023-08-03 Oppo广东移动通信有限公司 功率放大器pa故障隔离的方法、终端设备及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863974A (zh) * 2017-08-31 2018-03-30 中国电子科技集团公司第三十八研究所 一种固态发射机前级网络自动切换控制系统
CN110138950B (zh) * 2019-05-14 2021-05-28 惠州Tcl移动通信有限公司 移动终端的wifi异常检测方法、计算机可读存储介质及移动终端
CN111141993A (zh) * 2019-12-29 2020-05-12 歌尔股份有限公司 一种外部设备的故障定位方法、系统及主机
CN113809993B (zh) * 2021-11-18 2022-03-04 成都市卫莱科技有限公司 一种针对功放的工作信号监测控制装置、系统及方法
CN114325227B (zh) * 2021-12-21 2024-01-23 南京长峰航天电子科技有限公司 一种射频阵列馈电系统故障定位方法及系统
CN116471198B (zh) * 2023-06-19 2023-10-03 南京典格通信科技有限公司 一种基于受限玻尔兹曼机的功放故障预测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124208A (ja) * 2005-10-27 2007-05-17 Sanyo Electric Co Ltd 無線モジュール
CN101478772A (zh) * 2009-01-14 2009-07-08 珠海银邮光电技术发展股份有限公司 直放站上行链路故障告警模块和故障告警方法
CN101777879A (zh) * 2010-01-15 2010-07-14 福建三元达通讯股份有限公司 双路双向塔顶放大器的旁路控制方法
CN103595358A (zh) * 2012-08-17 2014-02-19 京信通信系统(广州)有限公司 一种射频功率放大器及其告警信息保存方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124208A (ja) * 2005-10-27 2007-05-17 Sanyo Electric Co Ltd 無線モジュール
CN101478772A (zh) * 2009-01-14 2009-07-08 珠海银邮光电技术发展股份有限公司 直放站上行链路故障告警模块和故障告警方法
CN101777879A (zh) * 2010-01-15 2010-07-14 福建三元达通讯股份有限公司 双路双向塔顶放大器的旁路控制方法
CN103595358A (zh) * 2012-08-17 2014-02-19 京信通信系统(广州)有限公司 一种射频功率放大器及其告警信息保存方法和装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109783050A (zh) * 2019-02-28 2019-05-21 努比亚技术有限公司 一种声音调整方法、移动终端和存储介质
CN109783050B (zh) * 2019-02-28 2024-04-23 努比亚技术有限公司 一种声音调整方法、移动终端和存储介质
CN111796156A (zh) * 2019-04-03 2020-10-20 亚德诺半导体国际无限责任公司 功率放大器故障检测器
CN111796156B (zh) * 2019-04-03 2024-03-08 亚德诺半导体国际无限责任公司 功率放大器故障检测器
CN111308303A (zh) * 2020-02-19 2020-06-19 Tcl移动通信科技(宁波)有限公司 一种移动终端射频功率放大器检测方法及装置
CN111308303B (zh) * 2020-02-19 2022-07-08 Tcl移动通信科技(宁波)有限公司 一种移动终端射频功率放大器检测方法及装置
CN112986734A (zh) * 2021-02-19 2021-06-18 北京首钢自动化信息技术有限公司 一种语音通讯系统的故障检测装置
WO2023142787A1 (zh) * 2022-01-28 2023-08-03 Oppo广东移动通信有限公司 功率放大器pa故障隔离的方法、终端设备及存储介质

Also Published As

Publication number Publication date
CN105282776A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
WO2015154476A1 (zh) 一种功放故障检测方法及装置
US9603032B2 (en) System and method for automatically measuring uplink noise level of distributed antenna system
KR102333457B1 (ko) 진동과 소음신호를 이용한 기계결함진단장치 및 그 신호를 이용한 빅데이터 기반의 스마트 센서 시스템
KR101383813B1 (ko) 변압기 감시 진단 시스템 및 방법
WO2021244296A1 (zh) 一种基于人工智能的电力工况物联监控装置及方法
CN207408542U (zh) 一种基于光纤的变压器局部放电在线监测系统
KR102316469B1 (ko) 다중 제어 출력신호를 통한 기기의 건전성 지수 검출방법
US20200401596A1 (en) Test data integration system and method thereof
CN113411147B (zh) 用于毫米波无线信道仿真系统中的平坦度测量和校准方法
KR102209098B1 (ko) 자가 점검 모드 및 원격 계측 기능을 가지는 5g용 전력 증폭기의 운용 제어 방법
WO2023184949A1 (zh) 基于电磁监测的配电终端热插拔模块监测装置及方法
CN103872996B (zh) 基站功率放大器的多通道电路及其控制方法
CN110031808B (zh) 一种在线闭环验证的微波功率模块自检系统
CN103227683B (zh) 一种对rru故障进行联合检测的方法及装置
CN104333332A (zh) 一种Doherty功放的控制方法和装置
CN209030228U (zh) 一种微波电路校准自检电路
KR20210000538A (ko) 제어 출력신호를 통한 기기의 건전성 지수 검출방법
CN110568249A (zh) 一种基于环流电流检测的并联电力变压器监测系统及其监测方法
US11366460B2 (en) System for monitoring electrical devices and a method thereof
CN102123422A (zh) 通信通道的故障检测方法和设备
CN205749712U (zh) 一种车载电子的自动化测试装置
CN104063984A (zh) 不良品超标的自动警报方法
CN112637751A (zh) 一种语音模块测试电路、方法、装置及存储介质
TWI472890B (zh) 故障預警方法
CN113809993A (zh) 一种针对功放的工作信号监测控制装置、系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889086

Country of ref document: EP

Kind code of ref document: A1