WO2015152737A2 - Doped rare earth nitride materials and devices comprising same - Google Patents

Doped rare earth nitride materials and devices comprising same Download PDF

Info

Publication number
WO2015152737A2
WO2015152737A2 PCT/NZ2015/050039 NZ2015050039W WO2015152737A2 WO 2015152737 A2 WO2015152737 A2 WO 2015152737A2 NZ 2015050039 W NZ2015050039 W NZ 2015050039W WO 2015152737 A2 WO2015152737 A2 WO 2015152737A2
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
magnesium
earth nitride
nitride material
doped rare
Prior art date
Application number
PCT/NZ2015/050039
Other languages
French (fr)
Other versions
WO2015152737A3 (en
Inventor
Franck NATALI
Benjamin John RUCK
Harry Joseph Trodahl
Stéphane Ange VÉZIAN
Original Assignee
Natali Franck
Ruck Benjamin John
Harry Joseph Trodahl
Vézian Stéphane Ange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Natali Franck, Ruck Benjamin John, Harry Joseph Trodahl, Vézian Stéphane Ange filed Critical Natali Franck
Priority to CN201580024829.8A priority Critical patent/CN106460229B/en
Priority to EP15772411.3A priority patent/EP3127146A4/en
Priority to US15/300,757 priority patent/US10415153B2/en
Priority to KR1020167030552A priority patent/KR102328525B1/en
Priority to JP2016560766A priority patent/JP6618481B2/en
Priority to NZ725495A priority patent/NZ725495A/en
Publication of WO2015152737A2 publication Critical patent/WO2015152737A2/en
Publication of WO2015152737A3 publication Critical patent/WO2015152737A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02269Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by thermal evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Definitions

  • the present invention relates to rare earth nitride semiconductors and, more particularly, to magnesium-doped rare earth nitride materials, some of which are semi-insulating or insulating.
  • the present invention further relates to methods for preparing the materials, and devices comprising the materials.
  • the rare earths have atomic numbers from 57 (La) to 71 (Lu), and comprise the elements across which the 4f orbitals are filled: that is, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Pm promethium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Tb terbium
  • Dy dysprosium
  • Ho holmium
  • Er erbium
  • the rare earth nitrides form in the face-centered cubic NaCl structure with lattice constants ranging from -5.3 A for LaN to -4.76 A for LuN, in total a 10% difference across the series and about 0.7% between nitrides of neighbouring atomic species.
  • the rare earth nitrides were first investigated in the 1960s, when technological developments overcame the problems faced in separating the chemically similar members of the rare earth series.
  • the rare earth nitrides have interesting magnetic and electronic properties.
  • the rare earth nitrides have an optical bandgap typically of the order of 1 eV and are almost all ferromagnetic, with magnetic states that vary strongly across the series and coercive fields depending strongly on the growth conditions.
  • SmN is the only known near-zero-moment ferromagnetic semiconductor, with an enormous coercive field, and GdN has a coercive field some three orders of magnitude smaller.
  • the rare earth nitrides show promise in applications as diverse as spintronics, infrared (IR) detectors, and as contacts to group III nitride semiconductor compounds.
  • rare earth nitrides have been used in the fabrication of spin-filter Josephson junctions and field effect transistor structures.
  • the rare earth nitrides are also epitaxy-compatible materials with group III nitride
  • GaN tunnel junctions a technologically important family of materials for the fabrication of, for example, optoelectronic devices and high power transistors.
  • the properties of the rare earth nitrides are also complementary with those of the group III nitrides.
  • a heteroj unction involving these two semiconductor materials could have very attractive properties for multi-wavelength photonic devices and spin light emitting diodes.
  • GdN quantum dots have been shown to enhance the efficiency of GaN tunnel junctions.
  • Semi-insulating and insulating rare earth nitride layers could be useful, optionally in combination with group III nitrides, in the fabrication of, for example, spintronics, electronic and optoelectronic devices. Such layers may avoid, for example, leakage current or degradation of radio frequency performance of such devices.
  • High quality epitaxial thin films of rare earth nitrides can be grown using ultra-high vacuum (UHV)-based methods, such as molecular beam epitaxy (MBE), pulsed-laser deposition (PLD), and DC/RF magnetron sputtering.
  • UHV-based methods typically result in unintentionally doped films that have a resistivity of the order of 0.05 to 10 mQ.cm at room temperature and an n-type residual doping concentration associated with a background electron carrier concentration ranging from 10 to 10 cm , which originates from nitrogen vacancy and depends on the growth conditions.
  • the present invention provides a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof.
  • the present invention provides a method of lanthanum nitride (
  • the present invention provides a magnesium-doped rare earth nitride material when prepared by a method of the second aspect.
  • the present invention also provides a magnesium-doped rare earth nitride material obtainable by a method of the second aspect.
  • the present invention also provides a device comprising a magnesium-doped rare earth nitride material of the invention.
  • This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
  • features or aspects of the invention are described in terms of Markush groups, those persons skilled in the art will appreciate that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.
  • magnesium-doped rare earth nitride material has a resistivity between about 10 3 Q.cm and about 1010 Q.cm at room temperature.
  • insulating means that the magnesium-doped rare earth nitride material has a resistivity greater than about 10 10 Q.cm at room temperature.
  • Figure 1 is a cross section scanning electron microscope image showing the structure of a layer of Mg-doped GdN on a substrate, which comprises an AIN buffer layer deposited on silicon, and with a GaN capping layer;
  • Figure 2 shows the (1 1 1) x-ray rocking curves for a Mg-doped GdN layer and for an undoped GdN layer
  • Figure 3 shows the measured secondary ion mass spectrometry magnesium profile of a Mg- doped GdN layer on a substrate, which comprises an A1N buffer layer deposited on silicon, and with a GaN capping layer;
  • Figure 4(a) shows the in-plane zero field-cooled magnetisation of a Mg-doped GdN layer
  • Figure 4(b) shows the field-dependent magnetisation of a Mg-doped GdN layer
  • Figure 5 shows the resistivity of Mg-doped GdN layers as a function of the electron carrier concentration.
  • the present invention provides magnesium-doped rare earth nitride materials, some of which are semi-insulating and insulating.
  • the present invention also provides a method for preparing such materials by doping the growing rare earth nitride materials with magnesium, which is an acceptor dopant species, to compensate for the donor species and increase the resistivity.
  • the method of the invention enables control of the conductivity of the rare earth nitride materials from n-type through to semi-insulating and insulating.
  • the present invention provides a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof.
  • LaN lanthanum nitride
  • PrN prase
  • the present invention also provides a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof, and wherein the magnesium-doped rare earth nitride material has an increased resistivity compared to the undoped rare earth nitride material.
  • the present invention also provides a semi-insulating or insulating magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
  • the present invention also provides a magnesium-doped rare earth nitride material having a resistivity of at least about 25 Q.cm, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
  • the present invention also provides a magnesium-doped rare earth nitride material having a resistivity of at least about 10 ⁇ . ⁇ , wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
  • the present invention also provides a magnesium-doped rare earth nitride material having a resistivity between about 10 3 Q.cm and about 101 ⁇ 0 ⁇ ⁇ .cm, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
  • the present invention also provides a magnesium-doped rare earth nitride material having a resistivity of at least about 10 10 Q.cm, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
  • the magnesium-doped rare earth nitride material of the invention has a resistivity of at least about 5x 10 ⁇ . ⁇ . In some embodiments, the magnesium-doped rare earth nitride material of the invention has a resistivity of at least about 10 4 ⁇ . ⁇ .
  • undoped GdN typically has a resistivity of about 2x 10 " ⁇ . ⁇ .
  • the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN. In some embodiments, the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
  • the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN. In some embodiments, the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN.
  • the rare earth nitride is a rare earth nitride alloy.
  • the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N.
  • the rare earth nitride alloy is (Sm,Gd)N.
  • the rare earth nitride alloy is (Gd,Ho)N. In some embodiments, the rare earth nitride alloy is (Gd,Dy)N.
  • the rare earth nitride is GdN.
  • magnesium has been found to be effective to compensate residual donor species (that is, nitrogen vacancies) in rare earth nitrides and produce, in some embodiments, a rare earth nitride material that is at least semi-insulating.
  • the magnesium-doped rare earth nitride material of the invention comprises about 10 18 -1021 1 atoms/cm 3" of magnesium. In some embodiments, the magnesium- doped rare earth nitride material of the invention comprises about 10 1 1 8 ⁇ -5 1020 ⁇ atoms/cm 3" of magnesium. In some embodiments, the magnesium-doped rare earth nitride material of the invention comprises about 10 19 -5x 1020 atoms/cm 3 of magnesium.
  • the magnesium-doped rare earth nitride material of the invention may, however, further comprise one or more additional dopant(s).
  • the magnesium-doped rare earth nitride material of the invention comprises less than about 1021 atoms/cm 3 of additional dopant(s) or other impurities.
  • the magnesium-doped rare earth nitride material of the invention comprises less than about 10 20 atoms/cm 3 of additional dopant(s) or other impurities.
  • the magnesium-doped rare earth nitride material of the invention comprises less than about 10 19 atoms/cm 3 of additional dopant(s) or other impurities.
  • the magnesium-doped rare earth nitride material is a thin film.
  • the film thickness is about 1 -2000 nm. In some embodiments, the film thickness is about 5-2000 nm. In some embodiments, the film thickness is about 1-1000 nm. In some embodiments, the film thickness is about 5-1000 nm. In some embodiments, the film thickness is about 10-200 nm.
  • the magnesium-doped rare earth nitride material of the invention has an increased resistivity compared to the undoped rare earth nitride material.
  • the magnetic properties of the magnesium-doped rare earth nitride material are, however, generally not substantially different to those of the undoped rare earth nitride material.
  • the magnetic properties of the magnesium-doped rare earth nitride material can be measured using known techniques and instrumentation, such as a superconducting quantum interference device (SQUID).
  • the magnesium-doped rare earth nitride material is ferromagnetic below about 50 , preferably below about 70 .
  • the structural properties of the magnesium-doped rare earth nitride material are generally not substantially different to those of the undoped rare earth nitride material.
  • the structural properties of the magnesium-doped rare earth nitride material can be measured using known techniques and instrumentation, such as x-ray diffraction (XRD) measurements.
  • XRD x-ray diffraction
  • the magnesium-doped rare earth nitride material has substantially the same XRD measurements as the undoped rare earth nitride.
  • the magnesium-doped rare earth nitride material comprises a thin film on a substrate.
  • Suitable substrates are non-reactive with the magnesium-doped rare earth nitride material and are stable during the processing conditions used for preparing the magnesium-doped rare earth nitride material.
  • the substrate is a conductor.
  • the substrate is a semiconductor.
  • the substrate is an insulator.
  • the substrate is crystalline, but the invention is not limited thereto.
  • the magnesium-doped rare earth nitride material is epitaxial with the substrate. In other embodiments, the magnesium-doped rare earth nitride material is
  • the substrate is AIN, GaN or an (Al,In,Ga)N alloy.
  • suitable substrates include, but are not limited to, yttria-stabilized zirconia (YSZ) and MgO. Further suitable substrates include, but are not limited to Al, W, Cr, Cu, Gd, Mg, TaN, NbN, GaAs, and MgF 2 .
  • Suitable substrates also include multilayer-structured materials.
  • multilayer- structured substrates may comprise a buffer layer in contact with the magnesium-doped rare earth nitride material.
  • the multilayer-structured material comprises a buffer layer of an undoped rare earth nitride.
  • the substrate comprises Si or A1 2 0 3 , optionally with a buffer layer of AIN or GaN.
  • the buffer layer is an (Al,In,Ga)N alloy.
  • the substrate comprises deoxidized silicon oriented along the (1 1 1) plane. In some embodiments, the substrate comprises deoxidized silicon oriented along the (1 1 1) plane with an epitaxial AIN buffer layer.
  • the magnesium-doped rare earth nitride material is capped.
  • Suitable capping layers are non-reactive with the magnesium-doped rare earth nitride material.
  • the capping layer may be epitaxial with the magnesium-doped rare earth nitride material, polycrystalline, or amorphous.
  • the capping layer is a conductor. In other embodiments, the capping layer is a semiconductor. In other embodiments, the capping layer is an insulator.
  • Suitable materials for the capping layer include, but are not limited to Al, W, Cr, Cu, Gd, Mg, TaN, NbN, Si, YSZ, GaN, GaAs, AIN, (Al,In,Ga)N alloys, and MgF 2 .
  • the capping layer is selected from AIN, GaN, (Al,In,Ga)N alloys, and Si.
  • the capping layer is selected from AIN and GaN.
  • AIN and GaN are transparent, allowing optical measurements.
  • Other advantages of AIN and GaN include their ease of growth and good chemical stability over time.
  • the capping layer is GaN.
  • the magnesium-doped rare earth nitride material may be prepared by growing the rare earth nitride in the presence of magnesium atoms.
  • the invention is not limited thereto, and the magnesium-doped rare earth nitride material may be prepared by other methods known to those skilled in the art, including but not limited to implantation and diffusion methods.
  • the present invention provides a method of preparing a magnesium-doped rare earth nitride material of the invention, the method comprising the step of:
  • the magnesium-doped rare earth nitride material is deposited on a substrate. Suitable substrates are discussed above.
  • the present invention provides a method of preparing a magnesium-doped rare earth nitride material of the invention, the method comprising the step of:
  • the method further comprises the step of:
  • step (b) depositing a capping layer on the magnesium-doped rare earth nitride deposited in step (a). Suitable capping layers are discussed above.
  • the magnesium-doped rare earth nitride material, and the optional capping layer can be deposited using ultra-high vacuum techniques known to those skilled in the art. Suitable techniques include, but are not limited to, physical vapour deposition (PVD), including pulsed laser deposition (PLD) and DC/RF magnetron sputtering, thermal evaporation, and molecular beam epitaxy (MBE). Other techniques, including but not limited to metalorganic chemical vapour deposition (MOCVD), may also be used.
  • PVD physical vapour deposition
  • PLD pulsed laser deposition
  • MBE molecular beam epitaxy
  • MOCVD metalorganic chemical vapour deposition
  • the magnesium-doped rare earth nitride material and the optional capping layer are sequentially deposited by MBE.
  • reflection high energy electron diffraction (RHEED) is used for monitoring the growth of the layer(s).
  • the base pressure in the MBE apparatus is typically about 10 " Torr or less.
  • the magnesium source is a magnesium-containing substance capable of providing gaseous magnesium atoms at the growth surface.
  • the magnesium source is magnesium.
  • the magnesium source can be an effusion cell containing solid magnesium, which is evaporated during the deposition.
  • the rare earth can be provided from a source of the rare earth element, such as an effusion cell containing the solid rare earth, which is evaporated during the deposition.
  • a source of the rare earth element such as an effusion cell containing the solid rare earth, which is evaporated during the deposition.
  • the nitrogen source provides reactive nitrogen atoms at the growth surface.
  • the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, such as a nitrogen plasma or ionized nitrogen, or mixtures of any two or more thereof.
  • the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, such as a nitrogen plasma or ionized nitrogen.
  • the nitrogen source is ammonia.
  • the nitrogen source flux is typically a factor of at least 100 larger than the rare earth flux. If the ratio of the nitrogen source flux to the rare earth flux is less than about 100, the resulting films are likely to be heavily doped by nitrogen vacancies.
  • the partial pressure or beam equivalent pressure (BEP) of the nitrogen source is about 10 " 5 -10 "3 Torr, preferably about 10 "5 -10 "4 Torr.
  • the BEP of the nitrogen source is about 1.9x l0 "5 Torr.
  • the BEP of the rare earth is about 10 " -10 " Torr.
  • the BEP of the rare earth is about 5x 10 " Torr.
  • the BEP of magnesium is about 10 "9 -5> ⁇ 10 "6 Torr, preferably about 10 "9 - 5x l0 "7 Torr.
  • the magnesium-doped rare earth nitride material is typically deposited at a rate of about 0.01-1 nm/second. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-0.5 nm/second. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-0.15 nm/second. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-0.1 nm/second.
  • the magnesium-doped rare earth nitride material is deposited at ambient or elevated temperatures.
  • the magnesium-doped rare earth nitride material is generally deposited at elevated temperatures where it is desirable that the material be epitaxial with the substrate on which it is to be deposited. Accordingly, in some embodiments, the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-900 °C. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-750 °C.
  • the magnesium-doped rare earth nitride material may, however, be deposited at lower temperatures than those above, or even at ambient temperature, particularly if a polycrystalline material is desired. Depositing the magnesium-doped rare earth nitride material at lower temperatures typically results in fewer nitrogen vacancies.
  • the temperature during the deposition may be conveniently measured with an optical pyrometer, or other suitable apparatus as is known in the art, for example a thermocouple.
  • two or more rare earth elements are simultaneously evaporated in the presence of a nitrogen source and a magnesium source, as discussed above, to provide a magnesium-doped rare earth nitride material of the invention wherein the rare earth nitride is an alloy.
  • the substrate and/or capping layer comprise(s) a group III nitride
  • alloys of group III nitrides are also contemplated.
  • one or more dopants may be introduced during deposition of the magnesium-doped rare earth nitride material. Such dopants can alter the magnetic and/or electric properties of the resulting magnesium-doped rare earth nitride material.
  • the present invention provides a magnesium-doped rare earth nitride material when prepared by a method of the second aspect.
  • the present invention also provides a magnesium-doped rare earth nitride material obtainable by a method of the second aspect.
  • the magnesium-doped rare earth nitride material of the invention may be useful in the fabrication of, for example, spintronics, electronic and optoelectronic devices. Accordingly, the present invention also provides a device comprising a magnesium-doped rare earth nitride material of the invention.
  • Gadolinium nitride films doped with magnesium were grown in a molecular beam epitaxy system equipped with conventional Al, Ga, Mg and Gd evaporation cells.
  • the purity of the as-received Al, Ga, Mg and Gd solid charges was 6N5, 7N5, 5N and 3N, respectively.
  • Atomic nitrogen species were produced by the thermally activated decomposition of ammonia (NH 3 ) on the growing surface. The purity of the NH 3 was 6N5.
  • a 100 nm thick AIN buffer layer was grown on a deoxidized silicon substrate oriented along the (1 1 1) plane.
  • BEP beam equivalent pressure
  • the BEP of magnesium typically ranged from 10 "9 to 5x l0 "7 Torr.
  • the thickness of the Mg-doped GdN films ranged from 100 nm to 200 nm.
  • the Mg-doped GdN layers were capped with a 60 nm thick GaN layer to prevent decomposition in air.
  • Undoped GdN films grown under the conditions described above had a resistivity of about 2x 10 " ⁇ -cm at room temperature, while incorporating Mg in the GdN layer led to higher resistivity.
  • Mg-doped GdN layers with a Mg concentration of about l x 10 19 atoms/cm 3 and about 5x 10 19 atoms/cm 3 had resistivities of about 25 ⁇ . ⁇ and greater than 10 4 ⁇ . ⁇ , respectively.
  • the resistivity was measured at room temperature using a van der Pauw geometry.
  • the resistivity of undoped GdN films grown under the conditions described above is about 1.7x 10 " ⁇ . ⁇ at 4 .
  • Figure 1 is a cross section scanning electron microscope image showing the structure of a 140 nm thick layer of Mg-doped GdN on a substrate, which comprises a 106 nm thick AIN buffer layer deposited on silicon, and with a 64 nm thick GaN capping layer.
  • the crystalline order/quality of a Mg-doped GdN layer is comparable to that of an undoped GdN layer grown under the same conditions.
  • Figure 2 shows that for a 140 nm thick Mg-doped GdN layer with a concentration of 5x 1019 Mg atoms/cm 3 grown at 650°C the (1 1 1) x-ray rocking curve full width at half maximum (FWHM) is comparable with the FWHM for an undoped GdN layer.
  • Figure 3 shows the measured secondary ion mass spectrometry (SIMS) magnesium profile of a Mg-doped GdN layer on a substrate, which comprises an AIN buffer layer deposited on silicon, and with a GaN capping layer.
  • the atomic concentration of magnesium is about l x lO 19 atoms/cm 3 .
  • FIG. 4 The magnetization curves shown in Figure 4 confirm that the magnetic properties of a Mg-doped GdN layer are substantially the same as those of an undoped GdN layer.
  • Figure 4(a) shows the in-plane zero field-cooled (ZFC) magnetisation under an applied field of 250 Oe of a 140 nm thick Mg-doped GdN layer with a Mg concentration of about 5 ⁇ 10 19 atoms/cm 3 measured by SIMS. The Curie temperature is about 70 as per undoped GdN thin films.
  • Figure 4(b) shows the field-dependent magnetisation at 5 of a 140 nm thick Mg-doped GdN layer with a Mg
  • FIG. 5 shows the resistivity of 100 nm thick Mg- doped GdN layers as a function of the electron carrier concentration.
  • the room temperature resistivity varies inversely with the electron density over five orders of magnitude.
  • an undoped GdN layer has a resistivity of about 0.002 Q.cm and an electron carrier
  • a magnesium-doped rare earth nitride material wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride
  • LaN lanthanum nitride
  • PrN praseodymium nitride
  • NdN neodymium n
  • a method of preparing a magnesium-doped rare earth nitride material wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN),
  • PrN praseodymium nitride
  • NdN neodymium nitride
  • SmN samarium nitride
  • EuN europium nitride
  • GdN gadolinium nitride
  • TbN terbium nitride
  • DyN dysprosium nitride
  • HoN holmium nitride
  • ErN erbium nitride
  • TmN thulium nitride
  • YbN ytterbium nitride
  • LuN lutetium nitride
  • magnesium-doped rare earth nitride material depositing the magnesium-doped rare earth nitride material.
  • the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
  • the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
  • the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN.
  • the rare earth nitride is a rare earth nitride alloy.
  • the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N.
  • the magnesium-doped rare earth nitride material comprises about 10 1 1 8 -lCr 21 atoms/cm 3" of magnesium.
  • magnesium-doped rare earth nitride material further comprises one or more additional dopant(s).
  • magnesium-doped rare earth nitride material comprises less than about 10 21 atoms/cm 3 of additional dopant(s) or other impurities.
  • magnesium-doped rare earth nitride material depositing the magnesium-doped rare earth nitride material.
  • step (b) depositing a capping layer on the magnesium-doped rare earth nitride deposited in step (a).
  • a method of clause 55 wherein the ultra-high vacuum technique is selected from the group consisting of physical vapour deposition (PVD), pulsed laser deposition (PLD), DC/RF magnetron sputtering, thermal evaporation, and molecular beam epitaxy (MBE).
  • PVD physical vapour deposition
  • PLD pulsed laser deposition
  • DC/RF magnetron sputtering thermal evaporation
  • MBE molecular beam epitaxy
  • the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, or mixtures of any two or more thereof.
  • a magnesium-doped rare earth nitride material when prepared by a method of clauses 29 to 69.
  • a magnesium-doped rare earth nitride material obtainable by a method of clauses 29 to 69.
  • a device comprising a magnesium-doped rare earth nitride material of clauses 1 to 28, 70 and 71.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Ceramic Products (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

Disclosed herein are magnesium-doped rare earth nitride materials, some of which are semi- insulating or insulating. Also disclosed are methods for preparing the materials. The magnesium-doped rare earth nitride materials may be useful in the fabrication of, for example, spintronics, electronic and optoelectronic devices.

Description

DOPED RARE EARTH NITRIDE MATERIALS AND DEVICES COMPRISING SAME
TECHNICAL FIELD
The present invention relates to rare earth nitride semiconductors and, more particularly, to magnesium-doped rare earth nitride materials, some of which are semi-insulating or insulating. The present invention further relates to methods for preparing the materials, and devices comprising the materials.
BACKGROUND ART
The rare earths have atomic numbers from 57 (La) to 71 (Lu), and comprise the elements across which the 4f orbitals are filled: that is, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu). They have atomic configurations [Xe]6s25dl4fn or [Xe]6s24fn+1 , with n varying from 0 for La to 14 for Lu. Their most common ionic charge state is 3+, with the 4 levels spanning the Fermi energy. They are the only stable elements with more than marginally filled ^shell electronic orbitals and, as a consequence, they are the elements with the largest spin and orbital moments. In ordered solids they contribute to the most strongly ferromagnetic materials, a contribution that has ensured their utility in technologies that require strong permanent magnets. Despite their name they are by no means rare, with the exception of promethium, which has no stable nuclear isotope. The rare earth nitrides form in the face-centered cubic NaCl structure with lattice constants ranging from -5.3 A for LaN to -4.76 A for LuN, in total a 10% difference across the series and about 0.7% between nitrides of neighbouring atomic species. The rare earth nitrides were first investigated in the 1960s, when technological developments overcame the problems faced in separating the chemically similar members of the rare earth series. The rare earth nitrides have interesting magnetic and electronic properties. The rare earth nitrides have an optical bandgap typically of the order of 1 eV and are almost all ferromagnetic, with magnetic states that vary strongly across the series and coercive fields depending strongly on the growth conditions. For example, SmN is the only known near-zero-moment ferromagnetic semiconductor, with an enormous coercive field, and GdN has a coercive field some three orders of magnitude smaller. The rare earth nitrides show promise in applications as diverse as spintronics, infrared (IR) detectors, and as contacts to group III nitride semiconductor compounds. For example, rare earth nitrides have been used in the fabrication of spin-filter Josephson junctions and field effect transistor structures. The rare earth nitrides are also epitaxy-compatible materials with group III nitride
semiconductors, a technologically important family of materials for the fabrication of, for example, optoelectronic devices and high power transistors. The properties of the rare earth nitrides are also complementary with those of the group III nitrides. A heteroj unction involving these two semiconductor materials could have very attractive properties for multi-wavelength photonic devices and spin light emitting diodes. For example, GdN quantum dots have been shown to enhance the efficiency of GaN tunnel junctions.
Semi-insulating and insulating rare earth nitride layers, in particular, could be useful, optionally in combination with group III nitrides, in the fabrication of, for example, spintronics, electronic and optoelectronic devices. Such layers may avoid, for example, leakage current or degradation of radio frequency performance of such devices.
High quality epitaxial thin films of rare earth nitrides can be grown using ultra-high vacuum (UHV)-based methods, such as molecular beam epitaxy (MBE), pulsed-laser deposition (PLD), and DC/RF magnetron sputtering. However, such UHV-based methods typically result in unintentionally doped films that have a resistivity of the order of 0.05 to 10 mQ.cm at room temperature and an n-type residual doping concentration associated with a background electron carrier concentration ranging from 10 to 10 cm , which originates from nitrogen vacancy and depends on the growth conditions.
Accordingly, it is an object of the present invention to go some way to avoiding the above disadvantages; and/or to at least provide the public with a useful choice. Other objects of the invention may become apparent from the following description which is given by way of example only.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date.
SUMMARY OF THE INVENTION
In a first aspect, the present invention provides a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof. In a second aspect, the present invention provides a method of preparing a magnesium-doped rare earth nitride material of the invention, the method comprising the step of:
(a) combining the rare earth and a nitrogen source in the presence of a magnesium source and depositing the magnesium-doped rare earth nitride material.
In a third aspect, the present invention provides a magnesium-doped rare earth nitride material when prepared by a method of the second aspect.
The present invention also provides a magnesium-doped rare earth nitride material obtainable by a method of the second aspect.
The present invention also provides a device comprising a magnesium-doped rare earth nitride material of the invention. This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth. In addition, where features or aspects of the invention are described in terms of Markush groups, those persons skilled in the art will appreciate that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group.
As used herein "(s)" following a noun means the plural and/or singular forms of the noun. As used herein the term "and/or" means "and" or "or" or both.
The term "comprising" as used in this specification means "consisting at least in part of. When interpreting each statement in this specification that includes the term "comprising", features other than that or those prefaced by the term may also be present. Related terms such as "comprise" and "comprises" are to be interpreted in the same manner.
The term "semi-insulating" as used in this specification means that the magnesium-doped rare earth nitride material has a resistivity between about 10 3 Q.cm and about 1010 Q.cm at room temperature.
The term "insulating" as used in this specification means that the magnesium-doped rare earth nitride material has a resistivity greater than about 1010 Q.cm at room temperature.
It is intended that reference to a range of numbers disclosed herein (for example, 1 to 10) also incorporates reference to all rational numbers within that range (for example, 1, 1.1, 2, 3, 3.9, 4, 5, 6, 6.5, 7, 8, 9 and 10) and also any range of rational numbers within that range (for example, 2 to 8, 1.5 to 5.5 and 3.1 to 4.7) and, therefore, all sub-ranges of all ranges expressly disclosed herein are hereby expressly disclosed. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.
Although the present invention is broadly as defined above, those persons skilled in the art will appreciate that the invention is not limited thereto and that the invention also includes embodiments of which the following description gives examples.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described with reference to the Figures in which:
Figure 1 is a cross section scanning electron microscope image showing the structure of a layer of Mg-doped GdN on a substrate, which comprises an AIN buffer layer deposited on silicon, and with a GaN capping layer;
Figure 2 shows the (1 1 1) x-ray rocking curves for a Mg-doped GdN layer and for an undoped GdN layer; Figure 3 shows the measured secondary ion mass spectrometry magnesium profile of a Mg- doped GdN layer on a substrate, which comprises an A1N buffer layer deposited on silicon, and with a GaN capping layer;
Figure 4(a) shows the in-plane zero field-cooled magnetisation of a Mg-doped GdN layer; Figure 4(b) shows the field-dependent magnetisation of a Mg-doped GdN layer; and
Figure 5 shows the resistivity of Mg-doped GdN layers as a function of the electron carrier concentration.
DETAILED DESCRIPTION OF THE INVENTION
It is difficult to grow semi-insulating and insulating rare earth nitride materials using known UHV-based methods. Such UHV-based methods typically result in unintentionally doped thin films that, when epitaxial, have a resistivity of the order of 0.05 to 10 mQ.cm at room
temperature and an n-type residual doping concentration associated with a background electron carrier concentration ranging from 10 to 10 cm , which originates from nitrogen vacancy and depends on the growth conditions.
The present invention, however, provides magnesium-doped rare earth nitride materials, some of which are semi-insulating and insulating. The present invention also provides a method for preparing such materials by doping the growing rare earth nitride materials with magnesium, which is an acceptor dopant species, to compensate for the donor species and increase the resistivity. The method of the invention enables control of the conductivity of the rare earth nitride materials from n-type through to semi-insulating and insulating.
Accordingly, in a first aspect, the present invention provides a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof.
The present invention also provides a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof, and wherein the magnesium-doped rare earth nitride material has an increased resistivity compared to the undoped rare earth nitride material.
The present invention also provides a semi-insulating or insulating magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
The present invention also provides a magnesium-doped rare earth nitride material having a resistivity of at least about 25 Q.cm, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
The present invention also provides a magnesium-doped rare earth nitride material having a resistivity of at least about 10 Ω.αη, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof. The present invention also provides a magnesium-doped rare earth nitride material having a resistivity between about 10 3 Q.cm and about 101ι0υ Ω .cm, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
The present invention also provides a magnesium-doped rare earth nitride material having a resistivity of at least about 1010 Q.cm, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN, and alloys of any two or more thereof.
In some embodiments, the magnesium-doped rare earth nitride material of the invention has a resistivity of at least about 5x 10 Ω.αη. In some embodiments, the magnesium-doped rare earth nitride material of the invention has a resistivity of at least about 104 Ω.αη.
In contrast, undoped GdN typically has a resistivity of about 2x 10" Ω.αη.
In some embodiments, the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, EuN, GdN, TbN, DyN, HoN, ErN, TmN, YbN, and LuN. In some embodiments, the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
In some embodiments, the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN. In some embodiments, the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
In some embodiments, the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
In some embodiments, the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
In some embodiments, the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN.
In some embodiments, the rare earth nitride is a rare earth nitride alloy. In some embodiments, the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N. In some embodiments, the rare earth nitride alloy is (Sm,Gd)N. In some
embodiments, the rare earth nitride alloy is (Gd,Ho)N. In some embodiments, the rare earth nitride alloy is (Gd,Dy)N.
In some embodiments, the rare earth nitride is GdN.
Surprisingly, magnesium has been found to be effective to compensate residual donor species (that is, nitrogen vacancies) in rare earth nitrides and produce, in some embodiments, a rare earth nitride material that is at least semi-insulating.
In some embodiments, the magnesium-doped rare earth nitride material of the invention comprises about 10 18 -10211 atoms/cm 3" of magnesium. In some embodiments, the magnesium- doped rare earth nitride material of the invention comprises about 10 118ο-5 1020υ atoms/cm 3" of magnesium. In some embodiments, the magnesium-doped rare earth nitride material of the invention comprises about 10 19 -5x 1020 atoms/cm 3 of magnesium.
The magnesium-doped rare earth nitride material of the invention may, however, further comprise one or more additional dopant(s). Generally, the magnesium-doped rare earth nitride material of the invention comprises less than about 1021 atoms/cm 3 of additional dopant(s) or other impurities. In some embodiments, the magnesium-doped rare earth nitride material of the invention comprises less than about 10 20 atoms/cm 3 of additional dopant(s) or other impurities. In some embodiments, the magnesium-doped rare earth nitride material of the invention comprises less than about 10 19 atoms/cm 3 of additional dopant(s) or other impurities.
In some embodiments, the magnesium-doped rare earth nitride material is a thin film.
In some embodiments, the film thickness is about 1 -2000 nm. In some embodiments, the film thickness is about 5-2000 nm. In some embodiments, the film thickness is about 1-1000 nm. In some embodiments, the film thickness is about 5-1000 nm. In some embodiments, the film thickness is about 10-200 nm.
Advantageously, the magnesium-doped rare earth nitride material of the invention has an increased resistivity compared to the undoped rare earth nitride material. The magnetic properties of the magnesium-doped rare earth nitride material are, however, generally not substantially different to those of the undoped rare earth nitride material. The magnetic properties of the magnesium-doped rare earth nitride material can be measured using known techniques and instrumentation, such as a superconducting quantum interference device (SQUID). In some embodiments, the magnesium-doped rare earth nitride material is ferromagnetic below about 50 , preferably below about 70 .
In addition, the structural properties of the magnesium-doped rare earth nitride material are generally not substantially different to those of the undoped rare earth nitride material.
The structural properties of the magnesium-doped rare earth nitride material can be measured using known techniques and instrumentation, such as x-ray diffraction (XRD) measurements. In some embodiments, the magnesium-doped rare earth nitride material has substantially the same XRD measurements as the undoped rare earth nitride. In some embodiments, the magnesium-doped rare earth nitride material comprises a thin film on a substrate.
Suitable substrates are non-reactive with the magnesium-doped rare earth nitride material and are stable during the processing conditions used for preparing the magnesium-doped rare earth nitride material. In some embodiments, the substrate is a conductor. In other embodiments, the substrate is a semiconductor. In other embodiments, the substrate is an insulator.
In some embodiments, the substrate is crystalline, but the invention is not limited thereto.
In some embodiments, the magnesium-doped rare earth nitride material is epitaxial with the substrate. In other embodiments, the magnesium-doped rare earth nitride material is
polycrystalline.
In some embodiments, the substrate is AIN, GaN or an (Al,In,Ga)N alloy.
Other suitable substrates include, but are not limited to, yttria-stabilized zirconia (YSZ) and MgO. Further suitable substrates include, but are not limited to Al, W, Cr, Cu, Gd, Mg, TaN, NbN, GaAs, and MgF2.
Suitable substrates also include multilayer-structured materials. For example, multilayer- structured substrates may comprise a buffer layer in contact with the magnesium-doped rare earth nitride material. In some embodiments, the multilayer-structured material comprises a buffer layer of an undoped rare earth nitride.
In some embodiments, the substrate comprises Si or A1203, optionally with a buffer layer of AIN or GaN. In other embodiments, the buffer layer is an (Al,In,Ga)N alloy.
In some embodiments, the substrate comprises deoxidized silicon oriented along the (1 1 1) plane. In some embodiments, the substrate comprises deoxidized silicon oriented along the (1 1 1) plane with an epitaxial AIN buffer layer.
In some embodiments, the magnesium-doped rare earth nitride material is capped.
Due to their decomposition in air, thin films of rare earth nitrides on a substrate are generally passivated with an effective capping layer to avoid reaction with the ambient atmosphere. Suitable capping layers are non-reactive with the magnesium-doped rare earth nitride material. The capping layer may be epitaxial with the magnesium-doped rare earth nitride material, polycrystalline, or amorphous.
In some embodiments, the capping layer is a conductor. In other embodiments, the capping layer is a semiconductor. In other embodiments, the capping layer is an insulator.
Suitable materials for the capping layer include, but are not limited to Al, W, Cr, Cu, Gd, Mg, TaN, NbN, Si, YSZ, GaN, GaAs, AIN, (Al,In,Ga)N alloys, and MgF2.
In some embodiments, the capping layer is selected from AIN, GaN, (Al,In,Ga)N alloys, and Si.
In some embodiments, the capping layer is selected from AIN and GaN. Advantageously, AIN and GaN are transparent, allowing optical measurements. Other advantages of AIN and GaN include their ease of growth and good chemical stability over time.
In some embodiments, the capping layer is GaN.
The magnesium-doped rare earth nitride material may be prepared by growing the rare earth nitride in the presence of magnesium atoms. However, the invention is not limited thereto, and the magnesium-doped rare earth nitride material may be prepared by other methods known to those skilled in the art, including but not limited to implantation and diffusion methods.
Accordingly, in a second aspect, the present invention provides a method of preparing a magnesium-doped rare earth nitride material of the invention, the method comprising the step of:
(a) combining the rare earth and a nitrogen source in the presence of a magnesium source and depositing the magnesium-doped rare earth nitride material.
In some embodiments, the magnesium-doped rare earth nitride material is deposited on a substrate. Suitable substrates are discussed above.
Accordingly, in some embodiments, the present invention provides a method of preparing a magnesium-doped rare earth nitride material of the invention, the method comprising the step of:
(a) combining the rare earth and a nitrogen source in the presence of a magnesium source and depositing the magnesium-doped rare earth nitride material on a substrate.
In some embodiments, the method further comprises the step of:
(b) depositing a capping layer on the magnesium-doped rare earth nitride deposited in step (a). Suitable capping layers are discussed above.
The magnesium-doped rare earth nitride material, and the optional capping layer, can be deposited using ultra-high vacuum techniques known to those skilled in the art. Suitable techniques include, but are not limited to, physical vapour deposition (PVD), including pulsed laser deposition (PLD) and DC/RF magnetron sputtering, thermal evaporation, and molecular beam epitaxy (MBE). Other techniques, including but not limited to metalorganic chemical vapour deposition (MOCVD), may also be used.
In some embodiments, the magnesium-doped rare earth nitride material and the optional capping layer are sequentially deposited by MBE. In some of these embodiments, reflection high energy electron diffraction (RHEED) is used for monitoring the growth of the layer(s).
The base pressure in the MBE apparatus is typically about 10" Torr or less.
The magnesium source is a magnesium-containing substance capable of providing gaseous magnesium atoms at the growth surface. In some embodiments, the magnesium source is magnesium. In those embodiments wherein the magnesium-doped rare earth nitride material is deposited by MBE, the magnesium source can be an effusion cell containing solid magnesium, which is evaporated during the deposition.
Similarly, the rare earth can be provided from a source of the rare earth element, such as an effusion cell containing the solid rare earth, which is evaporated during the deposition. Those persons skilled in the art will appreciate that the doping level in the magnesium-doped rare earth nitride material can be controlled by controlling the relative rates of evaporation of the magnesium and the rare earth.
The nitrogen source provides reactive nitrogen atoms at the growth surface. In some embodiments, the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, such as a nitrogen plasma or ionized nitrogen, or mixtures of any two or more thereof. In some embodiments, the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, such as a nitrogen plasma or ionized nitrogen.
In some embodiments, the nitrogen source is ammonia. The nitrogen source flux is typically a factor of at least 100 larger than the rare earth flux. If the ratio of the nitrogen source flux to the rare earth flux is less than about 100, the resulting films are likely to be heavily doped by nitrogen vacancies.
In some embodiments wherein the magnesium-doped rare earth nitride material is deposited by MBE, the partial pressure or beam equivalent pressure (BEP) of the nitrogen source is about 10" 5-10"3 Torr, preferably about 10"5-10"4 Torr.
In some embodiments, the BEP of the nitrogen source is about 1.9x l0"5 Torr.
In some embodiments, the BEP of the rare earth is about 10" -10" Torr.
In some embodiments, the BEP of the rare earth is about 5x 10" Torr.
In some embodiments, the BEP of magnesium is about 10"9-5>< 10"6 Torr, preferably about 10"9- 5x l0"7 Torr.
The magnesium-doped rare earth nitride material is typically deposited at a rate of about 0.01-1 nm/second. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-0.5 nm/second. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-0.15 nm/second. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-0.1 nm/second.
In some embodiments, the magnesium-doped rare earth nitride material is deposited at ambient or elevated temperatures.
The magnesium-doped rare earth nitride material is generally deposited at elevated temperatures where it is desirable that the material be epitaxial with the substrate on which it is to be deposited. Accordingly, in some embodiments, the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-900 °C. In some embodiments, the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-750 °C.
The magnesium-doped rare earth nitride material may, however, be deposited at lower temperatures than those above, or even at ambient temperature, particularly if a polycrystalline material is desired. Depositing the magnesium-doped rare earth nitride material at lower temperatures typically results in fewer nitrogen vacancies.
The temperature during the deposition may be conveniently measured with an optical pyrometer, or other suitable apparatus as is known in the art, for example a thermocouple. In some embodiments, two or more rare earth elements are simultaneously evaporated in the presence of a nitrogen source and a magnesium source, as discussed above, to provide a magnesium-doped rare earth nitride material of the invention wherein the rare earth nitride is an alloy.
Similarly, in those embodiments wherein the substrate and/or capping layer comprise(s) a group III nitride, alloys of group III nitrides are also contemplated.
Those persons skilled in the art will appreciate that one or more dopants may be introduced during deposition of the magnesium-doped rare earth nitride material. Such dopants can alter the magnetic and/or electric properties of the resulting magnesium-doped rare earth nitride material.
In a third aspect, the present invention provides a magnesium-doped rare earth nitride material when prepared by a method of the second aspect.
The present invention also provides a magnesium-doped rare earth nitride material obtainable by a method of the second aspect.
The magnesium-doped rare earth nitride material of the invention may be useful in the fabrication of, for example, spintronics, electronic and optoelectronic devices. Accordingly, the present invention also provides a device comprising a magnesium-doped rare earth nitride material of the invention.
The following non-limiting examples are provided to illustrate the present invention and in no way limit the scope thereof. EXAMPLES
Gadolinium nitride films doped with magnesium (Mg-doped GdN) were grown in a molecular beam epitaxy system equipped with conventional Al, Ga, Mg and Gd evaporation cells. The purity of the as-received Al, Ga, Mg and Gd solid charges was 6N5, 7N5, 5N and 3N, respectively. Atomic nitrogen species were produced by the thermally activated decomposition of ammonia (NH3) on the growing surface. The purity of the NH3 was 6N5. Prior to the growth of Mg-doped GdN, a 100 nm thick AIN buffer layer was grown on a deoxidized silicon substrate oriented along the (1 1 1) plane.
The Mg-doped GdN films were grown at a substrate temperature of 650 °C using a beam equivalent pressure (BEP) of 1.9x 10" 5 Torr and 5x 10" 8 Torr for NH3 and Gd, respectively, leading to a growth rate of about 0.12=1=0.01 μηι/1ι. The BEP of magnesium typically ranged from 10"9 to 5x l0"7 Torr.
The thickness of the Mg-doped GdN films ranged from 100 nm to 200 nm. The Mg-doped GdN layers were capped with a 60 nm thick GaN layer to prevent decomposition in air. Undoped GdN films grown under the conditions described above had a resistivity of about 2x 10" Ω-cm at room temperature, while incorporating Mg in the GdN layer led to higher resistivity. Mg-doped GdN layers with a Mg concentration of about l x 1019 atoms/cm3 and about 5x 1019 atoms/cm3 had resistivities of about 25 Ω.αη and greater than 104 Ω.αη, respectively.
Unless otherwise specified, the resistivity was measured at room temperature using a van der Pauw geometry.
The resistivity of undoped GdN films grown under the conditions described above is about 1.7x 10" Ω.αη at 4 . Mg-doped GdN layers with a Mg concentration of about
1 x 10 19 atoms/cm 3 and about 5x 1019 atoms/cm 3 had resistivities at 4 of about 4 Ω.αη and greater than 104 Ω.αη, respectively. Figure 1 is a cross section scanning electron microscope image showing the structure of a 140 nm thick layer of Mg-doped GdN on a substrate, which comprises a 106 nm thick AIN buffer layer deposited on silicon, and with a 64 nm thick GaN capping layer.
The crystalline order/quality of a Mg-doped GdN layer is comparable to that of an undoped GdN layer grown under the same conditions. Figure 2 shows that for a 140 nm thick Mg-doped GdN layer with a concentration of 5x 1019 Mg atoms/cm 3 grown at 650°C the (1 1 1) x-ray rocking curve full width at half maximum (FWHM) is comparable with the FWHM for an undoped GdN layer.
Figure 3 shows the measured secondary ion mass spectrometry (SIMS) magnesium profile of a Mg-doped GdN layer on a substrate, which comprises an AIN buffer layer deposited on silicon, and with a GaN capping layer. The atomic concentration of magnesium is about l x lO19 atoms/cm3.
The magnetization curves shown in Figure 4 confirm that the magnetic properties of a Mg-doped GdN layer are substantially the same as those of an undoped GdN layer. Figure 4(a) shows the in-plane zero field-cooled (ZFC) magnetisation under an applied field of 250 Oe of a 140 nm thick Mg-doped GdN layer with a Mg concentration of about 5^ 10 19 atoms/cm 3 measured by SIMS. The Curie temperature is about 70 as per undoped GdN thin films. Figure 4(b) shows the field-dependent magnetisation at 5 of a 140 nm thick Mg-doped GdN layer with a Mg
19 3
concentration of about 5 x 10 atoms/cm measured by SIMS. The magnetic moment is about 7 Bohr magneton per gadolinium ion and the coercive field about 100 Oe as per undoped GdN films.
Resistivity and Hall effect measurements were performed at room temperature on Mg-doped GdN films with various Mg concentrations. Figure 5 shows the resistivity of 100 nm thick Mg- doped GdN layers as a function of the electron carrier concentration. The room temperature resistivity varies inversely with the electron density over five orders of magnitude. For example, an undoped GdN layer has a resistivity of about 0.002 Q.cm and an electron carrier
concentration of 6.9 x 10 cm while an Mg-doped GdN layer with a Mg concentration of about 5x l019 atoms/cm3 has resistivity of about 104 Q.cm and an electron carrier concentration of 6.6x l015 cnf3. Various aspects of the present invention are described by the following clauses:
1. A magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride
(LuN), and alloys of any two or more thereof. 2. A magnesium-doped rare earth nitride material of clause 1, wherein the magnesium-doped rare earth nitride material has an increased resistivity compared to the undoped rare earth nitride material.
3. A magnesium-doped rare earth nitride material of clause 1 or 2, wherein the magnesium- doped rare earth nitride material has a resistivity of at least about 25 Q.cm.
4. A magnesium-doped rare earth nitride material of clauses 1 to 3, wherein the magnesium- doped rare earth nitride material has a resistivity of at least about 10 Ω.αη.
5. A magnesium-doped rare earth nitride material of clauses 1 to 4, wherein the magnesium- doped rare earth nitride material has a resistivity between about 10 3 Q.cm and about 1010 Q.cm.
6. A magnesium-doped rare earth nitride material of clauses 1 to 4, wherein the magnesium- doped rare earth nitride material has a resistivity of at least about 1010 Q.cm.
7. A magnesium-doped rare earth nitride material of clauses 1 to 6, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
8. A magnesium-doped rare earth nitride material of clauses 1 to 6, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
9. A magnesium-doped rare earth nitride material of clauses 1 to 8, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
10. A magnesium-doped rare earth nitride material of clauses 1 to 7, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN.
1 1. A magnesium-doped rare earth nitride material of clauses 1 to 6 and 8, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
12. A magnesium-doped rare earth nitride material of clauses 1 to 1 1, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN. 13. A magnesium-doped rare earth nitride material of clauses 1 to 12, wherein the rare earth nitride is GdN.
14. A magnesium-doped rare earth nitride material of clauses 1 to 9, wherein the rare earth nitride is a rare earth nitride alloy. 15. A magnesium-doped rare earth nitride material of clause 14, wherein the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N.
16. A magnesium-doped rare earth nitride material of clauses 1 to 15, comprising about 10 18 -
10 21 atoms/cm 3 of magnesium.
17. A magnesium-doped rare earth nitride material of clauses 1 to 16, further comprising one or more additional dopant(s).
18. A magnesium-doped rare earth nitride material of clauses 1 to 17, comprising less than about 10 21 atoms/cm 3 of additional dopant(s) or other impurities.
19. A magnesium-doped rare earth nitride material of clauses 1 to 18, wherein the magnesium- doped rare earth nitride material is ferromagnetic below about 50 .
20. A magnesium-doped rare earth nitride material of clauses 1 to 19, wherein the magnesium- doped rare earth nitride material is ferromagnetic below about 70 .
21. A magnesium-doped rare earth nitride material of clauses 1 to 20, wherein the magnesium- doped rare earth nitride material has substantially the same XRD measurements as the undoped rare earth nitride.
22. A magnesium-doped rare earth nitride material of clauses 1 to 21, wherein the magnesium- doped rare earth nitride material is a thin film.
23. A magnesium-doped rare earth nitride material of clause 22, wherein the film thickness is about 1-2000 nm.
24. A magnesium-doped rare earth nitride material of clause 22 or 23, wherein the thin film is on a substrate.
25. A magnesium-doped rare earth nitride material of clause 24, wherein the magnesium- doped rare earth nitride material is epitaxial with the substrate.
26. A magnesium-doped rare earth nitride material of clause 24 or 25, wherein the substrate comprises a buffer layer in contact with the magnesium-doped rare earth nitride material.
27. A magnesium-doped rare earth nitride material of clauses 1 to 26, wherein the magnesium- doped rare earth nitride material is capped.
28. A magnesium-doped rare earth nitride material of clause 27, wherein the capping layer is epitaxial with the magnesium-doped rare earth nitride material.
29. A method of preparing a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN),
praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof, the method comprising the step of:
(a) combining the rare earth and a nitrogen source in the presence of a magnesium
source and depositing the magnesium-doped rare earth nitride material.
A method of clause 29, wherein the magnesium-doped rare earth nitride material has an increased resistivity compared to the undoped rare earth nitride material.
A method of clause 29 or 30, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 25 Q.cm.
A method of clauses 29 to 31, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 10 Q.cm.
A method of clauses 29 to 32, wherein the magnesium-doped rare earth nitride material has a resistivity between about 10 3 Q.cm and about 101ι0υ Ω .cm.
A method of clauses 29 to 32, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 1010 Ω.αη.
A method of clauses 29 to 34, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
A method of clauses 29 to 34, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
A method of clauses 29 to 36, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
A method of clauses 29 to 35, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN.
A method of clauses 29 to 34 and 36, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
A method of clauses 29 to 39, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN.
A method of clauses 29 to 40, wherein the rare earth nitride is GdN.
A method of clauses 29 to 37, wherein the rare earth nitride is a rare earth nitride alloy. A method of clause 42, wherein the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N. A method of clauses 29 to 43, wherein the magnesium-doped rare earth nitride material comprises about 10 118 -lCr 21 atoms/cm 3" of magnesium.
A method of clauses 29 to 44, wherein the magnesium-doped rare earth nitride material further comprises one or more additional dopant(s).
A method of clauses 29 to 45, wherein the magnesium-doped rare earth nitride material comprises less than about 10 21 atoms/cm 3 of additional dopant(s) or other impurities.
A method of clauses 29 to 46, wherein the magnesium-doped rare earth nitride material is ferromagnetic below about 50 .
A method of clauses 29 to 47, wherein the magnesium-doped rare earth nitride material is ferromagnetic below about 70 .
A method of clauses 29 to 48, wherein the magnesium-doped rare earth nitride material has substantially the same XRD measurements as the undoped rare earth nitride.
A method of preparing a magnesium-doped rare earth nitride material of clauses 1 to 23, the method comprising the step of:
(a) combining the rare earth and a nitrogen source in the presence of a magnesium
source and depositing the magnesium-doped rare earth nitride material.
A method of clauses 29 to 50, wherein the magnesium-doped rare earth nitride material deposited on a substrate.
A method of clause 51, wherein the magnesium-doped rare earth nitride material is epitaxial with the substrate.
A method of clauses 29 to 52, the method further comprising the step of:
(b) depositing a capping layer on the magnesium-doped rare earth nitride deposited in step (a).
A method of clause 53, wherein the capping layer is epitaxial with the magnesium-doped rare earth nitride material.
A method of clauses 29 to 54, wherein the magnesium-doped rare earth nitride material is deposited using an ultra-high vacuum technique.
A method of clause 55, wherein the ultra-high vacuum technique is selected from the group consisting of physical vapour deposition (PVD), pulsed laser deposition (PLD), DC/RF magnetron sputtering, thermal evaporation, and molecular beam epitaxy (MBE). A method of clauses 29 to 56, wherein the magnesium-doped rare earth nitride material is deposited by MBE.
A method of clauses 29 to 57, wherein the magnesium source is magnesium. 59. A method of clauses 29 to 58, wherein the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, or mixtures of any two or more thereof.
60. A method of clause 59, wherein the source of active nitrogen is a nitrogen plasma or
ionized nitrogen
61. A method of clauses 29 to 59, wherein the nitrogen source is ammonia.
62. A method of clauses 29 to 61, wherein the nitrogen source flux is a factor of at least 100 larger than the rare earth flux.
63. A method of clauses 29 to 62, wherein the magnesium-doped rare earth nitride material is deposited by MBE, and the partial pressure or beam equivalent pressure (BEP) of the nitrogen source is about 10" 5 -10" 3 Torr.
64. A method of clause 63, wherein the BEP of the rare earth is about 10" -10" Torr.
65. A method of clause 63 or 64, wherein the BEP of magnesium is about 10"9-5 l0"6 Torr.
66. A method of clauses 29 to 65, wherein the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-1 nm/second.
67. A method of clauses 29 to 66, wherein the magnesium-doped rare earth nitride material is deposited at ambient or elevated temperatures.
68. A method of clauses 29 to 67, wherein the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-900 °C.
69. A method of clauses 29 to 68, wherein the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-750 °C.
70. A magnesium-doped rare earth nitride material when prepared by a method of clauses 29 to 69.
71. A magnesium-doped rare earth nitride material obtainable by a method of clauses 29 to 69.
72. A device comprising a magnesium-doped rare earth nitride material of clauses 1 to 28, 70 and 71.
It is not the intention to limit the scope of the invention to the abovementioned examples only. As would be appreciated by a skilled person in the art, many variations are possible without departing from the scope of the invention as set out in the accompanying claims.

Claims

A magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN), praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof.
A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the magnesium-doped rare earth nitride material has an increased resistivity compared to the undoped rare earth nitride material.
A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 25 Q.cm. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 10 Ω.αη. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the magnesium-doped rare earth nitride material has a resistivity between about 10 Q.cm and about 1010 Q.cm.
A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 1010 Q.cm. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN.
11. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
12. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and
ErN.
13. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is GdN.
14. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the rare earth nitride is a rare earth nitride alloy.
15. A magnesium-doped rare earth nitride material as claimed in claim 14, wherein the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N.
16. A magnesium-doped rare earth nitride material as claimed in claim 1, comprising about 10 1l8o-1021l atoms/cm 3J of magnesium.
17. A magnesium-doped rare earth nitride material as claimed in claim 1, further comprising one or more additional dopant(s).
18. A magnesium-doped rare earth nitride material as claimed in claim 1, comprising less than about 10 21 atoms/cm 3 of additional dopant(s) or other impurities.
19. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the
magnesium-doped rare earth nitride material is ferromagnetic below about 50 .
20. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the
magnesium-doped rare earth nitride material is ferromagnetic below about 70 .
21. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the
magnesium-doped rare earth nitride material has substantially the same XRD
measurements as the undoped rare earth nitride.
22. A magnesium-doped rare earth nitride material as claimed in claim 1, wherein the
magnesium-doped rare earth nitride material is a thin film.
23. A magnesium-doped rare earth nitride material as claimed in claim 22, wherein the film thickness is about 1-2000 nm.
24. A magnesium-doped rare earth nitride material as claimed in claim 22, wherein the thin film is on a substrate.
25. A magnesium-doped rare earth nitride material as claimed in claim 24, wherein the
magnesium-doped rare earth nitride material is epitaxial with the substrate.
26. A magnesium-doped rare earth nitride material as claimed in claim 24, wherein the substrate comprises a buffer layer in contact with the magnesium-doped rare earth nitride material.
27. A magnesium-doped rare earth nitride material as claimed claim 1, wherein the
magnesium-doped rare earth nitride material is capped.
28. A magnesium-doped rare earth nitride material as claimed in claim 27, wherein the
capping layer is epitaxial with the magnesium-doped rare earth nitride material.
29. A method of preparing a magnesium-doped rare earth nitride material, wherein the rare earth nitride is selected from the group consisting of lanthanum nitride (LaN),
praseodymium nitride (PrN), neodymium nitride (NdN), samarium nitride (SmN), europium nitride (EuN), gadolinium nitride (GdN), terbium nitride (TbN), dysprosium nitride (DyN), holmium nitride (HoN), erbium nitride (ErN), thulium nitride (TmN), ytterbium nitride (YbN), and lutetium nitride (LuN), and alloys of any two or more thereof, the method comprising the step of:
(a) combining the rare earth and a nitrogen source in the presence of a magnesium
source and depositing the magnesium-doped rare earth nitride material.
30. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material has an increased resistivity compared to the undoped rare earth nitride material.
31. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 25 Q.cm.
32. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 10 Q.cm.
33. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material has a resistivity between about 10 3 Q.cm and about 101ι0υ Ω .cm.
34. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material has a resistivity of at least about 1010 Ω.αη.
35. A method as claimed in claim 29, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN, and alloys of any two or more thereof.
36. A method as claimed in claim 29, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN, and alloys of any two or more thereof.
37. A method as claimed in claim 29, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN, and alloys of any two or more thereof.
38. A method as claimed in claim 29, wherein the rare earth nitride is selected from the group consisting of LaN, PrN, NdN, SmN, GdN, TbN, DyN, HoN, ErN, TmN, and LuN.
39. A method as claimed in claim 29, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, EuN, GdN, DyN, HoN, ErN, and YbN.
40. A method as claimed in claim 29, wherein the rare earth nitride is selected from the group consisting of NdN, SmN, GdN, DyN, HoN, and ErN.
41. A method as claimed in claim 29, wherein the rare earth nitride is GdN.
42. A method as claimed in claim 29, wherein the rare earth nitride is a rare earth nitride alloy.
43. A method as claimed in claim 42, wherein the rare earth nitride alloy is selected from the group consisting of (Sm,Gd)N, (Gd,Ho)N, and (Gd,Dy)N.
44. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material comprises about 10 118 -lCr 21 atoms/cm 3" of magnesium.
45. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material further comprises one or more additional dopant(s).
46. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material comprises less than about 10 21 atoms/cm 3 of additional dopant(s) or other impurities.
47. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is ferromagnetic below about 50 .
48. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is ferromagnetic below about 70 .
49. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material has substantially the same XRD measurements as the undoped rare earth nitride.
50. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited on a substrate.
51. A method as claimed in claim 51 , wherein the magnesium-doped rare earth nitride material is epitaxial with the substrate.
52. A method as claimed in claim 29, the method further comprising the step of:
(b) depositing a capping layer on the magnesium-doped rare earth nitride deposited in step (a).
53. A method as claimed in claim 52, wherein the capping layer is epitaxial with the
magnesium-doped rare earth nitride material.
54. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited using an ultra-high vacuum technique.
55. A method as claimed in claim 54, wherein the ultra- high vacuum technique is selected from the group consisting of physical vapour deposition (PVD), pulsed laser deposition (PLD), DC/RF magnetron sputtering, thermal evaporation, and molecular beam epitaxy (MBE).
56. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited by MBE.
57. A method as claimed in claim 29, wherein the magnesium source is magnesium.
58. A method as claimed in claim 29, wherein the nitrogen source is selected from the group consisting of pure molecular nitrogen, ammonia, and a source of active nitrogen, or mixtures of any two or more thereof.
59. A method as claimed in claim 58, wherein the source of active nitrogen is a nitrogen
plasma or ionized nitrogen
60. A method as claimed in claim 29, wherein the nitrogen source is ammonia.
61. A method as claimed in claim 29, wherein the nitrogen source flux is a factor of at least 100 larger than the rare earth flux.
62. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited by MBE, and the partial pressure or beam equivalent pressure (BEP) of the nitrogen source is about 10" 5 -10" 3 Torr.
63. A method as claimed in claim 62, wherein the BEP of the rare earth is about 10" -10" Torr.
64. A method as claimed in claim 62, wherein the BEP of magnesium is about 10"9-5 l0"6 Torr.
65. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited at a rate of about 0.01-1 nm/second.
66. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited at ambient or elevated temperatures.
67. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-900 °C.
68. A method as claimed in claim 29, wherein the magnesium-doped rare earth nitride material is deposited at a temperature of about 500-750 °C.
69. A magnesium-doped rare earth nitride material when prepared by a method as claimed in claim 29.
70. A magnesium-doped rare earth nitride material obtainable by a method as claimed in claim 29.
71. A device comprising a magnesium-doped rare earth nitride material as claimed in claim 1.
72. A device comprising a magnesium-doped rare earth nitride material as claimed in claim 69. 73. A device comprising a magnesium-doped rare earth nitride material as claimed in claim 70.
PCT/NZ2015/050039 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices comprising same WO2015152737A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580024829.8A CN106460229B (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices containing the same
EP15772411.3A EP3127146A4 (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices comprising same
US15/300,757 US10415153B2 (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices comprising same
KR1020167030552A KR102328525B1 (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices comprising same
JP2016560766A JP6618481B2 (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices containing the same
NZ725495A NZ725495A (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ623339 2014-04-02
NZ62333914 2014-04-02

Publications (2)

Publication Number Publication Date
WO2015152737A2 true WO2015152737A2 (en) 2015-10-08
WO2015152737A3 WO2015152737A3 (en) 2016-01-14

Family

ID=54241412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NZ2015/050039 WO2015152737A2 (en) 2014-04-02 2015-03-31 Doped rare earth nitride materials and devices comprising same

Country Status (7)

Country Link
US (1) US10415153B2 (en)
EP (1) EP3127146A4 (en)
JP (1) JP6618481B2 (en)
KR (1) KR102328525B1 (en)
CN (1) CN106460229B (en)
NZ (1) NZ725495A (en)
WO (1) WO2015152737A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104899A1 (en) 2016-12-07 2018-06-14 Victoria University Of Wellington Rare earth nitride structures and devices and method for removing a passivating capping
US10043871B1 (en) * 2017-04-06 2018-08-07 Ecole Polytechnique Federale De Lausanne (Epfl) Rare earth nitride and group III-nitride structure or device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296108B1 (en) * 2014-04-02 2021-09-02 사이먼 에드워드 그랜빌 Magnetic materials and devices comprising rare earth nitrides
US9673281B2 (en) * 2015-09-08 2017-06-06 Macom Technology Solutions Holdings, Inc. Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions
US10229839B2 (en) * 2016-04-29 2019-03-12 The United States Of America, As Represented By The Secretary Of The Navy Transition metal-bearing capping film for group III-nitride devices
EP3649080B1 (en) * 2017-07-03 2021-05-12 Victoria Link Limited Ammonia production method
JP7398803B2 (en) * 2020-02-27 2023-12-15 国立研究開発法人産業技術総合研究所 Nitride materials, piezoelectric bodies made of the same, and MEMS devices using the piezoelectric bodies

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8628609D0 (en) 1986-11-29 1987-01-07 Bp Chemicals Additives Lubricating oil additives
GB9213723D0 (en) 1992-06-27 1992-08-12 Bp Chemicals Additives Process for the production of lubricating oil additives
US5611955A (en) 1993-10-18 1997-03-18 Northrop Grumman Corp. High resistivity silicon carbide substrates for high power microwave devices
JPH11121215A (en) 1997-10-15 1999-04-30 Hitachi Metals Ltd Manufacture of rare-earth magnetic powder
US5998232A (en) 1998-01-16 1999-12-07 Implant Sciences Corporation Planar technology for producing light-emitting devices
CA2311061C (en) 1999-06-11 2009-10-06 National Research Council Of Canada Molecular beam epitaxy (mbe) growth of semi-insulating c-doped gan
US7316837B2 (en) 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
FR2829868A1 (en) 2001-09-20 2003-03-21 Centre Nat Rech Scient Magnetic memory with spin-polarized current writing for storage and reading of data in electronic systems includes a free magnetic layer made from an amorphous or nanocrystalline alloy of a rare earth and a transition metal
FR2829867B1 (en) 2001-09-20 2003-12-19 Centre Nat Rech Scient MAGNETIC MEMORY HAVING SELECTION BY WRITING BY INHIBITION AND METHOD FOR WRITING SAME
JP3592282B2 (en) 2001-10-01 2004-11-24 キヤノン株式会社 Magnetoresistive film and memory using the same
JP2004172218A (en) 2002-11-18 2004-06-17 Sony Corp Magnetic storage element, its recording method, and magnetic storage device
US7205662B2 (en) * 2003-02-27 2007-04-17 Symmorphix, Inc. Dielectric barrier layer films
US7170095B2 (en) 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
US20050122828A1 (en) 2003-09-29 2005-06-09 Matsushita Electric Industrial Co., Ltd. Magnetic switching device and memory using the same
US7271981B2 (en) 2003-11-20 2007-09-18 Seagate Technology Llc Ultrafast pulse field source utilizing optically induced magnetic transformation
JP4792714B2 (en) 2003-11-28 2011-10-12 ソニー株式会社 Storage element and storage device
WO2005060657A2 (en) 2003-12-15 2005-07-07 Yale University Magnetoelectronic devices based on colossal magnetoresistive thin films
JP4830275B2 (en) 2004-07-22 2011-12-07 ソニー株式会社 Memory element
CN1914733A (en) 2004-09-14 2007-02-14 松下电器产业株式会社 Variable-resistance element and non-volatile memory using the same
US7313013B2 (en) 2004-11-18 2007-12-25 International Business Machines Corporation Spin-current switchable magnetic memory element and method of fabricating the memory element
US7037806B1 (en) 2005-02-09 2006-05-02 Translucent Inc. Method of fabricating silicon-on-insulator semiconductor substrate using rare earth oxide or rare earth nitride
US7253080B1 (en) 2005-02-09 2007-08-07 Translucent Inc. Silicon-on-insulator semiconductor wafer
JP2006269688A (en) 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology Nonvolatile memory element
US7580276B2 (en) 2005-03-23 2009-08-25 National Institute Of Advanced Industrial Science And Technology Nonvolatile memory element
US7489073B2 (en) 2005-04-15 2009-02-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Blue to yellow-orange emitting phosphor, and light source having such a phosphor
US7489541B2 (en) 2005-08-23 2009-02-10 Grandis, Inc. Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
JP2007080311A (en) 2005-09-12 2007-03-29 Sony Corp Storage device and semiconductor device
JP4719035B2 (en) 2006-03-13 2011-07-06 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
US7518216B2 (en) 2006-03-20 2009-04-14 Sumitomo Electric Industries, Ltd. Gallium nitride baseplate, epitaxial substrate, and method of forming gallium nitride
US7816737B2 (en) 2006-03-31 2010-10-19 Tokyo Electron Limited Semiconductor device with gate dielectric containing mixed rare earth elements
US8012442B2 (en) 2006-03-31 2011-09-06 Tokyo Electron Limited Method of forming mixed rare earth nitride and aluminum nitride films by atomic layer deposition
US7466585B2 (en) 2006-04-28 2008-12-16 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic random access memory
EP2029790A1 (en) 2006-06-02 2009-03-04 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
US20080079111A1 (en) * 2006-09-29 2008-04-03 Tokyo Electron Limited Semiconductor devices containing nitrided high dielectric constant films
US7820552B2 (en) 2007-03-13 2010-10-26 International Business Machines Corporation Advanced high-k gate stack patterning and structure containing a patterned high-k gate stack
JP5103979B2 (en) * 2007-03-27 2012-12-19 豊田合成株式会社 Electrode forming method for group III nitride compound semiconductor and method for producing p-type group III nitride compound semiconductor
JP2008274342A (en) 2007-04-27 2008-11-13 Tosoh Corp Plasma corrosion-resistant material, and member containing the same
CN100524863C (en) 2007-07-05 2009-08-05 武汉大学 A making method for power-driven LED
JP5050813B2 (en) 2007-11-29 2012-10-17 ソニー株式会社 Memory cell
EP2232495B1 (en) 2007-12-13 2013-01-23 Crocus Technology Magnetic memory with a thermally assisted writing procedure
US7920416B2 (en) 2008-03-12 2011-04-05 International Business Machines Corporation Increased magnetic damping for toggle MRAM
JP5509731B2 (en) 2008-08-04 2014-06-04 株式会社三徳 Rare earth nitride, method for producing the same, magnetic refrigeration material and cold storage material
US20100109018A1 (en) 2008-10-31 2010-05-06 The Regents Of The University Of California Method of fabricating semi-insulating gallium nitride using an aluminum gallium nitride blocking layer
WO2011033873A1 (en) 2009-09-17 2011-03-24 富士電機ホールディングス株式会社 Magnetoresistive element and non-volatile semiconductor memory device using same
JP5825920B2 (en) 2010-08-11 2015-12-02 太平洋セメント株式会社 Method for producing metal nitride
JP5988017B2 (en) * 2011-10-19 2016-09-07 国立研究開発法人産業技術総合研究所 Rare earth nitride based isotropic sintered magnet and method for producing the same
JP2013170098A (en) 2012-02-21 2013-09-02 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for producing transition metal nitride thin film
US9309162B2 (en) 2012-03-23 2016-04-12 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
US20130251942A1 (en) 2012-03-23 2013-09-26 Gisele Azimi Hydrophobic Materials Incorporating Rare Earth Elements and Methods of Manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104899A1 (en) 2016-12-07 2018-06-14 Victoria University Of Wellington Rare earth nitride structures and devices and method for removing a passivating capping
CN110073477A (en) * 2016-12-07 2019-07-30 维多利亚联科有限公司 For the rare earth nitride structure except depassivation cap, Apparatus and method for
JP2020509573A (en) * 2016-12-07 2020-03-26 ビクトリア リンク リミテッド Rare earth nitride structures and devices and methods for removing passivating capping
US11217743B2 (en) 2016-12-07 2022-01-04 Victoria Link Limited Rare earth nitride structures and devices and method for removing a passivating capping
JP7131835B2 (en) 2016-12-07 2022-09-06 ビクトリア リンク リミテッド Rare earth nitride structures and devices and method for removing passivation capping
US10043871B1 (en) * 2017-04-06 2018-08-07 Ecole Polytechnique Federale De Lausanne (Epfl) Rare earth nitride and group III-nitride structure or device

Also Published As

Publication number Publication date
US20170022632A1 (en) 2017-01-26
US10415153B2 (en) 2019-09-17
KR20170005409A (en) 2017-01-13
WO2015152737A3 (en) 2016-01-14
NZ725495A (en) 2020-05-29
JP6618481B2 (en) 2019-12-11
KR102328525B1 (en) 2021-11-19
CN106460229A (en) 2017-02-22
JP2017511294A (en) 2017-04-20
EP3127146A4 (en) 2017-11-08
EP3127146A2 (en) 2017-02-08
CN106460229B (en) 2019-12-10

Similar Documents

Publication Publication Date Title
US10415153B2 (en) Doped rare earth nitride materials and devices comprising same
Norton et al. ZnO: growth, doping & processing
EP3127125B1 (en) Magnetic materials and devices comprising rare earth nitrides
Natali et al. Epitaxial growth and properties of GdN, EuN and SmN thin films
Hite et al. Effect of Si Co doping on ferromagnetic properties of GaGdN
Hite et al. Effect of growth conditions on the magnetic characteristics of GaGdN
Bhosle et al. Observation of room temperature ferromagnetism in Ga: ZnO: A transition metal free transparent ferromagnetic conductor
Zhao et al. Electron-doped superconducting (La, Ce) 2CuO4 thin films grown by dc magnetron sputtering and their transport properties
Lu et al. Molecular-beam-epitaxy growth of ferromagnetic Ni 2 MnGe on GaAs (001)
US10347483B2 (en) Rare earth nitride structure or device and fabrication method
US11217743B2 (en) Rare earth nitride structures and devices and method for removing a passivating capping
Medvedkin et al. Novel spintronic materials based on ferromagnetic semiconductor chalcopyrites
Ullstad et al. Ohmic contacts of Au and Ag metals to n-type GdN thin films
Hite et al. Effects of proton irradiation on the magnetic properties of GaGdN and GaCrN
Lmouchter et al. Sustained coherent epitaxy and role of oxygen vacancies in La0. 7Sr0. 3MnO3− δ thin films grown on SrTiO3 by sputtering
Majid Neon and Manganese Ion Implantation into AlInN
Hite et al. Ferromagnetic Properties of GaGdN Co-Doped with Si
Kane et al. The growth and characterization of room temperature ferromagnetic wideband-gap materials for spintronic applications
Hite et al. Properties of Ferromagnetic GaGdN
Zuo Transition Metal Doped Zinc Oxide as Diluted Magnetic Semiconductor
FUJIMORI et al. NOVEL, SPINTRONIC MATERIALS E ASED ON FERRON/IAC NETIC SEMICONDUCTOR CHALCOPYRITES
Yuk et al. Effects of thermal annealing on the microstructural properties of the lower region in ZnO thin films grown on n-Si (001) substrates
Zuo Transition Metal Doped ZnO as Diluted Magnetic Semiconductor
Melton et al. Development of room temperature spin polarised emitters
Xiu et al. Characteristics of a phosphorus-doped p-type ZnO film by MBE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772411

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2015772411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015772411

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016560766

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15300757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167030552

Country of ref document: KR

Kind code of ref document: A