WO2015151744A1 - Device for purifying exhaust gas, and method for operating same - Google Patents

Device for purifying exhaust gas, and method for operating same Download PDF

Info

Publication number
WO2015151744A1
WO2015151744A1 PCT/JP2015/057225 JP2015057225W WO2015151744A1 WO 2015151744 A1 WO2015151744 A1 WO 2015151744A1 JP 2015057225 W JP2015057225 W JP 2015057225W WO 2015151744 A1 WO2015151744 A1 WO 2015151744A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
upstream
soot blow
downstream
catalyst
Prior art date
Application number
PCT/JP2015/057225
Other languages
French (fr)
Japanese (ja)
Inventor
博仲 田中
俊介 平岩
諒平 小林
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2015151744A1 publication Critical patent/WO2015151744A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9037More than three zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means

Definitions

  • the present invention relates to an exhaust gas purification device that removes exhaust gas discharged from an internal combustion engine by contacting a catalyst and reducing pollutants contained in the exhaust gas, and an operation method thereof.
  • Patent Document 1 proposes a method in which a plurality of catalyst units made of a laminate are installed with a predetermined space. According to this patent document 1, by discharging into the predetermined space from the flow path of a laminated body, a flow path is expanded rapidly, a turbulent flow is generated, and the catalyst contact efficiency of exhaust gas and a reducing agent can be improved. it can.
  • Patent Document 2 discloses a device in which a soot blower is disposed on the inlet side of each catalyst layer in order to remove dust adhering to the surface of the catalyst.
  • the present invention solves the above-described problems, makes it possible to effectively contact the exhaust gas and the catalyst, achieves space saving, and effectively removes dust adhering to the catalyst surface and It aims at providing the driving method.
  • Two catalyst bodies made of stacked catalysts are arranged on the upstream side and the downstream side in a reaction vessel that sends exhaust gas from the upstream side to the downstream side, and between the upstream side catalyst body and the downstream side catalyst body.
  • a catalyst unit with a gap that creates a turbulent flow by rapidly expanding the exhaust gas flow path is installed,
  • an upstream soot blow device having a nozzle port for injecting soot blow gas to the upstream catalyst body along the exhaust gas flow is provided,
  • a downstream soot blower having a nozzle port for injecting soot blow gas toward the downstream catalyst body in the reverse direction of the exhaust gas flow is provided in the downstream portion of the catalyst unit.
  • the invention according to claim 2 is the invention according to claim 1,
  • a plurality of catalyst units are installed in series in the exhaust gas flow direction,
  • a downstream soot blower arranged on the downstream side of the upstream catalyst unit and an upstream soot blower arranged on the upstream side of the catalyst unit adjacent to the downstream side are integrated to form nozzle ports on the upstream side surface and the downstream side surface, respectively. It is characterized by comprising the combined soot blow device.
  • the invention described in claim 3 is the configuration described in claim 2,
  • the upstream soot blow device and the downstream soot blow device are constituted by a plurality of soot blow pipes arranged in parallel to each other at a predetermined interval along the cross section of the exhaust gas flow, and have a length on the upstream side surface or the downstream side surface of these soot blow pipes.
  • Nozzle openings are formed at a predetermined pitch in the direction
  • the composite soot blow device is composed of a plurality of soot blow pipes arranged in parallel with each other at a predetermined interval along the cross section of the exhaust gas flow, and a plurality of nozzle ports are provided on the upstream side surface and the downstream side surface of the soot blow pipe, respectively. Each is formed at a predetermined pitch in the length direction.
  • the composite soot blow pipe is characterized in that the diameter of the nozzle port opened on the upstream side surface is larger than the nozzle port opened on the downstream side surface.
  • the invention according to claim 5 A method for operating the purification device according to any one of claims 1 to 4,
  • the soot blow gas is jetted in a pulse form that repeats jetting and stopping at regular intervals from the nozzle opening.
  • the exhaust gas passing through the upstream catalyst body is rapidly expanded in the flow path by the air gap by the catalyst unit having a pair of catalyst bodies arranged upstream and downstream with a gap.
  • the exhaust gas is effectively brought into contact with the surface of the downstream catalyst body, and the harmful substances contained in the exhaust gas are effectively reduced and purified.
  • the soot blow gas is blown into the upstream catalyst body at predetermined intervals along the exhaust gas flow direction from the nozzle port of the upstream soot blow device disposed upstream of the catalyst unit with respect to the upstream catalyst body.
  • soot blow gas is directed to the downstream catalyst body from the nozzle port of the downstream soot blow device disposed downstream of the catalyst unit in the direction opposite to the exhaust gas flow direction. Remove blown dust.
  • the downstream catalyst body of the upstream catalyst unit and the upstream catalyst body of the downstream catalyst unit are provided, the number of parts and the space occupied by the reaction vessel can be reduced.
  • the nozzle ports can be arranged evenly facing the exhaust gas unit, and the dust adhering to the surface of the catalyst body is peeled off and removed satisfactorily. can do.
  • the soot blow gas injected against the exhaust gas can be ejected with large energy, and dust adhering to the surface of the catalyst body can be effectively removed.
  • shock waves can be repeatedly injected on the surface of the catalyst body, and dust can be effectively peeled and removed.
  • 11 is a reaction vessel of an SCR denitration device installed in an exhaust gas path for discharging exhaust gas from a large diesel engine of a ship, for example.
  • an evaporator (not shown) installed on the upstream side of the reaction vessel 11 in the exhaust gas path, ammonia gas or urea water as a reducing agent is blown into the exhaust gas, and a mixed gas containing the reducing agent in the exhaust gas (
  • the exhaust gas 10 is sent from the inlet (upstream side) 1 to the outlet (downstream side) 9 of the reaction vessel 11.
  • catalyst bodies 21 and 22 are formed by catalysts stacked in a honeycomb shape, and an upstream side catalyst unit 31 and a downstream side catalyst unit 32 composed of a pair of front and rear catalyst bodies 21 and 22 are provided. Multiple sets (two sets in the figure) are installed in series.
  • the upstream side catalyst body 21 and the downstream side catalyst body 22 of these catalyst units 31 and 32 are cross-sectional shapes that cover the cross section of the reaction vessel 11 and have a predetermined thickness, and the upstream side catalyst body 21 and the downstream side catalyst body 21.
  • Gaps 14 are respectively formed between the catalyst bodies 22.
  • the interval 14D which is the upstream / downstream width of the gap 14, is effective to be at least three times the one side of the honeycomb shape of the catalyst bodies 21 and 22.
  • the gas flow path in the upstream side catalyst body 21 is rapidly expanded to generate turbulent flow in the exhaust gas 10, and the turbulent flow further reduces the exhaust gas and the reducing agent.
  • the mixture is stirred and introduced into the downstream catalyst body 22, and the exhaust gas 10 and the downstream catalyst body 22 are effectively brought into contact with each other to promote the reduction reaction.
  • An upstream soot blow device 51 that is disposed upstream of the upstream catalyst unit 31 and removes dust attached to the surface of the upstream catalyst body 21 in the catalyst unit 31 by the soot blow gas, and downstream of the downstream catalyst unit 32 And a downstream soot blower 52 that removes dust attached to the surface of the downstream catalyst body 22 in the catalyst unit 32 by the soot blow gas. Further, between the upstream catalyst unit 31 and the downstream catalyst unit 32 that are adjacent to each other, the downstream catalyst body 22 in the upstream catalyst unit 31 and the upstream catalyst body 21 in the downstream catalyst unit 32, respectively. A composite soot blower 53 for blowing soot blow gas is provided. This composite soot blower 53 is like a downstream soot blower 52 and an upstream soot blower 51 being integrated.
  • the upstream soot blow device 51, the downstream soot blow device 52, and the composite soot blow device 53 are constituted by a plurality of soot blow pipes 61, 62, 63 arranged in parallel to each other at a predetermined interval along the cross section of the reaction vessel 1. ing.
  • the soot blow pipes 61, 62, 63 are arranged at a predetermined arrangement pitch 61P, 62P, 63P so that the soot blow gas can be uniformly injected toward the catalyst bodies 21, 22 of the catalyst units 31, 32.
  • the upstream soot blow device 51 has nozzle ports 71 having a predetermined diameter 71d formed in the length direction at an injection pitch 71p on the downstream side surface of the soot blow pipe 61 having an inner diameter 61D.
  • the soot blow gas is injected from the 71 toward the catalyst body 21 of the upstream catalyst unit 31 at a predetermined injection angle 71 ⁇ .
  • 71L is an injection distance from the nozzle port 71 to the catalyst body 21.
  • nozzle ports 72 having a predetermined diameter 72d are formed in the longitudinal direction at an injection pitch 72p on the upstream side surface of the soot blow pipe 62 having an inner diameter 62D. Soot blow gas is injected toward the catalyst body 22 of the unit 32 at a predetermined injection angle 72 ⁇ .
  • 72L is an injection distance from the nozzle port 72 to the catalyst body 22.
  • nozzle ports 74 having a predetermined diameter 74d are formed at a predetermined injection pitch 74p in the length direction on the downstream side surface of the soot blow pipe 63 having an inner diameter 63D. Then, soot blow gas is injected at a predetermined injection angle 74 ⁇ from each nozzle port 74 toward the catalyst body 21 of the catalyst unit 32 on the downstream side.
  • 74L is an injection distance from the nozzle port 74 to the catalyst body 21.
  • nozzle ports 73 having a predetermined diameter 73d are formed in the length direction at a predetermined injection pitch 73p.
  • soot blow gas is injected from each nozzle port 73 toward the catalyst body 22 of the upstream catalyst unit 31 in a direction opposite to the exhaust gas 10 at a predetermined injection angle 73 ⁇ .
  • 73 ⁇ / b> L is an injection distance from the nozzle port 73 to the catalyst body 22.
  • the reaction vessel 11 has a straight shape with the same cross section, the catalyst units 31 and 32 have the same shape and specifications, and the soot blow gas supplied to the three soot blow pipes 61, 62, and 63 is supplied with the same supply pressure.
  • the supply pressure and supply amount of the soot blow gas are different from each other, or when the shape of the reaction vessel 11 and the specifications of the catalyst units 31 and 32 are different, these may be different from each other.
  • the supply pressure and supply amount of the soot blow gas are different from each other, or when the shape of the reaction vessel 11 and the specifications of the catalyst units 31 and 32 are different, these may be different from each other.
  • the nozzle port 74 that injects in the same direction as the exhaust gas 10 and the nozzle port 73 that injects in the opposite direction are formed in the same soot blow pipe 63, and the supply pressure and supply amount of the soot blow gas are the same.
  • the diameter 73d of the nozzle port 73 that injects in the opposite direction to the exhaust gas 10 is larger than the diameter 74d of the nozzle port 74 that injects in the same direction as the exhaust gas 10 (74d ⁇ 73d).
  • the area ratio of the bore diameters 74d and 73d formed in the soot blow pipe 63 is set to 1.4 or less, exceeding 1.0, for example, when the bore diameter 74d is 1.0.
  • the inner diameter 63D of the soot blow pipe 63 of the composite soot blow device 53 is set sufficiently larger than the inner diameters 61D and 62D of the upstream and downstream soot blow pipes 61 and 62 corresponding to the supply amount of the soot blow gas.
  • the soot blow pipes 61, 62, 63 of the upstream soot blow apparatus 51, the downstream soot blow apparatus 52, and the composite soot blow apparatus 53 are connected to the soot blow gas supply pipe 18 from a soot blow gas supply source (air receiver tank) of the ship engine system. Yes.
  • the pressure of the soot blow gas supplied through the soot blow gas supply pipe 18 is set to 0.3 to 0.6 (MPaG).
  • the soot blow gas supply pipe 18 has soot blow control valves 41, 42, 43 operated by a soot blow control device 19 provided in an engine control device (not shown) for each of the soot blow pipes 61, 62, 63, respectively. Intervened.
  • the soot blow control valves 41, 42, 43 control the soot blow gas injection timing and injection time for each of the soot blow devices 51, 52, 53.
  • a reducing agent is blown into the exhaust gas by the SCR denitration device, and is introduced into the reaction vessel 11 so that NO X is reduced and removed by contact between the exhaust gas 10 and the catalyst surface.
  • the exhaust gas 10 is sequentially passed through a pair of catalyst bodies 21, 22 arranged with a gap 14 in the pair of front and rear catalyst units 31, 32, thereby allowing the gap 14 to pass through the honeycomb-shaped passage.
  • a turbulent flow is generated in the released exhaust gas 10, and the contact rate between the exhaust gas 10 and the catalyst bodies 21 and 22 is increased as compared with a continuous catalyst body, and NO X is reduced and removed with high reaction efficiency.
  • the soot blow control valve 41, 43, 42 is operated by the soot blow control device 19 every predetermined operating time T, for example, every 60 to 120 minutes.
  • a predetermined amount of soot blow gas of a predetermined pressure is blown into the reaction vessel 11 from the devices 51, 52, 53 toward the catalyst units 51, 52.
  • the soot blow control valve 41, 43, 42 causes the soot blow gas to be injected from the nozzle ports 71, 73, 74, 72 at intervals of a predetermined time (for example, every 0.5 to 2 seconds), and a pulse that repeats multiple times. Is injected into the shape. Dust adhering to the surfaces of the catalyst bodies 21 and 22 can be effectively peeled and removed by the shock wave generated by the pulsed injection of the soot blow gas.
  • soot blow control valves 41, 42, 43 are sequentially operated in accordance with the capacity of the air receiver tank, and soot blow gas is sequentially injected into the soot blow pipes 61, 62, 63.
  • soot blow gas is sequentially injected into the soot blow pipes 61, 62, 63.
  • the capacity of the air receiver tank is sufficient, a plurality or all of the soot blow pipes 61, 62, 63 can be simultaneously injected with the soot blow gas.
  • the exhaust gas 10 passing through the upstream catalyst body 21 is caused to pass through the air gap 14 by the catalyst units 31 and 32 having the pair of catalyst bodies 21 and 22 arranged with the air gap 14 between the upstream and downstream sides. passage is suddenly enlarged becomes turbulent, is effectively in contact with the surface of the downstream side of the catalyst 22, NO X contained in the exhaust gas 10 is effectively reduced and removed.
  • the dust adhering to the surfaces of the catalyst bodies 21 and 22 is applied to the soot blower from the nozzle ports 71 and 74 of the upstream soot blower 51 and the composite soot blower 53 disposed in the upstream part 31 of the catalyst units 31 and 32.
  • Gas is blown into the upstream catalytic body 21 along the flow direction of the exhaust gas 10 every predetermined time, and dust adhering to the surface of the upstream catalytic body 21 of the catalyst units 31 and 32 is removed.
  • the soot blow gas is sent downstream from the nozzle ports 73 and 72 of the composite soot blower 53 and the downstream soot blow device 52 disposed downstream of the catalyst units 31 and 32 in the direction opposite to the flow direction of the exhaust gas 10.
  • the dust adhering to the surface of the catalyst body 22 on the downstream side of the catalyst units 31 and 32 is removed.
  • the catalyst bodies 21 and 22 are caused by the soot blow gas blown from both sides of the upstream portion and the downstream portion.
  • the dust adhering to the surface of each can be effectively peeled and removed.
  • the catalyst body 22 on the downstream side of the upstream catalyst unit 31 and the catalyst body 21 on the upstream side of the downstream catalyst unit 32 are arranged. Since the soot blow device 53 for injecting soot blow gas is provided, the number of parts and the space occupied by the reaction vessel 11 can be reduced.
  • the nozzle ports 71, 72, 73 can be arranged evenly facing the catalyst units 31, 32, and the surfaces of the catalyst bodies 21, 22 are arranged. The dust adhering to the surface can be peeled and removed in a good and uniform manner.
  • the soot blow gas injected against the exhaust gas 10 is A large amount of energy can be injected, and dust adhering to the surfaces of the catalyst bodies 22 and 21 can be effectively removed.
  • soot blow gas injected from the nozzle ports 71, 74, 73, 72 of the soot blow pipes 61, 62, 63 at regular intervals is pulsed to repeat injection and stop a plurality of times.
  • the shock wave by soot blow gas is repeatedly given to the dust adhering to the surface, and the dust can be effectively peeled and removed.
  • the SCR denitration apparatus in which the catalyst units 31 and 32 are arranged on the upstream side and the downstream side has been described.
  • three or more catalyst units may be arranged in series.
  • the soot blow for the denitration catalyst of the SCR denitration apparatus has been described.
  • a soot blower may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 Catalyst units (31, 32) are installed in an upstream part and a downstream part of a reaction container (11), each of the catalyst units (31, 32) forming an air gap (14) for creating a turbulent flow by the sudden expansion of a flow channel between an upstream-side catalyzer (21) and a downstream-side catalyzer (22). Upstream of the upstream-side catalyst unit (31), an upstream soot-blowing device (51) is provided for spraying soot-blowing gas along with exhaust gas (10) onto the upstream-side catalyzer (21), and downstream of the downstream-side catalyst unit (32), a downstream soot-blowing device (52) is provided for spraying soot-blowing gas toward the downstream-side catalyzer (22) in a direction opposite that of the exhaust gas. Between the upstream-side catalyst unit (31) and the downstream-side catalyst unit (32) is provided a composite soot-blowing device (53) for spraying soot-blowing gas toward both the downstream-side catalyzer (22) of the upstream-side catalyst unit (31) and the upstream-side catalyzer (21) of the downstream-side catalyst unit (32).

Description

排ガスの浄化装置およびその運転方法Exhaust gas purification device and operation method thereof
 本発明は、内燃機関から排出される排ガスを触媒に接触させて、排ガスに含まれる汚染物質を還元することで除去する排ガスの浄化装置およびその運転方法に関する。 The present invention relates to an exhaust gas purification device that removes exhaust gas discharged from an internal combustion engine by contacting a catalyst and reducing pollutants contained in the exhaust gas, and an operation method thereof.
 従来、排ガスラインの排ガス中に、たとえばアンモニアガスや尿素水を吹き込んで脱硝触媒に接触させるアンモニア選択触媒還元法によるSCR脱硝装置では、反応容器内で、ハニカム状に積層された触媒の積層体に対して、入口側からアンモニアガスや尿素などの還元剤を排ガス中に吹き込み、積層体中に導入することが行われている。たとえば特許文献1では、積層体からなる触媒ユニットを、所定スペースをあけて複数個設置するものが提案されている。この特許文献1によれば、積層体の流路から所定スペースに吐出させることにより、流路を急激に拡大して乱流を発生させ、排ガスと還元剤との触媒接触効率を向上させることができる。 Conventionally, in an SCR denitration apparatus using an ammonia selective catalyst reduction method in which, for example, ammonia gas or urea water is blown into exhaust gas of an exhaust gas line and brought into contact with a denitration catalyst, a stack of catalysts laminated in a honeycomb shape is formed in a reaction vessel. On the other hand, reducing agents such as ammonia gas and urea are blown into the exhaust gas from the inlet side and introduced into the laminate. For example, Patent Document 1 proposes a method in which a plurality of catalyst units made of a laminate are installed with a predetermined space. According to this patent document 1, by discharging into the predetermined space from the flow path of a laminated body, a flow path is expanded rapidly, a turbulent flow is generated, and the catalyst contact efficiency of exhaust gas and a reducing agent can be improved. it can.
 ところで、特許文献2には、触媒の表面に付着したダストを除去するために、各触媒層の入口側に、それぞれスートブロー装置を配置したものが開示されている。 Incidentally, Patent Document 2 discloses a device in which a soot blower is disposed on the inlet side of each catalyst layer in order to remove dust adhering to the surface of the catalyst.
日本国特開平8-144752号公報Japanese Patent Laid-Open No. 8-144475 日本国特開平5-309233号公報Japanese Laid-Open Patent Publication No. 5-309233
 しかしながら、特許文献1に記載のように、排ガスと触媒との接触効率を上げるために、複数の触媒ユニットを所定スペース(空隙)をあけて設置した場合、特許文献2に記載のように、スートブロー装置により触媒層の入口側からスートブローしても、スペースによりスートブローガスが拡散され、二段目以降の触媒ユニットの表面に付着したダストの剥離除去能力が大幅に低下するという問題があった。これを解消するために、触媒ユニットごとの上流側にスートブロー装置を設置することが考えられるが、排ガスを拡散混合するために必要なスペースは、10~15mmであるのに対して、スートブロー装置のノズル口から触媒ユニットまでの噴射距離が300~500mm必要であり、この結果、反応容器の省スペース化が図れないという問題があった。 However, as described in Patent Document 1, in order to increase the contact efficiency between the exhaust gas and the catalyst, when a plurality of catalyst units are installed with a predetermined space (void), soot blow is performed as described in Patent Document 2. Even if soot blow is performed from the inlet side of the catalyst layer by the apparatus, the soot blow gas is diffused by the space, and there is a problem that the ability to remove and remove dust attached to the surface of the second and subsequent catalyst units is greatly reduced. In order to solve this problem, it is conceivable to install a soot blower on the upstream side of each catalyst unit. However, the space required for diffusing and mixing the exhaust gas is 10 to 15 mm. The injection distance from the nozzle port to the catalyst unit is required to be 300 to 500 mm. As a result, there has been a problem that the space for the reaction vessel cannot be saved.
 本発明は、上記問題点を解決して、排ガスと触媒とを効果的に接触させることができるとともに、省スペース化が図れ、触媒表面に付着したダストを効果的に除去できる排ガスの浄化装置およびその運転方法を提供することを目的とする。 The present invention solves the above-described problems, makes it possible to effectively contact the exhaust gas and the catalyst, achieves space saving, and effectively removes dust adhering to the catalyst surface and It aims at providing the driving method.
 請求項1記載の発明は、
 上流側から下流側に排ガスを流送する反応容器内に、積層された触媒からなる2つの触媒体を上流側と下流側に配置するとともに、上流側の触媒体と下流側の触媒体の間に、排ガスの流路を急激に拡大して乱流を生じさせる空隙を形成した触媒ユニットを設置し、
 触媒ユニットの上流部に、スートブローガスを排ガス流に沿って上流側の触媒体に噴射するノズル口を有する上流スートブロー装置を設け、
 触媒ユニットの下流部に、スートブローガスを排ガス流の逆方向に下流側の触媒体に向かって噴射するノズル口を有する下流スートブロー装置を設けたことを特徴とする。
The invention described in claim 1
Two catalyst bodies made of stacked catalysts are arranged on the upstream side and the downstream side in a reaction vessel that sends exhaust gas from the upstream side to the downstream side, and between the upstream side catalyst body and the downstream side catalyst body. In addition, a catalyst unit with a gap that creates a turbulent flow by rapidly expanding the exhaust gas flow path is installed,
In the upstream part of the catalyst unit, an upstream soot blow device having a nozzle port for injecting soot blow gas to the upstream catalyst body along the exhaust gas flow is provided,
A downstream soot blower having a nozzle port for injecting soot blow gas toward the downstream catalyst body in the reverse direction of the exhaust gas flow is provided in the downstream portion of the catalyst unit.
 請求項2記載の発明は、請求項1記載の発明において、
 反応容器内に、複数の触媒ユニットを排ガスの流送方向に直列に設置し、
 上流側の触媒ユニットの下流側に配置される下流スートブロー装置と、下流側に隣接する触媒ユニットの上流側に配置される上流スートブロー装置を一体化して、上流側面および下流側面にそれぞれノズル口が形成された複合スートブロー装置により構成したことを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
In the reaction vessel, a plurality of catalyst units are installed in series in the exhaust gas flow direction,
A downstream soot blower arranged on the downstream side of the upstream catalyst unit and an upstream soot blower arranged on the upstream side of the catalyst unit adjacent to the downstream side are integrated to form nozzle ports on the upstream side surface and the downstream side surface, respectively. It is characterized by comprising the combined soot blow device.
 請求項3記載の発明は、請求項2記載の構成において、
 上流スートブロー装置および下流スートブロー装置は、排ガス流の横断面に沿って所定間隔をあけて互いに平行に配置される複数のスートブロー管により構成されるとともに、これらスートブロー管の上流側面または下流側面に長さ方向に所定ピッチでノズル口が形成され、
 複合スートブロー装置は、排ガス流の横断面に沿って所定間隔をあけて互いに平行に配置された複数のスートブロー管により構成されるとともに、当該スートブロー管の上流側面と下流側面にそれぞれ複数のノズル口が長さ方向に所定ピッチでそれぞれ形成されたものである。
The invention described in claim 3 is the configuration described in claim 2,
The upstream soot blow device and the downstream soot blow device are constituted by a plurality of soot blow pipes arranged in parallel to each other at a predetermined interval along the cross section of the exhaust gas flow, and have a length on the upstream side surface or the downstream side surface of these soot blow pipes. Nozzle openings are formed at a predetermined pitch in the direction,
The composite soot blow device is composed of a plurality of soot blow pipes arranged in parallel with each other at a predetermined interval along the cross section of the exhaust gas flow, and a plurality of nozzle ports are provided on the upstream side surface and the downstream side surface of the soot blow pipe, respectively. Each is formed at a predetermined pitch in the length direction.
 請求項4記載の発明は、請求項3記載の構成において、
 複合スートブロー管は、下流側面に開口されたノズル口より、上流側面に開口されたノズル口の口径が大きく形成されたことを特徴とする。
According to a fourth aspect of the present invention, in the configuration of the third aspect,
The composite soot blow pipe is characterized in that the diameter of the nozzle port opened on the upstream side surface is larger than the nozzle port opened on the downstream side surface.
 請求項5記載の発明は、
 請求項1乃至4のいずれかに記載の浄化装置の運転方法であって、
 スートブローガスを、ノズル口からそれぞれ一定時間ごとに噴射と停止を繰り返すパルス状に噴射することを特徴とする。
The invention according to claim 5
A method for operating the purification device according to any one of claims 1 to 4,
The soot blow gas is jetted in a pulse form that repeats jetting and stopping at regular intervals from the nozzle opening.
 請求項1記載の発明によれば、空隙をあけて一対の触媒体を上流-下流側に配置した触媒ユニットにより、上流側の触媒体を通過する排ガスが、空隙により流路が急激に拡大されて乱流となり、排ガスが下流側の触媒体の表面に効果的に接触されて、排ガスに含まれる有害物質を効果的に還元浄化される。そして、上流側の触媒体に対して、触媒ユニットの上流部に配置された上流スートブロー装置のノズル口から、排ガスの流送方向に沿って所定時間ごとにスートブローガスを上流側の触媒体に吹き込みダストを除去すると同時に、下流側の触媒体に対して、触媒ユニットの下流部に配置された下流スートブロー装置のノズル口から、排ガスの流送方向と逆方向にスートブローガスを下流側の触媒体に吹き込みダストを除去する。 According to the first aspect of the present invention, the exhaust gas passing through the upstream catalyst body is rapidly expanded in the flow path by the air gap by the catalyst unit having a pair of catalyst bodies arranged upstream and downstream with a gap. As a result, the exhaust gas is effectively brought into contact with the surface of the downstream catalyst body, and the harmful substances contained in the exhaust gas are effectively reduced and purified. Then, the soot blow gas is blown into the upstream catalyst body at predetermined intervals along the exhaust gas flow direction from the nozzle port of the upstream soot blow device disposed upstream of the catalyst unit with respect to the upstream catalyst body. At the same time that dust is removed, soot blow gas is directed to the downstream catalyst body from the nozzle port of the downstream soot blow device disposed downstream of the catalyst unit in the direction opposite to the exhaust gas flow direction. Remove blown dust.
 これにより、空隙をあけて一対の触媒体を配置して、排ガスと触媒の高接触効率と省スペース化を図った触媒ユニットであっても、上流部と下流部の両側から吹き込まれるスートブローガスにより、効果的に触媒体の表面に付着したダストを剥離除去することができる。 Thus, even with a catalyst unit in which a pair of catalyst bodies are arranged with a gap therebetween to achieve high contact efficiency between exhaust gas and catalyst and space saving, the soot blow gas blown from both sides of the upstream and downstream portions Thus, the dust adhering to the surface of the catalyst body can be effectively peeled off.
 請求項2記載の発明によれば、反応容器内に複数の触媒ユニットを直列に設置する場合に、上流部触媒ユニットの下流側の触媒体と、下流部触媒ユニットの上流側の触媒体に対して、スートブローガスをそれぞれ噴射する複合スートブロー装置を設けたので、部品点数や反応容器の占有スペースを削減することができる。 According to the second aspect of the present invention, when a plurality of catalyst units are installed in series in the reaction vessel, the downstream catalyst body of the upstream catalyst unit and the upstream catalyst body of the downstream catalyst unit In addition, since the composite soot blow device for injecting the soot blow gas is provided, the number of parts and the space occupied by the reaction vessel can be reduced.
 請求項3記載の発明によれば、複数のスートブロー管を平行に配置するので、ノズル口を排ガスユニットに臨んで均等に配置することができ、触媒体の表面に付着したダストを良好に剥離除去することができる。 According to the invention described in claim 3, since the plurality of soot blow pipes are arranged in parallel, the nozzle ports can be arranged evenly facing the exhaust gas unit, and the dust adhering to the surface of the catalyst body is peeled off and removed satisfactorily. can do.
 請求項4記載の発明によれば、複合スートブロー管に、上流側面に開口されたノズル口の口径を、下流側面のノズル口の口径より大きく形成したので、排ガスに抗して噴射されるスートブローガスを大きいエネルギーで噴射することができ、触媒体の表面に付着したダストを効果的に除去することができる。 According to the invention described in claim 4, since the diameter of the nozzle port opened on the upstream side surface is formed larger than the diameter of the nozzle port on the downstream side surface in the composite soot blow pipe, the soot blow gas injected against the exhaust gas Can be ejected with large energy, and dust adhering to the surface of the catalyst body can be effectively removed.
 請求項5記載の発明によれば、スートブローガスをパルス状に噴射することにより、触媒体の表面に衝撃波を繰り返して噴射することができ、効果的にダストを剥離除去することができる。 According to the invention described in claim 5, by injecting soot blow gas in a pulse shape, shock waves can be repeatedly injected on the surface of the catalyst body, and dust can be effectively peeled and removed.
本発明の実施例に係るSCR脱硝装置の反応容器の鉛直縦断面図である。It is a vertical longitudinal cross-sectional view of the reaction container of the SCR denitration apparatus which concerns on the Example of this invention. 同反応容器の水平縦断面図である。It is a horizontal longitudinal cross-sectional view of the same reaction container. 反応容器の配置を示す部分拡大縦断面図である。It is a partial expanded longitudinal cross-sectional view which shows arrangement | positioning of reaction container. スートブローガスの噴射状態を示すスートブローガス制御弁のタイムチャートである。It is a time chart of the soot blow gas control valve which shows the injection state of soot blow gas.
 以下、本発明に係る排ガスの浄化装置およびその運転方法の実施例を図面に基づいて説明する。
 図1および図2において、11は、たとえば船舶の大型ディーゼルエンジンから排ガスを排出する排ガス経路に設置されたSCR脱硝装置の反応容器である。排ガス経路で当該反応容器11の上流側に設置された蒸発器(図示せず)内では、排ガス中に還元剤であるアンモニアガスや尿素水が吹き込まれ、排ガス中に還元剤を含む混合ガス(以下、排ガス10という)が反応容器11の入口(上流側)1から出口(下流側)9に流送される。
Embodiments of an exhaust gas purifying apparatus and its operating method according to the present invention will be described below with reference to the drawings.
In FIG. 1 and FIG. 2, 11 is a reaction vessel of an SCR denitration device installed in an exhaust gas path for discharging exhaust gas from a large diesel engine of a ship, for example. In an evaporator (not shown) installed on the upstream side of the reaction vessel 11 in the exhaust gas path, ammonia gas or urea water as a reducing agent is blown into the exhaust gas, and a mixed gas containing the reducing agent in the exhaust gas ( Hereinafter, the exhaust gas 10 is sent from the inlet (upstream side) 1 to the outlet (downstream side) 9 of the reaction vessel 11.
 この反応容器11内には、ハニカム状に積層された触媒により触媒体21,22が形成され、前後一対の触媒体21,22からなる上流側の触媒ユニット31と下流側の触媒ユニット32が、直列に複数組(図では2組)が設置されている。これら触媒ユニット31,32の上流側の触媒体21と下流側の触媒体22は、反応容器11の横断面を覆う断面形状で、所定厚みを有し、上流側の触媒体21と下流側の触媒体22との間にそれぞれ空隙14が形成されている。この空隙14の上下流幅である間隔14Dは、触媒体21,22のハニカム形状の一辺の3倍以上が有効である。この間隔14Dがたとえば24mm以上に設定されることにより、上流側の触媒体21内のガス流路を急激に拡大して排ガス10に乱流を生じさせ、この乱流により排ガスと還元剤をさらに混合撹拌して下流側の触媒体22に導入し、排ガス10と下流側の触媒体22を効果的に接触させて還元反応を促進させる。 In the reaction vessel 11, catalyst bodies 21 and 22 are formed by catalysts stacked in a honeycomb shape, and an upstream side catalyst unit 31 and a downstream side catalyst unit 32 composed of a pair of front and rear catalyst bodies 21 and 22 are provided. Multiple sets (two sets in the figure) are installed in series. The upstream side catalyst body 21 and the downstream side catalyst body 22 of these catalyst units 31 and 32 are cross-sectional shapes that cover the cross section of the reaction vessel 11 and have a predetermined thickness, and the upstream side catalyst body 21 and the downstream side catalyst body 21. Gaps 14 are respectively formed between the catalyst bodies 22. The interval 14D, which is the upstream / downstream width of the gap 14, is effective to be at least three times the one side of the honeycomb shape of the catalyst bodies 21 and 22. By setting the interval 14D to be, for example, 24 mm or more, the gas flow path in the upstream side catalyst body 21 is rapidly expanded to generate turbulent flow in the exhaust gas 10, and the turbulent flow further reduces the exhaust gas and the reducing agent. The mixture is stirred and introduced into the downstream catalyst body 22, and the exhaust gas 10 and the downstream catalyst body 22 are effectively brought into contact with each other to promote the reduction reaction.
 上流側の触媒ユニット31の上流側に配置されてスートブローガスにより当該触媒ユニット31における上流側の触媒体21の表面に付着したダストを除去する上流スートブロー装置51と、下流側の触媒ユニット32の下流側に配置されてスートブローガスにより当該触媒ユニット32における下流側の触媒体22の表面に付着したダストを除去する下流スートブロー装置52とを具備している。さらに互いに隣接する上流部触媒ユニット31と下流部触媒ユニット32の間に、上流側の触媒ユニット31における下流側の触媒体22と、下流側の触媒ユニット32における上流側の触媒体21とにそれぞれスートブローガスを吹き込む複合スートブロー装置53が設けられる。この複合スートブロー装置53は、下流スートブロー装置52と上流スートブロー装置51を一体化したようなものである。 An upstream soot blow device 51 that is disposed upstream of the upstream catalyst unit 31 and removes dust attached to the surface of the upstream catalyst body 21 in the catalyst unit 31 by the soot blow gas, and downstream of the downstream catalyst unit 32 And a downstream soot blower 52 that removes dust attached to the surface of the downstream catalyst body 22 in the catalyst unit 32 by the soot blow gas. Further, between the upstream catalyst unit 31 and the downstream catalyst unit 32 that are adjacent to each other, the downstream catalyst body 22 in the upstream catalyst unit 31 and the upstream catalyst body 21 in the downstream catalyst unit 32, respectively. A composite soot blower 53 for blowing soot blow gas is provided. This composite soot blower 53 is like a downstream soot blower 52 and an upstream soot blower 51 being integrated.
 これら上流スートブロー装置51、下流スートブロー装置52および複合スートブロー装置53は、反応容器1の横断面に沿って所定間隔をあけて互いに平行に配置された複数本のスートブロー管61,62,63により構成されている。各スートブロー管61,62,63は、触媒ユニット31,32の触媒体21,22に向かって均一にスートブローガスを噴射できるように、所定の配設ピッチ61P,62P,63Pで配置されている。 The upstream soot blow device 51, the downstream soot blow device 52, and the composite soot blow device 53 are constituted by a plurality of soot blow pipes 61, 62, 63 arranged in parallel to each other at a predetermined interval along the cross section of the reaction vessel 1. ing. The soot blow pipes 61, 62, 63 are arranged at a predetermined arrangement pitch 61P, 62P, 63P so that the soot blow gas can be uniformly injected toward the catalyst bodies 21, 22 of the catalyst units 31, 32.
 図3に示すように、上流スートブロー装置51は、内径61Dを有するスートブロー管61の下流側面に、所定の口径71dのノズル口71が長さ方向に噴射ピッチ71pで形成されており、各ノズル口71から上流側の触媒ユニット31の触媒体21に向かって、所定の噴射角71αでスートブローガスを噴射する。ここで71Lは、ノズル口71から触媒体21までの噴射距離である。 As shown in FIG. 3, the upstream soot blow device 51 has nozzle ports 71 having a predetermined diameter 71d formed in the length direction at an injection pitch 71p on the downstream side surface of the soot blow pipe 61 having an inner diameter 61D. The soot blow gas is injected from the 71 toward the catalyst body 21 of the upstream catalyst unit 31 at a predetermined injection angle 71α. Here, 71L is an injection distance from the nozzle port 71 to the catalyst body 21.
 また下流スートブロー装置52は、内径62Dを有するスートブロー管62の上流側面に、所定の口径72dのノズル口72が長さ方向に噴射ピッチ72pで形成されており、各ノズル口72から下流側の触媒ユニット32の触媒体22に向かって、所定の噴射角72αでスートブローガスを噴射する。ここで72Lは、ノズル口72から触媒体22までの噴射距離である。 Further, in the downstream soot blower 52, nozzle ports 72 having a predetermined diameter 72d are formed in the longitudinal direction at an injection pitch 72p on the upstream side surface of the soot blow pipe 62 having an inner diameter 62D. Soot blow gas is injected toward the catalyst body 22 of the unit 32 at a predetermined injection angle 72α. Here, 72L is an injection distance from the nozzle port 72 to the catalyst body 22.
 複合スートブロー装置53は、内径63Dを有するスートブロー管63の下流側面に、所定の口径74dのノズル口74が長さ方向に所定の噴射ピッチ74pで形成される。そして、各ノズル口74から下流側の触媒ユニット32の触媒体21に向かって、所定の噴射角74αでスートブローガスを噴射する。ここで74Lは、ノズル口74から触媒体21までの噴射距離である。またスートブロー管63の上流側面に、所定の口径73dのノズル口73が長さ方向に所定の噴射ピッチ73pで形成される。そして、各ノズル口73から上流部触媒ユニット31の触媒体22に向かって、排ガス10と逆方向に所定の噴射角73αでスートブローガスを噴射する。ここで73Lは、ノズル口73から触媒体22までの噴射距離である。 In the composite soot blow device 53, nozzle ports 74 having a predetermined diameter 74d are formed at a predetermined injection pitch 74p in the length direction on the downstream side surface of the soot blow pipe 63 having an inner diameter 63D. Then, soot blow gas is injected at a predetermined injection angle 74α from each nozzle port 74 toward the catalyst body 21 of the catalyst unit 32 on the downstream side. Here, 74L is an injection distance from the nozzle port 74 to the catalyst body 21. Further, on the upstream side surface of the soot blow pipe 63, nozzle ports 73 having a predetermined diameter 73d are formed in the length direction at a predetermined injection pitch 73p. Then, soot blow gas is injected from each nozzle port 73 toward the catalyst body 22 of the upstream catalyst unit 31 in a direction opposite to the exhaust gas 10 at a predetermined injection angle 73α. Here, 73 </ b> L is an injection distance from the nozzle port 73 to the catalyst body 22.
 上記構造において、反応容器11が断面同一の直状で、触媒ユニット31,32が同一形状および仕様であり、かつ3つのスートブロー管61,62,63にそれぞれ供給するスートブローガスを、同一の供給圧および供給量に設定している場合、排ガス10と同一方向にスートブローガスを噴射する上流スートブロー装置51および複合スートブロー装置53について、各スートブロー管61,63の配設ピッチ61P,63Pが等しく(61P=63P)、各ノズル口71,73の口径71d,74dが等しく(71d=74d)、噴射角71α,74αが等しく(71α=74α)、噴射距離71L,74Lが等しく(71L=74L)なるように形成している。しかし、スートブローガスの供給圧、供給量が互いに異なる場合、または、反応容器11の形状や触媒ユニット31,32の仕様が異なる場合には、これらが互いに異なっていてもよい。 In the above structure, the reaction vessel 11 has a straight shape with the same cross section, the catalyst units 31 and 32 have the same shape and specifications, and the soot blow gas supplied to the three soot blow pipes 61, 62, and 63 is supplied with the same supply pressure. When the supply amount is set, with respect to the upstream soot blow device 51 and the composite soot blow device 53 that inject the soot blow gas in the same direction as the exhaust gas 10, the arrangement pitches 61P and 63P of the soot blow pipes 61 and 63 are equal (61P = 63P), the diameters 71d and 74d of the nozzle openings 71 and 73 are equal (71d = 74d), the injection angles 71α and 74α are equal (71α = 74α), and the injection distances 71L and 74L are equal (71L = 74L). Forming. However, when the supply pressure and supply amount of the soot blow gas are different from each other, or when the shape of the reaction vessel 11 and the specifications of the catalyst units 31 and 32 are different, these may be different from each other.
 同様に、排ガス10と逆方向にスートブローガスを噴射する複合、スートブロー装置53および下流スートブロー装置52について、各ノズル口73,72の口径73d,72dが等しく(73d=72d)、噴射角73α,72αが等しく(73α=72α)、噴射距離73L,72Lが等しく(73L=72L)なるように形成している。しかし、スートブローガスの供給圧、供給量が互いに異なる場合、または、反応容器11の形状や触媒ユニット31,32の仕様が異なる場合には、これらが互いに異なっていてもよい。 Similarly, in the composite soot blow device 53 and the downstream soot blow device 52 that inject the soot blow gas in the opposite direction to the exhaust gas 10, the diameters 73d and 72d of the nozzle ports 73 and 72 are equal (73d = 72d), and the injection angles 73α and 72α. Are equal (73α = 72α), and the injection distances 73L and 72L are equal (73L = 72L). However, when the supply pressure and supply amount of the soot blow gas are different from each other, or when the shape of the reaction vessel 11 and the specifications of the catalyst units 31 and 32 are different, these may be different from each other.
 ただし、複合スートブロー装置53において排ガス10と同一方向に噴射するノズル口74および逆方向に噴射するノズル口73は、同一のスートブロー管63に形成され、かつスートブローガスの供給圧、供給量が同一であることから、排ガス10と同一方向に噴射するノズル口74の口径74dに対して、排ガス10と逆方向に噴射するノズル口73の口径73dが大きく形成するほうが好適である(74d<73d)。これは、排ガス10と逆方向にスートブローガスを噴射する場合、排ガス10の持つ運動エネルギーに逆らってスートブローガスを噴射するため、排ガス中を逆流する運動エネルギーによりダストを剥離除去する運動エネルギーが低下し、その剥離除去能力がノズル口74から噴射されるスートブローガスに比較して低下するからである。この場合、スートブロー管63に形成される口径74d,73dの面積比は、たとえば口径74dが1.0とすると、口径73dは1.0を超えて1.4以下に設定される。 However, in the composite soot blower 53, the nozzle port 74 that injects in the same direction as the exhaust gas 10 and the nozzle port 73 that injects in the opposite direction are formed in the same soot blow pipe 63, and the supply pressure and supply amount of the soot blow gas are the same. For this reason, it is preferable that the diameter 73d of the nozzle port 73 that injects in the opposite direction to the exhaust gas 10 is larger than the diameter 74d of the nozzle port 74 that injects in the same direction as the exhaust gas 10 (74d <73d). This is because when soot blow gas is injected in the direction opposite to the exhaust gas 10, soot blow gas is injected against the kinetic energy of the exhaust gas 10, so the kinetic energy for separating and removing dust is reduced by the kinetic energy flowing backward in the exhaust gas. This is because the peeling / removing ability is lower than that of the soot blow gas ejected from the nozzle port 74. In this case, the area ratio of the bore diameters 74d and 73d formed in the soot blow pipe 63 is set to 1.4 or less, exceeding 1.0, for example, when the bore diameter 74d is 1.0.
 もちろん、排ガス10の持つ運動エネルギーに対して、排ガス10と逆方向に噴射するスートブローガスの持つ運動エネルギーが十分に大きい場合には、逆方向に噴射するスートブローガスによるダストの剥離除去能力の低下が極めて小さい。したがって、ノズル口74の口径74dとノズル口73の口径73dが同一であってもよく、その面積比は、74d:73d=1:1に設定される。 Of course, when the kinetic energy of the soot blow gas injected in the opposite direction to the exhaust gas 10 is sufficiently large relative to the kinetic energy of the exhaust gas 10, the reduction of the dust separation and removal capability due to the soot blow gas injected in the reverse direction is reduced. Very small. Therefore, the diameter 74d of the nozzle port 74 and the diameter 73d of the nozzle port 73 may be the same, and the area ratio is set to 74d: 73d = 1: 1.
 そして、複合スートブロー装置53のスートブロー管63の内径63Dは、スートブローガスの供給量に対応して、上流部および下流部のスートブロー管61,62の内径61D,62Dより、十分に大きく設定される。また、上流スートブロー装置51、下流スートブロー装置52および複合スートブロー装置53の各スートブロー管61,62,63は、船舶機関系のスートブローガス供給源(エアレシーバタンク)からスートブローガス供給管18が接続されている。このスートブローガス供給管18により供給されるスートブローガスの圧力は、0.3~0.6(MPaG)に設定される。そして、スートブローガス供給管18には、スートブロー管61,62,63毎に、機関制御装置(図示せず)に設けられたスートブロー制御装置19により操作されるスートブロー制御弁41,42,43がそれぞれ介在されている。これらスートブロー制御弁41,42,43により、スートブロー装置51,52,53毎にスートブローガスの噴射タイミングや噴射時間が制御される。 The inner diameter 63D of the soot blow pipe 63 of the composite soot blow device 53 is set sufficiently larger than the inner diameters 61D and 62D of the upstream and downstream soot blow pipes 61 and 62 corresponding to the supply amount of the soot blow gas. The soot blow pipes 61, 62, 63 of the upstream soot blow apparatus 51, the downstream soot blow apparatus 52, and the composite soot blow apparatus 53 are connected to the soot blow gas supply pipe 18 from a soot blow gas supply source (air receiver tank) of the ship engine system. Yes. The pressure of the soot blow gas supplied through the soot blow gas supply pipe 18 is set to 0.3 to 0.6 (MPaG). The soot blow gas supply pipe 18 has soot blow control valves 41, 42, 43 operated by a soot blow control device 19 provided in an engine control device (not shown) for each of the soot blow pipes 61, 62, 63, respectively. Intervened. The soot blow control valves 41, 42, 43 control the soot blow gas injection timing and injection time for each of the soot blow devices 51, 52, 53.
 上記構成における運転動作を、図1および図4を参照して説明する。
 ディーゼルエンジンの運転中に、SCR脱硝装置で排ガス中に、還元剤が吹き込まれ、反応容器11に導入されて排ガス10と触媒面の接触によりNOが還元除去される。反応容器11内では、前後一対の触媒ユニット31,32において、空隙14をあけて配置された一対の触媒体21,22に排ガス10が順次通過されることにより、空隙14でハニカム状の通路から開放された排ガス10に乱流が生じ、連続した触媒体に比較して、排ガス10と触媒体21,22の接触率が高まって高い反応効率でNOが還元除去される。
The operation in the above configuration will be described with reference to FIGS.
During operation of the diesel engine, a reducing agent is blown into the exhaust gas by the SCR denitration device, and is introduced into the reaction vessel 11 so that NO X is reduced and removed by contact between the exhaust gas 10 and the catalyst surface. In the reaction vessel 11, the exhaust gas 10 is sequentially passed through a pair of catalyst bodies 21, 22 arranged with a gap 14 in the pair of front and rear catalyst units 31, 32, thereby allowing the gap 14 to pass through the honeycomb-shaped passage. A turbulent flow is generated in the released exhaust gas 10, and the contact rate between the exhaust gas 10 and the catalyst bodies 21 and 22 is increased as compared with a continuous catalyst body, and NO X is reduced and removed with high reaction efficiency.
 そして図4に示すように、ディーゼルエンジンの運転中に、所定の運転時間T、たとえば60~120分ごとに、スートブロー制御装置19によりスートブロー制御弁41,43,42がそれぞれ操作されて、各スートブロー装置51,52,53から反応容器11内に所定圧のスートブローガスが所定量、触媒ユニット51,52に向かって吹き込まれる。これにより、各触媒体21,22の表面に付着したダストが剥離除去される。この時、スートブロー制御弁41,43,42により、スートブローガスは、ノズル口71,73,74,72からそれぞれ一定時間ごと(たとえば0.5~2秒ごと)に噴射と停止を複数回繰り返すパルス状に噴射される。このスートブローガスのパルス状噴射による衝撃波により、触媒体21,22の表面に付着したダストを効果的に剥離除去することができる。 As shown in FIG. 4, during the operation of the diesel engine, the soot blow control valve 41, 43, 42 is operated by the soot blow control device 19 every predetermined operating time T, for example, every 60 to 120 minutes. A predetermined amount of soot blow gas of a predetermined pressure is blown into the reaction vessel 11 from the devices 51, 52, 53 toward the catalyst units 51, 52. Thereby, the dust adhering to the surface of each catalyst body 21 and 22 is peeled and removed. At this time, the soot blow control valve 41, 43, 42 causes the soot blow gas to be injected from the nozzle ports 71, 73, 74, 72 at intervals of a predetermined time (for example, every 0.5 to 2 seconds), and a pulse that repeats multiple times. Is injected into the shape. Dust adhering to the surfaces of the catalyst bodies 21 and 22 can be effectively peeled and removed by the shock wave generated by the pulsed injection of the soot blow gas.
 なお、ここで、原則として、エアレシーバタンクの容量に対応して、スートブロー制御弁41,42,43を順次操作して、スートブロー管61,62,63毎にスートブローガスの噴射を順次行う。もちろんエアレシーバタンクの容量が十分であれば、スートブロー管61,62,63のうち複数本または全部を同時に、スートブローガスを噴射することもできる。 Here, in principle, the soot blow control valves 41, 42, 43 are sequentially operated in accordance with the capacity of the air receiver tank, and soot blow gas is sequentially injected into the soot blow pipes 61, 62, 63. Of course, if the capacity of the air receiver tank is sufficient, a plurality or all of the soot blow pipes 61, 62, 63 can be simultaneously injected with the soot blow gas.
 上記実施例によれば、上流-下流側に空隙14をあけて一対の触媒体21,22を配置した触媒ユニット31,32により、上流側の触媒体21を通過する排ガス10が、空隙14により流路が急激に拡大されて乱流となり、下流側の触媒体22の表面に効果的に接触されて、排ガス10に含まれるNOが効果的に還元除去される。そして、これらの触媒体21,22の表面に付着したダストに対して、触媒ユニット31,32の上流部31に配置された上流スートブロー装置51および複合スートブロー装置53のノズル口71,74から、スートブローガスを、排ガス10の流送方向に沿って所定時間ごとに上流側の触媒体21に吹き込み、触媒ユニット31,32の上流側の触媒体21の表面に付着したダストを除去する。同時に、触媒ユニット31,32の下流部に配置された複合スートブロー装置53および下流スートブロー装置52のノズル口73,72から、スートブローガスを排ガス10の流送方向と逆方向に下流側の触媒体22に吹き込み、触媒ユニット31,32の下流側の触媒体22の表面に付着したダストを除去する。したがって、空隙14をあけて上流側、下流側に触媒体21,22を配置した触媒ユニット31,32であっても、上流部と下流部の両側から吹き込まれるスートブローガスにより、触媒体21,22の表面に付着したダストをそれぞれ効果的に剥離除去することができる。 According to the above embodiment, the exhaust gas 10 passing through the upstream catalyst body 21 is caused to pass through the air gap 14 by the catalyst units 31 and 32 having the pair of catalyst bodies 21 and 22 arranged with the air gap 14 between the upstream and downstream sides. passage is suddenly enlarged becomes turbulent, is effectively in contact with the surface of the downstream side of the catalyst 22, NO X contained in the exhaust gas 10 is effectively reduced and removed. The dust adhering to the surfaces of the catalyst bodies 21 and 22 is applied to the soot blower from the nozzle ports 71 and 74 of the upstream soot blower 51 and the composite soot blower 53 disposed in the upstream part 31 of the catalyst units 31 and 32. Gas is blown into the upstream catalytic body 21 along the flow direction of the exhaust gas 10 every predetermined time, and dust adhering to the surface of the upstream catalytic body 21 of the catalyst units 31 and 32 is removed. At the same time, the soot blow gas is sent downstream from the nozzle ports 73 and 72 of the composite soot blower 53 and the downstream soot blow device 52 disposed downstream of the catalyst units 31 and 32 in the direction opposite to the flow direction of the exhaust gas 10. The dust adhering to the surface of the catalyst body 22 on the downstream side of the catalyst units 31 and 32 is removed. Accordingly, even in the catalyst units 31 and 32 in which the catalyst bodies 21 and 22 are arranged on the upstream side and the downstream side with the gap 14 therebetween, the catalyst bodies 21 and 22 are caused by the soot blow gas blown from both sides of the upstream portion and the downstream portion. The dust adhering to the surface of each can be effectively peeled and removed.
 また、反応容器11内に複数の触媒ユニット31,32を直列に設置する場合、上流部触媒ユニット31の下流側の触媒体22と、下流部触媒ユニット32の上流側の触媒体21に対して、スートブローガスをそれぞれ噴射する複合スートブロー装置53を設けたので、部品点数や反応容器11の占有スペースを削減することができる。 When a plurality of catalyst units 31 and 32 are installed in series in the reaction vessel 11, the catalyst body 22 on the downstream side of the upstream catalyst unit 31 and the catalyst body 21 on the upstream side of the downstream catalyst unit 32 are arranged. Since the soot blow device 53 for injecting soot blow gas is provided, the number of parts and the space occupied by the reaction vessel 11 can be reduced.
 さらに、複数のスートブロー管61,62,63をそれぞれ平行に配置するので、ノズル口71,72,73を触媒ユニット31,32に臨んで均等に配置することができ、触媒体21,22の表面に付着したダストを良好かつ均一に剥離除去することができる。 Further, since the plurality of soot blow pipes 61, 62, 63 are arranged in parallel, the nozzle ports 71, 72, 73 can be arranged evenly facing the catalyst units 31, 32, and the surfaces of the catalyst bodies 21, 22 are arranged. The dust adhering to the surface can be peeled and removed in a good and uniform manner.
 さらにまた、複合スートブロー管63に、上流側面に開口されたノズル口73の口径73dを、下流側面のノズル口74の口径74dより大きく形成したので、排ガス10に抗して噴射されるスートブローガスを大きいエネルギーで噴射することができ、触媒体22,21の表面に付着したダストを効果的に除去することができる。 Furthermore, since the diameter 73d of the nozzle port 73 opened on the upstream side surface is formed in the composite soot blow pipe 63 larger than the diameter 74d of the nozzle port 74 on the downstream side surface, the soot blow gas injected against the exhaust gas 10 is A large amount of energy can be injected, and dust adhering to the surfaces of the catalyst bodies 22 and 21 can be effectively removed.
 またスートブロー管61,62,63のノズル口71,74,73,72からそれぞれ一定時間ごとに噴射されるスートブローガスを、噴射と停止を複数回繰り返すパルス状としたことにより、触媒体21,22の表面に付着したダストに対して、スートブローガスによる衝撃波を繰り返し与え、効果的にダストを剥離除去することができる。 In addition, the soot blow gas injected from the nozzle ports 71, 74, 73, 72 of the soot blow pipes 61, 62, 63 at regular intervals is pulsed to repeat injection and stop a plurality of times. The shock wave by soot blow gas is repeatedly given to the dust adhering to the surface, and the dust can be effectively peeled and removed.
 なお、上記実施例では、上流側と下流側に触媒ユニット31,32を配置したSCR脱硝装置で説明したが、3つ以上の触媒ユニットを直列に配置したものでもよい。
 また上記実施例では、SCR脱硝装置の脱硝触媒に対するスートブローについて説明したが、たとえばガソリンエンジンの排ガス10の硫黄酸化物を除去する脱硫触媒などに対するスートブローや他の内燃機関の排ガスラインに設けられる触媒に対するスートブロー装置であってもよい。
In the above embodiment, the SCR denitration apparatus in which the catalyst units 31 and 32 are arranged on the upstream side and the downstream side has been described. However, three or more catalyst units may be arranged in series.
In the above embodiment, the soot blow for the denitration catalyst of the SCR denitration apparatus has been described. For example, the soot blow for the desulfurization catalyst for removing the sulfur oxide of the exhaust gas 10 of the gasoline engine or the catalyst provided in the exhaust gas line of another internal combustion engine. A soot blower may be used.

Claims (5)

  1.  上流側から下流側に排ガスを流送する反応容器内に、積層された触媒からなる2つの触媒体を上流側と下流側に配置するとともに、上流側の触媒体と下流側の触媒体の間に、排ガスの流路を急激に拡大して乱流を生じさせる空隙を形成した触媒ユニットを設置し、
     触媒ユニットの上流部に、スートブローガスを排ガス流に沿って上流側の触媒体に噴射するノズル口を有する上流スートブロー装置を設け、
     触媒ユニットの下流部に、スートブローガスを排ガス流の逆方向に下流側の触媒体に向かって噴射するノズル口を有する下流スートブロー装置を設けた
     ことを特徴とする排ガスの浄化装置。
    Two catalyst bodies made of stacked catalysts are arranged on the upstream side and the downstream side in a reaction vessel that sends exhaust gas from the upstream side to the downstream side, and between the upstream side catalyst body and the downstream side catalyst body. In addition, a catalyst unit with a gap that creates a turbulent flow by rapidly expanding the exhaust gas flow path is installed,
    In the upstream part of the catalyst unit, an upstream soot blow device having a nozzle port for injecting soot blow gas to the upstream catalyst body along the exhaust gas flow is provided,
    An exhaust gas purifying apparatus comprising a downstream soot blow device having a nozzle port for injecting soot blow gas toward a downstream catalyst body in a reverse direction of the exhaust gas flow in a downstream portion of the catalyst unit.
  2.  反応容器内に、複数の触媒ユニットを排ガスの流送方向に直列に設置し、
     上流側の触媒ユニットの下流側に配置される下流スートブロー装置と、下流側に隣接する触媒ユニットの上流側に配置される上流スートブロー装置を一体化して、上流側面および下流側面にそれぞれノズル口が形成された複合スートブロー装置により構成した
     ことを特徴とする請求項1記載の排ガスの浄化装置。
    In the reaction vessel, a plurality of catalyst units are installed in series in the exhaust gas flow direction,
    A downstream soot blower arranged on the downstream side of the upstream catalyst unit and an upstream soot blower arranged on the upstream side of the catalyst unit adjacent to the downstream side are integrated to form nozzle ports on the upstream side surface and the downstream side surface, respectively. The exhaust gas purifying device according to claim 1, wherein the exhaust gas purifying device is constituted by a combined soot blower.
  3.  上流スートブロー装置および下流スートブロー装置は、排ガス流の横断面に沿って所定間隔をあけて互いに平行に配置される複数のスートブロー管により構成されるとともに、これらスートブロー管の上流側面または下流側面に長さ方向に所定ピッチでノズル口が形成され、
     複合スートブロー装置は、排ガス流の横断面に沿って所定間隔をあけて互いに平行に配置された複数のスートブロー管により構成されるとともに、当該スートブロー管の上流側面と下流側面にそれぞれ複数のノズル口が長さ方向に所定ピッチでそれぞれ形成された
     ことを特徴とする請求項2記載の排ガスの浄化装置。
    The upstream soot blow device and the downstream soot blow device are constituted by a plurality of soot blow pipes arranged in parallel to each other at a predetermined interval along the cross section of the exhaust gas flow, and have a length on the upstream side surface or the downstream side surface of these soot blow pipes. Nozzle openings are formed at a predetermined pitch in the direction,
    The composite soot blow device is composed of a plurality of soot blow pipes arranged in parallel with each other at a predetermined interval along the cross section of the exhaust gas flow, and a plurality of nozzle ports are provided on the upstream side surface and the downstream side surface of the soot blow pipe, respectively. The exhaust gas purifier according to claim 2, wherein the exhaust gas purifier is formed at a predetermined pitch in the length direction.
  4.  複合スートブロー管は、下流側面に開口されたノズル口より、上流側面に開口されたノズル口の口径が大きく形成された
     ことを特徴とする請求項3記載の排ガスの浄化装置。
    The exhaust gas purifying apparatus according to claim 3, wherein the composite soot blow pipe is formed such that a diameter of a nozzle port opened on an upstream side surface is larger than a nozzle port opened on a downstream side surface.
  5.  請求項1乃至4のいずれかに記載の浄化装置の運転方法であって、
     スートブローガスを、ノズル口からそれぞれ一定時間ごとに噴射と停止を繰り返すパルス状に噴射する
     ことを特徴とする排ガスの浄化装置の運転方法。
    A method for operating the purification device according to any one of claims 1 to 4,
    A method for operating an exhaust gas purifying apparatus, characterized in that soot blow gas is injected in a pulse form that repeats injection and stop at regular intervals from a nozzle port.
PCT/JP2015/057225 2014-03-31 2015-03-12 Device for purifying exhaust gas, and method for operating same WO2015151744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070711A JP2015190458A (en) 2014-03-31 2014-03-31 Exhaust emission control device and operating method thereof
JP2014-070711 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015151744A1 true WO2015151744A1 (en) 2015-10-08

Family

ID=54240076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057225 WO2015151744A1 (en) 2014-03-31 2015-03-12 Device for purifying exhaust gas, and method for operating same

Country Status (2)

Country Link
JP (1) JP2015190458A (en)
WO (1) WO2015151744A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087898A (en) * 2017-09-22 2018-05-29 张永正 More single holes are same to press shock wave soot blower
DE102018214922A1 (en) * 2018-09-03 2020-03-05 Continental Automotive Gmbh Exhaust system
CN111905566A (en) * 2020-07-16 2020-11-10 无锡东方船研高性能船艇工程有限公司 Soot blowing device and soot blowing method for marine SCR reactor
CN115487674A (en) * 2022-09-27 2022-12-20 昆岳互联环境技术(江苏)有限公司 Be suitable for clean soot blower system of high dust SCR denitration catalyst jam

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322153B2 (en) * 2015-03-18 2018-05-09 ヤンマー株式会社 Ship exhaust gas purification system
DE102016003743A1 (en) * 2016-03-31 2017-10-05 Man Diesel & Turbo Se Exhaust after treatment system and internal combustion engine
DE102017110685A1 (en) * 2017-05-17 2018-11-22 Man Diesel & Turbo Se Exhaust after treatment system and internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147672A (en) * 1977-05-30 1978-12-22 Ishikawajima Harima Heavy Ind Co Ltd Horizontal reactor for fixed bed type dry nitration
JPS55141539U (en) * 1979-03-27 1980-10-09
JPH0447113A (en) * 1990-06-13 1992-02-17 Nissan Motor Co Ltd Exhaust gas purification device for engine
JPH05228375A (en) * 1992-02-20 1993-09-07 Toyota Motor Corp Carrier structure for exhaust gas purifying catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147672A (en) * 1977-05-30 1978-12-22 Ishikawajima Harima Heavy Ind Co Ltd Horizontal reactor for fixed bed type dry nitration
JPS55141539U (en) * 1979-03-27 1980-10-09
JPH0447113A (en) * 1990-06-13 1992-02-17 Nissan Motor Co Ltd Exhaust gas purification device for engine
JPH05228375A (en) * 1992-02-20 1993-09-07 Toyota Motor Corp Carrier structure for exhaust gas purifying catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087898A (en) * 2017-09-22 2018-05-29 张永正 More single holes are same to press shock wave soot blower
DE102018214922A1 (en) * 2018-09-03 2020-03-05 Continental Automotive Gmbh Exhaust system
CN111905566A (en) * 2020-07-16 2020-11-10 无锡东方船研高性能船艇工程有限公司 Soot blowing device and soot blowing method for marine SCR reactor
CN115487674A (en) * 2022-09-27 2022-12-20 昆岳互联环境技术(江苏)有限公司 Be suitable for clean soot blower system of high dust SCR denitration catalyst jam

Also Published As

Publication number Publication date
JP2015190458A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
WO2015151744A1 (en) Device for purifying exhaust gas, and method for operating same
EP2841732B1 (en) Exhaust mixer, emissions cleaning module and method
JP5781290B2 (en) Exhaust gas purification device
JP5997250B2 (en) Compact exhaust gas treatment device having a mixing zone and method for mixing exhaust gas
JP6419672B2 (en) Ship exhaust gas purification system
KR101983520B1 (en) Exhaust gas purifier of ship
WO2016158993A1 (en) Exhaust purification unit
KR100836416B1 (en) Dispersing apparatus for urea solution of vehicle
JP4930796B2 (en) Exhaust gas purification device and exhaust pipe for diesel engine
WO2012118331A2 (en) System for denitrifying exhaust gas having a noise-damping structure
ES2827479T3 (en) Method and system for the removal of soot, ash and heavy metals as particulate matter from engine exhaust gas
WO2017170108A1 (en) Exhaust purification system
US8850801B2 (en) Catalytic converter and muffler
KR101497468B1 (en) Apparatus for Treating Exhaust Gas and Toxic Substance Reduction System of Treating Exhaust Gas
JP2016205188A (en) Exhaust emission control unit
JP6086529B2 (en) Catalyst activation device and ship equipped with catalyst activation device
KR102047184B1 (en) Mixer for catalytic reduction system
KR101684624B1 (en) Catalytic Reactor with rotating typed catalyst cleaner
US20230321592A1 (en) Scrubber for washing exhaust fumes generated by internal combustion engines
JP6326580B2 (en) Exhaust gas purification apparatus equipped with NOx reduction catalyst means
JP2005256615A (en) Exhaust emission control device for engine
KR101818264B1 (en) Apparatus to reduce exhaust gas
TW202136637A (en) Exhaust gas denitration device capable of reducing an installation space without causing an increase in pressure loss of the entire exhaust gas denitration device
KR101681060B1 (en) Catalytic Reactor with translational catalyst cleaner
WO2019194169A1 (en) Exhaust pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772889

Country of ref document: EP

Kind code of ref document: A1