WO2015152090A1 - Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle - Google Patents

Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle Download PDF

Info

Publication number
WO2015152090A1
WO2015152090A1 PCT/JP2015/059770 JP2015059770W WO2015152090A1 WO 2015152090 A1 WO2015152090 A1 WO 2015152090A1 JP 2015059770 W JP2015059770 W JP 2015059770W WO 2015152090 A1 WO2015152090 A1 WO 2015152090A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte secondary
nonaqueous electrolyte
negative electrode
carbonaceous material
secondary battery
Prior art date
Application number
PCT/JP2015/059770
Other languages
French (fr)
Japanese (ja)
Inventor
誠 今治
佳余子 岡田
靖浩 多田
直弘 園部
真友 小松
Original Assignee
株式会社クレハ
株式会社クレハ・バッテリー・マテリアルズ・ジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ, 株式会社クレハ・バッテリー・マテリアルズ・ジャパン filed Critical 株式会社クレハ
Priority to US15/300,312 priority Critical patent/US9812711B2/en
Priority to JP2016511846A priority patent/JP6195660B2/en
Priority to CN201580017427.5A priority patent/CN106165162B/en
Priority to EP15773970.7A priority patent/EP3131144B1/en
Priority to KR1020167026838A priority patent/KR101984052B1/en
Publication of WO2015152090A1 publication Critical patent/WO2015152090A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode, a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a vehicle.
  • the secondary battery for example, in a power source for a hybrid vehicle, which is 1 to 2 hours in a small portable device, taking into account energy regeneration during braking, it is several tens of seconds.
  • the discharge is required for rapid charge / discharge (input / output) characteristics that are overwhelmingly superior to lithium ion secondary batteries for small mobile phones.
  • carbonaceous materials obtained by carbonizing organic materials and plant raw materials have been usefully used as negative electrodes for lithium ion secondary batteries.
  • carbon for negative electrodes used for in-vehicle lithium ion secondary batteries is used.
  • the material is required to have excellent charge / discharge characteristics, and improvement of the input / output characteristics is indispensable for realizing it.
  • in-vehicle lithium ion secondary batteries are required to further improve input / output characteristics including discharge capacity per volume in order to extend the cruising distance with one charge and further improve vehicle fuel efficiency.
  • discharge capacity per volume in order to extend the cruising distance with one charge and further improve vehicle fuel efficiency.
  • automobiles In consideration of the fact that automobiles are used in cold regions, it is required to maintain high input characteristics even in a low temperature environment.
  • An object of the present invention is to provide a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode that provides a negative electrode for a nonaqueous electrolyte secondary battery having excellent input / output characteristics, and a negative electrode for a nonaqueous electrolyte secondary battery having a high discharge capacity per volume. Another object is to provide a nonaqueous electrolyte secondary battery and a vehicle including the negative electrode for the nonaqueous electrolyte secondary battery.
  • the present invention provides the following.
  • the number average particle diameter is 0.1 to 2.0 ⁇ m, the value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less, and the (002) plane determined by the X-ray diffraction method
  • a negative electrode for a nonaqueous electrolyte secondary battery comprising the carbonaceous material for a negative electrode for a nonaqueous electrolyte secondary battery according to any one of (1) to (4) above.
  • a nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to any one of (5) to (7) above.
  • the number average particle diameter is 0.1 to 2.0 ⁇ m, and the value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less, which is determined by the X-ray diffraction method (
  • a carbonaceous material having an average layer spacing d 002 of (002) plane of 0.340 to 0.390 nm and an atomic ratio (H / C) of hydrogen and carbon of 0.10 or less, the input / output characteristics are improved.
  • An excellent negative electrode is provided. In particular, a negative electrode having good input characteristics under a low temperature environment and a high discharge capacity per volume can be obtained.
  • Carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery has a number average particle size of 0.1 to 2.0 ⁇ m and a number average particle size of The value divided by the volume average particle diameter is 0.3 or less, the average layer spacing d 002 of (002) plane determined by X-ray diffraction method is 0.340 to 0.390 nm, and the atomic ratio of hydrogen and carbon (H / C) is 0.10 or less.
  • the carbonaceous material having a number average particle diameter of 0.1 to 2.0 ⁇ m and a value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less, the small particle diameter particles are rich and Has a broad particle size distribution. Since such a carbonaceous material can be closely packed, it is easy to produce a negative electrode having a high amount of active material per volume and a high charge / discharge capacity per volume.
  • the average layer spacing of the (002) plane of the carbonaceous material shows a smaller value as the crystal perfection is higher, that of an ideal graphite structure shows a value of 0.3354 nm, and the value increases as the structure is disturbed. Tend. Therefore, the average layer spacing is effective as an index indicating the carbon structure.
  • the average layer spacing d 002 of the (002) plane obtained by the X-ray diffraction method is 0.340 to 0.390 nm.
  • the carbonaceous material having a graphite structure whose d 002 is less than 0.340 nm is used in a secondary battery using such a carbonaceous material as a negative electrode material.
  • a carbonaceous material having d 002 exceeding 0.390 nm increases the irreversible capacity of an active material such as lithium, and decreases the utilization rate of the active material.
  • d 002 is preferably 0.340 to 0.390 nm.
  • the lower limit is more preferably 0.345 nm and even more preferably 0.350 nm.
  • the upper limit is more preferably 0.385 nm or less.
  • a carbonaceous material having d 002 of 0.365 nm or more (particularly 0.370 nm or more) and 0.390 nm or less is called so-called hard carbon (non-graphitizable carbon), and d 002 is 0.345 to 0.370 nm (particularly 0). .345 to 0.365 nm) is called so-called soft carbon (graphitizable carbon).
  • the carbonaceous material of the present invention can be applied to any carbonaceous material, and can be densely packed by having the particle size distribution described above.
  • H / C of the carbonaceous material of the present invention is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C is It tends to be smaller. Therefore, H / C is effective as an index representing the degree of carbonization.
  • H / C of the carbonaceous material of this invention is not limited, it is 0.10 or less, More preferably, it is 0.08 or less. Especially preferably, it is 0.05 or less. If the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.1, many functional groups are present in the carbonaceous material, and the irreversible capacity may increase due to reaction with lithium, which is not preferable.
  • the volume average particle diameter of the carbonaceous material (D v50) is too small, increased ultra-fine powder has high reactivity with a liquid electrolyte, since it tends to increase the irreversible capacity, D v50 is It is preferable that it is 1 micrometer or more, More preferably, it is 2 micrometers or more. On the other hand, if the Dv50 is excessive, the small particle size powder involved in improving the input / output characteristics described above tends to be insufficient, so the Dv50 is preferably 7 ⁇ m or less, more preferably 6 ⁇ m or less. .
  • Cumulative volume particle diameter D v10 of the carbonaceous material suitably reflect the frequency at the end of small particles ⁇ .
  • the small particle diameter carbonaceous powder contributes to the improvement of the input / output characteristics. Therefore, Dv10 is 2.5 ⁇ m or less in that the small particle diameter carbonaceous powder is sufficiently contained. It is preferable that the thickness is 2.0 ⁇ m or less.
  • the fact that the carbonaceous material is densely packed contributes to the improvement of the input / output characteristics. If the cumulative volume particle diameter Dv90 is excessive, small particles that contribute to the improvement of the input / output characteristics. Dv90 is preferably 16 ⁇ m or less, more preferably 14 ⁇ m or less, because the amount of carbonaceous powder having a diameter tends to be insufficient.
  • (D v90 -D v10) / D v50 can be used, (D v90 -D v10) / D v50 of the non-aqueous electrolyte secondary battery carbonaceous material of the present invention, a broad In view of giving a particle size distribution, 1.4 or more is preferable, and 1.6 or more is more preferable. However, since an excessively broad particle size distribution requires labor for pulverization and classification, the upper limit of (D v90 -D v10 ) / D v50 is preferably 3 or less.
  • the active material layer of the negative electrode in order to improve the input / output characteristics, although not particularly limited, it is effective to make the active material layer of the negative electrode thin.
  • the above carbonaceous material can be densely packed, the voids formed between the carbonaceous powders of the negative electrode are reduced, and the movement of lithium in the electrolytic solution is suppressed, affecting the output characteristics.
  • the active material layer of the negative electrode is thin, the diffusion process of lithium ions is shortened. As a result, the merit of increasing the capacity per volume is easily surpassed compared to the demerit that suppresses the migration of lithium due to close packing. Become. From the viewpoint of forming such a thin and smooth active material layer, it is preferable that a large amount of particles having a large particle diameter is not contained.
  • the amount of particles having a volume particle diameter of 30 ⁇ m or more is 1.0% by volume. Or less, more preferably 0.5% by volume or less, and most preferably 0% by volume. Such adjustment of the particle size distribution may be performed by classification after pulverization in the production process.
  • the true density ( ⁇ Bt ) determined by the butanol method may be 1.52 g / cm 3 or more and less than 2.10 g / cm 3 .
  • ⁇ Bt may be 1.52 g / cm 3 or more and 1.75 g / cm 3 or less, or 1.70 g / cm 3 or more and less than 2.10 g / cm 3 .
  • the specific surface area (SSA) determined by the BET method of nitrogen adsorption of the carbonaceous material of the present invention is excessive, the irreversible capacity of the resulting battery tends to be large, so it may be 25 m 2 / g or less. , Preferably 20 m 2 / g or less.
  • the BET specific surface area is too small, the discharge capacity of the battery tends to be small, so that it is 1 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 6 m 2 / g or more.
  • the carbonaceous material for the non-aqueous electrolyte secondary battery negative electrode of the present invention is not particularly limited, but the grinding conditions and the like are controlled based on a manufacturing method similar to the conventional carbon negative electrode material for non-aqueous electrolyte secondary battery. Can be manufactured satisfactorily. Specifically, it is as follows.
  • the carbonaceous material of the present invention is produced from a carbon precursor.
  • the carbon precursor include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin.
  • the thermoplastic resin polyacetal, polyacrylonitrile, styrene / divinylbenzene copolymer, polyimide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyarylate, polysulfone, polyphenylene sulfide, fluororesin, polyamideimide, or polyether Mention may be made of ether ketones.
  • thermosetting resin examples include phenol resin, amino resin, unsaturated polyester resin, diallyl phthalate resin, alkyd resin, epoxy resin, and urethane resin.
  • the “carbon precursor” means a carbonaceous material from an untreated carbonaceous material stage to a pre-stage of a carbonaceous material for a nonaqueous electrolyte secondary battery finally obtained. That is, it means all the carbonaceous matter that has not finished the final process.
  • Crosslinking treatment When petroleum pitch or tar, coal pitch or tar, or a thermoplastic resin is used as the carbon precursor, a crosslinking treatment is performed.
  • the method for the crosslinking treatment is not particularly limited, and can be performed using, for example, an oxidizing agent.
  • the oxidizing agent is not particularly limited, but as the gas, O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen or the like, or an oxidizing gas such as air is used.
  • an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide, or a mixture thereof can be used.
  • the oxidation temperature is not particularly limited, but is preferably 120 to 400 ° C, and more preferably 150 to 350 ° C.
  • the temperature is less than 120 ° C., the crosslinking reaction does not proceed sufficiently, and a long time is required for the reaction.
  • the temperature exceeds 400 ° C., the decomposition reaction is more than the crosslinking reaction, and the yield of the obtained carbon material is lowered.
  • Calcination uses a carbon precursor as a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery.
  • the temperature may be once lowered after the pre-baking, pulverized, and main baking may be performed.
  • the pulverization step may be performed after the crosslinking treatment, but is preferably performed after preliminary firing.
  • the carbonaceous material of the present invention is produced by a step of pulverizing a carbon precursor and a step of firing the carbon precursor.
  • the pre-baking step in the present invention is performed by baking the carbon source at 300 ° C. or higher and lower than 900 ° C. Pre-firing removes volatile components such as CO 2 , CO, CH 4 , and H 2 , and tar components, and reduces the generation of these components in the main firing, thereby reducing the burden on the calciner. .
  • the pre-baking temperature is less than 300 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. This is not preferable because it cannot be maintained and the battery performance is lowered.
  • the pre-baking temperature is preferably 300 ° C.
  • the pre-baking temperature is 900 ° C. or higher, more preferably 500 ° C. or higher, particularly preferably 600 ° C. or higher.
  • the pre-baking temperature is 900 ° C. or higher, the tar generation temperature region is exceeded, and the energy efficiency to be used is lowered, which is not preferable.
  • the generated tar causes a secondary decomposition reaction, which adheres to the carbon precursor and may cause a decrease in performance, which is not preferable.
  • the pre-calcination temperature is too high, carbonization proceeds and the carbon precursor particles become too hard, and when pulverizing after pre-firing, pulverization may be difficult, such as scraping the inside of the pulverizer. Therefore, it is not preferable.
  • Pre-baking is performed in an inert gas atmosphere, and examples of the inert gas include nitrogen and argon. Pre-baking can also be performed under reduced pressure, for example, 10 kPa or less.
  • the pre-baking time is not particularly limited, but can be performed, for example, in 0.5 to 10 hours, and more preferably 1 to 5 hours.
  • the rate of temperature rise is preferably 5 ° C./h or more and 300 ° C./h or less, more preferably 10 ° C./h or more and 200 ° C./h or less, and further preferably 20 ° C./h or more and 100 ° C./h or less.
  • the pulverization step is performed in order to make the particle size of the carbon precursor uniform. It can also grind
  • the pulverizer used for pulverization is not particularly limited, and for example, a jet mill, a ball mill, a hammer mill, or a rod mill can be used. Examples of classification include classification with a sieve, wet classification, and dry classification.
  • Examples of the wet classifier include a classifier using a principle such as gravity classification, inertia classification, hydraulic classification, or centrifugal classification.
  • Examples of the dry classifier include a classifier using the principle of sedimentation classification, mechanical classification, or centrifugal classification.
  • pulverization and classification can be performed using one apparatus.
  • pulverization and classification can be performed using a jet mill having a dry classification function.
  • an apparatus in which the pulverizer and the classifier are independent can be used. In this case, pulverization and classification can be performed continuously, but pulverization and classification can also be performed discontinuously.
  • the main firing step in the present invention can be performed according to a normal main firing procedure, and a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode can be obtained by performing the main firing.
  • the firing temperature is 900 to 1600 ° C. If the main calcination temperature is less than 900 ° C., many functional groups remain in the carbonaceous material and the H / C value becomes high, and the irreversible capacity increases due to reaction with lithium, which is not preferable.
  • the lower limit of the main firing temperature of the present invention is 900 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably 1100 ° C. or higher.
  • the upper limit of the main calcination temperature of the present invention is 1600 ° C. or less, more preferably 1500 ° C. or less, and particularly preferably 1450 ° C. or less.
  • the main firing is preferably performed in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination.
  • the main calcination can be performed in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas.
  • this baking can also be performed under reduced pressure, for example, can also be performed at 10 kPa or less.
  • the time for the main baking is not particularly limited, it can be performed, for example, in 0.1 to 10 hours, preferably 0.2 to 8 hours, and more preferably 0.4 to 6 hours.
  • a method for the crosslinking treatment there are a method using a crosslinking agent, a treatment with an oxidizing agent such as air, and the like.
  • a cross-linking agent a carbon precursor is obtained by adding a cross-linking agent to petroleum tar or pitch, or coal tar or pitch and heating and mixing to proceed with a cross-linking reaction.
  • the crosslinking agent polyfunctional vinyl monomers such as divinylbenzene, trivinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, or N, N-methylenebisacrylamide that undergo a crosslinking reaction by radical reaction can be used.
  • the crosslinking reaction with the polyfunctional vinyl monomer is started by adding a radical initiator.
  • a radical initiator ⁇ , ⁇ ′ azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), lauroyl peroxide, cumene hydroperoxide, 1-butyl hydroperoxide, hydrogen peroxide, or the like can be used. .
  • a carbon precursor when the crosslinking reaction is advanced by treatment with an oxidizing agent such as air, it is preferable to obtain a carbon precursor by the following method. That is, to a petroleum pitch or coal pitch, a bicyclic to tricyclic aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive and heated and mixed, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive to form a porous pitch, which is then oxidized with an oxidizing agent, and then carbon precursor. Get the body.
  • the purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous.
  • the additive can select from 1 type, or 2 or more types of mixtures, such as naphthalene, methyl naphthalene, phenyl naphthalene, benzyl naphthalene, methyl anthracene, phenanthrene, or biphenyl, for example.
  • the amount of the aromatic additive added to the pitch is preferably in the range of 30 to 70 parts by mass with respect to 100 parts by mass of the pitch.
  • Mixing of pitch and additives is performed in a molten state by heating in order to achieve uniform mixing.
  • the mixture of the pitch and the additive is preferably performed after being formed into particles having a particle diameter of 1 mm or less so that the additive can be easily extracted from the mixture.
  • Molding may be performed in a molten state, or may be performed by a method such as pulverizing the mixture after cooling.
  • Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
  • aliphatic hydrocarbons such as butane, pentane, hexane, or heptane
  • mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene
  • methanol methanol
  • Aliphatic alcohols such as ethanol, propanol or butanol are preferred.
  • the resulting porous pitch is then oxidized with an oxidizing agent, preferably at a temperature of 120 to 400 ° C.
  • an oxidizing agent O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used.
  • a gas containing oxygen such as air or a mixed gas of air and other gas such as combustion gas as an oxidizing agent. Is also advantageous.
  • the pitch used preferably has a softening point of 150 ° C. or higher.
  • the carbon precursor subjected to the crosslinking treatment as described above is pre-fired and then carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere to obtain the carbonaceous material of the present invention. Can do.
  • the carbonaceous material of the present invention can also be obtained by carbonizing at 900 ° C. to 1600 ° C. using a resin as a precursor.
  • a resin As the resin, a phenol resin, a furan resin, or the like, or a thermosetting resin obtained by partially modifying the functional group of these resins can be used. It can also be obtained by pre-calcining the thermosetting resin at a temperature lower than 900 ° C., if necessary, pulverizing, and carbonizing at 900 ° C. to 1600 ° C.
  • an oxidation treatment may be performed at a temperature of 120 to 400 ° C. as necessary.
  • the oxidizing agent O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used.
  • a carbon precursor obtained by crosslinking a thermoplastic resin such as polyacrylonitrile or a styrene / divinylbenzene copolymer can also be used.
  • a monomer mixture obtained by mixing a radically polymerizable vinyl monomer and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer and suspended by stirring to suspend the monomer mixture into fine droplets. Then, it can be obtained by proceeding radical polymerization by raising the temperature.
  • the obtained resin can be made into a spherical carbon precursor by developing a crosslinked structure by a crosslinking treatment.
  • the crosslinking treatment can be performed in a temperature range of 120 to 400 ° C., particularly preferably 170 to 350 ° C., and more preferably 220 to 350 ° C.
  • the oxidizing agent O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing property such as sulfuric acid, nitric acid, hydrogen peroxide water, or the like Liquid can be used.
  • the carbon precursor that is infusible to heat as described above is pre-fired as necessary, and then pulverized and carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere,
  • the carbonaceous material of the present invention can be obtained.
  • the pulverization step can be performed after carbonization, since the carbon precursor becomes hard as the carbonization reaction proceeds, it becomes difficult to control the particle size distribution by pulverization. It is preferable before the main baking later.
  • Nonaqueous electrolyte secondary battery negative electrode contains the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention.
  • the electrode density is preferably 1.02 g / cm 3 or more, more preferably 1.04 g / cm 3 or more, from the viewpoint of further improving input / output characteristics.
  • the average thickness is thin, specifically, it may be 60 ⁇ m or less in that the disadvantage of suppressing lithium migration that may be caused by insufficient gaps between particles due to close packing is suppressed. .
  • the average thickness may be 10 ⁇ m or more.
  • a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying.
  • a conductive aid can be added.
  • the conductive assistant conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, etc. can be used, and the amount added varies depending on the type of conductive assistant used, but the amount added is too small.
  • the binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose).
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • CMC carbboxymethylcellulose
  • the amount of the binder added is preferably 3 to 13% by mass, more preferably 3 to 10% by mass for the PVDF binder, although it varies depending on the type of binder used.
  • a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by mass. The amount is preferably 1 to 4% by mass.
  • the electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collector plates and separators are required. However, the larger the electrode area facing the counter electrode, the better the input / output characteristics, and the thicker the active material layer. Too much is not preferable because the input / output characteristics deteriorate.
  • the electrode density of the negative electrode can be adjusted by adjusting the pressing pressure. Since the negative electrode of the present invention preferably has a high electrode density, the pressing pressure may typically be 5.2 MPa (1.0 tf / cm 2 ) or more. On the other hand, an excessively high press pressure is not preferable because the curvature of the electrode increases. 52.0 MPa (10.0 tf / cm 2 ) or less is preferable, and 41.6 MPa (8.0 tf / cm 2 ) or less is more preferable.
  • Nonaqueous electrolyte secondary battery includes the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
  • non-aqueous electrolyte secondary batteries Manufacture of non-aqueous electrolyte secondary batteries
  • other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are not particularly limited, and are nonaqueous solvents.
  • Various materials conventionally used or proposed as a secondary battery can be used.
  • a layered oxide system represented as LiMO 2 , where M is a metal: for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNi x Co y Mo z O 2 (where x, y and z represent composition ratios)
  • olivine system represented by LiMPO 4 , M is metal: for example, LiFePO 4, etc.
  • spinel system represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc.
  • the composite metal chalcogen compound is preferable, and these chalcogen compounds may be mixed if necessary.
  • These positive electrode materials are molded together with an appropriate binder and a carbon material for imparting conductivity to the electrode, and are electrically conductive.
  • the positive electrode is formed by forming a layer on the conductive current collector.
  • the nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent.
  • the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, ⁇ -butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. These can be used alone or in combination of two or more.
  • the electrolyte LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , or LiN (SO 3 CF 3 ) 2 is used.
  • the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution with a liquid-permeable separator made of nonwoven fabric or other porous material facing each other as necessary. It is formed by.
  • a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used.
  • a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
  • the lithium ion secondary battery of the present invention is suitable as a battery (typically a lithium ion secondary battery for driving a vehicle) mounted on a vehicle such as an automobile.
  • the vehicle according to the present invention can be targeted without particular limitation, such as a vehicle normally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, and at least a power supply device including the battery, An electric drive mechanism that is driven by power supply from the power supply device and a control device that controls the electric drive mechanism are provided. Further, a power generation brake or a regenerative brake may be provided, and a mechanism for converting the energy generated by braking into electricity and charging the lithium ion secondary battery may be provided. Since the hybrid vehicle has a particularly low degree of freedom in battery volume, the battery of the present invention is useful.
  • the physical property values ( ⁇ Bt , BET specific surface area, number average particle size, volume average particle size (D v50 ), cumulative volume particle size D v10 and D v90 of the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention are shown below.
  • Hydrogen / carbon atomic ratio (H / C), d 002 , charge capacity, discharge capacity, irreversible capacity, input characteristics, electrode density) are described in this specification including examples.
  • the physical property values to be described are based on values obtained by the following method.
  • the true density was measured by a butanol method according to a method defined in JIS R 7212.
  • the mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL is accurately measured.
  • the sample is placed flat on the bottom so as to have a thickness of about 10 mm, and its mass (m 2 ) is accurately measured.
  • light vibration is applied to the specific gravity bottle, and it is confirmed that large bubbles are not generated.
  • the bottle is placed in a vacuum desiccator and gradually evacuated to 2.0 to 2.7 kPa.
  • d is the specific gravity (0.9946) of water at 30 ° C.
  • v m is the adsorption amount necessary for forming a monomolecular layer on the surface of the sample (cm 3 / g)
  • x is a relative pressure.
  • the carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical.
  • the scanning range was 8 ⁇ 2 ⁇ ⁇ 50 °, and the applied current / applied voltage was 45 kV / 40 mA.
  • the wavelength of the CuK ⁇ ray is set to 0.15418 nm, and d 002 is calculated by the Bragg formula.
  • the volume average particle size Dv50 is defined as the particle size at which the volume-based cumulative volume is 50%. Further, the particle size of which cumulative volume is 90% and D v90, the particle size of which cumulative volume of 10% was D v10. The amount of particles having a volume particle diameter of 30 ⁇ m or more was calculated by subtracting from 100 the cumulative value up to the measured volume particle diameter of 30 ⁇ m.
  • Number average particle diameter The number average particle size was determined by the particle size at which the cumulative volume based on the number was 50% by the same method as described above.
  • Electrode preparation NMP was added to 94 parts by mass of the carbonaceous material and 6 parts by mass of polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Co., Ltd.) to form a paste, which was uniformly applied on the copper foil. After drying, it was punched out into a disk shape having a diameter of 15 mm from a copper foil, and this was pressed at 2.5 tf / cm 2 (13 MPa) to obtain an electrode. The amount of the carbonaceous material in the electrode was adjusted to about 9 mg.
  • Electrode density The negative electrode is obtained by applying a mixture of a carbonaceous material with a binder having a mass ratio of P on a current collector having a thickness of t1 [cm] and a mass per unit area of W1 [g / cm 2 ].
  • the negative electrode having a thickness of t2 [cm] manufactured by pressurization was punched with a predetermined area S [cm 2 ], and the mass of the negative electrode after punching was set to W2 [g].
  • the thickness of the negative electrode active material layer corresponds to half of the thickness obtained by subtracting the thickness of the current collector from the negative electrode when the negative electrode active material layers are present on both sides of the current collector of the negative electrode. Further, when the negative electrode active material layer exists only on one side of the current collector, this corresponds to a thickness obtained by subtracting the thickness of the current collector from the negative electrode. Specifically, the thickness of the negative electrode active material and the current collector was measured with a thickness measuring machine. Measurements were taken at five locations, and the average value was taken as the average thickness.
  • the carbonaceous material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-desorption) of the battery active material.
  • a lithium secondary battery is configured using the electrode obtained above, using lithium metal with stable characteristics as a counter electrode, Its characteristics were evaluated.
  • the lithium electrode was prepared in a glove box in an Ar atmosphere.
  • a 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal lithium sheet is punched into a 15 mm diameter disk shape.
  • the electrolyte solution was LiPF 6 at a ratio of 1.4 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2.
  • the lithium doping reaction on the carbon electrode will be described as “charging”.
  • “discharge” is a charging reaction in the test battery, but is referred to as “discharge” for convenience because it is a dedoping reaction of lithium from the carbonaceous material.
  • the charging method adopted here is a constant current constant voltage method. Specifically, constant current charging was performed at 0.5 mA / cm 2 until the terminal voltage reached 0.050 V, and the terminal voltage reached 0.050 V. Thereafter, constant voltage charging was performed at a terminal voltage of 0.050 V, and charging was continued until the current value reached 20 ⁇ A.
  • the value obtained by dividing the supplied amount of electricity by the mass of the carbonaceous material of the electrode was defined as the charge capacity (mAh / g) per unit mass of the carbonaceous material.
  • the battery circuit was opened for 30 minutes and then discharged.
  • the discharge was a constant current discharge at 0.5 mA / cm 2 and the final voltage was 1.5V.
  • a value obtained by dividing the quantity of electricity discharged at this time by the mass of the carbonaceous material of the electrode is defined as a discharge capacity (mAh / g) per unit mass of the carbonaceous material.
  • the capacity per volume is calculated by multiplying the capacity per mass by the above electrode density.
  • the irreversible capacity is calculated as charge capacity-discharge capacity.
  • a negative electrode was prepared in the same procedure as in (a) above.
  • the amount of the carbonaceous material in the electrode was adjusted so as to have a prescribed electrode thickness after pressing.
  • the positive electrode was made into a paste by adding NMP to 94 parts by mass of lithium cobaltate (LiCoO 2 ), 3 parts by mass of carbon black, and 3 parts by mass of polyvinylidene fluoride (Kureha KF # 1300) and uniformly applied onto the aluminum foil. . After drying, the coated electrode was punched onto a disk having a diameter of 14 mm and pressed to obtain an electrode.
  • the amount of lithium cobalt oxide in the positive electrode was adjusted to be 95% of the charge capacity of the negative electrode active material.
  • the capacity of lithium cobaltate was calculated as 150 mAh / g.
  • the electrode pair thus prepared was used, and the electrolyte was LiPF at a ratio of 1.4 mol / liter in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2. 6 is added, a borosilicate glass fiber microporous membrane with a diameter of 19 mm is used as a separator, a polyethylene gasket is used, and a 2032 size coin-type nonaqueous electrolyte is used in an Ar glove box.
  • -Based lithium secondary battery was assembled.
  • the discharge capacity at the second aging of 2 / 5C was defined as the initial capacity.
  • the battery was charged to a charge depth of 50% with respect to the initial capacity, the test environment was set to ⁇ 20 ° C. and sufficiently maintained, and then discharged in the order of 0.5 C, 1 C, and 2 C for 10 seconds alternately.
  • the current value when the upper limit voltage was 4.2 V was extrapolated, and the input value was calculated from the obtained upper limit voltage and current value. .
  • the input density was calculated by dividing the input value by the volume of the positive electrode and the negative electrode.
  • the -20 ° C input density ratio was calculated from the ratio with the input density obtained in the above input / output test at -20 ° C.
  • Tables 1 and 2 show the characteristics of the obtained lithium secondary battery.
  • Example 1 A 70 kg petroleum pitch with a softening point of 205 ° C. and an H / C atomic ratio of 0.65 and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle, and heated, melted and mixed at 190 ° C. After cooling to 80 to 90 ° C., the inside of the pressure vessel was pressurized with nitrogen gas, and the contents were extruded from the outlet nozzle to obtain a string-like molded body having a diameter of about 500 ⁇ m.
  • this string-like molded body was pulverized so that the ratio (L / D) of the diameter (D) to the length (L) was about 1.5, and the obtained crushed material was heated to 93 ° C.
  • the solution was poured into an aqueous solution in which 53% by mass of polyvinyl alcohol (saponification degree 88%) was dissolved, stirred and dispersed, and cooled to obtain a spherical pitch molded body slurry. After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane having a mass about 6 times that of the spherical pitch formed body.
  • the porous spherical pitch thus obtained was heated to 240 ° C. while passing through heated air using a fluidized bed, oxidized at a temperature of 240 ° C. for 1 hour, and insoluble to heat. Spherical oxidized pitch was obtained.
  • 7 kg of a porous spherical oxidation pitch is put into a vertical tubular furnace having a diameter of 130 mm, heated to 100 ° C./h up to 600 ° C. under a nitrogen gas flow, and kept at 600 ° C. for 1 hour to perform preliminary firing, A carbon precursor was obtained.
  • the obtained carbon precursor was pulverized with a steam jet mill (Toyo High-Tech Co., Ltd.) to obtain a powdery carbon precursor having a number average particle size of 0.73 ⁇ m and a volume average particle size of 6.9 ⁇ m. Subsequently, 10 g of this powdery carbon precursor was put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing, Carbonaceous material 1 was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
  • Example 2 A carbonaceous material 2 was obtained in the same manner as in Example 1 except that a powdery carbon precursor having a number average particle size of 0.68 ⁇ m and a volume average particle size of 4.9 ⁇ m was used.
  • Example 3 A carbonaceous material 3 was obtained in the same manner as in Example 1 except that a powdery carbon precursor having a number average particle size of 0.59 ⁇ m and a volume average particle size of 2.8 ⁇ m was used.
  • Example 4 The oxidation temperature of the porous spherical pitch was changed to 270 ° C., the powder was pulverized with a counter jet mill (Hosokawa Micron Corporation / 100-AFG) at a rotational speed of 20000 rpm, and the fine powder collected by the bag filter was mixed to obtain a number average particle A carbonaceous material 4 was obtained in the same manner as in Example 1 except that a powdery carbon precursor having a diameter of 0.62 ⁇ m and a volume average particle diameter of 3.8 ⁇ m was used.
  • a powdery carbon precursor having a diameter of 0.62 ⁇ m and a volume average particle diameter of 3.8 ⁇ m was used.
  • Example 5 A carbonaceous material 5 is obtained in the same manner as in Example 4 except that the oxidation temperature of the porous spherical pitch is 240 ° C. and that the powdery carbon precursor has a number average particle size of 0.67 ⁇ m and a volume average particle size of 3.8 ⁇ m. It was.
  • Example 6 The carbonaceous material 6 was changed in the same manner as in Example 4 except that the oxidation temperature of the porous spherical pitch was changed to 205 ° C. to obtain a powdery carbon precursor having a number average particle size of 0.62 ⁇ m and a volume average particle size of 3.7 ⁇ m. Got.
  • Example 7 The porous spherical pitch obtained by the same method as in Example 1 was heated to 190 ° C. while passing through heated air using a fluidized bed, oxidized at a temperature of 190 ° C. for 1 hour, and subjected to crosslinking treatment. A porous spherical oxide pitch was obtained. 200 g of the obtained porous spherical oxidation pitch was placed in a 150 mm horizontal tubular furnace, heated to 600 ° C. at 150 ° C./h, held at 600 ° C. for 1 hour, and pre-baked to obtain a carbon precursor. .
  • the obtained carbon precursor was coarsely pulverized to a diameter of 2 mm or less, then pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG), and the fine powder collected by the bag filter was mixed to obtain a number average particle size of 0. It was set as the powdery carbon precursor of 55 micrometers and a volume average particle diameter of 3.2 micrometers. Subsequently, 10 g of this powdery carbon precursor was put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing, Carbonaceous material 7 was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
  • Example 8 The carbonaceous material 8 was prepared in the same manner as in Example 7 except that the oxidation time of the porous spherical pitch was changed to 7 min to obtain a powdery carbon precursor having a number average particle size of 0.53 ⁇ m and a volume average particle size of 3.1 ⁇ m. Got.
  • Example 9 A carbonaceous material 9 was obtained in the same manner as in Example 6 except that a powdery carbon precursor having a number average particle size of 0.53 ⁇ m and a volume average particle size of 4.6 ⁇ m was used.
  • Example 10 A coal pitch having a softening point of 188 ° C. and an H / C atomic ratio of 0.51 was pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG) at a rotational speed of 13000 rpm to obtain a powdery pitch having an average particle diameter of 5.2 ⁇ m. . Subsequently, the powdery pitch was put into a muffle furnace (Denken Co., Ltd.), and infusible treatment was performed by maintaining the air at 280 ° C. for 1 hour while circulating air at 20 L / min to obtain an infusible pitch.
  • a muffle furnace (Denken Co., Ltd.)
  • 100 g of the obtained infusible pitch was put in a crucible, heated at a rate of 50 ° C./h up to 600 ° C. in a vertical tubular furnace, held at 600 ° C. for 1 hour, pre-fired, and carbon precursor was Obtained.
  • Pre-baking was performed in a nitrogen atmosphere with a flow rate of 5 L / min, and the crucible was opened.
  • the obtained carbon precursor was pulverized by a sample mill to obtain a powdery carbon precursor having an average particle size of 4.6 ⁇ m. 10 g of powdered carbon precursor is put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C.
  • Comparative Example 1 The precursor after pre-firing was pulverized by a ball mill and classified into fine powders to obtain a powdery carbon precursor having a number average particle size of 2.9 ⁇ m and a volume average particle size of 10.5 ⁇ m. A comparative carbonaceous material 1 was obtained.
  • Comparative Example 2 The pre-fired precursor is pulverized with a counter jet mill (Hosokawa Micron Corporation / 100-AFG) and classified into fine powders to obtain a powdery carbon precursor having a number average particle size of 2.7 ⁇ m and a volume average particle size of 6.5 ⁇ m.
  • a comparative carbonaceous material 2 was obtained in the same manner as in Example 4 except that.
  • Comparative Example 3 A comparative carbonaceous material 3 was obtained in the same manner as in Example 2 except that a powdery carbon precursor having a number average particle size of 0.44 ⁇ m and a volume average particle size of 0.80 ⁇ m collected by the bag filter of Example 2 was used. It was.
  • Comparative Example 4 A comparative carbonaceous material 4 was obtained in the same manner as in Example 2 except that the firing temperature was changed to 800 ° C.
  • Tables 1 and 2 show the characteristics of the carbonaceous materials obtained in Examples and Comparative Examples, and the results of measurement and evaluation of the negative electrode produced using the carbonaceous materials and battery performance.
  • Table 3 shows the results of measuring the input density using the carbonaceous material of Example 5 while changing the average thickness of the negative electrode.
  • the carbonaceous materials of Examples 1 to 10 are composed of small particles having a number average particle diameter in the range of 0.1 to 2.0 ⁇ m, and the number average particle diameter / volume average particle diameter is in the range of 0.3 or less. Thus, since it has such a broad particle size distribution, the filling property was improved, and a high discharge capacity per volume was obtained. This is also indicated by the high density of the electrodes pressed under the same pressing conditions. In addition, the input density in a low temperature environment has also been improved. In contrast, the carbonaceous materials of Comparative Examples 1 to 3 do not satisfy the scope of the present invention in terms of the number average particle diameter and the number average particle diameter / volume average particle diameter. C does not satisfy the scope of the present invention.
  • the electrode density was lower than that of the example. Further, the discharge capacity per volume was lower than that of the example, and the initial efficiency or the input density under a low temperature environment tended to be inferior to that of the example. Thus, the examples satisfying the scope of the present invention had good input / output characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide: a carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, which provides a negative electrode for nonaqueous electrolyte secondary batteries having excellent input/output characteristics; a negative electrode for nonaqueous electrolyte secondary batteries, which has a high discharge capacity per volume; a nonaqueous electrolyte secondary battery which is provided with this negative electrode for nonaqueous electrolyte secondary batteries; and a vehicle. A carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries according to the present invention has a number average particle diameter of 0.1-2.0 μm, and the value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less. This carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries has an average plane spacing (d002) of the (002) plane of 0.340-0.390 nm as determined by an X-ray diffraction method and an atomic ratio of hydrogen to carbon (H/C) of 0.10 or less.

Description

非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
 本発明は、非水電解質二次電池負極用炭素質材料、非水電解質二次電池用負極電極、非水電解質二次電池及び車両に関する。 The present invention relates to a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode, a negative electrode for a nonaqueous electrolyte secondary battery, a nonaqueous electrolyte secondary battery, and a vehicle.
 近年、環境問題への関心の高まりから、エネルギー密度が高く、出力特性の優れた大型のリチウムイオン二次電池の電気自動車への搭載が検討されている。携帯電話やノートパソコンといった小型携帯機器用途では、体積当たりの容量が重要となるため、密度の大きい黒鉛質材料が主に負極活物質として利用されてきた。しかし、車載用リチウムイオン二次電池においては大型で且つ高価であることから途中での交換が困難である。そのため、自動車と同じ耐久性が必要であり、例えば10年以上の寿命性能の実現(高耐久性)が求められる。
 また、二次電池の使用形態についても、例えば、小型携帯機器で1~2時間であった充電時間がハイブリッド自動車用電源では、ブレーキ時のエネルギー回生を行うことを考慮すると数十秒であり、放電もアクセルを踏み込む時間を考えれば数十秒と、小型携帯向けのリチウムイオン二次電池と比較し、圧倒的に優れた急速な充放電(入出力)特性が求められている。
 リチウムイオン二次電池の負極として、従来、有機材料や植物原料を炭素化して得られる炭素質材料が有用に使用されているが、上記のように車載リチウムイオン二次電池に用いられる負極用炭素質材料には、優れた充放電特性が求められており、その実現には入出力特性の向上が不可欠である。
In recent years, due to increasing interest in environmental problems, mounting of large-sized lithium ion secondary batteries with high energy density and excellent output characteristics to electric vehicles has been studied. In small portable devices such as mobile phones and notebook computers, capacity per volume is important, and thus a graphite material having a high density has been mainly used as a negative electrode active material. However, in-vehicle lithium ion secondary batteries are large and expensive, and are difficult to replace in the middle. For this reason, the same durability as that of an automobile is required, and for example, realization of a life performance of 10 years or more (high durability) is required.
Also, with regard to the usage form of the secondary battery, for example, in a power source for a hybrid vehicle, which is 1 to 2 hours in a small portable device, taking into account energy regeneration during braking, it is several tens of seconds. Considering the time to depress the accelerator, the discharge is required for rapid charge / discharge (input / output) characteristics that are overwhelmingly superior to lithium ion secondary batteries for small mobile phones.
Conventionally, carbonaceous materials obtained by carbonizing organic materials and plant raw materials have been usefully used as negative electrodes for lithium ion secondary batteries. However, as described above, carbon for negative electrodes used for in-vehicle lithium ion secondary batteries is used. The material is required to have excellent charge / discharge characteristics, and improvement of the input / output characteristics is indispensable for realizing it.
 これまで、入出力特性を向上させるためには、非水電解質二次電池の負極電極において、負極活物質間の空隙を確保することが検討されてきた。例えば、負極活物質間の空隙を確保する方法として、球状の難黒鉛化性炭素質材料を負極電極に用いることにより出力特性および充放電能力を改善するもの(特許文献1)、電極密度を適切な値に設定することにより入出力特性を向上させるもの(特許文献2)が記載されているが、入出力特性が十分でなかった。また、活物質の粒子間空隙の確保のために、粒子形状および粒子径分布が調整された炭素質材料が提案されている(特許文献3)。 So far, in order to improve the input / output characteristics, it has been studied to secure a gap between the negative electrode active materials in the negative electrode of the non-aqueous electrolyte secondary battery. For example, as a method for ensuring a gap between the negative electrode active materials, a spherical non-graphitizable carbonaceous material is used for the negative electrode to improve output characteristics and charge / discharge capability (Patent Document 1), and an appropriate electrode density. Although a device that improves the input / output characteristics by setting to a small value (Patent Document 2) is described, the input / output characteristics are not sufficient. Moreover, in order to ensure the space | gap between particles of an active material, the carbonaceous material by which particle shape and particle size distribution were adjusted is proposed (patent document 3).
国際公開第2005/098998号公報International Publication No. 2005/098998 特開2002-334693号公報JP 2002-334893 A 国際公開第2013/118757号International Publication No. 2013/118757
 しかし、車載用リチウムイオン二次電池では、一充電での航続距離を延ばすとともに、車両燃費を一層改善するためには、体積当たり放電容量を含む入出力特性のさらなる向上が求められている。また、自動車が寒冷地で使用されることも考慮し、低温環境においても高い入力特性を維持することが求められている。 However, in-vehicle lithium ion secondary batteries are required to further improve input / output characteristics including discharge capacity per volume in order to extend the cruising distance with one charge and further improve vehicle fuel efficiency. In consideration of the fact that automobiles are used in cold regions, it is required to maintain high input characteristics even in a low temperature environment.
 本発明の目的は、入出力特性に優れる非水電解質二次電池用負極電極を与える非水電解質二次電池負極用炭素質材料、並びに体積当たり放電容量が高い非水電解質二次電池用負極電極、この非水電解質二次電池用負極電極を備える非水電解質二次電池及び車両を提供することである。 An object of the present invention is to provide a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode that provides a negative electrode for a nonaqueous electrolyte secondary battery having excellent input / output characteristics, and a negative electrode for a nonaqueous electrolyte secondary battery having a high discharge capacity per volume. Another object is to provide a nonaqueous electrolyte secondary battery and a vehicle including the negative electrode for the nonaqueous electrolyte secondary battery.
 本発明者らは、個数平均粒子径が0.1~2.0μmという小粒径粉末リッチの炭素質材料において、個数平均粒子径を体積平均粒子径で除した値が0.3以下というブロードな粒度分布を採用すると、入出力特性がむしろ向上し得ることを見出し、本発明を完成するに至った。具体的に、本発明は以下のようなものを提供する。 In the carbonaceous material having a small number particle diameter of 0.1 to 2.0 μm and having a number average particle diameter of 0.1 to 2.0 μm, a value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less. It has been found that the input / output characteristics can be rather improved by adopting a simple particle size distribution, and the present invention has been completed. Specifically, the present invention provides the following.
 (1) 個数平均粒子径が0.1~2.0μmであり、個数平均粒子径を体積平均粒子径で除した値が0.3以下であり、X線回折法により定めた(002)面の平均層面間隔d002が0.340~0.390nmであり、水素および炭素の原子比(H/C)が0.10以下である非水電解質二次電池負極用炭素質材料。 (1) The number average particle diameter is 0.1 to 2.0 μm, the value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less, and the (002) plane determined by the X-ray diffraction method A carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery having an average layer surface spacing d 002 of 0.340 to 0.390 nm and an atomic ratio (H / C) of hydrogen and carbon of 0.10 or less.
 (2) 体積平均粒子径Dv50が1~7μmである上記(1)に記載の非水電解質二次電池負極用炭素質材料。 (2) The carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery according to (1), wherein the volume average particle diameter Dv50 is 1 to 7 μm.
 (3) 累積体積粒子径Dv10が2.5μm以下である上記(1)または(2)に記載の非水電解質二次電池負極用炭素質材料。 (3) The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to the above (1) or (2), wherein the cumulative volume particle diameter Dv10 is 2.5 μm or less.
 (4) 粒子径30μm以上の粒子の量が1.0体積%以下である上記(1)から(3)のいずれかに記載の非水電解質二次電池負極用炭素質材料。 (4) The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to any one of (1) to (3) above, wherein the amount of particles having a particle diameter of 30 μm or more is 1.0% by volume or less.
 (5) 上記(1)から(4)のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極。 (5) A negative electrode for a nonaqueous electrolyte secondary battery comprising the carbonaceous material for a negative electrode for a nonaqueous electrolyte secondary battery according to any one of (1) to (4) above.
 (6) 13MPa(2.5tf/cm)のプレス圧力を加えた場合に電極密度が1.02g/cm以上である上記(5)に記載の非水電解質二次電池用負極電極。 (6) The negative electrode for a non-aqueous electrolyte secondary battery according to (5), wherein the electrode density is 1.02 g / cm 3 or more when a pressing pressure of 13 MPa (2.5 tf / cm 2 ) is applied.
 (7) 平均厚みが60μm以下である上記(5)または(6)に記載の非水電解質二次電池用負極電極。 (7) The negative electrode for a nonaqueous electrolyte secondary battery according to (5) or (6) above, wherein the average thickness is 60 μm or less.
 (8) 上記(5)から(7)のいずれかに記載の非水電解質二次電池用負極電極を備える非水電解質二次電池。 (8) A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to any one of (5) to (7) above.
 (9) 上記(8)に記載の非水電解質二次電池を搭載した車両。 (9) A vehicle equipped with the nonaqueous electrolyte secondary battery described in (8) above.
 本発明によれば、個数平均粒子径が0.1~2.0μmであり、個数平均粒子径を体積平均粒子径で除した値が0.3以下であり、X線回折法により定めた(002)面の平均層面間隔d002が0.340~0.390nmであり、水素および炭素の原子比(H/C)が0.10以下である炭素質材料を用いることで、入出力特性に優れる負極が提供される。とくに低温環境下での入力特性が良好で、高い体積当たり放電容量を有する負極電極が得られる。 According to the present invention, the number average particle diameter is 0.1 to 2.0 μm, and the value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less, which is determined by the X-ray diffraction method ( By using a carbonaceous material having an average layer spacing d 002 of (002) plane of 0.340 to 0.390 nm and an atomic ratio (H / C) of hydrogen and carbon of 0.10 or less, the input / output characteristics are improved. An excellent negative electrode is provided. In particular, a negative electrode having good input characteristics under a low temperature environment and a high discharge capacity per volume can be obtained.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
[1]非水電解質二次電池負極用炭素質材料
 本発明の非水電解質二次電池負極用炭素質材料は、個数平均粒子径が0.1~2.0μmであり、個数平均粒子径を体積平均粒子径で除した値が0.3以下であり、X線回折法により定めた(002)面の平均層面間隔d002が0.340~0.390nmであり、水素および炭素の原子比(H/C)が0.10以下であることを特徴とする。
[1] Carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery The carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery of the present invention has a number average particle size of 0.1 to 2.0 μm and a number average particle size of The value divided by the volume average particle diameter is 0.3 or less, the average layer spacing d 002 of (002) plane determined by X-ray diffraction method is 0.340 to 0.390 nm, and the atomic ratio of hydrogen and carbon (H / C) is 0.10 or less.
 個数平均粒子径が0.1~2.0μmであり、かつ個数平均粒子径を体積平均粒子径で除した値が0.3以下である炭素質材料は、小粒子径の粒子がリッチでかつブロードな粒度分布を有する。このような炭素質材料は、密に充填することが可能であるため、体積当たり活物質量が高く、体積当たり充放電容量の高い負極を製造しやすい。 The carbonaceous material having a number average particle diameter of 0.1 to 2.0 μm and a value obtained by dividing the number average particle diameter by the volume average particle diameter is 0.3 or less, the small particle diameter particles are rich and Has a broad particle size distribution. Since such a carbonaceous material can be closely packed, it is easy to produce a negative electrode having a high amount of active material per volume and a high charge / discharge capacity per volume.
 炭素質材料の(002)面の平均層面間隔は、結晶完全性が高いほど小さな値を示し、理想的な黒鉛構造のそれは、0.3354nmの値を示し、構造が乱れるほどその値が増加する傾向がある。したがって、平均層面間隔は、炭素の構造を示す指標として有効である。本発明において、X線回折法により求めた(002)面の平均層面間隔d002は、0.340~0.390nmである。d002が0.340nm未満のような黒鉛構造の発達した炭素質材料は、このような炭素質材料を負極材料として用いた二次電池において、活物質のドープ・脱ドープによる炭素質物質の崩壊や電解液の分解が起り易く、電池の充放電サイクル特性が劣るので、好ましくない。また、d002が0.390nmを超えるような炭素質材料は、リチウム等の活物質の不可逆容量が大きくなり、活物質の利用率が低下する。この観点で、d002は、好ましくは0.340~0.390nmが好ましい。その下限は、0.345nmがより好ましく、0.350nmさらに好ましい。また、その上限は、0.385nm以下がより好ましい。 The average layer spacing of the (002) plane of the carbonaceous material shows a smaller value as the crystal perfection is higher, that of an ideal graphite structure shows a value of 0.3354 nm, and the value increases as the structure is disturbed. Tend. Therefore, the average layer spacing is effective as an index indicating the carbon structure. In the present invention, the average layer spacing d 002 of the (002) plane obtained by the X-ray diffraction method is 0.340 to 0.390 nm. The carbonaceous material having a graphite structure whose d 002 is less than 0.340 nm is used in a secondary battery using such a carbonaceous material as a negative electrode material. And the electrolytic solution is easily decomposed, and the charge / discharge cycle characteristics of the battery are inferior. In addition, a carbonaceous material having d 002 exceeding 0.390 nm increases the irreversible capacity of an active material such as lithium, and decreases the utilization rate of the active material. In this respect, d 002 is preferably 0.340 to 0.390 nm. The lower limit is more preferably 0.345 nm and even more preferably 0.350 nm. Moreover, the upper limit is more preferably 0.385 nm or less.
 d002が0.365nm以上(特に0.370nm以上)0.390nm以下の炭素質材料は、いわゆるハードカーボン(難黒鉛化炭素)と呼ばれ、d002が0.345~0.370nm(特に0.345~0.365nm)の炭素質材料は、いわゆるソフトカーボン(易黒鉛化炭素)と呼ばれるものである。本発明の炭素質材料は、いずれの炭素質材料でも適用できるものであり、前述の粒度分布を有することで、密に充填されることが可能である。 A carbonaceous material having d 002 of 0.365 nm or more (particularly 0.370 nm or more) and 0.390 nm or less is called so-called hard carbon (non-graphitizable carbon), and d 002 is 0.345 to 0.370 nm (particularly 0). .345 to 0.365 nm) is called so-called soft carbon (graphitizable carbon). The carbonaceous material of the present invention can be applied to any carbonaceous material, and can be densely packed by having the particle size distribution described above.
 本発明の炭素質材料のH/Cは、水素原子及び炭素原子を元素分析により測定されたものであり、炭素化度が高くなるほど炭素質材料の水素含有率が小さくなるため、H/Cが小さくなる傾向にある。したがって、H/Cは、炭素化度を表す指標として有効である。本発明の炭素質材料のH/Cは、限定されないが0.10以下であり、より好ましくは0.08以下である。特に好ましくは0.05以下である。水素原子と炭素原子の比H/Cが0.1を超えると、炭素質材料に官能基が多く存在し、リチウムとの反応により不可逆容量が増加することがあるので好ましくない。 H / C of the carbonaceous material of the present invention is measured by elemental analysis of hydrogen atoms and carbon atoms. Since the hydrogen content of the carbonaceous material decreases as the degree of carbonization increases, H / C is It tends to be smaller. Therefore, H / C is effective as an index representing the degree of carbonization. Although H / C of the carbonaceous material of this invention is not limited, it is 0.10 or less, More preferably, it is 0.08 or less. Especially preferably, it is 0.05 or less. If the ratio H / C of hydrogen atoms to carbon atoms exceeds 0.1, many functional groups are present in the carbonaceous material, and the irreversible capacity may increase due to reaction with lithium, which is not preferable.
 本発明において、炭素質材料の体積平均粒子径(Dv50)が過小であると、電解液との反応性が高い超微細な粉末が増加し、不可逆容量を増加させやすいことから、Dv50は、1μm以上であることが好ましく、より好ましくは2μm以上である。他方、Dv50が過大であると、前述した入出力特性向上に関与する小粒子径の粉末が不足しやすいことから、Dv50は、7μm以下であることが好ましく、より好ましくは6μm以下である。 In the present invention, the volume average particle diameter of the carbonaceous material (D v50) is too small, increased ultra-fine powder has high reactivity with a liquid electrolyte, since it tends to increase the irreversible capacity, D v50 is It is preferable that it is 1 micrometer or more, More preferably, it is 2 micrometers or more. On the other hand, if the Dv50 is excessive, the small particle size powder involved in improving the input / output characteristics described above tends to be insufficient, so the Dv50 is preferably 7 μm or less, more preferably 6 μm or less. .
 炭素質材料の累積体積粒子径Dv10は、小粒子径粉末の頻度を好適に反映する。前述のとおり、本発明では、小粒子径の炭素質粉末が入出力特性の改善に寄与することから、かかる小粒子径の炭素質粉末が十分に含まれる点で、Dv10は2.5μm以下であることが好ましく、より好ましくは2.0μm以下である。 Cumulative volume particle diameter D v10 of the carbonaceous material, suitably reflect the frequency at the end of small particles径粉. As described above, in the present invention, the small particle diameter carbonaceous powder contributes to the improvement of the input / output characteristics. Therefore, Dv10 is 2.5 μm or less in that the small particle diameter carbonaceous powder is sufficiently contained. It is preferable that the thickness is 2.0 μm or less.
 本発明では、炭素質材料が密に充填されることが、入出力特性の向上の一因であるところ、累積体積粒子径Dv90が過大であると、入出力特性の改善に寄与する小粒子径の炭素質粉末の量が不足しやすいため、Dv90は16μm以下であることが好ましく、より好ましくは14μm以下である。 In the present invention, the fact that the carbonaceous material is densely packed contributes to the improvement of the input / output characteristics. If the cumulative volume particle diameter Dv90 is excessive, small particles that contribute to the improvement of the input / output characteristics. Dv90 is preferably 16 μm or less, more preferably 14 μm or less, because the amount of carbonaceous powder having a diameter tends to be insufficient.
 粒度分布の指標として、(Dv90-Dv10)/Dv50を用いることができ、本発明の非水電解質二次電池用炭素質材料の(Dv90-Dv10)/Dv50は、ブロードな粒度分布を与える点で、1.4以上が好ましく、より好ましくは1.6以上である。ただし、過度にブロードな粒度分布にするには粉砕および分級の手間を要するので、(Dv90-Dv10)/Dv50の上限は3以下であることが好ましい。 As an index of particle size distribution, (D v90 -D v10) / D v50 can be used, (D v90 -D v10) / D v50 of the non-aqueous electrolyte secondary battery carbonaceous material of the present invention, a broad In view of giving a particle size distribution, 1.4 or more is preferable, and 1.6 or more is more preferable. However, since an excessively broad particle size distribution requires labor for pulverization and classification, the upper limit of (D v90 -D v10 ) / D v50 is preferably 3 or less.
 本発明では、入出力特性を向上させるために、特に限定されないが、負極の活物質層を薄くすることが効果的である。上記の炭素質材料は密に充填可能であるが、そうすると、負極の炭素質粉末の間に形成される空隙が小さくなり、電解液中のリチウムの移動が抑制されて出力特性に影響する。しかし、負極の活物質層が薄い場合は、リチウムイオンの拡散行程が短くなるので、その結果、密充填による上記リチウムの移動が抑制されるデメリットに比べて、体積当たり容量増加のメリットが上回りやすくなる。このような薄い平滑な活物質層を形成する観点では、大粒子径の粒子は多量に含まれないことが好ましく、具体的には、体積粒子径30μm以上の粒子の量が1.0体積%以下であることが好ましく、より好ましくは0.5体積%以下、最も好ましくは0体積%である。このような粒度分布の調整は、製造過程での粉砕後に分級することで行われてよい。 In the present invention, in order to improve the input / output characteristics, although not particularly limited, it is effective to make the active material layer of the negative electrode thin. Although the above carbonaceous material can be densely packed, the voids formed between the carbonaceous powders of the negative electrode are reduced, and the movement of lithium in the electrolytic solution is suppressed, affecting the output characteristics. However, when the active material layer of the negative electrode is thin, the diffusion process of lithium ions is shortened. As a result, the merit of increasing the capacity per volume is easily surpassed compared to the demerit that suppresses the migration of lithium due to close packing. Become. From the viewpoint of forming such a thin and smooth active material layer, it is preferable that a large amount of particles having a large particle diameter is not contained. Specifically, the amount of particles having a volume particle diameter of 30 μm or more is 1.0% by volume. Or less, more preferably 0.5% by volume or less, and most preferably 0% by volume. Such adjustment of the particle size distribution may be performed by classification after pulverization in the production process.
 ブタノール法によって求められる真密度(ρBt)は、1.52g/cm以上2.10g/cm未満であってよい。本発明の炭素質材料が、このように高い真密度を有すると、一層高い体積当たり容量を呈することができる。具体的にρBtは、1.52g/cm以上1.75g/cm以下であってよく、又は1.70g/cm以上2.10g/cm未満であってよい。 The true density (ρ Bt ) determined by the butanol method may be 1.52 g / cm 3 or more and less than 2.10 g / cm 3 . When the carbonaceous material of the present invention has such a high true density, a higher capacity per volume can be exhibited. Specifically, ρ Bt may be 1.52 g / cm 3 or more and 1.75 g / cm 3 or less, or 1.70 g / cm 3 or more and less than 2.10 g / cm 3 .
 本発明の炭素質材料の窒素吸着のBET法により求めた比表面積(SSA)は、過大であると、得られる電池の不可逆容量が大きくなる傾向があるため、25m/g以下であってよく、好ましくは20m/g以下である。他方、BET比表面積は過小であると電池の放電容量が小さくなる傾向があるため、1m/g以上、好ましくは3m/g以上、より好ましくは6m/g以上である。 If the specific surface area (SSA) determined by the BET method of nitrogen adsorption of the carbonaceous material of the present invention is excessive, the irreversible capacity of the resulting battery tends to be large, so it may be 25 m 2 / g or less. , Preferably 20 m 2 / g or less. On the other hand, if the BET specific surface area is too small, the discharge capacity of the battery tends to be small, so that it is 1 m 2 / g or more, preferably 3 m 2 / g or more, more preferably 6 m 2 / g or more.
 本発明の非水電解質二次電池負極用炭素質材料は、特に限定されないが、従来の非水電解質二次電池用炭素負極材料と類似の製造法をベースにしつつ、粉砕条件等を制御することで良好に製造することができる。具体的には、以下のとおりである。 The carbonaceous material for the non-aqueous electrolyte secondary battery negative electrode of the present invention is not particularly limited, but the grinding conditions and the like are controlled based on a manufacturing method similar to the conventional carbon negative electrode material for non-aqueous electrolyte secondary battery. Can be manufactured satisfactorily. Specifically, it is as follows.
(炭素前駆体)
 本発明の炭素質材料は、炭素前駆体から製造されるものである。炭素前駆体として、石油ピッチ若しくはタール、石炭ピッチ若しくはタール、熱可塑性樹脂、又は熱硬化性樹脂を挙げることができる。また、熱可塑性樹脂としては、ポリアセタール、ポリアクリロニトリル、スチレン/ジビニルベンゼン共重合体、ポリイミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリアリレート、ポリスルホン、ポリフェニレンスルフィド、フッ素樹脂、ポリアミドイミド、又はポリエーテルエーテルケトンを挙げることができる。更に、熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、アルキド樹脂、エポキシ樹脂、ウレタン樹脂を挙げることができる。
 なお、本明細書において、「炭素前駆体」は、未処理の炭素質の段階から、最終的に得られる非水電解質二次電池用炭素質材料の前段階までの炭素質を意味する。すなわち、最終工程の終了していないすべての炭素質を意味する。
(Carbon precursor)
The carbonaceous material of the present invention is produced from a carbon precursor. Examples of the carbon precursor include petroleum pitch or tar, coal pitch or tar, thermoplastic resin, or thermosetting resin. In addition, as the thermoplastic resin, polyacetal, polyacrylonitrile, styrene / divinylbenzene copolymer, polyimide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyarylate, polysulfone, polyphenylene sulfide, fluororesin, polyamideimide, or polyether Mention may be made of ether ketones. Furthermore, examples of the thermosetting resin include phenol resin, amino resin, unsaturated polyester resin, diallyl phthalate resin, alkyd resin, epoxy resin, and urethane resin.
In the present specification, the “carbon precursor” means a carbonaceous material from an untreated carbonaceous material stage to a pre-stage of a carbonaceous material for a nonaqueous electrolyte secondary battery finally obtained. That is, it means all the carbonaceous matter that has not finished the final process.
(架橋処理)
 炭素前駆体として、石油ピッチ若しくはタール、石炭ピッチ若しくはタール、又は熱可塑性樹脂を用いる場合、架橋処理を行う。架橋処理の方法は、特に限定されるものではないが、例えば、酸化剤を用いて行うことができる。酸化剤も特に限定されるものではないが、気体としては、O、O、SO、NO、これらを空気、窒素などで希釈した混合ガス、又は空気などの酸化性気体を用いることができる。また、液体としては、硫酸、硝酸、若しくは過酸化水素等の酸化性液体、又はそれらの混合物を用いることができる。酸化温度も、特に限定されるものではないが、好ましくは、120~400℃であり、より好ましくは、150~350℃である。温度が120℃未満であると、十分に架橋反応が進行せず、反応に長時間を要してしまう。また温度が400℃を超えると、架橋反応よりも分解反応のほうが多くなり、得られる炭素材料の収率が低くなる。
(Crosslinking treatment)
When petroleum pitch or tar, coal pitch or tar, or a thermoplastic resin is used as the carbon precursor, a crosslinking treatment is performed. The method for the crosslinking treatment is not particularly limited, and can be performed using, for example, an oxidizing agent. The oxidizing agent is not particularly limited, but as the gas, O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen or the like, or an oxidizing gas such as air is used. Can do. As the liquid, an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide, or a mixture thereof can be used. The oxidation temperature is not particularly limited, but is preferably 120 to 400 ° C, and more preferably 150 to 350 ° C. When the temperature is less than 120 ° C., the crosslinking reaction does not proceed sufficiently, and a long time is required for the reaction. On the other hand, when the temperature exceeds 400 ° C., the decomposition reaction is more than the crosslinking reaction, and the yield of the obtained carbon material is lowered.
 焼成は、炭素前駆体を非水電解質二次電池負極用炭素質材料とするものである。予備焼成及び本焼成を行う場合は、予備焼成の後に一旦温度を低下させて、粉砕し、本焼成を行ってもよい。粉砕工程は、架橋処理の後に行ってもよいが、予備焼成後に行う方が好ましい。 Calcination uses a carbon precursor as a carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery. When pre-baking and main baking are performed, the temperature may be once lowered after the pre-baking, pulverized, and main baking may be performed. The pulverization step may be performed after the crosslinking treatment, but is preferably performed after preliminary firing.
 本発明の炭素質材料は、炭素前駆体を粉砕する工程、炭素前駆体を焼成する工程により製造される。 The carbonaceous material of the present invention is produced by a step of pulverizing a carbon precursor and a step of firing the carbon precursor.
(予備焼成工程)
 本発明における予備焼成工程は、炭素源を300℃以上900℃未満で焼成することによって行う。予備焼成は、揮発分、例えばCO、CO、CH、及びHなどと、タール分とを除去し、本焼成において、それらの発生を軽減し、焼成器の負担を軽減することができる。予備焼成温度が300℃未満であると脱タールが不十分となり、粉砕後の本焼成工程で発生するタール分やガスが多く、粒子表面に付着する可能性があり、粉砕したときの表面性を保てず電池性能の低下を引き起こすので好ましくない。予備焼成温度は300℃以上が好ましく、更に好ましくは500℃以上、特に好ましくは600℃以上である。一方、予備焼成温度が900℃以上であるとタール発生温度領域を超えることになり、使用するエネルギー効率が低下するため好ましくない。更に、発生したタールが二次分解反応を引き起こしそれらが炭素前駆体に付着し、性能の低下を引き起こすことがあるので好ましくない。また、予備焼成温度が高すぎると炭素化が進んで炭素前駆体の粒子が硬くなりすぎて、予備焼成後に粉砕を行う場合、粉砕機の内部を削り取ってしまうなど粉砕が困難になる場合があるため、好ましくない。
 予備焼成は、不活性ガス雰囲気中で行い、不活性ガスとしては、窒素、又はアルゴンなどを挙げることができる。また、予備焼成は、減圧下で行うこともでき、例えば、10kPa以下で行うことができる。予備焼成の時間も特に限定されるものではないが、例えば0.5~10時間で行うことができ、1~5時間がより好ましい。
(Pre-baking process)
The pre-baking step in the present invention is performed by baking the carbon source at 300 ° C. or higher and lower than 900 ° C. Pre-firing removes volatile components such as CO 2 , CO, CH 4 , and H 2 , and tar components, and reduces the generation of these components in the main firing, thereby reducing the burden on the calciner. . When the pre-baking temperature is less than 300 ° C., detarring becomes insufficient, and there is a large amount of tar and gas generated in the main baking process after pulverization, which may adhere to the particle surface. This is not preferable because it cannot be maintained and the battery performance is lowered. The pre-baking temperature is preferably 300 ° C. or higher, more preferably 500 ° C. or higher, particularly preferably 600 ° C. or higher. On the other hand, when the pre-baking temperature is 900 ° C. or higher, the tar generation temperature region is exceeded, and the energy efficiency to be used is lowered, which is not preferable. Furthermore, the generated tar causes a secondary decomposition reaction, which adheres to the carbon precursor and may cause a decrease in performance, which is not preferable. Also, if the pre-calcination temperature is too high, carbonization proceeds and the carbon precursor particles become too hard, and when pulverizing after pre-firing, pulverization may be difficult, such as scraping the inside of the pulverizer. Therefore, it is not preferable.
Pre-baking is performed in an inert gas atmosphere, and examples of the inert gas include nitrogen and argon. Pre-baking can also be performed under reduced pressure, for example, 10 kPa or less. The pre-baking time is not particularly limited, but can be performed, for example, in 0.5 to 10 hours, and more preferably 1 to 5 hours.
 ブタノール真密度が1.55~1.75g/cmとなる炭素前駆体の予備焼成では、発生するタール分が多く、急速に昇温すると粒子が発泡したり、タールがバインダーとなって粒子同士が融着してしまう。ゆえに、ブタノール真密度が1.55~1.75g/cmとなる炭素前駆体の予備焼成を実施する場合、予備焼成の昇温速度は緩やかにすることが望ましい。例えば、昇温速度は5℃/h以上300℃/h以下であることが好ましく、10℃/h以上200℃/h以下がより好ましく、20℃/h以上100℃/h以下が更に好ましい。 In the pre-firing of a carbon precursor with a butanol true density of 1.55 to 1.75 g / cm 3 , a large amount of tar is generated. Will be fused. Therefore, when pre-baking a carbon precursor having a butanol true density of 1.55 to 1.75 g / cm 3 , it is desirable to make the temperature increase rate of the pre-baking moderate. For example, the rate of temperature rise is preferably 5 ° C./h or more and 300 ° C./h or less, more preferably 10 ° C./h or more and 200 ° C./h or less, and further preferably 20 ° C./h or more and 100 ° C./h or less.
(粉砕工程)
 粉砕工程は、炭素前駆体の粒径を、均一にするために行うものである。本焼成による炭素化後に粉砕することもできる。炭素化反応が進行すると炭素前駆体が硬くなり、粉砕による粒子径分布の制御が困難になるため、粉砕工程は、予備焼成の後で本焼成の前が好ましい。
 粉砕に用いる粉砕機は、特に限定されるものではなく、例えばジェットミル、ボールミル、ハンマーミル、又はロッドミルなどを使用することができる。
 分級として、篩による分級、湿式分級、又は乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、又は遠心分級などの原理を利用した分級機を挙げることができる。また、乾式分級機としては、沈降分級、機械的分級、又は遠心分級の原理を利用した分級機を挙げることができる。
(Crushing process)
The pulverization step is performed in order to make the particle size of the carbon precursor uniform. It can also grind | pulverize after carbonization by this baking. As the carbonization reaction proceeds, the carbon precursor becomes hard and it becomes difficult to control the particle size distribution by pulverization. Therefore, the pulverization step is preferably performed after preliminary calcination and before main calcination.
The pulverizer used for pulverization is not particularly limited, and for example, a jet mill, a ball mill, a hammer mill, or a rod mill can be used.
Examples of classification include classification with a sieve, wet classification, and dry classification. Examples of the wet classifier include a classifier using a principle such as gravity classification, inertia classification, hydraulic classification, or centrifugal classification. Examples of the dry classifier include a classifier using the principle of sedimentation classification, mechanical classification, or centrifugal classification.
 粉砕工程において、粉砕と分級は1つの装置を用いて行うこともできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕と分級を行うことができる。
 更に、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。
In the pulverization step, pulverization and classification can be performed using one apparatus. For example, pulverization and classification can be performed using a jet mill having a dry classification function.
Furthermore, an apparatus in which the pulverizer and the classifier are independent can be used. In this case, pulverization and classification can be performed continuously, but pulverization and classification can also be performed discontinuously.
(本焼成工程)
 本発明における本焼成工程は、通常の本焼成の手順に従って行うことができ、本焼成を行うことにより、非水電解質二次電池負極用炭素質材料を得ることができる。本焼成の温度は、900~1600℃である。本焼成温度が900℃未満では、炭素質材料に官能基が多く残存してH/Cの値が高くなり、リチウムとの反応により不可逆容量が増加するため好ましくない。本発明の本焼成温度の下限は900℃以上であり、より好ましくは1000℃以上であり、特に好ましくは1100℃以上である。一方、本焼成温度が1600℃を超えると炭素六角平面の選択的配向性が高まり放電容量が低下するため好ましくない。本発明の本焼成温度の上限は1600℃以下であり、より好ましくは1500℃以下であり、特に好ましくは1450℃以下である。
 本焼成は、非酸化性ガス雰囲気中で行うことが好ましい。非酸化性ガスとしては、ヘリウム、窒素又はアルゴンなどを挙げることができこれらを単独或いは混合して用いることができる。更には塩素などのハロゲンガスを上記非酸化性ガスと混合したガス雰囲気中で本焼成を行うことも可能である。また、本焼成は、減圧下で行うこともでき、例えば、10kPa以下で行うことも可能である。本焼成の時間も特に限定されるものではないが、例えば0.1~10時間で行うことができ、0.2~8時間が好ましく、0.4~6時間がより好ましい。
(Main firing process)
The main firing step in the present invention can be performed according to a normal main firing procedure, and a carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode can be obtained by performing the main firing. The firing temperature is 900 to 1600 ° C. If the main calcination temperature is less than 900 ° C., many functional groups remain in the carbonaceous material and the H / C value becomes high, and the irreversible capacity increases due to reaction with lithium, which is not preferable. The lower limit of the main firing temperature of the present invention is 900 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably 1100 ° C. or higher. On the other hand, if the main firing temperature exceeds 1600 ° C., the selective orientation of the carbon hexagonal plane increases and the discharge capacity decreases, which is not preferable. The upper limit of the main calcination temperature of the present invention is 1600 ° C. or less, more preferably 1500 ° C. or less, and particularly preferably 1450 ° C. or less.
The main firing is preferably performed in a non-oxidizing gas atmosphere. Examples of the non-oxidizing gas include helium, nitrogen, and argon, and these can be used alone or in combination. Furthermore, the main calcination can be performed in a gas atmosphere in which a halogen gas such as chlorine is mixed with the non-oxidizing gas. Moreover, this baking can also be performed under reduced pressure, for example, can also be performed at 10 kPa or less. Although the time for the main baking is not particularly limited, it can be performed, for example, in 0.1 to 10 hours, preferably 0.2 to 8 hours, and more preferably 0.4 to 6 hours.
(タール又はピッチからの炭素質材料の製造)
 タール又はピッチからの本発明の炭素質材料の製造方法について、以下に例を挙げて説明する。
 まず、タール又はピッチに対して架橋処理(不融化)を施した。この架橋処理を施したタール又はピッチは、その後の焼成で炭素化されて構造制御された炭素質材料になる。
 タール又はピッチとしては、エチレン製造時に複製する石油タール又はピッチ、石炭乾留時に生成するコールタール、及びコールタールの低沸点成分を蒸留除去した重質成分又はピッチ、石炭の液化により得られるタール又はピッチなどの石油又は石炭のタール又はピッチが使用できる。また、これらのタール及びピッチの2種類以上を混合してもよい。
(Manufacture of carbonaceous material from tar or pitch)
An example is given and demonstrated below about the manufacturing method of the carbonaceous material of this invention from a tar or a pitch.
First, the tar or pitch was subjected to a crosslinking treatment (infusibilization). The tar or pitch subjected to the crosslinking treatment is carbonized by subsequent firing to become a carbonaceous material whose structure is controlled.
Tar or pitch includes petroleum tar or pitch replicated during ethylene production, coal tar produced during coal carbonization, heavy component or pitch obtained by distilling off low boiling components of coal tar, tar or pitch obtained by liquefaction of coal Oil or coal tar or pitch can be used. Two or more of these tars and pitches may be mixed.
 具体的に、架橋処理の方法としては架橋剤を使用する方法、又は空気などの酸化剤で処理する方法等がある。架橋剤を用いる場合は、石油タール若しくはピッチ、又は石炭タール若しくはピッチに対し、架橋剤を加えて加熱混合し架橋反応を進め炭素前駆体を得る。例えば、架橋剤としては、ラジカル反応により架橋反応が進行するジビニルベンゼン、トリビニルベンゼン、ジアリルフタレート、エチレングリコールジメタクリレート、又はN,N-メチレンビスアクリルアミド等の多官能ビニルモノマーが使用できる。多官能ビニルモノマーによる架橋反応は、ラジカル開始剤を添加することにより反応が開始する。ラジカル開始剤としては、α,α’アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル(BPO)、過酸化ラウロイル、クメンヒドロベルオキシド、1-ブチルヒドロペルオキシド、又は過酸化水素などが使用できる。 Specifically, as a method for the crosslinking treatment, there are a method using a crosslinking agent, a treatment with an oxidizing agent such as air, and the like. When using a cross-linking agent, a carbon precursor is obtained by adding a cross-linking agent to petroleum tar or pitch, or coal tar or pitch and heating and mixing to proceed with a cross-linking reaction. For example, as the crosslinking agent, polyfunctional vinyl monomers such as divinylbenzene, trivinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, or N, N-methylenebisacrylamide that undergo a crosslinking reaction by radical reaction can be used. The crosslinking reaction with the polyfunctional vinyl monomer is started by adding a radical initiator. As the radical initiator, α, α ′ azobisisobutyronitrile (AIBN), benzoyl peroxide (BPO), lauroyl peroxide, cumene hydroperoxide, 1-butyl hydroperoxide, hydrogen peroxide, or the like can be used. .
 また、空気などの酸化剤で処理して架橋反応を進める場合は、以下のような方法で炭素前駆体を得ることが好ましい。すなわち石油ピッチ又は石炭ピッチに対し、添加剤として沸点200℃以上の2乃至3環の芳香族化合物又はその混合物を加えて加熱混合した後、成形しピッチ成形体を得る。次にピッチに対し低溶解度を有しかつ添加剤に対して高溶解度を有する溶剤でピッチ成形体から添加剤を抽出除去して多孔性ピッチとした後、酸化剤を用いて酸化し、炭素前駆体を得る。前記の芳香族添加剤の目的は、成形後のピッチ成形体から該添加剤を抽出除去して成形体を多孔質とし、酸化による架橋処理を容易にし、また炭素化後に得られる炭素質材料を多孔質にすることにある。前記の添加剤としては、例えばナフタレン、メチルナフタレン、フェニルナフタレン、ベンジルナフタレン、メチルアントラセン、フェナンスレン、又はビフェニル等の1種又は2種以上の混合物から選択することができる。ピッチに対する芳香族添加剤の添加量は、ピッチ100質量部に対し30~70質量部の範囲が好ましい。 Also, when the crosslinking reaction is advanced by treatment with an oxidizing agent such as air, it is preferable to obtain a carbon precursor by the following method. That is, to a petroleum pitch or coal pitch, a bicyclic to tricyclic aromatic compound having a boiling point of 200 ° C. or higher or a mixture thereof is added as an additive and heated and mixed, and then molded to obtain a pitch molded body. Next, the additive is extracted and removed from the pitch molded body with a solvent having low solubility with respect to pitch and high solubility with respect to the additive to form a porous pitch, which is then oxidized with an oxidizing agent, and then carbon precursor. Get the body. The purpose of the aromatic additive is to extract and remove the additive from the molded pitch molded body to make the molded body porous, to facilitate crosslinking treatment by oxidation, and to obtain a carbonaceous material obtained after carbonization. To make it porous. As said additive, it can select from 1 type, or 2 or more types of mixtures, such as naphthalene, methyl naphthalene, phenyl naphthalene, benzyl naphthalene, methyl anthracene, phenanthrene, or biphenyl, for example. The amount of the aromatic additive added to the pitch is preferably in the range of 30 to 70 parts by mass with respect to 100 parts by mass of the pitch.
 ピッチと添加剤の混合は、均一な混合を達成するため、加熱し溶融状態で行う。ピッチと添加剤との混合物は、添加剤を混合物から容易に抽出できるようにするため、粒径1mm以下の粒子に成形してから行うことが好ましい。成形は溶融状態で行ってもよく、また混合物を冷却後粉砕する等の方法によってもよい。ピッチと添加剤の混合物から添加剤を抽出除去するための溶剤としては、ブタン、ペンタン、ヘキサン、又はヘプタン等の脂肪族炭化水素、ナフサ、又はケロシン等の脂肪族炭化水素主体の混合物、メタノール、エタノール、プロパノール、又はブタノール等の脂肪族アルコール類が好適である。このような溶剤でピッチと添加剤の混合物成形体から添加剤を抽出することによって、成形体の形状を維持したまま添加剤を成形体から除去することができる。この際に成形体中に添加剤の抜け穴が形成され、均一な多孔性を有するピッチ成形体が得られるものと推定される。 * Mixing of pitch and additives is performed in a molten state by heating in order to achieve uniform mixing. The mixture of the pitch and the additive is preferably performed after being formed into particles having a particle diameter of 1 mm or less so that the additive can be easily extracted from the mixture. Molding may be performed in a molten state, or may be performed by a method such as pulverizing the mixture after cooling. Solvents for extracting and removing the additive from the mixture of pitch and additive include aliphatic hydrocarbons such as butane, pentane, hexane, or heptane, mixtures mainly composed of aliphatic hydrocarbons such as naphtha or kerosene, methanol, Aliphatic alcohols such as ethanol, propanol or butanol are preferred. By extracting the additive from the pitch and additive mixture molded body with such a solvent, the additive can be removed from the molded body while maintaining the shape of the molded body. At this time, it is presumed that a through hole for the additive is formed in the molded body, and a pitch molded body having uniform porosity is obtained.
 得られた多孔性ピッチを架橋するため、次に酸化剤を用いて、好ましくは120~400℃の温度で酸化する。酸化剤としては、O、O、NO、これらを空気、窒素等で希釈した混合ガス、又は空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。酸化剤として、空気又は空気と他のガス例えば燃焼ガス等との混合ガスのような酸素を含むガスを用いて、120~400℃で酸化して架橋処理を行うことが簡便であり、経済的にも有利である。この場合、ピッチの軟化点が低いと、酸化時にピッチが溶融して酸化が困難となるので、使用するピッチは軟化点が150℃以上であることが好ましい。
 上述のようにして架橋処理を施した炭素前駆体を、予備焼成を行った後、非酸化性ガス雰囲気中で900℃~1600℃で炭素化することにより、本発明の炭素質材料を得ることができる。
In order to crosslink the resulting porous pitch, it is then oxidized with an oxidizing agent, preferably at a temperature of 120 to 400 ° C. As the oxidizing agent, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to. It is simple and economical to oxidize at 120 to 400 ° C. and carry out a crosslinking treatment using a gas containing oxygen such as air or a mixed gas of air and other gas such as combustion gas as an oxidizing agent. Is also advantageous. In this case, if the pitch has a low softening point, the pitch melts during oxidation, making it difficult to oxidize. Therefore, the pitch used preferably has a softening point of 150 ° C. or higher.
The carbon precursor subjected to the crosslinking treatment as described above is pre-fired and then carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere to obtain the carbonaceous material of the present invention. Can do.
(樹脂からの炭素質材料の製造)
 樹脂からの炭素質材料の製造方法について、以下に例を挙げて説明する。
 本発明の炭素質材料は、樹脂を前駆体として用い、900℃~1600℃で炭素化することによっても得ることができる。樹脂としては、フェノール樹脂又はフラン樹脂など、或いはそれらの樹脂の官能基を一部変性した熱硬化性樹脂を使用することができる。熱硬化性樹脂を必要に応じて900℃未満の温度で予備焼成したのち、粉砕し、900℃~1600℃で炭素化することによっても得ることができる。熱硬化性樹脂の硬化促進、架橋度の促進、或いは炭素化収率の向上を目的に必要に応じて120~400℃の温度で酸化処理を行ってもよい。酸化剤としては、O、O、NO、これらを空気、窒素等で希釈した混合ガス、又は空気等の酸化性気体、あるいは硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。
 更に、ポリアクリロニトリル又はスチレン/ジビニルベンゼン共重合体などの熱可塑性樹脂に架橋処理を施した炭素前駆体を使用することもできる。これらの樹脂は、例えばラジカル重合性のビニルモノマー及び重合開始剤を混合したモノマー混合物を、分散安定剤を含有する水性分散媒体中に添加し、撹拌混合により懸濁してモノマー混合物を微細な
液滴とした後、ついで昇温することによりラジカル重合を進めて得ることができる。得られた樹脂を架橋処理により、架橋構造を発達させることにより球状の炭素前駆体とすることができる。架橋処理は、120~400℃の温度範囲で行うことができ、特に好ましくは170℃~350℃、更に好ましくは220~350℃の温度範囲で行うことが好ましい。酸化剤としては、O、O、SO、NO、これらを空気、窒素等で希釈した混合ガス、又は空気等の酸化性気体、又は硫酸、硝酸、過酸化水素水等の酸化性液体を用いることができる。その後、前記のように熱に不融である炭素前駆体を、必要に応じて予備焼成を行った後、粉砕し、非酸化性ガス雰囲気中で900℃~1600℃で炭素化することにより、本発明の炭素質材料を得ることができる。
 粉砕工程は、炭素化後に行うことも出来るが、炭素化反応が進行すると炭素前駆体が硬くなるため、粉砕による粒子径分布の制御が困難になるため、粉砕工程は900℃未満の予備焼成の後で本焼成の前が好ましい。
(Manufacture of carbonaceous material from resin)
A method for producing a carbonaceous material from a resin will be described below with an example.
The carbonaceous material of the present invention can also be obtained by carbonizing at 900 ° C. to 1600 ° C. using a resin as a precursor. As the resin, a phenol resin, a furan resin, or the like, or a thermosetting resin obtained by partially modifying the functional group of these resins can be used. It can also be obtained by pre-calcining the thermosetting resin at a temperature lower than 900 ° C., if necessary, pulverizing, and carbonizing at 900 ° C. to 1600 ° C. For the purpose of accelerating the curing of the thermosetting resin, accelerating the degree of crosslinking, or improving the carbonization yield, an oxidation treatment may be performed at a temperature of 120 to 400 ° C. as necessary. As the oxidizing agent, O 2 , O 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing liquid such as sulfuric acid, nitric acid, or hydrogen peroxide water is used. be able to.
Furthermore, a carbon precursor obtained by crosslinking a thermoplastic resin such as polyacrylonitrile or a styrene / divinylbenzene copolymer can also be used. In these resins, for example, a monomer mixture obtained by mixing a radically polymerizable vinyl monomer and a polymerization initiator is added to an aqueous dispersion medium containing a dispersion stabilizer and suspended by stirring to suspend the monomer mixture into fine droplets. Then, it can be obtained by proceeding radical polymerization by raising the temperature. The obtained resin can be made into a spherical carbon precursor by developing a crosslinked structure by a crosslinking treatment. The crosslinking treatment can be performed in a temperature range of 120 to 400 ° C., particularly preferably 170 to 350 ° C., and more preferably 220 to 350 ° C. As the oxidizing agent, O 2 , O 3 , SO 3 , NO 2 , a mixed gas obtained by diluting these with air, nitrogen, or the like, or an oxidizing gas such as air, or an oxidizing property such as sulfuric acid, nitric acid, hydrogen peroxide water, or the like Liquid can be used. Thereafter, the carbon precursor that is infusible to heat as described above is pre-fired as necessary, and then pulverized and carbonized at 900 ° C. to 1600 ° C. in a non-oxidizing gas atmosphere, The carbonaceous material of the present invention can be obtained.
Although the pulverization step can be performed after carbonization, since the carbon precursor becomes hard as the carbonization reaction proceeds, it becomes difficult to control the particle size distribution by pulverization. It is preferable before the main baking later.
[2]非水電解質二次電池負極
 本発明の非水電解質二次電池負極は、本発明の非水電解質二次電池負極用炭素質材料を含む。
[2] Nonaqueous electrolyte secondary battery negative electrode The nonaqueous electrolyte secondary battery negative electrode of the present invention contains the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention.
 本発明の負極では、入出力特性のさらなる改善の観点で、電極密度が1.02g/cm以上であることが好ましく、より好ましくは1.04g/cm以上である。 In the negative electrode of the present invention, the electrode density is preferably 1.02 g / cm 3 or more, more preferably 1.04 g / cm 3 or more, from the viewpoint of further improving input / output characteristics.
 本発明の負極では、密充填により粒子間の隙間が不足することで生じ得るリチウムの移動抑制のデメリットを抑制できる点で、平均厚みが薄いことが好ましく、具体的には60μm以下であってよい。他方、平均厚みが過小であると、必要とされる炭素質材料の最大粒子径が低くなり、それを達成するための粉砕条件の困難性、及びそれによる超微細粉末の増加が懸念される。このため、平均厚みは10μm以上であってよい。 In the negative electrode of the present invention, it is preferable that the average thickness is thin, specifically, it may be 60 μm or less in that the disadvantage of suppressing lithium migration that may be caused by insufficient gaps between particles due to close packing is suppressed. . On the other hand, if the average thickness is too small, the maximum particle size of the required carbonaceous material becomes low, and there is a concern about the difficulty of pulverization conditions to achieve it and the increase in ultrafine powder. For this reason, the average thickness may be 10 μm or more.
(負極電極の製造)
 本発明の炭素質材料を用いる負極電極は、炭素質材料に結合剤(バインダー)を添加し適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板などからなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。本発明の炭素質材料を用いることにより特に導電助剤を添加しなくとも高い導電性を有する電極を製造することができるが、更に高い導電性を賦与することを目的に必要に応じて電極合剤を調製時に、導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブなどを用いることができ、添加量は使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないので好ましくなく、多すぎると電極合剤中の分散が悪くなるので好ましくない。このような観点から、添加する導電助剤の好ましい割合は0.5~10質量%(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100質量%とする)であり、更に好ましくは0.5~7質量%、とくに好ましくは0.5~5質量%である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物などの電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがリチウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解しスラリーを形成するためにN-メチルピロリドン(NMP)などの極性溶媒が好ましく用いられるが、SBRなどの水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなるため、電池の内部抵抗が大きくなり電池特性を低下させるので好ましくない。また、結合剤の添加量が少なすぎると、負極材料粒子相互及び集電材との結合が不十分となり好ましくない。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、PVDF系のバインダーでは好ましくは3~13質量%であり、更に好ましくは3~10質量%である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物など、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5~5質量%が好ましく、更に好ましくは1~4質量%である。電極活物質層は集電板の両面に形成するのが基本であるが、必要に応じて片面でもよい。電極活物質層が厚いほど、集電板やセパレータなどが少なくて済むため高容量化には好ましいが、対極と対向する電極面積が広いほど入出力特性の向上に有利なため活物質層が厚すぎると入出力特性が低下するため好ましくない。
(Manufacture of negative electrode)
In the negative electrode using the carbonaceous material of the present invention, a binder (binder) is added to the carbonaceous material, and an appropriate solvent is added and kneaded to form an electrode mixture. It can be produced by pressure molding after coating and drying. By using the carbonaceous material of the present invention, it is possible to produce an electrode having high conductivity without adding a conductive auxiliary agent. When preparing the agent, a conductive aid can be added. As the conductive assistant, conductive carbon black, vapor grown carbon fiber (VGCF), nanotube, etc. can be used, and the amount added varies depending on the type of conductive assistant used, but the amount added is too small. Since the expected conductivity cannot be obtained, it is not preferable, and too much is not preferable because the dispersion in the electrode mixture becomes worse. From such a point of view, the preferable ratio of the conductive auxiliary agent to be added is 0.5 to 10% by mass (where the amount of active material (carbonaceous material) + the amount of binder + the amount of conductive auxiliary agent = 100% by mass). More preferably, it is 0.5 to 7% by mass, particularly preferably 0.5 to 5% by mass. The binder is not particularly limited as long as it does not react with an electrolytic solution such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethylcellulose). Among them, PVDF is preferable because PVDF attached to the surface of the active material hardly inhibits lithium ion migration and obtains favorable input / output characteristics. In order to dissolve PVDF and form a slurry, a polar solvent such as N-methylpyrrolidone (NMP) is preferably used, but an aqueous emulsion such as SBR or CMC can also be dissolved in water. When the amount of the binder added is too large, the resistance of the obtained electrode is increased, which is not preferable because the internal resistance of the battery is increased and the battery characteristics are deteriorated. Moreover, when there is too little addition amount of binder, the coupling | bonding with negative electrode material particle | grains and a collector is insufficient, and it is unpreferable. The amount of the binder added is preferably 3 to 13% by mass, more preferably 3 to 10% by mass for the PVDF binder, although it varies depending on the type of binder used. On the other hand, a binder using water as a solvent is often used by mixing a plurality of binders such as a mixture of SBR and CMC, and the total amount of all binders used is preferably 0.5 to 5% by mass. The amount is preferably 1 to 4% by mass. The electrode active material layer is basically formed on both sides of the current collector plate, but may be on one side if necessary. A thicker electrode active material layer is preferable for increasing the capacity because fewer current collector plates and separators are required. However, the larger the electrode area facing the counter electrode, the better the input / output characteristics, and the thicker the active material layer. Too much is not preferable because the input / output characteristics deteriorate.
 なお、負極の電極密度は、プレス圧力を調整することで、調節することができる。本発明の負極は高い電極密度を有することが好ましいことから、プレス圧力は典型的には5.2MPa(1.0tf/cm)以上であってよい。他方、プレス圧力が高すぎると電極の湾曲が大きくなるため好ましくない。52.0MPa(10.0tf/cm)以下が好ましく、41.6MPa(8.0tf/cm)以下がより好ましい。 The electrode density of the negative electrode can be adjusted by adjusting the pressing pressure. Since the negative electrode of the present invention preferably has a high electrode density, the pressing pressure may typically be 5.2 MPa (1.0 tf / cm 2 ) or more. On the other hand, an excessively high press pressure is not preferable because the curvature of the electrode increases. 52.0 MPa (10.0 tf / cm 2 ) or less is preferable, and 41.6 MPa (8.0 tf / cm 2 ) or less is more preferable.
[3]非水電解質二次電池
 本発明の非水電解質二次電池は、本発明の非水電解質二次電池負極を含む。
[3] Nonaqueous electrolyte secondary battery The nonaqueous electrolyte secondary battery of the present invention includes the negative electrode of the nonaqueous electrolyte secondary battery of the present invention.
(非水電解質二次電池の製造)
 本発明の負極材料を用いて、非水電解質二次電池の負極電極を形成した場合、正極材料、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、非水溶媒二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。
(Manufacture of non-aqueous electrolyte secondary batteries)
When the negative electrode material of the present invention is used to form a negative electrode of a nonaqueous electrolyte secondary battery, other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution are not particularly limited, and are nonaqueous solvents. Various materials conventionally used or proposed as a secondary battery can be used.
 例えば、正極材料としては、層状酸化物系(LiMOと表されるもので、Mは金属:例えば、LiCoO、LiNiO、LiMnO、又はLiNiCoMo(ここでx、y、zは組成比を表わす)、オリビン系(LiMPOで表され、Mは金属:例えばLiFePOなど)、スピネル系(LiMで表され、Mは金属:例えばLiMnなど)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。 For example, as the positive electrode material, a layered oxide system (represented as LiMO 2 , where M is a metal: for example, LiCoO 2 , LiNiO 2 , LiMnO 2 , or LiNi x Co y Mo z O 2 (where x, y and z represent composition ratios), olivine system (represented by LiMPO 4 , M is metal: for example, LiFePO 4, etc.), spinel system (represented by LiM 2 O 4 , M is a metal: for example, LiMn 2 O 4, etc. The composite metal chalcogen compound is preferable, and these chalcogen compounds may be mixed if necessary.These positive electrode materials are molded together with an appropriate binder and a carbon material for imparting conductivity to the electrode, and are electrically conductive. The positive electrode is formed by forming a layer on the conductive current collector.
 これら正極と負極との組み合わせで用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ-ブチルラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、スルホラン、又は1,3-ジオキソランなどの有機溶媒の一種又は二種以上を組み合わせて用いることができる。また、電解質としては、LiClO、LiPF、LiBF、LiCFSO、LiAsF、LiCl、LiBr、LiB(C、又はLiN(SOCFなどが用いられる。二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料などからなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。 The nonaqueous solvent electrolyte used in combination of these positive electrode and negative electrode is generally formed by dissolving an electrolyte in a nonaqueous solvent. Examples of the non-aqueous solvent include organic solvents such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, γ-butyllactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, or 1,3-dioxolane. These can be used alone or in combination of two or more. As the electrolyte, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiCl, LiBr, LiB (C 6 H 5 ) 4 , or LiN (SO 3 CF 3 ) 2 is used. In secondary batteries, the positive electrode layer and the negative electrode layer formed as described above are generally immersed in an electrolytic solution with a liquid-permeable separator made of nonwoven fabric or other porous material facing each other as necessary. It is formed by. As the separator, a non-woven fabric usually used for a secondary battery or a permeable separator made of another porous material can be used. Alternatively, a solid electrolyte made of a polymer gel impregnated with an electrolytic solution can be used instead of or together with the separator.
 本発明のリチウムイオン二次電池は、例えば自動車などの車両に搭載される電池(典型的には車両駆動用リチウムイオン二次電池)として好適である。 The lithium ion secondary battery of the present invention is suitable as a battery (typically a lithium ion secondary battery for driving a vehicle) mounted on a vehicle such as an automobile.
 本発明による車両とは、通常電動車両として知られるものや燃料電池や内燃機関とのハイブリッド車など、特に制限されることなく対象とすることができるが、少なくとも上記電池を備えた電源装置と、該電源装置からの電源供給により駆動する電動駆動機構と、これを制御する制御装置を備える。更に、発電ブレーキや回生ブレーキを備え、制動によるエネルギーを電気に変換して当該リチウムイオン二次電池に充電する機構を備えてもよい。ハイブリッド車は特に電池容積の自由度が低いため、本発明の電池が有用である。 The vehicle according to the present invention can be targeted without particular limitation, such as a vehicle normally known as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, and at least a power supply device including the battery, An electric drive mechanism that is driven by power supply from the power supply device and a control device that controls the electric drive mechanism are provided. Further, a power generation brake or a regenerative brake may be provided, and a mechanism for converting the energy generated by braking into electricity and charging the lithium ion secondary battery may be provided. Since the hybrid vehicle has a particularly low degree of freedom in battery volume, the battery of the present invention is useful.
 以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 Hereinafter, the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
 以下に本発明の非水電解質二次電池負極用炭素質材料の物性値(ρBt、BET比表面積、個数平均粒子径、体積平均粒子径(Dv50)、累積体積粒子径Dv10及びDv90、水素/炭素の原子比(H/C)、d002、充電容量、放電容量、不可逆容量、入力特性、電極密度)の測定法を記載するが、実施例を含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づくものである。 The physical property values (ρ Bt , BET specific surface area, number average particle size, volume average particle size (D v50 ), cumulative volume particle size D v10 and D v90 of the carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode of the present invention are shown below. , Hydrogen / carbon atomic ratio (H / C), d 002 , charge capacity, discharge capacity, irreversible capacity, input characteristics, electrode density) are described in this specification including examples. The physical property values to be described are based on values obtained by the following method.
(ブタノール法による真密度(ρBt))
 真密度は、JIS R 7212に定められた方法に従い、ブタノール法により測定した。内容積約40mLの側管付比重びんの質量(m)を正確に量る。次に、その底部に試料を約10mmの厚さになるように平らにいれた後、その質量(m)を正確に量る。これに1-ブタノールを静かに加えて、底から20mm程度の深さにする。次に比重びんに軽い振動を加えて、大きな気泡の発生がなくなったのを確かめた後、真空デシケーター中にいれ、徐々に排気して2.0~2.7kPaとする。その圧力に20分間以上保ち、気泡の発生が止まった後に、取り出し、更に1-ブタノールを満たし、栓をして恒温水槽(30±0.03℃に調節してあるもの)に15分間以上浸し、1-ブタノールの液面を標線に合わせる。次に、これを取り出して外部をよくぬぐって室温まで冷却した後質量(m)を正確に量る。
(True density by the butanol method (ρ Bt ))
The true density was measured by a butanol method according to a method defined in JIS R 7212. The mass (m 1 ) of a specific gravity bottle with a side tube having an internal volume of about 40 mL is accurately measured. Next, the sample is placed flat on the bottom so as to have a thickness of about 10 mm, and its mass (m 2 ) is accurately measured. Gently add 1-butanol to this to a depth of about 20 mm from the bottom. Next, light vibration is applied to the specific gravity bottle, and it is confirmed that large bubbles are not generated. Then, the bottle is placed in a vacuum desiccator and gradually evacuated to 2.0 to 2.7 kPa. Keep at that pressure for 20 minutes or more, and after the generation of bubbles has stopped, take it out, fill it with 1-butanol, plug it and immerse it in a constant temperature water bath (adjusted to 30 ± 0.03 ° C) for 15 minutes or more. Adjust the liquid level of 1-butanol to the marked line. Next, this is taken out, the outside is well wiped off and cooled to room temperature, and then the mass (m 4 ) is accurately measured.
 次に、同じ比重びんに1-ブタノールだけを満たし、前記と同じようにして恒温水槽に浸し、標線を合わせた後、質量(m)を量る。また、使用直前に沸騰させて溶解した気体を除いた蒸留水を比重びんに採取し、前記と同様に恒温水槽に浸し、標線を合わせた後、質量(m)を量る。ρBtは、次の式により計算する。 Next, the same specific gravity bottle is filled with only 1-butanol, immersed in a constant temperature water bath as described above, and after aligning the marked lines, the mass (m 3 ) is measured. Moreover, distilled water excluding the gas that has been boiled and dissolved immediately before use is collected in a specific gravity bottle, immersed in a constant temperature water bath in the same manner as described above, and after aligning the marked line, the mass (m 5 ) is measured. ρ Bt is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
このとき、dは、水の30℃における比重(0.9946)である。
Figure JPOXMLDOC01-appb-M000001
At this time, d is the specific gravity (0.9946) of water at 30 ° C.
(窒素吸着による比表面積(SSA))
 以下にBETの式から誘導された近似式を記す。
(Specific surface area by nitrogen adsorption (SSA))
An approximate expression derived from the BET expression is described below.
Figure JPOXMLDOC01-appb-M000002
 上記の近似式を用いて、液体窒素温度における、窒素吸着による1点法(相対圧力x=0.2)によりvを求め、次式により試料の比表面積を計算した。
Figure JPOXMLDOC01-appb-M000002
Using the above approximate expression, at liquid nitrogen temperature, 1-point method by nitrogen adsorption seek v m by (relative pressure x = 0.2), was calculated a specific surface area of the sample by the following equation.
Figure JPOXMLDOC01-appb-M000003
 このとき、vは試料表面に単分子層を形成するに必要な吸着量(cm/g)、vは実測される吸着量(cm/g)、xは相対圧力である。
Figure JPOXMLDOC01-appb-M000003
In this case, v m is the adsorption amount necessary for forming a monomolecular layer on the surface of the sample (cm 3 / g), v the adsorption amount of the measured (cm 3 / g), x is a relative pressure.
 具体的には、MICROMERITICS社製「Flow Sorb II2300」を用いて、以下のようにして液体窒素温度における炭素質材料への窒素の吸着量を測定した。粒子径約1~7μmに粉砕した炭素質材料を試料管に充填し、ヘリウム:窒素=80:20の混合ガスを流しながら、試料管を-196℃に冷却し、炭素質材料に窒素を吸着させる。つぎに試料管を室温に戻す。このとき試料から脱離してくる窒素量を熱伝導度型検出器で測定し、吸着ガス量vとした。 Specifically, using a “Flow Sorb II2300” manufactured by MICROMERITICS, the amount of nitrogen adsorbed on the carbonaceous material at the liquid nitrogen temperature was measured as follows. Fill the sample tube with a carbonaceous material pulverized to a particle size of about 1 to 7 μm, and cool the sample tube to -196 ° C while flowing a mixed gas of helium: nitrogen = 80:20 to adsorb nitrogen to the carbonaceous material. Let The sample tube is then returned to room temperature. At this time, the amount of nitrogen desorbed from the sample was measured with a thermal conductivity detector, and the amount of adsorbed gas v was obtained.
(水素/炭素の原子比(H/C))
 JIS M8819に定められた方法に準拠し測定した。CHNアナライザーによる元素分析により得られる試料中の水素及び炭素の質量割合から、水素/炭素の原子数の比として求めた。
(Atomic ratio of hydrogen / carbon (H / C))
Measurement was performed in accordance with the method defined in JIS M8819. From the mass ratio of hydrogen and carbon in the sample obtained by elemental analysis with a CHN analyzer, the hydrogen / carbon atom number ratio was obtained.
(X線回折法による平均層面間隔(d002))
 炭素質材料粉末を試料ホルダーに充填し、PANalytical社製X’Pert PROを用いて、対称反射法にて測定した。走査範囲は8<2θ<50°で印加電流/印加電圧は45kV/40mAの条件で、Niフィルターにより単色化したCuKα線(λ=1.5418Å)を線源とし、X線回折図形を得た。標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、Braggの公式によりd002を算出する。
(Average layer surface spacing by X-ray diffraction method (d 002 ))
The carbonaceous material powder was filled in the sample holder and measured by a symmetrical reflection method using X'Pert PRO manufactured by PANalytical. The scanning range was 8 <2θ <50 °, and the applied current / applied voltage was 45 kV / 40 mA. An X-ray diffraction pattern was obtained using a CuKα ray (λ = 1.5418Å) monochromated by a Ni filter as a radiation source. . Correction was performed using the diffraction peak of the (111) plane of the high-purity silicon powder for standard substances. The wavelength of the CuKα ray is set to 0.15418 nm, and d 002 is calculated by the Bragg formula.
Figure JPOXMLDOC01-appb-M000004
λ:X線の波長,θ:回折角
Figure JPOXMLDOC01-appb-M000004
λ: X-ray wavelength, θ: diffraction angle
(レーザー回折法による体積平均粒子径(Dv50)、累積体積粒子径(Dv10、Dv90
 試料約0.01gに対し、分散剤(カチオン系界面活性剤「SNウェット366」(サンノプコ社製))を3滴加え、試料に分散剤を馴染ませる。次に純水を加えて、超音波により分散させた後、粒径分布測定器(日機装株式会社製「Microtrac MT3300EX」)で、粒径0.02~2000μmの範囲の粒径分布を求めた。測定条件において、透過性は吸収、粒子屈折率は1.81、形状は非球形を選択した。得られた粒径分布から、体積基準とした累積容積が50%となる粒径をもって、体積平均粒子径Dv50とした。また、累積容積が90%となる粒径をDv90とし、累積容積が10%となる粒径をDv10とした。
 また、体積粒子径30μm以上の粒子の量は、測定された体積粒子径30μmまでの累積値を100から減じることにより算出した。
(Volume average particle diameter (D v50 by laser diffraction method), the cumulative volume particle diameter (Dv 10, D v90)
Three drops of a dispersing agent (cationic surfactant “SN Wet 366” (manufactured by San Nopco)) are added to about 0.01 g of the sample, and the dispersing agent is acclimated to the sample. Next, after adding pure water and dispersing with ultrasonic waves, a particle size distribution in the range of 0.02 to 2000 μm was obtained with a particle size distribution measuring instrument (“Microtrac MT3300EX” manufactured by Nikkiso Co., Ltd.). Under the measurement conditions, the permeability was absorption, the particle refractive index was 1.81, and the shape was non-spherical. From the obtained particle size distribution, the volume average particle size Dv50 is defined as the particle size at which the volume-based cumulative volume is 50%. Further, the particle size of which cumulative volume is 90% and D v90, the particle size of which cumulative volume of 10% was D v10.
The amount of particles having a volume particle diameter of 30 μm or more was calculated by subtracting from 100 the cumulative value up to the measured volume particle diameter of 30 μm.
(個数平均粒子径)
 上記と同様の方法で個数基準とした累積容積が50%となる粒径をもって、個数平均粒子径とした。
(Number average particle diameter)
The number average particle size was determined by the particle size at which the cumulative volume based on the number was 50% by the same method as described above.
(活物質のドープ-脱ドープ試験)
 実施例1~10及び比較例1~5で得られた炭素質材料1~10及び比較炭素質材料1~3を用いて、以下の(a)~(d)の操作を行い、負極電極及び非水電解質二次電池を作製し、そして電極性能の評価を行った。
(Active material dope-dedope test)
Using the carbonaceous materials 1 to 10 and the comparative carbonaceous materials 1 to 3 obtained in Examples 1 to 10 and Comparative Examples 1 to 5, the following operations (a) to (d) were performed, and the negative electrode and A non-aqueous electrolyte secondary battery was fabricated and the electrode performance was evaluated.
(a)電極作製
 上記炭素質材料94質量部、ポリフッ化ビニリデン(株式会社クレハ製「KF#9100」)6質量部にNMPを加えてペースト状にし、銅箔上に均一に塗布した。乾燥した後、銅箔より直径15mmの円板状に打ち抜き、これを2.5tf/cm(13MPa)プレスして電極とした。なお、電極中の炭素質材料の量は約9mgになるように調整した。
(A) Electrode preparation NMP was added to 94 parts by mass of the carbonaceous material and 6 parts by mass of polyvinylidene fluoride (“KF # 9100” manufactured by Kureha Co., Ltd.) to form a paste, which was uniformly applied on the copper foil. After drying, it was punched out into a disk shape having a diameter of 15 mm from a copper foil, and this was pressed at 2.5 tf / cm 2 (13 MPa) to obtain an electrode. The amount of the carbonaceous material in the electrode was adjusted to about 9 mg.
 (電極密度)
 負極は、厚さがt1[cm]、単位面積あたりの質量がW1[g/cm]である集電体上に、炭素質材料の質量割合がPである結合剤との混合物を塗布し、加圧して製造した厚さt2[cm]の負極電極を、所定の面積S[cm]で打抜き、この打抜き後の負極電極の質量をW2[g]としたものである。このとき、電極密度は、以下のように計算した。
  電極密度[g/cm]=(W2/S-W1)/(t2-t1)
(Electrode density)
The negative electrode is obtained by applying a mixture of a carbonaceous material with a binder having a mass ratio of P on a current collector having a thickness of t1 [cm] and a mass per unit area of W1 [g / cm 2 ]. The negative electrode having a thickness of t2 [cm] manufactured by pressurization was punched with a predetermined area S [cm 2 ], and the mass of the negative electrode after punching was set to W2 [g]. At this time, the electrode density was calculated as follows.
Electrode density [g / cm 3 ] = (W2 / S−W1) / (t2−t1)
(平均厚み)
 負極活物質層の厚みは、負極電極の集電体の両面に負極活物質層が存在する場合は、負極電極から集電体の厚みを差し引いた厚みの半分に相当する。また、集電体の片側にのみ負極活物質層が存在する場合は、負極電極から集電体の厚みを差し引いた厚みに相当する。具体的には、厚さ測定機により、負極活物質および集電体の厚みを測定した。5箇所で測定し、その平均値を平均厚みとした。
(Average thickness)
The thickness of the negative electrode active material layer corresponds to half of the thickness obtained by subtracting the thickness of the current collector from the negative electrode when the negative electrode active material layers are present on both sides of the current collector of the negative electrode. Further, when the negative electrode active material layer exists only on one side of the current collector, this corresponds to a thickness obtained by subtracting the thickness of the current collector from the negative electrode. Specifically, the thickness of the negative electrode active material and the current collector was measured with a thickness measuring machine. Measurements were taken at five locations, and the average value was taken as the average thickness.
(b)試験電池の作製
 本発明の炭素質材料は非水電解質二次電池の負極電極を構成するのに適しているが、電池活物質の放電容量(脱ドープ量)及び不可逆容量(非脱ドープ量)を、対極の性能のバラツキに影響されることなく精度良く評価するために、特性の安定したリチウム金属を対極として、上記で得られた電極を用いてリチウム二次電池を構成し、その特性を評価した。
(B) Production of test battery The carbonaceous material of the present invention is suitable for constituting the negative electrode of a non-aqueous electrolyte secondary battery, but the discharge capacity (de-doping amount) and irreversible capacity (non-desorption) of the battery active material. In order to accurately evaluate the amount of doping) without being affected by variations in the performance of the counter electrode, a lithium secondary battery is configured using the electrode obtained above, using lithium metal with stable characteristics as a counter electrode, Its characteristics were evaluated.
 リチウム極の調製は、Ar雰囲気中のグローブボックス内で行った。予め2016サイズのコイン型電池用缶の外蓋に直径16mmのステンレススチール網円盤をスポット溶接した後、厚さ0.8mmの金属リチウム薄板を直径15mmの円盤状に打ち抜いたものをステンレススチール網円盤に圧着し、電極(対極)とした。 The lithium electrode was prepared in a glove box in an Ar atmosphere. A 16 mm diameter stainless steel mesh disk is spot-welded to the outer lid of a 2016 coin-sized battery can, and then a 0.8 mm thick metal lithium sheet is punched into a 15 mm diameter disk shape. To be an electrode (counter electrode).
 このようにして製造した電極の対を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.4mol/Lの割合でLiPFを加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜をセパレータとして使用し、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2016サイズのコイン型非水電解質系リチウム二次電池を組み立てた。 Using the electrode pair thus produced, the electrolyte solution was LiPF 6 at a ratio of 1.4 mol / L in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2. A coin-type non-aqueous electrolyte system of 2016 size in an Ar glove box using a polyethylene-made gasket as a separator, using a borosilicate glass fiber fine pore membrane having a diameter of 19 mm as a separator A lithium secondary battery was assembled.
(c)電池容量の測定
 上記構成のリチウム二次電池について、充放電試験装置(東洋システム製「TOSCAT」)を用いて25℃にて充放電試験を行った。炭素極へのリチウムのドープ反応を定電流定電圧法により行い、脱ドープ反応を定電流法で行った。ここで、正極にリチウムカルコゲン化合物を使用した電池では、炭素極へのリチウムのドープ反応が「充電」であり、本発明の試験電池のように対極にリチウム金属を使用した電池では、炭素極へのドープ反応が「放電」と呼ぶことになり、用いる対極により同じ炭素極へのリチウムのドープ反応の呼び方が異なる。そこでここでは、便宜上炭素極へのリチウムのドープ反応を「充電」と記述することにする。逆に「放電」とは試験電池では充電反応であるが、炭素質材料からのリチウムの脱ドープ反応であるため便宜上「放電」と記述することにする。ここで採用した充電方法は定電流定電圧法であり、具体的には端子電圧が0.050Vになるまで0.5mA/cmで定電流充電を行い、端子電圧が0.050Vに達した後、端子電圧0.050Vで定電圧充電を行い電流値が20μAに達するまで充電を継続した。このとき、供給した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量当たりの充電容量(mAh/g)と定義した。充電終了後、30分間電池回路を開放し、その後放電を行った。放電は0.5mA/cmで定電流放電を行い、終止電圧を1.5Vとした。このとき放電した電気量を電極の炭素質材料の質量で除した値を炭素質材料の単位質量当たりの放電容量(mAh/g)と定義する。これらの質量当たり容量に上記の電極密度をかけあわせることで、体積当たり容量を算出する。不可逆容量は、充電容量-放電容量として計算される。同一試料を用いて作製した試験電池について3回(n=3)測定し、その測定値を平均して充放電容量及び不可逆容量を決定した。さらに、放電容量を充電容量で除した値に100を乗じて、初期効率(%)を求めた。これは活物質がどれだけ有効に使用されたかを示す値である。
(C) Measurement of battery capacity About the lithium secondary battery of the said structure, the charge / discharge test was done at 25 degreeC using the charge / discharge test apparatus ("TOSCAT" by Toyo System). Lithium doping reaction on the carbon electrode was performed by the constant current constant voltage method, and dedoping reaction was performed by the constant current method. Here, in a battery using a lithium chalcogen compound as a positive electrode, the lithium doping reaction to the carbon electrode is “charging”, and in a battery using a lithium metal as the counter electrode like the test battery of the present invention, This doping reaction is referred to as “discharge”, and the naming of the lithium doping reaction to the same carbon electrode differs depending on the counter electrode used. Therefore, for the sake of convenience, the lithium doping reaction on the carbon electrode will be described as “charging”. Conversely, “discharge” is a charging reaction in the test battery, but is referred to as “discharge” for convenience because it is a dedoping reaction of lithium from the carbonaceous material. The charging method adopted here is a constant current constant voltage method. Specifically, constant current charging was performed at 0.5 mA / cm 2 until the terminal voltage reached 0.050 V, and the terminal voltage reached 0.050 V. Thereafter, constant voltage charging was performed at a terminal voltage of 0.050 V, and charging was continued until the current value reached 20 μA. At this time, the value obtained by dividing the supplied amount of electricity by the mass of the carbonaceous material of the electrode was defined as the charge capacity (mAh / g) per unit mass of the carbonaceous material. After completion of charging, the battery circuit was opened for 30 minutes and then discharged. The discharge was a constant current discharge at 0.5 mA / cm 2 and the final voltage was 1.5V. A value obtained by dividing the quantity of electricity discharged at this time by the mass of the carbonaceous material of the electrode is defined as a discharge capacity (mAh / g) per unit mass of the carbonaceous material. The capacity per volume is calculated by multiplying the capacity per mass by the above electrode density. The irreversible capacity is calculated as charge capacity-discharge capacity. A test battery prepared using the same sample was measured three times (n = 3), and the measured values were averaged to determine the charge / discharge capacity and the irreversible capacity. Further, the initial efficiency (%) was obtained by multiplying the value obtained by dividing the discharge capacity by the charge capacity by 100. This is a value indicating how effectively the active material has been used.
 (d)50%充電状態の入力特性
 負極は、上記(a)と同様の手順で負極電極を作製した。なお、電極中の炭素質材料の量は、プレス後に規定の電極厚みとなるよう調整した。正極は、コバルト酸リチウム(LiCoO)94質量部、カーボンブラック3質量部、ポリフッ化ビニリデン(クレハ製KF#1300)3質量部にNMPを加えてペースト状にし、アルミニウム箔上に均一に塗布した。乾燥した後、塗工電極を直径14mmの円板上に打ち抜き、これをプレスし電極とした。なお、負極活物質の充電容量の95%となるよう正極電極中のコバルト酸リチウムの量を調整した。コバルト酸リチウムの容量を150mAh/gとして計算した。
 このようにして調製した電極の対を用い、電解液としてはエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートを容量比で1:2:2で混合した混合溶媒に1.4モル/リットルの割合でLiPFを加えたものを使用し、直径19mmの硼珪酸塩ガラス繊維製微細細孔膜をセパレータとして使用し、ポリエチレン製のガスケットを用いて、Arグローブボックス中で、2032サイズのコイン型非水電解質系リチウム二次電池を組み立てた。
(D) Input characteristics in 50% charged state For the negative electrode, a negative electrode was prepared in the same procedure as in (a) above. The amount of the carbonaceous material in the electrode was adjusted so as to have a prescribed electrode thickness after pressing. The positive electrode was made into a paste by adding NMP to 94 parts by mass of lithium cobaltate (LiCoO 2 ), 3 parts by mass of carbon black, and 3 parts by mass of polyvinylidene fluoride (Kureha KF # 1300) and uniformly applied onto the aluminum foil. . After drying, the coated electrode was punched onto a disk having a diameter of 14 mm and pressed to obtain an electrode. Note that the amount of lithium cobalt oxide in the positive electrode was adjusted to be 95% of the charge capacity of the negative electrode active material. The capacity of lithium cobaltate was calculated as 150 mAh / g.
The electrode pair thus prepared was used, and the electrolyte was LiPF at a ratio of 1.4 mol / liter in a mixed solvent in which ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2: 2. 6 is added, a borosilicate glass fiber microporous membrane with a diameter of 19 mm is used as a separator, a polyethylene gasket is used, and a 2032 size coin-type nonaqueous electrolyte is used in an Ar glove box. -Based lithium secondary battery was assembled.
 はじめに25℃にて2回充放電を繰り返してエージングを行った後、入出力試験を開始した。エージングで採用した定電流定電圧条件は、1回目のエージング時は電池電圧が4.2Vになるまで電流値をC/5で充電を行い、その後、電圧を4.2Vに保持するように(定電圧に保持しながら)電流値を連続的に変化させて電流値がC/100に達するまで充電を継続する。充電終了後、10分間電池回路を開放し、その後放電を行った。放電は電池電圧が2.75Vに達するまで電流値をC/5で行った。2回目のエージング時は電流値を2C/5とした以外は、1回目と同様に行った。2回目2/5Cのエージングでの放電容量を初期容量とした。初期容量に対する充電深度50%まで充電し、充電後試験環境を-20℃とし、十分保持した後、0.5C、1C、2Cの順で放充電を交互に10秒間行った。各電流値で放充電した際の1秒目の電圧と電流の関係から、上限電圧を4.2Vとした際の電流値を外挿し、得られた上限電圧、電流値から入力値を算出した。この入力値を正極及び負極の体積で除して、入力密度を算出した。上記の-20℃の入出力試験で得られた入力密度との比から、-20℃入力密度比を算出した。 First, after performing aging by repeating charging and discharging twice at 25 ° C., an input / output test was started. The constant current and constant voltage conditions adopted in aging are such that the current value is charged at C / 5 until the battery voltage reaches 4.2 V during the first aging, and then the voltage is maintained at 4.2 V ( Charging is continued until the current value reaches C / 100 by continuously changing the current value (while maintaining a constant voltage). After completion of charging, the battery circuit was opened for 10 minutes and then discharged. Discharging was performed at a current value of C / 5 until the battery voltage reached 2.75V. The second aging was performed in the same manner as the first time except that the current value was set to 2C / 5. The discharge capacity at the second aging of 2 / 5C was defined as the initial capacity. The battery was charged to a charge depth of 50% with respect to the initial capacity, the test environment was set to −20 ° C. and sufficiently maintained, and then discharged in the order of 0.5 C, 1 C, and 2 C for 10 seconds alternately. From the relationship between the voltage and current in the first second when discharging at each current value, the current value when the upper limit voltage was 4.2 V was extrapolated, and the input value was calculated from the obtained upper limit voltage and current value. . The input density was calculated by dividing the input value by the volume of the positive electrode and the negative electrode. The -20 ° C input density ratio was calculated from the ratio with the input density obtained in the above input / output test at -20 ° C.
 得られたリチウム二次電池の特性を表1、表2に示す。 Tables 1 and 2 show the characteristics of the obtained lithium secondary battery.
(実施例1)
 軟化点205℃、H/C原子比0.65の石油ピッチ70kgと、ナフタレン30kgとを、撹拌翼および出口ノズルのついた内容積300リットルの耐圧容器に仕込み、190℃で加熱溶融混合を行った後、80~90℃に冷却し、耐圧容器内を窒素ガスにより加圧して、内容物を出口ノズルから押出し、直径約500μmの紐状成型体を得た。次いで、この紐状成型体を直径(D)と長さ(L)の比(L/D)が約1.5になるように粉砕し、得られた破砕物を93℃に加熱した0.53質量%のポリビニルアルコール(ケン化度88%)を溶解した水溶液中に投入し、撹拌分散し、冷却して球状ピッチ成型体スラリーを得た。大部分の水をろ過により取り除いた後、球状ピッチ成形体の約6倍量の質量のn-ヘキサンでピッチ成形体中のナフタレンを抽出除去した。このようにして得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、240℃まで昇温し、240℃に1時間保持して酸化し、熱に対して不融性の多孔性球状酸化ピッチを得た。
 次に多孔性球状酸化ピッチ7kgを直径130mmの縦型管状炉に入れ、窒素ガス流通下、600℃まで100℃/hで昇温し、600℃で1時間保持して予備焼成を実施し、炭素前駆体を得た。得られた炭素前駆体をスチームジェットミル(東洋ハイテック株式会社)で粉砕し、個数平均粒子径0.73μm、体積平均粒子径6.9μmの粉末状炭素前駆体とした。続いて、この粉末状炭素前駆体10gを直径100mmの横型管状炉に入れ、250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料1を調製した。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。
Example 1
A 70 kg petroleum pitch with a softening point of 205 ° C. and an H / C atomic ratio of 0.65 and 30 kg of naphthalene are charged into a 300 liter pressure vessel equipped with a stirring blade and an outlet nozzle, and heated, melted and mixed at 190 ° C. After cooling to 80 to 90 ° C., the inside of the pressure vessel was pressurized with nitrogen gas, and the contents were extruded from the outlet nozzle to obtain a string-like molded body having a diameter of about 500 μm. Subsequently, this string-like molded body was pulverized so that the ratio (L / D) of the diameter (D) to the length (L) was about 1.5, and the obtained crushed material was heated to 93 ° C. The solution was poured into an aqueous solution in which 53% by mass of polyvinyl alcohol (saponification degree 88%) was dissolved, stirred and dispersed, and cooled to obtain a spherical pitch molded body slurry. After most of the water was removed by filtration, naphthalene in the pitch formed body was extracted and removed with n-hexane having a mass about 6 times that of the spherical pitch formed body. The porous spherical pitch thus obtained was heated to 240 ° C. while passing through heated air using a fluidized bed, oxidized at a temperature of 240 ° C. for 1 hour, and insoluble to heat. Spherical oxidized pitch was obtained.
Next, 7 kg of a porous spherical oxidation pitch is put into a vertical tubular furnace having a diameter of 130 mm, heated to 100 ° C./h up to 600 ° C. under a nitrogen gas flow, and kept at 600 ° C. for 1 hour to perform preliminary firing, A carbon precursor was obtained. The obtained carbon precursor was pulverized with a steam jet mill (Toyo High-Tech Co., Ltd.) to obtain a powdery carbon precursor having a number average particle size of 0.73 μm and a volume average particle size of 6.9 μm. Subsequently, 10 g of this powdery carbon precursor was put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing, Carbonaceous material 1 was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
(実施例2)
 個数平均粒子径0.68μm、体積平均粒子径4.9μmの粉末状炭素前駆体とした以外は実施例1と同様にして炭素質材料2を得た。
(Example 2)
A carbonaceous material 2 was obtained in the same manner as in Example 1 except that a powdery carbon precursor having a number average particle size of 0.68 μm and a volume average particle size of 4.9 μm was used.
(実施例3)
 個数平均粒子径0.59μm、体積平均粒子径2.8μmの粉末状炭素前駆体とした以外は実施例1と同様にして炭素質材料3を得た。
Example 3
A carbonaceous material 3 was obtained in the same manner as in Example 1 except that a powdery carbon precursor having a number average particle size of 0.59 μm and a volume average particle size of 2.8 μm was used.
(実施例4)
 多孔性球状ピッチの酸化温度を270℃に変更して、カウンタージェットミル(ホソカワミクロン株式会社/100-AFG)で回転数20000rpmで粉砕し、バグフィルターで回収された微粉を混合して、個数平均粒子径0.62μm、体積平均粒子径3.8μmの粉末状炭素前駆体とした以外は実施例1と同様にして炭素質材料4を得た。
Example 4
The oxidation temperature of the porous spherical pitch was changed to 270 ° C., the powder was pulverized with a counter jet mill (Hosokawa Micron Corporation / 100-AFG) at a rotational speed of 20000 rpm, and the fine powder collected by the bag filter was mixed to obtain a number average particle A carbonaceous material 4 was obtained in the same manner as in Example 1 except that a powdery carbon precursor having a diameter of 0.62 μm and a volume average particle diameter of 3.8 μm was used.
(実施例5)
 多孔性球状ピッチの酸化温度を240℃にし、個数平均粒子径0.67μm、体積平均粒子径3.8μmの粉末状炭素前駆体とした以外は実施例4と同様にして炭素質材料5を得た。
(Example 5)
A carbonaceous material 5 is obtained in the same manner as in Example 4 except that the oxidation temperature of the porous spherical pitch is 240 ° C. and that the powdery carbon precursor has a number average particle size of 0.67 μm and a volume average particle size of 3.8 μm. It was.
(実施例6)
 多孔性球状ピッチの酸化温度を205℃に変更し、個数平均粒子径0.62μm、体積平均粒子径3.7μmの粉末状炭素前駆体とした以外は実施例4と同様にして炭素質材料6を得た。
(Example 6)
The carbonaceous material 6 was changed in the same manner as in Example 4 except that the oxidation temperature of the porous spherical pitch was changed to 205 ° C. to obtain a powdery carbon precursor having a number average particle size of 0.62 μm and a volume average particle size of 3.7 μm. Got.
(実施例7)
 実施例1と同様の方法で得た多孔性球状ピッチを、流動床を用いて、加熱空気を通じながら、190℃まで昇温し、190℃に1時間保持して酸化し、架橋処理を施した多孔性球状酸化ピッチを得た。得られた多孔性球状酸化ピッチ200gを150mmの横型管状炉に入れ、600℃まで150℃/hで昇温し、600℃で1時間保持して予備焼成を実施し、炭素前駆体を得た。得られた炭素前駆体を直径2mm以下まで粗粉砕した後、カウンタージェットミル(ホソカワミクロン株式会社/100-AFG)で粉砕し、バグフィルターで回収された微粉を混合して、個数平均粒子径0.55μm、体積平均粒子径3.2μmの粉末状炭素前駆体とした。続いて、この粉末状炭素前駆体10gを直径100mmの横型管状炉に入れ、250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料7を調製した。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。
(Example 7)
The porous spherical pitch obtained by the same method as in Example 1 was heated to 190 ° C. while passing through heated air using a fluidized bed, oxidized at a temperature of 190 ° C. for 1 hour, and subjected to crosslinking treatment. A porous spherical oxide pitch was obtained. 200 g of the obtained porous spherical oxidation pitch was placed in a 150 mm horizontal tubular furnace, heated to 600 ° C. at 150 ° C./h, held at 600 ° C. for 1 hour, and pre-baked to obtain a carbon precursor. . The obtained carbon precursor was coarsely pulverized to a diameter of 2 mm or less, then pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG), and the fine powder collected by the bag filter was mixed to obtain a number average particle size of 0. It was set as the powdery carbon precursor of 55 micrometers and a volume average particle diameter of 3.2 micrometers. Subsequently, 10 g of this powdery carbon precursor was put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a heating rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing, Carbonaceous material 7 was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
(実施例8)
 多孔性球状ピッチの酸化処理時間を7minに変更し、個数平均粒子径0.53μm、体積平均粒子径3.1μmの粉末状炭素前駆体とした以外は実施例7と同様にして炭素質材料8を得た。
(Example 8)
The carbonaceous material 8 was prepared in the same manner as in Example 7 except that the oxidation time of the porous spherical pitch was changed to 7 min to obtain a powdery carbon precursor having a number average particle size of 0.53 μm and a volume average particle size of 3.1 μm. Got.
(実施例9)
 個数平均粒子径0.53μm、体積平均粒子径4.6μmの粉末状炭素前駆体とした以外は実施例6と同様にして炭素質材料9を得た。
Example 9
A carbonaceous material 9 was obtained in the same manner as in Example 6 except that a powdery carbon precursor having a number average particle size of 0.53 μm and a volume average particle size of 4.6 μm was used.
(実施例10)
 軟化点188℃、H/C原子比0.51の石炭ピッチをカウンタージェットミル(ホソカワミクロン株式会社/100-AFG)で回転数13000rpmで粉砕し、平均粒径5.2μmの粉末状ピッチを得た。続いて、この粉末状ピッチをマッフル炉(株式会社デンケン)に入れ、空気を20L/minで流通させながら、280℃で1時間保持して不融化処理を行い、不融化ピッチを得た。得られた不融化ピッチ100gを坩堝に入れ、縦型管状炉で、600℃まで50℃/hの速度で昇温し、600℃で1時間保持して予備焼成を実施し、炭素前駆体を得た。予備焼成は流量5L/minの窒素雰囲気下で行い、坩堝は開放した状態で実施した。得られた炭素前駆体をサンプルミルにて粉砕し、平均粒径4.6μmの粉末状炭素前駆体を得た。粉末状炭素前駆体10gを直径100mmの横型管状炉に入れ、250℃/hの昇温速度で1200℃まで昇温し、1200℃で1時間保持して、本焼成を行い、炭素質材料10を調製した。なお、本焼成は、流量10L/minの窒素雰囲気下で行った。
(Example 10)
A coal pitch having a softening point of 188 ° C. and an H / C atomic ratio of 0.51 was pulverized by a counter jet mill (Hosokawa Micron Corporation / 100-AFG) at a rotational speed of 13000 rpm to obtain a powdery pitch having an average particle diameter of 5.2 μm. . Subsequently, the powdery pitch was put into a muffle furnace (Denken Co., Ltd.), and infusible treatment was performed by maintaining the air at 280 ° C. for 1 hour while circulating air at 20 L / min to obtain an infusible pitch. 100 g of the obtained infusible pitch was put in a crucible, heated at a rate of 50 ° C./h up to 600 ° C. in a vertical tubular furnace, held at 600 ° C. for 1 hour, pre-fired, and carbon precursor was Obtained. Pre-baking was performed in a nitrogen atmosphere with a flow rate of 5 L / min, and the crucible was opened. The obtained carbon precursor was pulverized by a sample mill to obtain a powdery carbon precursor having an average particle size of 4.6 μm. 10 g of powdered carbon precursor is put into a horizontal tubular furnace having a diameter of 100 mm, heated to 1200 ° C. at a temperature rising rate of 250 ° C./h, held at 1200 ° C. for 1 hour, and subjected to main firing to obtain carbonaceous material 10 Was prepared. The main firing was performed in a nitrogen atmosphere with a flow rate of 10 L / min.
(比較例1)
 予備焼成後の前駆体をボールミルによって粉砕し、微粉分級することで、個数平均粒子径2.9μm、体積平均粒子径10.5μmの粉末状炭素前駆体とした以外は実施例4と同様にして比較炭素質材料1を得た。
(Comparative Example 1)
The precursor after pre-firing was pulverized by a ball mill and classified into fine powders to obtain a powdery carbon precursor having a number average particle size of 2.9 μm and a volume average particle size of 10.5 μm. A comparative carbonaceous material 1 was obtained.
(比較例2)
 予備焼成後の前駆体をカウンタージェットミル(ホソカワミクロン株式会社/100-AFG)で粉砕し、微粉分級することによって、個数平均粒子径2.7μm、体積平均粒子径6.5μmの粉末状炭素前駆体とした以外は実施例4と同様にして、比較炭素質材料2を得た。
(Comparative Example 2)
The pre-fired precursor is pulverized with a counter jet mill (Hosokawa Micron Corporation / 100-AFG) and classified into fine powders to obtain a powdery carbon precursor having a number average particle size of 2.7 μm and a volume average particle size of 6.5 μm. A comparative carbonaceous material 2 was obtained in the same manner as in Example 4 except that.
(比較例3)
 実施例2のバグフィルターで回収した個数平均粒子径0.44μm、体積平均粒子径0.80μmの粉末状炭素前駆体を用いた以外は、実施例2と同様にして比較炭素質材料3を得た。
(Comparative Example 3)
A comparative carbonaceous material 3 was obtained in the same manner as in Example 2 except that a powdery carbon precursor having a number average particle size of 0.44 μm and a volume average particle size of 0.80 μm collected by the bag filter of Example 2 was used. It was.
(比較例4)
 焼成温度を800℃に変更した以外は実施例2と同様にして比較炭素質材料4を得た。
(Comparative Example 4)
A comparative carbonaceous material 4 was obtained in the same manner as in Example 2 except that the firing temperature was changed to 800 ° C.
 実施例および比較例で得られた炭素質材料の特性、それを用いて作製した負極および電池性能の測定評価結果を表1、2に示す。また、表3には、実施例5の炭素質材料を用いて負極の平均厚みを変えて入力密度を測定した結果を表2に示す。 Tables 1 and 2 show the characteristics of the carbonaceous materials obtained in Examples and Comparative Examples, and the results of measurement and evaluation of the negative electrode produced using the carbonaceous materials and battery performance. Table 3 shows the results of measuring the input density using the carbonaceous material of Example 5 while changing the average thickness of the negative electrode.
 実施例1~10の炭素質材料は、個数平均粒子径が0.1~2.0μmの範囲の小粒子からなり、かつ個数平均粒子径/体積平均粒子径が0.3以下の範囲にあるようにブロードな粒度分布を有するため、充填性が向上し、高い体積当たり放電容量が得られた。このことは、同じプレス条件で加圧された電極密度が高いことにも示されている。また、低温環境下での入力密度も向上した。
 これに対し、比較例1~3の炭素質材料は、個数平均粒子径および個数平均粒子径/体積平均粒子径が本発明の範囲を満たすものではなく、比較例4の炭素材料は、H/Cが本発明の範囲を満たすものではない。そのため、電極密度が実施例よりも低かった。また、体積当たり放電容量が実施例よりも低く、初期効率または低温環境下での入力密度が実施例よりも劣る傾向にあった。このように、本発明の範囲を満たす実施例は、良好な入出力特性を備えていた。
The carbonaceous materials of Examples 1 to 10 are composed of small particles having a number average particle diameter in the range of 0.1 to 2.0 μm, and the number average particle diameter / volume average particle diameter is in the range of 0.3 or less. Thus, since it has such a broad particle size distribution, the filling property was improved, and a high discharge capacity per volume was obtained. This is also indicated by the high density of the electrodes pressed under the same pressing conditions. In addition, the input density in a low temperature environment has also been improved.
In contrast, the carbonaceous materials of Comparative Examples 1 to 3 do not satisfy the scope of the present invention in terms of the number average particle diameter and the number average particle diameter / volume average particle diameter. C does not satisfy the scope of the present invention. Therefore, the electrode density was lower than that of the example. Further, the discharge capacity per volume was lower than that of the example, and the initial efficiency or the input density under a low temperature environment tended to be inferior to that of the example. Thus, the examples satisfying the scope of the present invention had good input / output characteristics.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (9)

  1.  個数平均粒子径が0.1~2.0μmであり、個数平均粒子径を体積平均粒子径で除した値が0.3以下であり、X線回折法により定めた(002)面の平均層面間隔d002が0.340~0.390nmであり、水素および炭素の原子比(H/C)が0.10以下であることを特徴とする非水電解質二次電池負極用炭素質材料。 The number average particle size is 0.1 to 2.0 μm, the value obtained by dividing the number average particle size by the volume average particle size is 0.3 or less, and the (002) plane average layer surface determined by the X-ray diffraction method A carbonaceous material for a negative electrode of a non-aqueous electrolyte secondary battery, wherein the distance d 002 is 0.340 to 0.390 nm, and the atomic ratio (H / C) of hydrogen and carbon is 0.10 or less.
  2.  体積平均粒子径Dv50が1~7μmである請求項1に記載の非水電解質二次電池負極用炭素質材料。 The carbonaceous material for a negative electrode of a nonaqueous electrolyte secondary battery according to claim 1, wherein the volume average particle diameter Dv50 is 1 to 7 µm.
  3.  累積体積粒子径Dv10が2.5μm以下である請求項1または2に記載の非水電解質二次電池負極用炭素質材料。 The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to claim 1 or 2, wherein a cumulative volume particle diameter Dv10 is 2.5 µm or less.
  4.  体積粒子径30μm以上の粒子の量が1.0体積%以下である請求項1から3のいずれかに記載の非水電解質二次電池負極用炭素質材料。 The carbonaceous material for a nonaqueous electrolyte secondary battery negative electrode according to any one of claims 1 to 3, wherein the amount of particles having a volume particle diameter of 30 µm or more is 1.0 vol% or less.
  5.  請求項1から4のいずれかに記載の非水電解質二次電池負極用炭素質材料を含む非水電解質二次電池用負極電極。 A negative electrode for a non-aqueous electrolyte secondary battery comprising the carbonaceous material for a non-aqueous electrolyte secondary battery negative electrode according to any one of claims 1 to 4.
  6.  13MPa(2.5tf/cm)のプレス圧力を加えた場合に電極密度が1.02g/cm以上である請求項5に記載の非水電解質二次電池用負極電極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 5, wherein the electrode density is 1.02 g / cm 3 or more when a pressing pressure of 13 MPa (2.5 tf / cm 2 ) is applied.
  7.  平均厚みが60μm以下である請求項5または6に記載の非水電解質二次電池用負極電極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 5 or 6, wherein the average thickness is 60 µm or less.
  8.  請求項5から7のいずれかに記載の非水電解質二次電池用負極電極を備える非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 5 to 7.
  9.  請求項8に記載の非水電解質二次電池を搭載した車両。 A vehicle equipped with the nonaqueous electrolyte secondary battery according to claim 8.
PCT/JP2015/059770 2014-03-31 2015-03-27 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle WO2015152090A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/300,312 US9812711B2 (en) 2014-03-31 2015-03-27 Carbonaceous material for non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery anode, non-aqueous electrolyte secondary battery, and vehicle
JP2016511846A JP6195660B2 (en) 2014-03-31 2015-03-27 Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
CN201580017427.5A CN106165162B (en) 2014-03-31 2015-03-27 Carbonaceous material for negative electrode of nonaqueous electrolyte secondary battery and negative electrode comprising same
EP15773970.7A EP3131144B1 (en) 2014-03-31 2015-03-27 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle
KR1020167026838A KR101984052B1 (en) 2014-03-31 2015-03-27 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-074974 2014-03-31
JP2014074974 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152090A1 true WO2015152090A1 (en) 2015-10-08

Family

ID=54240413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059770 WO2015152090A1 (en) 2014-03-31 2015-03-27 Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle

Country Status (7)

Country Link
US (1) US9812711B2 (en)
EP (1) EP3131144B1 (en)
JP (1) JP6195660B2 (en)
KR (1) KR101984052B1 (en)
CN (1) CN106165162B (en)
TW (1) TWI556496B (en)
WO (1) WO2015152090A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215126A1 (en) * 2021-04-05 2022-10-13 昭和電工マテリアルズ株式会社 Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108134084A (en) * 2016-12-01 2018-06-08 神华集团有限责任公司 A kind of carbonaceous material and preparation method thereof, battery cathode and battery
KR20200099872A (en) * 2019-02-15 2020-08-25 에스케이이노베이션 주식회사 Lithium secondary battery
KR102025119B1 (en) * 2019-02-15 2019-11-04 애경유화 주식회사 Carbonaceous material for additive of negative electrode active material of lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
WO2007094114A1 (en) * 2006-02-14 2007-08-23 Kureha Corporation Continuous particulate high-temperature gas treatment apparatus and method of treating
JP2014035924A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2014034857A1 (en) * 2012-08-30 2014-03-06 株式会社クレハ Carbon material for nonaqueous electrolyte secondary battery and method for manufacturing same, and negative electrode using carbon material and nonaqueous electrolyte secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3634408B2 (en) * 1994-07-11 2005-03-30 大阪瓦斯株式会社 Carbon material for electrode of lithium battery and method for producing the same
JP3565994B2 (en) * 1996-06-28 2004-09-15 呉羽化学工業株式会社 Carbonaceous material for electrode of non-aqueous solvent secondary battery, method for producing the same, and non-aqueous solvent secondary battery
DE60202313T2 (en) 2001-03-07 2005-12-08 Asahi Glass Co., Ltd. Secondary power source
JP4039071B2 (en) 2001-03-07 2008-01-30 旭硝子株式会社 Secondary power supply
US8574533B2 (en) * 2004-03-30 2013-11-05 Kureha Corporation Material for negative electrode of non-aqueous electrolyte secondary battery, process for producing the same, negative electrode and battery
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
CN104094458A (en) 2012-02-06 2014-10-08 株式会社吴羽 Carbonaceous material for non-aqueous electrolyte secondary battery
US20150188137A1 (en) 2012-09-06 2015-07-02 Kureha Corporation Carbonaceous material for anode of nonaqueous electrolyte secondary battery, and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
WO2007094114A1 (en) * 2006-02-14 2007-08-23 Kureha Corporation Continuous particulate high-temperature gas treatment apparatus and method of treating
JP2014035924A (en) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2014034857A1 (en) * 2012-08-30 2014-03-06 株式会社クレハ Carbon material for nonaqueous electrolyte secondary battery and method for manufacturing same, and negative electrode using carbon material and nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3131144A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215126A1 (en) * 2021-04-05 2022-10-13 昭和電工マテリアルズ株式会社 Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JPWO2022215126A1 (en) * 2021-04-05 2022-10-13
JP7521693B2 (en) 2021-04-05 2024-07-24 株式会社レゾナック Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
KR101984052B1 (en) 2019-05-30
EP3131144A1 (en) 2017-02-15
CN106165162A (en) 2016-11-23
JPWO2015152090A1 (en) 2017-04-13
EP3131144A4 (en) 2017-05-17
US9812711B2 (en) 2017-11-07
JP6195660B2 (en) 2017-09-13
US20170149062A1 (en) 2017-05-25
TW201543740A (en) 2015-11-16
EP3131144B1 (en) 2022-03-09
TWI556496B (en) 2016-11-01
KR20160129863A (en) 2016-11-09
CN106165162B (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP6450480B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material
WO2013118757A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery
WO2015152214A1 (en) Negative electrode for all-solid battery and all-solid battery including same
WO2016021737A1 (en) Method for manufacturing carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery, and carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
WO2015152091A1 (en) Carbonaceous material for negative electrode of nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, nonaqueous-electrolyte secondary battery, and vehicle
JPWO2015152092A1 (en) Nonaqueous electrolyte secondary battery negative electrode material, negative electrode mixture for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and vehicle
JP6195660B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
JP2016181348A (en) Carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof
WO2015152088A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle
JPWO2015152094A1 (en) Nonaqueous electrolyte secondary battery
WO2015141852A1 (en) Non-aqueous electrolyte secondary battery
JP2016157648A (en) Nonaqueous electrolyte secondary battery
JP2016186925A (en) Method of producing carbonaceous material for nonaqueous electrolyte secondary battery negative electrode
JP6605451B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery and vehicle
JP6570413B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
WO2015152089A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511846

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167026838

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015773970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015773970

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15300312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE