WO2015151802A1 - Spectroscopic measurement device - Google Patents

Spectroscopic measurement device Download PDF

Info

Publication number
WO2015151802A1
WO2015151802A1 PCT/JP2015/057878 JP2015057878W WO2015151802A1 WO 2015151802 A1 WO2015151802 A1 WO 2015151802A1 JP 2015057878 W JP2015057878 W JP 2015057878W WO 2015151802 A1 WO2015151802 A1 WO 2015151802A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
unit
spectroscopic
period
Prior art date
Application number
PCT/JP2015/057878
Other languages
French (fr)
Japanese (ja)
Inventor
森谷 直司
裕也 酒井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2015151802A1 publication Critical patent/WO2015151802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/433Modulation spectrometry; Derivative spectrometry
    • G01J3/4338Frequency modulated spectrometry

Definitions

  • the present invention relates to a spectrometer.
  • the present invention relates to a spectroscopic measurement apparatus that can be suitably used when measuring light absorption by a sample.
  • a spectroscopic measurement device is one of the devices used for qualitative and quantitative determination of substances contained in a sample. For example, when measuring the concentration of a target component contained in a sample gas using a spectroscopic measurement device, the sample gas is irradiated with light emitted from a light source, and the light transmitted through the sample gas is detected by a light detection unit. To do. The signal from the light detection unit is output to the data processing unit to create an absorption spectrum. Then, the concentration of the target component is determined based on the peak area and intensity of the target component on the absorption spectrum.
  • WMS wavelength modulation spectroscopy
  • a light source that can change the wavelength by changing the magnitude and temperature of the current supplied from the outside is used.
  • Such light sources include, for example, a distributed feedback (DFB) laser light source, but have a narrow wavelength range of oscillating light.
  • DFB distributed feedback
  • Patent Document 3 describes that the wavelength range of laser light is from sub nm to several nm. Therefore, there is a problem that WMS using a DFB laser capable of high-speed modulation cannot perform spectroscopic measurement for a broad absorption peak such as a solid substance.
  • the problem to be solved by the present invention is to provide a spectroscopic measurement apparatus capable of performing spectroscopic measurement with high sensitivity in a wide wavelength range.
  • the spectroscopic measurement device which has been made to solve the above problems, a) a light source that emits irradiation light having a wavelength width; b) a light detection unit for detecting measurement light emitted from the light source and interacting with the sample; c) from an irradiation light side spectroscope that transmits light of a specific wavelength of the irradiation light, a measurement light side spectroscope that transmits light of a specific wavelength of the measurement light, or from a light detection unit
  • a wavelength selection unit including a specific wavelength signal generation unit for outputting a detection signal of light of a wavelength; d) a modulation controller that changes the specific wavelength by superimposing a modulation component that changes in a second period shorter than the first period on a wavelength that changes in the first period; e) a synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of
  • the spectroscopic measurement apparatus is broadly embodied in three modes. Each aspect corresponds to a configuration in which the wavelength selection unit is an irradiation light side spectroscope, a configuration in which the wavelength selection unit is a measurement light side spectroscope, and a configuration in which a specific wavelength signal generation unit is provided.
  • the first aspect of the spectrometer is: A light source that emits irradiation light having a wavelength width; A spectroscopic unit that selectively transmits light having a wavelength corresponding to a value of a supplied current or voltage among the irradiation light; and A photodetector for detecting the measurement light after passing through the spectroscopic unit and interacting with the sample; A drive signal supply unit that supplies a current or voltage obtained by superimposing a modulation component that changes in a cycle shorter than the current or voltage that periodically repeats a change in continuous value to the spectroscopic unit; A synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency; It is characterized by providing.
  • Examples of the spectroscopic unit include various types of monochromators described in Non-Patent Documents 2 to 4 (acousto-optic filter type monochromators, Fourier interference type monochromators, MEMS applied Hadamard transform type monochromators, etc. ) Can be used.
  • the integer multiple is typically twice.
  • a waveform obtained by second-order differentiation of the absorption spectrum is obtained as the synchronization detection signal, but the present invention is not limited to this.
  • this multiple is increased, a waveform obtained by multi-order differentiation of the absorption spectrum is obtained, so that a broad spectrum can be sharpened.
  • the spectroscopic measurement device uses a spectroscopic unit whose wavelength to be monochromatic changes according to the value of the supplied current or voltage, and for the spectroscopic unit, a continuous value (the sharpened spectrum is sufficiently resolved). Supply a current or voltage that superimposes a modulation component that changes in a shorter cycle than the current or voltage that periodically changes the wavelength to be monochromatic as much as possible. To do. In this configuration, since various types of light sources that emit light having a wavelength width can be used as the light source, spectroscopic measurement can be performed with high sensitivity in a wide wavelength range.
  • the drive signal supply unit described above is not limited to supplying current or voltage directly to the spectrometer, but indirectly supplies current or voltage to the spectrometer (inside the spectrometer). It is also possible to use a digital signal or the like that can be converted into a current or voltage.
  • the output signal from the photodetector is synchronously detected at a frequency that is an integer multiple of the frequency f (for example, 2f), the influence of noise generated in a low frequency band such as electrical noise generated in the light receiving circuit is eliminated. Can do.
  • the coherent laser light emitted from the light source may be reflected on the surface by an optical element or the like disposed on the optical path from the light source to the detector to generate an interference beat. is there. When such an interference beat occurs, noise is superimposed on the detection signal.
  • the spectroscopic measurement apparatus of the first aspect does not use a laser light source, it is not affected by noise caused by the occurrence of an interference beat.
  • the second aspect of the spectrometer is: A light source that emits irradiation light having a wavelength width; A spectroscopic unit that selectively transmits light having a wavelength according to a value of a supplied current or voltage, among measurement light that is emitted from the light source and interacts with a sample; A photodetector for detecting measurement light that has passed through the spectroscopic unit; A drive signal supply unit that supplies a current or voltage obtained by superimposing a modulation component that changes in a cycle shorter than the current or voltage that periodically repeats a change in continuous value to the spectroscopic unit; A synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency; It is characterized by providing.
  • the spectroscopic measurement device has a configuration in which only the place where the spectroscopic measurement device according to the first aspect and the spectroscopic unit are arranged is changed, and the same effect as the spectroscopic measurement device according to the first aspect can be obtained. it can.
  • a third aspect of the spectroscopic measurement apparatus includes a light source that emits irradiation light having a wavelength width, and a spectroscopic detection unit that detects the measurement light emitted from the light source and interacting with the sample by wavelength separation. And a signal processing unit that generates a detection signal from an output signal output for each wavelength from the spectroscopic detection unit, the timing at which the signal processing unit reads the output signal and the readout at the timing Data defining the relationship between wavelengths, and reading wavelength data in which a modulation component that changes at a predetermined period is superimposed on a reading center wavelength within the range of the wavelength of the light detected by the spectroscopic detection unit.
  • Read wavelength data generation unit for sequentially changing the wavelength to create, A modulation output signal generation unit that generates a modulation output signal by reading an output signal having a wavelength defined by the read wavelength data from the output signal at a cycle shorter than the cycle, A synchronization detection signal generation unit configured to generate a synchronization detection signal from the modulation output signal using a frequency which is a positive integer multiple of the frequency of the modulation component as a reference frequency.
  • the read wavelength when reading a signal output for each wavelength from the spectroscopic detector, the read wavelength is modulated at a predetermined frequency and the read wavelength is changed in order to read wavelength data. Is generated. Then, an output signal having a wavelength defined by the read wavelength data is read out from signals output from the spectroscopic detection unit, and a modulated output signal is generated. As a result, a modulation signal similar to the output signal output from the photodetector is obtained in the spectroscopic measurement devices of the first and second aspects.
  • a synchronization detection signal is generated from the modulation output signal using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency. That is, the first and second spectroscopic measurement apparatuses and the third spectroscopic measurement apparatus have different components to be subjected to wavelength modulation, but the frequency modulation frequency of the modulation component is determined from the output signal subjected to wavelength modulation. Based on the common technical idea of acquiring a synchronization detection signal using an integer multiple frequency as a reference frequency, the same effect as described above can be obtained.
  • the spectroscopic measurement device of each aspect according to the present invention it is possible to perform spectroscopic measurement with high sensitivity in a wide wavelength range.
  • FIG. 2 is a main part configuration diagram of the spectroscopic measurement apparatus according to the first embodiment.
  • FIG. 3 is a diagram for explaining a drive signal in the spectroscopic measurement apparatus according to the first embodiment.
  • FIG. 3 is a diagram for explaining an output signal from a photodetector in the spectrometer according to the first embodiment.
  • FIG. 3 is a diagram for explaining a synchronization detection signal in the spectroscopic measurement apparatus according to the first embodiment.
  • FIG. 3 is a main part configuration diagram of a spectrometer according to a second embodiment.
  • FIG. 5 is a main part configuration diagram of a spectrometer according to a third embodiment.
  • FIG. 10 is a diagram for explaining generation of readout wavelength data in the spectroscopic measurement apparatus according to the third embodiment.
  • FIG. 6 is a main part configuration diagram of a film thickness measuring apparatus according to a fourth embodiment. The figure which shows the change of the wavelength in the spectroscopy part of the film thickness measuring apparatus of Example 4.
  • FIG. 1 shows the main configuration of the spectroscopic measurement apparatus of Example 1.
  • the spectroscopic measurement device 1 includes a light source 11 that emits irradiation light having a wavelength width, a sample cell 12 in which a sample gas is sealed, and a first polarizer that passes light of a linearly polarized light component among light that has passed through the sample cell 12.
  • acousto-optic filter type spectroscope 14 light of a linearly polarized light component (a component in a direction orthogonal to the polarization direction of the light that has passed through first polarizer 13) out of the light that has passed through spectroscope 14
  • a second polarizer 15 that passes through, a beam dump 16 that absorbs light that has passed through the spectroscope 14 without changing its traveling direction, and light detection that detects measurement light of a wavelength selected by the spectroscope 14.
  • the acoustooptic filter type spectroscope 14 generates an acoustic wave by applying a high frequency voltage to the piezoelectric element 141 located at the input end thereof, and propagates it in the crystal inside the spectroscope 14.
  • This is a spectroscope that emits light by changing the traveling direction and polarization direction of linearly polarized light having a specific wavelength.
  • the entity of the control unit 19 is a personal computer, which includes a storage unit 191 and functionally includes a drive signal generation unit 192 and a synchronization detection signal generation unit 193.
  • An input unit 194 and a display unit 195 are connected to the control unit 19.
  • the first period, the second period, the range of values that change in the first period, and the amplitude of the modulation component that changes in the second period are preset by the user and stored in the storage unit 191.
  • a drive signal is generated by the drive signal generation unit 192 based on the parameters. That is, in this embodiment, the drive signal generation unit 192 and the voltage application unit 18 cooperate to function as the drive signal supply unit of the present invention.
  • Irradiation light having a wavelength width emitted from the light source 11 is absorbed by the sample gas in the sample cell 12 and then enters the first polarizer 13 as measurement light.
  • the linearly polarized measurement light that has passed through the first polarizer 13 enters the spectroscope 14.
  • light having a specific wavelength determined by the value of the voltage applied to the spectroscope 14 from the outside is diffracted to change the traveling direction, and in a plane orthogonal to the traveling direction.
  • the polarization direction changes by 90 degrees and is emitted.
  • light of other wavelengths in the measurement light travels straight without being diffracted by the spectroscope 14, and part of the light passes through the second polarizer 15 and is absorbed by the beam dump 16.
  • the photodetector 17 When the light passing through the sample gas is detected by modulating the wavelength passing through the spectroscope 14, the photodetector 17 outputs a signal on which the modulation component of the frequency f is superimposed as shown in FIG.
  • the synchronization detection signal generation unit 193 generates a synchronization detection signal from the output signal from the photodetector 17 using the frequency 2f that is twice the frequency f described above as a reference frequency, creates a waveform thereof, and displays the waveform on the display unit 195. To do.
  • An example of the synchronization detection signal is shown in FIG.
  • a waveform obtained by secondarily differentiating the absorption spectrum in real time without performing an arithmetic process such as differentiating the output signal is obtained.
  • the reference frequency for synchronous detection may be a positive integer multiple of the frequency of the modulation component, and the N-th derivative is obtained by setting the frequency Nf N times (N is a positive integer) as the reference frequency. Waveform can be obtained.
  • the measurement object is a gas sealed in the sample cell 12, but the measurement object is not limited to this, and a flow cell is arranged instead of the sample cell 12, and light absorption by the gas flowing through the inside is measured. It can also be targeted. Further, the measurement target of the spectroscopic measurement apparatus 1 may be a solid or a liquid.
  • the principal part structure of the spectrometer 2 of Example 2 is shown in FIG.
  • the spectroscopic measurement device 2 passes through a light source 21 that emits irradiation light having a wavelength width, a first polarizer 23 that passes light of a linearly polarized light component in the irradiation light, an acousto-optic filter type spectroscope 24, and a spectroscope 24.
  • the traveling direction does not change in the second polarizer 25 and the spectroscope 24 that transmit the light of the linearly polarized light component (the component in the direction orthogonal to the polarization direction of the light that has passed through the first polarizer 23) of the light that has been transmitted.
  • a beam dump 26 that absorbs the light that has passed, a sample cell 22 that is disposed at a position where light having a predetermined wavelength that has passed through the spectrometer 24 is irradiated, a photodetector 27 that detects the light that has passed through the sample cell 22, and a spectrometer
  • a voltage applying unit 28 for applying a high-frequency voltage to 24 and a control unit 29 are provided.
  • the substance of the control unit 29 is a personal computer, which includes a storage unit 291 and functionally includes a drive signal generation unit 292 and a synchronization detection signal generation unit 293. Further, an input unit 294 and a display unit 295 are connected to the control unit 29.
  • the spectroscopic measurement apparatus 1 has a configuration in which the measurement light after passing through the sample cell 12 is incident on the spectroscope 14 and is modulated.
  • the light source 21 is used in the spectroscopic measurement apparatus 2 according to the second embodiment.
  • the sample cell 22 is irradiated with monochromatic light that is incident on the spectroscope 24 and is wavelength-modulated. That is, the arrangement of the sample cell and the spectroscope (and the polarizer) is different between the spectroscopic measurement apparatus 1 of the first embodiment and the spectroscopic measurement apparatus 2 of the second embodiment.
  • the drive signal generation unit 292 changes the voltage to a voltage whose value continuously changes in the first period (second period ( A drive signal on which the frequency f) modulation component is superimposed is generated and transmitted to the voltage application unit 28, and the drive voltage is applied from the voltage application unit 28 to the piezoelectric element 241 of the spectroscope 24.
  • the synchronization detection signal generation unit 293 generates a synchronization detection signal from the output signal from the photodetector 27 using the frequency Nf N times the frequency f as a reference frequency, and displays the waveform created from the signal as the display unit 295. To display.
  • Nf N the frequency Nf N times the frequency f as a reference frequency
  • the principal part structure of the spectrometer 3 of Example 3 is shown in FIG.
  • the spectroscopic measurement device 3 includes a light source 31 that emits irradiation light having a wavelength width, a sample cell 32, a photodetector 37 that detects light that has passed through the sample cell 32, and a control unit 39.
  • the entity of the control unit 39 is a personal computer, which includes a storage unit 391 and functionally includes a readout wavelength data generation unit 392, a modulation output signal generation unit 393, and a synchronization detection signal generation unit 394.
  • An input unit 395 and a display unit 396 are connected to the control unit 39.
  • Irradiation light having a wavelength width emitted from the light source 31 is absorbed by the sample gas in the sample cell 32 and then enters the spectroscope 34 as measurement light.
  • the measurement light is wavelength-separated by the spectroscope 34 and enters the photodetector 37.
  • a general diffraction grating or the like can be used as the spectroscope 34 of this embodiment.
  • the photodetector 37 is an array detector in which n detection elements are arranged in a one-dimensional or two-dimensional array, and simultaneously detects measurement light after wavelength separation by the spectroscope 34 and outputs a signal. Signals SP ( ⁇ 0 ) to SP ( ⁇ n ⁇ 1 ) corresponding to the wavelength range are output from the 1st to nth detection elements, respectively.
  • a wavelength range in which the user performs wavelength modulation described later range set as a readout center wavelength
  • ⁇ s to ⁇ s + m ⁇ 1 range set as a readout center wavelength
  • s and m are natural numbers
  • s + m ⁇ 1 are natural numbers equal to or less than n ⁇ 1
  • a wavelength modulation width d ⁇ a periodic division number M of a sine wave for performing wavelength modulation
  • the read wavelength data generation unit 392 generates wavelength data used for modulation based on the parameters set by the user (see FIG. 7).
  • the lower part of FIG. 7 is an enlarged view of one period of wavelength data.
  • L integer from 0 to (kM-1).
  • the following readout wavelength data string in which k ⁇ M wavelengths are defined for each readout center wavelength is generated. ⁇ s + ⁇ 0, ⁇ s + ⁇ 1, ..., ⁇ s + ⁇ kM-1, ⁇ s + 1 + ⁇ 0, ⁇ s + 1 + ⁇ 1, ..., ⁇ s + m-1 + ⁇ 0, ..., ⁇ s + m-1 + ⁇ kM-1
  • the modulation output signal generation unit 393 reads out output data from the photodetector 37 corresponding to the wavelength specified in the readout wavelength data sequence, and generates a modulation spectrum data sequence. At this time, if the wavelength specified in the read wavelength data string and the wavelength detected by each detection element of the photodetector 37 do not match, the output data from the photodetector 37 obtained discretely is stored. In this way, continuous output data for the wavelength axis is generated. As a result, a modulated output signal as shown in FIG. 3 is obtained.
  • the generation of the continuous output data described above can be performed by a method such as linear interpolation or spline interpolation.
  • the synchronization detection signal generation unit 394 When the modulation output signal is obtained, the synchronization detection signal generation unit 394 generates a synchronization detection signal from the modulation output signal with a period (2N ⁇ L) / M corresponding to a frequency N times the modulation frequency f of the read wavelength data as a reference frequency.
  • N 2N ⁇ L
  • N may be a natural number and may be a value other than 2.
  • the waveform which carried out N-order differentiation of the absorption spectrum can be acquired in real time similarly to Examples 1 and 2.
  • any of the spectroscopic measurement apparatuses described in Examples 1 to 3 above can use various light sources that emit light having a wavelength width.
  • a laser light source as in WMS
  • a synchronous detection signal can be obtained in real time without performing an operation such as differentiation on the output signal obtained from the photodetector.
  • the synchronization detection signal is generated from the output signal modulated in the high frequency band, it is not affected by noise in the low frequency band such as electrical noise in the light receiving circuit.
  • the configuration example in the case of measuring the light absorption by the target component in the sample gas has been described.
  • the measurement target of the spectrometer according to the present invention may be a solid or a liquid.
  • a spectroscopic measurement device having the same configuration as described above for measurement of coating film thickness in a coating device, measurement of a component ratio in a blender, measurement of moisture content and particle size in a granulation device, measurement of reactivity in a chemical synthesis device, etc. Can be used.
  • Such a spectroscopic measurement apparatus is useful, for example, for monitoring a powder sample in a preparation apparatus or analyzing a sample component in preparation research.
  • FIG. 8 shows an apparatus for manufacturing a granular pharmaceutical product by coating a plurality of components in a predetermined order and thickness (hereinafter referred to as “coating apparatus”). An example used as the measuring device 7 is shown.
  • irradiation light from the white light source 71 is introduced into the incident side optical fiber 711, transported to the coating device 720, collected by the incident side lens 712, and then provided on the lower surface of the coating device 720.
  • the sample 721 being coated is irradiated from the window 722 thus formed. Reflected light from the sample 721 is extracted from the window portion 722, introduced into the incident end of the emission side optical fiber 781 by the emission side first lens 782, and transported to the detection optical system.
  • the detection optical system includes an exit-side second lens 783 that condenses the measurement light emitted from the exit-side optical fiber 781, and only linearly polarized light of the measurement light collected by the exit-side second lens 783.
  • a first polarizer 73 that passes through, an acousto-optic filter type spectroscope 74 that changes the traveling direction and polarization direction of linearly polarized light having a specific wavelength, and the light that has passed through the spectroscope 74,
  • a second polarizer (cross-polarizer) 75 that passes only a linearly polarized component in a direction orthogonal to the light that has passed through the first polarizer 73, and the light that has passed through the spectroscope 74 without changing the traveling direction.
  • a beam dump 76 to be absorbed a photodetector 77 that receives light of a specific wavelength whose traveling direction and polarization direction have changed in the spectroscope 74, a voltage application section 78 that applies a high-frequency voltage to the spectroscope 74, and a control section 79.
  • the reflected light from the sample 721 is not only the light reflected by the surface of the sample 721, but also enters the sample 721, passes through the coating layer and is reflected at the interface between the coating layer and its lower layer, and then coated again.
  • Light that passes through the layer and exits from the sample 721 (referred to as “internally reflected light”) is included. Therefore, the intensity of reflected light is measured in advance for a standard sample coated with a plurality of predetermined film thicknesses with the same components as the actual sample, and film thickness correspondence data that associates the reflected light intensity with the film thickness is obtained. By comparing the synchronous detection signal generated using the reflected light from the film with the film thickness correspondence data, the coating thickness of the actual sample can be measured in real time.
  • the entity of the control unit 79 is a personal computer, and in addition to having a storage unit 791, functionally, a drive signal generation unit 792, a measurement execution unit 793, a synchronization detection signal generation unit 794, a synchronization detection signal processing unit 795, and a film A thickness determining unit 796 is provided.
  • an input unit 797 and a display unit 798 are connected to the control unit 79.
  • the storage unit 791 has, for each of one or more components coated on the sample 721, a signal proportional to the absorption wavelength characteristic of the component and the amount of light absorption at the absorption wavelength of the absorption spectrum of the component (for example, the thickness correspondence data indicating the relationship between the ratio of the thickness of the second derivative waveform data) and the ratio of the average reflected light intensity for one second period to be described later and the film thickness is stored.
  • the drive signal generation unit 792 reads the absorption wavelength of the component from the storage unit 791, and the spectrometer 74 A drive signal is generated such that a specific wavelength changes around the absorption wavelength.
  • the drive signal is obtained by superimposing a modulation component that changes in a second period shorter than the first period on waveform data whose value changes continuously in the first period. It is.
  • the measurement execution unit 793 controls the operation of the voltage application unit 78 based on the drive signal, and applies a voltage to the piezoelectric element 741 of the spectrometer 74. .
  • an output signal from the photodetector 77 is acquired.
  • the synchronization detection signal generation unit 794 generates a synchronization detection signal from the output signal of the photodetector 77 using a frequency (2f) twice the frequency (f) of the second period as a reference frequency, and generates a second-order differential waveform. Generate data.
  • the average reflection intensity data for the frequency (f) integer period of the second period is generated.
  • the secondary differential waveform data and the average reflection intensity will be described.
  • the orders of the two waveform data such as a combination of the tertiary differential waveform data and the average reflection intensity can be determined as appropriate.
  • the synchronization detection signal processing unit 795 obtains a secondary differential value (the height of the secondary differential waveform at the absorption wavelength of the measurement component) from the secondary differential waveform data, and calculates a ratio with the average reflection intensity data.
  • the film thickness determining unit 796 determines the film thickness by comparing the ratio value with the film thickness correspondence data stored in the storage unit 791 and displays the film thickness on the display unit 798.
  • the position of the sample and the properties and shape of the surface tend to change over time.
  • the detection intensity of the measurement light may change even though the film thickness of the sample has not changed.
  • second derivative waveform data and average reflection intensity data are generated from the output signal of the photodetector at the same time. Since the multiple signals generated in this way include fluctuations in the intensity of transmitted light and reflected light that accompany temporal changes in the state of the sample, the transmitted light can be obtained by determining their ratio.
  • accurate measurement results can be obtained by removing fluctuations in the intensity of reflected light.
  • the sample in this example is a granular sample. However, even in the case of a liquid sample or a solid sample of another shape, the sample can be configured as in this example to change the state of the sample to be measured over time. Accurate measurement results can be obtained by eliminating the influence.
  • Examples 1 to 4 are all examples, and can be appropriately changed in accordance with the gist of the present invention.
  • the first polarizers 13, 23, 73 and the second polarizers 15, 25, 75 are used. However, these are not essential components, and zero-order light (acousto-optic filter) is used.
  • a beam blocker that physically blocks the light whose traveling direction does not substantially change by the spectroscopes 14, 24, and 74 may be used.
  • a configuration in which an acousto-optic filter type spectroscope and a polarizer are combined is used as a spectroscope.
  • Other spectroscopes can be used as long as the spectroscope can change the wavelength of light to be transmitted.
  • FIG. 8A shows the configuration of a MEMS mirror type spectroscope 43 which is an example of such a spectroscope.
  • the spectroscope 43 includes an entrance slit 431, a first concave mirror 432, a MEMS mirror 433, a diffraction grating 434, a second concave mirror 435, and an exit slit 436, and changes the magnitude of the voltage supplied from the outside, thereby changing the MEMS.
  • the angle of light incident on the mirror 433 can be changed, and the wavelength of the light passing through the exit slit 436 can be changed.
  • FIG. 8A shows the configuration of a MEMS mirror type spectroscope 43 which is an example of such a spectroscope.
  • the spectroscope 43 includes an entrance slit 431, a first concave mirror 432, a MEMS mirror 433, a diffraction grating 434, a second concave mirror 435, and an exit slit 436,
  • an exit slit scanning diffraction that includes an entrance slit 531, a concave diffraction grating 532, and an exit slit 533, and can move the exit slit 533 by supplying a drive signal from the outside.
  • a grating-type spectrometer (ScanningScangratingPDmonochromator) 53 As shown in FIG. 8C, a grating-type spectrometer (ScanningScangratingPDmonochromator) 53, a PDA63grating polychromator 63 having an entrance slit 631, a concave holographic diffraction grating 632, and a PDA 633, etc.
  • Various configurations can be used.
  • Reading wavelength data generation unit 393 Modulation output signal generation unit 710 ... White light source 711 ... Incoming side optical fiber 712 ... Incoming side lens 720 ... Coating device 721 ... Sample 722 ... Window 7 1 ... emission-side optical fiber 782 ... exit-side first lens 783 ... exit-side second lens 793 ... measurement execution section 795 ... synchronization detection signal processing unit 796 ... film thickness calculating unit

