WO2015151518A1 - Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery - Google Patents

Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery Download PDF

Info

Publication number
WO2015151518A1
WO2015151518A1 PCT/JP2015/001867 JP2015001867W WO2015151518A1 WO 2015151518 A1 WO2015151518 A1 WO 2015151518A1 JP 2015001867 W JP2015001867 W JP 2015001867W WO 2015151518 A1 WO2015151518 A1 WO 2015151518A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
ion secondary
lithium ion
monomer
lithium
Prior art date
Application number
PCT/JP2015/001867
Other languages
French (fr)
Japanese (ja)
Inventor
鍵 王
郁哉 召田
真弓 福峯
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2016511392A priority Critical patent/JP6477690B2/en
Priority to CN201580014889.1A priority patent/CN106104874B/en
Priority to KR1020167025879A priority patent/KR102255281B1/en
Publication of WO2015151518A1 publication Critical patent/WO2015151518A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for a lithium ion secondary battery electrode, a slurry composition for a lithium ion secondary battery electrode, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of lithium ion secondary batteries.
  • the electrode for lithium ion secondary batteries is normally provided with the electrical power collector and the electrode compound-material layer formed on the electrical power collector.
  • the electrode mixture layer is made of, for example, a slurry composition obtained by dispersing a binder composition containing a polymer as a binder and an electrode active material in a dispersion medium such as an organic solvent or water. It is formed by coating on top and drying to bind an electrode active material or the like with a polymer. Therefore, in order to achieve further performance improvement of the lithium ion secondary battery, attempts have been made to improve the binder composition and the slurry composition used for forming the electrode.
  • a binder composition containing a polymer containing a plurality of monomer units in a specific ratio for the production of an electrode such as a lithium ion battery.
  • an electrode such as a lithium ion battery.
  • Patent Document 1 it is derived from an ethylenically unsaturated compound such as a vinyl monomer containing 80 to 99.9% by weight of a repeating unit derived from a monomer containing a nitrile group and having a carboxylic acid group.
  • a polymer containing 0.1 to 20% by weight of a repeating unit to the binder composition as a binder, the stability of the binder composition and the slurry composition prepared using the binder composition is improved.
  • the cycle characteristics of a secondary battery produced using the binder composition can be improved.
  • the conventional binder composition has room for improvement in that the internal resistance of a lithium ion secondary battery produced using the binder composition is high.
  • an object of the present invention is to provide a binder composition for a lithium ion secondary battery electrode that can produce a lithium ion secondary battery with low internal resistance and is excellent in both productivity and binding properties.
  • Another object of the present invention is to provide a slurry composition for a lithium ion secondary battery electrode that can prepare an electrode for a lithium ion secondary battery that has low internal resistance and excellent peel strength.
  • an object of the present invention is to provide an electrode for a lithium ion secondary battery having low internal resistance and excellent peel strength.
  • Another object of the present invention is to provide a lithium ion secondary battery with low internal resistance.
  • the present inventors have intensively studied for the purpose of solving the above problems.
  • the inventors of the present invention can prepare a polymer obtained by polymerizing a monomer composed of a specific compound at a specific ratio with a high binding property and high productivity, and also with lithium ions. It has been found that when used in the production of a secondary battery, the internal resistance can be reduced, and the present invention has been completed.
  • the present invention aims to advantageously solve the above-mentioned problems, and the binder composition for lithium ion secondary battery electrodes of the present invention comprises an unsaturated acid lithium salt (monomer a) 10. Polymerize a monomer composition containing ⁇ 80 mass%, unsaturated acid (monomer b) 5 ⁇ 40 mass%, and ⁇ , ⁇ -unsaturated nitrile (monomer c) 10 ⁇ 85 mass%. And a dispersion medium.
  • polymerization is performed using a lithium salt of an unsaturated acid (monomer a), an unsaturated acid (monomer b), and an ⁇ , ⁇ -unsaturated nitrile (monomer c) in a predetermined ratio.
  • a polymer having a high binding property and a binder composition for a lithium ion secondary battery electrode containing the polymer can be prepared with high productivity.
  • a lithium ion secondary battery with low internal resistance can be manufactured.
  • the ⁇ , ⁇ -unsaturated nitrile (monomer c) is preferably acrylonitrile. This is because when the ⁇ , ⁇ -unsaturated nitrile (monomer c) is acrylonitrile, the mechanical strength and oxidation resistance of the resulting polymer can be improved.
  • the slurry composition for lithium ion secondary battery electrodes of this invention is the binder composition for lithium ion secondary battery electrodes mentioned above, and An electrode active material is included.
  • the electrode for lithium ion secondary batteries having excellent peel strength and low internal resistance. can be prepared.
  • the slurry composition for a lithium ion secondary battery electrode of the present invention further includes a polymer other than the above-described polymer.
  • a polymer other than the above-mentioned polymer in the slurry composition for lithium ion secondary battery electrodes the adhesion between the electrode mixture layer and the current collector and the output characteristics of the resulting lithium ion secondary battery are improved. It is because it becomes possible to make it.
  • the polymer other than the above-described polymer is preferably a fluorine-containing polymer.
  • the fluorine-containing polymer in the slurry composition for lithium ion secondary battery electrodes, it is possible to further improve the adhesion between the electrode mixture layer and the current collector and the output characteristics of the resulting lithium ion secondary battery. This is because it becomes possible.
  • the electrode for lithium ion secondary batteries of this invention is prepared using the slurry composition for lithium ion secondary battery electrodes mentioned above.
  • the electrode mixture layer is provided on a current collector.
  • Such an electrode for a lithium ion secondary battery has a low internal resistance and an excellent peel strength.
  • the lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, electrolyte solution, and a separator, At least one of the said positive electrode and negative electrode Is an electrode for a lithium ion secondary battery as described above.
  • a lithium ion secondary battery has a low internal resistance.
  • the lithium ion secondary battery with low internal resistance can be manufactured, and the binder composition for lithium ion secondary battery electrodes which is excellent in both productivity and binding property can be provided.
  • the slurry composition for lithium ion secondary battery electrodes which can prepare the electrode for lithium ion secondary batteries which is low in internal resistance and excellent in peel strength can be provided.
  • an electrode for a lithium ion secondary battery having low internal resistance and excellent peel strength can be provided.
  • a lithium ion secondary battery with low internal resistance can be provided.
  • the binder composition for lithium ion secondary battery electrodes of the present invention can be used when preparing a slurry composition for lithium ion secondary battery electrodes.
  • the slurry composition for lithium ion secondary battery electrodes of this invention is prepared using the binder composition for lithium ion secondary battery electrodes and electrode active material of this invention, and manufactures the electrode of a lithium ion secondary battery. Used when.
  • the electrode for lithium ion secondary batteries of this invention can be manufactured using the slurry composition for lithium ion secondary battery electrodes of this invention.
  • the lithium ion secondary battery of the present invention is characterized by using the electrode for a lithium ion secondary battery of the present invention.
  • the binder composition for a lithium ion secondary battery electrode of the present invention comprises 10 to 80% by mass of a lithium salt of an unsaturated acid (monomer a), 5 to 40% by mass of an unsaturated acid (monomer b), It contains a polymer obtained by polymerizing a monomer composition containing 10 to 85% by mass of an ⁇ , ⁇ -unsaturated nitrile (monomer c), and a dispersion medium.
  • the binder composition for lithium ion secondary battery electrodes of this invention may contain other components other than the said polymer and a dispersion medium arbitrarily.
  • the polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention is produced using the binder composition, the polymer contained in the electrode mixture layer in the produced electrode (for example, It is a component which can hold
  • the polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention includes, as monomers, a lithium salt of an unsaturated acid (monomer a) and an unsaturated acid (monomer b).
  • the monomer composition may optionally contain a monomer other than the above monomers (hereinafter sometimes referred to as “other monomers”).
  • other monomers a monomer other than the above monomers.
  • a unit derived from a lithium salt of an unsaturated acid (monomer a) and an unsaturated acid (monomer b) The lithium ion in the unit derived from the lithium salt of the unsaturated acid is coordinated with a part of the acid group in the unit derived from the unsaturated acid. Bond to form a cross-linked structure.
  • the obtained polymer can exhibit excellent binding properties, and when used in the production of a lithium ion secondary battery, the battery characteristics of the lithium ion secondary battery (for example, cycle characteristics and high temperature storage characteristics). ) Can be improved.
  • the polymer which the binder composition for lithium ion secondary battery electrodes of this invention contains contains the unit derived from the lithium salt (monomer a) of an unsaturated acid, lithium ion conductivity is made. Are better. Therefore, if a binder composition containing a polymer is used, the internal resistance of the electrode and the lithium ion secondary battery can be reduced.
  • the presence of a lithium salt (anionic component) derived from the lithium salt of the unsaturated acid (monomer a) is reduced. Electric repulsion occurs. Therefore, even when the unsaturated acid (monomer b) is used to increase the binding property of the polymer, it is possible to avoid the aggregation of the polymerization reaction product during the polymerization reaction.
  • the above-described polymer and the binder composition for a lithium ion secondary battery electrode of the present invention containing the polymer can be easily subjected to post-treatment for removing the remaining monomer or In addition, it can be made unnecessary, and the manufacturing cost can be reduced, so that it can be prepared with high productivity.
  • the monomer composition contains the monomer a from the time of polymerization. The effect described above cannot be obtained by lithium-chlorinating the unit derived from the monomer b after polymerization.
  • the monomer composition needs to contain at least a lithium salt of an unsaturated acid (monomer a).
  • the lithium salt of the unsaturated acid is an essential component, for example, using only other salts such as a sodium salt of an unsaturated acid and a potassium salt of an unsaturated acid.
  • the lithium salt of a saturated acid is not used, the resulting polymer inhibits lithium ion migration (for example, insertion into and desorption from the electrode active material) in the lithium ion secondary battery. This is because the solubility in an organic solvent such as N-methylpyrrolidone tends to be relatively low, and the desired effect (for example, improvement in battery performance) cannot be obtained.
  • the lithium salt of the unsaturated acid is not particularly limited, and examples thereof include a lithium salt of an unsaturated carboxylic acid, a lithium salt of an unsaturated sulfonic acid, and a lithium salt of an unsaturated phosphonic acid.
  • the lithium salt of an unsaturated acid it is preferable to use a lithium salt of an unsaturated carboxylic acid or a lithium salt of an unsaturated sulfonic acid.
  • the lithium salt of unsaturated carboxylic acid and lithium salt of unsaturated sulfonic acid are easy to obtain and have high polymerization reactivity. Therefore, if these lithium salts are used, the productivity of the binder composition can be further increased. Because you can.
  • the internal resistance of the lithium ion secondary battery can be further reduced by using these lithium salts. Because you can.
  • lithium salt of the unsaturated carboxylic acid lithium salt of ⁇ , ⁇ -unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid or crotonic acid; ⁇ , ⁇ such as maleic acid, fumaric acid or itaconic acid -Lithium salt of unsaturated dicarboxylic acid; lithium salt of partially esterified product of ⁇ , ⁇ -unsaturated polyvalent carboxylic acid such as monomethyl maleate and monoethyl itaconate; unresolved such as oleic acid, linoleic acid, linolenic acid, rumenic acid
  • lithium salts of saturated fatty acids include lithium salts of saturated fatty acids.
  • lithium salt of unsaturated sulfonic acid examples include vinyl sulfonic acid, o-styrene sulfonic acid, m-styrene sulfonic acid, p-styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and the like. Examples thereof include lithium salts and various substitutes thereof. Further, examples of the lithium salt of unsaturated phosphonic acid include lithium salts such as vinylphosphonic acid, o-styrenephosphonic acid, m-styrenephosphonic acid, and p-styrenephosphonic acid, and various substitutes thereof. .
  • the monomer composition may contain the lithium salt of one type of unsaturated acid independently, and may contain the lithium salt of two or more types of unsaturated acid in arbitrary ratios.
  • the lithium salt of the unsaturated acid described above from the viewpoint of further increasing the dissociation of lithium ions and further reducing the internal resistance of the lithium ion secondary battery, lithium acrylate, lithium methacrylate, and p-styrene. Lithium sulfonate is particularly preferred.
  • the lithium salt of the unsaturated acid for example, a commercially available lithium salt of an unsaturated acid can be used, and an unsaturated acid and a basic lithium compound such as lithium hydroxide monohydrate or lithium carbonate. What was prepared by making it react with can also be used.
  • content of the lithium salt of the unsaturated acid in a monomer composition needs to be 10 mass% or more, it is preferable that it is 15 mass% or more.
  • content of the lithium salt of the unsaturated acid in the monomer composition is less than 10% by mass, the polymerization stability cannot be maintained at a high level, and the polymerization reaction product aggregates during the polymerization reaction, resulting in high productivity. This is because a polymer cannot be prepared.
  • the content of the lithium salt of the unsaturated acid in the monomer composition needs to be 80% by mass or less, preferably 60% by mass or less, and 50% by mass or less. Is more preferable.
  • the content of the lithium salt of the unsaturated acid in the monomer composition is more than 80% by mass, sufficient flexibility is not imparted to the resulting polymer, and the binding property is lowered. This is because, when a lithium ion secondary battery is manufactured by winding the electrode prepared by using the electrode, electrode breakage or the like may occur, which may make it difficult to manufacture the battery.
  • a monomer composition needs to contain an unsaturated acid (monomer b) at least.
  • the unsaturated acid is not particularly limited, and examples thereof include unsaturated carboxylic acids, unsaturated sulfonic acids, and unsaturated phosphonic acids.
  • unsaturated acid it is preferable to use an unsaturated carboxylic acid or an unsaturated sulfonic acid. This is because unsaturated carboxylic acid and unsaturated sulfonic acid are easily available, and can improve the adhesion between the electrode mixture layer and the current collector by increasing the binding property of the polymer.
  • examples of the unsaturated carboxylic acid include ⁇ , ⁇ -unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; ⁇ , ⁇ -unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; Examples include partially esterified products of ⁇ , ⁇ -unsaturated polycarboxylic acids such as monomethyl maleate and monoethyl itaconate; unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and rumenic acid.
  • Examples of the unsaturated sulfonic acid include vinyl sulfonic acid, o-styrene sulfonic acid, m-styrene sulfonic acid, p-styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and these Various substitutes are exemplified.
  • examples of the unsaturated phosphonic acid include vinyl phosphonic acid, o-styrene phosphonic acid, m-styrene phosphonic acid, p-styrene phosphonic acid, and various substitutes thereof.
  • the monomer composition may contain one type of unsaturated acid independently, and may contain two or more types of unsaturated acids in arbitrary ratios.
  • unsaturated acid described above, from the viewpoint of further improving the adhesion between the electrode mixture layer and the current collector, and further reducing the frequency or degree of polymerization reaction product aggregation during the polymerization reaction.
  • Acrylic acid, methacrylic acid, p-styrene sulfonic acid and vinyl sulfonic acid are preferred, and acrylic acid and methacrylic acid are particularly preferred.
  • a commercially available unsaturated acid can also be used, for example, and what substituted a part of such commercially available unsaturated acid with the halogen etc. can also be used.
  • content of the unsaturated acid in a monomer composition needs to be 5 mass% or more, it is preferable that it is 10 mass% or more, and it is 15 mass% or more. It is more preferable.
  • content of the unsaturated acid in the monomer composition is less than 5% by mass, a current collector and an electrode mixture are prepared when an electrode for a lithium ion battery is prepared using a binder composition containing the resulting polymer. This is because the adhesion to the layer cannot be sufficiently improved.
  • the content of the unsaturated acid in the monomer composition is required to be 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less. .
  • the monomer composition needs to contain at least an ⁇ , ⁇ -unsaturated nitrile (monomer c).
  • the ⁇ , ⁇ -unsaturated nitrile is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, and various substitutes thereof.
  • the monomer composition may contain one kind of ⁇ , ⁇ -unsaturated nitrile alone or may contain two or more kinds of ⁇ , ⁇ -unsaturated nitriles in an arbitrary ratio.
  • the ⁇ , ⁇ -unsaturated nitrile described above is preferably acrylonitrile or methacrylonitrile, more preferably acrylonitrile, from the viewpoint of ensuring the mechanical strength and oxidation resistance of the polymer obtained at a high level. .
  • the polymer By ensuring the mechanical strength and oxidation resistance of the polymer at a high level, the polymer can exhibit good binding properties and have good battery characteristics (for example, high temperature) for lithium ion secondary batteries. Cycle characteristics and high-temperature storage characteristics).
  • battery characteristics for example, high temperature
  • Cycle characteristics and high-temperature storage characteristics As the ⁇ , ⁇ -unsaturated nitrile, for example, a commercially available ⁇ , ⁇ -unsaturated nitrile can be used, and a part of the commercially available ⁇ , ⁇ -unsaturated nitrile is substituted with halogen or the like. It is also possible to use what has been done.
  • the content of ⁇ , ⁇ -unsaturated nitrile in the monomer composition needs to be 10% by mass or more, preferably 20% by mass or more, more preferably It is 30 mass% or more, More preferably, it is 35 mass% or more. If the content of ⁇ , ⁇ -unsaturated nitrile in the monomer composition is less than 10% by mass, the resulting polymer has insufficient mechanical strength, and adhesion between the current collector and the electrode mixture layer This is because the battery characteristics (for example, high temperature cycle characteristics and high temperature storage characteristics) of the lithium ion secondary battery may be deteriorated.
  • the content of ⁇ , ⁇ -unsaturated nitrile in the monomer composition is required to be 85% by mass or less, preferably 75% by mass or less, and more preferably 70% by mass or less. It is. If the content of ⁇ , ⁇ -unsaturated nitrile in the monomer composition exceeds 85% by mass, a sufficiently high polymerization conversion rate may not be achieved, and the resulting polymer becomes excessively hard. This is because it becomes difficult to produce a lithium ion secondary battery electrode and a lithium ion secondary battery using the polymer.
  • the monomer composition can optionally contain a monomer other than the monomers described above (other monomers).
  • the other monomer is not particularly limited. For example, when a homopolymer having a weight average molecular weight of more than 10,000 is formed, the monomer having a glass transition point Tg of the homopolymer below room temperature (single monomer Isomer d).
  • the monomer composition contains the monomer d, the flexibility of the resulting polymer can be improved and high binding properties can be ensured.
  • the monomer composition may contain one kind of monomer d alone or may contain two or more kinds of monomers d in any ratio.
  • the glass transition point Tg of the homopolymer is less than room temperature, preferably less than 0 ° C., more preferably
  • the monomer is not particularly limited as long as it is less than ⁇ 20 ° C., and examples thereof include (meth) acrylic acid esters.
  • examples of such (meth) acrylic acid esters include (meth) acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, and butyl (meth) acrylate.
  • (meth) acryl in (meth) acrylic acid ester and the like refers to acryl and / or methacryl.
  • the content of the monomer d in the monomer composition is preferably 70% by mass or less, more preferably 45% by mass or less, and 20% by mass or less. Is more preferable.
  • the polymer which the binder composition for lithium ion secondary battery electrodes of this invention contains is not specifically limited, Each monomer (monomer a, monomer b, monomer c) mentioned above And other monomers) in the above-described proportions, for example, by polymerizing in an aqueous solvent.
  • the monomer a lithium salt of unsaturated acid
  • the monomer b unsaturated acid
  • the monomer composition precursor containing the monomer b, the monomer c, and optionally other monomers is prepared, and the monomer in the monomer composition precursor
  • a monomer composition may be prepared by lithium-chlorinating a part of the body b with a basic lithium compound to form a monomer a.
  • the content of monomer b in the monomer composition precursor is lithium chloride based on the amount of monomer a and monomer b to be included in the monomer composition.
  • the total amount of the monomer b to be monomer a and the amount of monomer b to be contained in the monomer composition may be used.
  • the production method of the polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • a solution polymerization method emulsion polymerization method
  • a suspension polymerization method emulsion polymerization method
  • a bulk polymerization method emulsion polymerization method
  • an emulsion polymerization method emulsion polymerization method
  • addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like
  • a polymerization initiator e.g., a known polymerization initiator can be used as a known polymerization initiator.
  • the polymerization conversion ratio of a monomer can be 90% or more, preferably 95% or more. Therefore, since the residual amount of each monomer after the polymerization reaction is greatly reduced, the post-treatment of the residual monomer can be made easy or unnecessary, and the material cost is further reduced.
  • the polymer produced as described above is a unit derived from the monomer contained in the monomer composition used for the polymerization, and the presence of each monomer in the monomer composition. It is included in the same ratio as the ratio.
  • the binder composition for a lithium ion secondary battery electrode of the present invention contains a dispersion medium.
  • the dispersion medium may be an aqueous solvent used when producing the polymer, or an organic solvent.
  • the dispersion medium is water or an aqueous solution used for the polymerization.
  • An aqueous solvent may be used.
  • the organic solvent may be used.
  • the organic solvent is not particularly limited, and examples thereof include N-methylpyrrolidone (NMP), acetonitrile, acetylpyridine, cyclopentanone, dimethylformamide, dimethyl sulfoxide, methylformamide, methyl ethyl ketone, furfural, and ethylenediamine.
  • the dispersion medium is preferably an organic solvent, more preferably N-methylpyrrolidone (NMP).
  • NMP N-methylpyrrolidone
  • the binder composition for secondary battery electrodes of this invention may contain one type of solvent independently as the said dispersion medium, and may contain two or more types of solvents by arbitrary ratios.
  • the binder composition for a lithium ion secondary battery electrode of the present invention may contain known optional components that can be blended in the binder composition in addition to the components described above. Moreover, residues, such as a polymerization initiator used for superposition
  • the slurry composition for lithium ion secondary battery electrodes of the present invention includes the above-described binder composition for lithium ion secondary battery electrodes and an electrode active material. And in the slurry composition for lithium ion secondary battery electrodes of this invention, the polymer which the slurry composition for lithium ion secondary battery electrodes contains functions as at least one part of a binder.
  • a slurry composition for a lithium ion secondary battery electrode it is possible to provide an electrode for a lithium ion secondary battery having excellent peel strength and low internal resistance, and for the lithium ion secondary battery.
  • a lithium ion secondary battery using an electrode and having low internal resistance can be provided.
  • the slurry composition for a lithium ion secondary battery electrode of the present invention optionally includes a conductive material and a binder composition contained in the binder composition for the lithium ion secondary battery electrode and the electrode active material. It may contain a polymer other than the polymer, other optional additives, and the like.
  • the electrode active material is a substance that transfers electrons in the electrodes (positive electrode and negative electrode) of the lithium ion secondary battery.
  • the electrode active materials positive electrode active material, negative electrode active material used in the slurry composition for lithium ion secondary battery electrodes of the present invention will be described in detail.
  • the known positive electrode active material used in the positive electrode of a lithium ion secondary battery can be used, without being specifically limited.
  • a compound containing a transition metal for example, a transition metal oxide, a transition metal sulfide, a composite metal oxide of lithium and a transition metal, or the like can be used.
  • a transition metal Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
  • transition metal oxide for example, MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , amorphous Examples include MoO 3 , amorphous V 2 O 5 , and amorphous V 6 O 13 .
  • the composite metal oxide of lithium and transition metal include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure. It is done.
  • lithium-containing composite metal oxide having a layered structure examples include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium-containing composite oxide, and Ni—Mn.
  • LiCoO 2 lithium-containing cobalt oxide
  • LiNiO 2 lithium-containing nickel oxide
  • Co—Ni—Mn lithium-containing composite oxide lithium-containing composite oxide
  • Ni—Mn lithium-containing composite oxide of -Al
  • LiMaO 2 and Li 2 MbO 3 examples include xLiMaO 2. (1-x) Li 2 MbO 3 .
  • x represents a number satisfying 0 ⁇ x ⁇ 1
  • Ma represents one or more transition metals having an average oxidation state of 3+
  • Mb represents one or more transition metals having an average oxidation state of 4+.
  • lithium-containing composite metal oxide having a spinel structure examples include lithium manganate (LiMn 2 O 4 ) and compounds in which a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal.
  • LiMn 2 O 4 lithium manganate
  • LiMn 2 O 4 compounds in which a part of Mn of lithium manganate
  • a specific example is Li s [Mn 2 -t Mc t ] O 4 .
  • Mc represents one or more transition metals having an average oxidation state of 4+.
  • Specific examples of Mc include Ni, Co, Fe, Cu, and Cr.
  • T represents a number satisfying 0 ⁇ t ⁇ 1, and s represents a number satisfying 0 ⁇ s ⁇ 1.
  • a lithium-excess spinel compound represented by Li 1 + x Mn 2 ⁇ x O 4 (0 ⁇ X ⁇ 2) can also be used.
  • Examples of the lithium-containing composite metal oxide having an olivine type structure include olivine type phosphorus represented by Li y MdPO 4 such as olivine type lithium iron phosphate (LiFePO 4 ) and olivine type lithium manganese phosphate (LiMnPO 4 ).
  • An acid lithium compound is mentioned.
  • Md represents one or more transition metals having an average oxidation state of 3+, and examples thereof include Mn, Fe, and Co.
  • Y represents a number satisfying 0 ⁇ y ⁇ 2.
  • Md may be partially substituted with another metal. Examples of the metal that can be substituted include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo.
  • lithium-containing cobalt oxide LiCoO 2
  • Co—Ni— lithium-containing cobalt oxide
  • a positive electrode active material containing at least one of Mn and Ni as the positive electrode active material.
  • the positive electrode active material LiNiO 2 , Lithium-excess spinel compound, Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 , Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2, etc. Is more preferably used as the positive electrode active material, and Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 is particularly preferably used as the positive electrode active material.
  • the particle size and specific surface area of the positive electrode active material are not particularly limited and can be the same as those of conventionally used positive electrode active materials.
  • the content of the positive electrode active material in the slurry composition is not particularly limited.
  • the solid content of the slurry composition Preferably it is 90 to 98 mass parts per 100 mass parts.
  • the known negative electrode active material used in the negative electrode of a lithium ion secondary battery can be used, without being specifically limited.
  • a material that can occlude and release lithium is usually used as the negative electrode active material.
  • the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”).
  • Examples of the carbon-based negative electrode active material include carbonaceous materials and graphite materials. Is mentioned.
  • examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. It is done.
  • graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
  • examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
  • examples of the graphite material include graphite such as natural graphite and artificial graphite.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more. Is an active material.
  • the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
  • active materials containing silicon are preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
  • silicon-based negative electrode active materials examples include silicon (Si), alloys containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc.
  • silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the alloy containing silicon examples include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
  • SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x, for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or vapor after grinding and mixing SiO and optionally a polymer.
  • SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or
  • a composite of Si-containing material and conductive carbon for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam.
  • an organic gas and / or steam can be mentioned.
  • a method of coating the surface of the SiO particles by a chemical vapor deposition method using an organic gas a method of forming composite particles (granulation) of the SiO particles and graphite or artificial graphite by a mechanochemical method, etc. It can also be obtained by a known method.
  • the particle size and specific surface area of the negative electrode active material are not particularly limited and can be the same as those of conventionally used negative electrode active materials.
  • the content of the negative electrode active material in the slurry composition is not particularly limited.
  • the solid content of the slurry composition Preferably it is 90 to 98 mass parts per 100 mass parts.
  • the polymer contained in the binder composition described above is used as at least a part of the binder.
  • the slurry composition for lithium ion secondary battery electrodes of this invention is the above-mentioned binder composition for lithium ion secondary battery electrodes, for example per 100 mass parts of electrode active materials in solid content equivalent amount, Preferably it is 0. .1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass.
  • the conductive material is for ensuring electrical contact between the electrode active materials.
  • the conductive material is not particularly limited, and a known conductive material can be used.
  • a conductive material for a positive electrode of a lithium ion secondary battery conductive carbon materials such as acetylene black, ketjen black (registered trademark), carbon black, and graphite; fibers of various metals, foils, etc. Can be used.
  • the conductive material is acetylene. Black, ketjen black (registered trademark), carbon black, and graphite are preferably used, and acetylene black and ketjen black (registered trademark) are particularly preferably used.
  • the compounding quantity of the electrically conductive material in the slurry composition for lithium ion secondary battery positive electrodes of this invention is not specifically limited, For example, per 100 mass parts of positive electrode active materials, Preferably they are 1 mass part or more and 5 mass parts or less. is there. If the blending amount of the conductive material is too small, sufficient electrical contact between the electrode active materials cannot be ensured, and sufficient electrical characteristics of the lithium ion secondary battery cannot be ensured. On the other hand, when the amount of the conductive material is too large, the stability of the slurry composition is lowered and the density of the electrode mixture layer in the electrode is lowered, so that the capacity of the lithium ion secondary battery cannot be sufficiently increased. .
  • the slurry composition for a lithium ion secondary battery electrode of the present invention includes, as a binder, a polymer other than the polymer (hereinafter referred to as “other heavy metals”) in addition to the polymer contained in the binder composition described above. May be referred to as “union”).
  • other heavy metals a polymer other than the polymer
  • union May be referred to as “union”.
  • fluorine-containing polymers examples include polymers containing 30% by mass or more of vinylidene fluoride units, such as polyvinylidene fluoride.
  • the acrylonitrile polymer includes heavy polymers containing more than 85% by mass of acrylonitrile units. Copolymers such as polyacrylonitrile are mentioned.
  • a fluorine-containing polymer is more preferable from the viewpoint of further improving the adhesion between the electrode mixture layer and the current collector and further improving the output characteristics of the lithium ion secondary battery.
  • the content of the other polymer is as follows:
  • the total amount of the above-described binder composition corresponding to the solid content and the other polymer is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less. It is.
  • the slurry composition for lithium ion secondary battery electrodes of the present invention includes, for example, a viscosity modifier such as a reinforcing material, an antioxidant, a thickener, a surfactant, a dispersant, and an electrolytic solution. It may contain components such as an electrolytic solution additive having a function of suppressing the above.
  • a viscosity modifier such as a reinforcing material, an antioxidant, a thickener, a surfactant, a dispersant, and an electrolytic solution.
  • an electrolytic solution additive having a function of suppressing the above.
  • known ones can be used, for example, those described in International Publication No. 2012/036260 and those described in JP 2012-204303 A can be used.
  • the slurry composition for a lithium ion secondary battery electrode of the present invention can be prepared by dissolving or dispersing the above components in an organic solvent. Specifically, the above components and the organic solvent are mixed using a blender such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a slurry composition can be prepared.
  • the organic solvent which the binder composition contains may be used as it is, and an organic solvent may be added when preparing a slurry composition.
  • the mixing of each of the above components and the organic solvent can usually be carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
  • the electrode for a lithium ion secondary battery of the present invention comprises an electrode mixture layer prepared using the slurry composition for a lithium ion secondary battery electrode obtained as described above on a current collector.
  • the electrode mixture layer contains at least the electrode active material and the polymer described above.
  • each component such as an electrode active material contained in the electrode mixture layer is contained in the slurry composition for lithium ion secondary battery electrodes of the present invention.
  • the abundance ratio is the same as the preferred abundance ratio of each component in the slurry composition for a lithium ion secondary battery electrode of the present invention. Since the electrode for lithium ion secondary batteries of the present invention uses the binder composition of the present invention, it has high peel strength and low internal resistance.
  • the electrode for a lithium ion secondary battery of the present invention was applied on the current collector by, for example, applying the slurry composition for a lithium ion secondary battery electrode obtained as described above on the current collector. It is obtained by drying a slurry composition for a lithium ion secondary battery electrode. That is, the electrode for a lithium ion secondary battery is obtained, for example, through a slurry composition coating process and a slurry composition drying process.
  • the current collector to which the slurry composition is applied is not particularly limited as long as it is an electrically conductive and electrochemically durable material.
  • the current collector is preferably made of metal, such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum.
  • metal such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum.
  • aluminum is particularly preferable for the positive electrode
  • copper is preferable for the negative electrode.
  • One type of current collector material may be used alone, or two or more types may be used in combination at any ratio.
  • the method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like.
  • the drying method by is mentioned.
  • an electrode mixture layer is formed on the current collector, and a lithium ion secondary battery electrode including the current collector and the electrode mixture layer is obtained. be able to.
  • the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press.
  • the pressurization treatment can improve the adhesion between the electrode mixture layer and the current collector and reduce the porosity of the electrode.
  • the powder molding method refers to preparing a slurry composition for producing an electrode for a lithium ion secondary battery, preparing composite particles containing an electrode active material from the slurry composition, and using the composite particles as a current collector.
  • This is a production method for obtaining an electrode for a lithium ion secondary battery by forming an electrode mixture layer by supplying the material onto the surface and further rolling and forming as desired.
  • the slurry composition the same slurry composition as described above can be used.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the lithium ion secondary battery electrode of the present invention is used for at least one of the positive electrode and the negative electrode. Since the lithium ion secondary battery of the present invention uses the above-described electrode for a lithium ion secondary battery, it has a low internal resistance.
  • the electrode for a lithium ion secondary battery of the present invention is used as at least one of a positive electrode and a negative electrode. That is, the positive electrode of the lithium ion secondary battery of the present invention may be an electrode for a lithium ion secondary battery of the present invention, the negative electrode may be another known negative electrode, and the negative electrode of the lithium ion secondary battery of the present invention is the main electrode.
  • the electrode for a lithium ion secondary battery of the invention, the positive electrode may be another known positive electrode, and both the positive electrode and the negative electrode of the lithium ion secondary battery of the invention are for the lithium ion secondary battery of the invention It may be an electrode.
  • a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used.
  • a lithium salt is usually used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte.
  • non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); and esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region.
  • a non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • an additive in electrolyte solution examples include carbonate compounds such as vinylene carbonate (VC).
  • An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an electrolytic solution other than the above for example, a polymer electrolyte such as polyethylene oxide or polyacrylonitrile; a gel polymer electrolyte obtained by impregnating the polymer electrolyte with an electrolytic solution; an inorganic solid electrolyte such as LiI or Li 3 N; Also good.
  • ⁇ Separator> As the separator, for example, those described in JP 2012-204303 A can be used. Among these, from the viewpoint of reducing the overall thickness of the separator and increasing the electrode active material ratio in the lithium ion secondary battery to increase the capacity per volume, polyolefin resins (polyethylene, polypropylene, A microporous film made of polybutene or polyvinyl chloride is preferred.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery.
  • pouring electrolyte solution into a container and sealing is mentioned.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
  • the lithium ion secondary battery electrode binder composition of the present invention was used only for the positive electrode to produce a lithium ion secondary battery.
  • the polymerization conversion rate of the monomer, the peel strength of the positive electrode for the lithium ion secondary battery, and the low temperature characteristics, the high temperature storage characteristics and the high temperature cycle characteristics of the lithium ion secondary batteries are as follows. Used and evaluated.
  • ⁇ Peel strength of positive electrode for lithium ion secondary battery The prepared positive electrode was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, a cellophane tape was attached to the surface of the test piece on the positive electrode mixture layer side. At this time, the cellophane tape defined in JIS Z1522 was used. Then, the stress when the test piece was peeled from the one end side toward the other end side at a speed of 50 mm / min with the cellophane tape fixed to the test stand was measured. The measurement was performed 10 times, the average value of the stress was determined, and this was taken as the peel strength (N / m), and evaluated according to the following criteria.
  • the IV resistance was measured as follows. After charging to 50% of SOC (State Of Charge: Charging Depth) at 1C (C is the numeric value expressed by rated capacity (mA) / 1 hour (h)) at -10 ° C, 50% of SOC Charging for 15 seconds and discharging for 15 seconds at 0.5C, 1.0C, 1.5C, and 2.0C as the center, respectively, and the battery voltage after 15 seconds in each case (charging side and discharging side) The slope was determined as IV resistance ( ⁇ ) (IV resistance during charging and IV resistance during discharging). The obtained IV resistance value ( ⁇ ) was evaluated according to the following criteria.
  • IV resistance is 10 ⁇ or less
  • OCV maintenance rate is 99.0% or more
  • B OCV maintenance rate is 98.5% or more and less than 99.0%
  • C OCV maintenance rate is 98.0% or more and less than 98.5%
  • D OCV maintenance rate is 98 Less than 0.0%
  • Example 1 Preparation of monomer composition> In an autoclave equipped with a stirrer, add 30 parts of methacrylic acid, 300 parts of deionized water, and 7.3 parts of lithium hydroxide monohydrate and stir for 10 minutes. An aqueous solution containing 16 parts of lithium methacrylate as monomer a and 15 parts of methacrylic acid as monomer b was obtained. Next, 69 parts of acrylonitrile as the monomer c was added to the obtained aqueous solution to prepare a monomer composition.
  • LiCoO 2 as a positive electrode active material (manufactured by Nippon Chemical Industry Co., Ltd., product name: Cellseed C-10N) is 100 parts, acetylene black as a conductive material is 2 parts, and the binder composition prepared as described above corresponds to the solid content. 1 part was added, and N-methylpyrrolidone was further added so that the viscosity would be 4000 to 5000 mPa ⁇ s, and then mixed with a planetary mixer to prepare a slurry composition for a lithium ion secondary battery positive electrode.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery 98 parts of graphite having a volume average particle diameter of 20 ⁇ m and a specific surface area of 4.2 m 2 / g as a negative electrode active material, 40% by mass aqueous dispersion of styrene-butadiene copolymer as a binder (manufactured by Nippon Zeon Co., Ltd.) BM-400B) 1.0 part (corresponding to the solid content) and 1.0 part of sodium salt of carboxymethyl cellulose (corresponding to the solid content) as a viscosity modifier are mixed, and water is further added and mixed with a planetary mixer.
  • a negative electrode slurry composition was prepared.
  • This negative electrode slurry composition was applied to one side of a copper foil having a thickness of 10 ⁇ m, dried at 110 ° C. for 3 hours, and then roll-pressed to obtain a negative electrode having a negative electrode mixture layer having a thickness of 60 ⁇ m.
  • a battery container was produced using a laminate film made of an aluminum sheet and a polypropylene resin covering both surfaces thereof.
  • the electrode mixture layer was removed from the ends of each of the positive electrode and the negative electrode, and a portion where the copper foil or aluminum foil was exposed was formed.
  • a Ni tab was welded to the portion where the aluminum foil of the positive electrode was exposed, and a Cu tab was welded to the portion where the copper foil of the negative electrode was exposed.
  • the obtained tabbed positive electrode and tabbed negative electrode were stacked with a separator made of a microporous film made of polyethylene interposed therebetween.
  • the direction of the surface of the electrode was such that the surface on the positive electrode mixture layer side of the positive electrode and the surface on the negative electrode mixture layer side of the negative electrode face each other.
  • the stacked electrodes and separator were wound and stored in the battery container.
  • an electrolytic solution was injected here.
  • As the electrolytic solution a solution prepared by dissolving LiPF 6 to a concentration of 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 2 at 25 ° C. is used. It was.
  • the laminate film was sealed to produce a laminate cell type secondary battery which is the lithium ion secondary battery of the present invention.
  • the resulting laminated cell type secondary battery was evaluated for low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics. The results are shown in Table 1.
  • Example 2 As in Example 1, except that the amounts of methacrylic acid, lithium hydroxide monohydrate and acrylonitrile were changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
  • the electrode binder composition, the positive electrode slurry composition, the positive electrode, the negative electrode, and the secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
  • Example 5 A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that the monomer composition prepared as described below was used. Various evaluations were made. The results are shown in Table 1. ⁇ Preparation of monomer composition> In an autoclave equipped with a stirrer, 29.78 parts of acrylic acid, 300 parts of deionized water, and 8.6 parts of lithium hydroxide monohydrate are added and stirred for 10 minutes. Chlorinated to obtain an aqueous solution containing 16 parts of lithium acrylate as monomer a and 15 parts of acrylic acid as monomer b. Next, 69 parts of acrylonitrile as the monomer c was added to the obtained aqueous solution to prepare a monomer composition.
  • Example 6 As in Example 5, except that the amount of acrylic acid, lithium hydroxide monohydrate and acrylonitrile was changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
  • Example 8 The amount of acrylonitrile was changed during the preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1, and butyl acrylate as the monomer d was changed to the monomer d.
  • a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared in the same manner as in Example 5 except that the content was as shown in Table 1 and added to the monomer composition. Preparation, production, and various evaluations were performed. The results are shown in Table 1.
  • Example 9 A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that the monomer composition prepared as described below was used. Various evaluations were made. The results are shown in Table 1. ⁇ Preparation of monomer composition> In an autoclave equipped with a stirrer, 16 parts of lithium p-styrenesulfonate (LiSS, manufactured by Tosoh Organic Chemical Co., Ltd.) as monomer a, 15 parts of methacrylic acid as monomer b, acrylonitrile as monomer c 69 parts and 300 parts of deionized water were added and mixed to prepare a monomer composition.
  • LiSS lithium p-styrenesulfonate
  • Example 10 As in Example 9, except that the amounts of p-styrene sulfonate, methacrylic acid and acrylonitrile were changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
  • Example 12 The amount of acrylonitrile was changed during the preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1, and butyl acrylate as the monomer d was changed to the monomer d.
  • a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared in the same manner as in Example 9 except that the content was as shown in Table 1 and added to the monomer composition. Preparation, production, and various evaluations were performed. The results are shown in Table 1.
  • the blending amount of the binder composition is 0.5 parts corresponding to the solid content, and polyvinylidene fluoride (PVDF) (manufactured by Kureha Chemical Industry Co., Ltd., product name: KF # 7208) as the other polymer is 0.00.
  • PVDF polyvinylidene fluoride
  • a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that only 5 parts were further blended, and various evaluations were performed. The results are shown in Table 1.
  • Example 1 Except having used the monomer composition prepared as follows and the binder composition for lithium ion secondary battery electrodes, it carried out similarly to Example 1, and the binder composition for electrodes, the slurry composition for positive electrodes, and the positive electrode A negative electrode and a secondary battery were prepared and manufactured, and various evaluations were performed. The results are shown in Table 1.
  • a monomer composition was prepared by adding 15 parts of methacrylic acid as monomer b, 85 parts of acrylonitrile as monomer c, and 300 parts of deionized water to an autoclave equipped with a stirrer.
  • ⁇ Preparation of binder composition for lithium ion secondary battery electrode> To the monomer composition obtained as described above, 0.5 part of potassium persulfate as a polymerization initiator was added, and the atmosphere was replaced with nitrogen and maintained at 70 ° C. for 3 hours and at 85 ° C. for 3 hours for polymerization. To obtain an aqueous dispersion containing coarse particles of a heterogeneous polymer. 1 part of aluminum sulfate was added to this aqueous dispersion, and the solid content was washed twice by filtration using water to obtain a solid polymer.
  • NMP N-methylpyrrolidone
  • Example 2 (Comparative Examples 2 and 3) As in Example 1, except that the amounts of methacrylic acid, lithium hydroxide monohydrate and acrylonitrile were changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
  • Example 4 A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that the monomer composition prepared as described below was used. Various evaluations were made. The results are shown in Table 1. ⁇ Preparation of monomer composition> In an autoclave equipped with a stirrer, 27.26 parts of methacrylic acid, 300 parts of deionized water, and 6.8 parts of sodium hydroxide are placed, stirred for 10 minutes, and a part of methacrylic acid is sodium chloride with sodium hydroxide. An aqueous solution containing 16 parts of sodium acid and 15 parts of methacrylic acid was obtained. Next, 69 parts of acrylonitrile was added to the obtained aqueous solution to prepare a monomer composition.
  • a polymer can be polymerized at a conversion rate of 99% or more by using a monomer composition containing monomers a to c in a predetermined ratio.
  • a binder composition containing such a polymer by using a binder composition containing such a polymer, the peel strength of the lithium ion secondary battery electrode and the low temperature characteristics, high temperature storage characteristics and high temperature cycle characteristics of the lithium ion secondary battery are aligned at a high level.
  • Examples 1 to 12 show that various characteristics can be further improved by adjusting the contents of monomer a to monomer c in the monomer composition.
  • Comparative Example 1 of Table 1 since the monomer composition does not contain monomer a and the content of monomer c is large, the polymerization conversion is remarkably low, and during polymerization, It can be seen that the polymerization reaction product aggregates. Moreover, it turns out that the lithium ion secondary battery manufactured using the binder composition of Comparative Example 1 has high internal resistance and deteriorated high-temperature storage characteristics and high-temperature cycle characteristics. Moreover, in Comparative Example 2 of Table 1, since the monomer composition contains the monomer a excessively, sufficient flexibility is not imparted to the resulting polymer, and the content of the monomer b Therefore, the peel strength cannot be maintained.
  • the high-temperature storage characteristics and the high-temperature cycle characteristics are deteriorated due to the excessive inclusion of monomer a and the low content of monomer c.
  • the monomer composition contains monomer a, but the content of monomer b and monomer c is outside the predetermined range, so the lithium ion of the polymer It can be seen that the conductivity and oxidation resistance are lowered, and the high-temperature storage characteristics and the high-temperature cycle characteristics of the lithium ion secondary battery produced using the binder composition of Comparative Example 3 are deteriorated.
  • the lithium ion secondary battery with low internal resistance can be manufactured, and the binder composition for lithium ion secondary battery electrodes which is excellent in both productivity and binding property can be provided.
  • the slurry composition for lithium ion secondary battery electrodes which can prepare the electrode for lithium ion secondary batteries which is low in internal resistance and excellent in peel strength can be provided.
  • an electrode for a lithium ion secondary battery having low internal resistance and excellent peel strength can be provided.
  • a lithium ion secondary battery with low internal resistance can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to provide a binder composition for lithium-ion secondary battery electrodes that exhibits both excellent producibility and binding properties, and makes it possible to produce lithium-ion secondary batteries having low internal resistance. This binder composition for use in lithium-ion secondary battery electrodes contains a dispersion medium and a polymer obtained by polymerizing a monomer composition containing 10-80 mass% of a lithium salt (monomer (a)) of an unsaturated acid, 5-40 mass% of an unsaturated acid (monomer (b)), and 10-85 mass% of an α,β-unsaturated nitrile (monomer (c)).

Description

リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極、および、リチウムイオン二次電池Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
 本発明は、リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極、および、リチウムイオン二次電池に関するものである。 The present invention relates to a binder composition for a lithium ion secondary battery electrode, a slurry composition for a lithium ion secondary battery electrode, an electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
 リチウムイオン二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そのため、近年では、リチウムイオン二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。 Lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of lithium ion secondary batteries.
 ここで、リチウムイオン二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、結着材としての重合体を含むバインダー組成物と、電極活物質などとを有機溶媒や水等の分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させて電極活物質などを重合体で結着することにより形成されている。
 そこで、リチウムイオン二次電池の更なる性能向上を達成すべく、電極の形成に用いられるバインダー組成物やスラリー組成物の改良が試みられている。
Here, the electrode for lithium ion secondary batteries is normally provided with the electrical power collector and the electrode compound-material layer formed on the electrical power collector. The electrode mixture layer is made of, for example, a slurry composition obtained by dispersing a binder composition containing a polymer as a binder and an electrode active material in a dispersion medium such as an organic solvent or water. It is formed by coating on top and drying to bind an electrode active material or the like with a polymer.
Therefore, in order to achieve further performance improvement of the lithium ion secondary battery, attempts have been made to improve the binder composition and the slurry composition used for forming the electrode.
 具体的には、複数の単量体単位を特定比で含む重合体を含有するバインダー組成物を、リチウムイオン電池等の電極の製造に用いることが提案されてきた。例えば、特許文献1では、ニトリル基を含有する単量体に由来する繰り返し単位を80~99.9重量%含み、且つ、カルボン酸基を有するビニル単量体などのエチレン性不飽和化合物に由来する繰り返し単位を0.1~20重量%含む重合体を結着材としてバインダー組成物に含有させることで、バインダー組成物および当該バインダー組成物を用いて調製したスラリー組成物の安定性を向上させ、且つ、当該バインダー組成物を用いて作製される二次電池のサイクル特性を向上させることができる旨が報告されている。 Specifically, it has been proposed to use a binder composition containing a polymer containing a plurality of monomer units in a specific ratio for the production of an electrode such as a lithium ion battery. For example, in Patent Document 1, it is derived from an ethylenically unsaturated compound such as a vinyl monomer containing 80 to 99.9% by weight of a repeating unit derived from a monomer containing a nitrile group and having a carboxylic acid group. By adding a polymer containing 0.1 to 20% by weight of a repeating unit to the binder composition as a binder, the stability of the binder composition and the slurry composition prepared using the binder composition is improved. In addition, it has been reported that the cycle characteristics of a secondary battery produced using the binder composition can be improved.
国際公開第2012/091001号International Publication No. 2012/091001
 しかしながら、上記従来のバインダー組成物に含有される重合体の合成においては、ニトリル基を含有する単量体を多く用いていることに起因して、重合反応中に多量の重合反応物が析出し、重合反応が早い段階で停止する傾向にある。そのため、単量体の重合体への転化率(重合転化率)は高くとも70%台と低く、材料コストが割高であるとともに、残留する単量体を除去するための後処理(例えば、ろ過処理など)が困難になるという製造上の問題があった。 However, in the synthesis of the polymer contained in the conventional binder composition, a large amount of polymerization reaction product is precipitated during the polymerization reaction due to the use of many monomers containing nitrile groups. The polymerization reaction tends to stop at an early stage. Therefore, the conversion rate of the monomer into the polymer (polymerization conversion rate) is as low as 70% at the highest, the material cost is high, and the post-treatment (for example, filtration) for removing the remaining monomer There has been a manufacturing problem that the processing becomes difficult.
 また、上記従来のバインダー組成物には、例えば重合体としての結着性を高めるためにカルボン酸基を有するビニル単量体の配合量を増やすと、重合反応中に重合反応物が凝集してしまうという別の製造上の問題もあった。 In addition, in the conventional binder composition, for example, when the amount of the vinyl monomer having a carboxylic acid group is increased in order to increase the binding property as a polymer, the polymerization reaction product aggregates during the polymerization reaction. There was another manufacturing problem.
 さらに、上記従来のバインダー組成物には、該バインダー組成物を用いて作製したリチウムイオン二次電池の内部抵抗が高いという点において改善の余地があった。 Furthermore, the conventional binder composition has room for improvement in that the internal resistance of a lithium ion secondary battery produced using the binder composition is high.
 そこで、本発明は、内部抵抗が低いリチウムイオン二次電池を製造することができ、且つ、生産性および結着性の双方に優れるリチウムイオン二次電池電極用バインダー組成物を提供することを目的とする。また、本発明は、内部抵抗が低く、且つ、ピール強度に優れるリチウムイオン二次電池用電極を調製することができるリチウムイオン二次電池電極用スラリー組成物を提供することを目的とする。更に、本発明は、内部抵抗が低く、且つ、ピール強度に優れるリチウムイオン二次電池用電極を提供することを目的とする。
 また、本発明は、内部抵抗が低いリチウムイオン二次電池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a binder composition for a lithium ion secondary battery electrode that can produce a lithium ion secondary battery with low internal resistance and is excellent in both productivity and binding properties. And Another object of the present invention is to provide a slurry composition for a lithium ion secondary battery electrode that can prepare an electrode for a lithium ion secondary battery that has low internal resistance and excellent peel strength. Furthermore, an object of the present invention is to provide an electrode for a lithium ion secondary battery having low internal resistance and excellent peel strength.
Another object of the present invention is to provide a lithium ion secondary battery with low internal resistance.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、特定の化合物よりなる単量体を特定の割合で重合してなる重合体が、結着性が高く、且つ、高い生産性をもって調製することができる上、リチウムイオン二次電池の製造に用いた際に、内部抵抗の低減をもたらすことができることを見出し、本発明を完成させた。 The present inventors have intensively studied for the purpose of solving the above problems. The inventors of the present invention can prepare a polymer obtained by polymerizing a monomer composed of a specific compound at a specific ratio with a high binding property and high productivity, and also with lithium ions. It has been found that when used in the production of a secondary battery, the internal resistance can be reduced, and the present invention has been completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池電極用バインダー組成物は、不飽和酸のリチウム塩(単量体a)10~80質量%と、不飽和酸(単量体b)5~40質量%と、α,β-不飽和ニトリル(単量体c)10~85質量%とを含む単量体組成物を重合してなる重合体、および分散媒を含有することを特徴とする。このように、不飽和酸のリチウム塩(単量体a)、不飽和酸(単量体b)およびα,β-不飽和ニトリル(単量体c)を所定の割合で用いて重合させることにより、結着性の高い重合体および当該重合体を含むリチウムイオン二次電池電極用バインダー組成物を高い生産性をもって調製することができる。そして、当該重合体を含むバインダー組成物によれば、内部抵抗が低いリチウムイオン二次電池を製造することができる。 That is, the present invention aims to advantageously solve the above-mentioned problems, and the binder composition for lithium ion secondary battery electrodes of the present invention comprises an unsaturated acid lithium salt (monomer a) 10. Polymerize a monomer composition containing ˜80 mass%, unsaturated acid (monomer b) 5˜40 mass%, and α, β-unsaturated nitrile (monomer c) 10˜85 mass%. And a dispersion medium. Thus, polymerization is performed using a lithium salt of an unsaturated acid (monomer a), an unsaturated acid (monomer b), and an α, β-unsaturated nitrile (monomer c) in a predetermined ratio. Thus, a polymer having a high binding property and a binder composition for a lithium ion secondary battery electrode containing the polymer can be prepared with high productivity. And according to the binder composition containing the said polymer, a lithium ion secondary battery with low internal resistance can be manufactured.
 ここで、本発明のリチウムイオン二次電池電極用バインダー組成物は、前記α,β-不飽和ニトリル(単量体c)がアクリロニトリルであることが好ましい。前記α,β-不飽和ニトリル(単量体c)がアクリロニトリルである場合、得られる重合体の機械的強度および耐酸化性を向上させることができるからである。 Here, in the binder composition for a lithium ion secondary battery electrode of the present invention, the α, β-unsaturated nitrile (monomer c) is preferably acrylonitrile. This is because when the α, β-unsaturated nitrile (monomer c) is acrylonitrile, the mechanical strength and oxidation resistance of the resulting polymer can be improved.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池電極用スラリー組成物は、上述したリチウムイオン二次電池電極用バインダー組成物および電極活物質を含むことを特徴とする。このように、上述したリチウムイオン二次電池電極用バインダー組成物を含むリチウムイオン二次電池電極用スラリー組成物によれば、ピール強度に優れ、且つ、内部抵抗が低いリチウムイオン二次電池用電極を調製することができる。 Moreover, this invention aims at solving the said subject advantageously, The slurry composition for lithium ion secondary battery electrodes of this invention is the binder composition for lithium ion secondary battery electrodes mentioned above, and An electrode active material is included. Thus, according to the slurry composition for lithium ion secondary battery electrodes containing the binder composition for lithium ion secondary battery electrodes described above, the electrode for lithium ion secondary batteries having excellent peel strength and low internal resistance. Can be prepared.
 また、本発明のリチウムイオン二次電池電極用スラリー組成物は、上述した重合体以外の重合体を更に含むことが好ましい。上述した重合体以外の重合体をリチウムイオン二次電池電極用スラリー組成物に含ませることにより、電極合材層と集電体との密着性および得られるリチウムイオン二次電池の出力特性を向上させることが可能となるからである。 Moreover, it is preferable that the slurry composition for a lithium ion secondary battery electrode of the present invention further includes a polymer other than the above-described polymer. By including a polymer other than the above-mentioned polymer in the slurry composition for lithium ion secondary battery electrodes, the adhesion between the electrode mixture layer and the current collector and the output characteristics of the resulting lithium ion secondary battery are improved. It is because it becomes possible to make it.
 更に、本発明のリチウムイオン二次電池電極用スラリー組成物においては、上述した重合体以外の重合体が、フッ素含有重合体であることが好ましい。フッ素含有重合体をリチウムイオン二次電池電極用スラリー組成物に含ませることにより、電極合材層と集電体との密着性および得られるリチウムイオン二次電池の出力特性を更に向上させることが可能となるからである。 Furthermore, in the slurry composition for a lithium ion secondary battery electrode of the present invention, the polymer other than the above-described polymer is preferably a fluorine-containing polymer. By including the fluorine-containing polymer in the slurry composition for lithium ion secondary battery electrodes, it is possible to further improve the adhesion between the electrode mixture layer and the current collector and the output characteristics of the resulting lithium ion secondary battery. This is because it becomes possible.
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池用電極は、上述したリチウムイオン二次電池電極用スラリー組成物を用いて調製した電極合材層を、集電体上に備えることを特徴とする。このようなリチウムイオン二次電池用電極は、内部抵抗が低く、且つ、優れたピール強度を有している。 And this invention aims at solving the said subject advantageously, The electrode for lithium ion secondary batteries of this invention is prepared using the slurry composition for lithium ion secondary battery electrodes mentioned above. The electrode mixture layer is provided on a current collector. Such an electrode for a lithium ion secondary battery has a low internal resistance and an excellent peel strength.
 そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明のリチウムイオン二次電池は、正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方が、上述のリチウムイオン二次電池用電極であることを特徴とする。このようなリチウムイオン二次電池は、内部抵抗が低い。 And this invention aims at solving the said subject advantageously, The lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, electrolyte solution, and a separator, At least one of the said positive electrode and negative electrode Is an electrode for a lithium ion secondary battery as described above. Such a lithium ion secondary battery has a low internal resistance.
 本発明によれば、内部抵抗が低いリチウムイオン二次電池を製造することができ、且つ、生産性および結着性の双方に優れるリチウムイオン二次電池電極用バインダー組成物を提供することができる。また、本発明によれば、内部抵抗が低く、且つ、ピール強度に優れるリチウムイオン二次電池用電極を調製することができるリチウムイオン二次電池電極用スラリー組成物を提供することができる。更に、本発明によれば、内部抵抗が低く、且つ、ピール強度に優れるリチウムイオン二次電池用電極を提供することができる。
 また、本発明によれば、内部抵抗が低いリチウムイオン二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery with low internal resistance can be manufactured, and the binder composition for lithium ion secondary battery electrodes which is excellent in both productivity and binding property can be provided. . Moreover, according to this invention, the slurry composition for lithium ion secondary battery electrodes which can prepare the electrode for lithium ion secondary batteries which is low in internal resistance and excellent in peel strength can be provided. Furthermore, according to the present invention, an electrode for a lithium ion secondary battery having low internal resistance and excellent peel strength can be provided.
Moreover, according to this invention, a lithium ion secondary battery with low internal resistance can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明のリチウムイオン二次電池電極用バインダー組成物は、リチウムイオン二次電池電極用スラリー組成物を調製する際に用いることができる。そして、本発明のリチウムイオン二次電池電極用スラリー組成物は、本発明のリチウムイオン二次電池電極用バインダー組成物および電極活物質を用いて調製され、リチウムイオン二次電池の電極を製造する際に用いられる。また、本発明のリチウムイオン二次電池用電極は、本発明のリチウムイオン二次電池電極用スラリー組成物を用いて製造することができる。更に、本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用電極を用いたことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the binder composition for lithium ion secondary battery electrodes of the present invention can be used when preparing a slurry composition for lithium ion secondary battery electrodes. And the slurry composition for lithium ion secondary battery electrodes of this invention is prepared using the binder composition for lithium ion secondary battery electrodes and electrode active material of this invention, and manufactures the electrode of a lithium ion secondary battery. Used when. Moreover, the electrode for lithium ion secondary batteries of this invention can be manufactured using the slurry composition for lithium ion secondary battery electrodes of this invention. Furthermore, the lithium ion secondary battery of the present invention is characterized by using the electrode for a lithium ion secondary battery of the present invention.
(リチウムイオン二次電池電極用バインダー組成物)
 本発明のリチウムイオン二次電池電極用バインダー組成物は、不飽和酸のリチウム塩(単量体a)10~80質量%と、不飽和酸(単量体b)5~40質量%と、α,β-不飽和ニトリル(単量体c)10~85質量%とを含む単量体組成物を重合してなる重合体、および分散媒を含有する。また、本発明のリチウムイオン二次電池電極用バインダー組成物は、任意に、上記重合体および分散媒以外のその他の成分を含有していてもよい。
(Binder composition for lithium ion secondary battery electrode)
The binder composition for a lithium ion secondary battery electrode of the present invention comprises 10 to 80% by mass of a lithium salt of an unsaturated acid (monomer a), 5 to 40% by mass of an unsaturated acid (monomer b), It contains a polymer obtained by polymerizing a monomer composition containing 10 to 85% by mass of an α, β-unsaturated nitrile (monomer c), and a dispersion medium. Moreover, the binder composition for lithium ion secondary battery electrodes of this invention may contain other components other than the said polymer and a dispersion medium arbitrarily.
<重合体>
 本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体は、当該バインダー組成物を用いて電極を製造した際に、製造した電極において、電極合材層に含まれる成分(例えば、正極活物質、負極活物質等の電極活物質)が電極合材層から脱離しないように保持し得る成分である。
 そして、本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体は、単量体として、不飽和酸のリチウム塩(単量体a)と、不飽和酸(単量体b)と、α,β-不飽和ニトリル(単量体c)とを所定の割合で含む単量体組成物を重合して得られる。なお、単量体組成物は、任意に、上記単量体以外の単量体(以下、「その他の単量体」と称することがある。)を含有していてもよい。
 ここで、本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体においては、不飽和酸のリチウム塩(単量体a)に由来する単位および不飽和酸(単量体b)に由来する単位を所定の割合で含むこととなるため、当該不飽和酸のリチウム塩に由来する単位中のリチウムイオンが、当該不飽和酸に由来する単位中の酸基の一部と配位結合し、架橋構造を形成する。そして、かかる架橋構造によって、重合体としての機械的強度および耐電解液性が向上する。これにより、得られる重合体は、優れた結着性を発揮し得るとともに、リチウムイオン二次電池の製造に使用した際に当該リチウムイオン二次電池の電池特性(例えば、サイクル特性および高温保存特性)を向上させることができる。
 また、本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体は、不飽和酸のリチウム塩(単量体a)に由来する単位を含むこととなるので、リチウムイオン伝導性に優れている。従って、重合体を含むバインダー組成物を使用すれば、電極およびリチウムイオン二次電池の内部抵抗を低減することができる。
 更に、本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体の合成においては、不飽和酸のリチウム塩(単量体a)に由来するリチウム塩(アニオン成分)の存在によって静電反発が生じる。従って、不飽和酸(単量体b)を使用して重合体の結着性を高めた場合であっても、重合反応中に重合反応物が凝集するのを回避することができる。また、上記重合体の合成においては、単量体として、不飽和酸のリチウム塩(単量体a)と、不飽和酸(単量体b)およびα,β-不飽和ニトリル(単量体c)とを併用しているので、重合反応中に重合反応物が析出するのを抑制し、単量体の重合体への転化率(重合転化率)を大幅に向上させることができる。そして、これらの点に鑑みれば、上述した重合体および該重合体を含有する本発明のリチウムイオン二次電池電極用バインダー組成物は、残留する単量体を除去するための後処理を容易または不要にすることができる上、製造コストをより割安なものとすることができるため、高い生産性をもって調製することが可能である。なお、上述したことからも明らかなように、本発明においては、重合時から単量体組成物が単量体aを含んでいることが肝要であり、単量体bおよび単量体cを重合した後に単量体bに由来する単位をリチウム塩化することでは、上述した効果は得られない。
<Polymer>
When the polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention is produced using the binder composition, the polymer contained in the electrode mixture layer in the produced electrode (for example, It is a component which can hold | maintain so that electrode active materials, such as a positive electrode active material and a negative electrode active material, may not detach | leave from an electrode compound-material layer.
The polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention includes, as monomers, a lithium salt of an unsaturated acid (monomer a) and an unsaturated acid (monomer b). And a monomer composition containing a predetermined proportion of α, β-unsaturated nitrile (monomer c). In addition, the monomer composition may optionally contain a monomer other than the above monomers (hereinafter sometimes referred to as “other monomers”).
Here, in the polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention, a unit derived from a lithium salt of an unsaturated acid (monomer a) and an unsaturated acid (monomer b) The lithium ion in the unit derived from the lithium salt of the unsaturated acid is coordinated with a part of the acid group in the unit derived from the unsaturated acid. Bond to form a cross-linked structure. And by such a crosslinked structure, the mechanical strength and electrolytic solution resistance as a polymer are improved. As a result, the obtained polymer can exhibit excellent binding properties, and when used in the production of a lithium ion secondary battery, the battery characteristics of the lithium ion secondary battery (for example, cycle characteristics and high temperature storage characteristics). ) Can be improved.
Moreover, since the polymer which the binder composition for lithium ion secondary battery electrodes of this invention contains contains the unit derived from the lithium salt (monomer a) of an unsaturated acid, lithium ion conductivity is made. Are better. Therefore, if a binder composition containing a polymer is used, the internal resistance of the electrode and the lithium ion secondary battery can be reduced.
Further, in the synthesis of the polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention, the presence of a lithium salt (anionic component) derived from the lithium salt of the unsaturated acid (monomer a) is reduced. Electric repulsion occurs. Therefore, even when the unsaturated acid (monomer b) is used to increase the binding property of the polymer, it is possible to avoid the aggregation of the polymerization reaction product during the polymerization reaction. Further, in the synthesis of the above polymer, as monomers, lithium salt of unsaturated acid (monomer a), unsaturated acid (monomer b) and α, β-unsaturated nitrile (monomer) Since c) is used in combination, it is possible to suppress the precipitation of the polymerization reaction product during the polymerization reaction and to greatly improve the conversion rate of the monomer to the polymer (polymerization conversion rate). In view of these points, the above-described polymer and the binder composition for a lithium ion secondary battery electrode of the present invention containing the polymer can be easily subjected to post-treatment for removing the remaining monomer or In addition, it can be made unnecessary, and the manufacturing cost can be reduced, so that it can be prepared with high productivity. As apparent from the above, in the present invention, it is important that the monomer composition contains the monomer a from the time of polymerization. The effect described above cannot be obtained by lithium-chlorinating the unit derived from the monomer b after polymerization.
 以下、本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体の調製に用いる単量体組成物に含まれる各単量体について詳述する。 Hereinafter, each monomer contained in the monomer composition used for preparing the polymer contained in the binder composition for a lithium ion secondary battery electrode of the present invention will be described in detail.
[不飽和酸のリチウム塩(単量体a)]
 単量体組成物は、少なくとも、不飽和酸のリチウム塩(単量体a)を含むことを必要とする。
 ここで、不飽和酸の塩の中でも前記不飽和酸のリチウム塩を必須成分としたのは、例えば不飽和酸のナトリウム塩や不飽和酸のカリウム塩等の他の塩のみを使用し、不飽和酸のリチウム塩を使用しないこととすると、得られる重合体は、リチウムイオン二次電池におけるリチウムイオンの移動(例えば、電極活物質への挿入および電極活物質からの脱離など)を阻害するおそれがある上、N-メチルピロリドン等の有機溶媒への溶解度が相対的に低くなり易いため、所期の効果(例えば、電池性能の向上など)が得られないからである。
[Lithium salt of unsaturated acid (monomer a)]
The monomer composition needs to contain at least a lithium salt of an unsaturated acid (monomer a).
Here, among the unsaturated acid salts, the lithium salt of the unsaturated acid is an essential component, for example, using only other salts such as a sodium salt of an unsaturated acid and a potassium salt of an unsaturated acid. If the lithium salt of a saturated acid is not used, the resulting polymer inhibits lithium ion migration (for example, insertion into and desorption from the electrode active material) in the lithium ion secondary battery. This is because the solubility in an organic solvent such as N-methylpyrrolidone tends to be relatively low, and the desired effect (for example, improvement in battery performance) cannot be obtained.
 上記不飽和酸のリチウム塩としては、特に限定されず、不飽和カルボン酸のリチウム塩、不飽和スルホン酸のリチウム塩、不飽和ホスホン酸のリチウム塩などが挙げられる。これらの中でも、不飽和酸のリチウム塩としては、不飽和カルボン酸のリチウム塩、不飽和スルホン酸のリチウム塩を用いるのが好ましい。不飽和カルボン酸のリチウム塩および不飽和スルホン酸のリチウム塩は、入手が容易である上、重合反応性が高いため、これらのリチウム塩を使用すれば、バインダー組成物の生産性を更に高めることができるからである。また、不飽和カルボン酸のリチウム塩および不飽和スルホン酸のリチウム塩は、リチウムイオンの解離度が高いため、これらのリチウム塩を使用すれば、リチウムイオン二次電池の内部抵抗を更に低減することができるからである。
 ここで、前記不飽和カルボン酸のリチウム塩としては、アクリル酸、メタクリル酸、クロトン酸などのα,β-不飽和モノカルボン酸のリチウム塩;マレイン酸、フマル酸、イタコン酸などのα,β-不飽和ジカルボン酸のリチウム塩;マレイン酸モノメチル、イタコン酸モノエチルなどのα,β-不飽和多価カルボン酸の部分エステル化物のリチウム塩;オレイン酸、リノール酸、リノレン酸、ルーメン酸などの不飽和脂肪酸のリチウム塩などが挙げられる。
 また、前記不飽和スルホン酸のリチウム塩としては、ビニルスルホン酸、o-スチレンスルホン酸、m-スチレンスルホン酸、p-スチレンスルホン酸、2-アクリルアミドー2-メチルプロパンスルホン酸(AMPS)などのリチウム塩、並びに、これらの各種置換体などが挙げられる。
 更に、前記不飽和ホスホン酸のリチウム塩としては、ビニルホスホン酸、o-スチレンホスホン酸、m-スチレンホスホン酸、p-スチレンホスホン酸などのリチウム塩、並びに、これらの各種置換体などが挙げられる。
 なお、単量体組成物は、1種類の不飽和酸のリチウム塩を単独で含んでいてもよく、2種類以上の不飽和酸のリチウム塩を任意の比率で含んでいてもよい。
 ここで、上述した不飽和酸のリチウム塩としては、リチウムイオンの解離度を更に高めてリチウムイオン二次電池の内部抵抗を更に低減する観点からは、アクリル酸リチウム、メタクリル酸リチウムおよびp-スチレンスルホン酸リチウムが特に好ましい。
 なお、上記不飽和酸のリチウム塩としては、例えば、市販の不飽和酸のリチウム塩を用いることもできるし、不飽和酸と、水酸化リチウム一水和物や炭酸リチウム等の塩基性リチウム化合物とを反応させることにより調製したものを用いることもできる。
The lithium salt of the unsaturated acid is not particularly limited, and examples thereof include a lithium salt of an unsaturated carboxylic acid, a lithium salt of an unsaturated sulfonic acid, and a lithium salt of an unsaturated phosphonic acid. Among these, as the lithium salt of an unsaturated acid, it is preferable to use a lithium salt of an unsaturated carboxylic acid or a lithium salt of an unsaturated sulfonic acid. The lithium salt of unsaturated carboxylic acid and lithium salt of unsaturated sulfonic acid are easy to obtain and have high polymerization reactivity. Therefore, if these lithium salts are used, the productivity of the binder composition can be further increased. Because you can. Moreover, since the lithium salt of unsaturated carboxylic acid and the lithium salt of unsaturated sulfonic acid have a high degree of dissociation of lithium ions, the internal resistance of the lithium ion secondary battery can be further reduced by using these lithium salts. Because you can.
Here, as the lithium salt of the unsaturated carboxylic acid, lithium salt of α, β-unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid or crotonic acid; α, β such as maleic acid, fumaric acid or itaconic acid -Lithium salt of unsaturated dicarboxylic acid; lithium salt of partially esterified product of α, β-unsaturated polyvalent carboxylic acid such as monomethyl maleate and monoethyl itaconate; unresolved such as oleic acid, linoleic acid, linolenic acid, rumenic acid Examples include lithium salts of saturated fatty acids.
Examples of the lithium salt of unsaturated sulfonic acid include vinyl sulfonic acid, o-styrene sulfonic acid, m-styrene sulfonic acid, p-styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and the like. Examples thereof include lithium salts and various substitutes thereof.
Further, examples of the lithium salt of unsaturated phosphonic acid include lithium salts such as vinylphosphonic acid, o-styrenephosphonic acid, m-styrenephosphonic acid, and p-styrenephosphonic acid, and various substitutes thereof. .
In addition, the monomer composition may contain the lithium salt of one type of unsaturated acid independently, and may contain the lithium salt of two or more types of unsaturated acid in arbitrary ratios.
Here, as the lithium salt of the unsaturated acid described above, from the viewpoint of further increasing the dissociation of lithium ions and further reducing the internal resistance of the lithium ion secondary battery, lithium acrylate, lithium methacrylate, and p-styrene. Lithium sulfonate is particularly preferred.
As the lithium salt of the unsaturated acid, for example, a commercially available lithium salt of an unsaturated acid can be used, and an unsaturated acid and a basic lithium compound such as lithium hydroxide monohydrate or lithium carbonate. What was prepared by making it react with can also be used.
 そして、本発明において、単量体組成物中の不飽和酸のリチウム塩の含有量は、10質量%以上であることが必要であるが、15質量%以上であることが好ましい。単量体組成物中の不飽和酸のリチウム塩の含有量が10質量%未満だと、重合安定性を高いレベルで維持できず、重合反応中に重合反応物が凝集するため、高い生産性をもって重合体を調製することができないからである。また、単量体組成物中の不飽和酸のリチウム塩の含有量は、80質量%以下であることが必要であるが、60質量%以下であることが好ましく、50質量%以下であることがより好ましい。単量体組成物中の不飽和酸のリチウム塩の含有量が80質量%超だと、得られる重合体に十分な柔軟性が付与されず、結着性が低下すると共に、かかる重合体を用いて調製した電極を捲回してリチウムイオン二次電池を製造する際に電極折れ等を引き起こし、電池の製造が困難になるおそれがあるからである。 And in this invention, although content of the lithium salt of the unsaturated acid in a monomer composition needs to be 10 mass% or more, it is preferable that it is 15 mass% or more. When the content of the lithium salt of the unsaturated acid in the monomer composition is less than 10% by mass, the polymerization stability cannot be maintained at a high level, and the polymerization reaction product aggregates during the polymerization reaction, resulting in high productivity. This is because a polymer cannot be prepared. The content of the lithium salt of the unsaturated acid in the monomer composition needs to be 80% by mass or less, preferably 60% by mass or less, and 50% by mass or less. Is more preferable. When the content of the lithium salt of the unsaturated acid in the monomer composition is more than 80% by mass, sufficient flexibility is not imparted to the resulting polymer, and the binding property is lowered. This is because, when a lithium ion secondary battery is manufactured by winding the electrode prepared by using the electrode, electrode breakage or the like may occur, which may make it difficult to manufacture the battery.
[不飽和酸(単量体b)]
 また、単量体組成物は、少なくとも、不飽和酸(単量体b)を含むことを必要とする。
[Unsaturated acid (monomer b)]
Moreover, a monomer composition needs to contain an unsaturated acid (monomer b) at least.
 上記不飽和酸としては、特に限定されず、不飽和カルボン酸、不飽和スルホン酸、不飽和ホスホン酸などが挙げられる。これらの中でも、不飽和酸としては、不飽和カルボン酸、不飽和スルホン酸を用いるのが好ましい。不飽和カルボン酸および不飽和スルホン酸は、入手が容易である上、重合体の結着性を高めて電極合材層と集電体との密着性をより向上させることができるからある。
 ここで、前記不飽和カルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などのα,β-不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸などのα,β-不飽和ジカルボン酸;マレイン酸モノメチル、イタコン酸モノエチルなどのα,β-不飽和多価カルボン酸の部分エステル化物;オレイン酸、リノール酸、リノレン酸、ルーメン酸などの不飽和脂肪酸などが挙げられる。
 また、前記不飽和スルホン酸としては、ビニルスルホン酸、o-スチレンスルホン酸、m-スチレンスルホン酸、p-スチレンスルホン酸、2-アクリルアミドー2-メチルプロパンスルホン酸(AMPS)、並びに、これらの各種置換体などが挙げられる。
 更に、前記不飽和ホスホン酸としては、ビニルホスホン酸、o-スチレンホスホン酸、m-スチレンホスホン酸、p-スチレンホスホン酸、並びに、これらの各種置換体などが挙げられる。
 なお、単量体組成物は、1種類の不飽和酸を単独で含んでいてもよく、2種類以上の不飽和酸を任意の比率で含んでいてもよい。
 ここで、上述した不飽和酸としては、電極合材層と集電体との密着性をより一層向上させ、また、重合反応中に重合反応物が凝集する頻度ないし程度をより低減する観点からは、アクリル酸、メタクリル酸、p-スチレンスルホン酸およびビニルスルホン酸が好ましく、アクリル酸およびメタクリル酸が特に好ましい。
 なお、上記不飽和酸としては、例えば、市販の不飽和酸を用いることもできるし、また、かかる市販の不飽和酸の一部をハロゲン等で置換したものを用いることもできる。
The unsaturated acid is not particularly limited, and examples thereof include unsaturated carboxylic acids, unsaturated sulfonic acids, and unsaturated phosphonic acids. Among these, as the unsaturated acid, it is preferable to use an unsaturated carboxylic acid or an unsaturated sulfonic acid. This is because unsaturated carboxylic acid and unsaturated sulfonic acid are easily available, and can improve the adhesion between the electrode mixture layer and the current collector by increasing the binding property of the polymer.
Here, examples of the unsaturated carboxylic acid include α, β-unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; α, β-unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid; Examples include partially esterified products of α, β-unsaturated polycarboxylic acids such as monomethyl maleate and monoethyl itaconate; unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and rumenic acid.
Examples of the unsaturated sulfonic acid include vinyl sulfonic acid, o-styrene sulfonic acid, m-styrene sulfonic acid, p-styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and these Various substitutes are exemplified.
Furthermore, examples of the unsaturated phosphonic acid include vinyl phosphonic acid, o-styrene phosphonic acid, m-styrene phosphonic acid, p-styrene phosphonic acid, and various substitutes thereof.
In addition, the monomer composition may contain one type of unsaturated acid independently, and may contain two or more types of unsaturated acids in arbitrary ratios.
Here, as the unsaturated acid described above, from the viewpoint of further improving the adhesion between the electrode mixture layer and the current collector, and further reducing the frequency or degree of polymerization reaction product aggregation during the polymerization reaction. Acrylic acid, methacrylic acid, p-styrene sulfonic acid and vinyl sulfonic acid are preferred, and acrylic acid and methacrylic acid are particularly preferred.
In addition, as said unsaturated acid, a commercially available unsaturated acid can also be used, for example, and what substituted a part of such commercially available unsaturated acid with the halogen etc. can also be used.
 そして、本発明において、単量体組成物中の不飽和酸の含有量は、5質量%以上であることが必要であるが、10質量%以上であることが好ましく、15質量%以上であることがより好ましい。単量体組成物中の不飽和酸の含有量が5質量%未満だと、得られる重合体を含むバインダー組成物を用いてリチウムイオン電池用電極を調製した際に集電体と電極合材層との密着性を十分に向上させることができないからである。また、単量体組成物中の不飽和酸の含有量は、40質量%以下であることが必要であるが、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。単量体組成物中の不飽和酸の含有量が40質量%超だと、重合反応中に重合反応物が凝集するのを効果的に防止することができないからである。また、重合体のリチウムイオン伝導性が低下し、電極およびリチウムイオン二次電池の内部抵抗が上昇する虞があるからである。 And in this invention, although content of the unsaturated acid in a monomer composition needs to be 5 mass% or more, it is preferable that it is 10 mass% or more, and it is 15 mass% or more. It is more preferable. When the content of the unsaturated acid in the monomer composition is less than 5% by mass, a current collector and an electrode mixture are prepared when an electrode for a lithium ion battery is prepared using a binder composition containing the resulting polymer. This is because the adhesion to the layer cannot be sufficiently improved. Further, the content of the unsaturated acid in the monomer composition is required to be 40% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less. . This is because if the content of the unsaturated acid in the monomer composition exceeds 40% by mass, the polymerization reaction product cannot be effectively prevented from aggregating during the polymerization reaction. Moreover, it is because there exists a possibility that the lithium ion conductivity of a polymer may fall and the internal resistance of an electrode and a lithium ion secondary battery may rise.
[α,β-不飽和ニトリル(単量体c)]
 更に、単量体組成物は、少なくとも、α,β-不飽和ニトリル(単量体c)を含むことを必要とする。
[Α, β-unsaturated nitrile (monomer c)]
Further, the monomer composition needs to contain at least an α, β-unsaturated nitrile (monomer c).
 上記α,β-不飽和ニトリルとしては、特に限定されず、アクリロニトリル、メタクリロニトリル、および、これらの各種置換体などが挙げられる。
 なお、単量体組成物は、1種類のα,β-不飽和ニトリルを単独で含んでいてもよく、2種類以上のα,β-不飽和ニトリルを任意の比率で含んでいてもよい。
 ここで、上述したα,β-不飽和ニトリルとしては、得られる重合体の機械的強度と耐酸化性とを高いレベルで確保する観点からは、アクリロニトリルまたはメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。重合体の機械的強度と耐酸化性とを高いレベルで確保することで、重合体に良好な結着性を発揮させることができると共に、リチウムイオン二次電池に良好な電池特性(例えば、高温サイクル特性および高温保存特性)を発揮させることができる。
 なお、上記α,β-不飽和ニトリルとしては、例えば、市販のα,β-不飽和ニトリルを用いることができ、また、かかる市販のα,β-不飽和ニトリルの一部をハロゲン等で置換したものを用いることもできる。
The α, β-unsaturated nitrile is not particularly limited, and examples thereof include acrylonitrile, methacrylonitrile, and various substitutes thereof.
The monomer composition may contain one kind of α, β-unsaturated nitrile alone or may contain two or more kinds of α, β-unsaturated nitriles in an arbitrary ratio.
Here, the α, β-unsaturated nitrile described above is preferably acrylonitrile or methacrylonitrile, more preferably acrylonitrile, from the viewpoint of ensuring the mechanical strength and oxidation resistance of the polymer obtained at a high level. . By ensuring the mechanical strength and oxidation resistance of the polymer at a high level, the polymer can exhibit good binding properties and have good battery characteristics (for example, high temperature) for lithium ion secondary batteries. Cycle characteristics and high-temperature storage characteristics).
As the α, β-unsaturated nitrile, for example, a commercially available α, β-unsaturated nitrile can be used, and a part of the commercially available α, β-unsaturated nitrile is substituted with halogen or the like. It is also possible to use what has been done.
 また、本発明において、単量体組成物中のα,β-不飽和ニトリルの含有量は、10質量%以上であることが必要であるが、好ましくは20質量%以上であり、より好ましくは30質量%以上であり、更に好ましくは35質量%以上である。単量体組成物中のα,β-不飽和ニトリルの含有量が10質量%未満だと、得られる重合体の機械的強度が十分でなく、集電体と電極合材層との密着性を十分に向上させることができない上、リチウムイオン二次電池の電池特性(例えば、高温サイクル特性および高温保存特性)が低下する虞があるからである。また、単量体組成物中のα,β-不飽和ニトリルの含有量は、85質量%以下であることが必要であるが、好ましくは75質量%以下であり、更に好ましくは70質量%以下である。単量体組成物中のα,β-不飽和ニトリルの含有量が85質量%超だと、十分に高い重合転化率が達成できないおそれがある上、得られる重合体が過度に硬くなり、かかる重合体を用いてリチウムイオン二次電池用電極およびリチウムイオン二次電池を製造することが困難となるからである。 In the present invention, the content of α, β-unsaturated nitrile in the monomer composition needs to be 10% by mass or more, preferably 20% by mass or more, more preferably It is 30 mass% or more, More preferably, it is 35 mass% or more. If the content of α, β-unsaturated nitrile in the monomer composition is less than 10% by mass, the resulting polymer has insufficient mechanical strength, and adhesion between the current collector and the electrode mixture layer This is because the battery characteristics (for example, high temperature cycle characteristics and high temperature storage characteristics) of the lithium ion secondary battery may be deteriorated. The content of α, β-unsaturated nitrile in the monomer composition is required to be 85% by mass or less, preferably 75% by mass or less, and more preferably 70% by mass or less. It is. If the content of α, β-unsaturated nitrile in the monomer composition exceeds 85% by mass, a sufficiently high polymerization conversion rate may not be achieved, and the resulting polymer becomes excessively hard. This is because it becomes difficult to produce a lithium ion secondary battery electrode and a lithium ion secondary battery using the polymer.
[その他の単量体]
 更に、単量体組成物は、任意に、上述した単量体以外の単量体(その他の単量体)を含むことができる。その他の単量体としては、特に限定されないが、例えば、重量平均分子量が10,000超の単独重合体を形成した際に当該単独重合体のガラス転移点Tgが室温未満の単量体(単量体d)が挙げられる。
[Other monomers]
Furthermore, the monomer composition can optionally contain a monomer other than the monomers described above (other monomers). The other monomer is not particularly limited. For example, when a homopolymer having a weight average molecular weight of more than 10,000 is formed, the monomer having a glass transition point Tg of the homopolymer below room temperature (single monomer Isomer d).
[[単量体d]]
 単量体組成物が単量体dを含む場合、得られる重合体の柔軟性を向上させ、高い結着性を確保することができる。
 なお、単量体組成物は、1種類の単量体dを単独で含んでいてもよく、2種類以上の単量体dを任意の比率で含んでいてもよい。
[[Monomer d]]
When the monomer composition contains the monomer d, the flexibility of the resulting polymer can be improved and high binding properties can be ensured.
The monomer composition may contain one kind of monomer d alone or may contain two or more kinds of monomers d in any ratio.
 ここで、上記単量体dとしては、重量平均分子量が10,000超の単独重合体を形成した際に当該単独重合体のガラス転移点Tgが室温未満、好ましくは0℃未満、より好ましくは-20℃未満となる単量体であれば、特に限定されず、例えば、(メタ)アクリル酸エステルが挙げられる。このような(メタ)アクリル酸エステルとしては、アクリル酸メチル、アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸アルキルエステルが挙げられる。
 なお、本明細書において、(メタ)アクリル酸エステル等における「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを指す。
Here, as the monomer d, when a homopolymer having a weight average molecular weight of more than 10,000 is formed, the glass transition point Tg of the homopolymer is less than room temperature, preferably less than 0 ° C., more preferably The monomer is not particularly limited as long as it is less than −20 ° C., and examples thereof include (meth) acrylic acid esters. Examples of such (meth) acrylic acid esters include (meth) acrylic acid alkyl esters such as methyl acrylate, ethyl acrylate, and butyl (meth) acrylate.
In the present specification, “(meth) acryl” in (meth) acrylic acid ester and the like refers to acryl and / or methacryl.
 そして、本発明において、単量体組成物中の単量体dの含有量は、70質量%以下であることが好ましく、45質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。単量体dの含有量を70質量%以下とすることで、重合体における不飽和酸のリチウム塩、不飽和酸およびα,β-不飽和ニトリルに由来する単位の量を十分に確保し、重合体の使用による所期の効果を得ることができるからである。 In the present invention, the content of the monomer d in the monomer composition is preferably 70% by mass or less, more preferably 45% by mass or less, and 20% by mass or less. Is more preferable. By making the content of monomer d 70% by mass or less, a sufficient amount of units derived from the lithium salt of unsaturated acid, unsaturated acid and α, β-unsaturated nitrile in the polymer is secured, This is because the intended effect of using the polymer can be obtained.
[重合体の調製]
 そして、本発明のリチウムイオン二次電池電極用バインダー組成物が含有する重合体は、特に限定されることなく、上述した各単量体(単量体a、単量体b、単量体cおよびその他の単量体)を上述した割合で含む単量体組成物を、例えば水系溶媒中で重合することにより製造される。
 なお、上記単量体組成物において、単量体a(不飽和酸のリチウム塩)が、単量体b(不飽和酸)をリチウム塩化することで得られる化合物である場合には、特に限定されることなく、単量体bと、単量体cと、任意にその他の単量体とを含む単量体組成物前駆体を調製し、当該単量体組成物前駆体中の単量体bの一部を塩基性リチウム化合物でリチウム塩化して単量体aとすることにより、単量体組成物を調製してもよい。この場合には、単量体組成物前駆体中の単量体bの含有量は、単量体組成物中に含有させたい単量体aおよび単量体bの量に基づき、リチウム塩化されて単量体aとなる単量体bの量と、単量体組成物中に含有させたい単量体bの量との合計量とすればよい。
[Preparation of polymer]
And the polymer which the binder composition for lithium ion secondary battery electrodes of this invention contains is not specifically limited, Each monomer (monomer a, monomer b, monomer c) mentioned above And other monomers) in the above-described proportions, for example, by polymerizing in an aqueous solvent.
In the above monomer composition, when the monomer a (lithium salt of unsaturated acid) is a compound obtained by subjecting the monomer b (unsaturated acid) to lithium chloride, it is particularly limited. The monomer composition precursor containing the monomer b, the monomer c, and optionally other monomers is prepared, and the monomer in the monomer composition precursor A monomer composition may be prepared by lithium-chlorinating a part of the body b with a basic lithium compound to form a monomer a. In this case, the content of monomer b in the monomer composition precursor is lithium chloride based on the amount of monomer a and monomer b to be included in the monomer composition. Thus, the total amount of the monomer b to be monomer a and the amount of monomer b to be contained in the monomer composition may be used.
 ここで、重合体の製造方法は特に限定されず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。
 また、重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。また、重合開始剤としては、既知の重合開始剤を用いることができる。
Here, the production method of the polymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
As the polymerization method, addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used. Moreover, as a polymerization initiator, a known polymerization initiator can be used.
 そして、重合体の製造においては、上述した重合体組成物を用いるため、単量体の重合転化率が90%以上、好適には95%以上となり得る。従って、重合反応後における各単量体の残留量が大幅に低減されるため、残留単量体の後処理を容易または不要にすることが可能となる上、材料コストがより割安となる。
 なお、上述のようにして製造された重合体は、重合に使用した単量体組成物が含有していた単量体に由来する単位を、単量体組成物中の各単量体の存在比と同様の割合で含んでいる。
And in manufacture of a polymer, since the polymer composition mentioned above is used, the polymerization conversion ratio of a monomer can be 90% or more, preferably 95% or more. Therefore, since the residual amount of each monomer after the polymerization reaction is greatly reduced, the post-treatment of the residual monomer can be made easy or unnecessary, and the material cost is further reduced.
The polymer produced as described above is a unit derived from the monomer contained in the monomer composition used for the polymerization, and the presence of each monomer in the monomer composition. It is included in the same ratio as the ratio.
<分散媒>
 本発明のリチウムイオン二次電池電極用バインダー組成物は、分散媒を含有する。ここで、前記分散媒は、前記重合体を製造する際に用いられる水系溶媒であってもよいし、有機溶媒であってもよい。具体的には、分散媒は、水系溶媒中で単量体組成物を重合してなる重合体の水分散液をそのままバインダー組成物とする場合には、当該重合に用いた水や水溶液などの水系溶媒であってもよい。また、例えば、水系溶媒中で単量体組成物を重合した後、水系溶媒を有機溶媒で置換してバインダー組成物とする場合には、有機溶媒であってもよい。なお、前記有機溶媒としては、特に限定されることなく、N-メチルピロリドン(NMP)、アセトニトリル、アセチルピリジン、シクロペンタノン、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミン等が挙げられる。なお、分散媒としては、有機溶媒が好ましく、N-メチルピロリドン(NMP)がより好ましい。
 そして、本発明の二次電池電極用バインダー組成物は、前記分散媒として、1種類の溶媒を単独で含んでいてもよく、2種類以上の溶媒を任意の比率で含んでいてもよい。
<Dispersion medium>
The binder composition for a lithium ion secondary battery electrode of the present invention contains a dispersion medium. Here, the dispersion medium may be an aqueous solvent used when producing the polymer, or an organic solvent. Specifically, when the aqueous dispersion of a polymer obtained by polymerizing a monomer composition in an aqueous solvent is used as a binder composition as it is, the dispersion medium is water or an aqueous solution used for the polymerization. An aqueous solvent may be used. Further, for example, when the monomer composition is polymerized in an aqueous solvent and then the aqueous solvent is replaced with an organic solvent to obtain a binder composition, the organic solvent may be used. The organic solvent is not particularly limited, and examples thereof include N-methylpyrrolidone (NMP), acetonitrile, acetylpyridine, cyclopentanone, dimethylformamide, dimethyl sulfoxide, methylformamide, methyl ethyl ketone, furfural, and ethylenediamine. . The dispersion medium is preferably an organic solvent, more preferably N-methylpyrrolidone (NMP).
And the binder composition for secondary battery electrodes of this invention may contain one type of solvent independently as the said dispersion medium, and may contain two or more types of solvents by arbitrary ratios.
<その他の成分>
 本発明のリチウムイオン二次電池電極用バインダー組成物は、上述した成分に加え、バインダー組成物に配合し得る既知の任意成分を含有していても良い。また、重合体の重合に使用した重合開始剤などの残渣を含んでいてもよい。
<Other ingredients>
The binder composition for a lithium ion secondary battery electrode of the present invention may contain known optional components that can be blended in the binder composition in addition to the components described above. Moreover, residues, such as a polymerization initiator used for superposition | polymerization of a polymer, may be included.
(リチウムイオン二次電池電極用スラリー組成物)
 本発明のリチウムイオン二次電池電極用スラリー組成物は、上述のリチウムイオン二次電池電極用バインダー組成物および電極活物質を含む。そして、本発明のリチウムイオン二次電池電極用スラリー組成物では、リチウムイオン二次電池電極用スラリー組成物が含有する重合体が、結着材の少なくとも一部として機能する。このようなリチウムイオン二次電池電極用スラリー組成物を用いれば、ピール強度に優れ、且つ、内部抵抗が低いリチウムイオン二次電池用電極を提供することができるとともに、当該リチウムイオン二次電池用電極を用いた、内部抵抗の低いリチウムイオン二次電池を提供することができる。
 ここで、本発明のリチウムイオン二次電池電極用スラリー組成物は、上述のリチウムイオン二次電池電極用バインダー組成物および電極活物質に加え、任意に、導電材、バインダー組成物が含有する重合体以外の重合体、その他の任意の添加剤などを含んでいても良い。
(Slurry composition for lithium ion secondary battery electrode)
The slurry composition for lithium ion secondary battery electrodes of the present invention includes the above-described binder composition for lithium ion secondary battery electrodes and an electrode active material. And in the slurry composition for lithium ion secondary battery electrodes of this invention, the polymer which the slurry composition for lithium ion secondary battery electrodes contains functions as at least one part of a binder. By using such a slurry composition for a lithium ion secondary battery electrode, it is possible to provide an electrode for a lithium ion secondary battery having excellent peel strength and low internal resistance, and for the lithium ion secondary battery. A lithium ion secondary battery using an electrode and having low internal resistance can be provided.
Here, the slurry composition for a lithium ion secondary battery electrode of the present invention optionally includes a conductive material and a binder composition contained in the binder composition for the lithium ion secondary battery electrode and the electrode active material. It may contain a polymer other than the polymer, other optional additives, and the like.
<電極活物質>
 電極活物質は、リチウムイオン二次電池の電極(正極、負極)において電子の受け渡しをする物質である。以下、本発明のリチウムイオン二次電池電極用スラリー組成物に用いる電極活物質(正極活物質、負極活物質)について詳述する。
<Electrode active material>
The electrode active material is a substance that transfers electrons in the electrodes (positive electrode and negative electrode) of the lithium ion secondary battery. Hereinafter, the electrode active materials (positive electrode active material, negative electrode active material) used in the slurry composition for lithium ion secondary battery electrodes of the present invention will be described in detail.
[正極活物質]
 本発明のスラリー組成物に配合する正極活物質としては、特に限定されることなく、リチウムイオン二次電池の正極において使用される既知の正極活物質を用いることができる。具体的には、正極活物質としては、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
[Positive electrode active material]
As a positive electrode active material mix | blended with the slurry composition of this invention, the known positive electrode active material used in the positive electrode of a lithium ion secondary battery can be used, without being specifically limited. Specifically, as the positive electrode active material, a compound containing a transition metal, for example, a transition metal oxide, a transition metal sulfide, a composite metal oxide of lithium and a transition metal, or the like can be used. In addition, as a transition metal, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo etc. are mentioned, for example.
 ここで、遷移金属酸化物としては、例えばMnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O-P25、非晶質MoO3、非晶質V25、非晶質V613等が挙げられる。
 遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeSなどが挙げられる。
 リチウムと遷移金属との複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル型構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。
Here, as the transition metal oxide, for example, MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , amorphous Examples include MoO 3 , amorphous V 2 O 5 , and amorphous V 6 O 13 .
The transition metal sulfide, TiS 2, TiS 3, such as an amorphous MoS 2, FeS, and the like.
Examples of the composite metal oxide of lithium and transition metal include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure. It is done.
 層状構造を有するリチウム含有複合金属酸化物としては、例えば、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、LiMaO2とLi2MbO3との固溶体などが挙げられる。なお、LiMaO2とLi2MbO3との固溶体としては、例えば、xLiMaO2・(1-x)Li2MbO3などが挙げられる。ここで、xは0<x<1を満たす数を表し、Maは平均酸化状態が3+である1種類以上の遷移金属を表し、Mbは平均酸化状態が4+である1種類以上の遷移金属を表す。
 なお、本明細書において、「平均酸化状態」とは、前記「1種類以上の遷移金属」の平均の酸化状態を示し、遷移金属のモル量と原子価とから算出される。例えば、「1種類以上の遷移金属」が、50mol%のNi2+と50mol%のMn4+から構成される場合には、「1種類以上の遷移金属」の平均酸化状態は、(0.5)×(2+)+(0.5)×(4+)=3+となる。
Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium-containing composite oxide, and Ni—Mn. A lithium-containing composite oxide of -Al, a lithium-containing composite oxide of Ni-Co-Al, and a solid solution of LiMaO 2 and Li 2 MbO 3 . Examples of the solid solution of LiMaO 2 and Li 2 MbO 3 include xLiMaO 2. (1-x) Li 2 MbO 3 . Here, x represents a number satisfying 0 <x <1, Ma represents one or more transition metals having an average oxidation state of 3+, and Mb represents one or more transition metals having an average oxidation state of 4+. To express.
In this specification, the “average oxidation state” indicates an average oxidation state of the “one or more transition metals”, and is calculated from the molar amount and valence of the transition metal. For example, when “one or more transition metals” is composed of 50 mol% Ni 2+ and 50 mol% Mn 4+ , the average oxidation state of “one or more transition metals” is (0. 5) × (2 +) + (0.5) × (4 +) = 3+
 スピネル型構造を有するリチウム含有複合金属酸化物としては、例えば、マンガン酸リチウム(LiMn24)や、マンガン酸リチウム(LiMn24)のMnの一部を他の遷移金属で置換した化合物が挙げられる。具体例としては、Lis[Mn2-tMct]O4が挙げられる。ここで、Mcは平均酸化状態が4+である1種類以上の遷移金属を表す。Mcの具体例としては、Ni、Co、Fe、Cu、Cr等が挙げられる。また、tは0<t<1を満たす数を表し、sは0≦s≦1を満たす数を表す。なお、正極活物質としては、Li1+xMn2-x4(0<X<2)で表されるリチウム過剰のスピネル化合物なども用いることができる。 Examples of the lithium-containing composite metal oxide having a spinel structure include lithium manganate (LiMn 2 O 4 ) and compounds in which a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal. Is mentioned. A specific example is Li s [Mn 2 -t Mc t ] O 4 . Here, Mc represents one or more transition metals having an average oxidation state of 4+. Specific examples of Mc include Ni, Co, Fe, Cu, and Cr. T represents a number satisfying 0 <t <1, and s represents a number satisfying 0 ≦ s ≦ 1. As the positive electrode active material, a lithium-excess spinel compound represented by Li 1 + x Mn 2−x O 4 (0 <X <2) can also be used.
 オリビン型構造を有するリチウム含有複合金属酸化物としては、例えば、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)などのLiyMdPO4で表されるオリビン型リン酸リチウム化合物が挙げられる。ここで、Mdは平均酸化状態が3+である1種類以上の遷移金属を表し、例えばMn、Fe、Co等が挙げられる。また、yは0≦y≦2を満たす数を表す。さらに、LiyMdPO4で表されるオリビン型リン酸リチウム化合物は、Mdが他の金属で一部置換されていてもよい。置換しうる金属としては、例えば、Cu、Mg、Zn、V、Ca、Sr、Ba、Ti、Al、Si、BおよびMoなどが挙げられる。 Examples of the lithium-containing composite metal oxide having an olivine type structure include olivine type phosphorus represented by Li y MdPO 4 such as olivine type lithium iron phosphate (LiFePO 4 ) and olivine type lithium manganese phosphate (LiMnPO 4 ). An acid lithium compound is mentioned. Here, Md represents one or more transition metals having an average oxidation state of 3+, and examples thereof include Mn, Fe, and Co. Y represents a number satisfying 0 ≦ y ≦ 2. Furthermore, in the olivine-type lithium phosphate compound represented by Li y MdPO 4 , Md may be partially substituted with another metal. Examples of the metal that can be substituted include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo.
 上述した中でも、スラリー組成物を用いて形成した正極を使用した二次電池のサイクル特性および初期容量を向上させる観点からは、正極活物質としてリチウム含有コバルト酸化物(LiCoO2)、Co-Ni-Mnのリチウム含有複合酸化物、またはオリビン型リン酸鉄リチウム(LiFePO4)を用いることが好ましい。 Among the above, from the viewpoint of improving the cycle characteristics and initial capacity of the secondary battery using the positive electrode formed using the slurry composition, lithium-containing cobalt oxide (LiCoO 2 ), Co—Ni— as the positive electrode active material. It is preferable to use a lithium-containing composite oxide of Mn or olivine type lithium iron phosphate (LiFePO 4 ).
 また、スラリー組成物を用いて形成した正極を使用したリチウムイオン二次電池を高容量とする観点からは、正極活物質として、MnおよびNiの少なくとも一方を含有する正極活物質を用いることが好ましい。具体的には、リチウムイオン二次電池の高容量化の観点からは、LiNiO2、LiMn24、リチウム過剰のスピネル化合物、LiMnPO4、Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.54等を正極活物質として用いることが好ましく、LiNiO2、リチウム過剰のスピネル化合物、Li[Ni0.5Co0.2Mn0.3]O2、Li[Ni1/3Co1/3Mn1/3]O2、Li[Ni0.17Li0.2Co0.07Mn0.56]O2等を正極活物質として用いることがより好ましく、Li[Ni0.5Co0.2Mn0.3]O2を正極活物質として用いることが特に好ましい。
 なお、正極活物質の粒径や比表面積は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
Further, from the viewpoint of increasing the capacity of a lithium ion secondary battery using a positive electrode formed using the slurry composition, it is preferable to use a positive electrode active material containing at least one of Mn and Ni as the positive electrode active material. . Specifically, from the viewpoint of increasing the capacity of the lithium ion secondary battery, LiNiO 2 , LiMn 2 O 4 , a lithium-excess spinel compound, LiMnPO 4 , Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , Li [ Ni 1/3 Co 1/3 Mn 1/3 ] O 2 , Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 etc. are preferably used as the positive electrode active material, LiNiO 2 , Lithium-excess spinel compound, Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 , Li [Ni 1/3 Co 1/3 Mn 1/3 ] O 2 , Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2, etc. Is more preferably used as the positive electrode active material, and Li [Ni 0.5 Co 0.2 Mn 0.3 ] O 2 is particularly preferably used as the positive electrode active material.
The particle size and specific surface area of the positive electrode active material are not particularly limited and can be the same as those of conventionally used positive electrode active materials.
 ここで、本発明のリチウムイオン二次電池電極用スラリー組成物を正極に用いる場合における、当該スラリー組成物における正極活物質の含有量は、特に限定はされないが、例えば、スラリー組成物の固形分100質量部当たり、好ましくは90質量部以上98質量部以下である。前記正極活物質の含有量をこの範囲にすることにより、リチウムイオン二次電池用正極の内部抵抗を適度な大きさとしつつ、リチウムイオン二次電池の容量を向上させることができる。 Here, when the slurry composition for a lithium ion secondary battery electrode of the present invention is used for a positive electrode, the content of the positive electrode active material in the slurry composition is not particularly limited. For example, the solid content of the slurry composition Preferably it is 90 to 98 mass parts per 100 mass parts. By setting the content of the positive electrode active material within this range, it is possible to improve the capacity of the lithium ion secondary battery while setting the internal resistance of the positive electrode for the lithium ion secondary battery to an appropriate level.
[負極活物質]
 本発明のスラリー組成物に配合する負極活物質としては、特に限定されることなく、リチウムイオン二次電池の負極において使用される既知の負極活物質を用いることができる。具体的には、通常は、負極活物質としては、リチウムを吸蔵および放出し得る物質を用いる。なお、リチウムを吸蔵および放出し得る物質としては、例えば、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
[Negative electrode active material]
As a negative electrode active material mix | blended with the slurry composition of this invention, the known negative electrode active material used in the negative electrode of a lithium ion secondary battery can be used, without being specifically limited. Specifically, a material that can occlude and release lithium is usually used as the negative electrode active material. Examples of the material that can occlude and release lithium include a carbon-based negative electrode active material, a metal-based negative electrode active material, and a negative electrode active material obtained by combining these materials.
[[炭素系負極活物質]]
 炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
[[Carbon-based negative electrode active material]]
The carbon-based negative electrode active material refers to an active material having carbon as a main skeleton capable of inserting lithium (also referred to as “dope”). Examples of the carbon-based negative electrode active material include carbonaceous materials and graphite materials. Is mentioned.
 ここで、炭素質材料としては、例えば、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
Here, examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitizable carbon having a structure close to an amorphous structure typified by glassy carbon. It is done.
Examples of graphitizable carbon include carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch carbon fibers, pyrolytic vapor grown carbon fibers, and the like.
Examples of the non-graphitizable carbon include a phenol resin fired body, polyacrylonitrile-based carbon fiber, pseudo-isotropic carbon, furfuryl alcohol resin fired body (PFA), and hard carbon.
 また、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などの黒鉛(グラファイト)が挙げられる。 Further, examples of the graphite material include graphite such as natural graphite and artificial graphite.
[[金属系負極活物質]]
 金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。
[[Metal negative electrode active material]]
The metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of inserting lithium in the structure, and the theoretical electric capacity per unit mass when lithium is inserted is 500 mAh / g or more. Is an active material. Examples of the metal active material include lithium metal and a single metal capable of forming a lithium alloy (for example, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn). , Sr, Zn, Ti, etc.) and alloys thereof, and oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like thereof.
 そして、金属系負極活物質の中でも、ケイ素を含む活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。 Of the metal-based negative electrode active materials, active materials containing silicon (silicon-based negative electrode active materials) are preferable. This is because the capacity of the lithium ion secondary battery can be increased by using the silicon-based negative electrode active material.
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiOx、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。なお、これらのシリコン系負極活物質は、1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 Examples of silicon-based negative electrode active materials include silicon (Si), alloys containing silicon, SiO, SiO x , and a composite of a Si-containing material obtained by coating or combining a Si-containing material with conductive carbon and conductive carbon. Etc. In addition, these silicon type negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more types.
 ケイ素を含む合金としては、例えば、ケイ素と、アルミニウムと、鉄などの遷移金属とを含み、さらにスズおよびイットリウム等の希土類元素を含む合金組成物が挙げられる。 Examples of the alloy containing silicon include an alloy composition containing silicon, aluminum, and a transition metal such as iron, and further containing a rare earth element such as tin and yttrium.
 SiOxは、SiOおよびSiO2の少なくとも一方と、Siとを含有する化合物であり、xは、通常、0.01以上2未満である。そして、SiOxは、例えば、一酸化ケイ素(SiO)の不均化反応を利用して形成することができる。具体的には、SiOxは、SiOを、任意にポリビニルアルコールなどのポリマーの存在下で熱処理し、ケイ素と二酸化ケイ素とを生成させることにより、調製することができる。なお、熱処理は、SiOと、任意にポリマーとを粉砕混合した後、有機物ガスおよび/または蒸気を含む雰囲気下、900℃以上、好ましくは1000℃以上の温度で行うことができる。 SiO x is a compound containing at least one of SiO and SiO 2 and Si, and x is usually 0.01 or more and less than 2. Then, SiO x, for example, can be formed by using a disproportionation reaction of silicon monoxide (SiO). Specifically, SiO x can be prepared by heat-treating SiO, optionally in the presence of a polymer such as polyvinyl alcohol, to produce silicon and silicon dioxide. The heat treatment can be performed at a temperature of 900 ° C. or higher, preferably 1000 ° C. or higher, in an atmosphere containing an organic gas and / or vapor after grinding and mixing SiO and optionally a polymer.
 Si含有材料と導電性カーボンとの複合化物としては、例えば、SiOと、ポリビニルアルコールなどのポリマーと、任意に炭素材料との粉砕混合物を、例えば有機物ガスおよび/または蒸気を含む雰囲気下で熱処理してなる化合物を挙げることができる。また、SiOの粒子に対して、有機物ガスなどを用いた化学的蒸着法によって表面をコーティングする方法、SiOの粒子と黒鉛または人造黒鉛をメカノケミカル法によって複合粒子化(造粒化)する方法などの公知の方法でも得ることができる。 As a composite of Si-containing material and conductive carbon, for example, a pulverized mixture of SiO, a polymer such as polyvinyl alcohol, and optionally a carbon material is heat-treated in an atmosphere containing, for example, an organic gas and / or steam. Can be mentioned. In addition, a method of coating the surface of the SiO particles by a chemical vapor deposition method using an organic gas, a method of forming composite particles (granulation) of the SiO particles and graphite or artificial graphite by a mechanochemical method, etc. It can also be obtained by a known method.
 なお、負極活物質の粒径や比表面積は、特に限定されることなく、従来使用されている負極活物質と同様とすることができる。 The particle size and specific surface area of the negative electrode active material are not particularly limited and can be the same as those of conventionally used negative electrode active materials.
 ここで、本発明のリチウムイオン二次電池電極用スラリー組成物を負極に用いる場合における、当該スラリー組成物における負極活物質の含有量は、特に限定はされないが、例えば、スラリー組成物の固形分100質量部当たり、好ましくは90質量部以上98質量部以下である。前記負極活物質の含有量をこの範囲にすることにより、リチウムイオン二次電池用負極の内部抵抗を適度な大きさとしつつ、リチウムイオン二次電池の容量を向上させることができる。 Here, when the slurry composition for lithium ion secondary battery electrodes of the present invention is used for a negative electrode, the content of the negative electrode active material in the slurry composition is not particularly limited. For example, the solid content of the slurry composition Preferably it is 90 to 98 mass parts per 100 mass parts. By setting the content of the negative electrode active material in this range, it is possible to improve the capacity of the lithium ion secondary battery while setting the internal resistance of the negative electrode for the lithium ion secondary battery to an appropriate level.
<バインダー組成物>
 上述したバインダー組成物が含有する前記重合体は、リチウムイオン二次電池電極用スラリー組成物を用いて調製したリチウムイオン二次電池用電極の電極合材層において、結着材の少なくとも一部として機能する。
 そして、本発明のリチウムイオン二次電池電極用スラリー組成物は、上述のリチウムイオン二次電池電極用バインダー組成物を、例えば、電極活物質100質量部当たり、固形分相当量で、好ましくは0.1質量部以上10質量部以下、より好ましくは0.5質量部以上5質量部以下の割合で含有する。前記バインダー組成物の含有量をこの範囲にすることにより、リチウムイオン二次電池用電極の内部抵抗の低減などの所望の効果を得つつ、リチウムイオン二次電池の出力特性を向上させることができる。
<Binder composition>
In the electrode mixture layer of the electrode for a lithium ion secondary battery prepared using the slurry composition for a lithium ion secondary battery electrode, the polymer contained in the binder composition described above is used as at least a part of the binder. Function.
And the slurry composition for lithium ion secondary battery electrodes of this invention is the above-mentioned binder composition for lithium ion secondary battery electrodes, for example per 100 mass parts of electrode active materials in solid content equivalent amount, Preferably it is 0. .1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass. By setting the content of the binder composition within this range, it is possible to improve the output characteristics of the lithium ion secondary battery while obtaining desired effects such as reduction of the internal resistance of the electrode for the lithium ion secondary battery. .
<導電材>
 導電材は、電極活物質同士の電気的接触を確保するためのものである。そして、導電材としては、特に限定されることなく、既知の導電材を用いることができる。具体的には、例えばリチウムイオン二次電池の正極用の導電材としては、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンブラック、グラファイト等の導電性炭素材料;各種金属のファイバー、箔などを用いることができる。これらの中でも、正極活物質同士の電気的接触を向上させ、スラリー組成物を用いて形成した正極を使用したリチウムイオン二次電池の電気的特性を向上させる観点からは、導電材としては、アセチレンブラック、ケッチェンブラック(登録商標)、カーボンブラック、グラファイトを用いることが好ましく、アセチレンブラック、ケッチェンブラック(登録商標)を用いることが特に好ましい。
<Conductive material>
The conductive material is for ensuring electrical contact between the electrode active materials. The conductive material is not particularly limited, and a known conductive material can be used. Specifically, for example, as a conductive material for a positive electrode of a lithium ion secondary battery, conductive carbon materials such as acetylene black, ketjen black (registered trademark), carbon black, and graphite; fibers of various metals, foils, etc. Can be used. Among these, from the viewpoint of improving the electrical contact between the positive electrode active materials and improving the electrical characteristics of the lithium ion secondary battery using the positive electrode formed using the slurry composition, the conductive material is acetylene. Black, ketjen black (registered trademark), carbon black, and graphite are preferably used, and acetylene black and ketjen black (registered trademark) are particularly preferably used.
 なお、本発明のリチウムイオン二次電池正極用スラリー組成物における導電材の配合量は、特に限定はされないが、例えば、正極活物質100質量部当たり、好ましくは1質量部以上5質量部以下である。導電材の配合量が少なすぎると、電極活物質同士の電気的接触を十分に確保することができず、リチウムイオン二次電池の電気的特性を十分に確保することができない。一方、導電材の配合量が多すぎると、スラリー組成物の安定性が低下すると共に電極中の電極合材層の密度が低下し、リチウムイオン二次電池を十分に高容量化することができない。 In addition, although the compounding quantity of the electrically conductive material in the slurry composition for lithium ion secondary battery positive electrodes of this invention is not specifically limited, For example, per 100 mass parts of positive electrode active materials, Preferably they are 1 mass part or more and 5 mass parts or less. is there. If the blending amount of the conductive material is too small, sufficient electrical contact between the electrode active materials cannot be ensured, and sufficient electrical characteristics of the lithium ion secondary battery cannot be ensured. On the other hand, when the amount of the conductive material is too large, the stability of the slurry composition is lowered and the density of the electrode mixture layer in the electrode is lowered, so that the capacity of the lithium ion secondary battery cannot be sufficiently increased. .
<その他の重合体>
 ここで、本発明のリチウムイオン二次電池電極用スラリー組成物は、結着材として、上述したバインダー組成物が含有する重合体に加え、かかる重合体以外の重合体(以下、「その他の重合体」と称することがある。)を含んでいてもよい。上述したその他の重合体をリチウムイオン二次電池電極用スラリー組成物に含ませることにより、電極合材層と集電体との密着性がより向上し、得られる二次電池の出力特性を向上させることが可能となるからである。
<Other polymers>
Here, the slurry composition for a lithium ion secondary battery electrode of the present invention includes, as a binder, a polymer other than the polymer (hereinafter referred to as “other heavy metals”) in addition to the polymer contained in the binder composition described above. May be referred to as “union”). By including the above-mentioned other polymer in the slurry composition for lithium ion secondary battery electrodes, the adhesion between the electrode mixture layer and the current collector is further improved, and the output characteristics of the obtained secondary battery are improved. It is because it becomes possible to make it.
 その他の重合体としては、フッ素含有重合体、アクリロニトリル重合体等が挙げられる。前記フッ素含有重合体としては、フッ化ビニリデン単位を30質量%以上含有する重合体、例えばポリフッ化ビニリデン等が挙げられ、前記アクリロニトリル重合体としては、アクリロニトリル単位を85質量%を超えて含有する重合体、例えばポリアクリロニトリルが挙げられる。これらの中でも、電極合材層と集電体との密着性を更に向上させ、リチウムイオン二次電池の出力特性を一層向上させる観点から、フッ素含有重合体がより好ましい。 Other polymers include fluorine-containing polymers and acrylonitrile polymers. Examples of the fluorine-containing polymer include polymers containing 30% by mass or more of vinylidene fluoride units, such as polyvinylidene fluoride. The acrylonitrile polymer includes heavy polymers containing more than 85% by mass of acrylonitrile units. Copolymers such as polyacrylonitrile are mentioned. Among these, a fluorine-containing polymer is more preferable from the viewpoint of further improving the adhesion between the electrode mixture layer and the current collector and further improving the output characteristics of the lithium ion secondary battery.
 なお、本発明のリチウムイオン二次電池電極用スラリー組成物が上述のバインダー組成物が含有する重合体以外の重合体(その他の重合体)を含む場合、当該その他の重合体の含有量は、特に限定はされないが、上述したバインダー組成物の固形分相当と当該その他の重合体との合計量のうち、好ましくは10質量%以上90質量%以下、より好ましくは20質量%以上80質量%以下である。前記その他の重合体の含有量をこの範囲にすることにより、電極合材層と集電体との密着性をより向上させることができる上、リチウムイオン二次電池の出力特性を更に向上させることができる。 In addition, when the slurry composition for lithium ion secondary battery electrodes of the present invention contains a polymer (other polymer) other than the polymer contained in the binder composition, the content of the other polymer is as follows: Although not particularly limited, the total amount of the above-described binder composition corresponding to the solid content and the other polymer is preferably 10% by mass or more and 90% by mass or less, more preferably 20% by mass or more and 80% by mass or less. It is. By setting the content of the other polymer within this range, the adhesion between the electrode mixture layer and the current collector can be further improved, and the output characteristics of the lithium ion secondary battery can be further improved. Can do.
<その他の添加剤>
 本発明のリチウムイオン二次電池電極用スラリー組成物は、上記成分の他に、例えば、補強材、酸化防止剤、増粘剤等の粘度調整剤、界面活性剤、分散剤、電解液の分解を抑制する機能を有する電解液添加剤などの成分を含有していてもよい。これらその他の添加剤は、公知のものを使用することができ、例えば国際公開第2012/036260号に記載のものや、特開2012-204303号公報に記載のものを使用することができる。
<Other additives>
In addition to the above components, the slurry composition for lithium ion secondary battery electrodes of the present invention includes, for example, a viscosity modifier such as a reinforcing material, an antioxidant, a thickener, a surfactant, a dispersant, and an electrolytic solution. It may contain components such as an electrolytic solution additive having a function of suppressing the above. As these other additives, known ones can be used, for example, those described in International Publication No. 2012/036260 and those described in JP 2012-204303 A can be used.
<リチウムイオン二次電池電極用スラリー組成物の調製>
 本発明のリチウムイオン二次電池電極用スラリー組成物は、上記各成分を有機溶媒中に溶解または分散させることにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて上記各成分と有機溶媒とを混合することにより、スラリー組成物を調製することができる。
 なお、有機溶媒としては、バインダー組成物が含有している有機溶媒をそのまま使用しても良いし、スラリー組成物の調製に際して有機溶媒を追加してもよい。更に、上記各成分と有機溶媒との混合は、通常、室温~80℃の範囲で、10分~数時間行うことができる。
<Preparation of slurry composition for lithium ion secondary battery electrode>
The slurry composition for a lithium ion secondary battery electrode of the present invention can be prepared by dissolving or dispersing the above components in an organic solvent. Specifically, the above components and the organic solvent are mixed using a blender such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crushed grinder, an ultrasonic disperser, a homogenizer, a planetary mixer, or a fill mix. Thus, a slurry composition can be prepared.
In addition, as an organic solvent, the organic solvent which the binder composition contains may be used as it is, and an organic solvent may be added when preparing a slurry composition. Furthermore, the mixing of each of the above components and the organic solvent can usually be carried out in the range of room temperature to 80 ° C. for 10 minutes to several hours.
(リチウムイオン二次電池用電極)
 本発明のリチウムイオン二次電池用電極は、上述のようにして得られたリチウムイオン二次電池電極用スラリー組成物を用いて調製した電極合材層を、集電体上に備えたものであり、電極合材層には、少なくとも、電極活物質と、上述した重合体とが含まれている。なお、電極合材層中に含まれている電極活物質などの各成分は、本発明のリチウムイオン二次電池電極用スラリー組成物中に含まれていたものであり、それら各成分の好適な存在比は、本発明のリチウムイオン二次電池電極用スラリー組成物中の各成分の好適な存在比と同じである。本発明のリチウムイオン二次電池用電極は、本発明のバインダー組成物を用いているので、高いピール強度および低い内部抵抗を有している。
(Electrode for lithium ion secondary battery)
The electrode for a lithium ion secondary battery of the present invention comprises an electrode mixture layer prepared using the slurry composition for a lithium ion secondary battery electrode obtained as described above on a current collector. The electrode mixture layer contains at least the electrode active material and the polymer described above. In addition, each component such as an electrode active material contained in the electrode mixture layer is contained in the slurry composition for lithium ion secondary battery electrodes of the present invention. The abundance ratio is the same as the preferred abundance ratio of each component in the slurry composition for a lithium ion secondary battery electrode of the present invention. Since the electrode for lithium ion secondary batteries of the present invention uses the binder composition of the present invention, it has high peel strength and low internal resistance.
<リチウムイオン二次電池用電極の製造>
 本発明のリチウムイオン二次電池用電極は、例えば、集電体上に、上述のようにして得られたリチウムイオン二次電池電極用スラリー組成物を塗布し、集電体上に塗布されたリチウムイオン二次電池電極用スラリー組成物を乾燥して得られる。即ち、リチウムイオン二次電池用電極は、例えば、スラリー組成物の塗布工程およびスラリー組成物の乾燥工程を経て得られる。
<Manufacture of electrodes for lithium ion secondary batteries>
The electrode for a lithium ion secondary battery of the present invention was applied on the current collector by, for example, applying the slurry composition for a lithium ion secondary battery electrode obtained as described above on the current collector. It is obtained by drying a slurry composition for a lithium ion secondary battery electrode. That is, the electrode for a lithium ion secondary battery is obtained, for example, through a slurry composition coating process and a slurry composition drying process.
[塗布工程]
 上記リチウムイオン二次電池電極用スラリー組成物を集電体上に塗布する方法としては、特に限定されず、公知の方法を用いることができる。具体的な塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
[Coating process]
It does not specifically limit as a method of apply | coating the said slurry composition for lithium ion secondary battery electrodes on a collector, A well-known method can be used. As a specific coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
 ここで、スラリー組成物を塗布する集電体としては、電気導電性を有し且つ電気化学的に耐久性のある材料であれば特に制限されない。耐熱性を有するとの観点から、集電体の材料としては金属が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが好ましい。なかでも、例えば正極用としてはアルミニウムが特に好ましく、負極用としては銅が好ましい。集電体の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 Here, the current collector to which the slurry composition is applied is not particularly limited as long as it is an electrically conductive and electrochemically durable material. From the viewpoint of heat resistance, the current collector is preferably made of metal, such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum. Among them, for example, aluminum is particularly preferable for the positive electrode, and copper is preferable for the negative electrode. One type of current collector material may be used alone, or two or more types may be used in combination at any ratio.
[乾燥工程]
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備えるリチウムイオン二次電池用電極を得ることができる。
[Drying process]
The method for drying the slurry composition on the current collector is not particularly limited, and a known method can be used, for example, drying with hot air, hot air, low-humidity air, vacuum drying, irradiation with infrared rays, electron beams, or the like. The drying method by is mentioned. Thus, by drying the slurry composition on the current collector, an electrode mixture layer is formed on the current collector, and a lithium ion secondary battery electrode including the current collector and the electrode mixture layer is obtained. be able to.
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極合材層と集電体との密着性を向上させると共に、電極の空隙率を低くすることができる。 In addition, after the drying step, the electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. The pressurization treatment can improve the adhesion between the electrode mixture layer and the current collector and reduce the porosity of the electrode.
 また、本発明のリチウムイオン二次電池用電極の別の製造方法の例としては、粉体成型法が挙げられる。粉体成型法とは、リチウムイオン二次電池用電極を製造するためのスラリー組成物を用意し、そのスラリー組成物から電極活物質などを含む複合粒子を調製し、その複合粒子を集電体上に供給し、所望により更にロールプレスして成形することにより電極合材層を形成して、リチウムイオン二次電池用電極を得る製造方法である。この際、スラリー組成物としては、上述したものと同様のスラリー組成物を用いることができる。 Moreover, as an example of another method for producing the electrode for the lithium ion secondary battery of the present invention, a powder molding method may be mentioned. The powder molding method refers to preparing a slurry composition for producing an electrode for a lithium ion secondary battery, preparing composite particles containing an electrode active material from the slurry composition, and using the composite particles as a current collector This is a production method for obtaining an electrode for a lithium ion secondary battery by forming an electrode mixture layer by supplying the material onto the surface and further rolling and forming as desired. At this time, as the slurry composition, the same slurry composition as described above can be used.
(リチウムイオン二次電池)
 本発明のリチウムイオン二次電池は、正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方に、本発明のリチウムイオン二次電池用電極を用いたものである。本発明のリチウムイオン二次電池は、上述したリチウムイオン二次電池用電極を使用しているので、低い内部抵抗を有している。
(Lithium ion secondary battery)
The lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, an electrolytic solution, and a separator, and the lithium ion secondary battery electrode of the present invention is used for at least one of the positive electrode and the negative electrode. Since the lithium ion secondary battery of the present invention uses the above-described electrode for a lithium ion secondary battery, it has a low internal resistance.
<電極>
 上述のように、本発明のリチウムイオン二次電池用電極が、正極および負極の少なくとも一方として用いられる。すなわち、本発明のリチウムイオン二次電池の正極が本発明のリチウムイオン二次電池用電極であり負極が他の既知の負極であってもよく、本発明のリチウムイオン二次電池の負極が本発明のリチウムイオン二次電池用電極であり正極が他の既知の正極であってもよく、そして、本発明のリチウムイオン二次電池の正極および負極の両方が本発明のリチウムイオン二次電池用電極であってもよい。
<Electrode>
As described above, the electrode for a lithium ion secondary battery of the present invention is used as at least one of a positive electrode and a negative electrode. That is, the positive electrode of the lithium ion secondary battery of the present invention may be an electrode for a lithium ion secondary battery of the present invention, the negative electrode may be another known negative electrode, and the negative electrode of the lithium ion secondary battery of the present invention is the main electrode. The electrode for a lithium ion secondary battery of the invention, the positive electrode may be another known positive electrode, and both the positive electrode and the negative electrode of the lithium ion secondary battery of the invention are for the lithium ion secondary battery of the invention It may be an electrode.
<電解液>
 リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、通常、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As an electrolytic solution for a lithium ion secondary battery, for example, a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used. As the supporting electrolyte, a lithium salt is usually used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Of these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;などが挙げられる。なかでも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。 The non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte. Examples of non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); and esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. A non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
 また、電解液には添加剤を含有させてもよい。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系の化合物が挙げられる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、上記以外の電解液として、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質;前記ポリマー電解質に電解液を含浸したゲル状ポリマー電解質;LiI、Li3Nなどの無機固体電解質;などを用いてもよい。 Moreover, you may contain an additive in electrolyte solution. Examples of the additive include carbonate compounds such as vinylene carbonate (VC). An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Further, as an electrolytic solution other than the above, for example, a polymer electrolyte such as polyethylene oxide or polyacrylonitrile; a gel polymer electrolyte obtained by impregnating the polymer electrolyte with an electrolytic solution; an inorganic solid electrolyte such as LiI or Li 3 N; Also good.
<セパレータ>
 セパレータとしては、例えば、特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くし、リチウムイオン二次電池内の電極活物質比率を上げて体積あたりの容量を上げることができるという観点からは、ポリオレフィン系の樹脂(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)からなる微多孔膜が好ましい。
<Separator>
As the separator, for example, those described in JP 2012-204303 A can be used. Among these, from the viewpoint of reducing the overall thickness of the separator and increasing the electrode active material ratio in the lithium ion secondary battery to increase the capacity per volume, polyolefin resins (polyethylene, polypropylene, A microporous film made of polybutene or polyvinyl chloride is preferred.
<リチウムイオン二次電池の製造方法>
 本発明のリチウムイオン二次電池の具体的な製造方法としては、例えば、正極と負極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method for producing lithium ion secondary battery>
As a specific manufacturing method of the lithium ion secondary battery of the present invention, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery. The method of inject | pouring electrolyte solution into a container and sealing is mentioned. Further, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the secondary battery may be any of a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, a flat shape, and the like.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 なお、以下の実施例では、本発明の一態様として、本発明のリチウムイオン二次電池電極用バインダー組成物を正極のみに用い、リチウムイオン二次電池を作製した。
 実施例および比較例において、単量体の重合転化率、リチウムイオン二次電池用正極のピール強度、並びにリチウムイオン二次電池の低温特性、高温保存特性および高温サイクル特性は、それぞれ以下の方法を使用して評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In the following examples, as one aspect of the present invention, the lithium ion secondary battery electrode binder composition of the present invention was used only for the positive electrode to produce a lithium ion secondary battery.
In the examples and comparative examples, the polymerization conversion rate of the monomer, the peel strength of the positive electrode for the lithium ion secondary battery, and the low temperature characteristics, the high temperature storage characteristics and the high temperature cycle characteristics of the lithium ion secondary batteries are as follows. Used and evaluated.
<単量体の重合転化率>
 単量体組成物を調製する際に、オートクレーブに仕込んだ、各単量体の総重量(仕込み単量体総重量)、脱イオン水の総重量(仕込み水重量)、および、全ての原料の総重量(仕込み原料総重量)を精秤した。
 また、単量体組成物を用いて重合させた際に、まず、得られた重合反応物の一部を採取し、その重量(乾燥前重合反応物重量)を精秤した。次に、その採取した重量反応物を、熱風乾燥器中で120℃の温度で1時間乾燥させ、再度その重量(乾燥後重合反応物重量)を精秤した。ここで、(乾燥後重合反応物重量)÷(乾燥前重合反応物重量)×100を算出し、重合反応物の固形分率(%)とした。
 そして、〔(仕込み原料総重量)×(重量反応物の固形分率)-{(仕込み原料総重量)-(仕込み水重量)-(仕込み単量体総重量)}〕÷(仕込み単量体総重量)×100を算出し、単量体の重合転化率(%)とした。
<Polymerization conversion rate of monomer>
When preparing the monomer composition, the total weight of each monomer (total weight of charged monomers), the total weight of deionized water (charged water weight), and all the raw materials charged in the autoclave The total weight (total weight of raw materials charged) was precisely weighed.
Moreover, when it superposed | polymerized using a monomer composition, first, some polymerization reaction products obtained were extract | collected, and the weight (polymerization reaction product weight before drying) was precisely weighed. Next, the collected weight reaction product was dried in a hot air dryer at a temperature of 120 ° C. for 1 hour, and its weight (polymerization reaction product weight after drying) was weighed again. Here, (weight of polymerization reaction product after drying) ÷ (weight of polymerization reaction product before drying) × 100 was calculated and used as the solid content rate (%) of the polymerization reaction product.
Then, [(total weight of charged raw material) × (solid content ratio of weight reaction product) − {(total weight of charged raw material) − (total weight of charged water) − (total weight of charged monomer)}] ÷ (charged monomer) Total weight) × 100 was calculated and used as the monomer polymerization conversion rate (%).
<リチウムイオン二次電池用正極のピール強度>
 調製した正極を、幅1.0cm×長さ10cmの矩形に切って試験片とした。そして、試験片の正極合材層側の表面にセロハンテープを張り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。その後、セロハンテープを試験台に固定した状態で試験片を一端側から50mm/分の速度で他端側に向けて引き剥がしたときの応力を測定した。測定を10回行い、応力の平均値を求めて、これをピール強度(N/m)とし、以下の基準で評価した。ピール強度が大きいほど、結着材の結着性が優れており、集電体に対する正極合材層の密着性が高いことを示す。
 A:ピール強度が30N/m以上
 B:ピール強度が20N/m以上30N/m未満
 C:ピール強度が10N/m以上20N/m未満
 D:ピール強度が10N/m未満
<Peel strength of positive electrode for lithium ion secondary battery>
The prepared positive electrode was cut into a rectangle having a width of 1.0 cm and a length of 10 cm to obtain a test piece. Then, a cellophane tape was attached to the surface of the test piece on the positive electrode mixture layer side. At this time, the cellophane tape defined in JIS Z1522 was used. Then, the stress when the test piece was peeled from the one end side toward the other end side at a speed of 50 mm / min with the cellophane tape fixed to the test stand was measured. The measurement was performed 10 times, the average value of the stress was determined, and this was taken as the peel strength (N / m), and evaluated according to the following criteria. The higher the peel strength, the better the binding property of the binding material, and the higher the adhesion of the positive electrode mixture layer to the current collector.
A: Peel strength is 30 N / m or more B: Peel strength is 20 N / m or more and less than 30 N / m C: Peel strength is 10 N / m or more and less than 20 N / m D: Peel strength is less than 10 N / m
<リチウムイオン二次電池の低温特性>
 作製したリチウムイオン二次電池の低温特性を評価するために、以下のようにしてIV抵抗を測定した。-10℃雰囲気下、1C(Cは定格容量(mA)/1時間(h)で表される数値)でSOC(State Of Charge:充電深度)の50%まで充電した後、SOCの50%を中心として0.5C、1.0C、1.5C、2.0Cで15秒間充電と15秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における15秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、以下の基準で評価した。IV抵抗の値が小さいほど、内部抵抗が少なく、低温特性に優れていることを示す。
 A:IV抵抗が10Ω以下
 B:IV抵抗が10Ω超15Ω以下
 C:IV抵抗が15Ω超20Ω以下
 D:IV抵抗が20Ω超
<Low temperature characteristics of lithium ion secondary battery>
In order to evaluate the low temperature characteristics of the produced lithium ion secondary battery, the IV resistance was measured as follows. After charging to 50% of SOC (State Of Charge: Charging Depth) at 1C (C is the numeric value expressed by rated capacity (mA) / 1 hour (h)) at -10 ° C, 50% of SOC Charging for 15 seconds and discharging for 15 seconds at 0.5C, 1.0C, 1.5C, and 2.0C as the center, respectively, and the battery voltage after 15 seconds in each case (charging side and discharging side) The slope was determined as IV resistance (Ω) (IV resistance during charging and IV resistance during discharging). The obtained IV resistance value (Ω) was evaluated according to the following criteria. The smaller the IV resistance value, the smaller the internal resistance and the better the low temperature characteristics.
A: IV resistance is 10Ω or less B: IV resistance is more than 10Ω and 15Ω or less C: IV resistance is more than 15Ω and 20Ω or less D: IV resistance is more than 20Ω
<リチウムイオン二次電池の高温保存特性>
 作製したリチウムイオン二次電池について、25℃環境下で、0.1Cの定電流法によって4.3Vまで充電した後、80℃で100時間保存した。80℃保存開始前の開路電圧(Open circuit voltage,以下、「OCV」と表記する。)と80℃で100時間保存後のセルのOCVを測定し、80℃保存開始前のOCVに対する80℃で100時間保存後のOCVの割合を算出してOCV維持率とし、以下の基準で評価した。OCV維持率が大きいほど、高温保存特性に優れる、すなわち寿命特性に優れることを示す。
 A:OCV維持率が99.0%以上
 B:OCV維持率が98.5%以上99.0%未満
 C:OCV維持率が98.0%以上98.5%未満
 D:OCV維持率が98.0%未満
<High temperature storage characteristics of lithium ion secondary batteries>
About the produced lithium ion secondary battery, after charging to 4.3V by a 0.1 C constant current method in 25 degreeC environment, it stored at 80 degreeC for 100 hours. The open circuit voltage (hereinafter referred to as “OCV”) before the start of storage at 80 ° C. and the OCV of the cell after storage for 100 hours at 80 ° C. are measured, and at 80 ° C. relative to the OCV before the start of storage at 80 ° C. The ratio of OCV after storage for 100 hours was calculated as the OCV maintenance rate, and evaluated according to the following criteria. It shows that it is excellent in a high temperature storage characteristic, ie, a lifetime characteristic, so that an OCV maintenance factor is large.
A: OCV maintenance rate is 99.0% or more B: OCV maintenance rate is 98.5% or more and less than 99.0% C: OCV maintenance rate is 98.0% or more and less than 98.5% D: OCV maintenance rate is 98 Less than 0.0%
<リチウムイオン二次電池の高温サイクル特性>
 作製したリチウムイオン二次電池を45℃雰囲気下、1.0Cの定電流法によって4.2Vに充電し、3.0Vまで放電する操作を1サイクルとして、かかる操作を100サイクル繰り返した。100サイクル終了時の電気容量と、5サイクル終了時の電気容量の比((100サイクル終了時の電気容量/5サイクル終了時の電気容量)×100)で表される充放電容量保持率(%)を算出し、以下の基準で評価した。充放電容量保持率が大きいほど、高温サイクル特性に優れることを示す。
 A:充放電容量保持率が95%以上
 B:充放電容量保持率が90%以上95%未満
 C:充放電容量保持率が85%以上90%未満
 D:充放電容量保持率が85%未満
<High-temperature cycle characteristics of lithium ion secondary batteries>
The manufactured lithium ion secondary battery was charged to 4.2 V by a constant current method of 1.0 C in a 45 ° C. atmosphere and discharged to 3.0 V, and this operation was repeated 100 cycles. Charge / discharge capacity retention ratio (%) expressed by the ratio of the electric capacity at the end of 100 cycles and the electric capacity at the end of 5 cycles ((electric capacity at the end of 100 cycles / electric capacity at the end of 5 cycles) × 100) ) Was calculated and evaluated according to the following criteria. It shows that it is excellent in high temperature cycling characteristics, so that charging / discharging capacity retention rate is large.
A: Charge / discharge capacity retention is 95% or more B: Charge / discharge capacity retention is 90% or more and less than 95% C: Charge / discharge capacity retention is 85% or more and less than 90% D: Charge / discharge capacity retention is less than 85%
(実施例1)
<単量体組成物の調製>
 撹拌機付きのオートクレーブに、メタクリル酸30部、脱イオン水300部、水酸化リチウム一水和物7.3部を入れ、10分間撹拌してメタクリル酸の一部を水酸化リチウムでリチウム塩化し、単量体aとしてのメタクリル酸リチウム16部、および単量体bとしてのメタクリル酸15部を含有する水溶液を得た。次いで、得られた水溶液に、単量体cとしてのアクリロニトリルを69部添加して、単量体組成物を調製した。
Example 1
<Preparation of monomer composition>
In an autoclave equipped with a stirrer, add 30 parts of methacrylic acid, 300 parts of deionized water, and 7.3 parts of lithium hydroxide monohydrate and stir for 10 minutes. An aqueous solution containing 16 parts of lithium methacrylate as monomer a and 15 parts of methacrylic acid as monomer b was obtained. Next, 69 parts of acrylonitrile as the monomer c was added to the obtained aqueous solution to prepare a monomer composition.
<リチウムイオン二次電池電極用バインダー組成物の調製>
 上述のようにして得られた単量体組成物に、重合開始剤としての過硫酸カリウムを0.5部添加し、窒素置換して70℃で3時間、85℃で3時間保持して重合を行い、重合体を含む均一な水分散液を得た。
 この水分散液100部(固形分:24.75部)に対し、N-メチルピロリドン(NMP)350部を加え、減圧下で水を蒸発させると共にNMPを40.62部蒸発させて、リチウムイオン二次電池電極用バインダー組成物(固形分濃度:8%)を得た。
 なお、上記重合体を重合する際の、調製した単量体組成物の組成および重合転化率を、表1に示す。
<Preparation of binder composition for lithium ion secondary battery electrode>
To the monomer composition obtained as described above, 0.5 part of potassium persulfate as a polymerization initiator was added, and the atmosphere was replaced with nitrogen and maintained at 70 ° C. for 3 hours and at 85 ° C. for 3 hours for polymerization. To obtain a uniform aqueous dispersion containing the polymer.
To 100 parts of this aqueous dispersion (solid content: 24.75 parts), 350 parts of N-methylpyrrolidone (NMP) was added to evaporate water under reduced pressure and evaporate 40.62 parts of NMP to produce lithium ions. A binder composition for a secondary battery electrode (solid content concentration: 8%) was obtained.
Table 1 shows the composition of the prepared monomer composition and the polymerization conversion rate when the above polymer is polymerized.
<リチウムイオン二次電池正極用スラリー組成物の調製>
 正極活物質としてのLiCoO2(日本化学工業社製、製品名:セルシードC-10N)を100部、導電材としてのアセチレンブラックを2部、上述のようにして調製したバインダー組成物を固形分相当で1部配合し、粘度が4000~5000mPa・sになるようにN-メチルピロリドンを更に添加した後、プラネタリーミキサーで混合してリチウムイオン二次電池正極用スラリー組成物を調製した。
<Preparation of slurry composition for positive electrode of lithium ion secondary battery>
LiCoO 2 as a positive electrode active material (manufactured by Nippon Chemical Industry Co., Ltd., product name: Cellseed C-10N) is 100 parts, acetylene black as a conductive material is 2 parts, and the binder composition prepared as described above corresponds to the solid content. 1 part was added, and N-methylpyrrolidone was further added so that the viscosity would be 4000 to 5000 mPa · s, and then mixed with a planetary mixer to prepare a slurry composition for a lithium ion secondary battery positive electrode.
<リチウムイオン二次電池用正極の作製>
 上記正極用スラリー組成物を厚さ18μmのアルミニウム箔に塗布し、120℃で3時間乾燥した後、ロールプレスして厚さ50μmの正極合材層を有する正極を得た。得られた正極について、ピール強度を評価した。結果を表1に示す。
<Preparation of positive electrode for lithium ion secondary battery>
The positive electrode slurry composition was applied to an aluminum foil having a thickness of 18 μm, dried at 120 ° C. for 3 hours, and then roll pressed to obtain a positive electrode having a positive electrode mixture layer having a thickness of 50 μm. The peel strength of the obtained positive electrode was evaluated. The results are shown in Table 1.
<リチウムイオン二次電池用負極の作製>
 負極活物質としての体積平均粒子径20μm、比表面積4.2m2/gのグラファイト98部、結着材としてのスチレン-ブタジエン共重合体の40質量%水性分散液(日本ゼオン(株)製、BM-400B)1.0部(固形分相当)、および粘度調整剤としてのカルボキシメチルセルロースのナトリウム塩1.0部(固形分相当)を混合し、更に水を加えてプラネタリーミキサーで混合して負極用スラリー組成物を調製した。この負極用スラリー組成物を厚さ10μmの銅箔の片面に塗布し、110℃で3時間乾燥した後、ロールプレスして厚さ60μmの負極合材層を有する負極を得た。
<Preparation of negative electrode for lithium ion secondary battery>
98 parts of graphite having a volume average particle diameter of 20 μm and a specific surface area of 4.2 m 2 / g as a negative electrode active material, 40% by mass aqueous dispersion of styrene-butadiene copolymer as a binder (manufactured by Nippon Zeon Co., Ltd.) BM-400B) 1.0 part (corresponding to the solid content) and 1.0 part of sodium salt of carboxymethyl cellulose (corresponding to the solid content) as a viscosity modifier are mixed, and water is further added and mixed with a planetary mixer. A negative electrode slurry composition was prepared. This negative electrode slurry composition was applied to one side of a copper foil having a thickness of 10 μm, dried at 110 ° C. for 3 hours, and then roll-pressed to obtain a negative electrode having a negative electrode mixture layer having a thickness of 60 μm.
<ラミネートセル型リチウムイオン二次電池の作製>
 アルミニウムシートと、その両面を被覆するポリプロピレン樹脂とからなるラミネートフィルムを用いて電池容器を作製した。次いで、上述の正極および負極それぞれの端部から電極合材層を除去し、銅箔またはアルミニウム箔が露出した箇所を形成した。正極のアルミニウム箔が露出した箇所にはNiタブを、負極の銅箔が露出した箇所にはCuタブを溶接した。得られたタブ付きの正極およびタブ付きの負極を、ポリエチレン製の微多孔膜からなるセパレータを挟んで重ねた。電極の面の向きは、正極の正極合材層側の面と負極の負極合材層側の面とが対向する向きとした。重ねた電極およびセパレータを、捲回して上記の電池容器に収納した。続いてここに、電解液を注入した。電解液としては、エチレンカーボネートとジエチルカーボネートとを25℃の下、体積比1:2で混合した混合溶媒に、LiPF6を1モル/Lの濃度になるように溶解させて調製したものを用いた。
 次いで、ラミネートフィルムを封止して本発明のリチウムイオン二次電池であるラミネートセル型二次電池を作製した。得られたラミネートセル型二次電池について、低温特性、高温保存特性および高温サイクル特性を評価した。結果を表1に示す。
<Production of laminated cell type lithium ion secondary battery>
A battery container was produced using a laminate film made of an aluminum sheet and a polypropylene resin covering both surfaces thereof. Next, the electrode mixture layer was removed from the ends of each of the positive electrode and the negative electrode, and a portion where the copper foil or aluminum foil was exposed was formed. A Ni tab was welded to the portion where the aluminum foil of the positive electrode was exposed, and a Cu tab was welded to the portion where the copper foil of the negative electrode was exposed. The obtained tabbed positive electrode and tabbed negative electrode were stacked with a separator made of a microporous film made of polyethylene interposed therebetween. The direction of the surface of the electrode was such that the surface on the positive electrode mixture layer side of the positive electrode and the surface on the negative electrode mixture layer side of the negative electrode face each other. The stacked electrodes and separator were wound and stored in the battery container. Subsequently, an electrolytic solution was injected here. As the electrolytic solution, a solution prepared by dissolving LiPF 6 to a concentration of 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 2 at 25 ° C. is used. It was.
Next, the laminate film was sealed to produce a laminate cell type secondary battery which is the lithium ion secondary battery of the present invention. The resulting laminated cell type secondary battery was evaluated for low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics. The results are shown in Table 1.
(実施例2,3)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にメタクリル酸、水酸化リチウム一水和物およびアクリロニトリルの配合量を変更した以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
(Examples 2 and 3)
As in Example 1, except that the amounts of methacrylic acid, lithium hydroxide monohydrate and acrylonitrile were changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
(実施例4)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にアクリロニトリルの配合量を変更し、且つ、単量体dとしてのアクリル酸ブチル(重量平均分子量が10,000超の単独重合体のTg=-54℃以下)を単量体dの含有量が表1に示す通りとなるように単量体組成物に配合した以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
Example 4
The amount of acrylonitrile was changed during the preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1, and butyl acrylate as the monomer d (with a weight average molecular weight of 10 , More than 1,000 homopolymer Tg = −54 ° C. or less) was added to the monomer composition so that the content of monomer d was as shown in Table 1, and was the same as in Example 1. The electrode binder composition, the positive electrode slurry composition, the positive electrode, the negative electrode, and the secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
(実施例5)
 下記のようにして調製した単量体組成物を用いたこと以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
<単量体組成物の調製>
 撹拌機付きのオートクレーブに、アクリル酸29.78部、脱イオン水300部、水酸化リチウム一水和物8.6部を入れ、10分間撹拌してアクリル酸の一部を水酸化リチウムでリチウム塩化し、単量体aとしてのアクリル酸リチウム16部、および単量体bとしてのアクリル酸15部を含有する水溶液を得た。次いで、得られた水溶液に、単量体cとしてのアクリロニトリルを69部添加して、単量体組成物を調製した。
(Example 5)
A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that the monomer composition prepared as described below was used. Various evaluations were made. The results are shown in Table 1.
<Preparation of monomer composition>
In an autoclave equipped with a stirrer, 29.78 parts of acrylic acid, 300 parts of deionized water, and 8.6 parts of lithium hydroxide monohydrate are added and stirred for 10 minutes. Chlorinated to obtain an aqueous solution containing 16 parts of lithium acrylate as monomer a and 15 parts of acrylic acid as monomer b. Next, 69 parts of acrylonitrile as the monomer c was added to the obtained aqueous solution to prepare a monomer composition.
(実施例6,7)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にアクリル酸、水酸化リチウム一水和物およびアクリロニトリルの配合量を変更した以外は実施例5と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
(Examples 6 and 7)
As in Example 5, except that the amount of acrylic acid, lithium hydroxide monohydrate and acrylonitrile was changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
(実施例8)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にアクリロニトリルの配合量を変更し、且つ、単量体dとしてのアクリル酸ブチルを単量体dの含有量が表1に示す通りとなるように単量体組成物に配合した以外は実施例5と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
(Example 8)
The amount of acrylonitrile was changed during the preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1, and butyl acrylate as the monomer d was changed to the monomer d. A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared in the same manner as in Example 5 except that the content was as shown in Table 1 and added to the monomer composition. Preparation, production, and various evaluations were performed. The results are shown in Table 1.
(実施例9)
 下記のようにして調製した単量体組成物を用いたこと以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
<単量体組成物の調製>
 撹拌機付きのオートクレーブに、単量体aとしてのp-スチレンスルホン酸リチウム(LiSS、東ソー有機化学株式会社製)16部、単量体bとしてのメタクリル酸15部、単量体cとしてのアクリロニトリル69部および脱イオン水300部を入れ、混合して、単量体組成物を調製した。
Example 9
A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that the monomer composition prepared as described below was used. Various evaluations were made. The results are shown in Table 1.
<Preparation of monomer composition>
In an autoclave equipped with a stirrer, 16 parts of lithium p-styrenesulfonate (LiSS, manufactured by Tosoh Organic Chemical Co., Ltd.) as monomer a, 15 parts of methacrylic acid as monomer b, acrylonitrile as monomer c 69 parts and 300 parts of deionized water were added and mixed to prepare a monomer composition.
(実施例10,11)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にp-スチレンスルホン酸リチウム、メタクリル酸およびアクリロニトリルの配合量を変更した以外は実施例9と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
(Examples 10 and 11)
As in Example 9, except that the amounts of p-styrene sulfonate, methacrylic acid and acrylonitrile were changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
(実施例12)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にアクリロニトリルの配合量を変更し、且つ、単量体dとしてのアクリル酸ブチルを単量体dの含有量が表1に示す通りとなるように単量体組成物に配合した以外は実施例9と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
Example 12
The amount of acrylonitrile was changed during the preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1, and butyl acrylate as the monomer d was changed to the monomer d. A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared in the same manner as in Example 9 except that the content was as shown in Table 1 and added to the monomer composition. Preparation, production, and various evaluations were performed. The results are shown in Table 1.
(実施例13)
 バインダー組成物の配合量を固形分相当で0.5部とし、その他の重合体としてのポリフッ化ビニリデン(PVDF)(呉羽化学工業社製、製品名:KF#7208)を固形物相当で0.5部だけ更に配合したこと以外は実施例1と同様にして、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
(Example 13)
The blending amount of the binder composition is 0.5 parts corresponding to the solid content, and polyvinylidene fluoride (PVDF) (manufactured by Kureha Chemical Industry Co., Ltd., product name: KF # 7208) as the other polymer is 0.00. A slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that only 5 parts were further blended, and various evaluations were performed. The results are shown in Table 1.
(比較例1)
 下記のようにして調製した単量体組成物およびリチウムイオン二次電池電極用バインダー組成物を用いたこと以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
<単量体組成物の調製>
 撹拌機付きのオートクレーブに、単量体bとしてのメタクリル酸15部、単量体cとしてのアクリロニトリル85部、脱イオン水300部を添加して、単量体組成物を調製した。
<リチウムイオン二次電池電極用バインダー組成物の調製>
 上述のようにして得られた単量体組成物に、重合開始剤としての過硫酸カリウムを0.5部添加し、窒素置換して70℃で3時間、85℃で3時間保持して重合を行い、不均一な重合体の粗大粒子を含む水分散液を得た。
 この水分散液に硫酸アルミニウム1部を添加し、水を用いたろ過により固形分を2回洗浄して、固体の重合体を得た。この重合体24.75部に対し、N-メチルピロリドン(NMP)350部を加え、減圧下で水を蒸発させると共にNMPを40.62部蒸発させて、リチウムイオン二次電池電極用バインダー組成物(固形分濃度:8%)を得た。
(Comparative Example 1)
Except having used the monomer composition prepared as follows and the binder composition for lithium ion secondary battery electrodes, it carried out similarly to Example 1, and the binder composition for electrodes, the slurry composition for positive electrodes, and the positive electrode A negative electrode and a secondary battery were prepared and manufactured, and various evaluations were performed. The results are shown in Table 1.
<Preparation of monomer composition>
A monomer composition was prepared by adding 15 parts of methacrylic acid as monomer b, 85 parts of acrylonitrile as monomer c, and 300 parts of deionized water to an autoclave equipped with a stirrer.
<Preparation of binder composition for lithium ion secondary battery electrode>
To the monomer composition obtained as described above, 0.5 part of potassium persulfate as a polymerization initiator was added, and the atmosphere was replaced with nitrogen and maintained at 70 ° C. for 3 hours and at 85 ° C. for 3 hours for polymerization. To obtain an aqueous dispersion containing coarse particles of a heterogeneous polymer.
1 part of aluminum sulfate was added to this aqueous dispersion, and the solid content was washed twice by filtration using water to obtain a solid polymer. To 24.75 parts of this polymer, 350 parts of N-methylpyrrolidone (NMP) was added to evaporate water under reduced pressure and to evaporate 40.62 parts of NMP to obtain a binder composition for a lithium ion secondary battery electrode. (Solid content concentration: 8%) was obtained.
(比較例2,3)
 単量体組成物の組成が表1に示す通りとなるよう、単量体組成物の調製時にメタクリル酸、水酸化リチウム一水和物およびアクリロニトリルの配合量を変更した以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
(Comparative Examples 2 and 3)
As in Example 1, except that the amounts of methacrylic acid, lithium hydroxide monohydrate and acrylonitrile were changed during preparation of the monomer composition so that the composition of the monomer composition was as shown in Table 1. Then, a binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced, and various evaluations were performed. The results are shown in Table 1.
(比較例4)
 下記のようにして調製した単量体組成物を用いたこと以外は実施例1と同様にして、電極用バインダー組成物、正極用スラリー組成物、正極、負極、二次電池を調製・作製し、各種評価を行った。結果を表1に示す。
<単量体組成物の調製>
 撹拌機付きのオートクレーブに、メタクリル酸27.26部、脱イオン水300部、水酸化ナトリウム6.8部を入れ、10分間撹拌してメタクリル酸の一部を水酸化ナトリウムでナトリウム塩化し、メタクリル酸ナトリウム16部、およびメタクリル酸15部を含有する水溶液を得た。次いで、得られた水溶液に、アクリロニトリルを69部添加して、単量体組成物を調製した。
(Comparative Example 4)
A binder composition for an electrode, a slurry composition for a positive electrode, a positive electrode, a negative electrode, and a secondary battery were prepared and produced in the same manner as in Example 1 except that the monomer composition prepared as described below was used. Various evaluations were made. The results are shown in Table 1.
<Preparation of monomer composition>
In an autoclave equipped with a stirrer, 27.26 parts of methacrylic acid, 300 parts of deionized water, and 6.8 parts of sodium hydroxide are placed, stirred for 10 minutes, and a part of methacrylic acid is sodium chloride with sodium hydroxide. An aqueous solution containing 16 parts of sodium acid and 15 parts of methacrylic acid was obtained. Next, 69 parts of acrylonitrile was added to the obtained aqueous solution to prepare a monomer composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の実施例1~13より、単量体a~単量体cを所定の割合で含む単量体組成物を用いることにより、重合体を99%以上の転化率で重合することができること、並びに、かかる重合体を含有するバインダー組成物を用いることにより、リチウムイオン二次電池用電極のピール強度、およびリチウムイオン二次電池の低温特性、高温保存特性および高温サイクル特性を高いレベルで並立させ得ることが分かる。
 特に、実施例1~12より、単量体組成物における単量体a~単量体cの含有量を調整することにより、各種特性を更に向上させ得ることが分かる。
 一方、表1の比較例1においては、単量体組成物が単量体aを含まず、また、単量体cの含有量が多いため、重合転化率が著しく低く、且つ、重合中に重合反応物が凝集してしまうことが分かる。また、比較例1のバインダー組成物を用いて製造したリチウムイオン二次電池は、内部抵抗が高くなるとともに、高温保存特性および高温サイクル特性が悪化していることが分かる。
 また、表1の比較例2においては、単量体組成物が単量体aを過剰に含むため、得られる重合体に十分な柔軟性が付与されず、また、単量体bの含有量も少ないため、ピール強度を維持することができない。また、単量体aを過剰に含むことと、単量体cの含有量が少ないこととに起因して高温保存特性および高温サイクル特性が悪化していることが分かる。
 また、表1の比較例3においては、単量体組成物が単量体aを含むものの、単量体bおよび単量体cの含有量が所定範囲外であるため、重合体のリチウムイオン伝導性および耐酸化性が低くなり、比較例3のバインダー組成物を用いて製造したリチウムイオン二次電池の高温保存特性および高温サイクル特性が悪化していることが分かる。
 さらに、表1の比較例4においては、不飽和酸のリチウム塩に代えてナトリウム塩を用いているため、リチウムイオン二次電池の内部抵抗が高くなるとともに、高温保存特性および高温サイクル特性が悪化していることが分かる。
From Examples 1 to 13 in Table 1, a polymer can be polymerized at a conversion rate of 99% or more by using a monomer composition containing monomers a to c in a predetermined ratio. In addition, by using a binder composition containing such a polymer, the peel strength of the lithium ion secondary battery electrode and the low temperature characteristics, high temperature storage characteristics and high temperature cycle characteristics of the lithium ion secondary battery are aligned at a high level. You can see that
In particular, Examples 1 to 12 show that various characteristics can be further improved by adjusting the contents of monomer a to monomer c in the monomer composition.
On the other hand, in Comparative Example 1 of Table 1, since the monomer composition does not contain monomer a and the content of monomer c is large, the polymerization conversion is remarkably low, and during polymerization, It can be seen that the polymerization reaction product aggregates. Moreover, it turns out that the lithium ion secondary battery manufactured using the binder composition of Comparative Example 1 has high internal resistance and deteriorated high-temperature storage characteristics and high-temperature cycle characteristics.
Moreover, in Comparative Example 2 of Table 1, since the monomer composition contains the monomer a excessively, sufficient flexibility is not imparted to the resulting polymer, and the content of the monomer b Therefore, the peel strength cannot be maintained. It can also be seen that the high-temperature storage characteristics and the high-temperature cycle characteristics are deteriorated due to the excessive inclusion of monomer a and the low content of monomer c.
In Comparative Example 3 of Table 1, the monomer composition contains monomer a, but the content of monomer b and monomer c is outside the predetermined range, so the lithium ion of the polymer It can be seen that the conductivity and oxidation resistance are lowered, and the high-temperature storage characteristics and the high-temperature cycle characteristics of the lithium ion secondary battery produced using the binder composition of Comparative Example 3 are deteriorated.
Further, in Comparative Example 4 of Table 1, since a sodium salt is used instead of the lithium salt of the unsaturated acid, the internal resistance of the lithium ion secondary battery is increased, and the high temperature storage characteristics and the high temperature cycle characteristics are deteriorated. You can see that
 なお、表1の実施例1および13より、リチウムイオン二次電池電極用スラリー組成物を調製する際、単量体a~cを所定の割合で含む単量体組成物を用いて重合した重合体を含有するバインダー組成物以外に、かかる重合体以外の重合体、例えばフッ素含有重合体を配合したとしても、各種特性を良好なものとすることができることが分かる。 When preparing a slurry composition for a lithium ion secondary battery electrode from Examples 1 and 13 in Table 1, a polymer polymerized using a monomer composition containing monomers a to c at a predetermined ratio was used. It can be seen that various characteristics can be improved even when a polymer other than the polymer, for example, a fluorine-containing polymer, is blended in addition to the binder composition containing the coalescence.
 本発明によれば、内部抵抗が低いリチウムイオン二次電池を製造することができ、且つ、生産性および結着性の双方に優れるリチウムイオン二次電池電極用バインダー組成物を提供することができる。
 また、本発明によれば、内部抵抗が低く、且つ、ピール強度に優れるリチウムイオン二次電池用電極を調製することができるリチウムイオン二次電池電極用スラリー組成物を提供することができる。
 更に、本発明によれば、内部抵抗が低く、且つ、ピール強度に優れるリチウムイオン二次電池用電極を提供することができる。
 また、本発明によれば、内部抵抗が低いリチウムイオン二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the lithium ion secondary battery with low internal resistance can be manufactured, and the binder composition for lithium ion secondary battery electrodes which is excellent in both productivity and binding property can be provided. .
Moreover, according to this invention, the slurry composition for lithium ion secondary battery electrodes which can prepare the electrode for lithium ion secondary batteries which is low in internal resistance and excellent in peel strength can be provided.
Furthermore, according to the present invention, an electrode for a lithium ion secondary battery having low internal resistance and excellent peel strength can be provided.
Moreover, according to this invention, a lithium ion secondary battery with low internal resistance can be provided.

Claims (7)

  1.  不飽和酸のリチウム塩(単量体a)10~80質量%と、不飽和酸(単量体b)5~40質量%と、α,β-不飽和ニトリル(単量体c)10~85質量%とを含む単量体組成物を重合してなる重合体、および分散媒を含有するリチウムイオン二次電池電極用バインダー組成物。 Lithium salt of unsaturated acid (monomer a) 10 to 80% by mass, unsaturated acid (monomer b) 5 to 40% by mass, α, β-unsaturated nitrile (monomer c) 10 to The binder composition for lithium ion secondary battery electrodes containing the polymer formed by superposing | polymerizing the monomer composition containing 85 mass%, and a dispersion medium.
  2.  前記α,β-不飽和ニトリル(単量体c)がアクリロニトリルである、請求項1に記載のリチウムイオン二次電池電極用バインダー組成物。 The binder composition for a lithium ion secondary battery electrode according to claim 1, wherein the α, β-unsaturated nitrile (monomer c) is acrylonitrile.
  3.  請求項1または2に記載のリチウムイオン二次電池電極用バインダー組成物および電極活物質を含む、リチウムイオン二次電池電極用スラリー組成物。 A slurry composition for a lithium ion secondary battery electrode, comprising the binder composition for a lithium ion secondary battery electrode according to claim 1 or 2 and an electrode active material.
  4.  前記重合体以外の重合体を更に含む、請求項3に記載のリチウムイオン二次電池電極用スラリー組成物。 The slurry composition for a lithium ion secondary battery electrode according to claim 3, further comprising a polymer other than the polymer.
  5.  前記重合体以外の重合体が、フッ素含有重合体である、請求項4に記載のリチウムイオン二次電池電極用スラリー組成物。 The slurry composition for a lithium ion secondary battery electrode according to claim 4, wherein the polymer other than the polymer is a fluorine-containing polymer.
  6.  請求項3~5のいずれか一項に記載のリチウムイオン二次電池電極用スラリー組成物を用いて調製した電極合材層を、集電体上に備える、リチウムイオン二次電池用電極。 An electrode for a lithium ion secondary battery comprising an electrode mixture layer prepared using the slurry composition for a lithium ion secondary battery electrode according to any one of claims 3 to 5 on a current collector.
  7.  正極、負極、電解液およびセパレータを備え、前記正極および負極の少なくとも一方が、請求項6に記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。 A lithium ion secondary battery comprising a positive electrode, a negative electrode, an electrolyte, and a separator, wherein at least one of the positive electrode and the negative electrode is the electrode for a lithium ion secondary battery according to claim 6.
PCT/JP2015/001867 2014-04-02 2015-03-31 Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery WO2015151518A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016511392A JP6477690B2 (en) 2014-04-02 2015-03-31 Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
CN201580014889.1A CN106104874B (en) 2014-04-02 2015-03-31 Binder composition for lithium ion secondary battery electrode, slurry composition, lithium ion secondary battery, and electrode
KR1020167025879A KR102255281B1 (en) 2014-04-02 2015-03-31 Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014075942 2014-04-02
JP2014-075942 2014-04-02

Publications (1)

Publication Number Publication Date
WO2015151518A1 true WO2015151518A1 (en) 2015-10-08

Family

ID=54239863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001867 WO2015151518A1 (en) 2014-04-02 2015-03-31 Binder composition for lithium-ion secondary battery electrodes, slurry composition for lithium-ion secondary battery electrodes, lithium-ion secondary battery electrode, and lithium-ion secondary battery

Country Status (4)

Country Link
JP (1) JP6477690B2 (en)
KR (1) KR102255281B1 (en)
CN (1) CN106104874B (en)
WO (1) WO2015151518A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299378A (en) * 2016-11-03 2017-01-04 深圳市沃特玛电池有限公司 Binding agent and lithium ion battery
JP2019160691A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode, and energy device
JP2019160690A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode and energy device
CN113024707A (en) * 2021-01-28 2021-06-25 江汉大学 Environment-friendly aqueous silicon-carbon negative electrode binder and preparation method and application thereof
WO2022138004A1 (en) * 2020-12-25 2022-06-30 日本ゼオン株式会社 Composition for electrochemical element positive electrodes, slurry composition for electrochemical element positive electrodes, positive electrode for electrochemical elements, and electrochemical element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168615A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
CN111253534A (en) * 2019-12-30 2020-06-09 深圳市研一新材料有限责任公司 Preparation method of aqueous lithium supplement binder and positive plate for lithium ion battery
CN116285786A (en) * 2023-05-23 2023-06-23 广汽埃安新能源汽车股份有限公司 Adhesive, preparation method, electrode slurry, electrode plate and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000018428A (en) * 1998-09-02 2000-04-06 홍건희 High polymer electrolyte using polyacrylronitrile ionomer including ion radical
CN1426126A (en) * 2003-01-23 2003-06-25 天津大学 Polymer lithium ion cell and its preparing method
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
CN101630760A (en) * 2009-08-18 2010-01-20 成都中科来方能源科技有限公司 Two-phase polymer electrolyte film for lithium ion battery and preparation method thereof
JP2012051999A (en) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd Binder resin composition, electrode for energy device, and energy device
JP2013023654A (en) * 2011-07-25 2013-02-04 Showa Denko Kk Binder for carbon coat foil coating solution, carbon coat foil coating solution, carbon coat foil, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013093297A (en) * 2011-05-12 2013-05-16 Sumitomo Chemical Co Ltd Binder for electrode, electrode coating, electrode and lithium ion secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
KR101041829B1 (en) * 2008-04-16 2011-06-17 주식회사 엘지화학 Anode material including polyacrylonitrile-acrylic acid, and binder, manufacture of the same and rechargeable lithium battery comprising the same
JP2012091001A (en) 2011-11-04 2012-05-17 Michio Matsumoto Pot-shaped exercising/pushing massager
US10033042B2 (en) * 2012-03-02 2018-07-24 Zeon Corporation Positive electrode for secondary battery, and secondary battery
EP2833448B1 (en) * 2012-03-26 2017-11-15 Zeon Corporation Composite particles for negative electrodes of secondary batteries, use of same, method for producing same, and binder composition
CN102746813A (en) * 2012-07-03 2012-10-24 张倩 Preparation method for aqueous binder used for lithium ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000018428A (en) * 1998-09-02 2000-04-06 홍건희 High polymer electrolyte using polyacrylronitrile ionomer including ion radical
CN1426126A (en) * 2003-01-23 2003-06-25 天津大学 Polymer lithium ion cell and its preparing method
JP2008311217A (en) * 2007-05-16 2008-12-25 Hitachi Chem Co Ltd Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode using the composition, and nonaqueous electrolyte energy device
CN101630760A (en) * 2009-08-18 2010-01-20 成都中科来方能源科技有限公司 Two-phase polymer electrolyte film for lithium ion battery and preparation method thereof
JP2012051999A (en) * 2010-08-31 2012-03-15 Hitachi Chem Co Ltd Binder resin composition, electrode for energy device, and energy device
JP2013093297A (en) * 2011-05-12 2013-05-16 Sumitomo Chemical Co Ltd Binder for electrode, electrode coating, electrode and lithium ion secondary battery
JP2013023654A (en) * 2011-07-25 2013-02-04 Showa Denko Kk Binder for carbon coat foil coating solution, carbon coat foil coating solution, carbon coat foil, electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299378A (en) * 2016-11-03 2017-01-04 深圳市沃特玛电池有限公司 Binding agent and lithium ion battery
JP2019160691A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode, and energy device
JP2019160690A (en) * 2018-03-15 2019-09-19 日立化成株式会社 Electrode binder, electrode mixture, energy device electrode and energy device
JP7192224B2 (en) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 Electrode binders, electrode mixtures, energy device electrodes and energy devices
JP7192223B2 (en) 2018-03-15 2022-12-20 昭和電工マテリアルズ株式会社 Electrode binders, electrode mixtures, energy device electrodes and energy devices
WO2022138004A1 (en) * 2020-12-25 2022-06-30 日本ゼオン株式会社 Composition for electrochemical element positive electrodes, slurry composition for electrochemical element positive electrodes, positive electrode for electrochemical elements, and electrochemical element
CN113024707A (en) * 2021-01-28 2021-06-25 江汉大学 Environment-friendly aqueous silicon-carbon negative electrode binder and preparation method and application thereof

Also Published As

Publication number Publication date
CN106104874A (en) 2016-11-09
KR102255281B1 (en) 2021-05-21
CN106104874B (en) 2020-12-11
JPWO2015151518A1 (en) 2017-04-13
JP6477690B2 (en) 2019-03-06
KR20160138960A (en) 2016-12-06

Similar Documents

Publication Publication Date Title
CN108780894B (en) Binder composition for electrochemical element electrode, slurry composition for electrochemical element electrode, electrode for electrochemical element, and electrochemical element
CN105247716B (en) Lithium ion secondary battery positive electrode binding material composition, lithium ion secondary battery positive electrode paste compound and its manufacture method, the manufacture method of lithium ion secondary battery anode and lithium rechargeable battery
JP6477690B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7020118B2 (en) Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries
WO2016035286A1 (en) Binder composition for secondary-battery electrode, slurry composition for secondary-battery electrode, secondary-battery electrode, and secondary battery
KR102468252B1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
CN108604685B (en) Binder composition for nonaqueous secondary battery electrode, slurry composition for nonaqueous secondary battery electrode, electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JPWO2017056466A1 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
CN110383546B (en) Conductive material dispersion for electrochemical element electrode, slurry composition and method for producing same, electrode, and electrochemical element
JP6477691B2 (en) Secondary battery electrode binder composition, secondary battery electrode slurry composition, secondary battery electrode, and secondary battery
WO2014156195A1 (en) Binder composition for secondary battery electrodes, method for producing same, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
WO2016170768A1 (en) Binder composition for lithium ion secondary battery electrodes, slurry composition for lithium ion secondary battery electrodes, electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2019208419A1 (en) Binder composition for electricity storage devices, slurry composition for electricity storage device electrodes, electrode for electricity storage devices, and electricity storage device
JP7276135B2 (en) Binder composition for secondary battery, slurry composition for secondary battery, functional layer for secondary battery, electrode layer for secondary battery, and secondary battery
CN111819719A (en) Binder composition for secondary battery, conductive material paste for secondary battery electrode, slurry composition for secondary battery electrode, method for producing slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2017110654A1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR102407600B1 (en) Binder composition for a non-aqueous secondary battery electrode, a slurry composition for a non-aqueous secondary battery electrode, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery
CN108140838B (en) Binder composition for nonaqueous secondary battery electrode, slurry composition, electrode, and nonaqueous secondary battery
JP6481581B2 (en) Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
JP6455015B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery
JP6579250B2 (en) Secondary battery binder composition, secondary battery electrode slurry composition, secondary battery electrode and secondary battery
WO2024225332A1 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, secondary battery electrode, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511392

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025879

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772179

Country of ref document: EP

Kind code of ref document: A1