WO2015151272A1 - Plant cultivation device, plant cultivation system provided with same, and plant cultivation method - Google Patents

Plant cultivation device, plant cultivation system provided with same, and plant cultivation method Download PDF

Info

Publication number
WO2015151272A1
WO2015151272A1 PCT/JP2014/059949 JP2014059949W WO2015151272A1 WO 2015151272 A1 WO2015151272 A1 WO 2015151272A1 JP 2014059949 W JP2014059949 W JP 2014059949W WO 2015151272 A1 WO2015151272 A1 WO 2015151272A1
Authority
WO
WIPO (PCT)
Prior art keywords
microflora
plant
nutrient solution
environmental
plant cultivation
Prior art date
Application number
PCT/JP2014/059949
Other languages
French (fr)
Japanese (ja)
Inventor
矢澤 義昭
絵里乃 松本
由美子 五十嵐
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/059949 priority Critical patent/WO2015151272A1/en
Publication of WO2015151272A1 publication Critical patent/WO2015151272A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like

Definitions

  • the present invention relates to a plant cultivation apparatus, a plant cultivation system including the same, and a plant cultivation method.
  • the loss will be great due to the suspension of cultivation and the implementation of disinfection.
  • the nourishing culture method using the nourishing liquid adopted in many plant factories the nourishing liquid is shared by many strains simultaneously. Therefore, even if a sterilization mechanism is provided in one place in the circulatory system, the disease generated by one strain reaches the entire culture tank. Therefore, controlling plant diseases caused by pathogenic microorganisms is an important issue in plant factories.
  • Measures against pathogenic microorganisms in current plant factories include regular cleaning and disinfection of cultivation shelves.
  • a cleaning and disinfecting method cannot completely eliminate pathogenic microorganisms and has a limit in preventing disease. Therefore, a microorganism control technique that realizes more complete preventive control of diseases is desired.
  • a microorganism control technology that can reduce investment in new facilities and reduce dependence on agricultural chemicals.
  • Patent Document 1 discloses an automatic irrigation system for plant cultivation of plants, wherein (a) a culture tank for antagonistic microorganisms against plant diseases, (b) a bacterial count sensor for measuring the number of antagonistic microorganisms contained in the irrigation, And (c) an automatic irrigation system including a control device that adjusts the amount of microorganisms added from the antagonistic microorganism culture tank based on the measured value of the bacteria count sensor.
  • antagonistic microorganisms that can antagonize pathogenic microorganisms in nutrient solution that induce disease are used. And the antagonistic microorganisms in a nutrient solution are measured, and the antagonistic microorganisms are added to the nutrient solution based on the result.
  • the suitable number of antagonistic microorganisms in the nutrient solution is determined by the environment of the nutrient solution and the balance with other microorganisms present simultaneously. Therefore, simply adding antagonistic microorganisms does not always mean that the added antagonistic microorganisms exhibit the desired behavior due to the large number of microorganisms already present in the nutrient solution. Therefore, with the technique described in Patent Document 1, antagonism against pathogenic microorganisms may not be maintained continuously and effectively.
  • Patent Document 1 it may be necessary to install a tank or the like in which antagonistic microorganisms are stored and to culture and store the antagonistic microorganisms to be used. Therefore, cost reduction may not be achieved. Furthermore, among antagonistic microorganisms, there are microorganisms that are difficult to isolate and culture. Therefore, it may not be possible to prepare an antagonistic microorganism to be added, and it may be difficult to cope with various diseases.
  • the subject which this invention tends to solve is a plant cultivation apparatus which can suppress the disease in hydroponics more reliably and effectively, and a plant cultivation system provided with the same, As well as providing a plant cultivation method.
  • the present inventors diligently studied to solve the above problems. As a result, the present inventors have found that the above problem can be solved by analyzing the microflora in the nutrient solution and performing cultivation based on the analysis result.
  • a plant cultivation apparatus capable of more reliably and effectively suppressing diseases in hydroponics, a plant cultivation system including the plant cultivation system, and a plant cultivation method.
  • FIG. 1 is a diagram illustrating an overall configuration of a plant cultivation system 100 according to the present embodiment.
  • the plant cultivation system 100 is directly involved in the cultivation of the plant 50, the cultivation tank 1, the cultivation shelf 2, the nutrient solution circulation pipe 3, the nutrient solution tank 4, the pump 5, the pH adjusting solution 6, and the electrolyte dissolution.
  • the liquid 7, the heater 8, the illumination 9, and the air diffuser 19 are provided. Therefore, hydroponic cultivation of the plant 50 is performed in the plant cultivation system 100 of the present embodiment.
  • the plant cultivation system 100 includes a plant cultivation device 10 that controls cultivation of the plant 50, an air conditioner 12 that performs air conditioning in the greenhouse 40, and a microflora analysis device that analyzes the microbial flora in the nutrient solution in the cultivation tank 1. 13.
  • a hygrometer 20, a thermometer 21, and a photometer 22 are connected to the plant cultivation apparatus 10 by electric signal lines indicated by broken lines in FIG. 1.
  • the plant cultivation apparatus 10 includes a pump 5, a pH adjusting liquid 6, an electrolyte solution 7, a heater 8, a lighting 9, an air conditioner 12, a microflora analyzer 13, a thermometer 15, and a pH.
  • the sensor 16, the electrical conductivity sensor 17, the diffuser tube 19, and the photometer 22 are connected by an electrical signal line.
  • the electrical signal lines are wired in this manner, so that the plant cultivation device 10 displays the analysis result of the microflora on the monitor 11 and controls each device based on the analysis result.
  • a specific control method will be described later with reference to FIG. 10 and the like, and the outline thereof is as follows.
  • the nutrient solution is circulated by the pump 5.
  • the plant cultivation device 10 analyzes the microflora in the nutrient solution by the microflora analyzer 13 at a predetermined interval (for example, about once a day to once a week).
  • the microflora is the type and distribution of microorganisms present in the nutrient solution.
  • the plant cultivation device 10 controls each device so that the change is restored, that is, the microbial flora at that time returns to the original microbial flora. More specifically, for example, the plant cultivation apparatus 10 adjusts the pH of the nutrient solution using the pH adjusting solution 6, adjusts the electrical conductivity of the nutrient solution using the electrolyte solution 7, or sets the heater 8. It is used to adjust the temperature of the nutrient solution or adjust the luminous intensity of the illumination 9. By these, control is performed so that the microflora of the nutrient solution is returned to the initial microflora of the cultivation, and the occurrence of disease is controlled.
  • the plant cultivation apparatus 10 is connected to the network 30 by an electric signal line.
  • a cloud system (not shown) is constructed. Therefore, each information obtained by the plant cultivation apparatus 10 and each information analyzed and calculated are uploaded to the cloud system through the network 30. Moreover, the information of a cloud system is downloaded to the plant cultivation apparatus 10 as needed.
  • the microflora in the nutrient solution can be controlled with higher accuracy.
  • the “environmental condition” refers to the situation surrounding the plant 50 when the plant 50 is cultivated, that is, the humidity and temperature in the greenhouse 40, the luminous intensity of the light irradiated to the plant 50, The temperature and pH of the nutrient solution, electrical conductivity, dissolved oxygen concentration, and the like. These environmental conditions can be said to be an index related to the growth of the plant 50, and this index is referred to as an “environmental condition” in this specification. This point will be described with reference to FIG.
  • FIG. 2 is a diagram showing the relationship between the environmental condition of the plant 50 to be cultured and the disease incidence of the plant 50 to be cultivated.
  • A is the relationship between the dissolved oxygen concentration of the nutrient solution and the disease incidence
  • (b ) Is the relationship between the pH of the nutrient solution and the disease rate
  • (c) is the relationship between the temperature of the nutrient solution and the disease rate
  • (d) is the relationship between the electrical conductivity of the nutrient solution and the disease rate.
  • the illustrated graph is an example, and may vary depending on the type of plant 50.
  • the disease incidence of the plant 50 decreases as the dissolved oxygen concentration in the nutrient solution increases.
  • the disease rate increases as the pH of the nutrient solution increases (that is, as it becomes alkaline).
  • the disease incidence increases as the temperature of the nutrient solution increases.
  • an attack rate falls, so that the electrical conductivity of a nutrient solution rises. Therefore, it is conceivable to increase the dissolved oxygen concentration in the nutrient solution, for example, in order to control the disease rate by controlling the environmental situation.
  • the degree of contribution to the change in disease incidence may vary depending on the type of environmental situation. For example, when the dissolved oxygen concentration of the nutrient solution is increased, the disease rate slightly decreases, but hardly changes. However, when the pH of the nutrient solution is slightly increased, the disease rate is greatly increased. Thus, the incidence rate may not be determined due to only one environmental condition, and may be determined due to two or more environmental conditions. Therefore, the environmental situation controlled to suppress the disease incidence is not limited to one but may be two or more. Furthermore, the environmental situation in which the disease incidence can be effectively suppressed may vary depending on the specific type of the plant 50.
  • FIG. 3 is a block diagram showing the plant cultivation apparatus 10 provided in the plant cultivation system 100 of the present embodiment.
  • the plant cultivation apparatus 10 includes a data acquisition unit 10a, a microflora analysis unit 10b, an environmental situation calculation unit 10c, a control unit 10d, a communication unit 10e, a display unit 10f, an environmental situation database 10g, and a microflora database. 10h.
  • the display unit 10f corresponds to the monitor 11 described above.
  • the data acquisition unit 10a acquires information on the temperature, pH and electrical conductivity of the nutrient solution, the humidity and temperature in the greenhouse 40, and the intensity of light irradiated on the plant 50, that is, the environmental status of the plant to be cultivated. To do.
  • the temperature of the nutrient solution is measured by a thermometer 15.
  • the pH of the nutrient solution is measured by the pH sensor 16.
  • the electrical conductivity of the nutrient solution is measured by the electrical conductivity sensor 17.
  • the humidity in the greenhouse 40 is measured by the hygrometer 20.
  • the temperature in the greenhouse 40 is measured by the thermometer 21.
  • the intensity of light applied to the plant 50 is measured by the photometer 22.
  • the microflora analyzer 10b analyzes the microflora in the nutrient solution based on the result obtained by the microbiota analyzer 13.
  • the microflora in the nutrient solution is determined by the microflora analyzer 10b.
  • the analysis of the microflora is performed using DGGE (Denaturing Gradient Gel Electrophoresis). A specific description using this method will be described later with reference to FIG.
  • the environmental situation calculation unit 10c calculates which environmental condition should be controlled and how much to return the changed microflora to the initial microflora. To do. This calculation is performed by referring to the environmental situation database 10g in which the relationship (see FIG. 2) between the environmental situation and the microflora (that is, the disease incidence caused by the pathogenic microorganism) is recorded. In addition, this calculation is performed with reference to the microflora database 10h in which the disease data for the microflora is recorded. Further, information downloaded from the cloud system on the network 30 is also used for this calculation.
  • the result obtained by the calculation by the environmental condition calculation unit 10c is recorded in the microflora database 10h. Furthermore, this result is uploaded to the cloud system on the network 30.
  • the control unit 10d controls the environmental condition of the nutrient solution based on the environmental condition calculated by the environmental condition calculating unit 10c and the control amount thereof. That is, when the environmental condition calculation unit 10c calculates, for example, that the temperature of the nutrient solution as the environmental condition is decreased by 5 ° C., the control unit 10d turns off the heater 8 and measures the nutrient solution measured by the thermometer 15 The temperature is reduced by 5 ° C.
  • the communication unit 10e exchanges information with various sensors, the microflora analyzer 13, the cloud system on the network 30, and the like.
  • the display part 10f is the monitor 11 attached to the plant cultivation apparatus 10, and the result calculated by the environmental condition calculating part 10c is displayed.
  • the plant cultivation apparatus 10 is provided with an input device (such as a keyboard) that allows the user to input arbitrary environmental information based on the result displayed on the monitor 11. And based on the environmental information input into this input device, the control part 10d can also control the environmental condition of the plant 50.
  • FIG. 4 is a block diagram showing a specific configuration of the plant cultivation apparatus 10 shown in FIG.
  • the plant arithmetic device 10 includes a CPU 101, a ROM 102, a RAM 103, an HDD 104, an I / F 105, and a monitor 11. And the plant cultivation program 10 recorded by ROM102 or HDD104 is implemented by CPU101, and the plant cultivation apparatus 10 is embodied.
  • the configuration of the plant cultivation system 100 of the present embodiment is as described above. Here, the reason for analyzing the microflora in the plant cultivation system 100 will be described.
  • a white band is observed on a black background, but in the drawing, black and white are shown inverted from the viewpoint of easy viewing of the band.
  • a thick band indicates a relatively strong intensity (lightness) band
  • a broken line band indicates a relatively weak intensity band
  • a thin line band indicates a medium intensity band.
  • the position of the band corresponds to the type of microorganism
  • the brightness of the band corresponds to the number of microorganisms.
  • M indicates a marker.
  • the present inventors examined the relationship between the microflora of a nutrient solution and the appearance (specifically, mass) of a plant cultivated using the nutrient solution.
  • FIG. 5 is a diagram schematically showing the results of DGGE in the nutrient solution when the plant is grown by changing the pH of the nutrient solution.
  • lettuce is cultivated for two weeks as the plant 50, and the results of DGGE of the nutrient solution after two weeks have been shown.
  • the pH of the nutrient solution used for cultivation was 5, 6, and 7, and the other cultivation conditions were the same.
  • lettuce can be cultivated particularly well when a nutrient solution having a pH of 6 is used, and when a nutrient solution having a pH of 5 or 7 is used, the lettuce is stressed.
  • the presence position of the band and the presence or absence of the band are changed by changing the pH of the nutrient solution. From this, it can be seen that the microbial phase of the nutrient solution changes by changing the pH of the nutrient solution.
  • FIG. 6 is a diagram showing a change in mass of the plant 50 cultivated by changing the pH of the nutrient solution.
  • the plant 50 cultivated in FIG. 6 is lettuce as in FIG. In FIG. 6, the relative value is plotted for each week on the basis of the mass after one week, and is graphed.
  • the temperature of the nutrient solution was set to 15 ° C., 20 ° C., and 25 ° C., and the same evaluation as in FIGS. 5 and 6 was performed. The results are shown in FIGS. Note that lettuce can be cultivated particularly well when a nutrient solution at 20 ° C. is used, and stress is applied to the lettuce when a nutrient solution at 15 ° C. or 25 ° C. is used.
  • FIG. 7 is a diagram schematically showing the results of DGGE in the nutrient solution when the plant 50 is cultivated while changing the temperature of the nutrient solution. As shown in FIG. 7, even when the temperature of the nutrient solution was changed, the change in the microbial flora of the nutrient solution occurred.
  • FIG. 8 is a diagram showing a change in mass of the plant 50 cultivated by changing the temperature of the nutrient solution.
  • a nutrient solution at 15 ° C. or 25 ° C. was used, the mass after 5 weeks became small.
  • the temperature is 15 ° C., 20 ° C., and 25 ° C., the mass starts to change in about five weeks, but the mass does not change in the second to third weeks.
  • the microflora in the nutrient solution is analyzed.
  • the change of a microflora can be discovered at an early stage. And even when a pathogenic microbe becomes dominant, it will return to the state of the original microflora rapidly, and it will become possible to control the possibility that the subsequent growth situation of the plant 50 will be affected.
  • the appearance and mass of the plant 50 do not change immediately as shown in FIGS. That is, when changes in the appearance and mass of the plant 50 occur, the appearance and mass of the plant 50 may not be recovered even if pathogenic microorganisms in the nutrient solution are removed.
  • microorganisms live in the nutrient solution.
  • the number of microorganisms in the nutrient solution is 2 to 3 orders of magnitude less than the number of microorganisms in the soil, and 10 4 to 10 5 microorganisms live per gram.
  • these microorganisms are mutually symbiotic and antagonistic in the nutrient solution.
  • the antagonistic action between the microorganisms becomes weak. Therefore, when a microorganism enters from the outside, the antagonistic action against the microorganism is difficult to work.
  • the added antagonistic microorganism may not be dominant, or the added antagonistic microorganism may be killed.
  • an antagonistic microorganism that can antagonize cannot be identified or cultured, it is difficult to add the antagonistic microorganism itself.
  • the microbial flora is grasped instead of adding an antagonistic microorganism that antagonizes the pathogenic microorganism. Then, based on the grasped microflora and the relationship (function) between the experimentally accumulated microflora and the environmental situation, the microflora is returned to the initial healthy state.
  • various pathogenic microorganisms can be dealt with more reliably.
  • control using existing equipment can be performed, and introduction of new equipment becomes unnecessary.
  • the dependence on an agrochemical can be reduced and the load to an environment can be reduced.
  • FIG. 9 is a diagram schematically showing DGGE for explaining the analysis method of the microflora in the nutrient solution. As described above, in this embodiment, the microflora is analyzed. Therefore, referring to FIG. 9, a specific technique of the microbiota analysis method is given as an example. FIG. 9 shows the results of electrophoresis performed on four samples L1 to L4.
  • reference bands are set at equal intervals in the migration direction. Although this interval and the total number of reference bands to be set are arbitrary, in FIG. 9, nine bands 1 to 9 are set as equal intervals as reference bands. Each of the bands 1 to 9 is assigned unique coordinates (distance). Then, for each sample, the coordinates of the reference band having the size closest to that band are assigned to the detected band size. For example, in the sample L4 of FIG. 9, since the band A is closest to the size of the band 2, the coordinates of the band 2 are assigned. Similarly, the coordinates of band 5 are assigned to band B, and the coordinates of band 5 are assigned to band C.
  • the intensity of the detected band is measured. For example, in the sample L4 of FIG. 9, since the intensity of the band A is strong, a value (brightness) corresponding to the intensity is assigned. Similarly, since the intensity of the band B is weak, a value corresponding to the intensity is assigned to the band B. Furthermore, since band C has a medium intensity, band C is assigned a value corresponding to the intensity.
  • the obtained data is accumulated by associating this vector with the data of the environmental situation shown in FIGS. 6 and 8 (pH in FIG. 6 and temperature in FIG. 8) and the DGGE pattern.
  • This linked relationship that is, the microflora is expressed, for example, by the following formula (1).
  • This equation (1) can be called an empirical equation, and is a microbial function having an environmental condition as an explanatory variable.
  • the objective variable of this function f is a principal component calculated by principal component analysis of each band in FIG. 9 (corresponding to the presence / absence (type) and number of microorganisms).
  • the band detected by DGGE is linked to the environmental situation in which the presence / absence and brightness of the band can be controlled. Therefore, when a new band is detected as a result of DGGE several weeks after the start of cultivation and the microbial flora has changed, the environmental situation in which the band can be controlled is grasped, and the environmental situation is controlled. By doing so, it becomes possible to control the microflora to be restored.
  • the environmental situation is controlled using the function f of the environmental situation and the microflora. Since the control is performed using the same conventional environmental situation, the same sensor and environmental control system can be used. For this reason, it is possible to prevent diseases without the need for new investment costs.
  • FIG. 10 is a flowchart for explaining a plant cultivation method performed in the plant cultivation system 100 of the present embodiment. The flow shown in FIG. 10 is executed by the plant cultivation apparatus 10 shown in FIG.
  • the plant cultivation apparatus 10 samples the nutrient solution in the cultivation tank 1 through the sampling pipe 14 (step S1).
  • the sampled nutrient solution is supplied to the microflora analyzer 13.
  • DGGE is performed in the microflora analyzer 13, and the microbiota analyzer 10b analyzes the sampled microbiota by the above-described method based on the obtained DGGE result (step S2).
  • the microflora analysis unit 10b refers to the microbiota DB 10h in which the environmental situation in the environmental situation DB 10g in which the relationship shown in FIG. 2 and the like are stored and the past results in the plant cultivation system 100 are recorded.
  • the microflora analysis unit 10b downloads necessary information from a cloud system (not shown) on the network 30 through the communication unit 10e.
  • the necessary information referred to here is, for example, a microbial function f as expressed by the above formula (1) corresponding to the plant 50 being cultivated, accumulated in the cloud system.
  • Step S3 the environmental condition calculation unit 10c of the plant cultivation apparatus 10 calculates, based on the vectorized microflora, how much environmental condition is controlled to return the microflora to the initial microflora. That is, in step S3, the environmental situation to be controlled and the control amount are calculated. Specifically, these are calculated using the above equation (1).
  • the environmental situation calculation unit 10c stores the calculation result in the microflora DB 10h.
  • the environmental situation calculation unit 10c uploads the calculation result to the cloud system on the network 30 through the communication unit 10e (step S4).
  • the calculation results uploaded here are the time elapsed after the start of cultivation, the vectorized microflora, the derived formula, the type of plant 50, and the like.
  • the environmental situation calculation unit 10c displays the calculation result on the display unit 10f (monitor 11) (step S5).
  • the control unit 10d controls each device corresponding to the environmental situation based on the result calculated in step S3 (step S6). Thereby, control is performed such that the microbial phase of the nutrient solution in the cultivation tank 1 is returned to the initial microbial phase.
  • the microbiota of the nutrient solution can be improved before the appearance of the plant 50 changes significantly. Thereby, more reliable disease control and effective control can be achieved.
  • the present embodiment has been described with a specific example. However, the present embodiment is not limited to the above example, and can be implemented with any changes.
  • control is performed so that the microflora is returned to the initial microflora, but the microbiota after the start of cultivation is preferably completely returned to the original microflora, It does not have to be completely returned. That is, as a result of DGGE, when a new band is generated after cultivation, it is preferable to perform control so that the band can be completely removed, but control is performed so that the activity of microorganisms derived from the band can be suppressed. Even so, the above-described advantages can be sufficiently obtained. Moreover, even if it does not return to the microflora of the beginning of cultivation, control which changes to the target microflora may be performed.
  • DGGE is used as the microflora analysis device 13 in the above example, but the device and method for analyzing the microflora may not be DGGE. That is, for example, analysis by PCR (Polymerase Chain Reaction) using a primer capable of amplifying a gene unique to a pathogenic microorganism may be performed, or analysis by Southern blotting may be performed. Moreover, you may perform the western blotting using a nutrient solution about the characteristic protein which a pathogenic microorganism produces
  • PCR Polymerase Chain Reaction
  • the phrase “analysis of microflora” is the term that should be interpreted in the broadest sense.
  • the type of environmental situation is not limited to the above example, and other types may be used.
  • the environmental situation include various ion concentrations such as magnesium ions and nitrate ions, irradiation time by the illumination 9, feeding speed of the nutrient solution by driving the pump 5, and the like.
  • the principal component analysis and derivation of the empirical formula using the principal component analysis were performed, but the analysis method is not limited to this. That is, the analysis may be performed by a method other than the derivation of the function f by principal component analysis. Further, a table or the like may be used without using the formula. Furthermore, it may not be an empirical formula, and a theoretical formula may be used.
  • the nutrient solution need not be circulated, and for example, the nutrient solution may be sprayed onto the plant 50.
  • you may make it perform more stable production by the buffer action of a solid culture medium for example using the solid culture medium (for example, agar culture medium) etc. which contain a nutrient.
  • the microflora analyzer 13 is provided in the greenhouse 40.
  • the microflora analyzer 13 may be in another place. That is, the nutrient solution may be sampled, and DNA extraction, amplification, DGGE analysis, and the like may be performed at other locations such as a microorganism analysis center. Then, the result may be directly supplied to the plant cultivation device 10, may be supplied to the plant cultivation device 10 via the network 30, or may be accumulated in a cloud system on the network 30. Good.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydroponics (AREA)

Abstract

 In order to obtain a plant cultivation device in which disease in hydroponic cultivation can be reliably and effectively minimized, this invention is provided with: a microflora database (10h) for storing the microflora-environmental situation relationship linking microflora in a nutrient solution and the environmental situation of a plant (50) contributing to the growth of the plant (50), which is cultivated in the nutrient solution; a microflora analysis unit (10b) for analyzing, using the relationship stored in the microflora database (10h), the microflora in the nutrient solution in which the plant (50) is cultivated; and an environmental situation computation unit (10c) for computing, on the basis of the result of the microflora analysis performed by the microflora analysis unit (10b), the environmental situation for the plant (50) being controlled.

Description

植物栽培装置及びそれを備える植物栽培システム、並びに植物栽培方法Plant cultivation apparatus, plant cultivation system including the same, and plant cultivation method
 本発明は、植物栽培装置及びそれを備える植物栽培システム、並びに植物栽培方法に関する。 The present invention relates to a plant cultivation apparatus, a plant cultivation system including the same, and a plant cultivation method.
 古くから行われている土耕栽培では、土壌中に大量に存在する微生物による有機物分解、窒素固定等の働きが重要である。そこで、これらの点について、分子生物学的な手法による土壌微生物相の計測方法のほか、肥料、農薬の投与指針等の管理方法について、多くの実績が積み上げられてきている。しかし、土耕栽培では、季節、地域等によっては、安定した植物の栽培が難しい。そこで、栽培環境を制御することで高品質作物の安定生産をめざす植物工場が注目され、そこで使われる栽培方法として、養液栽培(水耕栽培)の利用が注目されている。 In soil cultivation, which has been practiced for a long time, the functions of organic matter decomposition and nitrogen fixation by microorganisms present in large quantities in the soil are important. Thus, in addition to the measurement method of soil microflora by molecular biological techniques, many achievements have been accumulated regarding management methods such as fertilizer and pesticide administration guidelines. However, in soil cultivation, stable plant cultivation is difficult depending on the season and region. Therefore, plant factories aiming at stable production of high-quality crops by controlling the cultivation environment are attracting attention, and the use of hydroponics (hydroponics) is attracting attention as a cultivation method used there.
 養液栽培では、植物の成長に必要な栄養分は、植物が吸収可能なイオンの形態で培養液中に供給される。そして、養液における微生物計測の必要性はそれほど意識されていなかった。しかし、近年、植物工場の大規模化が図られるなかで、植物の病害管理、微生物を利用した品質向上等の重要性が認識され始めている。 In hydroponics, nutrients necessary for plant growth are supplied into the culture in the form of ions that can be absorbed by the plant. And the necessity of measuring microorganisms in nutrient solution was not so much conscious. However, in recent years, the importance of plant disease management, quality improvement using microorganisms, etc. has begun to be recognized as plant factories are being scaled up.
 植物工場において作柄や収量に大きな影響を与える病害が発生すると、栽培の停止や消毒の実施のために損失は多大となる。植物工場の多くで採用される養液による養液栽培方式では養液が多数の株で同時に共有される。そのため、循環系の一か所に滅菌機構を設けたとしても、1株で発生した病害が培養槽全体に及ぶことになる。よって、植物工場において、病原微生物による病害の防除は重要な課題である。 If a disease that greatly affects cropping and yield occurs in a plant factory, the loss will be great due to the suspension of cultivation and the implementation of disinfection. In the nourishing culture method using the nourishing liquid adopted in many plant factories, the nourishing liquid is shared by many strains simultaneously. Therefore, even if a sterilization mechanism is provided in one place in the circulatory system, the disease generated by one strain reaches the entire culture tank. Therefore, controlling plant diseases caused by pathogenic microorganisms is an important issue in plant factories.
 現状の植物工場における病原微生物への対策としては、栽培棚等の定期的な清掃及び消毒をする方法がある。しかし、このような清掃及び消毒をする方法では、病原微生物を完全に排除できるものではなく、病害の予防としては限界がある。そこで、病害のより完全な予防的防除を実現する微生物制御技術が望まれる。中でも、新たな設備に対する投資の抑制と、農薬への依存の低減とが可能な微生物制御技術が望まれている。 Measures against pathogenic microorganisms in current plant factories include regular cleaning and disinfection of cultivation shelves. However, such a cleaning and disinfecting method cannot completely eliminate pathogenic microorganisms and has a limit in preventing disease. Therefore, a microorganism control technique that realizes more complete preventive control of diseases is desired. In particular, there is a demand for a microorganism control technology that can reduce investment in new facilities and reduce dependence on agricultural chemicals.
 養液中の微生物に注目し、植物の病害の防除を図る技術として、特許文献1に記載の技術が知られている。特許文献1には、植物の施設栽培のための自動灌水システムであって、(a)植物病害に対する拮抗微生物の培養タンク、(b)灌水中に含まれる拮抗微生物数を測定する菌数センサ、及び(c)菌数センサの計測値により拮抗微生物培養タンクからの微生物添加量を調節する制御装置を備える自動灌水システムが記載されている。 A technique described in Patent Document 1 is known as a technique for controlling a plant disease by paying attention to microorganisms in a nutrient solution. Patent Document 1 discloses an automatic irrigation system for plant cultivation of plants, wherein (a) a culture tank for antagonistic microorganisms against plant diseases, (b) a bacterial count sensor for measuring the number of antagonistic microorganisms contained in the irrigation, And (c) an automatic irrigation system including a control device that adjusts the amount of microorganisms added from the antagonistic microorganism culture tank based on the measured value of the bacteria count sensor.
特開2004-275127号公報JP 2004-275127 A
 特許文献1に記載の技術では、病害を誘発する養液中の病原微生物に拮抗可能な拮抗微生物が用いられている。そして、養液中の拮抗微生物が計測され、その結果に基づいて、拮抗微生物が養液に添加されている。しかし、養液中の拮抗微生物の好適な数は、養液の環境や、同時に存在する他の微生物とのバランスによって決定される。従って、単に拮抗微生物を添加しても、養液中に既に存在している多数の微生物により、添加された拮抗微生物が所望の挙動を示すとは限らない。従って、特許文献1に記載の技術では、病原微生物に対する拮抗作用を継続的かつ効果的に維持することができないことがある。 In the technique described in Patent Document 1, antagonistic microorganisms that can antagonize pathogenic microorganisms in nutrient solution that induce disease are used. And the antagonistic microorganisms in a nutrient solution are measured, and the antagonistic microorganisms are added to the nutrient solution based on the result. However, the suitable number of antagonistic microorganisms in the nutrient solution is determined by the environment of the nutrient solution and the balance with other microorganisms present simultaneously. Therefore, simply adding antagonistic microorganisms does not always mean that the added antagonistic microorganisms exhibit the desired behavior due to the large number of microorganisms already present in the nutrient solution. Therefore, with the technique described in Patent Document 1, antagonism against pathogenic microorganisms may not be maintained continuously and effectively.
 また、特許文献1に記載の技術では、拮抗微生物を貯留したタンク等の設置や、用いる拮抗微生物の培養や保管が必要となることがある。従って、低コスト化を図ることができないことがある。さらに、拮抗微生物のなかには、単離や培養が困難な微生物がある。そのため、添加する拮抗微生物を用意することができないことがあり、様々な病害に対応することが困難なことがある。 In addition, in the technique described in Patent Document 1, it may be necessary to install a tank or the like in which antagonistic microorganisms are stored and to culture and store the antagonistic microorganisms to be used. Therefore, cost reduction may not be achieved. Furthermore, among antagonistic microorganisms, there are microorganisms that are difficult to isolate and culture. Therefore, it may not be possible to prepare an antagonistic microorganism to be added, and it may be difficult to cope with various diseases.
 本発明は前記課題に鑑みてなされたものであり、本発明が解決しようとする課題は、水耕栽培における病害をより確実かつ効果的に抑制可能な植物栽培装置及びそれを備える植物栽培システム、並びに植物栽培方法を提供することである。 This invention is made | formed in view of the said subject, The subject which this invention tends to solve is a plant cultivation apparatus which can suppress the disease in hydroponics more reliably and effectively, and a plant cultivation system provided with the same, As well as providing a plant cultivation method.
 本発明者らは前記課題を解決するべく鋭意検討した。その結果、本発明者らは、養液中の微生物相を解析し、その解析結果に基づいた栽培を行うことで前記課題を解決できることを見出した。 The present inventors diligently studied to solve the above problems. As a result, the present inventors have found that the above problem can be solved by analyzing the microflora in the nutrient solution and performing cultivation based on the analysis result.
 本発明によれば、水耕栽培における病害をより確実かつ効果的に抑制可能な植物栽培装置及びそれを備える植物栽培システム、並びに植物栽培方法を提供することができる。 According to the present invention, it is possible to provide a plant cultivation apparatus capable of more reliably and effectively suppressing diseases in hydroponics, a plant cultivation system including the plant cultivation system, and a plant cultivation method.
本実施形態の植物栽培システムの全体構成を示す図である。It is a figure which shows the whole structure of the plant cultivation system of this embodiment. 培養される植物の環境状況と、栽培される植物の発病率との関係を示す図であり、(a)は養液の溶存酸素濃度と発病率との関係、(b)は養液のpHと発病率との関係、(c)は養液の温度と発病率との関係、(d)は養液の電気伝導度と発病率との関係である。It is a figure which shows the relationship between the environmental condition of the plant to be cultured, and the disease incidence of the plant to be cultivated, (a) is the relationship between the dissolved oxygen concentration of the nutrient solution and the disease incidence, and (b) is the pH of the nutrient solution. (C) is the relationship between the temperature of the nutrient solution and the disease rate, and (d) is the relationship between the electrical conductivity of the nutrient solution and the disease rate. 本実施形態の植物栽培システムに備えられる植物栽培装置を示すブロック図である。It is a block diagram which shows the plant cultivation apparatus with which the plant cultivation system of this embodiment is equipped. 図3に示す植物栽培装置の具体的構成を示すブロック図である。It is a block diagram which shows the specific structure of the plant cultivation apparatus shown in FIG. 養液のpHを変えて植物を栽培した場合に、養液におけるDGGEの結果を模式的に示す図である。It is a figure which shows typically the result of DGGE in a nutrient solution, when changing the pH of a nutrient solution and growing a plant. 養液のpHを変えて栽培された植物の質量の変化を示す図である。It is a figure which shows the change of the mass of the plant cultivated by changing pH of a nutrient solution. 養液の温度を変えて植物を栽培した場合に、養液におけるDGGEの結果を模式的に示す図である。It is a figure which shows typically the result of DGGE in a nutrient solution, when changing the temperature of a nutrient solution and growing a plant. 養液の温度を変えて栽培された植物の質量の変化を示す図である。It is a figure which shows the change of the mass of the plant cultivated by changing the temperature of a nutrient solution. 養液中の微生物相の解析方法を説明するDGGEを模式的に示す図である。It is a figure which shows typically DGGE explaining the analysis method of the microflora in a nutrient solution. 本実施形態の植物栽培システムにおいて行われる、植物栽培方法を説明するフローチャートである。It is a flowchart explaining the plant cultivation method performed in the plant cultivation system of this embodiment.
 以下、図面を参照しながら、本発明を実施するための形態(本実施形態)を説明する。 Hereinafter, embodiments for carrying out the present invention (this embodiment) will be described with reference to the drawings.
 図1は、本実施形態の植物栽培システム100の全体構成を示す図である。植物栽培システム100は、植物50の培養に直接関与する、培養槽1と、栽培棚2と、養液循環配管3と、養液槽4と、ポンプ5と、pH調整液6と、電解質溶解液7と、ヒータ8と、照明9と、散気管19とを備える。従って、本実施形態の植物栽培システム100では、植物50の水耕栽培が行われる。 FIG. 1 is a diagram illustrating an overall configuration of a plant cultivation system 100 according to the present embodiment. The plant cultivation system 100 is directly involved in the cultivation of the plant 50, the cultivation tank 1, the cultivation shelf 2, the nutrient solution circulation pipe 3, the nutrient solution tank 4, the pump 5, the pH adjusting solution 6, and the electrolyte dissolution. The liquid 7, the heater 8, the illumination 9, and the air diffuser 19 are provided. Therefore, hydroponic cultivation of the plant 50 is performed in the plant cultivation system 100 of the present embodiment.
 また、植物栽培システム100は、植物50の栽培を制御する植物栽培装置10と、温室40内の空調を行う空調機12と、栽培槽1内の養液における微生物相を解析する微生物相解析装置13とを備えている。植物栽培装置10には、湿度計20と、温度計21と、光度計22とが図1中破線で示す電気信号線で接続されている。また、植物栽培装置10には、ポンプ5と、pH調整液6と、電解質溶液7と、ヒータ8と、照明9と、空調機12と、微生物相解析装置13と、温度計15と、pHセンサ16と、電気伝導度センサ17と、散気管19と、光度計22とが、電気信号線で接続されている。 The plant cultivation system 100 includes a plant cultivation device 10 that controls cultivation of the plant 50, an air conditioner 12 that performs air conditioning in the greenhouse 40, and a microflora analysis device that analyzes the microbial flora in the nutrient solution in the cultivation tank 1. 13. A hygrometer 20, a thermometer 21, and a photometer 22 are connected to the plant cultivation apparatus 10 by electric signal lines indicated by broken lines in FIG. 1. Further, the plant cultivation apparatus 10 includes a pump 5, a pH adjusting liquid 6, an electrolyte solution 7, a heater 8, a lighting 9, an air conditioner 12, a microflora analyzer 13, a thermometer 15, and a pH. The sensor 16, the electrical conductivity sensor 17, the diffuser tube 19, and the photometer 22 are connected by an electrical signal line.
 電気信号線がこのように配線されていることで、植物栽培装置10は、微生物相の解析結果をモニタ11に表示するとともに、解析結果に基づいて、各装置を制御するようになっている。具体的な制御方法は、図10等を参照しながら後記するが、その概略としては以下の通りである。 The electrical signal lines are wired in this manner, so that the plant cultivation device 10 displays the analysis result of the microflora on the monitor 11 and controls each device based on the analysis result. A specific control method will be described later with reference to FIG. 10 and the like, and the outline thereof is as follows.
 所定温度及び所定湿度にて植物50が栽培中、養液は、ポンプ5により循環されている。この間、植物栽培装置10は、所定間隔(例えば一日~一週間に一度程度)で、微生物相解析装置13によって、養液中の微生物相の解析を行う。
 なお、微生物相とは、養液中に存在する微生物の種類及び分布である。
During the cultivation of the plant 50 at a predetermined temperature and a predetermined humidity, the nutrient solution is circulated by the pump 5. During this time, the plant cultivation device 10 analyzes the microflora in the nutrient solution by the microflora analyzer 13 at a predetermined interval (for example, about once a day to once a week).
The microflora is the type and distribution of microorganisms present in the nutrient solution.
 解析されて得られた微生物相が、栽培当初の微生物相から変化していた場合、この変化により、植物の病害が発生することが予測される。そこで、植物栽培装置10は、その変化が元に戻るように、即ち、その時点での微生物相が栽培当初の微生物相に戻るように、各装置を制御する。より具体的には、植物栽培装置10は、例えば、pH調整液6を用いて養液のpHを調整したり、電解質溶液7を用いて養液の電気伝導度を調整したり、ヒータ8を用いて養液の温度を調整したり、照明9の光度を調整したりする。これらにより、養液の微生物相が栽培当初の微生物相に戻されるような制御が行われ、病害の発生が防除されるようになっている。 If the microbial flora obtained by analysis has changed from the initial microbial flora, this change is predicted to cause plant disease. Therefore, the plant cultivation device 10 controls each device so that the change is restored, that is, the microbial flora at that time returns to the original microbial flora. More specifically, for example, the plant cultivation apparatus 10 adjusts the pH of the nutrient solution using the pH adjusting solution 6, adjusts the electrical conductivity of the nutrient solution using the electrolyte solution 7, or sets the heater 8. It is used to adjust the temperature of the nutrient solution or adjust the luminous intensity of the illumination 9. By these, control is performed so that the microflora of the nutrient solution is returned to the initial microflora of the cultivation, and the occurrence of disease is controlled.
 また、植物栽培装置10には、電気信号線により、ネットワーク30に接続されている。このネットワーク30上には、図示しないクラウドシステムが構築されている。従って、植物栽培装置10が得た各情報や、解析や演算された各情報は、ネットワーク30を通じて、クラウドシステムにアップロードされるようになっている。また、必要に応じて、クラウドシステムの情報が、植物栽培装置10にダウンロードされるようになっている。 Further, the plant cultivation apparatus 10 is connected to the network 30 by an electric signal line. On the network 30, a cloud system (not shown) is constructed. Therefore, each information obtained by the plant cultivation apparatus 10 and each information analyzed and calculated are uploaded to the cloud system through the network 30. Moreover, the information of a cloud system is downloaded to the plant cultivation apparatus 10 as needed.
 このように、植物栽培システム100とクラウドシステムとを連携させることで、微生物相を制御するための情報が、クラウドシステムに蓄積された膨大な実験データ(例えば植物50の種類、温室40の構造、植物50が栽培される環境状況等)に基づいて、決定されることになる。これにより、より精度よく、養液中の微生物相の制御が可能になる。 As described above, by linking the plant cultivation system 100 and the cloud system, information for controlling the microflora is stored in the cloud system, for example, a huge amount of experimental data (for example, the type of the plant 50, the structure of the greenhouse 40, It will be determined based on the environmental conditions in which the plant 50 is cultivated. Thereby, the microflora in the nutrient solution can be controlled with higher accuracy.
 ここで、本明細書において、「環境状況」とは、植物50が栽培されるときの、植物50を取り巻く状況、即ち、温室40内の湿度や温度、植物50に照射される光の光度、養液の温度やpH、電気伝導度、溶存酸素濃度等である。これらの環境状況は、植物50の生育に関与する指標といえ、この指標のことを本明細書では「環境状況」というものとする。この点を、図2を参照しながら説明する。 Here, in this specification, the “environmental condition” refers to the situation surrounding the plant 50 when the plant 50 is cultivated, that is, the humidity and temperature in the greenhouse 40, the luminous intensity of the light irradiated to the plant 50, The temperature and pH of the nutrient solution, electrical conductivity, dissolved oxygen concentration, and the like. These environmental conditions can be said to be an index related to the growth of the plant 50, and this index is referred to as an “environmental condition” in this specification. This point will be described with reference to FIG.
 図2は、培養される植物50の環境状況と、栽培される植物50の発病率との関係を示す図であり、(a)は養液の溶存酸素濃度と発病率との関係、(b)は養液のpHと発病率との関係、(c)は養液の温度と発病率との関係、(d)は養液の電気伝導度と発病率との関係である。なお、図示のグラフは一例であり、植物50の種類によって異なることがある。 FIG. 2 is a diagram showing the relationship between the environmental condition of the plant 50 to be cultured and the disease incidence of the plant 50 to be cultivated. (A) is the relationship between the dissolved oxygen concentration of the nutrient solution and the disease incidence, (b ) Is the relationship between the pH of the nutrient solution and the disease rate, (c) is the relationship between the temperature of the nutrient solution and the disease rate, and (d) is the relationship between the electrical conductivity of the nutrient solution and the disease rate. The illustrated graph is an example, and may vary depending on the type of plant 50.
 植物50を栽培する場合、図2(a)に示すように、養液中の溶存酸素濃度が増加すればするほど、植物50の発病率は低下する。また、図2(b)に示すように、養液のpHが上昇するほど(即ち、アルカリ性になるほど)、発病率も上昇する。さらに、図2(c)に示すように、養液の温度が上昇するほど、発病率も上昇する。そして、図2(d)に示すように、養液の電気伝導度が上昇するほど、発病率は低下する。従って、環境状況を制御して発病率を抑制しようとすれば、例えば養液中の溶存酸素濃度を増加させることが考えられる。 When cultivating the plant 50, as shown in FIG. 2A, the disease incidence of the plant 50 decreases as the dissolved oxygen concentration in the nutrient solution increases. Further, as shown in FIG. 2 (b), the disease rate increases as the pH of the nutrient solution increases (that is, as it becomes alkaline). Furthermore, as shown in FIG. 2 (c), the disease incidence increases as the temperature of the nutrient solution increases. And as shown in FIG.2 (d), an attack rate falls, so that the electrical conductivity of a nutrient solution rises. Therefore, it is conceivable to increase the dissolved oxygen concentration in the nutrient solution, for example, in order to control the disease rate by controlling the environmental situation.
 また、植物50の種類に拠っては、環境状況の種類に拠って、発病率の変化への寄与の程度が異なることがある。例えば、養液の溶存酸素濃度を上昇させると発病率は僅かに低下するものの殆ど変化しないが、養液のpHを少し大きくすると発病率が大きく増大すること等が考えられる。そのため、発病率は、一つのみの環境状況に起因しては決定されないことがあり、二つ以上の環境状況に起因して決定されることがある。従って、発病率を抑制するために制御される環境状況としては、一つのみではなく、二つ以上となることがある。さらに、発病率を効果的に抑制できる環境状況は、植物50の具体的な種類によって異なることもある。 In addition, depending on the type of plant 50, the degree of contribution to the change in disease incidence may vary depending on the type of environmental situation. For example, when the dissolved oxygen concentration of the nutrient solution is increased, the disease rate slightly decreases, but hardly changes. However, when the pH of the nutrient solution is slightly increased, the disease rate is greatly increased. Thus, the incidence rate may not be determined due to only one environmental condition, and may be determined due to two or more environmental conditions. Therefore, the environmental situation controlled to suppress the disease incidence is not limited to one but may be two or more. Furthermore, the environmental situation in which the disease incidence can be effectively suppressed may vary depending on the specific type of the plant 50.
 環境状況の制御として、どの環境状況をどのように制御すればよいのかは、植物50の種類により異なる。そこで、本実施形態では、栽培する植物50について、どの環境状況を制御するのがよいか、また、どの程度制御するのがよいかは、経験的に蓄積されたデータに基づいて定められることとしている。 It depends on the type of plant 50 which environmental condition should be controlled as an environmental condition control. Therefore, in the present embodiment, which environmental situation should be controlled and how much should be controlled for the plant 50 to be cultivated is determined based on empirically accumulated data. Yes.
 図3を参照しながら、再び本実施形態の植物栽培システム100の構成を説明する。 The configuration of the plant cultivation system 100 of the present embodiment will be described again with reference to FIG.
 図3は、本実施形態の植物栽培システム100に備えられる植物栽培装置10を示すブロック図である。植物栽培装置10は、データ取得部10aと、微生物相解析部10bと、環境状況演算部10cと、制御部10dと、通信部10eと、表示部10fと、環境状況データベース10gと、微生物相データベース10hとを備えている。なお、表示部10fは、前記したモニタ11に相当する。 FIG. 3 is a block diagram showing the plant cultivation apparatus 10 provided in the plant cultivation system 100 of the present embodiment. The plant cultivation apparatus 10 includes a data acquisition unit 10a, a microflora analysis unit 10b, an environmental situation calculation unit 10c, a control unit 10d, a communication unit 10e, a display unit 10f, an environmental situation database 10g, and a microflora database. 10h. The display unit 10f corresponds to the monitor 11 described above.
 データ取得部10aは、養液の温度、pH及び電気伝導度、温室40内の湿度及び温度、並びに、植物50に照射される光の強度についての情報、即ち栽培される植物の環境状況を取得するものである。養液の温度は、温度計15により測定される。養液のpHは、pHセンサ16により測定される。養液の電気伝導度は、電気伝導度センサ17により測定される。温室40内の湿度は、湿度計20により測定される。温室40内の温度は、温度計21により測定される。植物50に照射される光の強度は、光度計22により測定される。 The data acquisition unit 10a acquires information on the temperature, pH and electrical conductivity of the nutrient solution, the humidity and temperature in the greenhouse 40, and the intensity of light irradiated on the plant 50, that is, the environmental status of the plant to be cultivated. To do. The temperature of the nutrient solution is measured by a thermometer 15. The pH of the nutrient solution is measured by the pH sensor 16. The electrical conductivity of the nutrient solution is measured by the electrical conductivity sensor 17. The humidity in the greenhouse 40 is measured by the hygrometer 20. The temperature in the greenhouse 40 is measured by the thermometer 21. The intensity of light applied to the plant 50 is measured by the photometer 22.
 微生物相解析部10bは、微生物相解析装置13により得られた結果に基づいて、養液中の微生物相を解析するものである。微生物相解析部10bにより、養液中の微生物相が決定される。本実施形態では、微生物相の解析は、DGGE(Denaturing Gradient Gel Electrophoresis)を用いて行われる。この方法を用いた具体的な説明は、図9等を参照しながら後記する。 The microflora analyzer 10b analyzes the microflora in the nutrient solution based on the result obtained by the microbiota analyzer 13. The microflora in the nutrient solution is determined by the microflora analyzer 10b. In this embodiment, the analysis of the microflora is performed using DGGE (Denaturing Gradient Gel Electrophoresis). A specific description using this method will be described later with reference to FIG.
 環境状況演算部10cは、微生物相解析部10bにより決定された微生物相に基づいて、変化した微生物相を栽培当初の微生物相に戻すためにはどの環境状況をどの程度制御すればよいかを演算するものである。この演算は、環境状況と微生物相(即ち、病原微生物に起因する発病率)との関係(図2参照)が記録された環境状況データベース10gが参照することで行われる。また、この演算は、微生物相に対する病害のデータが記録された微生物相データベース10hも参照して行われる。さらに、この演算は、ネットワーク30上のクラウドシステムからダウンロードされた情報も利用される。 Based on the microflora determined by the microflora analysis unit 10b, the environmental situation calculation unit 10c calculates which environmental condition should be controlled and how much to return the changed microflora to the initial microflora. To do. This calculation is performed by referring to the environmental situation database 10g in which the relationship (see FIG. 2) between the environmental situation and the microflora (that is, the disease incidence caused by the pathogenic microorganism) is recorded. In addition, this calculation is performed with reference to the microflora database 10h in which the disease data for the microflora is recorded. Further, information downloaded from the cloud system on the network 30 is also used for this calculation.
 環境状況演算部10cが演算して得られた結果は、微生物相データベース10hに記録される。さらには、この結果は、ネットワーク30上のクラウドシステムにもアップロードされる。これらの具体的な説明も、図10等を参照しながら後記する。 The result obtained by the calculation by the environmental condition calculation unit 10c is recorded in the microflora database 10h. Furthermore, this result is uploaded to the cloud system on the network 30. These specific descriptions will also be described later with reference to FIG.
 制御部10dは、環境状況演算部10cにより演算されて得られた環境状況及びその制御量に基づいて、養液の環境状況を制御するものである。即ち、環境状況演算部10cが例えば環境状況としての養液の温度を5℃低下させることを演算した場合、制御部10dは、ヒータ8の電源を切って、温度計15により測定される養液の温度が5℃低下させるようにしている。 The control unit 10d controls the environmental condition of the nutrient solution based on the environmental condition calculated by the environmental condition calculating unit 10c and the control amount thereof. That is, when the environmental condition calculation unit 10c calculates, for example, that the temperature of the nutrient solution as the environmental condition is decreased by 5 ° C., the control unit 10d turns off the heater 8 and measures the nutrient solution measured by the thermometer 15 The temperature is reduced by 5 ° C.
 通信部10eは、各種センサや微生物相解析装置13、ネットワーク30上のクラウドシステム等との間で情報の授受を行うものである。また、表示部10fは、植物栽培装置10に取り付けられたモニタ11であり、環境状況演算部10cにより演算された結果が表示されるものである。さらに、図示はしないが、植物栽培装置10には、モニタ11に表示された結果に基づいて、使用者が任意の環境情報を入力可能な入力装置(キーボード等)が備えられている。そして、この入力装置に入力された環境情報に基づいても、制御部10dは植物50の環境状況を制御できるようもなっている。 The communication unit 10e exchanges information with various sensors, the microflora analyzer 13, the cloud system on the network 30, and the like. Moreover, the display part 10f is the monitor 11 attached to the plant cultivation apparatus 10, and the result calculated by the environmental condition calculating part 10c is displayed. Furthermore, although not illustrated, the plant cultivation apparatus 10 is provided with an input device (such as a keyboard) that allows the user to input arbitrary environmental information based on the result displayed on the monitor 11. And based on the environmental information input into this input device, the control part 10d can also control the environmental condition of the plant 50. FIG.
 図4は、図3に示す植物栽培装置10の具体的構成を示すブロック図である。植物演算装置10は、CPU101と、ROM102と、RAM103と、HDD104と、I/F105と、モニタ11とを備えている。そして、ROM102やHDD104に記録された植物栽培プログラムがCPU101によって実行されることで、植物栽培装置10が具現化されることになる。 FIG. 4 is a block diagram showing a specific configuration of the plant cultivation apparatus 10 shown in FIG. The plant arithmetic device 10 includes a CPU 101, a ROM 102, a RAM 103, an HDD 104, an I / F 105, and a monitor 11. And the plant cultivation program 10 recorded by ROM102 or HDD104 is implemented by CPU101, and the plant cultivation apparatus 10 is embodied.
 本実施形態の植物栽培システム100の構成は以上の通りであるが、ここで、植物栽培システム100において、微生物相を解析する理由について説明する。 The configuration of the plant cultivation system 100 of the present embodiment is as described above. Here, the reason for analyzing the microflora in the plant cultivation system 100 will be described.
 なお、以下の説明においては、電気泳動の結果を参照している。ただし、実際の電気泳動写真では黒色の背景に白色のバンドが観察されるが、図面では、バンドの見易さの観点から、白黒を反転して示している。また、模式図中、太線のバンドは比較的強い強度(明度)のバンドを示し、破線のバンドは比較的弱い強度のバンドを示し、細線のバンドは中程度の強度のバンドを示している。バンドの位置は微生物の種類、バンドの明るさは微生物の数に対応している。また、電気泳動の模式図中、Mはマーカを示している。 In the following description, the results of electrophoresis are referred to. However, in an actual electrophoretic photograph, a white band is observed on a black background, but in the drawing, black and white are shown inverted from the viewpoint of easy viewing of the band. Further, in the schematic diagram, a thick band indicates a relatively strong intensity (lightness) band, a broken line band indicates a relatively weak intensity band, and a thin line band indicates a medium intensity band. The position of the band corresponds to the type of microorganism, and the brightness of the band corresponds to the number of microorganisms. In the schematic diagram of electrophoresis, M indicates a marker.
 まず、本発明者らは、養液の微生物相と、その養液を用いて栽培される植物の外観(具体的には質量)との関係を検討した。 First, the present inventors examined the relationship between the microflora of a nutrient solution and the appearance (specifically, mass) of a plant cultivated using the nutrient solution.
 図5は、養液のpHを変えて植物を栽培した場合に、養液におけるDGGEの結果を模式的に示す図である。ここでは、植物50としてレタスを二週間栽培し、二週間経過後の養液のDGGEの結果を示している。栽培に用いた養液のpHは5、6及び7の三種類とし、それ以外の栽培条件は同じものとした。なお、レタスは、pH6の養液を用いた場合に特に良好な栽培が可能であり、pHが5や7の養液を用いた場合には、レタスにストレスをかけることになる。 FIG. 5 is a diagram schematically showing the results of DGGE in the nutrient solution when the plant is grown by changing the pH of the nutrient solution. Here, lettuce is cultivated for two weeks as the plant 50, and the results of DGGE of the nutrient solution after two weeks have been shown. The pH of the nutrient solution used for cultivation was 5, 6, and 7, and the other cultivation conditions were the same. In addition, lettuce can be cultivated particularly well when a nutrient solution having a pH of 6 is used, and when a nutrient solution having a pH of 5 or 7 is used, the lettuce is stressed.
 図5に示すように、養液のpHが変化することで、バンドの存在位置やバンドの有無が変化している。このことから、養液のpHを変化させることで、養液の微生物相が変化することがわかる。 As shown in FIG. 5, the presence position of the band and the presence or absence of the band are changed by changing the pH of the nutrient solution. From this, it can be seen that the microbial phase of the nutrient solution changes by changing the pH of the nutrient solution.
 図6は、養液のpHを変えて栽培された植物50の質量の変化を示す図である。図6で栽培した植物50は、図5と同様にレタスである。図6では、一週間経過後の質量を基準として、その相対的な値を各週でプロットしてグラフ化している。 FIG. 6 is a diagram showing a change in mass of the plant 50 cultivated by changing the pH of the nutrient solution. The plant 50 cultivated in FIG. 6 is lettuce as in FIG. In FIG. 6, the relative value is plotted for each week on the basis of the mass after one week, and is graphed.
 図6に示すように、五週間経過後では、pH5の養液を用いた場合に質量がやや小さくなったが、他のpHの養液を用いた場合の質量との差は小さかった。また、二~三週目では各pHの養液を用いた栽培で差は無かった。これらの結果から、pHが5、6及び7のいずれであっても、五週間では質量の差は殆ど無いといえる。 As shown in FIG. 6, after 5 weeks, the mass was slightly reduced when the pH 5 nutrient solution was used, but the difference from the mass when the other pH nutrient solutions were used was small. In addition, in the second to third weeks, there was no difference in cultivation using the nutrient solution of each pH. From these results, it can be said that there is almost no difference in mass in 5 weeks, regardless of whether the pH is 5, 6, or 7.
 また、養液の温度を15℃、20℃及び25℃として、図5及び図6と同様の評価を行った。その結果が図7及び図8である。なお、レタスは、20℃の養液を用いた場合に特に良好な栽培可能であり、15℃や25℃の養液を用いた場合、レタスにストレスをかけることになる。 Further, the temperature of the nutrient solution was set to 15 ° C., 20 ° C., and 25 ° C., and the same evaluation as in FIGS. 5 and 6 was performed. The results are shown in FIGS. Note that lettuce can be cultivated particularly well when a nutrient solution at 20 ° C. is used, and stress is applied to the lettuce when a nutrient solution at 15 ° C. or 25 ° C. is used.
 図7は、養液の温度を変えて植物50を栽培した場合に、養液におけるDGGEの結果を模式的に示す図である。図7に示すように、養液の温度を変化させても、養液の微生物相に変化が生じていた。 FIG. 7 is a diagram schematically showing the results of DGGE in the nutrient solution when the plant 50 is cultivated while changing the temperature of the nutrient solution. As shown in FIG. 7, even when the temperature of the nutrient solution was changed, the change in the microbial flora of the nutrient solution occurred.
 図8は、養液の温度を変えて栽培された植物50の質量の変化を示す図である。図8に示すように、15℃や25℃の養液を用いた場合、五週間後の質量が小さくなった。しかし、二~三週目では、各温度の養液を用いた栽培間で差は無かった。従って、温度が15℃、20℃及び25℃の場合では、五週間程度で質量に変化が生じ始めるものの、二~三週目では質量に変化がないことになる。 FIG. 8 is a diagram showing a change in mass of the plant 50 cultivated by changing the temperature of the nutrient solution. As shown in FIG. 8, when a nutrient solution at 15 ° C. or 25 ° C. was used, the mass after 5 weeks became small. However, in the second to third weeks, there was no difference between the cultivations using the nutrient solution at each temperature. Therefore, when the temperature is 15 ° C., 20 ° C., and 25 ° C., the mass starts to change in about five weeks, but the mass does not change in the second to third weeks.
 図6や図8に示すように、養液のpHや温度を変化させても、栽培後少なくとも二~三週間は、質量に大きな変化はない。従って、例えば質量を測定したり外観を観察したりするだけでは、その植物に病害が発生しているかどうか、判断することが難しい。特に、図5や図7に示すように、前記のように質量に変化は無くても微生物相は栽培当初から変化している。そのため、植物50の質量に変化は無くても、養液中で病原微生物が優勢になっていることがある。病原微生物が優勢になっていれば、前記のように五週間では質量に変化が無くても(図6参照)、例えば六週間以降の植物の生育状況が悪くなる可能性がある。 As shown in FIGS. 6 and 8, even if the pH and temperature of the nutrient solution are changed, there is no significant change in mass for at least two to three weeks after cultivation. Therefore, for example, it is difficult to determine whether or not a disease has occurred in the plant only by measuring the mass or observing the appearance. In particular, as shown in FIG. 5 and FIG. 7, the microbial flora has changed from the beginning of cultivation even if there is no change in mass as described above. Therefore, even if there is no change in the mass of the plant 50, pathogenic microorganisms may be dominant in the nutrient solution. If pathogenic microorganisms are dominant, even if there is no change in mass in five weeks as described above (see FIG. 6), for example, the growth situation of plants after six weeks may deteriorate.
 そこで、本実施形態では、養液中の微生物相を解析している。これにより、微生物相の変化を早期に発見できる。そして、病原微生物が優勢になった場合でも、速やかに当初の微生物相の状態に戻し、植物50のその後の生育状況に影響が出る可能性が抑制可能となる。特に、養液中で微生物相に変化が生じても、図6や図8に示すように、即座に植物50の外観や質量に変化が生じるわけではない。即ち、植物50の外観や質量に変化が生じたときには、養液中の病原微生物を除去したとしても、植物50の外観や質量が回復できない可能性がある。そこで、微生物相を解析して把握することで、外観や質量が変化するよりも前の比較的の初期の段階で病原微生物への対策を行い、病原微生物に起因する植物50への影響を抑制することができる。 Therefore, in this embodiment, the microflora in the nutrient solution is analyzed. Thereby, the change of a microflora can be discovered at an early stage. And even when a pathogenic microbe becomes dominant, it will return to the state of the original microflora rapidly, and it will become possible to control the possibility that the subsequent growth situation of the plant 50 will be affected. In particular, even if the microflora changes in the nutrient solution, the appearance and mass of the plant 50 do not change immediately as shown in FIGS. That is, when changes in the appearance and mass of the plant 50 occur, the appearance and mass of the plant 50 may not be recovered even if pathogenic microorganisms in the nutrient solution are removed. Therefore, by analyzing and grasping the microflora, countermeasures against pathogenic microorganisms are taken at a relatively early stage before appearance and mass change, and the effects on the plant 50 caused by the pathogenic microorganisms are suppressed. can do.
 養液中には、多種多様な微生物が生息している。具体的には、養液中の微生物の数は、土壌中の微生物の数に比べると2~3桁少なく、1gあたり10~10個の微生物が生息している。そして、これらの微生物は、養液中で互いに共生や拮抗の作用を及ぼしている。しかし、養液中のように含まれる微生物の数が少ないと、微生物同士の拮抗作用が弱くなる。そのため、外部から微生物が侵入すると、その微生物に対する拮抗作用が働きにくい。また、水耕栽培では、一つの株で病原が発生すると、その株が植えられている栽培槽全体の株にその病原が広がることになる。そこで、水耕栽培では、病原微生物による植物50への影響が顕在化する前に、その病害を誘発する病原微生物に対処することが望まれている。 A wide variety of microorganisms live in the nutrient solution. Specifically, the number of microorganisms in the nutrient solution is 2 to 3 orders of magnitude less than the number of microorganisms in the soil, and 10 4 to 10 5 microorganisms live per gram. And these microorganisms are mutually symbiotic and antagonistic in the nutrient solution. However, if the number of microorganisms contained in the nutrient solution is small, the antagonistic action between the microorganisms becomes weak. Therefore, when a microorganism enters from the outside, the antagonistic action against the microorganism is difficult to work. In hydroponics, when a pathogen occurs in one strain, the pathogen spreads to the entire strain in the cultivation tank in which the strain is planted. Therefore, in hydroponics, it is desired to deal with pathogenic microorganisms that induce the disease before the influence of the pathogenic microorganisms on the plant 50 becomes obvious.
 具体的な対処方法として、環境への負荷軽減の観点から、病原微生物に対する拮抗微生物を用いることが考えられる。即ち、拮抗微生物を添加することで、病原微生物の増殖を抑制することが考えられる(前記の特許文献1も併せて参照)。しかし、病原微生物が養液中に認められた場合に、その病原微生物に拮抗可能な拮抗微生物を養液に単に添加しても、前記のように養液中では既存の微生物同士で拮抗して共存していることから、所望の挙動が示されないことがある。そのため、添加された拮抗微生物が優勢にならないこともあるし、添加された拮抗微生物が死滅することもある。また、拮抗可能な拮抗微生物を特定できない場合や培養できない場合には、拮抗微生物の添加自体が困難である。 As a specific countermeasure, it is conceivable to use antagonistic microorganisms against pathogenic microorganisms from the viewpoint of reducing the burden on the environment. That is, it is conceivable to suppress the growth of pathogenic microorganisms by adding antagonistic microorganisms (see also Patent Document 1 above). However, when pathogenic microorganisms are found in the nutrient solution, even if an antagonistic microorganism capable of antagonizing the pathogenic microorganisms is simply added to the nutrient solution, the existing microorganisms antagonize in the nutrient solution as described above. Because of the coexistence, the desired behavior may not be shown. For this reason, the added antagonistic microorganism may not be dominant, or the added antagonistic microorganism may be killed. In addition, when an antagonistic microorganism that can antagonize cannot be identified or cultured, it is difficult to add the antagonistic microorganism itself.
 そこで、本実施形態では、病原微生物に拮抗する拮抗微生物を添加するのではなく、微生物相を把握している。そして、把握された微生物相と、実験的に蓄積された微生物相と環境状況との関連性(関数)に基づき、微生物相が初期の健全な状態に戻されるようにしている。これにより、様々な病原微生物に対してより確実に対処することができる。また、既存の設備を活用した制御を行うことができ、新規設備の導入が不要になる。また、農薬への依存度を低減することができ、環境への負荷を低減することができる。 Therefore, in this embodiment, the microbial flora is grasped instead of adding an antagonistic microorganism that antagonizes the pathogenic microorganism. Then, based on the grasped microflora and the relationship (function) between the experimentally accumulated microflora and the environmental situation, the microflora is returned to the initial healthy state. As a result, various pathogenic microorganisms can be dealt with more reliably. In addition, control using existing equipment can be performed, and introduction of new equipment becomes unnecessary. Moreover, the dependence on an agrochemical can be reduced and the load to an environment can be reduced.
 図9は、養液中の微生物相の解析方法を説明するDGGEを模式的に示す図である。前記のように、本実施形態では、微生物相が解析されている。そこで、図9を参照しながら、微生物相の解析方法の具体的な手法を一例として挙げる。図9は、L1~L4の四つのサンプルについて電気泳動を行った結果である。 FIG. 9 is a diagram schematically showing DGGE for explaining the analysis method of the microflora in the nutrient solution. As described above, in this embodiment, the microflora is analyzed. Therefore, referring to FIG. 9, a specific technique of the microbiota analysis method is given as an example. FIG. 9 shows the results of electrophoresis performed on four samples L1 to L4.
 まず、図9の電気泳動の結果が、主成分分析により数値化される。具体的には、まず、図9において、泳動方向に向かって等間隔で基準バンドが設定される。この間隔及び設定する基準バンドの総数は任意であるが、図9では、基準バンドとして、九つのバンド1~9が等間隔に設定されている。また、このバンド1~9のそれぞれには、特有の座標(距離)が割り振られている。そして、サンプル毎に、検出されたバンドの大きさに対して、そのバンドと最も近い大きさの基準バンドの座標が割り当てられる。例えば、図9のサンプルL4において、バンドAはバンド2の大きさに最も近いので、バンド2の座標が割り当てられる。同様に、バンドBにはバンド5の座標が、バンドCにもバンド5の座標が割り当てられる。 First, the result of electrophoresis in FIG. 9 is digitized by principal component analysis. Specifically, first, in FIG. 9, reference bands are set at equal intervals in the migration direction. Although this interval and the total number of reference bands to be set are arbitrary, in FIG. 9, nine bands 1 to 9 are set as equal intervals as reference bands. Each of the bands 1 to 9 is assigned unique coordinates (distance). Then, for each sample, the coordinates of the reference band having the size closest to that band are assigned to the detected band size. For example, in the sample L4 of FIG. 9, since the band A is closest to the size of the band 2, the coordinates of the band 2 are assigned. Similarly, the coordinates of band 5 are assigned to band B, and the coordinates of band 5 are assigned to band C.
 また、同時に、検出されたバンドの強度が測定される。例えば、図9のサンプルL4において、バンドAの強度が強いため、その強さに対応する値(明度)が割り当てられる。同様に、バンドBの強度は弱いため、バンドBにはその強さに対応する値が割り当てられる。さらに、バンドCは中程度の強度であるため、バンドCにはその強さに対応する値が割り当てられる。 At the same time, the intensity of the detected band is measured. For example, in the sample L4 of FIG. 9, since the intensity of the band A is strong, a value (brightness) corresponding to the intensity is assigned. Similarly, since the intensity of the band B is weak, a value corresponding to the intensity is assigned to the band B. Furthermore, since band C has a medium intensity, band C is assigned a value corresponding to the intensity.
 このようにして、他のレーン及びバンドについても同様の割り当てが行われる。これにより、検出された全てのバンドには座標と明度とが割り当てられ、全てのバンドがベクトル化される。これにより、L1~L4の各サンプルでの微生物相は、時間経過とともに変化する、基準バンド1~9に対応する9次元ベクトルとして表すことができる。 In this way, the same assignment is performed for other lanes and bands. Thus, coordinates and brightness are assigned to all detected bands, and all the bands are vectorized. Thereby, the microflora in each of the samples L1 to L4 can be expressed as a 9-dimensional vector corresponding to the reference bands 1 to 9 that changes with time.
 そして、このベクトルと、図6及び図8に示した環境状況(図6ではpH、図8では温度)とDGGEパターンとのデータを紐付けて、得られたデータが蓄積される。この紐付けられた関係、即ち微生物相は、例えば以下式(1)で表される。この式(1)は経験的な式ということができ、環境状況を説明変数とする微生物関数である。
 微生物相=f(環境状況)
     =f(湿度,室温,溶存酸素濃度,pH,電気伝導度,液温・・・)  ・・・式(1)
Then, the obtained data is accumulated by associating this vector with the data of the environmental situation shown in FIGS. 6 and 8 (pH in FIG. 6 and temperature in FIG. 8) and the DGGE pattern. This linked relationship, that is, the microflora is expressed, for example, by the following formula (1). This equation (1) can be called an empirical equation, and is a microbial function having an environmental condition as an explanatory variable.
Microflora = f (environmental situation)
= F (humidity, room temperature, dissolved oxygen concentration, pH, electrical conductivity, liquid temperature ...) (1)
 この関数fの目的変数は、図9の各バンド(微生物の有無(種類)及び数に対応)を主成分分析することで算出された主成分となる。そして、この関数fにより、DGGEで検出されるバンドと、そのバンドの有無や明度を制御可能な環境状況とが紐付けられる。従って、栽培が開始されて数週間経過後のDGGEの結果、新たなバンドが検出されて微生物相が変化した場合には、そのバンドを制御可能な環境状況を把握し、その環境状況が制御されることで、その微生物相が元に戻されるような制御が可能になる。 The objective variable of this function f is a principal component calculated by principal component analysis of each band in FIG. 9 (corresponding to the presence / absence (type) and number of microorganisms). And by this function f, the band detected by DGGE is linked to the environmental situation in which the presence / absence and brightness of the band can be controlled. Therefore, when a new band is detected as a result of DGGE several weeks after the start of cultivation and the microbial flora has changed, the environmental situation in which the band can be controlled is grasped, and the environmental situation is controlled. By doing so, it becomes possible to control the microflora to be restored.
 従来、植物50の外観(形態)を観察して植物50の現状を把握し、それにより、環境状況と植物50の外観との関数gを用いて、環境状況を制御する方法があった。関数gとしては、以下の式(2)が挙げられる。
 植物の外観=g(環境状況)
      =g(湿度,室温,溶存酸素濃度,pH,電気伝導度,液温・・・)  ・・・式(2)
Conventionally, there has been a method of controlling the environmental situation using the function g of the environmental situation and the appearance of the plant 50 by observing the appearance (form) of the plant 50 to grasp the current situation of the plant 50. The function g includes the following formula (2).
Appearance of plants = g (environmental situation)
= G (humidity, room temperature, dissolved oxygen concentration, pH, electrical conductivity, liquid temperature ...) (2)
 しかし、この方法では、前記のように、外観に変化が生じたときには病害が進行しており、回復が難しいことがある。そこで、本実施形態では、環境状況と微生物相との関数fを用いて、環境状況が制御されている。従来の同じ環境状況を用いて制御するため、センサや環境制御システムは従来と同様のものを用いることができる。そのため、新たな投資コストを必要とせずに、病害の予防的防除が可能となる。 However, in this method, as described above, when the appearance changes, the disease is progressing and it may be difficult to recover. Therefore, in this embodiment, the environmental situation is controlled using the function f of the environmental situation and the microflora. Since the control is performed using the same conventional environmental situation, the same sensor and environmental control system can be used. For this reason, it is possible to prevent diseases without the need for new investment costs.
 図10は、本実施形態の植物栽培システム100において行われる、植物栽培方法を説明するフローチャートである。図10に示すフローは、図1に示した植物栽培装置10により実行される。 FIG. 10 is a flowchart for explaining a plant cultivation method performed in the plant cultivation system 100 of the present embodiment. The flow shown in FIG. 10 is executed by the plant cultivation apparatus 10 shown in FIG.
 まず、植物栽培装置10は、栽培槽1内の養液を、試料採取配管14を通じて、サンプリングする(ステップS1)。サンプリングされた養液は微生物相解析装置13に供給される。次いで、微生物相解析装置13においてDGGEが行われるとともに、微生物相解析部10bは、得られたDGGEの結果に基づいて、前記の方法により、サンプリングした微生物相の解析を行う(ステップS2)。このとき、微生物相解析部10bは、図2に示す関係等が格納された環境状況DB10g内の環境状況や、植物栽培システム100での過去の結果が記録された微生物相DB10hを参照する。さらに、微生物相解析部10bは、通信部10eを通じて、ネットワーク30上のクラウドシステム(図示しない)から、必要な情報をダウンロードする。ここでいう必要な情報とは、クラウドシステムに蓄積された、栽培中の植物50に対応する例えば前記式(1)のような微生物関数fである。微生物相解析部13による微生物相の解析によって、栽培槽1内の養液についての微生物相が、前記のようにベクトル化される。 First, the plant cultivation apparatus 10 samples the nutrient solution in the cultivation tank 1 through the sampling pipe 14 (step S1). The sampled nutrient solution is supplied to the microflora analyzer 13. Next, DGGE is performed in the microflora analyzer 13, and the microbiota analyzer 10b analyzes the sampled microbiota by the above-described method based on the obtained DGGE result (step S2). At this time, the microflora analysis unit 10b refers to the microbiota DB 10h in which the environmental situation in the environmental situation DB 10g in which the relationship shown in FIG. 2 and the like are stored and the past results in the plant cultivation system 100 are recorded. Furthermore, the microflora analysis unit 10b downloads necessary information from a cloud system (not shown) on the network 30 through the communication unit 10e. The necessary information referred to here is, for example, a microbial function f as expressed by the above formula (1) corresponding to the plant 50 being cultivated, accumulated in the cloud system. By the analysis of the microflora by the microbiota analysis unit 13, the microbiota of the nutrient solution in the cultivation tank 1 is vectorized as described above.
 次いで、植物栽培装置10の環境状況演算部10cは、ベクトル化された微生物相に基づいて、どの環境状況をどの程度制御すれば、微生物相が栽培当初の微生物相に戻すことができるかを演算する(ステップS3)。即ち、ステップS3では、制御すべき環境状況と、その制御量とが演算される。具体的には、前記の式(1)を用いて、これらが演算される。 Next, the environmental condition calculation unit 10c of the plant cultivation apparatus 10 calculates, based on the vectorized microflora, how much environmental condition is controlled to return the microflora to the initial microflora. (Step S3). That is, in step S3, the environmental situation to be controlled and the control amount are calculated. Specifically, these are calculated using the above equation (1).
 演算後、環境状況演算部10cは、演算結果を微生物相DB10hに保存する。また、環境状況演算部10cは、通信部10eを通じて、ネットワーク30上のクラウドシステムに演算結果をアップロードする(ステップS4)。ここでアップロードする演算結果とは、栽培開始後経過した時間、ベクトル化された微生物相、導出された式、植物50の種類等である。そして、環境状況演算部10cは、演算結果を表示部10f(モニタ11)に表示する(ステップS5)。そして、制御部10dは、ステップS3で演算された結果に基づいて、環境状況に対応する各装置を制御する(ステップS6)。これにより、栽培槽1内の養液の微生物相が栽培当初の微生物相に戻されるような制御が行われることになる。 After the calculation, the environmental situation calculation unit 10c stores the calculation result in the microflora DB 10h. In addition, the environmental situation calculation unit 10c uploads the calculation result to the cloud system on the network 30 through the communication unit 10e (step S4). The calculation results uploaded here are the time elapsed after the start of cultivation, the vectorized microflora, the derived formula, the type of plant 50, and the like. Then, the environmental situation calculation unit 10c displays the calculation result on the display unit 10f (monitor 11) (step S5). Then, the control unit 10d controls each device corresponding to the environmental situation based on the result calculated in step S3 (step S6). Thereby, control is performed such that the microbial phase of the nutrient solution in the cultivation tank 1 is returned to the initial microbial phase.
 以上の植物栽培方法によれば、微生物相を把握して環境状況が制御されるため、植物50の外観に大きな変化が出る前に、養液の微生物相を改善することができる。これにより、より確実な病害の防除と、効果的な防除とが図られる。 According to the above plant cultivation method, since the environmental condition is controlled by grasping the microflora, the microbiota of the nutrient solution can be improved before the appearance of the plant 50 changes significantly. Thereby, more reliable disease control and effective control can be achieved.
 以上、本実施形態を具体例を挙げて説明したが、本実施形態は前記の例に何ら限定されず、任意に変更を加えて実施することができる。 As described above, the present embodiment has been described with a specific example. However, the present embodiment is not limited to the above example, and can be implemented with any changes.
 例えば、前記の実施形態では微生物相は栽培当初の微生物相に戻されるような制御が行われているが、栽培開始後の微生物相は、当初の微生物相に完全に戻されることが好ましいものの、完全に戻されなくてもよい。即ち、DGGEの結果、栽培後に新たなバンドが発生した場合には、そのバンドを完全に除去できる制御を行うことが好ましいものの、そのバンドに由来する微生物の活動を抑えられるような条件に制御することでも、前記の利点が十分に得られる。また、栽培当初の微生物相に戻されなくても、目標とする微生物相に変更するような制御が行われてもよい。 For example, in the above embodiment, control is performed so that the microflora is returned to the initial microflora, but the microbiota after the start of cultivation is preferably completely returned to the original microflora, It does not have to be completely returned. That is, as a result of DGGE, when a new band is generated after cultivation, it is preferable to perform control so that the band can be completely removed, but control is performed so that the activity of microorganisms derived from the band can be suppressed. Even so, the above-described advantages can be sufficiently obtained. Moreover, even if it does not return to the microflora of the beginning of cultivation, control which changes to the target microflora may be performed.
 また、例えば、微生物相解析装置13として、前記の例ではDGGEを用いたが、微生物相を解析する装置や方法としては、DGGEでなくてもよい。即ち、例えば、病原微生物に特有の遺伝子を増幅可能なプライマを用いたPCR(Polymerase Chain Reaction)による解析を行ってもよく、サザンブロッティングによる解析を行ってもよい。また、病原微生物が生成する特有のタンパク質について、養液を用いたウェスタンブロッティングを行ってもよい。そして、これらの結果により、養液に病原微生物が存在しているかを確認することができる。このようにしても養液の微生物叢を解析することができ、この結果に基づいて、環境状況を制御すればよい。従って、本明細書では、「微生物相の解析」との文言は、最も広義に解釈されるべき文言である。 Further, for example, DGGE is used as the microflora analysis device 13 in the above example, but the device and method for analyzing the microflora may not be DGGE. That is, for example, analysis by PCR (Polymerase Chain Reaction) using a primer capable of amplifying a gene unique to a pathogenic microorganism may be performed, or analysis by Southern blotting may be performed. Moreover, you may perform the western blotting using a nutrient solution about the characteristic protein which a pathogenic microorganism produces | generates. And from these results, it can be confirmed whether pathogenic microorganisms are present in the nutrient solution. Even in this way, the microflora of the nutrient solution can be analyzed, and based on this result, the environmental situation may be controlled. Therefore, in the present specification, the phrase “analysis of microflora” is the term that should be interpreted in the broadest sense.
 さらに、例えば環境状況の種類は前記の例に限定されず、他のものでもよい。環境状況としては、例えば、マグネシウムイオンや硝酸イオン等の各種イオン濃度、照明9による照射時間、ポンプ5の駆動による養液の供給速度等も挙げられる。 Furthermore, for example, the type of environmental situation is not limited to the above example, and other types may be used. Examples of the environmental situation include various ion concentrations such as magnesium ions and nitrate ions, irradiation time by the illumination 9, feeding speed of the nutrient solution by driving the pump 5, and the like.
 また、例えば、微生物相の解析方法の一例として、前記の例では主成分分析及びそれを用いた経験式の導出を行ったが、解析方法はこれに限られるものではない。即ち、主成分分析による関数fの導出以外の方法で解析を行ってもよい。また、式を用いずに表等を用いてもよい。さらに、経験的な式でなくてもよく、理論式を用いてもよい。 For example, as an example of the analysis method of the microflora, in the above example, the principal component analysis and derivation of the empirical formula using the principal component analysis were performed, but the analysis method is not limited to this. That is, the analysis may be performed by a method other than the derivation of the function f by principal component analysis. Further, a table or the like may be used without using the formula. Furthermore, it may not be an empirical formula, and a theoretical formula may be used.
 さらに、例えば、養液は循環されている必要は無く、例えば植物50に対して養液を噴霧するようにしてもよい。また、例えば養分を含む固形培地(例えば寒天培地)等を用いて、固形培地の緩衝作用によって、より安定した生産を行うようにしてもよい。 Furthermore, for example, the nutrient solution need not be circulated, and for example, the nutrient solution may be sprayed onto the plant 50. Moreover, you may make it perform more stable production by the buffer action of a solid culture medium, for example using the solid culture medium (for example, agar culture medium) etc. which contain a nutrient.
 また、植物栽培システム100では温室40内に微生物相解析装置13が備えるようにしたが、微生物相解析装置13は別の場所にあってもよい。即ち、養液をサンプリングして、微生物分析センタ等の他の場所でDNAの抽出、増幅、DGGE解析等が行われるようにしてもよい。そして、その結果は、直接植物栽培装置10に供給されてもよいし、ネットワーク30を介して植物栽培装置10に供給されてもよいし、ネットワーク30上のクラウドシステムに蓄積されるようにしてもよい。 In the plant cultivation system 100, the microflora analyzer 13 is provided in the greenhouse 40. However, the microflora analyzer 13 may be in another place. That is, the nutrient solution may be sampled, and DNA extraction, amplification, DGGE analysis, and the like may be performed at other locations such as a microorganism analysis center. Then, the result may be directly supplied to the plant cultivation device 10, may be supplied to the plant cultivation device 10 via the network 30, or may be accumulated in a cloud system on the network 30. Good.
1 栽培槽(栽培装置)
2 栽培棚(栽培装置)
3 養液循環配管(栽培装置)
4 養液槽(栽培装置)
5 ポンプ(栽培装置)
6 pH調整液(環境状況変更装置)
7 電解質溶液(環境状況変更装置)
8 ヒータ(環境状況変更装置)
9 照明(環境状況変更装置)
10 植物栽培装置
10a データ取得部
10b 微生物相解析部
10c 環境状況演算部
10d 制御部
10e 通信部
10f 表示部
10g 環境状況データベース
10h 微生物相データベース
11 モニタ
12 空調機(環境状況変更装置)
13 微生物相解析装置
14 試料採取配管
15 温度計(センサ)
16 pHセンサ(センサ)
17 電気伝導度センサ(センサ)
18 溶存酸素計(センサ)
19 散気管(環境状況変更装置)
20 湿度計(センサ)
21 温度計(センサ)
22 光度計(センサ)
23 電気信号線
30 ネットワーク
40 温室
50 植物
100 植物栽培システム
1 Cultivation tank (cultivation equipment)
2 cultivation shelf (cultivation equipment)
3 nutrient solution circulation piping (cultivation equipment)
4 Nutrient tank (cultivation equipment)
5 Pump (cultivation equipment)
6 pH adjuster (environmental condition change device)
7 Electrolyte solution (environmental status change device)
8 Heater (Environmental status change device)
9 Lighting (environmental status change device)
DESCRIPTION OF SYMBOLS 10 Plant cultivation apparatus 10a Data acquisition part 10b Microbiota analysis part 10c Environmental condition calculation part 10d Control part 10e Communication part 10f Display part 10g Environmental condition database 10h Microflora database 11 Monitor 12 Air conditioner (environmental condition change apparatus)
13 Microbiota analyzer 14 Sampling pipe 15 Thermometer (sensor)
16 pH sensor (sensor)
17 Electrical conductivity sensor (sensor)
18 Dissolved oxygen meter (sensor)
19 Air diffuser (environmental status change device)
20 Hygrometer (sensor)
21 Thermometer (sensor)
22 Photometer (sensor)
23 electric signal line 30 network 40 greenhouse 50 plant 100 plant cultivation system

Claims (11)

  1.  養液中の微生物相と、前記養液中で栽培される植物の生育に関与する前記植物の環境状況とが紐付けられた、微生物相と環境状況との関係を格納する微生物相データベースと、
     前記植物が栽培される養液中の微生物相を、前記微生物相データベースに格納された前記関係を用いて解析する微生物相解析部と、
     前記微生物相解析部により解析された微生物相の結果に基づいて、制御対象となる前記植物の環境状況を演算する環境状況演算部と、を備えることを特徴とする、植物栽培装置。
    A microflora database that stores the relationship between the microflora and the environmental status, in which the microflora in the nutrient solution is linked to the environmental status of the plant involved in the growth of the plant cultivated in the nutrient solution;
    A microflora analysis unit for analyzing the microflora in the nutrient solution in which the plant is cultivated, using the relationship stored in the microflora database;
    A plant cultivation apparatus comprising: an environmental condition calculation unit that calculates an environmental condition of the plant to be controlled based on a result of the microflora analyzed by the microflora analysis unit.
  2.  前記環境状況演算部により演算された環境状況になるように、前記植物の環境状況を制御する制御部を備えることを特徴とする、請求項1に記載の植物栽培装置。 The plant cultivation apparatus according to claim 1, further comprising a control unit that controls an environmental state of the plant so that the environmental state is calculated by the environmental state calculation unit.
  3.  前記環境状況演算部による演算結果が表示される表示部と、
     前記表示部に表示された演算結果に基づいて使用者が環境状況に関する情報を入力可能な入力装置と、を備え、
     前記制御部は、解析された前記結果と、前記入力装置において入力された情報とに基づいて、前記植物の環境状況を制御することを特徴とする、請求項2に記載の植物栽培装置。
    A display unit for displaying a calculation result by the environmental condition calculation unit;
    An input device that allows a user to input information related to the environmental situation based on the calculation result displayed on the display unit;
    The plant cultivation device according to claim 2, wherein the control unit controls an environmental state of the plant based on the analyzed result and information input in the input device.
  4.  前記微生物相解析部は、前記環境状況を説明変数とし、かつ、前記養液中の微生物の有無及び数のうちの少なくとも一方に基づき算出される値を目的変数とする微生物関数を導出することで、前記養液中の微生物相を解析することを特徴とする、請求項1~3の何れか1項に記載の植物栽培装置。 The microflora analysis unit derives a microbial function having the environmental condition as an explanatory variable, and a value calculated based on at least one of the presence and number of microorganisms in the nutrient solution as an objective variable. The plant cultivation apparatus according to any one of claims 1 to 3, wherein the microbial flora in the nutrient solution is analyzed.
  5.  前記目的変数は、前記養液中の微生物の有無及び数のうちの少なくとも一方から主成分分析することで算出された主成分であることを特徴とする、請求項4に記載の植物栽培装置。 The plant cultivation apparatus according to claim 4, wherein the objective variable is a principal component calculated by performing principal component analysis from at least one of the presence and number of microorganisms in the nutrient solution.
  6.  前記養液中の微生物相と、前記養液中で栽培される植物の生育に関与する前記植物の環境状況とが紐付けられた、微生物相と環境状況との関係を格納する微生物相データベースと、
     前記植物が栽培される養液中の微生物相を、前記微生物相データベースに格納された前記関係を用いて解析する微生物相解析部と、
     前記微生物相解析部により解析された微生物相の結果に基づいて、制御対象となる前記植物の環境状況を演算する環境状況演算部と、を備えて構成される植物栽培装置と、
     前記環境状況演算部により演算された環境状況になるように、前記植物の環境状況を制御する制御部と、
     前記養液中で前記植物を栽培する栽培装置と、
     前記環境状況を把握するためのセンサと、
     前記環境状況を変更するための環境状況変更装置と、を備えることを特徴とする、植物栽培システム。
    A microflora database that stores the relationship between the microflora and the environmental situation, in which the microflora in the nutrient solution and the environmental situation of the plant involved in the growth of the plant cultivated in the nutrient solution are linked; ,
    A microflora analysis unit for analyzing the microflora in the nutrient solution in which the plant is cultivated, using the relationship stored in the microflora database;
    Based on the result of the microflora analyzed by the microflora analysis unit, an environmental state calculation unit that calculates the environmental state of the plant to be controlled, and a plant cultivation device configured to include:
    A control unit for controlling the environmental status of the plant so as to be an environmental status calculated by the environmental status calculation unit;
    A cultivation device for cultivating the plant in the nutrient solution;
    A sensor for grasping the environmental situation;
    A plant cultivation system comprising: an environmental condition changing device for changing the environmental condition.
  7.  前記微生物相解析部は、前記環境状況を説明変数とし、かつ、前記養液中の微生物の有無及び数のうちの少なくとも一方に基づき算出される値を目的変数とする微生物関数を導出することで、前記養液中の微生物相を解析することを特徴とする、請求項6に記載の植物栽培システム。 The microflora analysis unit derives a microbial function having the environmental condition as an explanatory variable, and a value calculated based on at least one of the presence and number of microorganisms in the nutrient solution as an objective variable. The plant cultivation system according to claim 6, wherein the microbial flora in the nutrient solution is analyzed.
  8.  前記目的変数は、前記養液中の微生物の有無及び数のうちの少なくとも一方から主成分分析することで算出された主成分であることを特徴とする、請求項7に記載の植物栽培システム。 The plant cultivation system according to claim 7, wherein the objective variable is a principal component calculated by principal component analysis from at least one of the presence and number of microorganisms in the nutrient solution.
  9.  前記植物栽培装置は、ネットワークを介して接続されたクラウドシステムと通信可能な通信部を備え、
     前記環境状況演算部は、前記クラウドシステムに保存されている情報に基づいて、制御対象となる前記植物の環境状況を演算することを特徴とする、請求項6~8の何れか1項に記載の植物栽培システム。
    The plant cultivation apparatus includes a communication unit capable of communicating with a cloud system connected via a network,
    9. The environmental condition calculation unit according to claim 6, wherein the environmental condition calculation unit calculates an environmental condition of the plant to be controlled based on information stored in the cloud system. Plant cultivation system.
  10.  前記微生物相が解析される対象となる養液中に存在する微生物を検出する微生物検出装置を備え、
     前記微生物相解析部は、前記微生物検出装置によって検出された微生物の結果に基づいて、養液中の微生物相を解析することを特徴とする、請求項6~8の何れか1項に記載の植物栽培システム。
    Comprising a microorganism detecting device for detecting microorganisms present in a nutrient solution to be analyzed for the microflora,
    The microbiota analysis unit according to any one of claims 6 to 8, wherein the microbiota analysis unit analyzes the microbiota in the nutrient solution based on the result of the microbe detected by the microbe detection apparatus. Plant cultivation system.
  11.  養液中の微生物相と、前記養液中で栽培される植物の生育に関与する前記植物の環境状況とが紐付けられた、微生物相と環境状況との関係が格納された微生物相データベースを、微生物相解析部が参照して、前記植物が栽培される養液中の微生物相を解析する微生物相解析ステップと、
     前記微生物相解析ステップにおいて解析された微生物相の結果に基づいて、制御対象となる前記植物の環境状況を、環境状況演算部が演算する環境状況演算ステップと、を含むことを特徴とする、植物栽培方法。
    A microflora database in which the relationship between the microflora and the environmental situation is stored, in which the microflora in the nutrient solution and the environmental situation of the plant involved in the growth of the plant cultivated in the nutrient solution are linked. A microflora analysis step for analyzing the microflora in the nutrient solution in which the plant is cultivated with reference to the microflora analysis unit;
    An environmental condition calculation step in which an environmental condition calculation unit calculates an environmental condition of the plant to be controlled based on the result of the microflora analyzed in the microflora analysis step. Cultivation method.
PCT/JP2014/059949 2014-04-04 2014-04-04 Plant cultivation device, plant cultivation system provided with same, and plant cultivation method WO2015151272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059949 WO2015151272A1 (en) 2014-04-04 2014-04-04 Plant cultivation device, plant cultivation system provided with same, and plant cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/059949 WO2015151272A1 (en) 2014-04-04 2014-04-04 Plant cultivation device, plant cultivation system provided with same, and plant cultivation method

Publications (1)

Publication Number Publication Date
WO2015151272A1 true WO2015151272A1 (en) 2015-10-08

Family

ID=54239632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059949 WO2015151272A1 (en) 2014-04-04 2014-04-04 Plant cultivation device, plant cultivation system provided with same, and plant cultivation method

Country Status (1)

Country Link
WO (1) WO2015151272A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526529A (en) * 1997-03-11 2001-12-18 バイオフィル・リミテッド Plant hydroponics system
JP2004236630A (en) * 2003-02-10 2004-08-26 Aqua Garden Hightech:Kk Hydroponic device and method for growing plant
JP2004275127A (en) * 2003-03-18 2004-10-07 Osaka Gas Co Ltd Automatic watering system for preventing plant soil borne disease
JP2013014573A (en) * 2011-04-19 2013-01-24 Kumiai Chemical Industry Co Ltd Method for controlling disease and/or insect pest of nutriculture plant by light and microorganism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526529A (en) * 1997-03-11 2001-12-18 バイオフィル・リミテッド Plant hydroponics system
JP2004236630A (en) * 2003-02-10 2004-08-26 Aqua Garden Hightech:Kk Hydroponic device and method for growing plant
JP2004275127A (en) * 2003-03-18 2004-10-07 Osaka Gas Co Ltd Automatic watering system for preventing plant soil borne disease
JP2013014573A (en) * 2011-04-19 2013-01-24 Kumiai Chemical Industry Co Ltd Method for controlling disease and/or insect pest of nutriculture plant by light and microorganism

Similar Documents

Publication Publication Date Title
Lombardozzi et al. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model
WO2015132661A3 (en) Systems and methods for cultivating and distributing aquatic organisms
Singh et al. Emerging microbiome technologies for sustainable increase in farm productivity and environmental security
JP2003047340A5 (en)
MX354962B (en) Method for cultivating sugar cane.
González-García et al. Temperature changes in the root ecosystem affect plant functionality
Alem et al. Controlled water deficit as an alternative to plant growth retardants for regulation of poinsettia stem elongation
Vidotti et al. Maize responsiveness to Azospirillum brasilense: Insights into genetic control, heterosis and genomic prediction
Valerio et al. Assessing the impact of increasing carbon dioxide and temperature on crop-weed interactions for tomato and a C3 and C4 weed species
Savian et al. Studies on the aetiology of kiwifruit decline: interaction between soil-borne pathogens and waterlogging
del Amor et al. Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants
Armanhi et al. Modulating drought stress response of maize by a synthetic bacterial community
Goron et al. Growth in Turface® clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone
WO2015151272A1 (en) Plant cultivation device, plant cultivation system provided with same, and plant cultivation method
Behie et al. Potential agricultural benefits through biotechnological manipulation of plant fungal associations.
Mun et al. Measurement system of whole-canopy carbon dioxide exchange rates in grafted cucumber transplants in which scions were exposed to different water regimes using a semi-open multi-chamber
Caires et al. Bidirectional colonization and biofilm formation by Erwinia psidii in eucalypt plants
Luo et al. Reduced pollen activity in peanut (Arachis hypogaea L.) by long-term monocropping is linked to flower water deficit
CN107549010A (en) A kind of method of the high sorghum variety of simple and quick screening emergence rate
CN104073447B (en) Wheat stripe rust teliospore germination technical system
Liu Sustainable strawberry production and management including control of strawberry powdery mildew
Kuijken et al. Quantification of net exudation for the Plant Microbial Fuel Cell
JP2020046782A (en) Management system and management method for plant cultivation
CN105284444A (en) Storing and freshness keeping technology for essential oil flowers
Romadanova et al. In Vitro Collection for the Safe Storage of Grapevine Hybrids and Identification of the Presence of Plasmopara viticola Resistance Genes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP