WO2015150103A1 - Procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne fonctionnant en monocarburation ou en multicarburation - Google Patents

Procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne fonctionnant en monocarburation ou en multicarburation Download PDF

Info

Publication number
WO2015150103A1
WO2015150103A1 PCT/EP2015/055843 EP2015055843W WO2015150103A1 WO 2015150103 A1 WO2015150103 A1 WO 2015150103A1 EP 2015055843 W EP2015055843 W EP 2015055843W WO 2015150103 A1 WO2015150103 A1 WO 2015150103A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
zone
liquid fuel
combustion chamber
fuem
Prior art date
Application number
PCT/EP2015/055843
Other languages
English (en)
Inventor
Olivier Laget
Stéphane Richard
Lionel Martinez
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to EP15711156.8A priority Critical patent/EP3126653A1/fr
Priority to CN201580016741.1A priority patent/CN106164439B/zh
Priority to US15/301,339 priority patent/US10294876B2/en
Publication of WO2015150103A1 publication Critical patent/WO2015150103A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0693Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets the combustion space consisting of step-wise widened multiple zones of different depth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • F02D19/0655Biofuels, e.g. plant oils at least one fuel being an alcohol, e.g. ethanol
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0692Arrangement of multiple injectors per combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a method for injecting fuel into the combustion chamber of an internal combustion engine, in particular a compression ignition engine. It relates more particularly to a fuel injection method for an engine used in the aeronautical or road field or in the field of stationary installations, such as a generator.
  • This type of engine generally comprises at least one cylinder, a piston comprising a pin disposed in a concave bowl and sliding in this cylinder in a reciprocating rectilinear motion, means for admitting an oxidizer, means for exhausting burnt gases , a combustion chamber, and injection means for injecting fuel into the combustion chamber.
  • an internal combustion engine comprising fuel injection means with jets according to at least two web angles and a piston having a bowl provided with a nipple with two volumes of combustion zones and internal aerodynamics substantially improving the quality of combustion.
  • the fuel used for operation in monocarburation is a fuel in liquid form (hereinafter referred to as the FueM description), such as Diesel (diesel), but any other type of liquid fuel such as ethanol or a biofuel can be used.
  • the FueM description such as Diesel (diesel)
  • another fuel in the gaseous state such as NGV (Natural Gas for Vehicle), LPG (Liquefied Petroleum Gas), biogas or any other liquid fuel with volatile properties sufficient to be vaporized completely. before the initiation of combustion, such as gasoline, (hereinafter referred to as Fuel2) is associated with liquid fuel FueM.
  • the invention relates to a fuel injection method for a compression-ignition internal combustion engine operating in monocarburizing mode or multicarburation mode and comprising at least one cylinder, a piston sliding in this cylinder, a chamber of combustion comprising two mixing zones Z1, Z2 and delimited on one side by the upper face of the piston having a lug rising in the direction of the cylinder head and disposed in the center of a concave bowl and a cylinder head carrying injection means fuel projecting liquid fuel according to at least two different ply angle fuel jet plies, a lower ply for zone Z1 and an upper ply for zone Z2, and means for admitting an oxidant as well as means for exhausting burnt gases, characterized in that it consists, for the monocarburizing operating
  • the method may involve injecting a liquid fuel with physicochemical characteristics allowing the operation of the engine with compression ignition, such as diesel, ethanol or a biofuel.
  • the method may include introducing a gaseous fuel into the combustion chamber via the manifold of the intake means for producing an oxidant / fuel mixture.
  • the method may include injecting a gaseous fuel in the form of NGV (Natural Gas for Vehicle), or LPG (Liquefied Petroleum Gas), or biogas
  • the method may include injecting into the combustion chamber a liquid fuel having volatility characteristics allowing vaporization before the initiation of combustion to produce an oxidant / fuel mixture.
  • the method may include injecting gasoline
  • the method may consist, for the monocarburizing operating mode, of injecting the same mass of liquid fuel by the two plies into the oxidant present in the two zones of the combustion chamber.
  • the method may consist, for the monocarburizing mode of operation, of injecting, by the two layers of jets, a different mass of liquid fuel into the oxidant present in each zone.
  • the method may consist, for the multi-carburizing mode of operation, of injecting by the lower layer of jets liquid fuel into the oxidant / fuel mixture present in the lower zone of the combustion chamber.
  • the method may consist, for the multicarburation operating mode, of injecting the two jet plies with liquid fuel into the oxidant / fuel mixture present in the two zones of the combustion chamber.
  • the method may involve injecting by the two jet plies a different liquid fuel mass into the oxidant / fuel mixture present in each zone.
  • the method may consist of injecting the two masses of jets with the same mass of liquid fuel into the oxidant / fuel mixture present in each zone.
  • the method may consist in using means for managing the injection means as a function of the operating parameters of the engine, in particular the load and the speed of this engine.
  • FIGS. 2 to 6 which illustrate examples of operation of the motor according to FIG.
  • a direct-injection internal combustion engine with direct injection and possibly indirect fuel injection comprises at least one cylinder 10, a cylinder head 12 closing the cylinder in part high, means 14 for direct injection of liquid fuel (FueM), gaseous or liquid fuel injection means (Fuel2) and a piston 1 6 of axis XX 'sliding in the cylinder in a reciprocating rectilinear motion.
  • FueM liquid fuel
  • Fuel2 gaseous or liquid fuel injection means
  • FueM liquid fuel is understood to mean a fuel, such as diesel, ethanol or a biofuel or any other fuel having the physicochemical characteristics allowing the operation of a compression ignition type engine including an injection system direct from this fuel.
  • the Fuel2 fuel may be a gaseous fuel, such as NGV (Natural Gas for Vehicle), LPG (Liquefied Petroleum Gas), a biogas or any other fuel with sufficient volatility properties to be totally vaporized before the initiation of the fuel. combustion (gasoline-type fuel for example) is associated with this type FueM liquid fuel.
  • This engine also comprises a flue exhaust means 18 with at least one exhaust pipe 20 whose opening can be controlled by any means, such as for example an exhaust valve 22 and an intake means 24.
  • a oxidizer with at least one tubing intake 26 whose opening can be controlled by any means, such as an intake valve 28.
  • the intake means may be shaped to admit the oxidant with a determined aerodynamic level (swirl rate and / or tumble for example).
  • the admission means may comprise a specific geometry of the intake manifold.
  • the oxidant is air at ambient pressure or supercharged air or a mixture of air (supercharged or not) with recirculated exhaust gas re-admitted into the combustion chamber.
  • the direct injection means comprise at least one liquid fuel injector 30, for fuel FueM, preferably disposed in the axis XX 'of the piston whose nose 32 has a multiplicity of orifices through which the fuel is sprayed and projected towards the combustion chamber 34 of the engine.
  • the projected fuel forms at least two plies of fuel jets, in the example shown two plies 36 and 38 of fuel jets 40 and 42, which have, here, an axis general confused with that of the piston 1 6 while being located axially one above the other.
  • the ply 36 which is located closest to the piston 1 6, is referred to in the following description of the lower ply while the ply 38 placed furthest from this plunger is called the upper ply.
  • these two plies form plane angles A1 and A2 that are different from one another.
  • ply angle it is understood the vertex angle that forms the cone from the injector and whose imaginary peripheral wall passes through all the axes C1 or C2 of the jets 40 or 42.
  • the ply angle A1 of the low ply is at most 130 °, preferably between 105 ° and 130 °, whereas the ply angle A2 of the high ply is at most 180 °, preferably between 155 ° and 180 °.
  • the injection means for FueM fuel are not arranged in the axis XX ', but in this case, the general axis of fuel jet plies from the fuel injector is at least substantially parallel to this axis XX '.
  • each web is carried by a separate injector (single-web injector) with dedicated targeting in separate areas of the combustion chamber.
  • the fuel injection means for fuel Fuel2, which are indirect injection means 15, for the nonlimiting example illustrated in FIG. 1, comprise at least one injector 44 of Fuel2 fuel which is placed on the fuel pipe. inlet 26 so as to inject fuel into the interior of this tubing to mix with the oxidant circulating therein.