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A spectroscopic measurement device characterized by being provided with a light source (11) for emitting irradiation light having a wavelength range; a light splitting unit (14) for selectively allowing light from among the irradiation light having a wavelength corresponding to the value of a supplied current or voltage to pass; a light detector (17) for detecting measurement light that has passed through the light splitting unit (14) and interacted with a sample; a drive signal supply unit (18, 192) for supplying, to the light splitting unit (14), a current or voltage having a continuously varying and periodically repeating value and a modulation component superimposed thereon that varies at a period shorter than that of the value; and a synchronization detection signal generation unit (193) for generating, from the output signal output by the light detector, a synchronization detection signal having a reference frequency that is a positive integer multiple of the frequency of the modulation component.

Description

分光測定装置Spectrometer
 本発明は、分光測定装置に関する。特に、試料による光の吸収を測定する際に好適に用いることができる分光測定装置に関する。 The present invention relates to a spectrometer. In particular, the present invention relates to a spectroscopic measurement apparatus that can be suitably used when measuring light absorption by a sample.
 試料に含まれる物質の定性や定量を行う際に用いられる装置の1つに分光測定装置がある。例えば、分光測定装置を用いて試料ガスに含まれる目的成分の濃度を測定する際には、光源から発せられた光を試料ガスに照射し、該試料ガスを透過した光を光検出部で検出する。光検出部からの信号はデータ処理部に出力されて吸収スペクトルが作成される。そして、吸収スペクトル上の目的成分のピークの面積や強度に基づき目的成分の濃度を決定する。 A spectroscopic measurement device is one of the devices used for qualitative and quantitative determination of substances contained in a sample. For example, when measuring the concentration of a target component contained in a sample gas using a spectroscopic measurement device, the sample gas is irradiated with light emitted from a light source, and the light transmitted through the sample gas is detected by a light detection unit. To do. The signal from the light detection unit is output to the data processing unit to create an absorption spectrum. Then, the concentration of the target component is determined based on the peak area and intensity of the target component on the absorption spectrum.
 試料ガスに含まれる目的成分の濃度が低い場合には該成分による光吸収が小さくなる。そこで、目的成分による光吸収を高感度で測定することができる、波長変調分光法(WMS:Wavelength Modulation Spectroscopy)と呼ばれる測定方法が提案されている(例えば特許文献1~3)。WMSでは、光源から発せられるレーザ光の波長を掃引しつつ、その掃引周期よりも短い周期で正弦波状に波長を変調した測定光を試料ガスに照射する。そして、試料ガスを透過した光を周波数2fで同期検出する。これにより、試料ガスの吸収スペクトルを2次微分したものと同じ波形を得る(非特許文献1)。 When the concentration of the target component contained in the sample gas is low, light absorption by the component is reduced. Therefore, a measurement method called wavelength modulation spectroscopy (WMS) that can measure light absorption by a target component with high sensitivity has been proposed (for example, Patent Documents 1 to 3). In WMS, while sweeping the wavelength of laser light emitted from a light source, the sample gas is irradiated with measurement light whose wavelength is modulated in a sinusoidal form with a period shorter than the sweep period. Then, the light transmitted through the sample gas is synchronously detected at the frequency 2f. Thereby, the same waveform as what carried out the secondary differentiation of the absorption spectrum of sample gas is obtained (nonpatent literature 1).
特開2011-43461号公報JP 2011-43461 特開2012-108095号公報JP 2012-108095 A 特開2013-113647号公報JP 2013-113647
 WMSでは、外部から供給する電流の大きさや温度を変更することにより波長を変更することができる光源が用いられる。こうした光源には、例えば分布帰還型(DFB:Distributed Feedback)レーザ光源があるものの、発振する光の波長の範囲が狭い。例えば、特許文献3にはレーザ光の波長の範囲がサブnm~数nmであると記載されている。そのため、高速な変調が可能なDFBレーザを用いたWMSでは固体物質のような広がった吸収ピークを対象とする分光測定を行うことができない、という問題があった。 In WMS, a light source that can change the wavelength by changing the magnitude and temperature of the current supplied from the outside is used. Such light sources include, for example, a distributed feedback (DFB) laser light source, but have a narrow wavelength range of oscillating light. For example, Patent Document 3 describes that the wavelength range of laser light is from sub nm to several nm. Therefore, there is a problem that WMS using a DFB laser capable of high-speed modulation cannot perform spectroscopic measurement for a broad absorption peak such as a solid substance.
 本発明が解決しようとする課題は、広い波長範囲において高感度で分光測定を行うことができる分光測定装置を提供することである。 The problem to be solved by the present invention is to provide a spectroscopic measurement apparatus capable of performing spectroscopic measurement with high sensitivity in a wide wavelength range.
 上記課題を解決するために成された本発明に係る分光測定装置は、
 a) 波長幅を有する照射光を発する光源と、
 b) 前記光源から発せられて試料と相互作用した後の測定光を検出する光検出部と、
 c) 前記照射光のうちの特定の波長の光を通過させる照射光側分光器、前記測定光のうちの特定の波長の光を通過させる測定光側分光器、あるいは前記光検出部から特定の波長の光の検出信号を出力させる特定波長信号生成部を含む波長選択部と、
 d) 第1の周期で変化する波長に、該第1の周期よりも短い第2の周期で変化する変調成分を重畳して前記特定の波長を変化させる変調制御部と、
 e) 前記変調成分の周波数の正の整数倍の周波数を基準周波数として、前記光検出器から出力される出力信号から同期検出信号を生成する同期検出信号生成部と、
 を備えることを特徴とする。
The spectroscopic measurement device according to the present invention, which has been made to solve the above problems,
a) a light source that emits irradiation light having a wavelength width;
b) a light detection unit for detecting measurement light emitted from the light source and interacting with the sample;
c) from an irradiation light side spectroscope that transmits light of a specific wavelength of the irradiation light, a measurement light side spectroscope that transmits light of a specific wavelength of the measurement light, or from a light detection unit A wavelength selection unit including a specific wavelength signal generation unit for outputting a detection signal of light of a wavelength;
d) a modulation controller that changes the specific wavelength by superimposing a modulation component that changes in a second period shorter than the first period on a wavelength that changes in the first period;
e) a synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency;
It is characterized by providing.
 本発明に係る分光測定装置は、大別して3つの態様で具現化される。各態様は、それぞれ、前記波長選択部が照射光側分光器である構成、測定光側分光器である構成、特定波長信号生成部である構成に対応する。 The spectroscopic measurement apparatus according to the present invention is broadly embodied in three modes. Each aspect corresponds to a configuration in which the wavelength selection unit is an irradiation light side spectroscope, a configuration in which the wavelength selection unit is a measurement light side spectroscope, and a configuration in which a specific wavelength signal generation unit is provided.
 即ち、本発明に係る分光測定装置の第1の態様は、
 波長幅を有する照射光を発する光源と、
 前記照射光のうち、供給される電流又は電圧の値に応じた波長の光を選択的に通過させる分光部と、
 前記分光部を通過して試料と相互作用した後の測定光を検出する光検出器と、
 前記分光部に対し、連続的な値の変化を周期的に繰り返す電流又は電圧に、その周期よりも短い周期で変化する変調成分を重畳した電流又は電圧を供給する駆動信号供給部と、
 前記変調成分の周波数に対して正の整数倍の周波数を基準周波数として、前記光検出器から出力される出力信号から同期検出信号を生成する同期検出信号生成部と、
 を備えることを特徴とする。
That is, the first aspect of the spectrometer according to the present invention is:
A light source that emits irradiation light having a wavelength width;
A spectroscopic unit that selectively transmits light having a wavelength corresponding to a value of a supplied current or voltage among the irradiation light; and
A photodetector for detecting the measurement light after passing through the spectroscopic unit and interacting with the sample;
A drive signal supply unit that supplies a current or voltage obtained by superimposing a modulation component that changes in a cycle shorter than the current or voltage that periodically repeats a change in continuous value to the spectroscopic unit;
A synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency;
It is characterized by providing.
 前記分光部としては、例えば、非特許文献2~4に記載されている様々の方式のモノクロメータ(音響光学フィルタ方式のモノクロメータや、フーリエ干渉方式のモノクロメータ、MEMS応用Hadamard変換方式のモノクロメータ)を用いることができる。前記整数倍は、典型的には2倍であり、その場合には、同期検出信号として吸収スペクトルを2次微分した波形が得られるが、必ずしもこれに限らない。この倍数を大きくすると、吸収スペクトルを多次微分した波形が得られるため、ブロードなスペクトルを先鋭化することができる。 Examples of the spectroscopic unit include various types of monochromators described in Non-Patent Documents 2 to 4 (acousto-optic filter type monochromators, Fourier interference type monochromators, MEMS applied Hadamard transform type monochromators, etc. ) Can be used. The integer multiple is typically twice. In this case, a waveform obtained by second-order differentiation of the absorption spectrum is obtained as the synchronization detection signal, but the present invention is not limited to this. When this multiple is increased, a waveform obtained by multi-order differentiation of the absorption spectrum is obtained, so that a broad spectrum can be sharpened.
 上記分光測定装置では、供給される電流又は電圧の値に応じて単色化する波長が変化する分光部を使用し、該分光部に対して、連続的な値(先鋭化するスペクトルを十分に分解できる程度に単色化する波長を段階的に変化させた値で良い)の変化を周期的に繰り返す電流又は電圧に、前記周期よりも短い周期で変化する変調成分を重畳した電流又は電圧等を供給する。この構成では、光源として、波長幅を有する光を発する様々な種類の光源を用いることができるため、広い波長範囲において高感度で分光測定を行うことができる。なお、上述の駆動信号供給部は、分光器に対して直接的に電流又は電圧を供給するものに限らず、分光器に対して間接的に電流又は電圧を供給するもの(分光器の内部において電流又は電圧に変換可能な形式のデジタル信号等を外部入力するものなど)とすることもできる。 The spectroscopic measurement device uses a spectroscopic unit whose wavelength to be monochromatic changes according to the value of the supplied current or voltage, and for the spectroscopic unit, a continuous value (the sharpened spectrum is sufficiently resolved). Supply a current or voltage that superimposes a modulation component that changes in a shorter cycle than the current or voltage that periodically changes the wavelength to be monochromatic as much as possible. To do. In this configuration, since various types of light sources that emit light having a wavelength width can be used as the light source, spectroscopic measurement can be performed with high sensitivity in a wide wavelength range. The drive signal supply unit described above is not limited to supplying current or voltage directly to the spectrometer, but indirectly supplies current or voltage to the spectrometer (inside the spectrometer). It is also possible to use a digital signal or the like that can be converted into a current or voltage.
 また、光検出器からの出力信号を周波数fの整数倍の周波数(例えば2f)で同期検出するため、受光回路において発生する電気ノイズのように低い周波数帯域において発生するノイズの影響を排除することができる。
 さらに、従来のDFBレーザ光源では、該光源から発せられ可干渉性を有するレーザ光が、光源から検出器までの光路上に配置された光学素子等で表面反射して干渉ビートを発生させることがある。こうした干渉ビートが発生すると、検出信号にノイズが重畳することになる。これに対し、第1態様の分光測定装置ではレーザ光源を用いないため、干渉ビートの発生に起因するノイズの影響を受けることもない。
In addition, since the output signal from the photodetector is synchronously detected at a frequency that is an integer multiple of the frequency f (for example, 2f), the influence of noise generated in a low frequency band such as electrical noise generated in the light receiving circuit is eliminated. Can do.
Further, in the conventional DFB laser light source, the coherent laser light emitted from the light source may be reflected on the surface by an optical element or the like disposed on the optical path from the light source to the detector to generate an interference beat. is there. When such an interference beat occurs, noise is superimposed on the detection signal. On the other hand, since the spectroscopic measurement apparatus of the first aspect does not use a laser light source, it is not affected by noise caused by the occurrence of an interference beat.
 本発明に係る分光測定装置の第2の態様は、
 波長幅を有する照射光を発する光源と、
 前記光源から発せられて試料と相互作用した後の光である測定光のうち、供給される電流又は電圧の値に応じた波長の光を選択的に通過させる分光部と、
 前記分光部を通過した測定光を検出する光検出器と、
 前記分光部に対し、連続的な値の変化を周期的に繰り返す電流又は電圧に、その周期よりも短い周期で変化する変調成分を重畳した電流又は電圧を供給する駆動信号供給部と、
 前記変調成分の周波数に対して正の整数倍の周波数を基準周波数として、前記光検出器から出力される出力信号から同期検出信号を生成する同期検出信号生成部と、
 を備えることを特徴とする。
The second aspect of the spectrometer according to the present invention is:
A light source that emits irradiation light having a wavelength width;
A spectroscopic unit that selectively transmits light having a wavelength according to a value of a supplied current or voltage, among measurement light that is emitted from the light source and interacts with a sample;
A photodetector for detecting measurement light that has passed through the spectroscopic unit;
A drive signal supply unit that supplies a current or voltage obtained by superimposing a modulation component that changes in a cycle shorter than the current or voltage that periodically repeats a change in continuous value to the spectroscopic unit;
A synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency;
It is characterized by providing.
 第2の態様の分光測定装置は、第1の態様の分光測定装置と分光部が配置される場所のみを変更した構成であり、第1の態様の分光測定装置と同様の効果を得ることができる。 The spectroscopic measurement device according to the second aspect has a configuration in which only the place where the spectroscopic measurement device according to the first aspect and the spectroscopic unit are arranged is changed, and the same effect as the spectroscopic measurement device according to the first aspect can be obtained. it can.
 本発明に係る分光測定装置の第3の態様は、波長幅を有する照射光を発する光源と、前記光源から発せられて試料と相互作用した後の測定光を波長分離して検出する分光検出部と、前記分光検出部から波長毎に出力される出力信号から検出信号を生成する信号処理部を備えた分光測定装置であって、該信号処理部が
 前記出力信号を読み出すタイミングと該タイミングにおける読み出し波長の関係を規定するデータであって、前記分光検出部により検出される光の波長の範囲内である読み出し中心波長に所定の周期で変化する変調成分を重畳した読み出し波長データを、該読み出し中心波長を順次変更して作成する読み出し波長データ生成部と、
 前記周期よりも短い周期で、前記出力信号の中から、前記読み出し波長データで規定された波長の出力信号を読み出して変調出力信号を生成する変調出力信号生成部と、
 前記変調成分の周波数に対して正の整数倍の周波数を基準周波数として、前記変調出力信号から同期検出信号を生成する同期検出信号生成部と
 を備えることを特徴とする。
A third aspect of the spectroscopic measurement apparatus according to the present invention includes a light source that emits irradiation light having a wavelength width, and a spectroscopic detection unit that detects the measurement light emitted from the light source and interacting with the sample by wavelength separation. And a signal processing unit that generates a detection signal from an output signal output for each wavelength from the spectroscopic detection unit, the timing at which the signal processing unit reads the output signal and the readout at the timing Data defining the relationship between wavelengths, and reading wavelength data in which a modulation component that changes at a predetermined period is superimposed on a reading center wavelength within the range of the wavelength of the light detected by the spectroscopic detection unit. Read wavelength data generation unit for sequentially changing the wavelength to create,
A modulation output signal generation unit that generates a modulation output signal by reading an output signal having a wavelength defined by the read wavelength data from the output signal at a cycle shorter than the cycle,
A synchronization detection signal generation unit configured to generate a synchronization detection signal from the modulation output signal using a frequency which is a positive integer multiple of the frequency of the modulation component as a reference frequency.
 上記第3の態様の分光測定装置では、分光検出器から波長毎に出力される信号を読み出す際に、読み出し波長に所定の周波数で変調を加えるとともに、該読み出し波長を順に変更して読み出し波長データを生成する。そして、分光検出部から出力される信号の中から読み出し波長データで規定された波長の出力信号を読み出して変調出力信号を生成する。これにより、第1及び第2の態様の分光測定装置において光検出器から出力される出力信号と同様の変調信号を得る。そして、第1及び第2の分光測定装置と同様に、変調成分の周波数の正の整数倍の周波数を基準周波数として、前記変調出力信号から同期検出信号を生成する。つまり、第1及び第2の分光測定装置と、第3の分光測定装置では、波長変調を加える対象となる構成要素が異なるものの、波長変調が加えられた出力信号から、該変調成分の周波数の整数倍の周波数を基準周波数として同期検出信号を取得する、という共通の技術的思想に基づいており、上記同様の効果を得ることができる。 In the spectroscopic measurement device according to the third aspect, when reading a signal output for each wavelength from the spectroscopic detector, the read wavelength is modulated at a predetermined frequency and the read wavelength is changed in order to read wavelength data. Is generated. Then, an output signal having a wavelength defined by the read wavelength data is read out from signals output from the spectroscopic detection unit, and a modulated output signal is generated. As a result, a modulation signal similar to the output signal output from the photodetector is obtained in the spectroscopic measurement devices of the first and second aspects. Then, similarly to the first and second spectroscopic measurement apparatuses, a synchronization detection signal is generated from the modulation output signal using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency. That is, the first and second spectroscopic measurement apparatuses and the third spectroscopic measurement apparatus have different components to be subjected to wavelength modulation, but the frequency modulation frequency of the modulation component is determined from the output signal subjected to wavelength modulation. Based on the common technical idea of acquiring a synchronization detection signal using an integer multiple frequency as a reference frequency, the same effect as described above can be obtained.
 本発明に係る各態様の分光測定装置を用いることにより、広い波長範囲において高感度で分光測定を行うことができる。 By using the spectroscopic measurement device of each aspect according to the present invention, it is possible to perform spectroscopic measurement with high sensitivity in a wide wavelength range.
実施例1の分光測定装置の要部構成図。FIG. 2 is a main part configuration diagram of the spectroscopic measurement apparatus according to the first embodiment. 実施例1の分光測定装置における駆動信号を説明する図。FIG. 3 is a diagram for explaining a drive signal in the spectroscopic measurement apparatus according to the first embodiment. 実施例1の分光測定装置における光検出器からの出力信号を説明する図。FIG. 3 is a diagram for explaining an output signal from a photodetector in the spectrometer according to the first embodiment. 実施例1の分光測定装置における同期検出信号を説明する図。FIG. 3 is a diagram for explaining a synchronization detection signal in the spectroscopic measurement apparatus according to the first embodiment. 実施例2の分光測定装置の要部構成図。FIG. 3 is a main part configuration diagram of a spectrometer according to a second embodiment. 実施例3の分光測定装置の要部構成図。FIG. 5 is a main part configuration diagram of a spectrometer according to a third embodiment. 実施例3の分光測定装置における読み出し波長データの生成について説明する図。FIG. 10 is a diagram for explaining generation of readout wavelength data in the spectroscopic measurement apparatus according to the third embodiment. 実施例4の膜厚測定装置の要部構成図。FIG. 6 is a main part configuration diagram of a film thickness measuring apparatus according to a fourth embodiment. 実施例4の膜厚測定装置の分光部における波長の変化を示す図。The figure which shows the change of the wavelength in the spectroscopy part of the film thickness measuring apparatus of Example 4. FIG. 分光器の別の例を説明する図。The figure explaining another example of a spectrometer.
 本発明に係る分光測定装置の具体的な実施形態である実施例1~実施例3について、以下、図面を参照して説明する。 Examples 1 to 3 which are specific embodiments of the spectrometer according to the present invention will be described below with reference to the drawings.
 実施例1の分光測定装置の要部構成を図1に示す。この分光測定装置1は、波長幅を有する照射光を発する光源11、試料ガスが封入された試料セル12、試料セル12を通過した光のうちの直線偏光成分の光を通過させる第1偏光子(polarizer)13、音響光学フィルタ方式の分光器14、分光器14を通過した光のうちの直線偏光成分(第1偏光子13を通過した光の偏光方向と直交する方向の成分)の光を通過させる第2偏光子(cross-polarizer)15、分光器14において進行方向が変化することなく通過した光を吸収するビームダンプ16、分光器14において選択された波長の測定光を検出する光検出器17、分光器14に対して高周波電圧を印加する電圧印加部18、及び制御部19を備えている。 FIG. 1 shows the main configuration of the spectroscopic measurement apparatus of Example 1. The spectroscopic measurement device 1 includes a light source 11 that emits irradiation light having a wavelength width, a sample cell 12 in which a sample gas is sealed, and a first polarizer that passes light of a linearly polarized light component among light that has passed through the sample cell 12. (Polarizer) 13, acousto-optic filter type spectroscope 14, light of a linearly polarized light component (a component in a direction orthogonal to the polarization direction of the light that has passed through first polarizer 13) out of the light that has passed through spectroscope 14 A second polarizer 15 that passes through, a beam dump 16 that absorbs light that has passed through the spectroscope 14 without changing its traveling direction, and light detection that detects measurement light of a wavelength selected by the spectroscope 14. A voltage applying unit 18 for applying a high frequency voltage to the spectroscope 17 and the spectroscope 14, and a control unit 19.
 音響光学フィルタ方式の分光器14は、その入力端に位置する圧電素子141に対して高周波電圧を印加することにより音響波を発生させ、該分光器14の内部の結晶内に伝播させることにより、特定の波長を有する直線偏光の光の進行方向と偏光方向を変化させて出射させる分光器である。 The acoustooptic filter type spectroscope 14 generates an acoustic wave by applying a high frequency voltage to the piezoelectric element 141 located at the input end thereof, and propagates it in the crystal inside the spectroscope 14. This is a spectroscope that emits light by changing the traveling direction and polarization direction of linearly polarized light having a specific wavelength.
 制御部19の実体はパーソナルコンピュータであり、記憶部191を有するほか、機能的に駆動信号生成部192と同期検出信号生成部193を備えている。また、制御部19には入力部194及び表示部195が接続されている。 The entity of the control unit 19 is a personal computer, which includes a storage unit 191 and functionally includes a drive signal generation unit 192 and a synchronization detection signal generation unit 193. An input unit 194 and a display unit 195 are connected to the control unit 19.
 実施例1の分光測定装置1では、図2に示すように、連続的な値の変化を第1の周期で繰り返す電圧に、第1の周期よりも短い第2の周期(=1/周波数f)で変化する変調成分を重畳した駆動電圧を、電圧印加部18から分光器14の圧電素子141に印加する。第1の周期、第2の周期、第1の周期で変化する値の範囲、第2の周期で変化する変調成分の振幅は、使用者により予め設定され記憶部191に保存されており、それらのパラメータに基づき駆動信号生成部192によって駆動信号が生成される。即ち、本実施例では、駆動信号生成部192と電圧印加部18が協働して、本発明の駆動信号供給部として機能する。 In the spectroscopic measurement apparatus 1 of the first embodiment, as shown in FIG. 2, a voltage that repeats a continuous change in a first period is set to a second period (= 1 / frequency f shorter than the first period). ) Is applied to the piezoelectric element 141 of the spectroscope 14 from the voltage application unit 18. The first period, the second period, the range of values that change in the first period, and the amplitude of the modulation component that changes in the second period are preset by the user and stored in the storage unit 191. A drive signal is generated by the drive signal generation unit 192 based on the parameters. That is, in this embodiment, the drive signal generation unit 192 and the voltage application unit 18 cooperate to function as the drive signal supply unit of the present invention.
 光源11から発せられた波長幅を有する照射光は、試料セル12内の試料ガスにより吸収された後、測定光として第1偏光子13に入射する。第1偏光子13を通過した直線偏光の測定光は分光器14に入射する。分光器14に入射した測定光のうち、外部から分光器14に印加された電圧の値によって決まる特定の波長の光は、回折して進行方向が変化するとともに、進行方向に直交する面内において90度偏光方向が変化して出射する。そして、第2偏光子15を通過した後、光検出器17により検出される。一方、測定光のうちの他の波長の光は分光器14において回折されることなく直進して出射し、その一部は第2偏光子15を通過してビームダンプ16で吸収される。 Irradiation light having a wavelength width emitted from the light source 11 is absorbed by the sample gas in the sample cell 12 and then enters the first polarizer 13 as measurement light. The linearly polarized measurement light that has passed through the first polarizer 13 enters the spectroscope 14. Of the measurement light incident on the spectroscope 14, light having a specific wavelength determined by the value of the voltage applied to the spectroscope 14 from the outside is diffracted to change the traveling direction, and in a plane orthogonal to the traveling direction. The polarization direction changes by 90 degrees and is emitted. Then, after passing through the second polarizer 15, it is detected by the photodetector 17. On the other hand, light of other wavelengths in the measurement light travels straight without being diffracted by the spectroscope 14, and part of the light passes through the second polarizer 15 and is absorbed by the beam dump 16.
 分光器14を通過する波長を変調させて試料ガスを透過した光を検出すると、光検出器17からは図3に示すように周波数fの変調成分が重畳した信号が出力される。同期検出信号生成部193は、上述した周波数fの2倍の周波数2fを基準周波数として、光検出器17からの出力信号から同期検出信号を生成し、その波形を作成して表示部195に表示する。同期検出信号の一例を図4に示す。本実施例のように、変調成分の2倍の周波数2fで同期検出信号を生成することにより、出力信号を微分する等の演算処理を行うことなく、リアルタイムで吸収スペクトルを2次微分した波形を得ることができる。同期検出する基準周波数は変調成分の周波数に対して正の整数倍の周波数であればよく、N倍(Nは正の整数)の周波数Nfを基準周波数とすることにより、吸収スペクトルをN次微分した波形を得ることができる。 When the light passing through the sample gas is detected by modulating the wavelength passing through the spectroscope 14, the photodetector 17 outputs a signal on which the modulation component of the frequency f is superimposed as shown in FIG. The synchronization detection signal generation unit 193 generates a synchronization detection signal from the output signal from the photodetector 17 using the frequency 2f that is twice the frequency f described above as a reference frequency, creates a waveform thereof, and displays the waveform on the display unit 195. To do. An example of the synchronization detection signal is shown in FIG. As in this embodiment, by generating a synchronization detection signal at a frequency 2f that is twice the modulation component, a waveform obtained by secondarily differentiating the absorption spectrum in real time without performing an arithmetic process such as differentiating the output signal is obtained. Obtainable. The reference frequency for synchronous detection may be a positive integer multiple of the frequency of the modulation component, and the N-th derivative is obtained by setting the frequency Nf N times (N is a positive integer) as the reference frequency. Waveform can be obtained.
 本実施例では、測定対象を試料セル12に封入されたガスとしたが、測定対象はこれに限らず、試料セル12に代えてフローセルを配置し、その内部を流通するガスによる光吸収を測定対象とすることもできる。また、分光測定装置1の測定対象は固体や液体であってもよい。 In this embodiment, the measurement object is a gas sealed in the sample cell 12, but the measurement object is not limited to this, and a flow cell is arranged instead of the sample cell 12, and light absorption by the gas flowing through the inside is measured. It can also be targeted. Further, the measurement target of the spectroscopic measurement apparatus 1 may be a solid or a liquid.
 実施例2の分光測定装置2の要部構成を図5に示す。この分光測定装置2は、波長幅を有する照射光を発する光源21、照射光のうち直線偏光成分の光を通過させる第1偏光子23、音響光学フィルタ方式の分光器24、分光器24を通過した光のうちの直線偏光成分(第1偏光子23を通過した光の偏光方向と直交する方向の成分)の光を通過させる第2偏光子25、分光器24において進行方向が変化することなく通過した光を吸収するビームダンプ26、分光器24を通過した所定波長の光が照射される位置に配置された試料セル22、試料セル22を通過した光を検出する光検出器27、分光器24に対して高周波電圧を印加する電圧印加部28、及び制御部29を備えている。制御部29の実体はパーソナルコンピュータであり、記憶部291を有するほか、機能的に駆動信号生成部292と同期検出信号生成部293を備えている。また、制御部29には入力部294及び表示部295が接続されている。 The principal part structure of the spectrometer 2 of Example 2 is shown in FIG. The spectroscopic measurement device 2 passes through a light source 21 that emits irradiation light having a wavelength width, a first polarizer 23 that passes light of a linearly polarized light component in the irradiation light, an acousto-optic filter type spectroscope 24, and a spectroscope 24. The traveling direction does not change in the second polarizer 25 and the spectroscope 24 that transmit the light of the linearly polarized light component (the component in the direction orthogonal to the polarization direction of the light that has passed through the first polarizer 23) of the light that has been transmitted. A beam dump 26 that absorbs the light that has passed, a sample cell 22 that is disposed at a position where light having a predetermined wavelength that has passed through the spectrometer 24 is irradiated, a photodetector 27 that detects the light that has passed through the sample cell 22, and a spectrometer A voltage applying unit 28 for applying a high-frequency voltage to 24 and a control unit 29 are provided. The substance of the control unit 29 is a personal computer, which includes a storage unit 291 and functionally includes a drive signal generation unit 292 and a synchronization detection signal generation unit 293. Further, an input unit 294 and a display unit 295 are connected to the control unit 29.
 実施例1の分光測定装置1が、試料セル12を通過した後の測定光を分光器14に入射して変調する構成であったのに対し、実施例2の分光測定装置2では、光源21から発せられた照射光を分光器24に入射して波長変調した単色光を試料セル22に照射する。すなわち、実施例1の分光測定装置1と実施例2の分光測定装置2では、試料セルと分光器(及び偏光子)の配置が異なる。 The spectroscopic measurement apparatus 1 according to the first embodiment has a configuration in which the measurement light after passing through the sample cell 12 is incident on the spectroscope 14 and is modulated. In the spectroscopic measurement apparatus 2 according to the second embodiment, the light source 21 is used. The sample cell 22 is irradiated with monochromatic light that is incident on the spectroscope 24 and is wavelength-modulated. That is, the arrangement of the sample cell and the spectroscope (and the polarizer) is different between the spectroscopic measurement apparatus 1 of the first embodiment and the spectroscopic measurement apparatus 2 of the second embodiment.
 実施例2の分光測定装置2においても、上述した実施例1の分光測定装置1と同様に、駆動信号生成部292が第1の周期で連続的に値が変化する電圧に第2の周期(周波数f)の変調成分を重畳した駆動信号を生成して電圧印加部28に送信し、電圧印加部28から分光器24の圧電素子241に駆動電圧を印加する。そして、同期検出信号生成部293が、周波数fのN倍の周波数Nfを基準周波数として、光検出器27からの出力信号から同期検出信号を生成して、該信号から作成した波形を表示部295に表示する。これにより、光検出器27からの出力信号を微分する等の演算処理を行うことなく、リアルタイムで吸収スペクトルをN次微分した波形を得ることができる。 Also in the spectroscopic measurement apparatus 2 of the second embodiment, as in the spectroscopic measurement apparatus 1 of the first embodiment described above, the drive signal generation unit 292 changes the voltage to a voltage whose value continuously changes in the first period (second period ( A drive signal on which the frequency f) modulation component is superimposed is generated and transmitted to the voltage application unit 28, and the drive voltage is applied from the voltage application unit 28 to the piezoelectric element 241 of the spectroscope 24. Then, the synchronization detection signal generation unit 293 generates a synchronization detection signal from the output signal from the photodetector 27 using the frequency Nf N times the frequency f as a reference frequency, and displays the waveform created from the signal as the display unit 295. To display. As a result, it is possible to obtain a waveform obtained by N-order differentiation of the absorption spectrum in real time without performing arithmetic processing such as differentiation of the output signal from the photodetector 27.
 実施例3の分光測定装置3の要部構成を図6に示す。この分光測定装置3は、波長幅を有する照射光を発する光源31、試料セル32、試料セル32を通過した光を検出する光検出器37、及び制御部39を備えている。制御部39の実体はパーソナルコンピュータであり、記憶部391を有するほか、機能的に、読み出し波長データ生成部392、変調出力信号生成部393、及び同期検出信号生成部394を備えている。また、制御部39には入力部395及び表示部396が接続されている。 The principal part structure of the spectrometer 3 of Example 3 is shown in FIG. The spectroscopic measurement device 3 includes a light source 31 that emits irradiation light having a wavelength width, a sample cell 32, a photodetector 37 that detects light that has passed through the sample cell 32, and a control unit 39. The entity of the control unit 39 is a personal computer, which includes a storage unit 391 and functionally includes a readout wavelength data generation unit 392, a modulation output signal generation unit 393, and a synchronization detection signal generation unit 394. An input unit 395 and a display unit 396 are connected to the control unit 39.
 光源31から発せられた波長幅を有する照射光は、試料セル32内の試料ガスにより吸収された後、測定光として分光器34に入射する。測定光は分光器34により波長分離されて光検出器37に入射する。本実施例の分光器34としては一般的な回折格子等を用いることができる。光検出器37は1次元あるいは2次元アレイ状にn個の検出素子が配置されたアレイ検出器であり、分光器34により波長分離された後の測定光を同時に検出して信号を出力する。1~n番目の検出素子からは、波長範囲に対応する信号SP(λ)~SP(λn-1)がそれぞれ出力される。 Irradiation light having a wavelength width emitted from the light source 31 is absorbed by the sample gas in the sample cell 32 and then enters the spectroscope 34 as measurement light. The measurement light is wavelength-separated by the spectroscope 34 and enters the photodetector 37. As the spectroscope 34 of this embodiment, a general diffraction grating or the like can be used. The photodetector 37 is an array detector in which n detection elements are arranged in a one-dimensional or two-dimensional array, and simultaneously detects measurement light after wavelength separation by the spectroscope 34 and outputs a signal. Signals SP (λ 0 ) to SP (λ n−1 ) corresponding to the wavelength range are output from the 1st to nth detection elements, respectively.
 実施例3の分光測定装置では、測定に先立ち、使用者が後述する波長変調を行う波長範囲(読み出し中心波長として設定する範囲)λ~λs+m-1(s,mは自然数であり、s及びs+m-1はいずれもn-1以下の自然数)、波長変調幅dλ、波長変調を行う正弦波の周期分割数M、1つの読み出し中心波長あたりの変調繰り返し数kを決定する。使用者により設定されたこれらのパラメータは記憶部391に保存される。 In the spectroscopic measurement apparatus according to the third embodiment, prior to measurement, a wavelength range in which the user performs wavelength modulation described later (range set as a readout center wavelength) λ s to λ s + m−1 (s and m are natural numbers, And s + m−1 are natural numbers equal to or less than n−1), a wavelength modulation width dλ, a periodic division number M of a sine wave for performing wavelength modulation, and a modulation repetition number k per one read center wavelength. These parameters set by the user are stored in the storage unit 391.
 読み出し波長データ生成部392は、使用者により設定された上記のパラメータに基づき、変調に用いる波長データを生成する(図7参照)。図7の下段は波長データの1周期分を拡大した図である。
Figure JPOXMLDOC01-appb-M000001
 L=0~(kM-1)の整数。上記の数式により、各読み出し中心波長についてそれぞれk×M個の波長が規定された、以下の読み出し波長データ列が生成される。
 λ+Δλ,λ+Δλ,…,λ+ΔλkM-1,λs+1+Δλ,λs+1+Δλ,…,λs+m-1+Δλ,…,λs+m-1+ΔλkM-1
The read wavelength data generation unit 392 generates wavelength data used for modulation based on the parameters set by the user (see FIG. 7). The lower part of FIG. 7 is an enlarged view of one period of wavelength data.
Figure JPOXMLDOC01-appb-M000001
L = integer from 0 to (kM-1). According to the above formula, the following readout wavelength data string in which k × M wavelengths are defined for each readout center wavelength is generated.
λ s + Δλ 0, λ s + Δλ 1, ..., λ s + Δλ kM-1, λ s + 1 + Δλ 0, λ s + 1 + Δλ 1, ..., λ s + m-1 + Δλ 0, ..., λ s + m-1 + Δλ kM-1
 読み出し波長データ列が生成されると、変調出力信号生成部393が、読み出し波長データ列に規定された波長に対応する光検出器37からの出力データを読み出して変調スペクトルデータ列を生成する。このとき、読み出し波長データ列に規定された波長と光検出器37の各検出素子が検出する波長とが一致しない場合には、離散的に得られている光検出器37からの出力データを内挿して、波長軸に対する連続的な出力データを生成する。これにより、図3に示したような変調出力信号が得られる。上述した連続的な出力データの生成は、直線補間やスプライン補間等の方法により行うことができる。 When the readout wavelength data sequence is generated, the modulation output signal generation unit 393 reads out output data from the photodetector 37 corresponding to the wavelength specified in the readout wavelength data sequence, and generates a modulation spectrum data sequence. At this time, if the wavelength specified in the read wavelength data string and the wavelength detected by each detection element of the photodetector 37 do not match, the output data from the photodetector 37 obtained discretely is stored. In this way, continuous output data for the wavelength axis is generated. As a result, a modulated output signal as shown in FIG. 3 is obtained. The generation of the continuous output data described above can be performed by a method such as linear interpolation or spline interpolation.
 変調出力信号が得られると、同期検出信号生成部394は、読み出し波長データの変調周波数fのN倍の周波数に相当する周期(2NπL)/Mを基準周波数として変調出力信号から同期検出信号を生成する。典型的にはN=2であるが、Nは自然数であればよく2以外の値であってもよい。これにより、実施例1及び2と同様に、吸収スペクトルをN次微分した波形をリアルタイムで取得することができる。 When the modulation output signal is obtained, the synchronization detection signal generation unit 394 generates a synchronization detection signal from the modulation output signal with a period (2NπL) / M corresponding to a frequency N times the modulation frequency f of the read wavelength data as a reference frequency. To do. Typically, N = 2, but N may be a natural number and may be a value other than 2. Thereby, the waveform which carried out N-order differentiation of the absorption spectrum can be acquired in real time similarly to Examples 1 and 2.
 上記の実施例1~3により説明した分光測定装置はいずれも、波長幅を有する光を発する種々の光源を用いることができる。また、WMSのようにレーザ光源を用いる必要もないため、光源から検出器に至る光路上に存在する光学素子の表面で反射した光によって干渉ビートが発生するといった問題が生じることもない。光検出器から得られた出力信号に対する微分処理等の演算を行うことなく、リアルタイムで同期検出信号を得ることができる。さらに、高周波数帯域で変調された出力信号から同期検出信号を生成するため、例えば受光回路における電気ノイズのような低周波数帯域のノイズの影響を受けることもない。 Any of the spectroscopic measurement apparatuses described in Examples 1 to 3 above can use various light sources that emit light having a wavelength width. In addition, since it is not necessary to use a laser light source as in WMS, there is no problem that an interference beat is generated by the light reflected on the surface of the optical element existing on the optical path from the light source to the detector. A synchronous detection signal can be obtained in real time without performing an operation such as differentiation on the output signal obtained from the photodetector. Further, since the synchronization detection signal is generated from the output signal modulated in the high frequency band, it is not affected by noise in the low frequency band such as electrical noise in the light receiving circuit.
 実施例1~3では試料ガス中の目的成分による光吸収を測定する場合の構成例を説明したが、本発明に係る分光測定装置の測定対象は固体や液体であってもよい。例えば、コーティング装置におけるコーティング膜厚の測定、ブレンダーにおける成分比率の測定、造粒装置における水分含有量や粒度の測定、化学合成装置における反応度の測定等においても上記同様の構成を有する分光測定装置を用いることができる。こうした分光測定装置は、例えば、製剤装置における粉体試料のモニタリングや、製剤研究における試料成分の分析等に有用である。 In Embodiments 1 to 3, the configuration example in the case of measuring the light absorption by the target component in the sample gas has been described. However, the measurement target of the spectrometer according to the present invention may be a solid or a liquid. For example, a spectroscopic measurement device having the same configuration as described above for measurement of coating film thickness in a coating device, measurement of a component ratio in a blender, measurement of moisture content and particle size in a granulation device, measurement of reactivity in a chemical synthesis device, etc. Can be used. Such a spectroscopic measurement apparatus is useful, for example, for monitoring a powder sample in a preparation apparatus or analyzing a sample component in preparation research.
 図8に、複数の成分を所定の順と厚さでコーティングすることにより顆粒状の医薬品を製造する装置(以下、「コーティング装置」と呼ぶ。)において、本発明に係る分光測定装置を膜厚測定装置7として用いる例を示す。 FIG. 8 shows an apparatus for manufacturing a granular pharmaceutical product by coating a plurality of components in a predetermined order and thickness (hereinafter referred to as “coating apparatus”). An example used as the measuring device 7 is shown.
 この膜厚測定装置7では、白色光源71からの照射光を入射側光ファイバ711に導入してコーティング装置720まで輸送し、入射側レンズ712で集光した後、コーティング装置720の下方面に設けられた窓部722からコーティング処理中の試料721に照射する。試料721からの反射光は窓部722から取り出され、出射側第1レンズ782で出射側光ファイバ781の入射端に導入され検出光学系まで輸送される。 In this film thickness measuring device 7, irradiation light from the white light source 71 is introduced into the incident side optical fiber 711, transported to the coating device 720, collected by the incident side lens 712, and then provided on the lower surface of the coating device 720. The sample 721 being coated is irradiated from the window 722 thus formed. Reflected light from the sample 721 is extracted from the window portion 722, introduced into the incident end of the emission side optical fiber 781 by the emission side first lens 782, and transported to the detection optical system.
 検出光学系は、出射側光ファイバ781から出射する測定光を集光する出射側第2レンズ783、該出射側第2レンズ783で集光された測定光のうちの直線偏光成分の光のみを通過させる第1偏光子(polarizer)73、特定の波長を有する直線偏光の光の進行方向と偏光方向を変化させる音響光学フィルタ方式の分光器74、該分光器74を通過した光のうちの、第1偏光子(polarizer)73を通過した光と直交する方向の直線偏光成分のみを通過させる第2偏光子(cross-polarizer)75、進行方向が変化することなく分光器74を通過した光を吸収するビームダンプ76、分光器74において進行方向と偏光方向が変化した特定波長の光を受光する光検出器77、分光器74に対して高周波電圧を印加する電圧印加部78、及び制御部79を備えている。 The detection optical system includes an exit-side second lens 783 that condenses the measurement light emitted from the exit-side optical fiber 781, and only linearly polarized light of the measurement light collected by the exit-side second lens 783. A first polarizer 73 that passes through, an acousto-optic filter type spectroscope 74 that changes the traveling direction and polarization direction of linearly polarized light having a specific wavelength, and the light that has passed through the spectroscope 74, A second polarizer (cross-polarizer) 75 that passes only a linearly polarized component in a direction orthogonal to the light that has passed through the first polarizer 73, and the light that has passed through the spectroscope 74 without changing the traveling direction. A beam dump 76 to be absorbed, a photodetector 77 that receives light of a specific wavelength whose traveling direction and polarization direction have changed in the spectroscope 74, a voltage application section 78 that applies a high-frequency voltage to the spectroscope 74, and a control section 79. The Eteiru.
 試料721からの反射光には、試料721の表面で反射した光だけでなく、試料721の内部に進入し、コーティング層を通過して該コーティング層とその下層の界面で反射したあと、再びコーティング層を通過して試料721から出射する光(これを「内部反射光」と呼ぶ。)が含まれる。従って、予め、実試料と同じ成分を複数の所定の膜厚でコーティングした標準試料について反射光の強度を測定し、反射光強度と膜厚を対応付ける膜厚対応データを取得しておき、実試料からの反射光を用いて生成された同期検出信号を該膜厚対応データと照合することにより、実試料のコーティング厚をリアルタイムで測定することができる。 The reflected light from the sample 721 is not only the light reflected by the surface of the sample 721, but also enters the sample 721, passes through the coating layer and is reflected at the interface between the coating layer and its lower layer, and then coated again. Light that passes through the layer and exits from the sample 721 (referred to as “internally reflected light”) is included. Therefore, the intensity of reflected light is measured in advance for a standard sample coated with a plurality of predetermined film thicknesses with the same components as the actual sample, and film thickness correspondence data that associates the reflected light intensity with the film thickness is obtained. By comparing the synchronous detection signal generated using the reflected light from the film with the film thickness correspondence data, the coating thickness of the actual sample can be measured in real time.
 制御部79の実体はパーソナルコンピュータであり、記憶部791を有するほかに、機能的に、駆動信号生成部792、測定実行部793、同期検出信号生成部794、同期検出信号処理部795、及び膜厚決定部796を備えている。また、制御部79には、入力部797と表示部798が接続されている。さらに、記憶部791には、試料721にコーティングする1乃至複数の成分のそれぞれについて、当該成分に特徴的な吸収波長、及び当該成分の吸収スペクトルの該吸収波長における光吸収量に比例する信号(例えば二次微分波形データの高さ)と後述する第2の周期1周期分の平均反射光強度の比と膜厚の関係を示す膜厚対応データが保存されている。 The entity of the control unit 79 is a personal computer, and in addition to having a storage unit 791, functionally, a drive signal generation unit 792, a measurement execution unit 793, a synchronization detection signal generation unit 794, a synchronization detection signal processing unit 795, and a film A thickness determining unit 796 is provided. In addition, an input unit 797 and a display unit 798 are connected to the control unit 79. Further, the storage unit 791 has, for each of one or more components coated on the sample 721, a signal proportional to the absorption wavelength characteristic of the component and the amount of light absorption at the absorption wavelength of the absorption spectrum of the component ( For example, the thickness correspondence data indicating the relationship between the ratio of the thickness of the second derivative waveform data) and the ratio of the average reflected light intensity for one second period to be described later and the film thickness is stored.
 使用者が入力部797を通じて、測定成分(コーティング装置720において試料721にコーティングする成分)を入力すると、駆動信号生成部792は、記憶部791から当該成分の吸収波長を読み出し、分光器74における上記特定の波長が該吸収波長を中心として変化するような駆動信号を生成する。駆動信号は、上記実施例1で説明したように、第1の周期で連続的に値が変化する波形データに、第1の周期よりも短い第2の周期で変化する変調成分を重畳したものである。 When the user inputs a measurement component (a component to be coated on the sample 721 in the coating apparatus 720) through the input unit 797, the drive signal generation unit 792 reads the absorption wavelength of the component from the storage unit 791, and the spectrometer 74 A drive signal is generated such that a specific wavelength changes around the absorption wavelength. As described in the first embodiment, the drive signal is obtained by superimposing a modulation component that changes in a second period shorter than the first period on waveform data whose value changes continuously in the first period. It is.
 次に、使用者が入力部80を通じて測定開始を指示すると、測定実行部793が、上記駆動信号に基づいて電圧印加部78の動作を制御し、分光器74の圧電素子741に電圧を印加する。また、並行して、光検出器77からの出力信号を取得する。同期検出信号生成部794は、上記第2の周期の周波数(f)の2倍の周波数(2f)を基準周波数として、光検出器77の出力信号から同期検出信号を生成して二次微分波形データを生成する。また、これと同時に、第2の周期の周波数(f)整数周期分の平均反射強度データを生成する。ここでは、二次微分波形データと平均反射強度を生成する例を説明するが、三次微分波形データと平均反射強度の組み合わせなど、2つの波形データの次数は適宜に決定ことができる。 Next, when the user instructs the start of measurement through the input unit 80, the measurement execution unit 793 controls the operation of the voltage application unit 78 based on the drive signal, and applies a voltage to the piezoelectric element 741 of the spectrometer 74. . In parallel, an output signal from the photodetector 77 is acquired. The synchronization detection signal generation unit 794 generates a synchronization detection signal from the output signal of the photodetector 77 using a frequency (2f) twice the frequency (f) of the second period as a reference frequency, and generates a second-order differential waveform. Generate data. At the same time, the average reflection intensity data for the frequency (f) integer period of the second period is generated. Here, an example in which the secondary differential waveform data and the average reflection intensity are generated will be described. However, the orders of the two waveform data such as a combination of the tertiary differential waveform data and the average reflection intensity can be determined as appropriate.
 続いて、同期検出信号処理部795は、二次微分波形データから二次微分値(測定成分の吸収波長における二次微分波形の高さ)を求め、平均反射強度データとの比を算出する。最後に、膜厚決定部796が、前記比の値を記憶部791に保存されている膜厚対応データと照合して膜厚を決定し、表示部798に表示する。 Subsequently, the synchronization detection signal processing unit 795 obtains a secondary differential value (the height of the secondary differential waveform at the absorption wavelength of the measurement component) from the secondary differential waveform data, and calculates a ratio with the average reflection intensity data. Finally, the film thickness determining unit 796 determines the film thickness by comparing the ratio value with the film thickness correspondence data stored in the storage unit 791 and displays the film thickness on the display unit 798.
 本実施例のように、被処理中の顆粒状の試料を測定する場合には、試料の位置や表面の性状・形状が時間的に変化しやすい。こうした変化が起こると、試料の膜厚が変化していないにもかかわらず、測定光の検出強度が変化することがある。本実施例では、同じ時点における光検出器の出力信号から二次微分波形データと平均反射強度データを生成する。このようにして生成した複数の信号には、試料の状態の時間的な変化に伴う透過光や反射光の強度の揺らぎが同等に含まれているため、それらの比を求めることにより、透過光や反射光の強度の揺らぎを除去して正確な測定結果を得ることができる。本実施例における試料は顆粒状の試料であるが、液体試料や、他の形状の固体試料の場合にも本実施例のように構成することで、測定対象試料の状態の時間的な変化の影響を排除して正確な測定結果を得ることができる。 As in this example, when measuring a granular sample being processed, the position of the sample and the properties and shape of the surface tend to change over time. When such a change occurs, the detection intensity of the measurement light may change even though the film thickness of the sample has not changed. In this embodiment, second derivative waveform data and average reflection intensity data are generated from the output signal of the photodetector at the same time. Since the multiple signals generated in this way include fluctuations in the intensity of transmitted light and reflected light that accompany temporal changes in the state of the sample, the transmitted light can be obtained by determining their ratio. In addition, accurate measurement results can be obtained by removing fluctuations in the intensity of reflected light. The sample in this example is a granular sample. However, even in the case of a liquid sample or a solid sample of another shape, the sample can be configured as in this example to change the state of the sample to be measured over time. Accurate measurement results can be obtained by eliminating the influence.
 上記の実施例1~4はいずれも一例であって、本発明の趣旨に沿って適宜に変更することができる。
 実施例1、2、及び4では、第1偏光子13、23、73及び第2偏光子15、25、75を用いたが、これらは必須の構成要素ではなく、0次光(音響光学フィルタ方式の分光器14、24、74により進行方向が実質的に変化しない光)を物理的に遮断するビームブロッカーを用いて構成してもよい。また、実施例1、2、及び4では、分光器として音響光学フィルタ方式の分光器と偏光子を組み合わせた構成を用いたが、外部から供給される駆動電圧あるいは駆動電流を変化させることによって選択的に通過させる光の波長を変化させることができる分光器であれば、他の分光器を用いることもできる。
The above-described Examples 1 to 4 are all examples, and can be appropriately changed in accordance with the gist of the present invention.
In Examples 1, 2, and 4, the first polarizers 13, 23, 73 and the second polarizers 15, 25, 75 are used. However, these are not essential components, and zero-order light (acousto-optic filter) is used. A beam blocker that physically blocks the light whose traveling direction does not substantially change by the spectroscopes 14, 24, and 74 may be used. In the first, second, and fourth embodiments, a configuration in which an acousto-optic filter type spectroscope and a polarizer are combined is used as a spectroscope. Other spectroscopes can be used as long as the spectroscope can change the wavelength of light to be transmitted.
 図8(a)に、そうした分光器の一例であるMEMSミラー型の分光器43の構成を示す。この分光器43は、入射スリット431、第1凹面鏡432、MEMSミラー433、回折格子434、第2凹面鏡435、出射スリット436を備えており、外部から供給する電圧の大きさを変化させることによってMEMSミラー433への光の入射角を変化させ、出射スリット436を通過する光の波長を変化させることができる。その他、図8(b)に示すように、入射スリット531、凹面回折格子532、及び出射スリット533を備え、外部から駆動信号を供給することにより出射スリット533を移動させることができる出射スリット走査回折格子型の分光器(Scanning grating monochromator)53、図8(c)に示すように、入射スリット631、凹面ホログラフィック回折格子632、及びPDA633を備えたPDA回折格子ポリクロメータ(PDA grating polychromator)63等、種々の構成のものを用いることができる。 FIG. 8A shows the configuration of a MEMS mirror type spectroscope 43 which is an example of such a spectroscope. The spectroscope 43 includes an entrance slit 431, a first concave mirror 432, a MEMS mirror 433, a diffraction grating 434, a second concave mirror 435, and an exit slit 436, and changes the magnitude of the voltage supplied from the outside, thereby changing the MEMS. The angle of light incident on the mirror 433 can be changed, and the wavelength of the light passing through the exit slit 436 can be changed. In addition, as shown in FIG. 8B, an exit slit scanning diffraction that includes an entrance slit 531, a concave diffraction grating 532, and an exit slit 533, and can move the exit slit 533 by supplying a drive signal from the outside. As shown in FIG. 8C, a grating-type spectrometer (ScanningScangratingPDmonochromator) 53, a PDA63grating polychromator 63 having an entrance slit 631, a concave holographic diffraction grating 632, and a PDA 633, etc. Various configurations can be used.
1、2、3、7…分光測定装置
11、21、31…光源
12、22、32…試料セル
13、73…第1偏光子
14、24、74…分光器
141、241、741…圧電素子
15、75…第2偏光子
16、26、76…ビームダンプ
17、27、37、77…光検出器
18、28、78…電圧印加部
19、29、39、79…制御部
191、291、391、791…記憶部
192、292、792…駆動信号生成部
193、293、394、794…同期検出信号生成部
194、294、395、797…入力部
195、295、396、798…表示部
392…読み出し波長データ生成部
393…変調出力信号生成部
710…白色光源
711…入射側光ファイバ
712…入射側レンズ
720…コーティング装置
721…試料
722…窓部
781…出射側光ファイバ
782…出射側第1レンズ
783…出射側第2レンズ
793…測定実行部
795…同期検出信号処理部
796…膜厚算出部
1, 2, 3, 7 ... Spectrometers 11, 21, 31 ... Light sources 12, 22, 32 ... Sample cells 13, 73 ... First polarizers 14, 24, 74 ... Spectroscopes 141, 241, 741 ... Piezoelectric elements 15, 75 ... second polarizers 16, 26, 76 ... beam dumps 17, 27, 37, 77 ... photodetectors 18, 28, 78 ... voltage application units 19, 29, 39, 79 ... control units 191, 291, 391, 791 ... Storage units 192, 292, 792 ... Drive signal generation units 193, 293, 394, 794 ... Synchronization detection signal generation units 194, 294, 395, 797 ... Input units 195, 295, 396, 798 ... Display unit 392 ... Reading wavelength data generation unit 393 ... Modulation output signal generation unit 710 ... White light source 711 ... Incoming side optical fiber 712 ... Incoming side lens 720 ... Coating device 721 ... Sample 722 ... Window 7 1 ... emission-side optical fiber 782 ... exit-side first lens 783 ... exit-side second lens 793 ... measurement execution section 795 ... synchronization detection signal processing unit 796 ... film thickness calculating unit

Claims (5)

  1.  a) 波長幅を有する照射光を発する光源と、
     b) 前記光源から発せられて試料と相互作用した後の測定光を検出する光検出部と、
     c) 前記照射光のうちの特定の波長の光を通過させる照射光側分光器、前記測定光のうちの特定の波長の光を通過させる測定光側分光器、あるいは前記光検出部から特定の波長の光の検出信号を出力させる特定波長信号生成部を含む波長選択部と、
     d) 第1の周期で変化する波長に、該第1の周期よりも短い第2の周期で変化する変調成分を重畳して前記特定の波長を変化させる変調制御部と、
     e) 前記変調成分の周波数の正の整数倍の周波数を基準周波数として、前記光検出器から出力される出力信号から同期検出信号を生成する同期検出信号生成部と、
     を備えることを特徴とする分光測定装置。
    a) a light source that emits irradiation light having a wavelength width;
    b) a light detection unit for detecting measurement light emitted from the light source and interacting with the sample;
    c) from an irradiation light side spectroscope that transmits light of a specific wavelength of the irradiation light, a measurement light side spectroscope that transmits light of a specific wavelength of the measurement light, or from a light detection unit A wavelength selection unit including a specific wavelength signal generation unit for outputting a detection signal of light of a wavelength;
    d) a modulation controller that changes the specific wavelength by superimposing a modulation component that changes in a second period shorter than the first period on a wavelength that changes in the first period;
    e) a synchronization detection signal generation unit that generates a synchronization detection signal from an output signal output from the photodetector, using a frequency that is a positive integer multiple of the frequency of the modulation component as a reference frequency;
    A spectroscopic measurement device comprising:
  2.  前記波長選択部が、前記照射光のうち、供給される電流又は電圧の値に応じた波長の光を選択的に通過させる分光部であり、
     前記変調制御部が、前記分光部に対し、連続的な値の変化を前記第1の周期で繰り返す電流又は電圧に、前記第2の周期で変化する変調成分を重畳した電流又は電圧を供給する駆動信号供給部であることを特徴とする請求項1に記載の分光測定装置。
    The wavelength selection unit is a spectroscopic unit that selectively transmits light of a wavelength corresponding to a value of a supplied current or voltage among the irradiation light,
    The modulation control unit supplies, to the spectroscopic unit, a current or voltage obtained by superimposing a modulation component that changes in the second period on a current or voltage that repeats a continuous change in value in the first period. The spectroscopic measurement apparatus according to claim 1, wherein the spectroscopic measurement apparatus is a drive signal supply unit.
  3.  前記波長選択部が、前記光源から発せられて試料と相互作用した後の光である測定光のうち、供給される電流又は電圧の値に応じた波長の光を選択的に通過させる分光部であり、
     前記変調制御部が、前記分光部に対し、連続的な値の変化を前記第1の周期で繰り返す電流又は電圧に、前記第2の周期で変化する変調成分を重畳した電流又は電圧を供給する駆動信号供給部であることを特徴とする請求項1に記載の分光測定装置。
    The wavelength selection unit is a spectroscopic unit that selectively transmits light having a wavelength corresponding to a supplied current or voltage value among measurement light that is light emitted from the light source and interacted with a sample. Yes,
    The modulation control unit supplies, to the spectroscopic unit, a current or voltage obtained by superimposing a modulation component that changes in the second period on a current or voltage that repeats a continuous change in value in the first period. The spectroscopic measurement apparatus according to claim 1, wherein the spectroscopic measurement apparatus is a drive signal supply unit.
  4.  前記光検出部が、前記測定光を波長分離して検出する分光検出部であり、
     前記波長選択部が特定波長信号生成部であって、該特定波長信号生成部が、
     前記出力信号を読み出すタイミングと該タイミングにおける読み出し波長の関係を規定するデータであって、前記分光検出部により検出される光の波長の範囲内である読み出し中心波長に前記第2の周期で変化する変調成分を重畳した読み出し波長データを、該読み出し中心波長を前記第1の周期で順次変更して作成する読み出し波長データ生成部と、
     前記第2の周期よりも短い周期で、前記出力信号の中から、前記読み出し波長データで規定された波長の出力信号を読み出して変調出力信号を生成する変調出力信号生成部と、
     を有することを特徴とする請求項1に記載の分光測定装置。
    The light detection unit is a spectral detection unit that detects the measurement light by wavelength separation,
    The wavelength selection unit is a specific wavelength signal generation unit, the specific wavelength signal generation unit,
    Data defining the relationship between the timing for reading the output signal and the readout wavelength at the timing, and changes to the readout center wavelength within the wavelength range of the light detected by the spectroscopic detector in the second period. A readout wavelength data generating unit that creates readout wavelength data on which a modulation component is superimposed by sequentially changing the readout center wavelength in the first period;
    A modulation output signal generator for generating a modulation output signal by reading an output signal having a wavelength defined by the read wavelength data from the output signal at a cycle shorter than the second cycle;
    The spectroscopic measurement apparatus according to claim 1, comprising:
  5.  前記同期検出信号生成部が、複数の基準周波数について同期検出信号を生成することを特徴とする請求項1から4のいずれかに記載の分光測定装置。 The spectroscopic measurement apparatus according to any one of claims 1 to 4, wherein the synchronization detection signal generation unit generates a synchronization detection signal for a plurality of reference frequencies.
PCT/JP2015/057878 2014-03-31 2015-03-17 Spectroscopic measurement device WO2015151802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014071447 2014-03-31
JP2014-071447 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151802A1 true WO2015151802A1 (en) 2015-10-08

Family

ID=54240134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057878 WO2015151802A1 (en) 2014-03-31 2015-03-17 Spectroscopic measurement device

Country Status (1)

Country Link
WO (1) WO2015151802A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163129U (en) * 1984-09-29 1986-04-28
JPS61266926A (en) * 1985-05-21 1986-11-26 ヘリゲ・ゲゼルシヤフト・ミツト・ベシユレンクタ・ハフトウング Differential spectrometer
JPS62135737A (en) * 1985-12-10 1987-06-18 Anritsu Corp Wavelength modulation type differential spectrometer
JPH06341901A (en) * 1993-05-31 1994-12-13 Anelva Corp Wavelength modulation spectroscope
JP2010038875A (en) * 2008-08-08 2010-02-18 Fuji Electric Systems Co Ltd Gas analyzer
JP2012026830A (en) * 2010-07-22 2012-02-09 Shimadzu Corp Gas concentration measurement instrument
JP2012132443A (en) * 2010-12-17 2012-07-12 General Electric Co <Ge> System and method for real-time measurement of equivalence ratio of gas fuel mixture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163129U (en) * 1984-09-29 1986-04-28
JPS61266926A (en) * 1985-05-21 1986-11-26 ヘリゲ・ゲゼルシヤフト・ミツト・ベシユレンクタ・ハフトウング Differential spectrometer
JPS62135737A (en) * 1985-12-10 1987-06-18 Anritsu Corp Wavelength modulation type differential spectrometer
JPH06341901A (en) * 1993-05-31 1994-12-13 Anelva Corp Wavelength modulation spectroscope
JP2010038875A (en) * 2008-08-08 2010-02-18 Fuji Electric Systems Co Ltd Gas analyzer
JP2012026830A (en) * 2010-07-22 2012-02-09 Shimadzu Corp Gas concentration measurement instrument
JP2012132443A (en) * 2010-12-17 2012-07-12 General Electric Co <Ge> System and method for real-time measurement of equivalence ratio of gas fuel mixture

Similar Documents

Publication Publication Date Title
US9207121B2 (en) Cavity-enhanced frequency comb spectroscopy system employing a prism cavity
US9869585B2 (en) Dual spectrometer
FI109149B (en) Spectrometer and method for measuring optical spectrum
US20090015819A1 (en) Optical analysis system, blood analysis system and method of determining an amplitude of a principal component
US7196789B2 (en) Light processor providing wavelength control and method for same
JP6632059B2 (en) Polarimetry apparatus and polarization measurement method using dual-com spectroscopy
JP5213167B2 (en) Terahertz measurement device, time waveform acquisition method, and inspection device
Grilli et al. Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels
US7583378B2 (en) Spectrograph calibration using known light source and Raman scattering
KR102235512B1 (en) Pulsed light generating device, light irradiation device, light processing device, light response measuring device, microscope device, and pulsed light generating method
US9128059B2 (en) Coherent anti-stokes raman spectroscopy
US11346777B2 (en) Vibrational circular dichroism spectroscopy
US20180195965A1 (en) Method of measuring raman scattering and related spectrometers and laser sources
JP5510851B2 (en) Terahertz measurement method
WO2015151802A1 (en) Spectroscopic measurement device
JP6708197B2 (en) Spectroscopic analyzer
US7515262B2 (en) Crystal grating apparatus
JP2004340833A (en) Optical measuring device
JP2021047130A (en) Spectrometry device and method
US9513225B2 (en) Method and system for improving resolution of a spectrometer
JP7253801B2 (en) Interferometer, Fourier transform spectrometer and component analyzer
JP7283190B2 (en) Spectroscopic measurement device and spectroscopic measurement method
JP2006300664A (en) Fourier spectral device and measuring timing detection method
Stoyanova Setup of a Fourier transform infrared spectrometer
CN116202621A (en) Radio frequency mark spectrometer and spectrum measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15772901

Country of ref document: EP

Kind code of ref document: A1