WO2015152108A1 - Steel-pipe shaping method and shaping device using three-point bending - Google Patents

Steel-pipe shaping method and shaping device using three-point bending Download PDF

Info

Publication number
WO2015152108A1
WO2015152108A1 PCT/JP2015/059835 JP2015059835W WO2015152108A1 WO 2015152108 A1 WO2015152108 A1 WO 2015152108A1 JP 2015059835 W JP2015059835 W JP 2015059835W WO 2015152108 A1 WO2015152108 A1 WO 2015152108A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
press
steel plate
molding
steel
Prior art date
Application number
PCT/JP2015/059835
Other languages
French (fr)
Japanese (ja)
Inventor
正之 堀江
征哉 田村
俊博 三輪
具視 西村
牛尾 富造
憲司 谷一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP15773059.9A priority Critical patent/EP3127625B1/en
Priority to RU2016142577A priority patent/RU2655511C2/en
Priority to BR112016022005-6A priority patent/BR112016022005B1/en
Priority to KR1020167026910A priority patent/KR101852704B1/en
Priority to CN201580016930.9A priority patent/CN106132578B/en
Publication of WO2015152108A1 publication Critical patent/WO2015152108A1/en
Priority to SA516371949A priority patent/SA516371949B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • B21D5/015Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments for making tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • B21C37/0815Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

In this steel-pipe shaping method, in which a raw steel sheet is made into a substantially cylindrical shape via a first-half shaping process whereby three-point bending is performed a plurality of times from one widthwise edge of the raw steel sheet to the widthwise center thereof, a second-half shaping process whereby three-point bending is performed a plurality of times from the other widthwise edge of the raw steel sheet to the widthwise center thereof, and a final shaping process whereby three-point bending is performed on the widthwise center of the raw steel sheet, by dividing the first-half shaping process into a preceding shaping process performed before the second-half shaping process and a following shaping process performed after the second-half shaping process and setting the extent over which shaping is performed in the preceding shaping process to more than 0.17 but less than 0.46 times the width of the steel sheet, the maximum diameter with which steel pipes can be manufactured is increased without modifications to an existing press.

Description

3点曲げプレス成形による鋼管の成形方法および成形装置Steel pipe forming method and forming apparatus by three-point bending press forming
 本発明は、ラインパイプ等に使用される鋼管の成形方法に関するものであり、特に、素材鋼板に複数回の3点曲げプレス成形を用いて鋼管を成形する方法およびその成形装置に関するものである。 The present invention relates to a method for forming a steel pipe used for a line pipe or the like, and more particularly to a method for forming a steel pipe using a plurality of three-point bending press forming on a raw steel plate and a forming apparatus therefor.
 ラインパイプ等に使用される鋼管としては、所定の幅、長さ、板厚を有する素材鋼板をU字状にプレス成形し、次いで、O字状にプレス成形した後、突合せ部を溶接して素材鋼管とし、さらにその素材鋼管の径を拡大(いわゆる拡管)して真円度を高めた鋼管、いわゆるUOE鋼管が広く普及している。しかし、近年、ラインパイプ等に使用される鋼管には、高強度でかつ大径、厚肉の鋼管が使用されるようになってきている。そのため、上記UOE鋼管の製造方法では、素材鋼板をU字状、O字状にプレス成形するのに多大なプレス力が必要となるため、従来の製造設備では製造範囲が制限されたり、製造性が大幅に低下したりする。 For steel pipes used for line pipes, etc., a raw steel plate having a predetermined width, length and thickness is press-formed into a U-shape, and then press-formed into an O-shape, and then the butt portion is welded. A steel pipe having a roundness increased by increasing the diameter of the material steel pipe (so-called pipe expansion), that is, a so-called UOE steel pipe is widely used. However, in recent years, steel pipes used for line pipes and the like have come to use high-strength, large-diameter, thick-walled steel pipes. For this reason, the UOE steel pipe manufacturing method requires a large pressing force to press the raw steel plate into a U shape or an O shape, so that the manufacturing range is limited or the manufacturability is limited by conventional manufacturing equipment. Is significantly reduced.
 そこで、高強度でかつ大径、厚肉の鋼管を製造する際のプレス力を低減することができる方法として、素材鋼板の両幅端部に曲げ(いわゆる端曲げ)を付与した後、複数回の曲げプレスを行って鋼板を略円筒形に成形し、突合せ部を溶接した後、拡管して形状を矯正して鋼管とするプレスベンド方式の鋼管製造方法が実用化されている。 Therefore, as a method of reducing the pressing force when manufacturing a high-strength, large-diameter, thick-walled steel pipe, bending (so-called end bending) is applied to both width end portions of the raw steel plate, and then a plurality of times. A press-bend type steel pipe manufacturing method in which a steel plate is formed into a substantially cylindrical shape by welding bending and welding a butt portion and then expanded to straighten the shape to obtain a steel pipe has been put into practical use.
 このプレスベンド方式の鋼管製造技術については、幾つかの方法が提案されている。例えば、特許文献1には、前段として、一方の板幅端部をプレスした後、その板幅中央側の部分をプレスし、後段として他方の板幅端部をプレスした後、その板幅中央側の部分をプレスする方法が開示されている。また、特許文献2には、素材鋼板の一方の端部から中央に向かって3回のプレス成形を行った後、鋼板を他方側に大きく移動させて、その他端部から中央に向かって3回のプレス成形を行い、中央部分を残した状態の丸形近似状に成形し、残った中央部分にプレス成形を行う方法が開示されている。また、特許文献3には、上下の金型の3点による曲げ成形を行った後、定寸送り装置によって板材を幅方向に送り、先に成形された箇所と異なる箇所に曲げを加えることを順次繰返してパイプ半製品を得る方法が開示されている。 Several methods have been proposed for this press-bending type steel pipe manufacturing technology. For example, in Patent Document 1, after pressing one plate width end as a front stage, pressing the plate width center side part, and pressing the other plate width end as a back stage, the plate width center A method of pressing the side part is disclosed. In Patent Document 2, after press forming three times from one end of the material steel plate toward the center, the steel plate is greatly moved to the other side, and three times from the other end toward the center. Is formed into a round approximate shape with the central portion remaining, and press forming is performed on the remaining central portion. Further, in Patent Document 3, after performing bending molding by three points of the upper and lower molds, the plate material is fed in the width direction by a sizing feeder, and bending is performed at a location different from the previously molded location. A method of obtaining a semi-finished pipe product by repeating in sequence is disclosed.
特開2005-324255号公報JP 2005-324255 A 特開2007-090406号公報JP 2007-090406 A 特開2011-056524号公報JP 2011-056524 A
 上記特許文献1~3に開示された方法は、いずれも、最後に曲げプレスする部分を残して、素材鋼板の一方の板幅端部から中央に向かって曲げプレスを行って素材鋼板の片半分を略半円状に成形した後、他方の板幅端部から曲げプレス成形する方法を採用している。しかし、この方法では、上記他方の板幅端部からの曲げプレス成形を開始すると、その前に略半円形に成形した片半分の既成形部分が大きく持ち上がり、その高さは製品鋼管寸法(外径)の約1.5倍にも達することがある。 In any of the methods disclosed in Patent Documents 1 to 3, the half of the material steel plate is subjected to bending press from one plate width end portion toward the center of the material steel plate, leaving the portion to be finally bent and pressed. Is formed into a substantially semicircular shape and then subjected to bending press molding from the other plate width end. However, in this method, when bending press molding from the other plate width end portion is started, the half-shaped pre-formed portion formed into a substantially semicircular shape is lifted greatly before that, and the height is the product steel pipe dimension (outside May reach about 1.5 times the diameter.
 このような場合、曲げプレス成形する鋼管の外径に対するプレス機の大きさが相対的に小さい場合や、プレス機に設置された付帯設備等により、鋼管製造に使用できるスペースに余裕がなかったりするような場合には、上記持ち上がった既成形部の鋼板とプレス機あるいはその付帯設備とが干渉を起こすことがあり、設備損傷や、製造可能な最大外径寸法が大幅な制約を受けることになる。斯かる問題点に対応するには、プレス機の高さを高くしたり、付帯設備の取付位置を変更したりして、鋼板とプレス機とが接触しないようにする設計上の工夫が必要となり、さらに、設備を更新しなければならないような場合には、多大な設備投資が必要となる。 In such a case, there is no room in the space that can be used for manufacturing the steel pipe due to the relatively small size of the press machine relative to the outer diameter of the steel pipe to be bent press formed, or due to incidental equipment installed in the press machine. In such a case, the steel plate of the above-mentioned preformed part and the press machine or its associated equipment may interfere with each other, and the equipment damage and the maximum outer diameter that can be manufactured are greatly restricted. . In order to deal with such problems, it is necessary to devise a design that increases the height of the press machine or changes the mounting position of the incidental equipment so that the steel plate and the press machine do not contact each other. In addition, when the equipment needs to be renewed, a large capital investment is required.
 本願発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、3点曲げプレス法(プレスベンド法)で鋼管を製造するに際して、既存のプレス機を設備改造することなく、製造可能な鋼管の最大径を拡大することができる鋼管の成形方法を提案することにある。 The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to modify the existing press machine when manufacturing a steel pipe by the three-point bending press method (press bend method). The present invention also proposes a method for forming a steel pipe capable of expanding the maximum diameter of the steel pipe that can be manufactured.
 発明者らは、上記課題を解決するべく、鋼管の成形順序による成形途中の鋼板形状の変化に着目して、鋭意検討を行った。その結果、従来技術において素材鋼板の一方の板幅端部から中央に向かって行う曲げプレス成形(前半成形)を前段成形と後段成形の2つに分け、かつ、上記前段成形における成形範囲を適正範囲に設定することにより、既成形部分の持ち上がり高さを低減することができ、製造可能な鋼管の最大径を拡大することができることを見出し、本発明を開発するに至った。 In order to solve the above-mentioned problems, the inventors have made extensive studies by paying attention to the change in the shape of the steel sheet during the forming according to the forming order of the steel pipe. As a result, bending press molding (first half molding), which is performed in the prior art from one plate width end to the center of the steel plate, is divided into two stages, the former molding and the latter molding, and the molding range in the former molding is appropriate. By setting the range, it was found that the lifted height of the pre-formed part can be reduced and the maximum diameter of the steel pipe that can be manufactured can be expanded, and the present invention has been developed.
 すなわち、本発明は、素材鋼板の一方の板幅端部から板幅中央に向かって複数回の3点曲げプレスを行う前半成形と、他方の板幅端部から板幅中央に向かって複数回の3点曲げプレスを行う後半成形と、板幅中央部を3点曲げプレスを行う最終成形とによって素材鋼板を略円筒形状に成形する鋼管の成形方法において、前記前半成形を後半成形前に行う前段成形と後半成形後に行う後段成形とに分け、かつ、前記前段成形における成形範囲の鋼板幅に対する比を0.17超、0.46未満の範囲とすることを特徴とする鋼管の成形方法である。 That is, the present invention is a first half forming in which a three-point bending press is performed a plurality of times from one plate width end portion toward the plate width center of the material steel plate, and a plurality of times from the other plate width end portion toward the plate width center. In the method for forming a steel pipe in which the material steel plate is formed into a substantially cylindrical shape by the latter half forming in which the three-point bending press is performed and the final forming in which the central portion of the plate width is three-point bending pressed, the first half forming is performed before the second half forming. A method for forming a steel pipe, characterized in that it is divided into pre-stage forming and post-stage forming after the latter half forming, and the ratio of the forming range in the pre-stage forming to the steel sheet width is in the range of more than 0.17 and less than 0.46. is there.
 本発明の鋼管の成形方法は、前記前半成形の前段成形における成形範囲の鋼板幅に対する比を0.21~0.42の範囲とすることを特徴とする。 The method for forming a steel pipe of the present invention is characterized in that the ratio of the forming range to the steel plate width in the former forming of the first half forming is in the range of 0.21 to 0.42.
 また、本発明の鋼管の成形方法は、前記素材鋼板は、板幅両端部に端曲げを付与してなるものであることを特徴とする。 Further, the method for forming a steel pipe according to the present invention is characterized in that the material steel plate is formed by applying end bending to both end portions of the plate width.
 また、本発明は、上記のいずれかに記載の鋼管の成形方法に用いる鋼管の成形装置であって、プレス時にパンチが最も下降したときのパンチ支持体の最上部と下金型最上部との間の距離が、製造する鋼管外径の1.4倍以下であることを特徴とする鋼管の成形装置である。 Further, the present invention is a steel pipe forming apparatus used for the steel pipe forming method according to any one of the above, wherein the uppermost portion of the punch support and the uppermost portion of the lower mold when the punch is lowered most during pressing. The distance between them is 1.4 times or less of the outer diameter of the steel pipe to be manufactured.
 本発明によれば、プレス成形中において鋼板が持ち上がる最高到達位置を低く抑えることができるので、既存のプレス機に改良を加えることなく、製造可能な鋼管の最大外径を拡大することができる。
 また、本発明によれば、プレス成形中において鋼板が持ち上がる最高到達位置を低く抑えることができるので、成形に用いるプレス機の高さを低く抑えることができたり、設計の自由度を増したりすることが可能となる他、プレス機を据付ける建屋の高さを低くできたり、床面を掘り下げる深さを小さくできたりする等、設備投資を低減できる等のメリットがある。
 また、本発明によれば、鋼板が持ち上がる最高到達位置が低く抑えられ、各回の曲げプレス後、プレス力を解放した際における鋼板落下量が小さくなるので、鋼板落下時の衝撃力が小さくなり、鋼板疵の発生防止やプレス機の破損防止、衝撃音の低減などの効果も期待することができる。
According to the present invention, since the highest position where the steel plate is lifted during press forming can be kept low, the maximum outer diameter of the steel pipe that can be manufactured can be increased without adding improvements to the existing press machine.
Further, according to the present invention, since the highest position where the steel plate is lifted during press forming can be kept low, the height of the press used for forming can be kept low, and the degree of design freedom can be increased. In addition, it is possible to reduce the capital investment by reducing the height of the building where the press machine is installed and reducing the depth of digging the floor.
In addition, according to the present invention, the highest reached position where the steel sheet is lifted is suppressed low, and after each bending press, the amount of steel sheet falling when releasing the pressing force is reduced, so the impact force when dropping the steel sheet is reduced, It can also be expected to have effects such as prevention of steel sheet defects, press machine breakage, and reduction of impact noise.
プレスベンド法による鋼管の成形方法を模式的に説明する図である。It is a figure which illustrates typically the forming method of the steel pipe by the press bend method. 従来のプレスベンド法におけるプレスごとの鋼板形状の変化を説明する模式図である。It is a schematic diagram explaining the change of the steel plate shape for every press in the conventional press bend method. 前半成形における5回のプレスを前段1回と後段4回に分けて行ったときの鋼板形状の変化を説明する模式図である。It is a schematic diagram explaining the change of the steel plate shape when dividing the press of five times in the first half forming into the former 1 time and the latter 4 times. 前半成形における5回のプレスを前段2回と後段3回に分けて行ったときの鋼板形状の変化を説明する模式図である。It is a mimetic diagram explaining change of the shape of a steel plate when five presses in the first half forming are performed by dividing into the former two times and the latter three times. 前半成形における5回のプレスを前段3回と後段2回に分けて行ったときの鋼板形状の変化を説明する模式図である。It is a mimetic diagram explaining change of the shape of a steel plate when five presses in the first half forming are performed by dividing into the former three times and the latter two times. 前半成形における5回のプレスを前段4回と後段1回に分けて行ったときの鋼板形状の変化を説明する模式図である。It is a schematic diagram explaining the change of the steel plate shape when performing the press of 5 times in the first half by dividing into the former stage 4 times and the latter stage 1 time. 図2~6に示した成形途中における鋼板の持ち上がり最高高さ位置の変化をまとめて示した模式図である。FIG. 7 is a schematic view collectively showing changes in the maximum height position of the steel sheet during the forming shown in FIGS. 2 to 6; 昇降ガイドの間隔および上部構造体の位置と、鋼板形状との関係を示す模式図である。It is a schematic diagram which shows the relationship between the space | interval of a raising / lowering guide, the position of an upper structure, and a steel plate shape. 前半前段成形における曲げ範囲と鋼板の先端最大高さとの関係を示す図である。It is a figure which shows the relationship between the bending range and the front-end | tip maximum height of a steel plate in the first half first stage shaping | molding. 実施例の成形方法おける侵入禁止領域への鋼板の侵入有無を模式的に示す模式図である。It is a schematic diagram which shows typically the penetration | invasion presence or absence of the steel plate to the penetration prohibition area | region in the shaping | molding method of an Example.
 図1は、プレスベンド法による鋼管の成形方法を模式的に示したものであり、紙面に垂直な方向が、素材鋼板の長手方向、すなわち、鋼管の長手方向に対応する。鋼管の成形は、素材となる鋼板を離間して配設された1対の下金型上にセットし、図示しない駆動装置によりパンチを下降して鋼板を曲げプレスし、パンチを上昇した後、図示しない送り装置等を用いて鋼板を板幅方向に送り、その後、次の曲げプレスすることを繰り返すことで行う。なお、パンチは、鋼板と接するパンチ先端部、および、パンチ先端部と駆動装置とを連結するパンチ支持体を有する。パンチ先端部とパンチ支持体とは、直接接続させてもよいし、あるいは間にスペーサを介して接続させてもよい。また、パンチ支持体の幅は、パンチ先端部の幅と同等でもよいが、パンチ先端部の幅より狭くするのが好ましい。 FIG. 1 schematically shows a method of forming a steel pipe by the press bend method, and the direction perpendicular to the paper surface corresponds to the longitudinal direction of the material steel plate, that is, the longitudinal direction of the steel pipe. For forming the steel pipe, a steel plate as a raw material is set on a pair of lower molds arranged separately, a punch is lowered by a driving device (not shown), the steel plate is bent and pressed, and the punch is raised, This is performed by repeatedly feeding the steel plate in the plate width direction using a feeding device or the like (not shown) and then performing the next bending press. The punch has a punch tip that contacts the steel plate, and a punch support that connects the punch tip and the driving device. The punch tip and the punch support may be directly connected or may be connected via a spacer. The width of the punch support may be equal to the width of the punch tip, but is preferably narrower than the width of the punch tip.
 まず、前半の成形として、素材鋼板の板幅端部から板幅中央に向けて(図1中のA部からC部に向けて)曲げプレスと鋼板送りを複数回(a回)繰返し、素材鋼板の片側半分(ただし、鋼板の板幅中央部Cは除く)を略半円形状に成形する。本発明では、この成形工程を、以降、「前半成形」と称する。なお、図1には、素材鋼板の両幅端部に端曲げを付与した鋼板を用いた例を示している。この端曲げは、シーム溶接部が鋭角化するのを抑制し、真円度を向上する観点からは付与することが好ましいが、付与しなくてもよい。なお、端曲げを付与する場合には、特開平08-294727号公報や特開昭51-76158号公報等に開示のクリンピングプレス法を好適に用いることができる。 First, as forming the first half, bending press and steel sheet feeding are repeated a plurality of times (a times) from the sheet width end of the material steel sheet toward the center of the sheet width (from A part to C part in FIG. 1), One half of the steel plate (excluding the central portion C of the steel plate width) is formed into a substantially semicircular shape. In the present invention, this molding step is hereinafter referred to as “first half molding”. In addition, in FIG. 1, the example using the steel plate which provided the end bending to the both width | variety edge part of a raw material steel plate is shown. The end bending is preferably applied from the viewpoint of suppressing the sharpening of the seam welded portion and improving the roundness, but may not be applied. When end bending is applied, the crimping press method disclosed in Japanese Patent Application Laid-Open No. 08-294727, Japanese Patent Application Laid-Open No. 51-76158, or the like can be suitably used.
 次いで、素材鋼板の他方の板幅端部から板幅中央に向けて(図1中のB部からC部に向けて)曲げプレスと鋼板送りを複数回(b回)繰返し、素材鋼板の片側半分(ただし、鋼板の板幅中央部Cは除く)を略半円形状に成形する。本発明では、この成形工程を、以降、「後半成形」と称する。このとき、前半成形で成形した略半円形部と同一形状とするため、プレス回数a,bや曲げ角度、鋼板送り量等の成形条件は前半成形と同じにするのが一般的である。 Next, bending press and steel plate feeding are repeated a plurality of times (b times) from the other plate width end of the raw steel plate toward the center of the plate width (from B to C in FIG. 1), and one side of the raw steel plate Half (however, excluding the central part C of the plate width of the steel plate) is formed into a substantially semicircular shape. In the present invention, this molding step is hereinafter referred to as “second half molding”. At this time, in order to obtain the same shape as the substantially semicircular portion formed by the first half molding, the molding conditions such as the press times a and b, the bending angle, and the steel sheet feed amount are generally the same as those of the first half molding.
 前半成形と後半成形を終えた被成形材(鋼板)は、板幅中央部Cの部分に平坦な部分が残り、鋼板の両側端部の突合せ部が開いたアルファベットの大文字Cのような形状となっている。そして、最後に、板幅中心部の平坦部Cを1回の曲げプレスで成形し、突合せ部の開度を、パンチ支持体の幅より若干広い程度まで閉じる。本発明では、この成形工程を、以降、「最終成形」と称する。その後、成形後の鋼板を長手方向に移動させてプレス機外に搬出し、上記成形後の開口部分を押圧して閉じ、溶接した後、拡管して製品鋼管とする。 The material to be formed (steel plate) after the first half forming and the second half forming has a shape like the capital letter C of the alphabet in which the flat portion remains in the portion of the central portion C of the plate width and the butted portions at both ends of the steel plate are opened. It has become. Finally, the flat portion C at the center of the plate width is formed by one bending press, and the opening of the butt portion is closed to a degree slightly wider than the width of the punch support. In the present invention, this molding step is hereinafter referred to as “final molding”. Thereafter, the formed steel sheet is moved in the longitudinal direction and carried out of the press machine. The formed opening is pressed and closed, welded, and then expanded to obtain a product steel pipe.
 図2は、上記図1に示した従来のプレスベンド法による鋼管の成形方法において、前半成形、後半成形のプレス回数a,bがともに5回である場合におけるプレスの進行に伴う各プレスの鋼板形状の変化を実線と点線で示したものであり、また、破線で示した矢印は、各プレスにおいて持ち上がる鋼板の最高高さ位置の変化を示している。
 この図から、図2(a)に示した前半成形においては、鋼板が持ち上がる最高高さ位置はそれほど大きくないが、図2(b)に示した後半成形においては、1回目のプレス成形で最も高い位置まで鋼板が持ち上がり、成形が進むにつれてその高さは低くなるものの、鋼板位置は順次、プレス機本体に近づき、接触を起こすおそれがあることがわかる。
FIG. 2 shows a steel pipe of each press accompanying the progress of pressing in the case of forming the steel pipe by the conventional press bend method shown in FIG. A change in shape is indicated by a solid line and a dotted line, and an arrow indicated by a broken line indicates a change in the maximum height position of the steel sheet lifted in each press.
From this figure, in the former half forming shown in FIG. 2 (a), the maximum height position where the steel plate is lifted is not so large, but in the latter half forming shown in FIG. 2 (b), the highest in the first press forming. Although the steel plate is lifted to a high position and the height decreases as the forming progresses, it can be seen that the steel plate position gradually approaches the press machine main body and may cause contact.
 一般に、鋼管の成形に用いられるプレス機は、プレス機上部に設置したシリンダー機構によって、パンチを介して上方から被成形材(鋼板)に成形力を負荷しているため、パンチを有するプレス機の上部には、油圧シリンダー、油圧ポンプ、油圧タンク等の駆動機構が付帯設備として設置されている。しかし、鋼管の成形に必要な成形力は、鋼板の強度が高く、板厚が厚いほど大きくなり、それに比例して上記付帯設備も大型化する。そのため、高強度で厚肉の鋼管を製造するプレス機では、プレス機上部に配置される駆動機構などの付帯設備等が必然的に大きくなり、鋼板と干渉し易くなる。各回のプレスにおいて、パンチが最も低い位置に降下したときに、パンチ支持体の上端部にて接続する駆動装置も最も低い位置に下降し、同時に、鋼板の持ち上がりが最大となるので、パンチが最も低い位置に降下した場合にも、鋼板がプレス機上部に配置される駆動機構などと干渉しないようにすることが重要である。 Generally, a press machine used for forming a steel pipe loads a forming force on a material to be formed (steel plate) from above via a punch by a cylinder mechanism installed at the top of the press machine. In the upper part, drive mechanisms such as a hydraulic cylinder, a hydraulic pump, a hydraulic tank, etc. are installed as ancillary equipment. However, the forming force necessary for forming the steel pipe increases as the strength of the steel plate increases and the plate thickness increases, and the incidental equipment increases in proportion thereto. For this reason, in a press machine that manufactures a high-strength and thick-walled steel pipe, incidental facilities such as a drive mechanism disposed on the upper part of the press machine are inevitably large and easily interfere with the steel plate. In each press, when the punch is lowered to the lowest position, the drive device connected at the upper end of the punch support is also lowered to the lowest position. It is important that the steel plate does not interfere with a drive mechanism or the like disposed on the upper part of the press even when it is lowered to a low position.
 そこで、発明者らは、前半成形を前段成形と後段成形の2つに分けた場合における、プレス成形する順序と鋼板の形状、持ち上がり高さとの関係について、前半成形、後半成形のプレス回数a,bがともに5回である場合について検討した。
 図3は、前半の前段成形で1回のプレスを行い、後半成形で5回のプレスを行った後、前半後段成形で残りの4回のプレスを行う場合、図4は、前半の前段成形で2回のプレスを行い、後半成形で5回のプレスを行った後、前半後段成形で残りの3回のプレスを行う場合、図5は、前半の前段成形で3回のプレスを行い、後半成形で5回のプレスを行った後、前半後段成形で残りの2回のプレスを行う場合、図6は、前半の前段成形で4回のプレスを行い、後半成形で5回のプレスを行った後、前半後段成形で残りの1回のプレスを行う場合における、後半成形と前半後段成形の各プレスにおける鋼板形状の変化と鋼板が持ち上がる最高高さ位置の変化を示したものである。なお、各図とも、(a)は後半成形、(b)は前半後段成形における鋼板形状の変化と鋼板が持ち上がる最高高さ位置の変化を示しており、前半前段成形については、図2(a)と同じであるため省略した。また、各図とも、実線と点線は鋼板形状の変化を、破線矢印は鋼板が持ち上がる最高高さ位置を表わしている。例えば、図3(a)、図4(a)、図5(a)および図6(a)の実線は、後半成形の1回目のプレスを実施しているときの鋼板形状を示す。また、図3(b)、図4(b)、図5(b)および図6(b)の実線は、前半成形のうち後段成形の1回目のプレスを実施しているときの鋼板形状を示す。
Therefore, the inventors divided the first half forming into two steps, the former forming and the latter forming, and the relationship between the press forming order, the shape of the steel sheet, and the lifting height, the number of presses a, The case where b was 5 times was examined.
FIG. 3 shows a case where one press is performed in the first half of the former molding, and five presses are performed in the second half of the molding, and then the remaining four presses are performed in the first half of the latter half of the molding. FIG. In the case where the second press is performed twice, the second half molding is performed five times, and the remaining three presses are performed in the first half latter stage molding, FIG. 5 illustrates that the first half first stage molding is performed three times, In the case where the second half molding is performed five times and the remaining two presses are performed in the first half latter stage molding, FIG. 6 shows that the first half first stage molding is performed four times, and the second half molding is performed five times. FIG. 5 shows the change in the steel plate shape and the change in the maximum height of the steel plate in each press of the second half forming and the first half latter forming when the remaining one press is performed in the first half latter forming. In each figure, (a) shows the latter half forming, and (b) shows the change in the steel plate shape and the maximum height position in which the steel plate is lifted in the former first half forming. For the first half first forming, FIG. ) And omitted. In each figure, the solid line and the dotted line represent the change in the shape of the steel sheet, and the broken line arrow represents the maximum height position where the steel sheet is lifted. For example, the solid lines in FIGS. 3 (a), 4 (a), 5 (a) and 6 (a) indicate the shape of the steel plate when the first press of the second half forming is performed. Moreover, the solid line of FIG.3 (b), FIG.4 (b), FIG.5 (b) and FIG.6 (b) shows the steel plate shape when the 1st press of back | latter stage shaping | molding is implemented among the first half forming. Show.
 図2~6から、前半前段成形におけるプレス回数を変えることにより、鋼板が持ち上がる最高高さ位置が変化していることがわかる。そこで、この図2~6における鋼板の持ち上がり最高高さ位置の変化を1つの図としてまとめたものが図7であり、(a)は後半成形について、(b)は前半後段成形を表わしている。
 図7(a)から、後半成形におけるプレスにおいて、鋼板が最も高く持ち上がるのは、前半前段成形のプレスが4回で前半後段成形のプレスが1回の場合(前半成形:4+1と表示)、次いで、前半前段成形のプレスが3回で前半後段成形のプレスが2回の場合(前半成形:3+2と表示)、次いで、前半成形を2つに分割しないで一気に5回プレスする場合(前半成形:5+0と表示)、次いで、前半前段成形のプレスが2回で前半後段成形のプレスが3回の場合(前半成形:2+3と表示)であり、最も低いのは、前半前段成形のプレスが1回で前半後段成形のプレスが4回の場合(前半成形:1+4と表示)であることがわかる。
2 to 6, it can be seen that the maximum height position where the steel sheet is lifted is changed by changing the number of presses in the first half of the former stage forming. Therefore, FIG. 7 summarizes the change of the maximum height of the steel plate in FIGS. 2 to 6 as one figure, where (a) shows the latter half forming and (b) shows the first half latter stage forming. .
From FIG. 7 (a), in the press in the second half forming, the steel plate is lifted the highest when the first half former forming press is four times and the first half latter forming press is one time (first half forming: indicated as 4 + 1). When the first half former press is 3 times and the first half latter half press is 2 times (first half molding: indicated as 3 + 2), then the first half molding is not divided into two but is pressed 5 times at a time (first half molding: 5 + 0), then the first half former press is 2 times and the first half latter press is 3 times (first half molding: indicated as 2 + 3). The lowest is the first half former press. Thus, it can be seen that the press of the former half-stage molding is four times (first half molding: indicated as 1 + 4).
 また、前半成形:4+1、前半成形:3+2および前半成形:2+3の場合は、鋼板の持ち上がり最高高さが前半成形:5+0の場合とほぼ同じレベルであるが、前半成形:4+1の場合は、鋼板の最高高さ位置がプレス機に最も接近しているため、被成形材(鋼板)がプレス機や付帯設備と干渉を起こすおそれが大きい。従って、後半成形において、被成形材(鋼板)がプレス機と干渉を起こすおそれが小さいのは、前半成形:3+2、前半成形:2+3および前半成形:1+4の場合である。 In the case of the first half forming: 4 + 1, the first half forming: 3 + 2 and the first half forming: 2 + 3, the maximum height of the steel sheet is almost the same as that in the first half forming: 5 + 0, but the first half forming: 4 + 1 Since the maximum height position of the material is closest to the press machine, there is a high possibility that the material to be formed (steel plate) will interfere with the press machine and incidental equipment. Therefore, in the latter half molding, the material (steel plate) is less likely to interfere with the press machine in the first half molding: 3 + 2, the first half molding: 2 + 3, and the first half molding: 1 + 4.
 また、図7(b)から、前半後段成形におけるプレスで、鋼板が最も高く持ち上がるのは、図7(a)で最も鋼板の持ち上がり高さが低かった前半成形:1+4の場合であり、次いで、前半成形:2+3、次いで、前半成形:3+2の場合であり、最も鋼板の持ち上がり高さが低いのは前半成形:4+1の場合であり、前段成形のプレス回数が少ないほど高くなっていることがわかる。 Also, from FIG. 7 (b), the steel plate is lifted highest by the press in the first half latter stage forming in the case of the first half forming: 1 + 4 where the lifting height of the steel plate is the lowest in FIG. 7 (a). The first half forming: 2 + 3, then the first half forming: 3 + 2, and the lowest lifting height of the steel sheet is the first half forming: 4 + 1. .
 したがって、図7(a)および図7(b)を総合すると、プレスベンド法で鋼管を成形する場合において、被加工材がプレス機と接触するおそれが最も少ないのは、前半前段成形のプレスが3回で前半後段成形のプレスが2回の場合(前半成形:3+2)と、前半前段成形のプレスが2回で前半後段成形のプレスが3回の場合(前半成形:2+3)と、前段成形のプレスが4回で前半後段成形のプレスが1回の場合(前半成形:4+1)であると考えられる。 Therefore, when FIG. 7 (a) and FIG. 7 (b) are combined, in the case of forming a steel pipe by the press bend method, there is the least possibility that the workpiece will come into contact with the press machine. When the first half-stage press is 3 times and the first half-stage press is 2 times (first half-mold: 3 + 2), when the first half-first-stage press is twice and the first half-late stage press is 3 times (first half-mold: 2 + 3) This is considered to be the case where the number of presses is four times and the former half latter stage press is one time (first half molding: 4 + 1).
 このように、本発明のプレス成形においては、前半成形における複数回のプレスを、前段成形と後段成形とに分けて実施し、前段成形におけるプレス回数を適正化することが好ましい。しかし、プレス回数は、任意に設定できる事項である。そこで、本発明では、好ましいプレス条件を、前半前段成形におけるプレスによって曲げ変形を受ける範囲(以降,「前段成形範囲」と称する)で規定する。 As described above, in the press molding of the present invention, it is preferable that the plurality of presses in the first half molding are performed separately in the former molding and the latter molding to optimize the number of presses in the former molding. However, the number of presses can be arbitrarily set. Therefore, in the present invention, preferable press conditions are defined by a range (hereinafter, referred to as “pre-formation range”) that is subjected to bending deformation by the press in the first half pre-form.
 最終プレス成形後の略円筒形状の鋼板のプレス機外への搬出は、上記略円筒形状の鋼板を、その長手方向に移動させることにより行う。この場合、プレス機の上部構造体を支持する柱(「昇降ガイド」とも呼ばれる)の間隔は、略円筒形状の成形体の幅よりも十分に広いことが必要である。そこで、外径1219.2mmの鋼管を成形するために、昇降ガイドの間隔を、製品鋼管外径の1.4倍+300mm(シームの最大開き幅)であるとした場合の昇降ガイド間隔および上部構造体の位置と鋼板形状を図8(a)および図8(b)に示す。このときの鋼板先端の最大高さと前段成形範囲との関係を図9に示した。なお、前半前段成形が3回以下のとき、(前段成形範囲/鋼板幅が0.3以下の範囲)の後半成形では、図8(a)からも明らかなように、鋼板が上部構造体と干渉しないので、プロットを省略している。また、成形範囲の寸法や鋼板先端の最大高さの絶対値は、製造する鋼管の外径によって異なるので、前段成形範囲は鋼板幅に対する比で、また、鋼板先端の最大高さは製品鋼管の外径に対する比で示した。 搬 The substantially cylindrical steel plate after the final press forming is carried out of the press by moving the substantially cylindrical steel plate in the longitudinal direction. In this case, the interval between the columns (also referred to as “elevating guides”) that support the upper structure of the press machine needs to be sufficiently wider than the width of the substantially cylindrical shaped body. Therefore, in order to form a steel pipe having an outer diameter of 1219.2 mm, the distance between the lifting guides is 1.4 times the product steel pipe outer diameter + 300 mm (maximum seam opening width) and the superstructure. The position of the body and the steel plate shape are shown in FIG. 8 (a) and FIG. 8 (b). The relationship between the maximum height of the steel sheet tip at this time and the pre-forming range is shown in FIG. In addition, when the former half former stage forming is 3 times or less, in the latter half forming (the former stage forming range / the steel sheet width is 0.3 or less range), as is apparent from FIG. The plot is omitted because there is no interference. Also, since the dimensions of the forming range and the absolute value of the maximum height of the steel plate tip depend on the outer diameter of the steel pipe to be manufactured, the former forming range is the ratio to the steel plate width, and the maximum height of the steel plate tip is the product steel pipe It is shown as a ratio to the outer diameter.
 ここで、図9中の●印の点は、後半成形を実施している時における前段成形部の先端の最大高さであり、図8(a)の先端位置に対応する。前段成形範囲の鋼板幅に対する比が0.46の点は、前半成形を前段と後段とに分けずに成形した場合(図8(a)中の前半成形:5+0)であり、最大高さは、製品鋼管外径の1.4倍に達している。しかし、前段成形範囲の鋼板幅に対する比が0.46よりも小さくなればなるほど、その最大高さは小さくなる。よって、前段成形範囲の鋼板幅に対する比は、0.46未満であることが必要であり、0.42以下であることが好ましい。この比が0.38以下であれば、前半成形を前段と後段とに分けない場合に比べて最大高さを10%以上低く抑えることができるので、より好ましい。 Here, the point marked with ● in FIG. 9 is the maximum height of the front end of the former molding portion when the latter half molding is performed, and corresponds to the front end position of FIG. The point where the ratio of the former forming range to the steel plate width is 0.46 is the case where the first half forming is formed without dividing it into the first and second stages (first half forming in FIG. 8A: 5 + 0), and the maximum height is The product has reached 1.4 times the outer diameter of the steel pipe. However, the maximum height decreases as the ratio of the former forming range to the steel plate width becomes smaller than 0.46. Accordingly, the ratio of the former forming range to the steel plate width needs to be less than 0.46, and is preferably 0.42 or less. If this ratio is 0.38 or less, the maximum height can be reduced by 10% or more compared to the case where the first half molding is not divided into the former stage and the latter stage, which is more preferable.
 一方、図9中の○印の点は、前半後段成形を実施している時における後半成形部の先端の最大高さであり、図8(b)の先端位置に対応する。前段成形範囲の鋼板幅に対する比が大きくなるほど最大高さは小さくなり、前段成形範囲の鋼板幅に対する比が0.17を超えると、前半成形を前段と後段とに分けずに成形した場合、すなわち、前段成形範囲の鋼板幅に対する比が0.46の場合の後半成形の点に比べて、最大高さが小さくなる。よって、前段成形範囲の鋼板幅に対する比は、0.17超えであることが必要であり、0.21以上であることが好ましい。この比が0.29以上であれば、前半成形を前段と後段とに分けない場合に比べて最大高さを10%以上低く抑えることができるので、より好ましい。 On the other hand, the point marked with ○ in FIG. 9 is the maximum height of the tip of the latter half molding portion when the former half latter stage molding is performed, and corresponds to the tip position in FIG. The maximum height decreases as the ratio of the former forming range to the steel plate width increases, and when the ratio of the former forming range to the steel plate width exceeds 0.17, the former half forming is formed without dividing the former stage into the latter stage, that is, The maximum height is smaller than the latter forming point when the ratio of the former forming range to the steel plate width is 0.46. Accordingly, the ratio of the former forming range to the steel plate width needs to be more than 0.17, and is preferably 0.21 or more. If this ratio is 0.29 or more, the maximum height can be reduced by 10% or more compared to the case where the first half molding is not divided into the first and second stages, which is more preferable.
 なお、前述したように、上記説明においては、3点曲げプレス回数が、前半成形5回、後半成形5回、最終成形1回(合計11回)の場合を例にとって説明したが、本発明の鋼管の製造方法は、11回のプレス回数に限定されるものではなく、増減してもよい。ただし、回数を少なくすると、1回当たりの曲げ角度が大きくなり、それに伴って鋼板の持ち上がり高さも高くなり、成形後の真円度も劣るようになる。一方、回数を多くすると、鋼板の持ち上がり高さが低下し、成形後の真円度も高くなるが、生産性が低下する。したがって、両者の得失を勘案してプレス回数を決定するのが好ましい。
 また、上記説明においては、先述したように前半成形後の鋼板形状と後半成形後の鋼板形状を同じくする観点から、前半成形と後半成形のプレス回数、鋼板の送り量は同じとしているが、真円度が確保できれば変えてもよい。
As described above, in the above description, the case where the number of three-point bending presses is 5 times for the first half forming, 5 times for the second half forming, and 1 time for the final forming (11 times in total) is described as an example. The manufacturing method of a steel pipe is not limited to 11 times of press, and may be increased or decreased. However, if the number of times is reduced, the bending angle per one time increases, and accordingly, the lifting height of the steel plate increases, and the roundness after forming becomes inferior. On the other hand, when the number of times is increased, the lifting height of the steel sheet is lowered and the roundness after forming is also increased, but the productivity is lowered. Therefore, it is preferable to determine the number of presses in consideration of both advantages and disadvantages.
In the above description, as described above, from the viewpoint of making the steel plate shape after the first half forming the same as the steel plate shape after the second half forming, the number of presses in the first half forming and the second half forming and the feed amount of the steel plate are the same. It may be changed if the circularity can be secured.
 力量が100MNのプレス機を用いて、ベンディングプレス法で、板幅:4428mmの両幅端部の210mmの範囲に17度の端曲げを付与した厚鋼板(強度:X100)から、外径:1422.4mm×長さ:12.8m×管厚:12.7mmの鋼管を製造する実験を行った。
 なお、上記実験に用いたベンディングプレス機は、パンチ支持体の上端部が接続する駆動装置の鋼板幅方向の寸法が2300mm(パンチのセンターから片側1150mm)である。また、このプレス機は、プレス成形においてパンチが最も下降したときの、パンチ支持体上端部が接続する駆動装置の最下面と下金型上面との間の距離が1890mmである。
 また、上記ベンディングプレス機を用いたプレス方法は、前半成形、後半成形ともに板幅中央から1822mmの位置から板幅中央に向って5回プレスし、最後に幅中央部を最終成形する(計11回)方法を採用し、各プレスにおける鋼板の送り量は364mm、曲げ角度は29.5度に設定した。
From a thick steel plate (strength: X100) in which end bending of 17 degrees is applied to the range of 210 mm at both width ends of the plate width: 4428 mm by a bending press method using a press machine having a strength of 100 MN, outer diameter: 1422 An experiment was conducted to manufacture a steel pipe of 4 mm × length: 12.8 m × tube thickness: 12.7 mm.
In the bending press machine used in the experiment, the dimension in the width direction of the steel plate of the driving device to which the upper end of the punch support is connected is 2300 mm (1150 mm on one side from the center of the punch). In this press machine, the distance between the lowermost surface of the driving device to which the upper end portion of the punch support is connected and the upper surface of the lower mold when the punch is lowered most in press molding is 1890 mm.
In the pressing method using the bending press machine, the first half molding and the second half molding are pressed five times from the position of 1822 mm from the center of the plate width toward the center of the plate width, and finally the center of the width is finally formed (total 11). The steel plate feed amount in each press was set to 364 mm, and the bending angle was set to 29.5 degrees.
 なお、前半成形の5回のプレスは、表1に示したように、前段成形と後段成形の2つに分け、前半前段成形で、5回以内の所定回数のプレスを行った後、後半成形のプレスを5回行い、その後、前半後段成形で残りのプレスを行う4種類の成形方法(A~D)と、参考例として前半成形の5回のプレスを一気の行う従来の成形方法Eについて実施した。
 また、各成形方法の評価は、図10に示したように、プレス機のパンチ設置部の上部に、被成形材(鋼板)が侵入するとプレス機やその付帯設備と接触を起こす領域であり、この領域への鋼板の侵入の程度で評価した。
In addition, as shown in Table 1, the five presses in the first half molding are divided into two, the first stage molding and the second stage molding. After the first half first stage molding, a predetermined number of presses within 5 times are performed, and then the second half molding. 4 types of molding methods (A to D) in which the remaining press is performed in the first half latter-stage molding, and the conventional molding method E in which the first half molding is performed at once as a reference example. Carried out.
In addition, as shown in FIG. 10, the evaluation of each forming method is an area where the material to be formed (steel plate) enters the upper part of the punch installation portion of the press machine and causes contact with the press machine and its associated equipment, The degree of penetration of the steel sheet into this region was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記A~Eの5つのプレス方法で鋼管を成形した結果を表1中に併記した。なお、表1中に示した「曲げ範囲」とは、前半前段成形においてプレス成形した部分の板端部(端曲げ部も含む)からの距離であり、また、カッコ内の数字は、上記部分の鋼板幅に対する比率を示している。また、上記各条件における、鋼板が持ち上がる最高高さ位置の変化を、鋼板の侵入禁止領域と併せて図10に図示した。 Table 1 also shows the results of forming the steel pipe by the five pressing methods A to E described above. The “bending range” shown in Table 1 is the distance from the plate end portion (including the end bending portion) of the press-formed portion in the former first half molding, and the numbers in parentheses are the above-mentioned portions. The ratio with respect to the steel plate width is shown. Moreover, the change of the maximum height position where the steel plate lifts up in each of the above conditions is shown in FIG. 10 together with the invasion prohibition region of the steel plate.
 表1および図10に示したように、前半成形で鋼板幅に対する比率で0.46まで成形する従来の方法(E法)の場合には、後半成形の2回目のプレスで、鋼板が侵入禁止領域に大きく侵入しており、プレス機を破損するおそれがある。同様に、前半前段成形で鋼板幅に対する比率で0.13まで成形したA法(前半成形:1+4)の場合には、前半後段成形の1プレス目(前半成形の2プレス目)で、やはり、鋼板が侵入禁止領域に大きく侵入しており、プレス機を破損するおそれがある。
 これに対して、前半前段成形で鋼板幅に対する比率で0.21まで成形したB法(前半成形:2+3)の場合には、前半後段成形の1プレス目(前半成形の3プレス目)で、鋼板が侵入禁止領域に中度の侵入を起こしており、また、前半前段成形で鋼板幅に対する比率で0.41まで成形したD法(前半成形:4+1)の場合には、後半成形の4プレス目で、鋼板が侵入禁止領域に軽度の侵入を起こしているが、被加工材(鋼板)に塑性変形が生じない範囲であり、製品形状を損なうことも、また、プレス機に損傷を与えることもなかった。
 さらに、前半前段成形で鋼板幅に対する比率で0.29まで成形したC法(前半成形:3+2)法の場合には、すべてのプレスにおいて、鋼板が侵入禁止領域に侵入することはない。
As shown in Table 1 and FIG. 10, in the case of the conventional method (E method) in which the ratio to the steel plate width is formed to 0.46 in the first half forming, the steel plate is prevented from entering by the second press of the second half forming. There is a large intrusion into the area, which may damage the press. Similarly, in the case of the A method (first half forming: 1 + 4) in which the ratio to the steel sheet width is formed to 0.13 in the first half first stage molding, the first press of the first half latter stage molding (the second press of the first half molding), There is a risk that the steel plate has greatly entered the intrusion prohibited area and the press machine may be damaged.
On the other hand, in the case of the B method (first half forming: 2 + 3) formed to the ratio of the steel sheet width in the first half first stage molding, the first press of the first half second stage molding (the third press of the first half molding), In the case of the D method (first half forming: 4 + 1) in which the steel sheet has caused a moderate intrusion into the intrusion-prohibited region, and the ratio to the steel sheet width is 0.41 in the first half former forming, the latter half forming 4 presses Visually, the steel plate has made a slight intrusion into the intrusion prohibited area, but it is in a range where plastic deformation does not occur in the workpiece (steel plate), and the product shape can be damaged, and the press machine can also be damaged. There was not.
Furthermore, in the case of the C method (first half forming: 3 + 2) method in which the ratio to the steel plate width is formed to 0.29 in the first half former stage forming, the steel plate does not enter the intrusion prohibited area in all the presses.
 このように、前半成形を前段と後段とに分け、かつ、前段での成形範囲を適正範囲に設定することで、被成形材(鋼板)がプレス機と接触したり損傷したりすることを回避できることがわかる。したがって、本発明を適用することにより、プレス機の成形可能な最大径を拡大することが可能となる。なお、外径が小さな鋼管であれば、本発明を適用する必要はなく、従来方法でも十分成形可能であることはいうまでもない。
 
 
In this way, the first half molding is divided into the first and second stages, and the molding range in the first stage is set to an appropriate range, so that the material to be molded (steel plate) does not come into contact with the press or is damaged. I understand that I can do it. Therefore, by applying the present invention, it is possible to enlarge the maximum diameter that can be formed by the press machine. In addition, if it is a steel pipe with a small outer diameter, it is not necessary to apply this invention, and it cannot be overemphasized that it can fully shape | mold also by the conventional method.

Claims (4)

  1. 素材鋼板の一方の板幅端部から板幅中央に向かって複数回の3点曲げプレスを行う前半成形と、他方の板幅端部から板幅中央に向かって複数回の3点曲げプレスを行う後半成形と、板幅中央部を3点曲げプレスを行う最終成形とによって素材鋼板を略円筒形状に成形する鋼管の成形方法において、
    前記前半成形を後半成形前に行う前段成形と後半成形後に行う後段成形とに分け、かつ、前記前段成形における成形範囲の鋼板幅に対する比を0.17超、0.46未満の範囲とすることを特徴とする鋼管の成形方法。
    First half forming of a plurality of three-point bending presses from one plate width end of the material steel plate toward the center of the plate width, and a plurality of three-point bending presses from the other plate width end toward the center of the plate width. In the forming method of the steel pipe which forms the material steel plate into a substantially cylindrical shape by the latter half forming to be performed and the final forming to perform the three-point bending press on the center portion of the plate width
    The former half forming is divided into a former forming performed before the latter forming and a latter forming performed after the latter forming, and the ratio of the forming range in the former forming to the steel plate width is set to a range of more than 0.17 and less than 0.46. A method of forming a steel pipe characterized by the above.
  2. 前記前半成形の前段成形における成形範囲の鋼板幅に対する比を0.21~0.42の範囲とすることを特徴とする請求項1に記載の鋼管の成形方法。 The method for forming a steel pipe according to claim 1, wherein the ratio of the forming range to the steel plate width in the former forming of the first half forming is in the range of 0.21 to 0.42.
  3. 前記素材鋼板は、板幅両端部に端曲げを付与してなるものであることを特徴とする請求項1または2に記載の鋼管の成形方法。 The method for forming a steel pipe according to claim 1 or 2, wherein the material steel plate is formed by applying end bending to both ends of the plate width.
  4. 請求項1~3のいずれかに記載の鋼管の成形方法に用いる鋼管の成形装置であって、プレス時にパンチが最も下降したときのパンチ支持体の最上部と下金型最上部との間の距離が、製造する鋼管外径の1.4倍以下であることを特徴とする鋼管の成形装置。
     
    A steel pipe forming apparatus for use in the method for forming a steel pipe according to any one of claims 1 to 3, wherein the punch is positioned between the uppermost part of the punch support and the uppermost part of the lower die when the punch is lowered most during pressing. A steel pipe forming apparatus characterized in that the distance is 1.4 times or less the outer diameter of the steel pipe to be manufactured.
PCT/JP2015/059835 2014-03-31 2015-03-30 Steel-pipe shaping method and shaping device using three-point bending WO2015152108A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15773059.9A EP3127625B1 (en) 2014-03-31 2015-03-30 Method and apparatus for forming steel pipe using three-point bending-press forming
RU2016142577A RU2655511C2 (en) 2014-03-31 2015-03-30 Method and device for forming steel by three-point press bending
BR112016022005-6A BR112016022005B1 (en) 2014-03-31 2015-03-30 method of forming a steel tube and apparatus for forming a steel tube
KR1020167026910A KR101852704B1 (en) 2014-03-31 2015-03-30 Method and apparatus for forming steel pipe using three-point bending-press forming
CN201580016930.9A CN106132578B (en) 2014-03-31 2015-03-30 Manufacturing process and building mortion based on the stamping steel pipe of three-point bending
SA516371949A SA516371949B1 (en) 2014-03-31 2016-09-29 Method and apparatus for forming steel pipe using three-point bending-press forming

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014070703 2014-03-31
JP2014-070703 2014-03-31
JP2015046083A JP6112740B2 (en) 2014-03-31 2015-03-09 Steel pipe forming method and forming apparatus by three-point bending press forming
JP2015-046083 2015-03-09

Publications (1)

Publication Number Publication Date
WO2015152108A1 true WO2015152108A1 (en) 2015-10-08

Family

ID=54240431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059835 WO2015152108A1 (en) 2014-03-31 2015-03-30 Steel-pipe shaping method and shaping device using three-point bending

Country Status (8)

Country Link
EP (1) EP3127625B1 (en)
JP (1) JP6112740B2 (en)
KR (1) KR101852704B1 (en)
CN (1) CN106132578B (en)
BR (1) BR112016022005B1 (en)
RU (1) RU2655511C2 (en)
SA (1) SA516371949B1 (en)
WO (1) WO2015152108A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106734410B (en) * 2016-12-30 2019-06-04 南京理工大学 Straight seam welded pipe three-point bending flexibility cold bending roller position determines method
CN108994120A (en) * 2018-08-01 2018-12-14 上海锆卓船舶设计有限公司 It is applicable in superhigh intensity, the method for coiling of the small diameter cylinder of ultra-thick steel plates and system
CN109604375B (en) * 2018-12-27 2020-05-12 南京工大数控科技有限公司 Multi-station automatic detection system for bending gradient of stamped steel plate
CN109967574A (en) * 2019-04-02 2019-07-05 江苏隆旭重工机械有限公司 A kind of multistage veneer reeling machine
JP7168047B1 (en) 2021-07-29 2022-11-09 Jfeスチール株式会社 Steel pipe roundness prediction model generation method, steel pipe roundness prediction method, steel pipe roundness control method, steel pipe manufacturing method, and steel pipe roundness prediction device
JP2023019346A (en) * 2021-07-29 2023-02-09 Jfeスチール株式会社 Circularity prediction method of steel pipe, circularity control method of steel pipe, manufacturing method of steel pipe, generation method of circularity prediction model of steel pipe, and circularity prediction device of steel pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176816U (en) * 1984-04-28 1985-11-22 三菱重工業株式会社 Roller type press bending jig
JP2005324255A (en) * 2005-06-17 2005-11-24 Nakajima Steel Pipe Co Ltd Method for manufacturing round steel tube
JP2007090406A (en) * 2005-09-30 2007-04-12 Nakajima Steel Pipe Co Ltd Producing facility for round steel tube
WO2009023973A1 (en) * 2007-08-21 2009-02-26 Soutec Soudronic Ag Apparatus and process for shaping a tube from a metal sheet
JP2011056524A (en) * 2009-09-08 2011-03-24 Sumitomo Heavy Industries Techno-Fort Co Ltd Plate bending press

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU576136A1 (en) * 1974-12-26 1977-10-15 Уральский научно-исследовательский институт трубной промышленности Tube-shaping method
RU2340422C2 (en) * 2006-10-10 2008-12-10 ГОУ ВПО "Уральский государственный технический университет-УПИ" Method of final molding of large diameter pipes of u-shaped billet and device for its realisation
WO2012092909A1 (en) * 2011-01-07 2012-07-12 Technische Universität Dortmund Method for incrementally forming sheet metal structures, in particular for forming pipes or the like
DE102011009660B4 (en) * 2011-01-27 2013-05-29 Sms Meer Gmbh Apparatus and method for forming flat products in slotted tubes or pipe precursors
JP5614324B2 (en) * 2011-02-21 2014-10-29 Jfeスチール株式会社 Steel pipe manufacturing method
EP2529849B1 (en) * 2011-05-31 2021-03-10 SMS group GmbH Device and method for manufacturing slot pipes made of sheet panels
RU2493927C2 (en) * 2011-11-17 2013-09-27 Виктор Васильевич Кузнецов Method of tube production
KR101712885B1 (en) * 2012-08-09 2017-03-07 제이에프이 스틸 가부시키가이샤 Method of producing steel pipe
JP6262166B2 (en) * 2014-03-31 2018-01-17 Jfeスチール株式会社 Bending press mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176816U (en) * 1984-04-28 1985-11-22 三菱重工業株式会社 Roller type press bending jig
JP2005324255A (en) * 2005-06-17 2005-11-24 Nakajima Steel Pipe Co Ltd Method for manufacturing round steel tube
JP2007090406A (en) * 2005-09-30 2007-04-12 Nakajima Steel Pipe Co Ltd Producing facility for round steel tube
WO2009023973A1 (en) * 2007-08-21 2009-02-26 Soutec Soudronic Ag Apparatus and process for shaping a tube from a metal sheet
JP2011056524A (en) * 2009-09-08 2011-03-24 Sumitomo Heavy Industries Techno-Fort Co Ltd Plate bending press

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127625A4 *

Also Published As

Publication number Publication date
EP3127625A4 (en) 2017-08-02
EP3127625A1 (en) 2017-02-08
BR112016022005B1 (en) 2021-02-02
BR112016022005A2 (en) 2017-08-15
JP6112740B2 (en) 2017-04-12
CN106132578A (en) 2016-11-16
RU2016142577A (en) 2018-05-03
JP2015199125A (en) 2015-11-12
SA516371949B1 (en) 2020-02-23
KR20160127119A (en) 2016-11-02
RU2016142577A3 (en) 2018-05-03
KR101852704B1 (en) 2018-04-26
EP3127625B1 (en) 2020-01-29
CN106132578B (en) 2018-01-05
RU2655511C2 (en) 2018-05-28

Similar Documents

Publication Publication Date Title
JP6112740B2 (en) Steel pipe forming method and forming apparatus by three-point bending press forming
JP6015997B1 (en) Steel pipe manufacturing method and press die used in the method
RU2505370C1 (en) Method and device for manufacturing of pipes with butt weld made from metal sheets
JP4858624B2 (en) Torsion beam manufacturing method and torsion beam
JP4693475B2 (en) Press molding method and mold used therefor
EP2857118B1 (en) Method for manufacturing tube shaped part with different diameters and forming mold
JP2007203342A (en) Method for manufacturing cylindrical shaft
JP2009285711A (en) Manufacturing method of electric resistance welded tube excellent in buckling resistance
CN108076631B (en) Method for producing a slotted pipe from sheet metal
US11833570B2 (en) Method for manufacturing shaped part
JP2006320922A (en) Method and apparatus for manufacturing steel tube
KR101578500B1 (en) Roller bending apparatus and method of bending a steel plate using the same
EP3778050B1 (en) Method and device for bending edge of steel plate, and steel pipe manufacturing method and equipment
JP4248788B2 (en) Forming roll and forming method
JP5286506B2 (en) Pipe bending machine
WO2021240942A1 (en) Press-molding die and press-molding method
EP3778051B1 (en) Edge bending method and apparatus of steel plate, and method and facility for manufacturing steel pipe
JP6923043B1 (en) Press molding method
JP6090212B2 (en) Manufacturing method for thick-walled electro-resistance tube
JP5036449B2 (en) Pipe bending method
JP3274104B2 (en) Manufacturing method of round steel pipe
JP2004141936A (en) Uoe steel tube manufacturing method
JP5298645B2 (en) A method for manufacturing ERW line pipes with excellent buckling resistance
JP2003205317A (en) Forming roll and forming method
JP6252454B2 (en) Manufacturing method of high-strength thick-walled ERW steel pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020167026910

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015773059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015773059

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016142577

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022005

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022005

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160923