  • the injection means will be direct injection means placed on the cylinder head and will inject fuel into the combustion chamber to be totally vaporized before initiation of combustion and ensure optimal mixing with the oxidant.
  • the combustion chamber 34 is delimited by the internal face of the cylinder head 12 opposite the piston, the circular inner wall of the cylinder 10 and the upper face 46 of the piston 1 6.
  • This upper face of the piston comprises a concave bowl 48, here of axis coincident with that of the cylinder, whose concavity is turned towards the cylinder head and which houses a stud 50 located substantially in the center of the bowl, which rises towards the cylinder head 12 , being preferably coaxial with the axis of the fuel plies coming from the injector 30.
  • the axis of the bowl is not coaxial with that of the cylinder but the essential lies in the arrangement according to which the axis of the sheet of fuel jets, the pin axis and the axis of the bowl are preferably confused.
  • the stud 50 of generally frustoconical shape, has a top 52 preferably rounded, continuing, deviating symmetrically from the axis XX 'to the outside of the piston 1 6, by a substantially rectilinear inclined flank 54 arriving at a bottom 56 of the bowl.
  • the bottom of this bowl is rounded with a concave rounded surface 58, called the internal rounded surface, connected to the bottom of the inclined sidewall 54 and another concave rounded surface 60, called the outer rounded surface, connected by one of its ends at the lower end of the inner rounded surface and the other of its ends to a side wall 62, here substantially vertical.
  • the two rounded surfaces 58 and 60 thus delimit the lower part of a toric volume, here a torus 64 of substantially cylindrical section.
  • the side wall 62 continues, always deviating from the axis XX ', by a convex rounded surface 66, called a reentrant, resulting in an inclined plane 68 connected to a concave inflexion surface 69 connected to a substantially flat surface 70.
  • This flat surface is continued by an outer convex surface 72 which reaches a flat surface 74 extending to the vicinity of the wall of the cylinder.
  • the combustion chamber 34 thus comprises two distinct zones Z1 and Z2 in which mixing is carried out between the fuel FueM injected by the injector 30 into the oxidizer (air - supercharged or not - or mixture of air and recirculated flue gas ) and / or in the fuel mixture (combustion mixture and Fuel2 fuel) that they contain and the combustion of the fuel mixture thus formed as will be explained later.
  • the zone Z1 delimited by the stud 48, the torus 64 of the bottom of the bowl, the wall 62 and the rounded convex surface 66, forms the lower zone of the combustion chamber which is associated with the lower layer 36 of fuel jets. C1 axis.
  • the combustion chamber demarcated by the inclined plane 68, the concave surface 69, the substantially planar surface 70, the convex surface 72, the flat surface 74, the peripheral inner wall of the cylinder and the cylinder head 12, constitutes the upper zone of this chamber. which is associated with the upper layer 38 of C2 axis fuel jets.
  • the combustion chamber is separated into several zones (here two zones) which are associated with a fuel injection FueM and which are concerned or not by combustion depending on the operating mode and the engine load.
  • the distribution of heat flows between the piston and the cylinder head is optimized in particular by increasing the volume of the zone Z2 relative to a conventional piston.
  • the interaction between the fuel jets and the face of the piston allows increased cooling of the piston further reducing the thermal stresses on the latter.
  • the FueM fuel injector also allows the introduction of different injected fuel masses, durations and different injection times between the slicks to ensure optimal use of the oxidant and / or the fuel mixture (combustion and fuel mixture). Fuel2) located in both the low and high zones.
  • the invention thus makes it possible to inject fuel either into the two zones or into one or other of these zones and thus to ensure mixing with the oxidant to achieve combustion of the fuel mixture present in the chamber.
  • FIG. 2 illustrates a mode of operation of the engine in monocarburation with a homogeneous combustion for the low loads or for partial loads.
  • the liquid fuel is injected into the low zone Z1 zone of the combustion chamber using only the fuel jets 40 of the lower layer 36. to mix with the oxidant that has been admitted during the intake phase of the engine.
  • FIG. 3 illustrates another mode of operation in monocarburation which corresponds to a fuel injection in the high zone Z2 of the combustion chamber coming to rest on the surfaces 68, 70 and 72 of the piston to mix with the oxidant present in this zoned.
  • This mode of operation aims in particular to improve the engine starting by using only the fuel jets 42 of the upper web 38, close to the glow plug that usually includes such a type of engine.
  • Figure 4 illustrates the monocarburizing operation of the engine for high loads.
  • the fuel is injected into both the low zone Z1 and the high zone Z2 of the combustion chamber 34.
  • the fuel jets 40 of the low sheet 36 are directed towards the zone Z1 while the fuel jets 42 of the high sheet 38 are sent to the zone Z2.
  • the liquid fuel will be distributed optimally between the lower zone and the upper zone of the combustion chamber in accordance with the volumes of the latter two at the instant of injection. By this distribution, the local wealth in each zone can be controlled and thus the production of pollutants such as NOx, CO, HC and soot will be limited.
  • the examples illustrated in FIGS. 5 and 6 show the various configurations in multicarburation, here in bi-fuel, which are used to further limit the pollutant emissions.
  • the intake valve 28 is controlled in opening and the fuel injector 44 Fuel2 is operative to introduce fuel into the intake manifold.
  • Fuel2 80 fills almost all combustion chamber 34 to a position close to the bottom dead center of the piston, position at which the inlet valve is controlled in closing .
  • the piston In the compression phase of the engine, the piston reaches the vicinity of its top dead center and the injector 30 is controlled to inject liquid fuel FueM either in the low zone Z1 or in the two zones Z1 and Z2 where Combustion of the fuel / fuel mixture Fuel2 80 will be initiated by the self-ignition of the FueM fueh fuel injected.
  • an injection of liquid fuel FfueM is carried out in the fuel oxidant / fuel mixture 80 of the zone Z1 using only the fuel jets 40 of the lower sheet 36 to initiate the combustion of the fuel mixture. present in this zone Z1.
  • This combustion with a flame front is subsequently propagated in the rest of zone Z1 and then in zone Z2.
  • This injection is in particular carried out in operating mode of the engine with low load and low speed.
  • an injection of a liquid fuel mass into the zone Z1 is performed by the lower ply 36 and an injection of another mass of liquid fuel by the upper sheet 38 in the zone Z2, mass which is less than that injected into the zone Z1 (possibly with a phase shift between the non-zero injections).
  • An injection into the fuel oxidant / Fuel2 mixture of an identical mass of liquid fuel in the two zones Z1 and Z2 is carried out through the two plies 36 and 38 (with possibly a non-zero phase shift) for the highest loads.
  • an injection of a large mass of FueM liquid fuel into the fuel / fuel fuel fuel Fuel2 is performed by the sheet 38 in the zone Z2 while an injection of a small mass of liquid fuel is carried out by the sheet 36 in the zone Z1 (possibly with a non-zero phase shift) for example during the starting phase of the motor.
  • this management is controlled by a computer containing mapped engine operation maps as a function of engine speed and load, by means of management of the injection means of the various fuels as a function of engine load allowing to control the respective flow rates and proportions of Fuel2 / Fuel1 type fuel, the duration and / or the moment of injection of the Fuel 1 and / or Fuel 2 fuels and the ignition angles.
  • the initiation of combustion and the combustion are distributed throughout the combustion chamber while optimizing the combustion of the oxidant / fuel fuel2 type mixture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Procédé d'injection de combustible pour un moteur à combustion interne à allumage par compression fonctionnant en mode monocarburation ou multicarburation et comprenant au moins un cylindre (10) avec un piston (16) comportant un téton (50) disposé au centre d'un bol concave (48), et des moyens d'injection (30) projetant du combustible liquide (Fuel1) selon au moins deux nappes de jets (36, 38) d'angle de nappe différents (A1, A2), et des moyens d'admission (24, 26, 28) d'un comburant. Le procédé consiste, en monocarburation, à injecter du combustible liquide (Fuel1) dans la zone basse (Z1) et/ou dans la zone haute (Z2) de la chambre de combustion et, en multicarburation, à assurer dans ladite chambre un mélange d'un comburant avec un autre combustible (Fuel2) et à injecter du combustible liquide (Fuell) dans la zone basse (Z1) ou dans les deux zones (Z1, Z2).

Description

Procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne fonctionnant en monocarburation ou en multicarburation
La présente invention se rapporte à un procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne, en particulier à allumage par compression. Elle concerne plus particulièrement un procédé d'injection de combustible pour un moteur utilisé dans le domaine aéronautique ou routier ou dans le domaine des installations stationnaires, comme un groupe électrogène.
Ce type de moteur comprend généralement au moins un cylindre, un piston comprenant un téton disposé dans un bol concave et coulissant dans ce cylindre en un mouvement rectiligne alternatif, des moyens d'admission d'un comburant, des moyens d'échappement de gaz brûlés, une chambre de combustion, et des moyens d'injection pour injecter du combustible dans la chambre de combustion. Comme cela est généralement admis, lors de la conception d'un moteur, les contraintes de performances, d'émissions de polluants et de tenue mécanique de la chambre de combustion sont de plus en plus fortes alors que les moyens de les satisfaire sont opposés. Ainsi l'augmentation des performances entraînent généralement une augmentation des émissions de polluants et des contraintes mécaniques plus fortes.
Il est nécessaire de pallier ces inconvénients de manière à garantir des émissions de polluants limitées et une tenue mécanique satisfaisante sur toute la plage de fonctionnement du moteur et en particulier à très forte charge. En particulier pour les émissions polluantes l'utilisation de la totalité du comburant présent dans la chambre de combustion est d'une grande importance. En effet, le combustible reste confiné dans le bol et ne peut pas se mélanger au comburant situé notamment dans la chasse, c'est-à-dire dans le volume localisé dans la partie haute de la chambre de combustion délimitée par la paroi du cylindre et la face de la culasse en regard du piston.
Ceci a pour inconvénient de créer des zones à fortes richesse dans la chambre de combustion engendrant une forte production de suies, d'oxyde de carbone (CO) et d'hydrocarbures imbrûlés (HC) lors de la combustion de ce mélange carburé.
Pour pallier ces inconvénients, et comme cela est mieux décrit dans la demande de brevet français N° 13 60427 du demandeur, il est prévu d'utiliser un moteur à combustion interne comprenant des moyens d'injection de combustible avec des jets selon au moins deux angles de nappe et un piston comportant un bol muni d'un téton avec deux volumes de zones de combustion et une aérodynamique interne améliorant sensiblement la qualité de la combustion.
Ceci permet d'utiliser une plus grande quantité de comburant comparé aux moteurs traditionnels et de répartir la charge thermique sur une plus grande surface de la chambre de combustion.
Le demandeur se propose de remédier aux inconvénients précités en améliorant encore plus la combustion.
En effet, la volonté constante de réduire de façon globale les émissions de gaz à effet de serre et de polluants (notamment les particules) amène à envisager l'utilisation accrue de combustibles alternatifs, tels que les gaz naturels ou les biocarburants pour le fonctionnement des moteurs à combustion
Pour cela il est nécessaire d'adapter le système de combustion à ce type de combustible afin d'en faire une utilisation optimale car les propriétés de ces combustibles alternatifs sont sensiblement différentes de celles des combustibles conventionnels. Notamment, la vitesse de combustion de ces combustibles alternatifs est plus faible que celle des combustibles plus conventionnels, ce qui entraîne une combustion trop lente et incomplète générant des émissions polluantes, comme des hydrocarbures imbrulés. Il est donc nécessaire de mettre en place des moyens destinés à parfaire la combustion afin que celle-ci soit la plus complète possible. Une des possibilités envisagées est d'utiliser une combustion connue qui est réalisée selon deux modes, un mode dit monocarburation selon lequel un seul combustible est utilisé et un autre mode dénommé multicarburation permettant d'associer plusieurs combustibles de nature différente.
Généralement, le combustible utilisé pour le fonctionnement en monocarburation est un carburant sous forme liquide (dénommé dans la suite de la description FueM ), tel que du Diesel (gazole), mais tout autre type de carburant liquide comme de l'éthanol ou un biocarburant peut être utilisé. Pour le fonctionnement en multicarburation, un autre carburant à l'état gazeux, comme du GNV (Gaz naturel pour Véhicule), du GPL (Gaz de Pétrole Liquéfié), un biogaz ou tout autre carburant liquide ayant des propriétés volatiles suffisantes pour être vaporisé complètement avant l'initiation de la combustion, comme de l'essence par exemple, (baptisée dans la suite Fuel2) est associé au carburant liquide FueM .
Ainsi, deux modes de combustion sont présents dans le même cycle moteur, une combustion conventionnelle par auto-inflammation du Diesel et une combustion du mélange beaucoup plus inerte air/gaz par propagation d'un front de flamme initiée par une auto-inflammation pilote du Diesel. Dans ce dernier mode, une faible quantité de carburant Diesel sert donc à amorcer la combustion d'un mélange carburé gazeux. Le demandeur a particulièrement développé cette combustion selon deux modes en permettant son utilisation pour un fonctionnement aux charges et/ou régimes moteur élevés et cela en réduisant encore plus les émissions polluantes.
De plus, ces modes de combustion permettent aussi de réduire la consommation de carburant, d'obtenir un meilleur comportement du moteur lors des phases transitoires (à froid ou lors des accélérations par exemple) tout en maintenant un niveau acceptable d'émission de certains polluants (monoxyde de carbone, hydrocarbures imbrûlés). A cet effet, l'invention concerne un procédé d'injection de combustible pour un moteur à combustion interne à allumage par compression fonctionnant en mode monocarburation ou en mode multicarburation et comprenant au moins un cylindre, un piston coulissant dans ce cylindre, une chambre de combustion comportant deux zones de mélange Z1 , Z2 et délimitée sur un côté par la face supérieure du piston comportant un téton s'érigeant en direction de la culasse et disposé au centre d'un bol concave et une culasse portant des moyens d'injection de combustible projetant du combustible liquide selon au moins deux nappes de jets de combustible d'angle de nappe différents, une nappe inférieure pour la zone Z1 et une nappe supérieure pour la zone Z2, et des moyens d'admission d'un comburant ainsi que des moyens d'échappement de gaz brûlés, caractérisé en ce qu'il consiste, pour le mode de fonctionnement en monocarburation, à injecter du combustible liquide dans la zone basse Z1 et/ou dans la zone haute Z2 de la chambre de combustion et, pour le mode de fonctionnement en multicarburation, à réaliser dans ladite chambre un mélange d'un comburant avec un autre combustible et à injecter du combustible liquide dans la zone basse Z1 ou dans les deux zones Z1 , Z2 de la chambre de combustion.
Le procédé peut consister à injecter un combustible liquide avec des caractéristiques physico-chimiques permettant le fonctionnement du moteur avec allumage par compression, comme du Diesel, de l'éthanol ou un biocarburant.
Le procédé peut consister à introduire un combustible gazeux dans la chambre de combustion via la tubulure des moyens d'admission pour réaliser un mélange comburant/combustible.
Le procédé peut consister à injecter un combustible gazeux sous la forme de GNV (Gaz naturel pour Véhicule), ou de GPL (Gaz de Pétrole Liquéfié), ou de biogaz
Le procédé peut consister à injecter dans la chambre de combustion un carburant liquide possédant des caractéristiques de volatilité permettant la vaporisation avant l'initiation de la combustion pour réaliser un mélange comburant/combustible. Le procédé peut consister à injecter de l'essence
Le procédé peut consister, pour le mode de fonctionnement en monocarburation, à injecter la même masse de carburant liquide par les deux nappes dans le comburant présent dans les deux zones de la chambre de combustion.
Le procédé peut consister, pour le mode de fonctionnement en monocarburation, à injecter par les deux nappes de jets une masse de carburant liquide différente dans le comburant présent dans chaque zone.
Le procédé peut consister, pour le mode de fonctionnement en multicarburation, à injecter par la nappe inférieure de jets du carburant liquide dans le mélange comburant/combustible présent dans la zone basse de la chambre de combustion.
Le procédé peut consister, pour le mode de fonctionnement en multicarburation, à injecter par les deux nappes de jets du carburant liquide dans le mélange comburant/combustible présent dans les deux zones de la chambre de combustion.
Le procédé peut consister à injecter par les deux nappes de jets une masse de carburant liquide différente dans le mélange comburant/combustible présent dans chaque zone.
Le procédé peut consister à injecter par les deux nappes de jets la même masse de carburant liquide dans le mélange comburant/combustible présent dans chaque zone.
Le procédé peut consister à utiliser des moyens de gestion des moyens d'injection en fonction des paramètres de fonctionnement du moteur, notamment de la charge et du régime de ce moteur. Les autres caractéristiques et avantages de l'invention vont apparaître maintenant à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont annexées :
- la figure 1 qui est un schéma montrant une vue partielle d'un moteur à combustion interne utilisant le procédé selon l'invention et
- les figures 2 à 6 qui illustrent des exemples de fonctionnement du moteur selon la figure 1 .
En se référant à la figure 1 , un moteur à combustion interne à allumage par compression à injection directe et éventuellement indirecte de combustibles, comme illustré sans caractère limitatif sur la figure, comprend au moins un cylindre 10, une culasse 12 fermant le cylindre en partie haute, des moyens d'injection directe 14 de combustible liquide (FueM ), des moyens d'injection de combustible gazeux ou liquide (Fuel2) et un piston 1 6 d'axe XX' coulissant dans le cylindre en un mouvement rectiligne alternatif.
Dans l'exemple non limitatif de la figure 1 , il est prévu de disposer des moyens d'injection indirecte 15 de combustible gazeux pour le carburant Fuel2 qui sont portés par la culasse.
Par combustible liquide FueM , il est entendu un carburant, comme du Diesel, de l'éthanol ou un biocarburant ou tout autre combustible ayant les caractéristiques physico-chimiques permettant le fonctionnement d'un moteur de type allumage par compression incluant un système d'injection directe de ce combustible.
Le combustible Fuel2 peut être un carburant gazeux, tel que du GNV (Gaz naturel pour Véhicule), du GPL (Gaz de Pétrole Liquéfié), un biogaz ou tout autre carburant possédant des propriétés de volatilité suffisantes pour être totalement vaporisé avant l'initiation de la combustion (carburant de type essence par exemple) est associé à ce carburant liquide de type FueM .
Ce moteur comprend également un moyen d'échappement 18 des gaz brûlés avec au moins une tubulure d'échappement 20 dont l'ouverture peut être contrôlée par tous moyens, comme par exemple une soupape d'échappement 22 et un moyen d'admission 24 d'un comburant avec au moins une tubulure d'admission 26 dont l'ouverture peut être contrôlée par tous moyens, comme par exemple une soupape d'admission 28.
Les moyens d'admission peuvent être conformés pour admettre le comburant avec un niveau aérodynamique déterminé (taux de swirl et/ou de tumble par exemple). Pour cela, les moyens d'admission peuvent comprendre une géométrie spécifique de la tubulure d'admission.
Dans l'exemple décrit, le comburant est de l'air à pression ambiante ou de l'air suralimenté ou encore un mélange d'air (suralimenté ou non) avec des gaz d'échappement recirculés réadmis dans la chambre de combustion.
Les moyens d'injection directe comprennent au moins un injecteur de carburant liquide 30, pour la carburant FueM , de préférence disposé dans l'axe XX' du piston dont le nez 32 comporte une multiplicité d'orifices au travers desquels le carburant est pulvérisé et projeté en direction de la chambre de combustion 34 du moteur.
C'est à partir de ces moyens d'injection que le carburant projeté forme au moins deux nappes de jets de carburant, dans l'exemple montré deux nappes 36 et 38 de jets de carburant 40 et 42, qui ont, ici, un axe général confondu avec celui du piston 1 6 tout en étant situées axialement l'une au-dessus de l'autre.
Plus précisément, la nappe 36, qui est située le plus près du piston 1 6, est dénommée dans la suite de la description nappe inférieure alors que la nappe 38 placée le plus loin de ce piston est appelée nappe supérieure.
Comme visible sur la figure 1 , ces deux nappes forment des angles de nappe A1 et A2 différents l'un de l'autre. Par angle de nappe, il est entendu l'angle au sommet que forme le cône issu de l'injecteur et dont la paroi périphérique fictive passe par tous les axes C1 ou C2 des jets 40 ou 42.
Avantageusement, l'angle de nappe A1 de la nappe basse est au plus égal à 130°, de préférence compris entre 105° et 130°, alors que l'angle de nappe A2 de la nappe haute est au plus égale à 180°, de préférence compris entre 155° et 180°.
Bien entendu, il peut être prévu que les moyens d'injection pour le carburant FueM ne soient pas disposés dans l'axe XX', mais dans ce cas, l'axe général des nappes de jets de carburant issues de l'injecteur de combustible est pour le moins sensiblement parallèle à cet axe XX'.
De même, il peut être prévu que chaque nappe soit portée par un injecteur distinct (injecteur simple nappe) avec un ciblage dédié dans des zones distinctes de la chambre de combustion.
Les moyens d'injection de combustible pour le carburant Fuel2, qui sont de moyen d'injection indirecte 15, pour l'exemple non limitatif illustré sur la figure 1 , comprennent au moins un injecteur 44 de carburant Fuel2 qui est placé sur la tubulure d'admission 26 de manière à injecter du carburant à l'intérieur de cette tubulure pour qu'il se mélange avec le comburant qui y circule.
Dans le cas d'un carburant Fuel2 sous forme liquide à hautes propriétés de volatilité, les moyens d'injection seront des moyens d'injection directe placés sur la culasse et permettront d'injecter du carburant dans la chambre de combustion pour être totalement vaporisé avant l'initiation de la combustion et assurer un mélange optimal avec le comburant.
La chambre de combustion 34 est délimitée par la face interne de la culasse 12 en vis à vis du piston, la paroi interne circulaire du cylindre 10 et la face supérieure 46 du piston 1 6.
Cette face supérieure du piston comporte un bol concave 48, ici d'axe confondu avec celui du cylindre, dont la concavité est tournée vers la culasse et qui loge un téton 50 situé sensiblement au centre du bol, qui s'élève vers la culasse 12, en étant de préférence coaxial avec l'axe des nappes de combustible issues de l'injecteur 30.
Bien entendu, il peut être prévu que l'axe du bol ne soit pas coaxial avec celui du cylindre mais l'essentiel réside dans la disposition selon laquelle l'axe de la nappe de jets de combustible, l'axe du téton et l'axe du bol soient de préférence confondus.
Le téton 50, de forme générale tronconique, comporte un sommet 52 de préférence arrondi, se poursuivant, en s'écartant symétriquement de l'axe XX' vers l'extérieur du piston 1 6, par un flanc incliné 54 sensiblement rectiligne arrivant à un fond 56 du bol.
Dans l'exemple de la figure 1 , le fond de ce bol est arrondi avec une surface arrondie concave 58, dite surface arrondie interne, raccordée au bas du flanc incliné 54 et une autre surface arrondie concave 60, dite surface arrondie externe, raccordée par une de ses extrémités à l'extrémité basse de la surface arrondie interne et par l'autre de ses extrémités à une paroi latérale 62, ici sensiblement verticale.
Les deux surfaces arrondies 58 et 60 délimitent ainsi la partie basse d'un volume torique, ici un tore 64 de section sensiblement cylindrique.
La paroi latérale 62 se poursuit, toujours en s'écartant de l'axe XX', par une surface arrondie convexe 66, dite réentrant, aboutissant à un plan inclinée 68 relié à une surface d'inflexion concave 69 raccordée à une surface sensiblement plane 70. Cette surface plane se continue par une surface convexe externe 72 qui arrive à une surface plane 74 s'avançant jusqu'au voisinage de la paroi du cylindre.
La chambre de combustion 34 comprend ainsi deux zones distinctes Z1 et Z2 dans lesquelles s'effectue le mélange entre le carburant FueM injecté par l'injecteur 30 dans le comburant (air - suralimenté ou non - ou mélange d'air et de gaz brûlés recirculés) ou/et dans le mélange carburé (mélange comburant et carburant Fuel2) qu'elles contiennent ainsi que la combustion du mélange carburé ainsi formé comme cela sera explicité plus loin. La zone Z1 , délimitée par le téton 48, le tore 64 du fond du bol, la paroi 62 et la surface arrondie convexe 66, forme la zone basse de la chambre de combustion qui est associée à la nappe inférieure 36 de jets de combustible d'axe C1 . La zone Z2, démarquée par le plan incliné 68, la surface concave 69, la surface sensiblement plane 70, la surface convexe 72, la surface plane 74, la paroi interne périphérique du cylindre et la culasse 12, constitue la zone haute de cette chambre qui est associée à la nappe supérieure 38 de jets de combustible d'axe C2. Par cela, la chambre de combustion est séparée en plusieurs zones (ici deux zones) qui sont associées à une injection de combustible FueM et qui sont concernées ou non par la combustion en fonction du mode de fonctionnement et de la charge moteur.
Ainsi, un tel mode de fonctionnement permet d'obtenir une combustion rapide et complète avec un bon rendement et de faibles émissions de suies, CO et HC en mode conventionnel à très forte charge.
De plus, la répartition des flux thermiques entre le piston et la culasse est optimisée notamment par l'augmentation du volume de la zone Z2 par rapport à un piston conventionnel.
L'interaction entre les jets de combustible et la face du piston autorise un refroidissement accru de ce piston abaissant encore les contraintes thermiques sur ce dernier. L'injecteur de combustible FueM autorise également l'introduction de masses de carburant injectées différentes, des durées et des temps d'injection différents entre les nappes afin d'assurer une exploitation optimale du comburant ou/et du mélange carburé (mélange comburant et combustible Fuel2) localisé(s) autant dans la zone basse que dans la zone haute.
L'invention permet ainsi d'injecter du carburant soit dans les deux zones soit dans l'une ou l'autre de ces zones et d'assurer ainsi le mélange avec le comburant pour réaliser la combustion du mélange carburé présent dans la chambre.
Elle permet également de faire fonctionner le moteur en multicarburation, ici en bicarburation, en utilisant un mélange 80 comburant/carburant Fuel2 présent dans la chambre de combustion sous une forme homogène ou quasiment homogène et d'amorcer la combustion du mélange soit dans les deux zones soit dans l'une de ces zones. La figure 2 illustre un mode de fonctionnement du moteur en monocarburation avec une combustion homogène pour les faibles charges ou pour des charges partielles. Pour cela, à proximité du point mort haut du piston 16 pendant la phase de compression, le carburant liquide est injecté dans la zone basse - zone Z1 - de la chambre de combustion 34 en utilisant uniquement les jets de carburant 40 de la nappe inférieur 36 pour se mélanger avec le comburant qui y a été admis pendant la phase d'admission du moteur.
Ces injections tardives de carburant permettent ainsi de manière avantageuse de tangenter le sommet 52 et le flanc 54 du téton 50 pour aboutir sur le fond 56, la paroi 62 et la partie inférieure du réentrant 66. Ceci permet d'entraîner le comburant présent au centre de la chambre sous l'injecteur et ainsi de favoriser le mélange dans zone basse Z1 de la chambre.
La figure 3 illustre un autre mode de fonctionnement en monocarburation qui correspond à une injection de carburant en zone haute Z2 de la chambre de combustion venant s'appuyer sur les surfaces 68, 70 et 72 du piston pour se mélanger avec le comburant présent dans cette zone.
Ce mode de fonctionnement vise notamment à améliorer le démarrage du moteur en n'utilisant que les jets de carburant 42 de la nappe supérieure 38, proche de la bougie de préchauffage que comporte habituellement un tel type de moteur.
En effet, un des inconvénients des moteurs de l'art antérieur concerne le démarrage à froid puisque l'étendue de l'angle de nappe de jets fait en sorte d'éloigner ces jets de la bougie de préchauffage. Par ailleurs, cette étendue d'angle de nappe induit un mouillage de la paroi du cylindre qui est important, ce qui est nuisible au démarrage. Ces deux limitations sont levées avec ce mode de fonctionnement disposant d'un angle de nappe beaucoup plus ouvert
La figure 4 illustre le fonctionnement en monocarburation du moteur pour des fortes charges.
Pour ces fortes charges, le carburant est injecté à la fois dans la zone basse Z1 et la zone haute Z2 de la chambre de combustion 34.
Plus précisément, les jets de carburant 40 de la nappe basse 36 sont dirigés vers la zone Z1 alors que les jets de carburant 42 de la nappe haute 38 sont envoyés vers la zone Z2. Dans ces configurations, il est possible d'injecter une masse de carburant plus importante dans la zone basse Z1 de la chambre 34 par les jets de la nappe basse 36 et une masse plus petite que celle de la zone basse pour la zone haute Z2 par la nappe haute 38 avec éventuellement un déphasage entre les injections.
A l'inverse, il peut être envisagé l'injection d'une masse de carburant plus importante par la nappe 38 dans la zone haute Z2 que dans la zone basse Z1 par la nappe 36, avec éventuellement un déphasage entre les injections.
Enfin, il peut également être envisagé l'injection d'une masse identique de carburant dans les deux zones Z1 et Z2.
Le choix de la répartition de masse entre les deux nappes est à faire en adéquation avec les volumes des zones Z1 et Z2 et du mode de fonctionnement du moteur à privilégier
Le carburant liquide sera ainsi réparti de façon optimale entre la zone basse et la zone haute de la chambre de combustion en accord avec les volumes de ces deux dernières à l'instant d'injection. Par cette répartition, la richesse locale dans chacune des zones peut être maîtrisée et ainsi la production de polluants tels que les NOx, le CO, les HC et les suies sera limitée. Les exemples illustrés aux figures 5 et 6 montrent les différentes configurations en multicarburation, ici en bicarburation, qui sont utilisées pour limiter encore plus les émissions polluantes.
Pour cela, pendant la phase d'admission du moteur, la soupape d'admission 28 est commandée en ouverture et l'injecteur 44 de carburant Fuel2 est opérationnel pour introduire du carburant dans la tubulure d'admission.
Pendant toute cette phase d'admission, le mélange comburant/carburant Fuel2 80 remplit la quasi-totalité de chambre de combustion 34 jusqu'à une position proche du point mort bas du piston, position à laquelle la soupape d'admission est commandée en fermeture.
Dans la phase de compression du moteur, le piston arrive au voisinage de son point mort haut et l'injecteur 30 est commandé pour injecter du carburant liquide FueM soit dans la zone basse Z1 , soit dans les deux zones Z1 et Z2 où une combustion du mélange comburant/carburant Fuel2 80 sera initiée par l'auto- inflammation du carburant FueM de type fueh injecté.
Plus précisément, comme illustré sur la figure 5, une injection de combustible liquide FfueM est réalisée dans le mélange comburant/combustible Fuel2 80 de la zone Z1 en utilisant uniquement les jets de combustible 40 de la nappe inférieure 36 pour initier la combustion du mélange carburé présent dans cette zone Z1 . Cette combustion avec front de flamme se propage par la suite dans le reste de la zone Z1 puis dans la zone Z2. Cette injection est notamment réalisée en mode de fonctionnement du moteur avec faible charge et faible régime.
Comme représenté sur la figure 6, pour des points de charge intermédiaires du moteur, il est réalisé une injection d'une masse de carburant liquide dans la zone Z1 par la nappe inférieure 36 et une injection d'une autre masse de carburant liquide par la nappe supérieure 38 dans la zone Z2, masse qui est moindre que celle injectée dans la zone Z1 (avec éventuellement un déphasage entre les injections non nul).
Une injection dans le mélange comburant/combustible Fuel2 d'une masse identique de carburant liquide dans les deux zones Z1 et Z2 est réalisée au travers des deux nappes 36 et 38 (avec éventuellement un déphasage non nul) pour les plus fortes charges.
Enfin, une injection d'une masse importante de carburant liquide FueM dans le combustible mélange comburant/combustible Fuel2 est réalisée par la nappe 38 dans la zone Z2 alors qu'une injection d'une masse minime de carburant liquide est réalisée par la nappe 36 dans la zone Z1 (avec éventuellement un déphasage non nul) par exemple lors de la phase de démarrage du moteur.
L'utilisation d'une injection de carburant liquide dans les deux zones avec une multiplicité de nappes d'angles de nappe différents permet de multiplier les points d'allumage par auto-inflammation et ainsi d'étendre la surface de flamme initiale destinée à initier la combustion du mélange comburant/carburant gazeux.
Ceci permet d'initier la combustion en même temps dans les deux zones en favorisant et accélérant la combustion du mélange comburant/carburant gazeux. Celle-ci est ainsi plus rapide et plus complète tout en limitant la génération des polluants. Ainsi grâce à l'invention, différents modes de fonctionnement peuvent être utilisés soit uniquement avec la zone basse Z1 de la chambre de combustion soit avec la totalité de la chambre de combustion en associant les deux zones. Le passage d'un mode à l'autre étant réalisable de façon continue par gestion des timings d'injection et des masses injectées dans les différentes zones de combustion.
Plus précisément, cette gestion est contrôlée par un calculateur contenant des cartographies de fonctionnement du moteur cartographiées en fonction du régime et de la charge dudit moteur, par des moyens de gestion des moyens d'injection des différents carburants en fonction de la charge du moteur permettant de contrôler les débits et les proportions respectives de combustible de type Fuel2/Fuel1 , la durée et/ou le moment de l'injection des carburants Fuel 1 et/ou Fuel2 et les angles d'allumage.
De plus, il est possible d'optimiser l'initiation de la combustion en flamme de propagation dans le mélange comburant/carburant Fuel2 en jouant sur les timings d'injection et les quantités injectées par les différentes nappes de jets de carburant et ainsi pallier la plus faible vitesse de combustion des carburants alternatifs pouvant être utilisé en combustible de type Fuel2.
Ainsi, avec au moins deux nappes de jets de carburant avec deux angles de nappe différents l'initiation de la combustion et la combustion sont réparties dans la globalité de la chambre de combustion tout en optimisant la combustion du mélange comburant/carburant de type fuel2.

Claims

REVENDICATIONS
1 ) Procédé d'injection de combustible pour un moteur à combustion interne à allumage par compression fonctionnant en mode monocarburation ou en mode multicarburation et comprenant au moins un cylindre (10), un piston (1 6) coulissant dans ce cylindre, une chambre de combustion (34) comportant deux zones de mélange (Z1 , Z2) et délimitée sur un côté par la face supérieure (46) du piston comportant un téton (50) s'érigeant en direction de la culasse et disposé au centre d'un bol concave (48) et une culasse (12) portant des moyens d'injection de combustible (30) projetant du combustible liquide (FueM ) selon au moins deux nappes de jets de combustible (36, 38) d'angle de nappe différents (A1 , A2), une nappe inférieure (36) pour la zone (Z1 ) et une nappe supérieure (38) pour la zone (Z2), et des moyens d'admission (24, 26, 28) d'un comburant ainsi que des moyens d'échappement (18, 20, 22) de gaz brûlés, caractérisé en ce qu'il consiste, pour le mode de fonctionnement en monocarburation, à injecter du combustible liquide dans la zone basse (Z1 ) et/ou dans la zone haute (Z2) de la chambre de combustion et, pour le mode de fonctionnement en multicarburation, à réaliser dans ladite chambre un mélange d'un comburant avec un autre combustible(Fuel2) et à injecter du combustible liquide (FueM ) dans la zone basse (Z1 ) ou dans les deux zones (Z1 , Z2) de la chambre de combustion.
2) Procédé selon la revendication 1 , caractérisé en ce qu'il consiste à injecter un combustible liquide (FueM ) avec des caractéristiques physico-chimiques permettant le fonctionnement du moteur avec allumage par compression, comme du Diesel, de l'éthanol ou un biocarburant.
3) Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il consiste à introduire un combustible gazeux (Fuel2) dans la chambre de combustion via la tubulure (26) des moyens d'admission (24) pour réaliser un mélange (80) comburant/combustible (Fuel2).
4) Procédé selon la revendication 3, caractérisé en ce qu'il consiste à injecter un combustible gazeux (Fuel2) sous la forme de GNV (Gaz naturel pour Véhicule), ou de GPL (Gaz de Pétrole Liquéfié), ou de biogaz. 5) Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il consiste à injecter dans la chambre de combustion un carburant liquide (Fuel2) possédant des caractéristiques de volatilité permettant la vaporisation avant l'initiation de la combustion pour réaliser un mélange (80) comburant/combustible (Fuel2).
6) Procédé selon la revendication 5, caractérisé en ce qu'il consiste à injecter de l'essence.
7) Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il consiste, pour le mode de fonctionnement en monocarburation, à injecter la même masse de carburant liquide (FueM ) par les deux nappes (36, 38) dans le comburant présent dans les deux zones (Z1 , Z2) de la chambre de combustion.
8) Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il consiste, pour le mode de fonctionnement en monocarburation, à injecter par les deux nappes de jets (36, 38) une masse de carburant liquide (FueM ) différente dans le comburant présent dans chaque zone (Z1 , Z2).
9) Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'il consiste, pour le mode de fonctionnement en multicarburation, à injecter par la nappe inférieure de jets (36) du carburant liquide (FueM ) dans le mélange comburant/combustible (80) présent dans la zone basse (Z1 ) de la chambre de combustion (34). 10) Procédé selon l'une des revendications 1 à 63, caractérisé en ce qu'il consiste, pour le mode de fonctionnement en multicarburation, à injecter par les deux nappes de jets (36, 38) du carburant liquide (FueM ) dans le mélange comburant/combustible (80) présent dans les deux zones (Z1 , Z2) de la chambre de combustion (34).
1 1 ) Procédé selon la revendication 10, caractérisé en ce qu'il consiste à injecter par les deux nappes de jets (36, 38) une masse de carburant liquide (FueM ) différente dans le mélange comburant/combustible (80) présent dans chaque zone (Z1 , Z2). 12) Procédé selon la revendication 10, caractérisé en ce qu'il consiste à injecter par les deux nappes de jets (36, 38) la même masse de carburant liquide (FueM ) dans le mélange comburant/combustible (80) présent dans chaque zone (Z1 . Z2).
13) Procédé selon l'une des revendications précédentes, caractérisé en qu'il consiste à utiliser des moyens de gestion des moyens d'injection en fonction des paramètres de fonctionnement du moteur, notamment de la charge et du régime de ce moteur.
PCT/EP2015/055843 2014-04-03 2015-03-19 Procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne fonctionnant en monocarburation ou en multicarburation WO2015150103A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15711156.8A EP3126653A1 (fr) 2014-04-03 2015-03-19 Procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne fonctionnant en monocarburation ou en multicarburation
CN201580016741.1A CN106164439B (zh) 2014-04-03 2015-03-19 喷射燃料到在单燃料或多燃料模式中运行的内燃机的燃烧室中的方法
US15/301,339 US10294876B2 (en) 2014-04-03 2015-03-19 Method of injecting fuel into the combustion chamber of an internal-combustion engine running in single-fuel or multi-fuel mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452955 2014-04-03
FR1452955A FR3019589B1 (fr) 2014-04-03 2014-04-03 Procede d'injection de combustible dans la chambre de combustion d'un moteur a combustion interne fonctionnant en monocarburation ou en multicarburation

Publications (1)

Publication Number Publication Date
WO2015150103A1 true WO2015150103A1 (fr) 2015-10-08

Family

ID=50729718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/055843 WO2015150103A1 (fr) 2014-04-03 2015-03-19 Procédé d'injection de combustible dans la chambre de combustion d'un moteur à combustion interne fonctionnant en monocarburation ou en multicarburation

Country Status (5)

Country Link
US (1) US10294876B2 (fr)
EP (1) EP3126653A1 (fr)
CN (1) CN106164439B (fr)
FR (1) FR3019589B1 (fr)
WO (1) WO2015150103A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018550B1 (fr) * 2014-03-14 2019-04-12 IFP Energies Nouvelles Procede de controle de l'injection de combustible d'un moteur a combustion interne a injection directe, notamment a allumage par compression, et moteur utilisant un tel procede
FR3020401B1 (fr) * 2014-04-24 2016-05-06 Ifp Energies Now Moteur a combustion interne a injection directe a double angle de nappe pour realiser un melange carbure dans une chambre de combustion a double zone de combustion et a faible taux de compression et procede pour utiliser un tel moteur.
US10392987B2 (en) 2017-03-29 2019-08-27 Cummins Emission Solutions Inc. Assembly and methods for NOx reducing reagent dosing with variable spray angle nozzle
JP6485489B2 (ja) * 2017-05-23 2019-03-20 マツダ株式会社 エンジンの制御装置及びエンジンの制御方法
GB2570344B (en) * 2018-01-23 2022-05-04 Ulemco Ltd Operating a compression ignition engine fuelled with a combination of a hydrocarbon fuel and hydrogen
JP6888570B2 (ja) * 2018-03-07 2021-06-16 トヨタ自動車株式会社 内燃機関
DE102018108097A1 (de) * 2018-04-05 2019-10-10 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Antriebssystems für ein Kraftfahrzeug, Antriebssystem und Kraftfahrzeug
US11326521B2 (en) * 2020-06-30 2022-05-10 General Electric Company Methods of igniting liquid fuel in a turbomachine
CN111734522B (zh) * 2020-07-23 2024-04-26 南京工业大学 一种燃用正辛醇内燃机的燃烧室
US11598246B2 (en) * 2021-06-23 2023-03-07 Deere & Company Internal combustion engine and piston having piston bowl
US11840983B2 (en) 2022-02-22 2023-12-12 Caterpillar Inc. Low compression natural gas engine piston bowl for improved combustion stability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086128A2 (fr) * 2000-05-08 2001-11-15 Cummins, Inc. Moteur a combustion interne fonctionnant en mode d'allumage par compression de charge premelangee avec injection de commande precoce, et son procede de fonctionnement
US20050224606A1 (en) * 2004-04-07 2005-10-13 Dingle Philip J Apparatus and method for mode-switching fuel injector nozzle
DE102011017479A1 (de) * 2011-04-19 2012-10-25 Daimler Ag Brennkraftmaschine
WO2013016713A2 (fr) * 2011-07-27 2013-01-31 Deyang Hou Procédés pour la combustion à basse température et moteurs les utilisant

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2040972A (en) * 1931-05-04 1936-05-19 Maschf Augsburg Nuernberg Ag Piston
US5771847A (en) * 1996-06-24 1998-06-30 The United States Of America As Represented By The Secretary Of The Navy Fuel oxidizer emulsion injection system
US20030097997A1 (en) * 2001-10-19 2003-05-29 Lynch Robert Albert Kit and method for converting a diesel engine to natural gas engine
JP2003214297A (ja) * 2002-01-24 2003-07-30 Yanmar Co Ltd ディーゼル機関の燃料噴射弁
JP4441620B2 (ja) * 2003-04-16 2010-03-31 ウエストポート・パワー・インコーポレイテッド 気体燃料噴射内燃機関およびその運転方法
FR2868480B1 (fr) * 2004-04-02 2008-05-02 Peugeot Citroen Automobiles Sa Moteur a combustion interne a injection directe
US7185614B2 (en) * 2004-10-28 2007-03-06 Caterpillar Inc Double bowl piston
JP4466616B2 (ja) * 2006-06-19 2010-05-26 トヨタ自動車株式会社 多種燃料内燃機関
US7287509B1 (en) * 2006-08-11 2007-10-30 Ford Global Technologies Llc Direct injection alcohol engine with variable injection timing
JP5196637B2 (ja) * 2007-09-21 2013-05-15 ヤンマー株式会社 ディーゼルエンジン
WO2012125961A1 (fr) * 2011-03-17 2012-09-20 Cummins Intellectual Property, Inc. Piston pour moteur à combustion interne
KR101996085B1 (ko) * 2012-09-14 2019-07-03 두산인프라코어 주식회사 질소 산화물 저감을 위한 직접 분사식 디젤 엔진의 연소실
US20150020765A1 (en) * 2013-07-18 2015-01-22 Electro-Motive Diesel, Inc. Combustion bowl of piston
FR3012523B1 (fr) 2013-10-25 2018-07-27 IFP Energies Nouvelles Moteur a combustion interne a injection directe a allumage par compression et procede d'injection de combustible dans la chambre de combustion de ce moteur.
FR3016926B1 (fr) * 2014-01-29 2018-12-07 IFP Energies Nouvelles Moteur a combustion a injection directe de combustible et plus particulierement moteur a allumage par compression avec faible taux de compression

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086128A2 (fr) * 2000-05-08 2001-11-15 Cummins, Inc. Moteur a combustion interne fonctionnant en mode d'allumage par compression de charge premelangee avec injection de commande precoce, et son procede de fonctionnement
US20050224606A1 (en) * 2004-04-07 2005-10-13 Dingle Philip J Apparatus and method for mode-switching fuel injector nozzle
DE102011017479A1 (de) * 2011-04-19 2012-10-25 Daimler Ag Brennkraftmaschine
WO2013016713A2 (fr) * 2011-07-27 2013-01-31 Deyang Hou Procédés pour la combustion à basse température et moteurs les utilisant

Also Published As

Publication number Publication date
CN106164439B (zh) 2020-02-21
FR3019589A1 (fr) 2015-10-09
US20170114730A1 (en) 2017-04-27
EP3126653A1 (fr) 2017-02-08
CN106164439A (zh) 2016-11-23
US10294876B2 (en) 2019-05-21
FR3019589B1 (fr) 2019-06-07

Similar Documents

Publication Publication Date Title
FR3019589B1 (fr) Procede d'injection de combustible dans la chambre de combustion d'un moteur a combustion interne fonctionnant en monocarburation ou en multicarburation
EP3099908B1 (fr) Moteur à combustion à injection directe de combustible et plus particulièrement moteur à allumage par compression avec faible taux de compression
EP3060774B1 (fr) Moteur à combustion à injection directe de combustible à allumage par compression et procédé d'injection de combustible pour un tel moteur
EP3105452B1 (fr) Moteur à combustion interne à injection de deux nappes de combustible à débit différencié et procédé d'injection de combustible pour un tel moteur
EP3117083B1 (fr) Procédé de contrôle de l'injection de combustible d'un moteur à combustion interne à injection directe, notamment à allumage par compression, et moteur utilisant un tel procédé
EP3134627B1 (fr) Moteur à combustion interne à injection directe à double angle de nappe pour réaliser un mélange carburé dans une chambre de combustion à double zone de combustion et à faible taux de compression et procédé pour utiliser un tel moteur
FR3018552A1 (fr) Moteur a combustion a injection directe de combustible a allumage par compression comprenant des moyens de refroidissement du piston.
EP0057150B2 (fr) Chambre de combustion d'un moteur alternatif à combustion interne favorisant une turbulence rotative de combustion
EP1714023A1 (fr) Moteur a combustion interne a injection directe.
EP1344914B1 (fr) Moteur à combustion interne avec dispositif d'injection de carburant
EP0412009A1 (fr) Moteur multicylindre à injection d'essence, comportant trois soupapes par cylindre
WO2015071093A1 (fr) Procédé pour mélanger au moins un comburant et au moins un combustible dans la chambre de combustion d'un moteur à combustion interne à injection directe à allumage par compression et moteur utilisant un tel procédé
WO2006097639A1 (fr) Moteur a combustion interne, notamment a injection directe, avec un piston muni d'un bol comprenant un teton
WO2015058906A1 (fr) Moteur à combustion interne à injection directe à allumage par compression et procédé d'injection de combustible dans la chambre de combustion de ce moteur
FR3103225A1 (fr) Moteur à combustion interne avec piston comprenant une partie en saillie séparant deux zones de combustion
WO2015086323A1 (fr) Moteur à combustion interne fonctionnant avec une injection concomitante de carburants, notamment pour un véhicule automobile
FR2995636A1 (fr) Procede d'introduction de carburants dans une chambre de combustion de moteur automobile
FR3034467A1 (fr) Procede de combustion d'un melange carbure d'un moteur a combustion interne
FR2925115A1 (fr) Moteur a combustion interne a injection directe de carburant et procede pour realiser un melange carbure utilise pour ce moteur
FR2921692A1 (fr) Procede de controle de la combustion pour un moteur a combustion interne utilisant un combustible du type gaz naturel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15711156

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015711156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015711156

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15301339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE