WO2015147282A1 - All-solid-state secondary cell, cell electrode sheet and solid electrolyte composition used in said cell, method for manufacturing cell electrode sheet, and method for manufacturing all-solid-state secondary cell - Google Patents

All-solid-state secondary cell, cell electrode sheet and solid electrolyte composition used in said cell, method for manufacturing cell electrode sheet, and method for manufacturing all-solid-state secondary cell Download PDF

Info

Publication number
WO2015147282A1
WO2015147282A1 PCT/JP2015/059680 JP2015059680W WO2015147282A1 WO 2015147282 A1 WO2015147282 A1 WO 2015147282A1 JP 2015059680 W JP2015059680 W JP 2015059680W WO 2015147282 A1 WO2015147282 A1 WO 2015147282A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
solid
secondary battery
molecule
Prior art date
Application number
PCT/JP2015/059680
Other languages
French (fr)
Japanese (ja)
Inventor
智則 三村
宏顕 望月
雅臣 牧野
目黒 克彦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015147282A1 publication Critical patent/WO2015147282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all-solid secondary battery, a solid electrolyte composition and a battery electrode sheet used therefor, a method for producing a battery electrode sheet, and a method for producing an all-solid secondary battery.
  • the inorganic solid electrolyte exhibits higher ionic conductivity than the polymer electrolyte.
  • a further advantage of the all-solid-state secondary battery is that it is suitable for increasing the energy density by stacking electrodes. Specifically, a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained. At this time, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased. In addition, good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
  • Non-patent Document 1 Developed as a next-generation lithium ion secondary battery due to the above-described advantages, it has been vigorously developed (Non-patent Document 1).
  • an inorganic all-solid secondary battery has a disadvantage because the electrolyte is a hard solid. For example, the interface resistance between solid particles is increased.
  • Patent Document 1 uses a surfactant having a polyoxyethylene chain.
  • Patent Document 2 discloses the use of a hydrogenated butadiene copolymer.
  • the increase in the interfacial resistance in the all-solid-state secondary battery may be improved accordingly by the technique of the above patent document.
  • the binder made of the polymer compound disclosed in the above document cannot satisfy the recent high demand level, and further improvement is desired. Therefore, the present invention achieves high ionic conductivity in an all-solid-state secondary battery regardless of the pressurization of the active material layer and the inorganic solid electrolyte layer, and further has good bending durability and material binding properties. It is an object of the present invention to provide an all-solid secondary battery realized, a solid electrolyte composition and a battery electrode sheet used therefor, a method for producing a battery electrode sheet, and a method for producing an all-solid secondary battery.
  • An all-solid-state secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is periodic
  • An all-solid secondary comprising an inorganic solid electrolyte having conductivity of metal ions belonging to the first or second group of the table and a binder, wherein the binder comprises a compound having a structure in which a linear molecule penetrates a cyclic molecule. battery.
  • the linear molecule is a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure [1] or [2 ]
  • the all-solid-state secondary battery as described in above.
  • the all-solid secondary battery according to any one of [1] to [3], wherein the molecular weight of the linear molecule is 10,000 or more.
  • Reactive substituent Amino group, thiol group, tetrahydrofuryl group, oxetane group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group reactive linking group (B) The imino group, alkenylene group-containing group [6] The all-solid-state secondary battery according to any one of [1] to [5], which has a bulky substituent at the end of the linear molecule.
  • Ring ⁇ is a cyclic structure group containing one or more X A1 , and forms a ring structure with an oxygen atom, a sulfur atom, an imino group, a carbonyl group, an alkylene group, an alkenylene group, an arylene group, or a combination thereof.
  • X A1 and X A2 each independently represent a hetero atom-containing linking group.
  • the linear molecule is a polymer compound having a plurality of monomers, and the ratio of the linear molecule to the cyclic molecule is a linear molecule.
  • L 1 is an alkylene group or an alkenylene group.
  • L 2 is a linking group.
  • R 31 and R 32 are each independently a hydrogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, an alkyl group, an aryl group or an aralkyl group.
  • a plurality of L 1 , L 2 , R 31 , R 32 , R 41 , R 42 , R 51 , R 52 in the molecule may be the same as or different from each other.
  • the binder is added to 100 parts by mass of the inorganic solid electrolyte.
  • the linear molecule is a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, a polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure [15] to [20] Solid electrolyte composition as described in any one of these.
  • the cyclic molecule or linear molecule has a crosslinked structure via at least one of the following reactive substituent (A) and the following reactive linking group (B) or the reactive substituent [15].
  • the solid electrolyte composition according to any one of to [21].
  • Reactive substituent (A) Amino group, thiol group, tetrahydrofuryl group, oxetane group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid, alkenyl group-containing group reactive linking group (B) Imino group, alkenylene group-containing group [23]
  • the solid electrolyte composition according to any one of [15] to [22], which has a bulky substituent at the end of the linear molecule.
  • Electrolyte composition is an alkylene group or an alkenylene group.
  • L 2 is a linking group.
  • R 31 and R 32 are each independently a hydrogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, or an aralkyl group.
  • R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, an alkyl group, an aryl group or an aralkyl group.
  • a plurality of L 1 , L 2 , R 31 , R 32 , R 41 , R 42 , R 51 , R 52 in the molecule may be the same as or different from each other.
  • the reactive substituent (A) has the following functional group: The solid electrolyte composition according to [25], which is at least one of them.
  • a method for producing an electrode sheet for a battery wherein the solid electrolyte composition according to any one of [15] to [27] is formed on a metal foil.
  • a method for producing an all-solid secondary battery wherein an all-solid secondary battery is produced through the method for producing an electrode sheet for a battery according to [28] or [29].
  • each substitution may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other or condensed to form a ring.
  • the all-solid-state secondary battery of the present invention achieves high ionic conductivity regardless of the pressurization of the active material layer and the inorganic solid electrolyte layer, and is excellent in bending durability and material binding.
  • the battery electrode sheet, the battery electrode sheet manufacturing method and the all solid secondary battery manufacturing method of the present invention are preferably manufactured. be able to.
  • FIG. 1 is a cross-sectional view schematically showing an all solid lithium ion secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a molecular structure diagram schematically showing a crosslinked product of a polyrotaxane compound according to a preferred embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a test apparatus used in the examples.
  • the all-solid-state secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and any one of the layers contains an inorganic solid electrolyte having ion conductivity and a specific binder.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of the present embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, an inorganic solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in that order as viewed from the negative electrode side. Have in.
  • Each layer is in contact with each other and has a laminated structure.
  • the solid electrolyte composition of the present invention is preferably used as a constituent material of the negative electrode active material layer, the positive electrode active material layer or the inorganic solid electrolyte layer, and among them, the inorganic solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer. It is preferable to use as all constituent materials.
  • the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an “active material layer”.
  • the inorganic solid electrolyte layer may be referred to as “solid electrolyte layer” or “electrolyte layer”.
  • the thicknesses of the positive electrode active material layer 4 and the negative electrode active material layer 2 can be determined according to the target battery capacity. In consideration of general element dimensions, it is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m. As an upper limit, it is preferable that it is 1000 micrometers or less, and it is more preferable that it is 400 micrometers or less. On the other hand, the inorganic solid electrolyte layer 3 is desirably as thin as possible while preventing a short circuit between the positive and negative electrodes. Furthermore, it is preferable that the effect of the present invention is remarkably exhibited. Specifically, it is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more. As an upper limit, it is preferable that it is 1000 micrometers or less, and it is more preferable that it is 400 micrometers or less.
  • the solid electrolyte composition of the present invention refers to a composition containing an inorganic solid electrolyte. It is used as a material for forming at least one of the inorganic solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer of the all solid state secondary battery of the present invention.
  • the solid electrolyte composition is not limited to a solid, and may be liquid or pasty.
  • An inorganic solid electrolyte is an inorganic solid electrolyte.
  • solid electrolyte means a solid electrolyte capable of moving ions therein.
  • the inorganic solid electrolyte may be referred to as an ion conductive inorganic solid electrolyte in consideration of the distinction from the electrolyte salt (supporting electrolyte) described later.
  • the ionic conductivity of the inorganic solid electrolyte is not particularly limited, but is preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more in lithium ions. More preferably, it is 10 ⁇ 4 S / cm or more, and particularly preferably 1 ⁇ 10 ⁇ 3 S / cm or more. There is no particular upper limit, but 1 S / cm or less is practical. Unless otherwise specified, the ion conductivity measurement method is based on the non-pressurized conditions measured in Examples described later.
  • inorganic solid electrolytes do not contain organic compounds such as polymer compounds and complex salts, they are clear from organic solid electrolytes (polymer electrolytes typified by PEO (polyethylene oxide), organic electrolyte salts typified by LiTFSI, etc.) Are distinguished.
  • the inorganic solid electrolyte is a non-dissociable solid in a steady state, it does not dissociate or release into cations and anions even in the liquid.
  • inorganic electrolyte salts LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte has conductivity of metal ions (preferably lithium ions) belonging to Group 1 or Group 2 of the periodic table, but does not have electronic conductivity.
  • the electrolyte layer or the active material layer contains a metal ion (preferably lithium ion) conductive inorganic solid electrolyte belonging to Group 1 or Group 2 of the Periodic Table.
  • a metal ion preferably lithium ion
  • the inorganic solid electrolyte a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of the inorganic solid electrolyte include (i) sulfide-based inorganic solid electrolyte (sometimes referred to as sulfide solid electrolyte) and (ii) oxide-based inorganic solid electrolyte (sometimes referred to as oxide solid electrolyte). As mentioned.
  • a sulfide solid electrolyte contains sulfur (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation. Those having properties are preferred.
  • a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1) can be given.
  • L a1 M b1 P c1 S d1 A e1 (1) (In the formula, L represents an element selected from Li, Na, and K, and Li is preferable.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • E1 represents the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 1: 1: 2 to 12: 0 to 5. a1 is more preferably 1 to 9 1.5 to 4 is more preferable, b1 is preferably 0 to 0.5, d1 is further preferably 3 to 7, more preferably 3.25 to 4.5, and e1 is further preferably 0 to 3. 0 to 1 are more preferable.)
  • the composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based solid electrolyte as described below.
  • the sulfide-based solid electrolyte may be amorphous (glass) or crystallized (glass ceramics), or only part of it may be crystallized.
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and the Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 75:25.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 or less.
  • the compound include those using a raw material composition containing, for example, Li 2 S and a sulfide of an element belonging to Group 13 to Group 15.
  • Li 2 S—P 2 S 5 Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S—Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —GeS 2
  • a crystalline and / or amorphous raw material composition comprising Li 2 S—GeS 2 —P 2 S 5 or Li 10 GeP 2 S 12 is preferred because it has high lithium ion conductivity.
  • Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the sulfide solid electrolyte is more preferably represented by the following formula (2).
  • Li l P m Sn formula (2) In the formula, l to n represent the composition ratio of each element, and l: m: n satisfies 2 to 4: 1: 3 to 10.
  • Oxide-based inorganic solid electrolyte contains oxygen (O), has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is an electron What has insulation is preferable.
  • Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ met 1, nc satisfies 0 ⁇ nc ⁇ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ⁇ xd ⁇ 3,0 ⁇ yd ⁇ 1,0 ⁇ zd ⁇ 2,0 ⁇ ad ⁇ 1,1 ⁇ md
  • D ee represents a halogen atom or Represents a combination of two or more halogen atoms.
  • Li 3 BO 3 —Li 2 SO 4 Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w ⁇ 1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the ionic conductivity of the lithium ion conductive oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 1 ⁇ 10 ⁇ 5 S / cm or more.
  • X 10 ⁇ 5 S / cm or more is particularly preferable.
  • an oxide-based inorganic solid electrolyte Since the oxide-based inorganic solid electrolyte generally has a higher hardness, the interface resistance is likely to increase in the all-solid secondary battery. By applying the present invention, the effect becomes more prominent.
  • an oxide-based inorganic solid electrolyte and the following specific binder act to form a more suitable adsorption state.
  • an oxide-based inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the average particle size of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the concentration of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more and 100% by mass in 100% by mass of the solid component when considering both the battery performance and the reduction / maintenance effect of the interface resistance. % Or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less. However, when used together with a positive electrode active material or a negative electrode active material to be described later, the sum is preferably in the above concentration range.
  • a compound having a structure in which a linear molecule penetrates a cyclic molecule is used as the binder of the inorganic solid electrolyte.
  • This compound is called pseudorotaxane or polypseudorotaxane, and a compound in which the terminal is blocked with a bulky substituent so that the cyclic molecule does not escape from the linear molecule is sometimes called rotaxane, polyrotaxane or the like.
  • these cross-linked products are collectively referred to as polyrotaxane compounds.
  • a preferred polyrotaxane compound of the present invention is schematically shown in FIG.
  • the polyrotaxane compound of the present embodiment has a structure in which linear molecules 21 are inserted through a plurality of cyclic molecules 22. The end of the linear molecule is sealed with a terminal substituent 24 to prevent the cyclic molecule from falling off. Adjacent polyrotaxane compounds 20 are connected to each other by a cross-linked chain (linked chain by a reactive group) 23. Thus, in this embodiment, the binder comprised with the crosslinked material 200 of the polyrotaxane compound is comprised.
  • a crosslinked product having a movable crosslinking point is obtained, which has an effect of uniforming the tension between the polymers and exhibits specific mechanical properties.
  • a polyrotaxane compound as a binder, good binding properties are expressed.
  • Such a cross-linked structure may be added in advance as a cross-linked structure, or may be formed in the state of a solid electrolyte composition paste, or may be cross-linked after forming it into an electrode sheet.
  • the term “binder” is used in a broad sense to include both an uncrosslinked polyrotaxane compound and a crosslinked product thereof. When distinguishing, it calls an uncrosslinked binder (uncrosslinked polyrotaxane compound) and a crosslinked binder (crosslinked polyrotaxane compound), respectively.
  • the linear molecule is preferably a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure.
  • the polyolefin is preferably a compound having a repeating unit represented by the following formula (1-1).
  • L 1 is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or an alkenylene group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). Is particularly preferred).
  • a plurality of L 1 in the molecule may be the same as or different from each other.
  • L 1 may further have a substituent T described later.
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • the polyether is preferably a compound having a repeating unit represented by the following formula (1-2).
  • L 2 is a linking group, an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms), or an alkenylene group (preferably having 2 to 12 carbon atoms, preferably having 2 to 6 carbon atoms). More preferably, it is preferably 2 to 4), an arylene group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and particularly preferably 6 to 10), or a group relating to a combination thereof.
  • the above linking group may further have a substituent T described later.
  • a plurality of L 2 in the molecule may be the same or different from each other.
  • said coupling group (an alkylene group, an alkenylene group, an arylene group) may interpose the coupling group containing a hetero atom.
  • the linking group containing a hetero atom include an oxygen atom, a sulfur atom, an imino group (NR N ), an ammonium linking group (NR N 2 + ⁇ M ⁇ ), and a carbonyl group.
  • RN is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, 2 or 3 is particularly preferred), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms). 7 to 11 are particularly preferable).
  • R N it is also synonymous R N to be described later.
  • M ⁇ is a counter anion and can be exemplified by PF 6 — .
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • the polysiloxane is preferably a compound having a repeating unit represented by the following formula (1-3).
  • R 31 and R 32 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), an alkenyl group (having 2 to 12 carbon atoms).
  • an alkyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms
  • an alkenyl group having 2 to 12 carbon atoms.
  • the alkyl group, alkenyl group, aryl group and aralkyl group may further have a substituent T described later.
  • a plurality of R 31 and R 32 in the molecule may be the same as or different from each other.
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • the compound containing a polyene structure is preferably a compound having a repeating unit represented by the following formula (1-4) or (1-5).
  • R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms).
  • an aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms
  • an aralkyl group preferably having 7 to 23 carbon atoms, more preferably 7 to 18 carbon atoms, and 7 to 12 carbon atoms. Is particularly preferred).
  • This alkyl group, aryl group, and aralkyl group may further have a substituent T described later.
  • a plurality of R 41 , R 42 , R 51 and R 52 in the molecule may be the same as or different from each other.
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • the polyester is preferably a compound having a repeating unit represented by the following formula (1-6).
  • L 6 is a group having the same meaning as L 2 .
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • Polycarbonate, polyurethane, and polyurea are preferably compounds having a repeating unit represented by the following formula (1-7).
  • L 7 is a group having the same meaning as L 2 .
  • X, Y are each independently O or NR N.
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • the polyacrylate is preferably a compound having a repeating unit represented by the following formula (1-8).
  • L 8 is a group having the same meaning as L 2 .
  • R 81 is a hydrogen atom, a halogen atom, a methyl group, an ethyl group, a cyano group, or a hydroxyl group.
  • R 82 each independently represents a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms).
  • an aryl group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and particularly preferably 6 to 10
  • an aralkyl group preferably having 7 to 23 carbon atoms, preferably 7 to 7 carbon atoms. 18 is more preferable, and 7 to 12 is particularly preferable.
  • a polyether group polyethylene oxide, polypropylene oxide, and polybutylene oxide are preferable.
  • the alkyl group, alkenyl group, aryl group and aralkyl group may further have a substituent T described later.
  • a plurality of R 81 and R 82 in the molecule may be the same as or different from each other. This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • the polymer having a heterocyclic ring in the main chain is preferably a compound having a repeating unit represented by the following formula (1-9).
  • Ar 1 is a heterocyclic group, a heteroaliphatic cyclic group (preferably having 1 to 12 carbon atoms, more preferably 2 to 5), or a heteroaromatic cyclic group (preferably having 1 to 12 carbon atoms, preferably having 2 to 5 carbon atoms). More preferred).
  • the heterocyclic group may be a cation or a structure with a counter anion.
  • heterocycles include thiophene rings, pyridine rings (may be pyridinium rings), pyrrole rings (may be pyrrolium rings), furan rings, pyrazine rings (may be pyrazinium rings), pyrimidine rings (may be pyrimidinium rings), piperidine Ring (may be piperidinium ring), tetrahydrofuran ring, tetrahydropyran ring, pyrrolidine ring (may be pyrrolidinium ring), imidazole ring (may be imidazolinium ring), pyrazole ring (may be pyrazolinium ring), morpholine ring (also morpholinium ring) Good).
  • the hetero atom of the heteroaliphatic ring group or heteroaromatic ring group is preferably an oxygen atom, a sulfur atom, a nitrogen atom or a combination thereof.
  • Heterocyclic group may have a substituent T described later without going through or via a linking group L 2.
  • Z is preferably a single bond, an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), O, S, NR N , CO, or a combination thereof.
  • a single bond or an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms) is more preferable.
  • This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
  • linear molecules examples include polyethers such as polyethylene glycol, polypropylene glycol and polytetrahydrofuran, polyolefins such as polyethylene and polypropylene, celluloses such as carboxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose, polyammonium salts, polydimethyl
  • polyethers such as polyethylene glycol, polypropylene glycol and polytetrahydrofuran
  • polyolefins such as polyethylene and polypropylene
  • celluloses such as carboxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose, polyammonium salts, polydimethyl
  • Preferable examples include polysiloxanes such as siloxane, polythiophenes, polymethacrylates such as polymethyl methacrylate, polyacrylic acid, polyesters, and polycarbonates.
  • polyacrylates, polysiloxanes, polycarbonates and polyethers are preferred, and polyethers are particularly preferred
  • the weight average molecular weight of the linear molecule is preferably 1,000 or more, more preferably 5,000 or more, and particularly preferably 10,000 or more.
  • the upper limit is preferably 1,000,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less. By setting it within this range, it is preferable that the cyclic molecule (the inclusion compound) moves freely on the linear molecule.
  • the molecular weight is based on the conditions measured in Examples described below unless otherwise specified.
  • the structural unit constituting the cyclic molecule includes, for example, a linking group having a hetero atom (oxygen atom, NR N , sulfur atom, CO is preferred), a heteroaliphatic ring group (preferably having 1 to 12 carbon atoms, preferably having 2 to 6 carbon atoms). More preferably), a heteroaromatic cyclic group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms).
  • a linking group having a hetero atom oxygen atom, NR N , sulfur atom, CO is preferred
  • a heteroaliphatic ring group preferably having 1 to 12 carbon atoms, preferably having 2 to 6 carbon atoms.
  • a heteroaromatic cyclic group preferably having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms
  • an alkylene group preferably
  • An alkenylene group preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3
  • an aromatic group preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and 6 to 10 carbon atoms.
  • the hetero atom of the heteroaliphatic ring group or heteroaromatic ring group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom.
  • the heteroaliphatic ring group and heteroaromatic ring group are preferably 4- to 7-membered rings, and more preferably 5- or 6-membered rings.
  • Each of the above linking groups may have a substituent T described later.
  • the cyclic molecule preferably has a structure in which a plurality of structural units are linked to form a ring, and the structural units in the cyclic molecule may be the same or different.
  • the structural unit of the cyclic molecule is preferably represented by any of the following formulas.
  • the following formula may be a double cyclic structure, such as a structure (c) as a structural unit, or may be a multiple cyclic structure such as triple or quadruple. In that case, the structural unit of each formula may be interpreted as having a multiple structure.
  • L A is a group having the same meaning as L 2 above.
  • Ar 2 is a cyclic structure group, a heteroaliphatic ring group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6), or a heteroaromatic ring group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). And an aromatic group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms).
  • the hetero atom of the heteroaliphatic ring group or heteroaromatic ring group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom.
  • the heteroaliphatic ring group and heteroaromatic ring group are preferably 4- to 7-membered rings, and more preferably 5- or 6-membered rings.
  • the cyclic molecule may have a linking group in addition to the structural unit described above or below, and an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl group, an alkylene group (preferably having 1 to 12 carbon atoms, 1 to 6 is more preferable, and 1 to 3 is particularly preferable), or a combination thereof.
  • R A1 to R A4 are groups having the same meaning as R 81 .
  • Ring ⁇ is a cyclic structural group containing one or more X A1 , and forms a ring structure with an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl group, an alkylene group, an alkenylene group, an arylene group, or a combination thereof.
  • an alkylene group having 2 to 12 carbon atoms, an oxygen atom, a sulfur atom, a carbonyl group, an imino group, or a combination thereof is preferable, and a combination of an alkylene group having 3 to 6 carbon atoms and an oxygen atom is particularly preferable. .
  • ring ⁇ examples include a 3-membered ring to an 8-membered ring, and among them, a 5-membered ring or a 6-membered ring is preferable. Specific examples include a glucose ring, a fructose ring, a galactose ring, and a mannose ring. May be accompanied by a substituent T of any later without going through or over an exemplary cyclic groups further either a single bond or a linking group L 2 above.
  • X A1 and X A2 each independently represent a hetero atom-containing linking group, preferably an oxygen atom, a sulfur atom, or an imino group (NR N ), and particularly preferably an oxygen atom.
  • Ring ⁇ is preferably the following formula (d).
  • X d2 , X d3 and X d6 are each independently a hydrogen atom or a group having the same meaning as R 82 .
  • L d2 , L d3 , and L d6 are each independently a single bond, a carbonyl group, or an imino group (NR N ).
  • Ar 2 is preferably any one of the following formulas (a) to (d).
  • cyclodextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin, crown ethers, cucurbiturils, cyclophanes, and calixarenes are preferable. Furthermore, cyclodextrin is preferred.
  • the number of structural units is not particularly limited, but is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more.
  • the upper limit is preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
  • said polyrotaxane compound has a bulky substituent (terminal group) in the terminal. By doing in this way, it can fix so that a cyclic molecule may not slip from a linear molecule.
  • the molecular weight of a terminal group is not specifically limited, It is preferable that it is 70 or more, and it is more preferable that it is 100 or more. The upper limit is practically 1000 or less.
  • the bulkiness of the terminal group may be determined in relation to the size of the ring of the cyclic molecule, and may be a size that does not allow the cyclic molecule to escape.
  • the molecular weight of the terminal group can be set with respect to the number of linked atoms of the cyclic molecule in the relationship of molecular weight of the terminal group> number of linked atoms ⁇ 3.
  • Molecular weight of terminal group> number of connected atoms ⁇ 5 is preferable, and molecular weight of terminal group> number of connected atoms ⁇ 8 is more preferable.
  • the molecular weight of the terminal group ⁇ the number of connected atoms ⁇ 100 is practical.
  • the number of linking atoms is the number of atoms involved in linking constituting the ring.
  • Compound A-1 is 30, A-4 is 21, A-5 is 21, and A-12 is 28.
  • the terminal group is appropriately selected from substituents having such a size that the cyclic molecule differs depending on the size of the opening of the cyclic molecule and the cyclic molecule cannot be removed.
  • substituents having such a size that the cyclic molecule differs depending on the size of the opening of the cyclic molecule and the cyclic molecule cannot be removed.
  • Specific examples include a phenyl group-containing group, a cyclodextrin structure-containing group, and an adamantane structure-containing group.
  • nitrophenyl groups such as 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, 2,4,6-trinitrophenyl group; triphenylmethyl group (trityl group), 3,5-dimethyl
  • examples include groups including phenyl group, 3,5-tertbutylphenyl group, adamantyl group, pyrene group, naphthalene group, fluorescein group, cyclodextrin group and the like.
  • the method for substituting the end of the linear molecule with a bulky substituent is not particularly limited.
  • a polymer having amino groups at both ends of polyethylene glycol as a linear molecule and reacting the amino groups at both ends with 2,4-dinitrophenyl fluoride, 2,4 as the above-mentioned bulky blocking group.
  • the end can be substituted with a dinitrophenyl group.
  • the terminal can be substituted with a trityl group, 2,4,6-trinitrophenyl group, or pyrene group, respectively.
  • an adamantyl group and a cyclodextrin can be introduced by reacting a carboxylic acid group at both ends with adamantylamine and cyclodextrin, respectively, by using a polymer having a carboxyl group at both ends of polyethylene glycol as a linear molecule.
  • the ratio of the linear molecule and the cyclic molecule in the binder is (number of moles of monomer units constituting the linear molecule): (cyclic molecule)
  • the ratio is preferably 100: 0.1 to 100: 70, more preferably 100: 0.5 to 100: 50, and particularly preferably 100: 1 to 100: 40.
  • the ratio of linear molecules to cyclic molecules can be measured by 1H- and 13C-NMR spectra, light absorption, elemental analysis and the like.
  • the polyrotaxane compound can be applied to the present invention with appropriate reference to known literature.
  • WO08 / 108411 for the production method of polyrotaxane WO10 / 024431 for the production method of polyrotaxane without solvent
  • WO11 / 105532 for the photocrosslinkable polyrotaxane WO06-090819 for the polymer electrolyte of polyrotaxane
  • JP2003-257236A JP, 2004-327271, A, etc. can be referred to.
  • the cyclic molecule or linear molecule preferably has a reactive group, and among them, the cyclic molecule preferably has a reactive group.
  • the reactive group preferably has a function of linking and crosslinking the polyrotaxane compound by performing a treatment such as heating. At this time, it is preferable that the cyclic molecules are linked and crosslinked as described above.
  • Reactive group of the linking group having a hetero atom may be introduced into a linear molecule and cyclic molecule by intervening and said L 2.
  • the reactive group is preferably a hetero atom (B, O, S, N, P, etc.) or a substituent or linking group having an unsaturated bond. Especially, it is preferable to have at least any one of the following reactive substituent (A) and the following reactive coupling group (B).
  • Reactive substituent [functional group] (A) Amino group (NR N 2 ), thiol group (sulfide group) (SH), tetrahydrofuryl group, oxetane group, epoxy group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, hydroxyl group, Alkenyl group-containing group (vinyl group, allyl group, acryloyl group, acryloyloxy, etc.) Reactive linking group [functional group] (B) Imino group (NR N ), alkenylene group-containing group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and particularly preferably 2 or 3 carbon atoms)
  • reactive groups are hydroxyl group, alkenyl group-containing group (vinyl group, allyl group), acryloyl group, acryloyloxy group, epoxy group, thiol group, isocyanate group, carboxyl group, phosphate group, sulfonate group.
  • a phosphonic acid group is preferred.
  • the term “acrylic or acryloyl” means that the ⁇ -position carbon may have a predetermined substituent. For example, it is meant to include those having an R 81 group at the ⁇ -position. For example, a methacryloyl group and a methacryloyloxy group are included.
  • the reactive group is preferably a thiol group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, or alkenyl group-containing group, carboxyl group, phosphoric acid group, sulfone group.
  • Particularly preferred are acid groups and phosphonic acid groups.
  • a known method can be adopted as the condition for introducing the reactive group.
  • a reactive group is newly introduced into an inclusion compound using ⁇ -cyclodextrin as a cyclic molecule and polyethylene glycol substituted at both ends as a linear molecule, the inclusion compound is dissolved in dimethyl sulfoxide.
  • the reactive group M-4 can be introduced by adding 2-isocyanatoethyl methacrylate and bismuth tris (2-ethylhexanoate) to this solution and reacting them.
  • M-3 can be introduced by using 2-isocyanatoethyl acrylate instead of 2-isocyanatoethyl methacrylate.
  • M-1 and M-2 can be introduced by reacting methacrylic acid chloride or acrylic acid chloride in DMF.
  • M-6 can be introduced by reacting 3-mercaptopropylmethyldimethoxysilane in ethanol / water.
  • M-7 to M-11 can be introduced in the same manner.
  • M-12 can be introduced by reacting succinic anhydride in dimethyl sulfoxide.
  • the reactive group M-4 can be introduced with Similarly, other cyclic molecules can introduce a reactive group M-4 by introducing 2-isocyanatoethyl methacrylate and bismuth tris (2-ethylhexanoate) after introducing a hydroxyl group and reacting them.
  • the solid electrolyte composition of the present invention preferably contains a radical polymerization initiator.
  • the radical polymerization initiator is preferably added for the purpose of reacting the reactive group.
  • the radical polymerization initiator a commonly used one may be used, but as the thermal radical polymerization initiator that is cleaved by heat to generate an initiation radical, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide are used.
  • Ketone peroxides such as oxide and methylcyclohexanone peroxide; hydroperoxides such as 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide; diisobutyryl peroxide Bis-3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, benzoyl peroxide and m-toluylbenzoyl peroxide Acyl peroxides; dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) hexane, t-butylcumyl peroxide, Dialkyl peroxides such as di-t-butyl peroxide and 2,5-dimethyl-2,5-di (t-butylperoxy) hexene; 1,1-
  • azo compound used as an azo-based (AIBN or the like) polymerization initiator examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 1,1'-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyano Examples include valeric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A). Alternatively, dimethyl-2,2′-azobis (2-methylpropinate) (trade name V-601, manufactured by Wako Pure Chemical Industries, Ltd.) is also preferably used.
  • radical polymerization initiator in addition to the thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
  • radical polymerization initiators include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2
  • the amount of the radical polymerization initiator is not particularly limited, but is preferably 0.01% by mass or more in the composition, more preferably 0.02% by mass or more, and 0.05% by mass or more. Is particularly preferred.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • the radical polymerization initiator may be used alone or in combination of two or more.
  • the cross-linked product of the polyrotaxane compound is preferably obtained by cross-linking the cyclic molecule in the polyrotaxane compound as a cross-linking point.
  • the form of crosslinking is not particularly limited, and reactive groups (functional groups) may react with each other to crosslink, reactive groups may react with other reactive groups, and reactive groups react with crosslinking agents. And may be cross-linked. A well-known thing can be used as a crosslinking agent.
  • polyfunctional carboxylic acid chlorides such as trimesic acid chloride and terephthalic acid chloride
  • molecules having reactive halogen atoms such as epichlorohydrin, dibromobenzene and cyanuric chloride
  • polyfunctional aldehydes such as glutaraldehyde.
  • Polyfunctional isocyanates such as phenylene diisocyanate and tolylene diisocyanate, polyfunctional vinyls such as 1,1′-carbonyldiimidazole polyfunctional imidazoles, divinyl sulfone, triethylene glycol dimethacrylate, divinylbenzene, tetramethoxysilane, Examples include alkoxysilanes such as tetraethoxysilane.
  • a well-known method can be adopted for the crosslinking reaction.
  • the crosslinking reaction can be carried out by dissolving in dimethylformamide, adding dimethyl-2,2′-azobis (2-methylpropinate) and heating to react at 80 ° C.
  • a crosslinking reaction can be performed for M-1 to M-3 and M-8 to M-10.
  • the crosslinking reaction can be similarly carried out by adding a crosslinking agent such as triethylene glycol dimethacrylate, divinylbenzene, polyethylene glycol dimethacrylate and the like.
  • the inclusion compound is dimethylformamide
  • a cross-linking reaction is performed by adding a polyfunctional vinyl compound such as triethylene glycol divinyl ether, adding dimethyl-2,2′-azobis (2-methylpropinate), and heating and reacting at 80 ° C. Can do.
  • the inclusion compound When cross-linking an inclusion compound using ⁇ -cyclodextrin as a cyclic molecule and polyethylene glycol substituted at both ends as a linear molecule, the inclusion compound is dissolved in an alkaline aqueous solution, and epichlorohydrin or chloride is dissolved in the aqueous solution.
  • a crosslinking reaction can be performed by adding cyanur and stirring at room temperature. Further, the crosslinking reaction can be similarly carried out using dimethyl sulfoxide as a solvent and 1,1′-carbonyldiimidazole or tolylene diisocyanate as a crosslinking agent.
  • crosslinked structure means a linked structure formed by the reaction of the reactive substituent.
  • reactive groups may react to cross-link as described above, or reactive groups may react with other reactive groups, and reactive groups and cross-linking agents react. And may be cross-linked.
  • the atoms constituting the crosslinked structure include carbon atoms, oxygen atoms, sulfur atoms, nitrogen atoms, halogen atoms, silicon atoms, and hydrogen atoms.
  • the number of atoms forming the crosslinked structure is preferably 1 to 2000, more preferably 1 to 1000.
  • the crosslinking of the binder can be carried out by any method, and examples thereof include a heating method, a light irradiation method, and a crosslinking accelerator addition method.
  • a heating method it is preferable to heat at 60 ° C or higher, and more preferable to heat at 80 ° C or higher.
  • An upper limit of 200 ° C. or lower is practical, and 150 ° C. or lower is more practical.
  • the heating time is preferably 1 minute or longer, more preferably 3 minutes or longer, and particularly preferably 5 minutes or longer.
  • the upper limit is practically 24 hours or less.
  • the blending amount of the binder is preferably 0.1 parts by mass or more, and 0.3 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte (including this when an active material is used). More preferred is 1 part by mass or more.
  • the upper limit is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the binder in the solid content, is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 1% by mass or more. preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
  • ⁇ Binders may be used alone or in combination of a plurality of types. Further, it may be used in combination with other particles.
  • the binder may be in the form of particles.
  • the average particle size of the particles is preferably 1,000 nm or less, more preferably 750 nm or less, further preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 200 nm or less.
  • the lower limit is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more.
  • the binder preferably has a smaller particle size than the average particle size of the inorganic solid electrolyte.
  • the measurement from the created all-solid-state secondary battery is, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method of particle size measurement of the binder described later, and measuring in advance. This can be done by eliminating the measured value of the particle size of the particles other than the binder.
  • it uses for the meaning containing the salt and its ion other than the said compound itself about the display of a compound (For example, when attaching
  • it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T. Examples of the substituent T include the following.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • each of the groups listed as the substituent T may be further substituted with the substituent T described above.
  • a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted.
  • an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group, an alkynylene group is a group containing a hetero atom (e.g., O, S, CO, NR N and the like) be separated by a, with this A ring structure may be formed.
  • a hetero atom e.g., O, S, CO, NR N and the like
  • the solid electrolyte composition according to the present invention may contain an electrolyte salt (supporting electrolyte).
  • the electrolyte salt is preferably a lithium salt.
  • a lithium salt usually used in this type of product is preferable, and there is no particular limitation, but for example, the following are preferable.
  • Inorganic lithium salts inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
  • (L-3) Oxalatoborate salt lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
  • Rf 1 and Rf 2 each represent a perfluoroalkyl group.
  • the content of the lithium salt is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte.
  • As an upper limit it is preferable that it is 10 mass parts or less, and it is more preferable that it is 5 mass parts or less.
  • the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
  • a dispersion medium in which the above components are dispersed may be used.
  • a dispersion medium When producing an all-solid secondary battery, it is preferable to add a dispersion medium to the solid electrolyte composition to make a paste from the viewpoint of uniformly coating the solid electrolyte composition to form a film.
  • the dispersion medium When forming the solid electrolyte layer of the all-solid secondary battery, the dispersion medium is removed by drying.
  • the dispersion medium include water-soluble or water-insoluble organic solvents. Specific examples include the following.
  • Alcohol compound solvent Methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, 2-methyl- 2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, etc.
  • Ether compound solvents (including hydroxyl group-containing ether compounds) Dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, anisole, tetrahydrofuran, alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether , Diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.) Amide compound solvents N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolid
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 80 ° C. or higher at normal pressure (1 atm).
  • the upper limit is preferably 220 ° C. or lower, and more preferably 180 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the quantity of the dispersion medium in a solid electrolyte composition can be made into arbitrary quantity with the balance of the viscosity of a solid electrolyte composition, and a dry load. Generally, it is preferably 20 to 99% by mass in the solid electrolyte composition.
  • the solid electrolyte composition may contain a positive electrode active material to form a positive electrode active material layer. Thereby, it can be set as the composition for positive electrode materials. It is preferable to use a transition metal oxide for the positive electrode active material, and it is preferable to have a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed.
  • a transition element M a one or more elements selected from Co, Ni, Fe, Mn, Cu, and V.
  • mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si
  • transition metal oxide examples include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned.
  • the positive electrode active material a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
  • the transition metal oxides, oxides containing the above transition element M a is preferably exemplified.
  • a mixed element M b (preferably Al) or the like may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
  • M 1 is as defined above Ma.
  • a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1.
  • b represents 1 to 3 and is preferably 2.
  • a part of M 1 may be substituted with the mixed element M b .
  • the transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
  • the transition metal oxide is more preferably one represented by the following formulas.
  • g has the same meaning as a.
  • j represents 0.1 to 0.9.
  • i represents 0 to 1; However, 1-ji is 0 or more.
  • k has the same meaning as b above.
  • Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
  • the transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
  • (I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ⁇ 0, x + y + z 1) Representative: Li g Ni 1/3 Mn 1/3 Co 1/3 O 2 Li g Ni 1/2 Mn 1/2 O 2
  • (Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1> z ⁇ 0.05, x + y + z 1) Representative: Li g Ni 0.8 Co 0.15 Al 0.05 O 2
  • M 2 is as defined above Ma.
  • c represents 0 to 2 (preferably 0.2 to 2), and preferably 0.6 to 1.5.
  • d represents 3 to 5 and is preferably 4.
  • the transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
  • (MB-1) Li m Mn 2 O n
  • (MB-2) Li m Mn p Al 2-p O n
  • (MB-3) Li m Mn p Ni 2-p O n
  • m is synonymous with c.
  • n is synonymous with d.
  • p represents 0-2.
  • Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
  • Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
  • an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
  • Transition metal oxide represented by formula (MC) As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable. Li e M 3 (PO 4 ) f ... (MC)
  • e represents 0 to 2 (preferably 0.2 to 2), and is preferably 0.5 to 1.5.
  • f represents 1 to 5, and preferably 0.5 to 2.
  • the M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu.
  • the M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb.
  • Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3.
  • Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
  • the a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained.
  • the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the concentration of the positive electrode active material is not particularly limited, but is preferably 20 to 90% by mass, and more preferably 40 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition.
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, and a lithium such as Sn, Si, or In. And metals capable of forming an alloy. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. In addition, the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro
  • Examples thereof include spheres, graphite whiskers, and flat graphite.
  • carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization.
  • the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
  • an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • the strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable.
  • oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the average particle size of the negative electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m.
  • a well-known pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
  • the negative electrode active material preferably contains a titanium atom. More specifically, since Li 4 Ti 5 O 12 has a small volume fluctuation at the time of occlusion and release of lithium ions, it has excellent rapid charge / discharge characteristics, suppresses electrode deterioration, and improves the life of lithium ion secondary batteries. This is preferable. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
  • a negative electrode active material containing Si element In the all solid state secondary battery of the present invention, it is also preferable to apply a negative electrode active material containing Si element.
  • a Si negative electrode can occlude more Li ions than current carbon negative electrodes (graphite, acetylene black, etc.). That is, since the amount of Li ion storage per weight increases, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended, and use in a battery for vehicles is expected in the future.
  • the volume change associated with insertion and extraction of Li ions is large. In one example, the volume expansion of the carbon negative electrode is about 1.2 to 1.5 times, and the volume of Si negative electrode is about three times. There is also an example.
  • the durability of the electrode layer is insufficient, and for example, contact shortage is likely to occur, and cycle life (battery life) is shortened.
  • the solid electrolyte composition according to the present invention even in an electrode layer in which such expansion / contraction increases, the high durability (strength) can be exhibited, and the excellent advantages can be exhibited more effectively. is there.
  • the concentration of the negative electrode active material is not particularly limited, but is preferably 10 to 80% by mass, more preferably 20 to 70% by mass in 100% by mass of the solid component in the solid electrolyte composition.
  • the solid electrolyte composition is shown in consideration of an example in which a positive electrode active material or a negative electrode active material is contained.
  • the present invention is not construed as being limited thereto.
  • a conductive support agent suitably as needed.
  • carbon fibers such as graphite, carbon black, acetylene black, ketjen black, carbon nanotubes, metal powders, metal fibers, polyphenylene derivatives, and the like can be included.
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the positive / negative current collector an electron conductor that does not cause a chemical change is preferably used.
  • the current collector of the positive electrode in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred.
  • the negative electrode current collector aluminum, copper, stainless steel, nickel, and titanium are preferable, and aluminum, copper, and a copper alloy are more preferable.
  • a film sheet is usually used, but a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 ⁇ m to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • the all-solid-state secondary battery may be manufactured by a conventional method. Specifically, there is a method in which the solid electrolyte composition is applied onto a metal foil serving as a current collector to form a battery electrode sheet having a coating film formed thereon. For example, a composition serving as a positive electrode material is applied onto a metal foil that is a positive electrode current collector and then dried to form a positive electrode layer. Next, the solid electrolyte composition is applied onto the positive electrode sheet for a battery and then dried to form a solid electrolyte layer. Furthermore, after applying the composition used as a negative electrode material on it, it dries and forms a negative electrode layer.
  • a structure of an all-solid-state secondary battery in which a solid electrolyte layer is sandwiched between a positive electrode layer and a negative electrode layer can be obtained by stacking a current collector (metal foil) on the negative electrode side thereon.
  • coating method of said each composition should just follow a conventional method.
  • a drying treatment may be performed after each application of the composition forming the positive electrode active material layer, the composition forming the inorganic solid electrolyte layer (solid electrolyte composition), and the composition forming the negative electrode active material layer.
  • a drying process may be performed.
  • drying temperature is not specifically limited, 30 degreeC or more is preferable and 60 degreeC or more is more preferable.
  • the upper limit is preferably 300 ° C. or lower, and more preferably 250 ° C. or lower.
  • the all solid state secondary battery according to the present invention can be applied to various uses.
  • the application mode is not particularly limited, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a cellular phone, a cordless phone, a pager, a handy terminal, a portable fax machine, a portable copy.
  • Examples include portable printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, and memory cards.
  • Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • a solid electrolyte composition (positive electrode or negative electrode composition) containing an active material capable of inserting and releasing metal ions belonging to Group 1 or Group 2 of the Periodic Table.
  • the battery electrode sheet which formed the said solid electrolyte composition on metal foil.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is All-solid-state secondary battery made into the layer comprised with the solid electrolyte composition.
  • the manufacturing method of the electrode sheet for batteries which arrange
  • the manufacturing method of the all-solid-state secondary battery which manufactures an all-solid-state secondary battery via the manufacturing method of the said battery electrode sheet.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery is classified into an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above LLT, LLZ, or the like. .
  • the application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above LLT and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material.
  • electrolyte salt or “supporting electrolyte”.
  • the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonimide).
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • Example of polyrotaxane synthesis B-1 In 300 g of water, 10 g of polyethylene glycol bisamine having a weight average molecular weight of 20000 (synthesized according to JP 2009-507943) and 35 g of ⁇ -cyclodextrin (manufactured by Wako Pure Chemical Industries, Ltd.) were added and heated to 80 ° C. for dissolution. The solution was stirred for 2 hours, cooled to 5 ° C. and allowed to stand for 8 hours.
  • the produced precipitate was dried, added to a solution of 25 g of 2,4-dinitrofluorobenzene (Wako Pure Chemical Industries, Ltd.) and 100 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.) and stirred at room temperature for 12 hours.
  • the reaction product was dissolved by adding 500 g of dimethyl sulfoxide (DMSO), and then poured into 10 kg of 0.1% strength saline to precipitate the product.
  • DMSO dimethyl sulfoxide
  • the precipitate was washed with water and methanol 5 times each and then dried in vacuo at 50 ° C. for 8 hours.
  • composition ratio of the clathrate compound calculated from 1 H-NMR was 100: 17 in terms of the ratio of the number of moles of ethylene oxide units to the number of moles of ⁇ -cyclodextrin molecules (the reactive group M-13 in Table 1 is cyclohexane). Dextrin hydroxyl group).
  • binders polyrotaxane compounds
  • composition for a positive electrode of the secondary battery obtained above was applied onto an aluminum foil having a thickness of 20 ⁇ m with an applicator having an arbitrary clearance and dried at 80 ° C. for 2 hours. Then, it heated and pressurized so that it might become arbitrary density using the heat press machine, and the positive electrode for secondary batteries was obtained.
  • Electrode sheet for secondary battery On the positive electrode for secondary batteries obtained above, the solid electrolyte composition obtained above was applied with an applicator having an arbitrary clearance, heated at 80 ° C. for 2 hours, and dried. Then, the composition for secondary battery negative electrodes obtained above was further applied, heated at 80 ° C. for 2 hours, and dried. A copper foil having a thickness of 20 ⁇ m was combined on the negative electrode layer, and heated and pressurized to a desired density using a heat press machine, to obtain an electrode sheet for a secondary battery.
  • Example of production of solid electrolyte sheet The solid electrolyte composition S-1 obtained as described above was applied onto an aluminum foil having a thickness of 20 ⁇ m with an applicator having an arbitrary clearance, and dried at 80 ° C. for 2 hours. Thereafter, a copper foil having a thickness of 20 ⁇ m was combined, heated and pressurized to a desired density using a heat press machine, and the test nos. 101 solid electrolyte sheet was obtained. Test No. shown in Table 3 below. The solid electrolyte sheets 102 to 112 and c11 to c13 were produced in the same manner.
  • the molecular weight of the polymer means the weight average molecular weight unless otherwise specified, and the weight average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC).
  • the measurement method is a value measured by the method of Condition 1 below.
  • an appropriate eluent may be selected and used depending on the polymer type.
  • the binding property was evaluated using the electrode sheet in a state before applying the negative electrode composition (a state where the solid electrolyte composition was dried).
  • An adhesive tape (cellophane tape (“CT24”, manufactured by Nichiban Co., Ltd.)) was applied to the cured solid electrolyte composition surface, and when peeled at a constant speed, the peeled area was visually confirmed.
  • the area ratio of the part that was not peeled was evaluated as follows. 5: 0% 4: More than 0% and less than 5% 3: 5% or more and less than 20% 2: 20% or more and less than 50% 1: 50% or more
  • An electrode sheet (composite solid electrolyte sheet, secondary battery electrode) was punched into a 4 cm square, wound around a SUS rod having a different thickness, and evaluated by the radius of the rod when each composition was peeled off from the electrode sheet.
  • the electrode sheet (composite solid electrolyte sheet, secondary battery electrode sheet) obtained above was cut into a disk shape having a diameter of 14.5 mm, and placed in a stainless steel 2032 type coin case incorporating a spacer and washer. Was made. From the outside of the coin battery, it was sandwiched between jigs capable of applying pressure between the electrodes, and used for various electrochemical measurements. The pressure between the electrodes was 500 kgf / cm 2 . It calculated
  • 11 is an upper support plate
  • 12 is a lower support plate
  • 13 is a coin battery
  • 14 is a coin case
  • 15 is an electrode sheet (solid electrolyte sheet or secondary battery electrode sheet)
  • S is a screw.
  • Table 3 shows the measurement results of the electrode binding properties of the solid electrolyte sheet, and the ionic conductivity in the pressurized and non-pressurized states. At this time, the measurement in the pressurized state is a case where measurement is performed with the coin battery sandwiched between the jigs, and the measurement in the non-pressurized state indicates that the coin battery is measured as it is.
  • Amount introduced Amount of cyclic molecule introduced: Number of moles of cyclic molecule when the number of moles of monomer units of the linear molecule is 100
  • the terminal group was a 2,4-dinitrophenyl group.
  • the molecular weight was determined by the GPC measurement, and values below 1000 were rounded off.
  • PA Polymer particles obtained by the following synthesis method In an autoclave, 700 parts of n-butyl acrylate, 200 parts of styrene, 5 parts of methacrylic acid, 10 parts of divinylbenzene, polyoxyethylene lauryl ether as an emulsifier (Emulgen, manufactured by Kao Corporation) 108, a nonionic surfactant, an alkyl group having 12 carbon atoms, an HLB value of 12.1) 25 parts, 1500 parts of ion-exchanged water, and 15 parts of azobisbutyronitrile as a polymerization initiator were charged and sufficiently stirred. Then, it superposed
  • emulsifier Emulgen, manufactured by Kao Corporation
  • HBR Polymer obtained by the following synthesis method 30 parts of cyclohexane and 10 parts of butadiene are added to an autoclave, and 30 parts of a 14% tetrahydrofuran solution of n-butyllithium is added. The temperature is raised to 70 ° C., and when the conversion rate reaches 100%, 30 parts of butadiene and 120 parts of tetrahydrofuran are further added, and the reaction is carried out at 70 ° C. When the conversion rate reached 100%, 30 parts of 20% dichlorosilane tetrahydrofuran solution was added and reacted for 20 minutes to obtain a triblock polymer.
  • reaction solution was brought to 70 ° C., and 3 parts of n-butyllithium, 3 parts of 2,6-di-t-butyl-p-cresol, 1 part of bis (cyclopentadienyl) titanium dichloride and 2 parts of diethylaluminum chloride were added.
  • a block polymer was obtained by reacting at a hydrogen pressure of 10 kg / cm 2 for 1 hour, evaporating and drying.
  • LMO LiMn 2 O 4 lithium manganate
  • LTO Li 4 Ti 5 O 12 lithium titanate (trade name “Enamite LT-106”, manufactured by Ishihara Sangyo Co., Ltd.)
  • LCO LiCoO 2
  • Lithium cobaltate NMC Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2 Nickel, manganese, lithium cobalt oxide graphite: Spheroidized graphite powder manufactured by Nippon Graphite Industries Co., Ltd .: Amount of additive added:% by mass when binder weight is 100
  • Amount introduced amount of cyclic molecule introduced ... number of moles of cyclic molecule when the number of moles of monomer units of the linear molecule is 100.
  • Terminal group 2,4-dinitrophenyl group

Abstract

 An all-solid-state secondary cell provided with a positive electrode active layer, a negative electrode active layer, and a solid electrolyte layer, wherein at least one of the positive electrode active layer, the negative electrode active layer, and the solid electrolyte layer contains a binder and an inorganic solid electrolyte having conductivity for ions of a metal from Group 1 or Group 2 of the periodic table, the binder containing a compound having a structure in which a linear molecule penetrates a cyclic molecule.

Description

全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートの製造方法および全固体二次電池の製造方法All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, method for producing battery electrode sheet, and method for producing all-solid secondary battery
 本発明は、全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートの製造方法および全固体二次電池の製造方法に関する。 The present invention relates to an all-solid secondary battery, a solid electrolyte composition and a battery electrode sheet used therefor, a method for producing a battery electrode sheet, and a method for producing an all-solid secondary battery.
 現在、汎用されているリチウムイオン電池には、電解液が用いられているものが多い。この電解液を固体電解質に置き換え、構成材料を全て固体にする試みが進められている。なかでも、無機の固体電解質を利用する技術の利点としてまず挙げられるのが信頼性である。リチウムイオン二次電池に用いられる電解液には、その媒体として、カーボネート系溶媒など、可燃性の材料が適用されている。様々な対策が採られているものの、過充電時などに備えたさらなる対応が望まれる。その解決手段として、電解質を不燃性のものとしうる無機化合物からなる全固体二次電池が位置づけられる。また、高分子電解質に比し、無機固体電解質は高いイオン伝導性を示すのも利点である。
 全固体二次電池のさらなる利点としては、電極のスタックによる高エネルギー密度化に適していることが挙げられる。具体的には、電極と電解質を直接並べて直列化した構造を持つ電池にすることができる。このとき、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略することができるので、電池のエネルギー密度が大幅に高められる。また、高電位化が可能な正極材料との相性の良さなども利点として挙げられる。
Currently, many lithium ion batteries that are widely used use an electrolytic solution. Attempts have been made to replace this electrolytic solution with a solid electrolyte and make all the constituent materials solid. Among them, reliability is first mentioned as an advantage of a technique using an inorganic solid electrolyte. A flammable material such as a carbonate-based solvent is used as a medium for the electrolytic solution used in the lithium ion secondary battery. Although various measures have been taken, further measures in preparation for overcharge are desired. As a solution to this problem, an all-solid secondary battery made of an inorganic compound capable of making the electrolyte nonflammable is positioned. In addition, it is an advantage that the inorganic solid electrolyte exhibits higher ionic conductivity than the polymer electrolyte.
A further advantage of the all-solid-state secondary battery is that it is suitable for increasing the energy density by stacking electrodes. Specifically, a battery having a structure in which an electrode and an electrolyte are directly arranged in series can be obtained. At this time, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery is greatly increased. In addition, good compatibility with the positive electrode material capable of increasing the potential is also mentioned as an advantage.
 上記のような各利点から、次世代のリチウムイオン二次電池として、その開発は精力的に進められている(非特許文献1)。一方で、無機系の全固体二次電池においては、その電解質が硬質の固体であるために不利な点もある。例えば、固体粒子間の界面抵抗が大きくなることが挙げられる。これを改善するために、特定の高分子化合物をバインダーとして用いた例がある。具体的に特許文献1は、ポリオキシエチレン鎖を有する界面活性剤を利用する。特許文献2は水素化ブタジエン共重合体の利用を開示する。 Developed as a next-generation lithium ion secondary battery due to the above-described advantages, it has been vigorously developed (Non-patent Document 1). On the other hand, an inorganic all-solid secondary battery has a disadvantage because the electrolyte is a hard solid. For example, the interface resistance between solid particles is increased. In order to improve this, there is an example using a specific polymer compound as a binder. Specifically, Patent Document 1 uses a surfactant having a polyoxyethylene chain. Patent Document 2 discloses the use of a hydrogenated butadiene copolymer.
特開2013-008611号公報JP 2013-008611 A 特開2011-134675号公報JP 2011-134675 A
 上記特許文献の技術により、全固体二次電池における界面抵抗の増大はそれなりに改善されるかもしれない。しかしながら、上記文献に開示された高分子化合物からなるバインダーでは昨今の高い要求レベルを満足することができず、さらなる改善が望まれる。
 そこで本発明は、全固体二次電池において、活物質層と無機固体電解質層との加圧によらずに高いイオン伝導度を実現し、さらに良好な折曲げ耐久性及び材料の結着性を実現した全固体二次電池、これに用いる固体電解質組成物および電池用電極シート、ならびに電池用電極シートの製造方法および全固体二次電池の製造方法の提供を目的とする。
The increase in the interfacial resistance in the all-solid-state secondary battery may be improved accordingly by the technique of the above patent document. However, the binder made of the polymer compound disclosed in the above document cannot satisfy the recent high demand level, and further improvement is desired.
Therefore, the present invention achieves high ionic conductivity in an all-solid-state secondary battery regardless of the pressurization of the active material layer and the inorganic solid electrolyte layer, and further has good bending durability and material binding properties. It is an object of the present invention to provide an all-solid secondary battery realized, a solid electrolyte composition and a battery electrode sheet used therefor, a method for producing a battery electrode sheet, and a method for producing an all-solid secondary battery.
 上記の課題は、以下の手段により解決された。
〔1〕正極活物質層と負極活物質層と固体電解質層とを具備する全固体二次電池であって、上記正極活物質層、負極活物質層、および固体電解質層の少なくともいずれかが周期律表第一族または第二族に属する金属のイオンの伝導性を有する無機固体電解質とバインダーとを含み、上記バインダーが環状分子に線状分子が貫通した構造を有する化合物を含む全固体二次電池。
〔2〕上記環状分子がシクロデキストリンまたはその誘導体である〔1〕に記載の全固体二次電池。
〔3〕上記線状分子がポリオレフィン、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリアクリレート、ポリウレタン、ポリウレア、ヘテロ環を主鎖に有するポリマー、又はポリエン構造を含む化合物である〔1〕または〔2〕に記載の全固体二次電池。
〔4〕上記線状分子の分子量が10,000以上である〔1〕~〔3〕のいずれか1つに記載の全固体二次電池。
〔5〕上記環状分子または線状分子が下記反応性置換基(A)および下記反応性連結基(B)の少なくともいずれか1つ又はその反応性置換基もしくは反応性連結基を介した架橋構造を有する〔1〕~〔4〕のいずれか1つに記載の全固体二次電池。
反応性置換基(A)
 アミノ基、チオール基、テトラヒドロフリル基、オキセタン基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基
反応性連結基(B)
 イミノ基、アルケニレン基含有基
〔6〕上記線状分子の末端にかさ高い置換基を有する〔1〕~〔5〕のいずれか1つに記載の全固体二次電池。
〔7〕上記環状分子が下記式(2-1)~(2-4)のいずれかで表される構造を有する〔1〕~〔6〕のいずれか1つに記載の全固体二次電池。
Figure JPOXMLDOC01-appb-C000004
 Lは先の連結基である。
 Arは環状構造基である。
 RA1~RA4は水素原子、ハロゲン原子、メチル基、エチル基、シアノ基、またはヒドロキシル基である。
 環αはXA1を一つ以上含む環状構造基あり、酸素原子、硫黄原子、イミノ基、カルボニル基、アルキレン基、アルケニレン基、アリーレン基またはこれらの組み合わせで環構造を形成している。
 XA1、XA2はそれぞれ独立にヘテロ原子含有連結基を表す。
〔8〕上記環状分子に線状分子が貫通した構造を有する化合物において、上記線状分子が複数の単量体を有する高分子化合物であり、線状分子と環状分子の割合が、線状分子を構成する単量体単位のモル数:環状分子の数の比で、100:0.1~100:70である〔1〕~〔7〕のいずれか1つに記載の全固体二次電池。
〔9〕上記線状分子が下記式(1-1)~(1-5)のいずれかで表される構造を含む化合物である〔1〕~〔8〕のいずれか1つに記載の全固体二次電池。
Figure JPOXMLDOC01-appb-C000005
 Lはアルキレン基またはアルケニレン基である。Lは、連結基である。R31およびR32はそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アラルキル基である。R41、R42、R51、R52はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ヒドロキシル基、アルキル基、アリール基、アラルキル基である。分子内に複数あるL、L、R31、R32、R41、R42、R51、R52は互いに同じでも異なっていてもよい。
〔10〕上記反応性置換基(A)が下記官能基の少なくともいずれか1つである〔5〕に記載の全固体二次電池。
官能基
 チオール基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基
〔11〕上記バインダーを上記無機固体電解質100質量部に対して、0.1質量部以上20質量部以下で含有させた〔1〕~〔10〕のいずれか1つに記載の全固体二次電池。
〔12〕上記反応性置換基(A)が下記官能基の少なくともいずれか1つである〔10〕に記載の全固体二次電池。
官能基
 カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基
〔13〕上記無機固体電解質が酸化物系の無機固体電解質である〔1〕~〔12〕のいずれか1つに記載の全固体二次電池。
〔14〕上記無機固体電解質が下記式の化合物から選ばれる〔13〕に記載の全固体二次電池。
・LixaLayaTiO
   xa=0.3~0.7、ya=0.3~0.7
・LiLaZr12
・Li3.5Zn0.25GeO
・LiTi12
・Li1+xh+yh(Al,Ga)xh(Ti,Ge)xhSiyhyh12
   0≦xh≦1、0≦yh≦1
・LiPO
・LiPON
・LiPOD
    Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
    Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、及びAu
    から選ばれた少なくとも1種
・LiAON
    Aは、Si、B、Ge、Al、C、Ga等から選ばれた
    少なくとも1種
〔15〕全固体二次電池用の固体電解質組成物であって、周期律表第一族または第二族に属する金属のイオンの伝導性を有する無機固体電解質と環状分子に線状分子が貫通した構造を有する化合物を含むバインダーを含む固体電解質組成物。
〔16〕さらに分散媒体を含有する〔15〕に記載の固体電解質組成物。
〔17〕上記分散媒体が、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、およびニトリル化合物溶媒から選ばれる〔16〕に記載の固体電解質組成物。
〔18〕さらにラジカル重合開始剤および/または架橋剤を含む〔15〕~〔17〕のいずれか1つに記載の固体電解質組成物。
〔19〕上記バインダーを上記無機固体電解質100質量部に対して、0.1質量部以上20質量部以下で含有させた〔15〕~〔18〕のいずれか1つに記載の固体電解質組成物。
〔20〕上記環状分子がシクロデキストリンまたはその誘導体である〔15〕~〔19〕のいずれか1つに記載の固体電解質組成物。
〔21〕上記線状分子がポリオレフィン、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリアクリレート、ポリウレタン、ポリウレア、ヘテロ環を主鎖に有するポリマー又はポリエン構造を含む化合物である〔15〕~〔20〕のいずれか1つに記載の固体電解質組成物。
〔22〕上記環状分子または線状分子が下記反応性置換基(A)および下記反応性連結基(B)の少なくともいずれか1つ又はその反応性置換基を介した架橋構造を有する〔15〕~〔21〕のいずれか1つに記載の固体電解質組成物。
反応性置換基(A)
 アミノ基、チオール基、テトラヒドロフリル基、オキセタン基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸、アルケニル基含有基
反応性連結基(B)
 イミノ基、アルケニレン基含有基
〔23〕上記線状分子の末端にかさ高い置換基を有する〔15〕~〔22〕のいずれか1つに記載の固体電解質組成物。
〔24〕上記線状分子が下記式(1-1)~(1-5)のいずれかで表される構造を含む化合物である〔15〕~〔23〕のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000006
 Lはアルキレン基またはアルケニレン基である。Lは、連結基である。R31およびR32はそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アラルキル基である。R41、R42、R51、R52はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ヒドロキシル基、アルキル基、アリール基、アラルキル基である。分子内に複数あるL、L、R31、R32、R41、R42、R51、R52は互いに同じでも異なっていてもよい。
〔25〕上記反応性置換基(A)が下記官能基の少なくともいずれか1つである〔22〕に記載の固体電解質組成物。
官能基
 チオール基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基
〔26〕上記反応性置換基(A)が下記官能基の少なくともいずれか1つである〔25〕に記載の固体電解質組成物。
官能基
 カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基
〔27〕〔15〕~〔26〕のいずれか1つに記載の固体電解質組成物を金属箔上に製膜した電池用電極シート。
〔28〕〔15〕~〔27〕のいずれか1つに記載の固体電解質組成物を金属箔上に製膜する電池用電極シートの製造方法。
〔29〕上記製膜した固体電解質組成物を80℃以上で加熱する〔28〕に記載の電池用電極シートの製造方法。
〔30〕〔28〕または〔29〕に記載の電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
The above problem has been solved by the following means.
[1] An all-solid-state secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is periodic An all-solid secondary comprising an inorganic solid electrolyte having conductivity of metal ions belonging to the first or second group of the table and a binder, wherein the binder comprises a compound having a structure in which a linear molecule penetrates a cyclic molecule. battery.
[2] The all solid state secondary battery according to [1], wherein the cyclic molecule is cyclodextrin or a derivative thereof.
[3] The linear molecule is a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure [1] or [2 ] The all-solid-state secondary battery as described in above.
[4] The all-solid secondary battery according to any one of [1] to [3], wherein the molecular weight of the linear molecule is 10,000 or more.
[5] A crosslinked structure in which the cyclic molecule or linear molecule is at least one of the following reactive substituent (A) and the following reactive linking group (B), or the reactive substituent or reactive linking group The all-solid-state secondary battery according to any one of [1] to [4].
Reactive substituent (A)
Amino group, thiol group, tetrahydrofuryl group, oxetane group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group reactive linking group (B)
The imino group, alkenylene group-containing group [6] The all-solid-state secondary battery according to any one of [1] to [5], which has a bulky substituent at the end of the linear molecule.
[7] The all-solid-state secondary battery according to any one of [1] to [6], wherein the cyclic molecule has a structure represented by any of the following formulas (2-1) to (2-4): .
Figure JPOXMLDOC01-appb-C000004
L A is a preceding linking group.
Ar 2 is a cyclic structural group.
R A1 to R A4 are a hydrogen atom, a halogen atom, a methyl group, an ethyl group, a cyano group, or a hydroxyl group.
Ring α is a cyclic structure group containing one or more X A1 , and forms a ring structure with an oxygen atom, a sulfur atom, an imino group, a carbonyl group, an alkylene group, an alkenylene group, an arylene group, or a combination thereof.
X A1 and X A2 each independently represent a hetero atom-containing linking group.
[8] In the compound having a structure in which a linear molecule penetrates the cyclic molecule, the linear molecule is a polymer compound having a plurality of monomers, and the ratio of the linear molecule to the cyclic molecule is a linear molecule. The all-solid-state secondary battery according to any one of [1] to [7], wherein the ratio of moles of monomer units constituting the number of cyclic molecules is 100: 0.1 to 100: 70 .
[9] The entire linear molecule according to any one of [1] to [8], wherein the linear molecule is a compound having a structure represented by any of the following formulas (1-1) to (1-5): Solid secondary battery.
Figure JPOXMLDOC01-appb-C000005
L 1 is an alkylene group or an alkenylene group. L 2 is a linking group. R 31 and R 32 are each independently a hydrogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, an alkyl group, an aryl group or an aralkyl group. A plurality of L 1 , L 2 , R 31 , R 32 , R 41 , R 42 , R 51 , R 52 in the molecule may be the same as or different from each other.
[10] The all-solid-state secondary battery according to [5], wherein the reactive substituent (A) is at least one of the following functional groups.
Functional group: thiol group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group [11] The binder is added to 100 parts by mass of the inorganic solid electrolyte. The all-solid-state secondary battery according to any one of [1] to [10], which is contained in an amount of 0.1 to 20 parts by mass.
[12] The all-solid-state secondary battery according to [10], wherein the reactive substituent (A) is at least one of the following functional groups.
Functional group Carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group [13] All solid described in any one of [1] to [12], wherein the inorganic solid electrolyte is an oxide-based inorganic solid electrolyte Secondary battery.
[14] The all-solid-state secondary battery according to [13], wherein the inorganic solid electrolyte is selected from the following formulae.
・ Li xa La ya TiO 3
xa = 0.3 to 0.7, ya = 0.3 to 0.7
・ Li 7 La 3 Zr 2 O 12
・ Li 3.5 Zn 0.25 GeO 4
・ LiTi 2 P 3 O 12
Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2 -xh Si yh P 3 -yh O 12
0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1
・ Li 3 PO 4
・ LiPON
・ LiPOD 1
D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au
At least one selected from LiA 1 ON
A 1 is at least one selected from Si, B, Ge, Al, C, Ga and the like [15] a solid electrolyte composition for an all-solid-state secondary battery, and is a first group or second group in the periodic table A solid electrolyte composition comprising a binder containing an inorganic solid electrolyte having conductivity of metal ions belonging to the group and a compound having a structure in which a linear molecule penetrates a cyclic molecule.
[16] The solid electrolyte composition according to [15], further containing a dispersion medium.
[17] The solid electrolyte composition according to [16], wherein the dispersion medium is selected from alcohol compound solvents, ether compound solvents, amide compound solvents, ketone compound solvents, aromatic compound solvents, aliphatic compound solvents, and nitrile compound solvents. object.
[18] The solid electrolyte composition according to any one of [15] to [17], further comprising a radical polymerization initiator and / or a crosslinking agent.
[19] The solid electrolyte composition according to any one of [15] to [18], wherein the binder is contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the inorganic solid electrolyte. .
[20] The solid electrolyte composition according to any one of [15] to [19], wherein the cyclic molecule is cyclodextrin or a derivative thereof.
[21] The linear molecule is a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, a polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure [15] to [20] Solid electrolyte composition as described in any one of these.
[22] The cyclic molecule or linear molecule has a crosslinked structure via at least one of the following reactive substituent (A) and the following reactive linking group (B) or the reactive substituent [15]. The solid electrolyte composition according to any one of to [21].
Reactive substituent (A)
Amino group, thiol group, tetrahydrofuryl group, oxetane group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid, alkenyl group-containing group reactive linking group (B)
Imino group, alkenylene group-containing group [23] The solid electrolyte composition according to any one of [15] to [22], which has a bulky substituent at the end of the linear molecule.
[24] The solid according to any one of [15] to [23], wherein the linear molecule is a compound containing a structure represented by any of the following formulas (1-1) to (1-5): Electrolyte composition.
Figure JPOXMLDOC01-appb-C000006
L 1 is an alkylene group or an alkenylene group. L 2 is a linking group. R 31 and R 32 are each independently a hydrogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, an alkyl group, an aryl group or an aralkyl group. A plurality of L 1 , L 2 , R 31 , R 32 , R 41 , R 42 , R 51 , R 52 in the molecule may be the same as or different from each other.
[25] The solid electrolyte composition according to [22], wherein the reactive substituent (A) is at least one of the following functional groups.
Functional group: thiol group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group [26] The reactive substituent (A) has the following functional group: The solid electrolyte composition according to [25], which is at least one of them.
Functional group carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group [27] [15] to [26] A solid electrode composition according to any one of [27], [15] to [26] .
[28] A method for producing an electrode sheet for a battery, wherein the solid electrolyte composition according to any one of [15] to [27] is formed on a metal foil.
[29] The method for producing an electrode sheet for a battery according to [28], wherein the formed solid electrolyte composition is heated at 80 ° C. or higher.
[30] A method for producing an all-solid secondary battery, wherein an all-solid secondary battery is produced through the method for producing an electrode sheet for a battery according to [28] or [29].
 本明細書において、特定の符号で表示された置換基や連結基が複数あるとき、あるいは複数の置換基等(置換基数の規定も同様)を同時もしくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよい。また、複数の置換基等が近接するときにはそれらが互いに結合したり縮合したりして環を形成していてもよい。 In this specification, when there are a plurality of substituents or linking groups indicated by a specific symbol, or when a plurality of substituents (the definition of the number of substituents is the same) is specified simultaneously or alternatively, each substitution The groups and the like may be the same as or different from each other. Further, when a plurality of substituents and the like are close to each other, they may be bonded to each other or condensed to form a ring.
 本発明の全固体二次電池は、活物質層と無機固体電解質層との加圧によらずに高いイオン伝導度を実現し、さらに折曲げ耐久性及び材料の結着性に優れる。
 本発明の固体電解質組成物、電池用電極シート、電池用電極シートの製造方法および全固体二次電池の製造方法によれば、上記の電池用電極シートおよび全固体二次電池を好適に製造することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
The all-solid-state secondary battery of the present invention achieves high ionic conductivity regardless of the pressurization of the active material layer and the inorganic solid electrolyte layer, and is excellent in bending durability and material binding.
According to the solid electrolyte composition, the battery electrode sheet, the battery electrode sheet manufacturing method and the all solid secondary battery manufacturing method of the present invention, the battery electrode sheet and the all solid secondary battery are preferably manufactured. be able to.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の好ましい実施形態に係る全固体リチウムイオン二次電池を模式化して示す断面図である。FIG. 1 is a cross-sectional view schematically showing an all solid lithium ion secondary battery according to a preferred embodiment of the present invention. 図2は、本発明の好ましい実施形態に係るポリロタキサン化合物の架橋物を模式的に示した分子構造図である。FIG. 2 is a molecular structure diagram schematically showing a crosslinked product of a polyrotaxane compound according to a preferred embodiment of the present invention. 図3は、実施例で利用した試験装置を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a test apparatus used in the examples.
 本発明の全固体二次電池は、正極活物質層と負極活物質層と固体電解質層とを具備し、そのいずれかの層が、イオン伝導性を有する無機固体電解質と特定のバインダーとを含有する。以下、図面を参照してその好ましい実施形態について説明する。 The all-solid-state secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and any one of the layers contains an inorganic solid electrolyte having ion conductivity and a specific binder. To do. Hereinafter, preferred embodiments will be described with reference to the drawings.
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、無機固体電解質層3、正極活物質層4、正極集電体5を、その順で有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。本発明の固体電解質組成物は、上記負極活物質層、正極活物質層または無機固体電解質層の構成材料として用いることが好ましく、中でも、無機固体電解質層、正極活物質層および負極活物質層のすべての構成材料として、用いることが好ましい。なお、正極活物質層、負極活物質層を総称して「活物質層」と呼ぶことがある。また、無機固体電解質層を「固体電解質層」または「電解質層」と呼ぶことがある。 FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention. The all-solid-state secondary battery 10 of the present embodiment includes a negative electrode current collector 1, a negative electrode active material layer 2, an inorganic solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in that order as viewed from the negative electrode side. Have in. Each layer is in contact with each other and has a laminated structure. By adopting such a structure, at the time of charging, electrons (e ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein. On the other hand, at the time of discharge, lithium ions (Li + ) accumulated in the negative electrode are returned to the positive electrode side, and electrons are supplied to the working part 6. In the example shown in the figure, a light bulb is adopted as the operation part 6 and is turned on by discharge. The solid electrolyte composition of the present invention is preferably used as a constituent material of the negative electrode active material layer, the positive electrode active material layer or the inorganic solid electrolyte layer, and among them, the inorganic solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer. It is preferable to use as all constituent materials. Note that the positive electrode active material layer and the negative electrode active material layer may be collectively referred to as an “active material layer”. In addition, the inorganic solid electrolyte layer may be referred to as “solid electrolyte layer” or “electrolyte layer”.
 正極活物質層4、負極活物質層2の厚さは、目的とする電池容量に応じて定めることができる。一般的な素子の寸法を考慮すると、1μm以上であることが好ましく、3μmであることがより好ましい。上限としては、1000μm以下であることが好ましく、400μm以下であることがより好ましい。
 一方、無機固体電解質層3は正負極の短絡を防止しつつ、できる限り薄いことが望ましい。さらに、本発明の効果が顕著に発現することが好ましく、具体的には、1μm以上であることが好ましく、3μm以上であることがより好ましい。上限としては、1000μm以下であることが好ましく、400μm以下であることがより好ましい。
The thicknesses of the positive electrode active material layer 4 and the negative electrode active material layer 2 can be determined according to the target battery capacity. In consideration of general element dimensions, it is preferably 1 μm or more, and more preferably 3 μm. As an upper limit, it is preferable that it is 1000 micrometers or less, and it is more preferable that it is 400 micrometers or less.
On the other hand, the inorganic solid electrolyte layer 3 is desirably as thin as possible while preventing a short circuit between the positive and negative electrodes. Furthermore, it is preferable that the effect of the present invention is remarkably exhibited. Specifically, it is preferably 1 μm or more, and more preferably 3 μm or more. As an upper limit, it is preferable that it is 1000 micrometers or less, and it is more preferable that it is 400 micrometers or less.
<固体電解質組成物>
 本発明の固体電解質組成物とは、無機固体電解質を含む組成物のことを言う。本発明の全固体二次電池の無機固体電解質層、正極活物質層および負極活物質層の少なくともいずれかを形成する材料として用いられる。固体電解質組成物は固体に限らず、液状やペースト状であってもよい。
(無機固体電解質)
 無機固体電解質とは、無機の固体電解質のことである。本明細書において、固体電解質というときには、その内部においてイオンを移動させることができる固体状の電解質のことを意味する。この観点から、後記電解質塩(支持電解質)との区別を考慮し、無機固体電解質を、イオン伝導性無機固体電解質と呼ぶことがある。無機固体電解質のイオン伝導度は特に限定されないが、リチウムイオンにおいて、1×10-6S/cm以上であることが好ましく、1×10-5S/cm以上であることがより好ましく、1×10-4S/cm以上であることがさらに好ましく、1×10-3S/cm以上であることが特に好ましい。上限は特にないが、1S/cm以下が実際的である。イオン伝導度の測定方法は、特に断らない限り、後記実施例で測定した非加圧条件によるものとする。
<Solid electrolyte composition>
The solid electrolyte composition of the present invention refers to a composition containing an inorganic solid electrolyte. It is used as a material for forming at least one of the inorganic solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer of the all solid state secondary battery of the present invention. The solid electrolyte composition is not limited to a solid, and may be liquid or pasty.
(Inorganic solid electrolyte)
An inorganic solid electrolyte is an inorganic solid electrolyte. In the present specification, the term “solid electrolyte” means a solid electrolyte capable of moving ions therein. From this viewpoint, the inorganic solid electrolyte may be referred to as an ion conductive inorganic solid electrolyte in consideration of the distinction from the electrolyte salt (supporting electrolyte) described later. The ionic conductivity of the inorganic solid electrolyte is not particularly limited, but is preferably 1 × 10 −6 S / cm or more, more preferably 1 × 10 −5 S / cm or more in lithium ions. More preferably, it is 10 −4 S / cm or more, and particularly preferably 1 × 10 −3 S / cm or more. There is no particular upper limit, but 1 S / cm or less is practical. Unless otherwise specified, the ion conductivity measurement method is based on the non-pressurized conditions measured in Examples described later.
 無機固体電解質は、高分子化合物や錯塩などの有機物は含まないことから、有機固体電解質(PEO(ポリエチレンオキサイド)などに代表される高分子電解質、LiTFSIなどに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態で非解離性の固体であるため、液中でも、カチオンおよびアニオンに解離または遊離しない。この点で、電解液やポリマー中でカチオンおよびアニオンが解離または遊離する無機電解質塩(LiPF、LiBF,LiFSI,LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族または第二族に属する金属のイオン(好ましくはリチウムイオン)の伝導性を有する一方で、電子伝導性は有さないものが一般的である。 Since inorganic solid electrolytes do not contain organic compounds such as polymer compounds and complex salts, they are clear from organic solid electrolytes (polymer electrolytes typified by PEO (polyethylene oxide), organic electrolyte salts typified by LiTFSI, etc.) Are distinguished. In addition, since the inorganic solid electrolyte is a non-dissociable solid in a steady state, it does not dissociate or release into cations and anions even in the liquid. In this respect, it is also clearly distinguished from inorganic electrolyte salts (LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.) in which cations and anions are dissociated or liberated in the electrolytic solution or polymer. In general, the inorganic solid electrolyte has conductivity of metal ions (preferably lithium ions) belonging to Group 1 or Group 2 of the periodic table, but does not have electronic conductivity.
 本発明においては、電解質層ないし活物質層に周期律表第一族または第二族に属する金属のイオン(好ましくはリチウムイオン)伝導性の無機固体電解質を含有させる。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質(硫化物固体電解質と称することもある。)と(ii)酸化物系無機固体電解質(酸化物固体電解質と称することもある。)が代表例として挙げられる。 In the present invention, the electrolyte layer or the active material layer contains a metal ion (preferably lithium ion) conductive inorganic solid electrolyte belonging to Group 1 or Group 2 of the Periodic Table. As the inorganic solid electrolyte, a solid electrolyte material applied to this type of product can be appropriately selected and used. Typical examples of the inorganic solid electrolyte include (i) sulfide-based inorganic solid electrolyte (sometimes referred to as sulfide solid electrolyte) and (ii) oxide-based inorganic solid electrolyte (sometimes referred to as oxide solid electrolyte). As mentioned.
(i)硫化物系無機固体電解質
 硫化物固体電解質は、硫黄(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。例えば下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (1)
 
(式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。なかでも、B、Sn、Si、Al、Geが好ましく、Sn、Al、Geがより好ましい。Aは、I、Br、Cl、Fを示し、I、Brが好ましく、Iが特に好ましい。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~1:1:2~12:0~5を満たす。a1はさらに、1~9が好ましく、1.5~4がより好ましい。b1は0~0.5が好ましい。d1はさらに、3~7が好ましく、3.25~4.5がより好ましい。e1はさらに、0~3が好ましく、0~1がより好ましい。)
(I) Sulfide-based inorganic solid electrolyte A sulfide solid electrolyte contains sulfur (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulation. Those having properties are preferred. For example, a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (1) can be given.

L a1 M b1 P c1 S d1 A e1 (1)

(In the formula, L represents an element selected from Li, Na, and K, and Li is preferable. M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge. Among them, B, Sn, Si, Al, and Ge are preferable, and Sn, Al, and Ge are more preferable, A represents I, Br, Cl, and F, I and Br are preferable, and I is particularly preferable. E1 represents the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 1: 1: 2 to 12: 0 to 5. a1 is more preferably 1 to 9 1.5 to 4 is more preferable, b1 is preferably 0 to 0.5, d1 is further preferably 3 to 7, more preferably 3.25 to 4.5, and e1 is further preferably 0 to 3. 0 to 1 are more preferable.)
 式(1)において、L、M、P、S及びAの組成比は、好ましくはb1、e1が0であり、より好ましくはb1=0、e1=0で且つa1、c1及びd1の比(a1:c1:d1)がa1:c1:d1=1~9:1:3~7であり、さらに好ましくはb1=0、e1=0で且つa1:c1:d1=1.5~4:1:3.25~4.5である。各元素の組成比は、下記するように、硫化物系固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。 In the formula (1), the composition ratio of L, M, P, S and A is preferably such that b1 and e1 are 0, more preferably b1 = 0 and e1 = 0 and the ratio of a1, c1 and d1 ( a1: c1: d1) is a1: c1: d1 = 1-9: 1: 3-7, more preferably b1 = 0, e1 = 0 and a1: c1: d1 = 1.5-4: 1 : 3.25 to 4.5. The composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based solid electrolyte as described below.
 硫化物系固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。 The sulfide-based solid electrolyte may be amorphous (glass) or crystallized (glass ceramics), or only part of it may be crystallized.
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは65:35~85:15、より好ましくは68:32~75:25である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1以下であることが実際的である。 The ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and the Li—PS system glass ceramic is a molar ratio of Li 2 S: P 2 S 5 , preferably 65:35 to 85:15, more preferably 68:32 to 75:25. By setting the ratio of Li 2 S to P 2 S 5 within this range, the lithium ion conductivity can be increased. Specifically, the lithium ion conductivity can be preferably 1 × 10 −4 S / cm or more, more preferably 1 × 10 −3 S / cm or more. Although there is no upper limit, it is practical that it is 1 × 10 −1 or less.
 具体的な化合物例としては、例えばLiSと、第13族~第15族の元素の硫化物とを含有する原料組成物を用いてなるものを挙げることができる。具体的には、LiS-P、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。その中でも、LiS-P、LiS-GeS-Ga、LiS-LiI-P、LiS-LiI-LiO-P、LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiS-LiPO-P、LiS-GeS-P、Li10GeP12からなる結晶質およびまたは非晶質の原料組成物が高いリチウムイオン伝導性を有するので好ましい。このような原料組成物を用いて硫化物固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法および溶融急冷法を挙げることができ、中でもメカニカルミリング法が好ましい。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。 Specific examples of the compound include those using a raw material composition containing, for example, Li 2 S and a sulfide of an element belonging to Group 13 to Group 15. Specifically, Li 2 S—P 2 S 5 , Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 SP—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—GeS 2 , Li 2 S—GeS 2 —ZnS, Li 2 S—Ga 2 S 3 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—GeS 2 —P 2 S 5 , Li 2 S—GeS 2 —Sb 2 S 5 , Li 2 S—GeS 2 —Al 2 S 3, Li 2 S-SiS 2 , Li 2 S-Al 2 S 3, Li 2 S-SiS 2 -Al S 3, Li 2 S-SiS 2 -P 2 S 5, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -Li 4 SiO 4, Examples include Li 2 S—SiS 2 —Li 3 PO 4 and Li 10 GeP 2 S 12 . Among them, Li 2 S—P 2 S 5 , Li 2 S—GeS 2 —Ga 2 S 3 , Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—SiS 2 —P 2 S 5 , Li 2 S—SiS 2 —Li 4 SiO 4 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2 S—Li 3 PO 4 —P 2 S 5 , A crystalline and / or amorphous raw material composition comprising Li 2 S—GeS 2 —P 2 S 5 or Li 10 GeP 2 S 12 is preferred because it has high lithium ion conductivity. Examples of a method for synthesizing a sulfide solid electrolyte material using such a raw material composition include an amorphization method. Examples of the amorphization method include a mechanical milling method and a melt quenching method, and among them, the mechanical milling method is preferable. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
 硫化物固体電解質は、下記式(2)で表されるものがより好ましい。
 Lin       式(2)
 式中、l~nは各元素の組成比を示し、l:m:nは2~4:1:3~10を満たす。
The sulfide solid electrolyte is more preferably represented by the following formula (2).
Li l P m Sn formula (2)
In the formula, l to n represent the composition ratio of each element, and l: m: n satisfies 2 to 4: 1: 3 to 10.
(ii)酸化物系無機固体電解質
 酸化物系固体電解質は、酸素(O)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
(Ii) Oxide-based inorganic solid electrolyte An oxide-based solid electrolyte contains oxygen (O), has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is an electron What has insulation is preferable.
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 その中でも、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、LiLaZr12(LLZ)、LiBO、LiBO-LiSO、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)が好ましい。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the compound include Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb O nb ( Mbb is at least one element selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, and Sn, xb satisfies 5 ≦ xb ≦ 10, and yb satisfies 1 ≦ yb. ≦ 4, zb satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20), Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ≦ xc ≦ 5, yc satisfies 0 ≦ yc ≦ 1, and zc satisfies 0 ≦ zc ≦ met 1, nc satisfies 0 ≦ nc ≦ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ≦ xd ≦ 3,0 ≦ yd ≦ 1,0 ≦ zd ≦ 2,0 ≦ ad ≦ 1,1 ≦ md ≦ 7, 3 ≦ nd ≦ 13), Li (3-2xe) M ee xe D ee O (xe represents a number from 0 to 0.1, and M ee represents a divalent metal atom. D ee represents a halogen atom or Represents a combination of two or more halogen atoms.), Li xf Si yf O zf (1 ≦ xf ≦ 5, 0 <yf ≦ 3, 1 ≦ zf ≦ 10), Li xg S yg O zg (1 ≦ xg ≦ 3, 0 <yg ≦ 2, 1 ≦ zg ≦ 10), Li 3 BO 3 —Li 2 SO 4 , Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—SiO 2 , Li 6 BaLa 2 ta 2 O 12, Li 3 PO (4-3 / 2w) N w (w is w <1), LI ICON (Lithium super ionic conductor) type Li 3.5 Zn 0.25 GeO 4 having a crystal structure, La 0.55 Li 0.35 TiO 3 having a perovskite crystal structure, NASICON (Natrium super ionic conductor) type crystal structure LiTi 2 P 3 O 12 , Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2-xh Si yh P 3-yh O 12 (where 0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1), garnet Examples include Li 7 La 3 Zr 2 O 12 having a type crystal structure. Phosphorus compounds containing Li, P and O are also desirable. For example, lithium phosphate (Li 3 PO 4 ), LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen, LiPOD 1 (D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr) , Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.). LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
Among them, Li xa La ya TiO 3 [xa = 0.3 to 0.7, ya = 0.3 to 0.7] (LLT), Li xb La yb Zr zb M bb mb Onb (M bb is Al , Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In, Sn, xb satisfies 5 ≦ xb ≦ 10, yb satisfies 1 ≦ yb ≦ 4, zb Satisfies 1 ≦ zb ≦ 4, mb satisfies 0 ≦ mb ≦ 2, nb satisfies 5 ≦ nb ≦ 20), Li 7 La 3 Zr 2 O 12 (LLZ), Li 3 BO 3 , Li 3 BO 3 -Li 2 SO 4, Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ≦ xd ≦ 3,0 ≦ yd ≦ 1,0 ≦ zd ≦ 2,0 ≦ ad ≦ 1, 1 ≦ md ≦ 7, 3 ≦ nd ≦ 13) are preferred . These may be used alone or in combination of two or more.
 リチウムイオン伝導性の酸化物系無機固体電解質としてのイオン伝導度は、1×10-6S/cm以上であることが好ましく、1×10-5S/cm以上であることがより好ましく、5×10-5S/cm以上であることが特に好ましい。 The ionic conductivity of the lithium ion conductive oxide-based inorganic solid electrolyte is preferably 1 × 10 −6 S / cm or more, more preferably 1 × 10 −5 S / cm or more. X 10 −5 S / cm or more is particularly preferable.
 本発明においては、なかでも酸化物系の無機固体電解質を用いることが好ましい。酸化物系の無機固体電解質は総じてより硬度が高いため、全固体二次電池において界面抵抗の上昇を生じやすく、本発明を適用することにより、その対応として効果がより顕著になる。とくに、酸化物系の無機固体電解質と下記特定のバインダーとが作用し、より好適な吸着状態を形成することが想定される。この観点からも、酸化物系の無機固体電解質を用いることが特に好ましい。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
In the present invention, it is particularly preferable to use an oxide-based inorganic solid electrolyte. Since the oxide-based inorganic solid electrolyte generally has a higher hardness, the interface resistance is likely to increase in the all-solid secondary battery. By applying the present invention, the effect becomes more prominent. In particular, it is assumed that an oxide-based inorganic solid electrolyte and the following specific binder act to form a more suitable adsorption state. Also from this viewpoint, it is particularly preferable to use an oxide-based inorganic solid electrolyte.
The said inorganic solid electrolyte may be used individually by 1 type, or may be used in combination of 2 or more type.
 無機固体電解質の平均粒子サイズは特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。 The average particle size of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 μm or more, and more preferably 0.1 μm or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
 無機固体電解質の固体電解質組成物中での濃度は、電池性能と界面抵抗の低減・維持効果の両立を考慮したとき、固形成分100質量%において、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。ただし、後記正極活物質または負極活物質とともに用いるときには、その総和が上記の濃度範囲であることが好ましい。 The concentration of the inorganic solid electrolyte in the solid electrolyte composition is preferably 50% by mass or more and 100% by mass in 100% by mass of the solid component when considering both the battery performance and the reduction / maintenance effect of the interface resistance. % Or more is more preferable, and 90% by mass or more is particularly preferable. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less. However, when used together with a positive electrode active material or a negative electrode active material to be described later, the sum is preferably in the above concentration range.
(特定のバインダー)
 本発明においては環状分子に線状分子が貫通した構造を有する化合物を上記無機固体電解質のバインダーとして用いる。この化合物は、擬ロタキサン、ポリ擬ロタキサンと呼ばれ、末端をかさ高い置換基で封鎖して環状分子が線状分子から抜けないようにした化合物はロタキサン、ポリロタキサンなどと呼ばれることがある。本明細書においては、その架橋物を含め、これらを総称してポリロタキサン化合物と称する。本発明の好ましいポリロタキサン化合物を模式的に図2に示している。本実施形態のポリロタキサン化合物は、複数の環状分子22に線状分子21が挿通した構造を有している。その線状分子の末端は末端置換基24により封止され、環状分子が抜け落ちない構造とされている。隣接するポリロタキサン化合物20どうしは、架橋鎖(反応性基による連結鎖)23により連結されている。このようにして、本実施形態においては、ポリロタキサン化合物の架橋物200で構成されたバインダーをなしている。このようにポリロタキサン化合物の環状分子を架橋点として用いることで可動性の架橋点を持つ架橋物となり、ポリマー間のテンションを均一にするという効果があり特異的な力学特性を示すようになる。このようなポリロタキサン化合物をバインダーとして用いることで良好な結着性を発現する。なお、このような架橋構造は、あらかじめ架橋したものを添加してもよく、あるいは、固体電解質組成物のペーストの状態で形成しても、これを電極シートにした後に架橋させてもよい。本明細書においては、広義にバインダーとは未架橋のポリロタキサン化合物とその架橋物の両者を含む意味に用いる。区別するときには、未架橋のバインダー(未架橋ポリロタキサン化合物)、架橋されたバインダー(架橋ポリロタキサン化合物)とそれぞれ呼称する。
(Specific binder)
In the present invention, a compound having a structure in which a linear molecule penetrates a cyclic molecule is used as the binder of the inorganic solid electrolyte. This compound is called pseudorotaxane or polypseudorotaxane, and a compound in which the terminal is blocked with a bulky substituent so that the cyclic molecule does not escape from the linear molecule is sometimes called rotaxane, polyrotaxane or the like. In this specification, these cross-linked products are collectively referred to as polyrotaxane compounds. A preferred polyrotaxane compound of the present invention is schematically shown in FIG. The polyrotaxane compound of the present embodiment has a structure in which linear molecules 21 are inserted through a plurality of cyclic molecules 22. The end of the linear molecule is sealed with a terminal substituent 24 to prevent the cyclic molecule from falling off. Adjacent polyrotaxane compounds 20 are connected to each other by a cross-linked chain (linked chain by a reactive group) 23. Thus, in this embodiment, the binder comprised with the crosslinked material 200 of the polyrotaxane compound is comprised. Thus, by using a cyclic molecule of a polyrotaxane compound as a crosslinking point, a crosslinked product having a movable crosslinking point is obtained, which has an effect of uniforming the tension between the polymers and exhibits specific mechanical properties. By using such a polyrotaxane compound as a binder, good binding properties are expressed. Such a cross-linked structure may be added in advance as a cross-linked structure, or may be formed in the state of a solid electrolyte composition paste, or may be cross-linked after forming it into an electrode sheet. In this specification, the term “binder” is used in a broad sense to include both an uncrosslinked polyrotaxane compound and a crosslinked product thereof. When distinguishing, it calls an uncrosslinked binder (uncrosslinked polyrotaxane compound) and a crosslinked binder (crosslinked polyrotaxane compound), respectively.
・線状分子
 上記線状分子は、ポリオレフィン、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリアクリレート、ポリウレタン、ポリウレア、ヘテロ環を主鎖に有するポリマー、又はポリエン構造を含む化合物であることが好ましい。
-Linear molecule The linear molecule is preferably a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure.
 ポリオレフィンは下記式(1-1)で表される繰り返し単位を有する化合物が好ましい。 The polyolefin is preferably a compound having a repeating unit represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000007
 Lはアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)またはアルケニレン基(炭素数2~12が好ましく、2~6がより好ましく、2~3が特に好ましい)である。分子中に複数あるLは互いに同じでも異なっていてもよい。Lはさらに後述の置換基Tを有していてもよい。この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000007
L 1 is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or an alkenylene group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). Is particularly preferred). A plurality of L 1 in the molecule may be the same as or different from each other. L 1 may further have a substituent T described later. This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ポリエーテルは下記式(1-2)で表される繰り返し単位を有する化合物であることが好ましい。 The polyether is preferably a compound having a repeating unit represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000008
 Lは、連結基であり、アルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~4が特に好ましい)、アルケニレン基(炭素数2~12が好ましく、2~6がより好ましく、2~4が特に好ましい)、アリーレン基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、あるいはこれらの組み合わせに係る基であることが好ましい。上記の連結基は、さらに後述の置換基Tを有していてもよい。分子内に複数あるLは互いに同じでも異なっていてもよい。また、上記の連結基(アルキレン基、アルケニレン基、アリーレン基)は、ヘテロ原子を含む連結基を介在してもよい。ヘテロ原子を含む連結基の例としては、酸素原子、硫黄原子、イミノ基(NR)、アンモニウム連結基(NR ・M)、カルボニル基が挙げられる。ここでRは、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2または3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)であることが好ましい。なお、後述のRも同義である。Mは対アニオンであり、PF を例示できる。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000008
L 2 is a linking group, an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 4 carbon atoms), or an alkenylene group (preferably having 2 to 12 carbon atoms, preferably having 2 to 6 carbon atoms). More preferably, it is preferably 2 to 4), an arylene group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and particularly preferably 6 to 10), or a group relating to a combination thereof. The above linking group may further have a substituent T described later. A plurality of L 2 in the molecule may be the same or different from each other. Moreover, said coupling group (an alkylene group, an alkenylene group, an arylene group) may interpose the coupling group containing a hetero atom. Examples of the linking group containing a hetero atom include an oxygen atom, a sulfur atom, an imino group (NR N ), an ammonium linking group (NR N 2 + · M ), and a carbonyl group. Here, RN is an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, 2 or 3 is particularly preferred), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (preferably having 7 to 23 carbon atoms, more preferably 7 to 15 carbon atoms). 7 to 11 are particularly preferable). Incidentally, it is also synonymous R N to be described later. M is a counter anion and can be exemplified by PF 6 .
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ポリシロキサンは下記式(1-3)で表される繰り返し単位を有する化合物であることが好ましい。 The polysiloxane is preferably a compound having a repeating unit represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000009
 R31およびR32はそれぞれ独立に水素原子、ヒドロキシル基、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2または3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~15がより好ましく、7~11が特に好ましい)である。このアルキル基、アルケニル基、アリール基、アラルキル基はさらに後述の置換基Tを有していてもよい。分子内に複数あるR31およびR32は互いに同じでも異なっていてもよい。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000009
R 31 and R 32 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms), an alkenyl group (having 2 to 12 carbon atoms). Preferably 2 to 6, more preferably 2 or 3, particularly an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (7 to 7 carbon atoms). 23 is preferable, 7 to 15 is more preferable, and 7 to 11 is particularly preferable. The alkyl group, alkenyl group, aryl group and aralkyl group may further have a substituent T described later. A plurality of R 31 and R 32 in the molecule may be the same as or different from each other.
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ポリエン構造を含む化合物は下記式(1-4)または(1-5)で表される繰り返し単位を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 R41、R42、R51、R52はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ヒドロキシル基、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~18がより好ましく、7~12が特に好ましい)である。このアルキル基、アリール基、アラルキル基はさらに後述の置換基Tを有していてもよい。分子内に複数あるR41、R42、R51、R52は互いに同じでも異なっていてもよい。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
The compound containing a polyene structure is preferably a compound having a repeating unit represented by the following formula (1-4) or (1-5).
Figure JPOXMLDOC01-appb-C000010
R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms). Preferably), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, particularly preferably 6 to 10 carbon atoms), an aralkyl group (preferably having 7 to 23 carbon atoms, more preferably 7 to 18 carbon atoms, and 7 to 12 carbon atoms). Is particularly preferred). This alkyl group, aryl group, and aralkyl group may further have a substituent T described later. A plurality of R 41 , R 42 , R 51 and R 52 in the molecule may be the same as or different from each other.
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ポリエステルは下記式(1-6)で表される繰り返し単位を有する化合物であることが好ましい。 The polyester is preferably a compound having a repeating unit represented by the following formula (1-6).
Figure JPOXMLDOC01-appb-C000011
 LはLと同義の基である。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000011
L 6 is a group having the same meaning as L 2 .
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ポリカーボネート、ポリウレタン、ポリウレアは下記式(1-7)で表される繰り返し単位を有する化合物であることが好ましい。 Polycarbonate, polyurethane, and polyurea are preferably compounds having a repeating unit represented by the following formula (1-7).
Figure JPOXMLDOC01-appb-C000012
 LはLと同義の基である。X、Yはそれぞれ独立にOまたはNRである。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000012
L 7 is a group having the same meaning as L 2 . X, Y are each independently O or NR N.
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ポリアクリレートは下記式(1-8)で表される繰り返し単位を有する化合物であることが好ましい。 The polyacrylate is preferably a compound having a repeating unit represented by the following formula (1-8).
Figure JPOXMLDOC01-appb-C000013
 LはLと同義の基である。R81は水素原子、ハロゲン原子、メチル基、エチル基、シアノ基、またはヒドロキシル基である。R82はそれぞれ独立に水素原子、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニル基(炭素数2~12が好ましく、2~6がより好ましく、2または3が特に好ましい)、アリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)、アラルキル基(炭素数7~23が好ましく、7~18がより好ましく、7~12が特に好ましい)、ポリエーテル基(ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレンオキサイドが好ましい)である。このアルキル基、アルケニル基、アリール基、アラルキル基はさらに後述の置換基Tを有していてもよい。分子内に複数あるR81およびR82は互いに同じでも異なっていてもよい。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000013
L 8 is a group having the same meaning as L 2 . R 81 is a hydrogen atom, a halogen atom, a methyl group, an ethyl group, a cyano group, or a hydroxyl group. R 82 each independently represents a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms). More preferably, 2 or 3 is particularly preferred), an aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 and particularly preferably 6 to 10), and an aralkyl group (preferably having 7 to 23 carbon atoms, preferably 7 to 7 carbon atoms). 18 is more preferable, and 7 to 12 is particularly preferable.) And a polyether group (polyethylene oxide, polypropylene oxide, and polybutylene oxide are preferable). The alkyl group, alkenyl group, aryl group and aralkyl group may further have a substituent T described later. A plurality of R 81 and R 82 in the molecule may be the same as or different from each other.
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 ヘテロ環を主鎖に有するポリマーは、下記式(1-9)で表される繰り返し単位を有する化合物であることが好ましい。 The polymer having a heterocyclic ring in the main chain is preferably a compound having a repeating unit represented by the following formula (1-9).
Figure JPOXMLDOC01-appb-C000014
 Arは、ヘテロ環基であり、ヘテロ脂肪族環基(炭素数1~12が好ましく、2~5がより好ましい)、ヘテロ芳香族環基(炭素数1~12が好ましく、2~5がより好ましい)が好ましい。ヘテロ環基は、カチオンになっていてもよく、対アニオンを伴う構造となっていてもよい。ヘテロ環の例としては、チオフェン環、ピリジン環(ピリジニウム環でもよい)、ピロール環(ピロリニウム環でもよい)、フラン環、ピラジン環(ピラジニウム環でもよい)、ピリミジン環(ピリミジニウム環でもよい)、ピペリジン環(ピペリジニウム環でもよい)、テトラヒドロフラン環、テトラヒドロピラン環、ピロリジン環(ピロリジニウム環でもよい)、イミダゾール環(イミダゾリニウム環でもよい)、ピラゾール環(ピラゾリニウム環でもよい)、モルホリン環(モルホリニウム環でもよい)が挙げられる。上記ヘテロ脂肪族環基、ヘテロ芳香族環基のヘテロ原子は、酸素原子、硫黄原子、窒素原子のいずれかまたはその組合せであることが好ましい。ヘテロ環基は連結基Lを介してまたは介さずに後述の置換基Tを有していてもよい。
 Zは単結合、アルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、O、S、NR、CO、またはこれらの組み合わせであることが好ましく、単結合またはアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)がより好ましい。
 この繰り返し単位は分子中にモル比で、50%以上存在することが好ましく、60%以上存在することがより好ましく、70%以上存在することが特に好ましい。上限は100%である。
Figure JPOXMLDOC01-appb-C000014
Ar 1 is a heterocyclic group, a heteroaliphatic cyclic group (preferably having 1 to 12 carbon atoms, more preferably 2 to 5), or a heteroaromatic cyclic group (preferably having 1 to 12 carbon atoms, preferably having 2 to 5 carbon atoms). More preferred). The heterocyclic group may be a cation or a structure with a counter anion. Examples of heterocycles include thiophene rings, pyridine rings (may be pyridinium rings), pyrrole rings (may be pyrrolium rings), furan rings, pyrazine rings (may be pyrazinium rings), pyrimidine rings (may be pyrimidinium rings), piperidine Ring (may be piperidinium ring), tetrahydrofuran ring, tetrahydropyran ring, pyrrolidine ring (may be pyrrolidinium ring), imidazole ring (may be imidazolinium ring), pyrazole ring (may be pyrazolinium ring), morpholine ring (also morpholinium ring) Good). The hetero atom of the heteroaliphatic ring group or heteroaromatic ring group is preferably an oxygen atom, a sulfur atom, a nitrogen atom or a combination thereof. Heterocyclic group may have a substituent T described later without going through or via a linking group L 2.
Z is preferably a single bond, an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms), O, S, NR N , CO, or a combination thereof. A single bond or an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms) is more preferable.
This repeating unit is preferably present in the molecule in a molar ratio of 50% or more, more preferably 60% or more, and particularly preferably 70% or more. The upper limit is 100%.
 線状分子としては、中でも、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラヒドロフランなどのポリエーテル類、ポリエチレン、ポリプロピレンなどのポリオレフィン類、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなどのセルロース類、ポリアンモニウム塩類、ポリジメチルシロキサンなどのポリシロキサン類、ポリチオフェン類、ポリメタクリル酸メチル、ポリアクリル酸などのポリアクリレート類、ポリエステル類、ポリカーボネート類を好ましいものとしてあげることができる。さらに、ポリアクリレート類、ポリシロキサン類、ポリカーボネート類、ポリエーテル類が好ましく、ポリエーテル類が特に好ましい。なお、本明細書においてアクリレートとは、α位の炭素に任意の置換基を有していてもよい意味であり、その例としては上記R81が挙げられる。 Examples of linear molecules include polyethers such as polyethylene glycol, polypropylene glycol and polytetrahydrofuran, polyolefins such as polyethylene and polypropylene, celluloses such as carboxymethyl cellulose, hydroxyethyl cellulose and hydroxypropyl cellulose, polyammonium salts, polydimethyl Preferable examples include polysiloxanes such as siloxane, polythiophenes, polymethacrylates such as polymethyl methacrylate, polyacrylic acid, polyesters, and polycarbonates. Furthermore, polyacrylates, polysiloxanes, polycarbonates and polyethers are preferred, and polyethers are particularly preferred. In the present specification, the acrylate means that the carbon at the α-position may have an arbitrary substituent, and examples thereof include the above R81 .
 本発明において好適に採用される線状分子の構造単位の例を以下に示すが、本発明がこれに限定して解釈されるものではない。 Examples of structural units of linear molecules that are preferably employed in the present invention are shown below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 線状分子の重量平均分子量は1,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることが特に好ましい。上限としては、1,000,000以下であることが好ましく、500,000以下であることがより好ましく、300,000以下であることが特に好ましい。この範囲とすることで、環状分子(包接化合物)が線状分子上で自由に動け好ましい。本明細書において分子量は、特に断らない限り、後記実施例で測定した条件によるものとする。 The weight average molecular weight of the linear molecule is preferably 1,000 or more, more preferably 5,000 or more, and particularly preferably 10,000 or more. The upper limit is preferably 1,000,000 or less, more preferably 500,000 or less, and particularly preferably 300,000 or less. By setting it within this range, it is preferable that the cyclic molecule (the inclusion compound) moves freely on the linear molecule. In the present specification, the molecular weight is based on the conditions measured in Examples described below unless otherwise specified.
 環状分子を構成する構造単位は、たとえば、ヘテロ原子を有する連結基(酸素原子、NR、硫黄原子、COが好ましい)、ヘテロ脂肪族環基(炭素数1~12が好ましく、2~6がより好ましい)、ヘテロ芳香族環基(炭素数1~12が好ましく、2~6がより好ましい)、アルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、アルケニレン基(炭素数2~12が好ましく、2~6がより好ましく、2または3が特に好ましい)、芳香族基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)およびこれらの組み合わせが挙げられる。上記ヘテロ脂肪族環基、ヘテロ芳香族環基のヘテロ原子は、酸素原子、硫黄原子、窒素原子のいずれかであることが好ましい。上記ヘテロ脂肪族環基、ヘテロ芳香族環基は4員~7員環であることが好ましく、5又は6員環であることがより好ましい。上記の各連結基は後述の置換基Tを有していてもよい。 The structural unit constituting the cyclic molecule includes, for example, a linking group having a hetero atom (oxygen atom, NR N , sulfur atom, CO is preferred), a heteroaliphatic ring group (preferably having 1 to 12 carbon atoms, preferably having 2 to 6 carbon atoms). More preferably), a heteroaromatic cyclic group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms). ), An alkenylene group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3), and an aromatic group (preferably having 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and 6 to 10 carbon atoms). Are particularly preferred) and combinations thereof. The hetero atom of the heteroaliphatic ring group or heteroaromatic ring group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom. The heteroaliphatic ring group and heteroaromatic ring group are preferably 4- to 7-membered rings, and more preferably 5- or 6-membered rings. Each of the above linking groups may have a substituent T described later.
・環状分子
 環状分子は複数の構造単位が連結して環をなした構造であることが好ましく、環状分子内の構造単位は同一でも異なっていてもよい。
-Cyclic molecule The cyclic molecule preferably has a structure in which a plurality of structural units are linked to form a ring, and the structural units in the cyclic molecule may be the same or different.
 上記環状分子の構造単位は下記式のいずれかで表されることが好ましい。なお下記の式は、構造(c)を構造単位とするもののように、二重の環状構造であってもよく、さらに三重、四重といった多重の環状構造であってもよい。そのときには、各式の構造単位が多重構造をとるものして解釈すればよい。 The structural unit of the cyclic molecule is preferably represented by any of the following formulas. The following formula may be a double cyclic structure, such as a structure (c) as a structural unit, or may be a multiple cyclic structure such as triple or quadruple. In that case, the structural unit of each formula may be interpreted as having a multiple structure.
Figure JPOXMLDOC01-appb-C000016
 Lは先のLと同義の基である。
Figure JPOXMLDOC01-appb-C000016
L A is a group having the same meaning as L 2 above.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 Arは環状構造基であり、ヘテロ脂肪族環基(炭素数1~12が好ましく、2~6がより好ましい)、ヘテロ芳香族環基(炭素数1~12が好ましく、2~6がより好ましい)、芳香族基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)であることが好ましい。上記ヘテロ脂肪族環基、ヘテロ芳香族環基のヘテロ原子は、酸素原子、硫黄原子、窒素原子のいずれかであることが好ましい。上記ヘテロ脂肪族環基、ヘテロ芳香族環基は4員~7員環であることが好ましく、5又は6員環であることがより好ましい。環状分子は、上記又は下記の構造単位の他に連結基を有していてもよく、酸素原子、硫黄原子、イミノ基(NR)、カルボニル基、アルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、またはこれらの組み合わせであることが好ましい。
 RA1~RA4はR81と同義の基である。
Ar 2 is a cyclic structure group, a heteroaliphatic ring group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6), or a heteroaromatic ring group (preferably having 1 to 12 carbon atoms, more preferably 2 to 6 carbon atoms). And an aromatic group (preferably 6 to 22 carbon atoms, more preferably 6 to 14 carbon atoms, and particularly preferably 6 to 10 carbon atoms). The hetero atom of the heteroaliphatic ring group or heteroaromatic ring group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom. The heteroaliphatic ring group and heteroaromatic ring group are preferably 4- to 7-membered rings, and more preferably 5- or 6-membered rings. The cyclic molecule may have a linking group in addition to the structural unit described above or below, and an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl group, an alkylene group (preferably having 1 to 12 carbon atoms, 1 to 6 is more preferable, and 1 to 3 is particularly preferable), or a combination thereof.
R A1 to R A4 are groups having the same meaning as R 81 .
 環αはXA1を一つ以上含む環状構造基であり、酸素原子、硫黄原子、イミノ基(NR)、カルボニル基、アルキレン基、アルケニレン基、アリーレン基またはこれらの組み合わせで環構造を形成している。中でも炭素数2~12のアルキレン基、酸素原子、硫黄原子、カルボニル基、イミノ基またはこれらの組み合わせであることが好ましく、炭素数3~6のアルキレン基、酸素原子の組み合わせであることが特に好ましい。環αとしては、3員環~8員環が挙げられ、中でも5員環または6員環が好ましい。具体的にはグルコース環、フルクトース環、ガラクトース環、マンノース環などが挙げられる。上記で例示の環状基はいずれもさらに単結合または連結基Lを介してまたは介さずに任意の後述の置換基Tをともなっていてもよい。
 XA1、XA2はそれぞれ独立にヘテロ原子含有連結基を表し、酸素原子、硫黄原子、イミノ基(NR)のいずれかであることが好ましく、酸素原子であることが特に好ましい。
 環αは下記式(d)であることが好ましい。Xd2、Xd3、Xd6はそれぞれ独立に水素原子またはR82と同義の基である。Ld2、Ld3、Ld6はそれぞれ独立に単結合、カルボニル基、またはイミノ基(NR)である。
Ring α is a cyclic structural group containing one or more X A1 , and forms a ring structure with an oxygen atom, a sulfur atom, an imino group (NR N ), a carbonyl group, an alkylene group, an alkenylene group, an arylene group, or a combination thereof. ing. Among them, an alkylene group having 2 to 12 carbon atoms, an oxygen atom, a sulfur atom, a carbonyl group, an imino group, or a combination thereof is preferable, and a combination of an alkylene group having 3 to 6 carbon atoms and an oxygen atom is particularly preferable. . Examples of the ring α include a 3-membered ring to an 8-membered ring, and among them, a 5-membered ring or a 6-membered ring is preferable. Specific examples include a glucose ring, a fructose ring, a galactose ring, and a mannose ring. May be accompanied by a substituent T of any later without going through or over an exemplary cyclic groups further either a single bond or a linking group L 2 above.
X A1 and X A2 each independently represent a hetero atom-containing linking group, preferably an oxygen atom, a sulfur atom, or an imino group (NR N ), and particularly preferably an oxygen atom.
Ring α is preferably the following formula (d). X d2 , X d3 and X d6 are each independently a hydrogen atom or a group having the same meaning as R 82 . L d2 , L d3 , and L d6 are each independently a single bond, a carbonyl group, or an imino group (NR N ).
 Arとしては、下記式(a)~(d)のいずれかであることが好ましい。 Ar 2 is preferably any one of the following formulas (a) to (d).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 環状分子としては、中でも、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリンなどのシクロデキストリンや、クラウンエーテル類、ククルビットウリル類、シクロファン類、カリックスアレーン類が好ましい。さらに、シクロデキストリンが好ましい。 Among the cyclic molecules, cyclodextrins such as α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, crown ethers, cucurbiturils, cyclophanes, and calixarenes are preferable. Furthermore, cyclodextrin is preferred.
 環状分子において、構造単位の数は特に限定されないが、2個以上が好ましく、3個以上がより好ましく、4個以上が特に好ましい。上限は、30個以下が好ましく、20個以下がより好ましく、15個以下が特に好ましい。 In the cyclic molecule, the number of structural units is not particularly limited, but is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more. The upper limit is preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less.
 環状分子の好ましいものを下記に例示するが、本発明がこれに限定して解されるものではない。 Preferred examples of the cyclic molecule are exemplified below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
・末端基
 上記のポリロタキサン化合物は、その末端にかさ高い置換基(末端基)を有することが好ましい。このようにすることで、線状分子から環状分子がはずれないように固定することができる。末端基の分子量は特に限定されないが、70以上であることが好ましく、100以上であることがより好ましい。上限は1000以下であることが実際的である。末端基のかさ高さは、環状分子の環の大きさとの関係で定めればよく、環状分子が抜け出ない大きさであればよい。環状分子の連結原子数に対して、末端基の分子量>連結原子数×3という関係で末端基の分子量を設定することができる。末端基の分子量>連結原子数×5が好ましく、末端基の分子量>連結原子数×8がさらに好ましい。上限としては、末端基の分子量<連結原子数×100が実際的である。連結原子数とは環を構成する連結に関与する原子の数であり、化合物A-1は30、A-4は21、A-5も21、A-12は28である。
-Terminal group It is preferable that said polyrotaxane compound has a bulky substituent (terminal group) in the terminal. By doing in this way, it can fix so that a cyclic molecule may not slip from a linear molecule. Although the molecular weight of a terminal group is not specifically limited, It is preferable that it is 70 or more, and it is more preferable that it is 100 or more. The upper limit is practically 1000 or less. The bulkiness of the terminal group may be determined in relation to the size of the ring of the cyclic molecule, and may be a size that does not allow the cyclic molecule to escape. The molecular weight of the terminal group can be set with respect to the number of linked atoms of the cyclic molecule in the relationship of molecular weight of the terminal group> number of linked atoms × 3. Molecular weight of terminal group> number of connected atoms × 5 is preferable, and molecular weight of terminal group> number of connected atoms × 8 is more preferable. As an upper limit, the molecular weight of the terminal group <the number of connected atoms × 100 is practical. The number of linking atoms is the number of atoms involved in linking constituting the ring. Compound A-1 is 30, A-4 is 21, A-5 is 21, and A-12 is 28.
 バインダーの線状分子の両末端に置換基を導入する場合、環状分子が線状分子から抜け落ちることを防ぐためかさ高いものが好ましい。末端基は、環状分子の開口部の大きさにより異なり環状分子が抜けない程度の大きさの置換基が適宜選択されることが好ましい。具体的には、フェニル基含有基、シクロデキストリン構造含有基、アダマンタン構造含有基が挙げられる。なかでも、2,4-ジニトロフェニル基、3,5-ジニトロフェニル基、2,4,6-トリニトロフェニル基などのニトロフェニル基類;トリフェニルメチル基(トリチル基)、3,5-ジメチルフェニル基、3,5-tertブチルフェニル基、アダマンチル基、ピレン基、ナフタレン基、フルオレセイン基、シクロデキストリン基などを含む基が挙げられる。 When a substituent is introduced at both ends of the linear molecule of the binder, a bulky one is preferable to prevent the cyclic molecule from falling off the linear molecule. It is preferable that the terminal group is appropriately selected from substituents having such a size that the cyclic molecule differs depending on the size of the opening of the cyclic molecule and the cyclic molecule cannot be removed. Specific examples include a phenyl group-containing group, a cyclodextrin structure-containing group, and an adamantane structure-containing group. Among them, nitrophenyl groups such as 2,4-dinitrophenyl group, 3,5-dinitrophenyl group, 2,4,6-trinitrophenyl group; triphenylmethyl group (trityl group), 3,5-dimethyl Examples include groups including phenyl group, 3,5-tertbutylphenyl group, adamantyl group, pyrene group, naphthalene group, fluorescein group, cyclodextrin group and the like.
 線状分子の末端をかさ高い置換基で置換する方法は特に限定されない。例えば、線状分子としてポリエチレングリコールの両末端にアミノ基を有するポリマーを用い、両末端のアミノ基を2,4-ジニトロフェニルフルオライドと反応させることにより、上記かさ高い封鎖基としての2,4-ジニトロフェニル基で末端を置換することができる。また、上記の2,4-ジニトロフェニルフルオライドの代わりに、トリチルブロマイド、2,4,6-トリニトロフェニルフルオライド、3,5-ジメチル安息香酸クロライド、3,5-tertブチル安息香酸クロライド、1-フロオロピレン等を使用すれば、それぞれトリチル基、2,4,6-トリニトロフェニル基、ピレン基で末端を置換することができる。
 また線状分子としてポリエチレングリコールの両末端にカルボキシル基を有するポリマーを用い、両末端のカルボン酸基にアダマンチルアミン、シクロデキストリンを反応させることでそれぞれアダマンチル基、シクロデキストリンを導入することができる。
The method for substituting the end of the linear molecule with a bulky substituent is not particularly limited. For example, by using a polymer having amino groups at both ends of polyethylene glycol as a linear molecule and reacting the amino groups at both ends with 2,4-dinitrophenyl fluoride, 2,4 as the above-mentioned bulky blocking group. -The end can be substituted with a dinitrophenyl group. Further, instead of the above 2,4-dinitrophenyl fluoride, trityl bromide, 2,4,6-trinitrophenyl fluoride, 3,5-dimethylbenzoic acid chloride, 3,5-tertbutylbenzoic acid chloride, If 1-fluoropyrene or the like is used, the terminal can be substituted with a trityl group, 2,4,6-trinitrophenyl group, or pyrene group, respectively.
Further, an adamantyl group and a cyclodextrin can be introduced by reacting a carboxylic acid group at both ends with adamantylamine and cyclodextrin, respectively, by using a polymer having a carboxyl group at both ends of polyethylene glycol as a linear molecule.
 環状分子に線状分子を串刺し状に包接させる方法は特に限定はなく、公知の方法が適用できる。環状分子としてα-、β-またはγ-シクロデキストリンを用い、線状分子としてポリエーテル類を用いる場合は、両成分を水性媒体中で攪拌・混合して、反応させることで得られる。特に線状分子としてポリプロピレングリコールを用いる場合は、これが分散状態であることがあるので、超音波攪拌するのが好ましい。 There is no particular limitation on the method of clathrating linear molecules to the cyclic molecules, and known methods can be applied. When α-, β-, or γ-cyclodextrin is used as the cyclic molecule and polyethers are used as the linear molecule, both components can be obtained by stirring and mixing in an aqueous medium to cause a reaction. In particular, when polypropylene glycol is used as the linear molecule, it may be in a dispersed state, so it is preferable to perform ultrasonic stirring.
 バインダーにおける線状分子と環状分子の割合は、上記線状分子が複数の単量体を有する高分子化合物であるとき、(線状分子を構成する単量体単位のモル数):(環状分子の数)の比で、好ましくは100:0.1~100:70、より好ましくは100:0.5~100:50、特に好ましくは100:1~100:40である。線状分子と環状分子の割合は、1H-および13C-NMRスペクトル、光吸収、元素分析などにより測定できる。 When the linear molecule is a polymer compound having a plurality of monomers, the ratio of the linear molecule and the cyclic molecule in the binder is (number of moles of monomer units constituting the linear molecule): (cyclic molecule) The ratio is preferably 100: 0.1 to 100: 70, more preferably 100: 0.5 to 100: 50, and particularly preferably 100: 1 to 100: 40. The ratio of linear molecules to cyclic molecules can be measured by 1H- and 13C-NMR spectra, light absorption, elemental analysis and the like.
 ポリロタキサン化合物については公知の文献を適宜参照して本発明に適用することができる。例えばポリロタキサンの製造方法についてはWO08/108411、無溶媒でのポリロタキサンの製造方法についてはWO10/024431、光架橋性ポリロタキサンについてはWO11/105532、ポリロタキサンのポリマー電解質についてはWO06-090819、特開2003-257236、特開2004-327271などを参照することができる。 The polyrotaxane compound can be applied to the present invention with appropriate reference to known literature. For example, WO08 / 108411 for the production method of polyrotaxane, WO10 / 024431 for the production method of polyrotaxane without solvent, WO11 / 105532 for the photocrosslinkable polyrotaxane, WO06-090819 for the polymer electrolyte of polyrotaxane, and JP2003-257236A JP, 2004-327271, A, etc. can be referred to.
・反応性基(官能基)
 上記環状分子または線状分子は反応性基を有することが好ましく、なかでも環状分子が反応性基を有することが好ましい。反応性基は加熱等の処理を施すことにより、ポリロタキサン化合物を連結し架橋する作用を有することが好ましい。このとき、上述のように環状分子同士が連結して架橋することが好ましい。反応性基はヘテロ原子を有する連結基(O、S、CO、NR等)や前記のLを介在して線状分子や環状分子に導入されていてもよい。
・ Reactive groups (functional groups)
The cyclic molecule or linear molecule preferably has a reactive group, and among them, the cyclic molecule preferably has a reactive group. The reactive group preferably has a function of linking and crosslinking the polyrotaxane compound by performing a treatment such as heating. At this time, it is preferable that the cyclic molecules are linked and crosslinked as described above. Reactive group of the linking group having a hetero atom (O, S, CO, NR N and the like) may be introduced into a linear molecule and cyclic molecule by intervening and said L 2.
 反応性基は、ヘテロ原子(B、O、S、N、P等)または不飽和結合を有する置換基または連結基であることが好ましい。なかでも、下記反応性置換基(A)および下記反応性連結基(B)の少なくともいずれか1つを有することが好ましい。
反応性置換基[官能基](A)
 アミノ基(NR )、チオール基(スルフィド基)(SH)、テトラヒドロフリル基、オキセタン基、エポキシ基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、ヒドロキシル基、アルケニル基含有基(ビニル基、アリル基、アクリロイル基、アクリロイルオキシ等)
反応性連結基[官能基](B)
 イミノ基(NR)、アルケニレン基含有基(炭素数2~12が好ましく、2~6がより好ましく、2または3が特に好ましい)
The reactive group is preferably a hetero atom (B, O, S, N, P, etc.) or a substituent or linking group having an unsaturated bond. Especially, it is preferable to have at least any one of the following reactive substituent (A) and the following reactive coupling group (B).
Reactive substituent [functional group] (A)
Amino group (NR N 2 ), thiol group (sulfide group) (SH), tetrahydrofuryl group, oxetane group, epoxy group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, hydroxyl group, Alkenyl group-containing group (vinyl group, allyl group, acryloyl group, acryloyloxy, etc.)
Reactive linking group [functional group] (B)
Imino group (NR N ), alkenylene group-containing group (preferably having 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms, and particularly preferably 2 or 3 carbon atoms)
 なかでも、反応性基は、ヒドロキシル基、アルケニル基含有基(ビニル基、アリル基)、アクリロイル基、アクリロイルオキシ基、エポキシ基、チオール基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基が好ましい。なお本明細書において、アクリルもしくはアクリロイルと称するときには、α位の炭素に所定の置換基を有していてもよい意味である。たとえば、α位にR81の基を有するものを含む意味である。例えば、メタアクリロイル基、メタアクリロイルオキシ基が含まれる。
 反応性基は、さらに、チオール基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基が好ましく、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基が特に好ましい。
Among them, reactive groups are hydroxyl group, alkenyl group-containing group (vinyl group, allyl group), acryloyl group, acryloyloxy group, epoxy group, thiol group, isocyanate group, carboxyl group, phosphate group, sulfonate group. A phosphonic acid group is preferred. In the present specification, the term “acrylic or acryloyl” means that the α-position carbon may have a predetermined substituent. For example, it is meant to include those having an R 81 group at the α-position. For example, a methacryloyl group and a methacryloyloxy group are included.
The reactive group is preferably a thiol group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, or alkenyl group-containing group, carboxyl group, phosphoric acid group, sulfone group. Particularly preferred are acid groups and phosphonic acid groups.
 反応性基の好ましいものを下記に例示するが、本発明がこれに限定して解釈されるものではない。 Preferred examples of the reactive group are illustrated below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 反応性基導入の条件も公知の方法を採用できる。
 例えば、環状分子としてα-シクロデキストリンを用い、線状分子として両末端が置換されたポリエチレングリコールを用いた包接化合物に反応性基を新たに導入する場合は包接化合物をジメチルスルホキシドに溶解させ、この溶液に2-イソシアナトエチルメタクリレート、ビスマストリス(2-エチルヘキサノエート)を加え、反応させることで反応性基M-4を導入することができる。同様の方法で2-イソシアナトエチルメタクリレートの代わりに2-イソシアナトエチルアクリレートを用いることでM-3を導入することができる。DMF中でメタクリル酸クロリドやアクリル酸クロリドを反応させることでM-1、M-2を導入することができる。エタノール・水中で3-メルカプトプロピルメチルジメトキシシランを反応させることでM-6を導入することができる。同様の方法でM-7~M-11を導入することが出来る。ジメチルスルホキシド中で無水コハク酸を反応させることでM-12を導入することが出来る。
 環状分子としてクラウンエーテルを用いる場合はヒドロキシル基を導入したクラウンエーテル誘導体をジメチルスルホキシドに溶解させ、この溶液に2-イソシアナトエチルメタクリレート、ビスマストリス(2-エチルヘキサノエート)を加え、反応させることで反応性基M-4を導入することができる。その他の環状分子についても同様にヒドロキシル基を導入後に2-イソシアナトエチルメタクリレート、ビスマストリス(2-エチルヘキサノエート)を加え、反応させることで反応性基M-4を導入することができる。
A known method can be adopted as the condition for introducing the reactive group.
For example, when a reactive group is newly introduced into an inclusion compound using α-cyclodextrin as a cyclic molecule and polyethylene glycol substituted at both ends as a linear molecule, the inclusion compound is dissolved in dimethyl sulfoxide. The reactive group M-4 can be introduced by adding 2-isocyanatoethyl methacrylate and bismuth tris (2-ethylhexanoate) to this solution and reacting them. In the same manner, M-3 can be introduced by using 2-isocyanatoethyl acrylate instead of 2-isocyanatoethyl methacrylate. M-1 and M-2 can be introduced by reacting methacrylic acid chloride or acrylic acid chloride in DMF. M-6 can be introduced by reacting 3-mercaptopropylmethyldimethoxysilane in ethanol / water. M-7 to M-11 can be introduced in the same manner. M-12 can be introduced by reacting succinic anhydride in dimethyl sulfoxide.
When crown ether is used as the cyclic molecule, the crown ether derivative having a hydroxyl group introduced therein is dissolved in dimethyl sulfoxide, and 2-isocyanatoethyl methacrylate and bismuth tris (2-ethylhexanoate) are added to this solution and reacted. The reactive group M-4 can be introduced with Similarly, other cyclic molecules can introduce a reactive group M-4 by introducing 2-isocyanatoethyl methacrylate and bismuth tris (2-ethylhexanoate) after introducing a hydroxyl group and reacting them.
 本発明の固体電解質組成物にはラジカル重合開始剤を含有させることが好ましい。
 ラジカル重合開始剤は上記の反応性基を反応させる目的で添加されることが好ましい。
 ラジカル重合開始剤は常用されているものを採用すればよいが熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド及びメチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス-3,5,5-トリメチルヘキサノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド及びm-トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、1,3-ビス(t-ブチルペルオキシイソプロピル)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド及び2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1-ジ(t-ブチルペルオキシ-3,5,5-トリメチル)シクロヘキサン、1,1-ジ-t-ブチルペルオキシシクロヘキサン及び2,2-ジ(t-ブチルペルオキシ)ブタンなどのパーオキシケタール類;t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、t-アミルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソブチレート、ジ-t-ブチルペルオキシヘキサヒドロテレフタレート、1,1,3,3-テトラメチルブチルペルオキシ-3,5,5-トリメチルヘキサネート、t-アミルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルペルオキシアセテート、t-ブチルペルオキシベンゾエート及びジブチルペルオキシトリメチルアジペートなどのアルキルパーエステル類;1,1,3,3-テトラメチルブチルペルオキシネオジカーボネート、α-クミルペルオキシネオジカーボネート、t-ブチルペルオキシネオジカーボネート、ジ-3-メトキシブチルペルオキシジカーボネート、ジ-2-エチルヘキシルペルオキシジカーボネート、ビス(1,1-ブチルシクロヘキサオキシジカーボネート)、ジイソプロピルオキシジカーボネート、t-アミルペルオキシイソプロピルカーボネート、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシ-2-エチルヘキシルカーボネート及び1,6-ビス(t-ブチルペルオキシカルボキシ)ヘキサンなどのパーオキシカーボネート類;1,1-ビス(t-ヘキシルペルオキシ)シクロヘキサン及び(4-t-ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。
 アゾ系(AIBN等)の重合開始剤として使用するアゾ化合物の具体例としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス-1-シクロヘキサンカルボニトリル、ジメチル-2,2’-アゾビスイソブチレート、4,4’-アゾビス-4-シアノバレリック酸、2,2’-アゾビス-(2-アミジノプロパン)ジハイドロクロライド等が挙げられる(特開2010-189471など参照)。あるいは、ジメチル-2,2’-アゾビス(2-メチルプロピネート)(商品名 V-601、和光純薬社製)なども好適に用いられる。
The solid electrolyte composition of the present invention preferably contains a radical polymerization initiator.
The radical polymerization initiator is preferably added for the purpose of reacting the reactive group.
As the radical polymerization initiator, a commonly used one may be used, but as the thermal radical polymerization initiator that is cleaved by heat to generate an initiation radical, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide are used. Ketone peroxides such as oxide and methylcyclohexanone peroxide; hydroperoxides such as 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and t-butyl hydroperoxide; diisobutyryl peroxide Bis-3,5,5-trimethylhexanoyl peroxide, lauroyl peroxide, benzoyl peroxide and m-toluylbenzoyl peroxide Acyl peroxides; dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) hexane, t-butylcumyl peroxide, Dialkyl peroxides such as di-t-butyl peroxide and 2,5-dimethyl-2,5-di (t-butylperoxy) hexene; 1,1-di (t-butylperoxy-3,5,5- Peroxyketals such as trimethyl) cyclohexane, 1,1-di-t-butylperoxycyclohexane and 2,2-di (t-butylperoxy) butane; t-hexylperoxypivalate, t-butylperoxypivalate, , 1,3,3-Tetramethylbutylperoxy-2-ethylhexanoate, t-amino Peroxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, di-t-butylperoxyhexahydroterephthalate, 1,1,3,3-tetramethylbutyl Peroxy-3,5,5-trimethylhexanoate, t-amylperoxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxyacetate, alkyl peresters such as t-butylperoxybenzoate and dibutylperoxytrimethyladipate; 1,1,3,3-tetramethylbutylperoxyneodicarbonate, α-cumylperoxyneodicarbonate, t-butylperoxyneodicarbonate, di-3 -Me Xylbutylperoxydicarbonate, di-2-ethylhexylperoxydicarbonate, bis (1,1-butylcyclohexaoxydicarbonate), diisopropyloxydicarbonate, t-amylperoxyisopropylcarbonate, t-butylperoxyisopropylcarbonate, t- Peroxycarbonates such as butylperoxy-2-ethylhexyl carbonate and 1,6-bis (t-butylperoxycarboxy) hexane; 1,1-bis (t-hexylperoxy) cyclohexane and (4-t-butylcyclohexyl) per Examples thereof include oxydicarbonate.
Specific examples of the azo compound used as an azo-based (AIBN or the like) polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2, 2'-azobis (2,4-dimethylvaleronitrile), 1,1'-azobis-1-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyano Examples include valeric acid, 2,2′-azobis- (2-amidinopropane) dihydrochloride, and the like (see JP 2010-189471 A). Alternatively, dimethyl-2,2′-azobis (2-methylpropinate) (trade name V-601, manufactured by Wako Pure Chemical Industries, Ltd.) is also preferably used.
 ラジカル重合開始剤として、上記の熱ラジカル重合開始剤の他に、光、電子線又は放射線で開始ラジカルを生成するラジカル重合開始剤を用いることができる。
 このようなラジカル重合開始剤としては、ベンゾインエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔IRGACURE651、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン〔IRGACURE184、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン〔DAROCUR1173、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン〔IRGACURE2959、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル]-2-メチル-プロパン-1-オン〔IRGACURE127、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔IRGACURE907、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1〔IRGACURE369、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モノホリニル)フェニル]-1-ブタノン〔IRGACURE379、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド〔DAROCUR TPO、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド〔IRGACURE819、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、ビス(η-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム〔IRGACURE784、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]〔IRGACURE OXE 01、チバ・スペシャルティ・ケミカルズ(株)製、商標〕、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)〔IRGACURE OXE 02、チバ・スペシャルティ・ケミカルズ(株)製、商標〕などを挙げることができる。
 ラジカル重合開始剤の量は特に限定されないが、組成物中で0.01質量%以上であることが好ましく、0.02質量%以上であることがより好ましく、0.05質量%以上であることが特に好ましい。上限としては、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。
 ラジカル重合開始剤は一種で用いても、二種以上を組み合わせて用いてもよい。
As the radical polymerization initiator, in addition to the thermal radical polymerization initiator, a radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation can be used.
Examples of such radical polymerization initiators include benzoin ether, 2,2-dimethoxy-1,2-diphenylethane-1-one [IRGACURE651, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 1-hydroxy-cyclohexyl -Phenyl-ketone [IRGACURE 184, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-hydroxy-2-methyl-1-phenyl-propan-1-one [DAROCUR 1173, manufactured by Ciba Specialty Chemicals Co., Ltd., Trademarks], 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one [IRGACURE2959, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2 -Hydroxy-1- [4- [4- (2-H Roxy-2-methyl-propionyl) -benzyl] phenyl] -2-methyl-propan-1-one (IRGACURE127, trade name, manufactured by Ciba Specialty Chemicals), 2-methyl-1- (4-methylthiophenyl) ) -2-morpholinopropan-1-one [IRGACURE907, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.], 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 [ IRGACURE369, manufactured by Ciba Specialty Chemicals, Inc., trademark], 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-monophorinyl) phenyl] -1-butanone [IRGACURE 379, trade name, manufactured by Ciba Specialty Chemicals Co., Ltd.] 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (DAROCUR TPO, trade name, manufactured by Ciba Specialty Chemicals), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide [IRGACURE819, Ciba Trademarks, Specialty Chemicals, Inc.], bis (η 5 -2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) Titanium [IRGACURE784, manufactured by Ciba Specialty Chemicals, Inc., trademark], 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] [IRGACURE OXE 01, Ciba Specialty Chemicals Co., Ltd., Trademark], D Non, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) [IRGACURE OXE 02, manufactured by Ciba Specialty Chemicals Co., Ltd. , Trademark] and the like.
The amount of the radical polymerization initiator is not particularly limited, but is preferably 0.01% by mass or more in the composition, more preferably 0.02% by mass or more, and 0.05% by mass or more. Is particularly preferred. The upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less.
The radical polymerization initiator may be used alone or in combination of two or more.
 ポリロタキサン化合物の架橋物は、上記のポリロタキサン化合物中の環状分子を架橋点として架橋して得られるものが好ましい。架橋形態は特に限定されず、反応性基(官能基)同士が反応して架橋してもよく、反応性基とその他の反応性基が反応してもよく、反応性基と架橋剤が反応して架橋しても良い。架橋剤としては公知のものを用いることができる。その具体例としては、トリメシン酸クロリド、テレフタル酸クロリドなどの多官能カルボン酸クロライド類、エピクロロヒドリン、ジブロモベンゼン、塩化シアヌルなどの反応性ハロゲン原子を有する分子、グルタールアルデヒドなどの多官能アルデヒド類、フェニレンジイソシアネート、トリレンジイソシアネートなどの多官能イソシアネート類、1,1’-カルボニルジイミダゾール多官能イミダゾール類、ジビニルスルホン、トリエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能ビニル類、テトラメトキシシラン、テトラエトキシシランなどのアルコキシシラン類などを挙げることができる。 The cross-linked product of the polyrotaxane compound is preferably obtained by cross-linking the cyclic molecule in the polyrotaxane compound as a cross-linking point. The form of crosslinking is not particularly limited, and reactive groups (functional groups) may react with each other to crosslink, reactive groups may react with other reactive groups, and reactive groups react with crosslinking agents. And may be cross-linked. A well-known thing can be used as a crosslinking agent. Specific examples include polyfunctional carboxylic acid chlorides such as trimesic acid chloride and terephthalic acid chloride, molecules having reactive halogen atoms such as epichlorohydrin, dibromobenzene and cyanuric chloride, and polyfunctional aldehydes such as glutaraldehyde. Polyfunctional isocyanates such as phenylene diisocyanate and tolylene diisocyanate, polyfunctional vinyls such as 1,1′-carbonyldiimidazole polyfunctional imidazoles, divinyl sulfone, triethylene glycol dimethacrylate, divinylbenzene, tetramethoxysilane, Examples include alkoxysilanes such as tetraethoxysilane.
 架橋反応の条件も公知の方法を採用できる。例えば、環状分子としてα-シクロデキストリンを用い、反応性基としてM-4を用い、線状分子として両末端が置換されたポリエチレングリコールを用いた包接化合物を架橋する場合は、包接化合物をジメチルホルムアミドに溶解させ、ジメチル-2,2’-アゾビス(2-メチルプロピネート)を加え80℃で加熱して反応させることで架橋反応を行うことができる。同様にM-1~M-3、M-8~M-10についても架橋反応を行うことができる。またさらにトリエチレングリコールジメタクリレート、ジビニルベンゼン、ポリエチレングリコールジメタクリレートなどの架橋剤を加えても同様に架橋反応させることができる。
 環状分子としてα-シクロデキストリンを用い、反応性基としてM-6を用い、線状分子として両末端が置換されたポリエチレングリコールを用いた包接化合物を架橋する場合は、包接化合物をジメチルホルムアミドに溶解させ、トリエチレングリコールジビニルエーテルなどの多官能ビニル化合物を加え、ジメチル-2,2’-アゾビス(2-メチルプロピネート)を加え80℃で加熱して反応させることで架橋反応を行うことができる。
 環状分子としてα-シクロデキストリンを用い、線状分子として両末端が置換されたポリエチレングリコールを用いた包接化合物を架橋する場合は、包接化合物をアルカリ水溶液に溶解し、この水溶液にエピクロルヒドリンまたは塩化シアヌルを添加し、室温で攪拌することにより、架橋反応を行うことができる。また、溶媒としてジメチルスルホキシドを用い、架橋剤として1,1’-カルボニルジイミダゾールまたはトリレンジイソシアネートを用いても、同様に架橋反応を行うことができる。
A well-known method can be adopted for the crosslinking reaction. For example, when cross-linking an inclusion compound using α-cyclodextrin as a cyclic molecule, M-4 as a reactive group, and polyethylene glycol having both ends substituted as a linear molecule, The crosslinking reaction can be carried out by dissolving in dimethylformamide, adding dimethyl-2,2′-azobis (2-methylpropinate) and heating to react at 80 ° C. Similarly, a crosslinking reaction can be performed for M-1 to M-3 and M-8 to M-10. Further, the crosslinking reaction can be similarly carried out by adding a crosslinking agent such as triethylene glycol dimethacrylate, divinylbenzene, polyethylene glycol dimethacrylate and the like.
When cross-linking an inclusion compound using α-cyclodextrin as a cyclic molecule, M-6 as a reactive group, and polyethylene glycol substituted at both ends as a linear molecule, the inclusion compound is dimethylformamide A cross-linking reaction is performed by adding a polyfunctional vinyl compound such as triethylene glycol divinyl ether, adding dimethyl-2,2′-azobis (2-methylpropinate), and heating and reacting at 80 ° C. Can do.
When cross-linking an inclusion compound using α-cyclodextrin as a cyclic molecule and polyethylene glycol substituted at both ends as a linear molecule, the inclusion compound is dissolved in an alkaline aqueous solution, and epichlorohydrin or chloride is dissolved in the aqueous solution. A crosslinking reaction can be performed by adding cyanur and stirring at room temperature. Further, the crosslinking reaction can be similarly carried out using dimethyl sulfoxide as a solvent and 1,1′-carbonyldiimidazole or tolylene diisocyanate as a crosslinking agent.
 本明細書において架橋構造というときには前記反応性置換基が反応して形成された連結構造部を意味する。架橋構造は多様であり、前記のように反応性基同士が反応して架橋してもよく、反応性基とその他の反応性基が反応してもよく、反応性基と架橋剤が反応して架橋しても良い。架橋構造を構成する原子は、炭素原子、酸素原子、硫黄原子、窒素原子、ハロゲン原子、ケイ素原子、水素原子等が挙げられる。架橋構造をなす原子の原子数は1~2000が好ましく、1~1000がより好ましい。 In the present specification, the term “crosslinked structure” means a linked structure formed by the reaction of the reactive substituent. There are various cross-linking structures, and reactive groups may react to cross-link as described above, or reactive groups may react with other reactive groups, and reactive groups and cross-linking agents react. And may be cross-linked. Examples of the atoms constituting the crosslinked structure include carbon atoms, oxygen atoms, sulfur atoms, nitrogen atoms, halogen atoms, silicon atoms, and hydrogen atoms. The number of atoms forming the crosslinked structure is preferably 1 to 2000, more preferably 1 to 1000.
 バインダーの架橋は任意の方法で行うことができるが、加熱する方法、光を照射する方法、架橋促進剤を添加する方法等が挙げられる。加熱による場合には、60℃以上で加熱することが好ましく、80℃以上で加熱することがより好ましい。上限は200℃以下が実際的であり、150℃以下がより実際的である。加熱時間は1分以上であることが好ましく、3分以上であることがより好ましく、5分以上であることが特に好ましい。上限は24時間以下であることが実際的である。 The crosslinking of the binder can be carried out by any method, and examples thereof include a heating method, a light irradiation method, and a crosslinking accelerator addition method. In the case of heating, it is preferable to heat at 60 ° C or higher, and more preferable to heat at 80 ° C or higher. An upper limit of 200 ° C. or lower is practical, and 150 ° C. or lower is more practical. The heating time is preferably 1 minute or longer, more preferably 3 minutes or longer, and particularly preferably 5 minutes or longer. The upper limit is practically 24 hours or less.
 バインダーの配合量は、上記無機固体電解質(活物質を用いる場合はこれを含む)100質量部に対して、0.1質量部以上であることが好ましく、0.3質量部以上であることがより好ましく、1質量部以上であることが特に好ましい。上限としては、20質量部以下であることが好ましく、10質量部以下であることがより好ましく、5質量部以下であることが特に好ましい。
 固体電解質組成物に対しては、その固形分中、バインダーが0.1質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、1質量%以上であることが特に好ましい。上限としては、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。バインダーを上記の範囲で用いることにより、一層効果的に無機固体電解質の固着性と界面抵抗の抑制性とを両立して実現することができる。
The blending amount of the binder is preferably 0.1 parts by mass or more, and 0.3 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte (including this when an active material is used). More preferred is 1 part by mass or more. The upper limit is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less.
For the solid electrolyte composition, in the solid content, the binder is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and particularly preferably 1% by mass or more. preferable. The upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. By using the binder in the above range, it is possible to more effectively achieve both the adhesion of the inorganic solid electrolyte and the suppression of the interface resistance.
 バインダーは一種を単独で用いても、複数の種類のものを組み合わせて用いてもよい。また、他の粒子と組み合わせて用いてもよい。 ¡Binders may be used alone or in combination of a plurality of types. Further, it may be used in combination with other particles.
 本発明においてバインダーは、粒子形状であってもよい。粒子の平均粒径は1,000nm以下が好ましく、750nm以下がより好ましく、500nm以下がさらに好ましく、300nm以下がさらに好ましく、200nm以下が特に好ましい。下限値は10nm以上が好ましく、20nm以上がより好ましく、30nm以上がさらに好ましく、50nm以上が特に好ましい。
 無機固体電解質が粒子状であるときには、無機固体電解質の平均粒径より、上記バインダーの粒径が小さいことが好ましい。
 なお、作成された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について後述のバインダーの粒径測定の方法に準じてその測定を行い、あらかじめ測定していたバインダー以外の粒子の粒径の測定値を排除することにより行うことができる。
 なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、上記化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ホスホン酸基、スルホン酸基、リン酸基、カルボキシル基、ヒドロキシル基またはハロゲン原子である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。このとき、アルキル基・アルキレン基、アルケニル基・アルケニレン基、アルキニル基・アルキニレン基はヘテロ原子を含む基(例えば、O、S、CO、NR等)を介在していても、これを伴って環構造を形成していてもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
In the present invention, the binder may be in the form of particles. The average particle size of the particles is preferably 1,000 nm or less, more preferably 750 nm or less, further preferably 500 nm or less, further preferably 300 nm or less, and particularly preferably 200 nm or less. The lower limit is preferably 10 nm or more, more preferably 20 nm or more, further preferably 30 nm or more, and particularly preferably 50 nm or more.
When the inorganic solid electrolyte is in the form of particles, the binder preferably has a smaller particle size than the average particle size of the inorganic solid electrolyte.
The measurement from the created all-solid-state secondary battery is, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method of particle size measurement of the binder described later, and measuring in advance. This can be done by eliminating the measured value of the particle size of the particles other than the binder.
In addition, in this specification, it uses for the meaning containing the salt and its ion other than the said compound itself about the display of a compound (For example, when attaching | subjecting and attaching | subjecting a compound and an end). In addition, it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
In the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl, -Chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups of 2 to 20 carbon atoms, preferably 5- or 6-membered heterocycles having at least one oxygen atom, sulfur atom, nitrogen atom) A cyclic group is preferred, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, Methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms) Nyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl and the like, amino groups (preferably containing an amino group having 0 to 20 carbon atoms, alkylamino group, arylamino group, such as amino, N, N-dimethyl) Amino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.) ), An acyl group (preferably an acyl group having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, benzoyl, etc.), an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyl) Oxy, etc.), a carbamoyl group (preferably a C 1-20 carbon Rubamoyl groups such as N, N-dimethylcarbamoyl and N-phenylcarbamoyl), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms such as acetylamino and benzoylamino), sulfonamide groups (preferably A sulfamoyl group having 0 to 20 carbon atoms, such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-ethylbenzenesulfonamide, etc., an alkylthio group (preferably an alkylthio group having 1 to 20 carbon atoms, For example, methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.), Alkyl group or arylsulfonyl group (preferably an alkyl or arylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, benzenesulfonyl, etc.), hydroxyl group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, Bromine atom, iodine atom, etc.), more preferably alkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, alkoxycarbonyl group, amino group, acylamino group, phosphonic acid group, sulfonic acid group , Phosphoric acid group, carboxyl group, hydroxyl group or halogen atom.
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above.
When a compound or a substituent / linking group includes an alkyl group / alkylene group, an alkenyl group / alkenylene group, an alkynyl group / alkynylene group, etc., these may be cyclic or linear, and may be linear or branched These may be substituted as described above or may be unsubstituted. In this case, an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group, an alkynylene group is a group containing a hetero atom (e.g., O, S, CO, NR N and the like) be separated by a, with this A ring structure may be formed. Moreover, when an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
(電解質塩[支持電解質])
 本発明に係る固体電解質組成物には、電解質塩(支持電解質)を含有さてもよい。電解質塩としてはリチウム塩が好ましい。リチウム塩としては、通常この種の製品に用いられるリチウム塩が好ましく、特に制限はないが、例えば、以下に述べるものが好ましい。
(Electrolyte salt [supporting electrolyte])
The solid electrolyte composition according to the present invention may contain an electrolyte salt (supporting electrolyte). The electrolyte salt is preferably a lithium salt. As the lithium salt, a lithium salt usually used in this type of product is preferable, and there is no particular limitation, but for example, the following are preferable.
(L-1)無機リチウム塩:LiPF、LiBF、LiAsF、LiSbF等の無機フッ化物塩;LiClO、LiBrO、LiIO等の過ハロゲン酸塩;LiAlCl等の無機塩化物塩等。 (L-1) Inorganic lithium salts: inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; perhalogenates such as LiClO 4 , LiBrO 4 , LiIO 4 ; inorganic chloride salts such as LiAlCl 4 etc.
(L-2)含フッ素有機リチウム塩:LiCFSO等のパーフルオロアルカンスルホン酸塩;LiN(CFSO、LiN(CFCFSO、LiN(FSO、LiN(CFSO)(CSO)等のパーフルオロアルカンスルホニルイミド塩;LiC(CFSO等のパーフルオロアルカンスルホニルメチド塩;Li[PF(CFCFCF)]、Li[PF(CFCFCF]、Li[PF(CFCFCF]、Li[PF(CFCFCFCF)]、Li[PF(CFCFCFCF]、Li[PF(CFCFCFCF]等のフルオロアルキルフッ化リン酸塩等。 (L-2) Fluorine-containing organic lithium salt: perfluoroalkane sulfonate such as LiCF 3 SO 3 ; LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (FSO 2 ) 2 , Perfluoroalkanesulfonylimide salts such as LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ); perfluoroalkanesulfonylmethide salts such as LiC (CF 3 SO 2 ) 3 ; Li [PF 5 (CF 2 CF 2 CF 3 )], Li [PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li [PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li [PF 5 (CF 2 CF 2 CF 2 CF 3 )], Li [PF 4 ( CF 2 CF 2 CF 2 CF 3) 2], Li [PF 3 (CF 2 CF 2 CF 2 CF 3) 3] fluoroalkyl fluoride such as potash Acid salts, and the like.
(L-3)オキサラトボレート塩:リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート等。
 これらのなかで、LiPF、LiBF、LiAsF、LiSbF、LiClO、Li(RfSO)、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)が好ましく、LiPF、LiBF、LiN(RfSO、LiN(FSO、及びLiN(RfSO)(RfSO)などのリチウムイミド塩がさらに好ましい。ここで、Rf、Rfはそれぞれパーフルオロアルキル基を示す。
(L-3) Oxalatoborate salt: lithium bis (oxalato) borate, lithium difluorooxalatoborate and the like.
Among these, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , Li (Rf 1 SO 3 ), LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ), preferably LiPF 6 , LiBF 4 , LiN (Rf 1 SO 2 ) 2 , LiN (FSO 2 ) 2 , and LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) More preferred are imide salts. Here, Rf 1 and Rf 2 each represent a perfluoroalkyl group.
 リチウム塩の含有量は、無機固体電解質100質量部に対して0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましい。上限としては、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
 なお、電解液に用いる電解質は、1種を単独で使用しても、2種以上を任意に組み合わせてもよい。
The content of the lithium salt is preferably 0.1 parts by mass or more and more preferably 0.5 parts by mass or more with respect to 100 parts by mass of the inorganic solid electrolyte. As an upper limit, it is preferable that it is 10 mass parts or less, and it is more preferable that it is 5 mass parts or less.
In addition, the electrolyte used for electrolyte solution may be used individually by 1 type, or may combine 2 or more types arbitrarily.
(分散媒体)
 本発明に係る固体電解質組成物においては、上記の各成分を分散させる分散媒体を用いてもよい。全固体二次電池を作製する際、固体電解質組成物を均一に塗布して製膜する観点から、固体電解質組成物に分散媒体を加えてペースト状にすることが好ましい。全固体二次電池の固体電解質層を形成する際には、分散媒体は乾燥によって除去される。
 分散媒体としては、例えば、水溶性または非水溶性の有機溶媒が挙げられる。具体例としては、下記のものが挙げられる。
・アルコール化合物溶媒
 メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールなど
・エーテル化合物溶媒(水酸基含有エーテル化合物を含む)
 ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、アニソール、テトラヒドロフラン、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)など
・アミド化合物溶媒
 N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなど
・ケトン化合物溶媒
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなど
・芳香族化合物溶媒
 ベンゼン、トルエンなど
・脂肪族化合物溶媒
 ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなど
・ニトリル化合物溶媒
 アセトニトリル
(Dispersion medium)
In the solid electrolyte composition according to the present invention, a dispersion medium in which the above components are dispersed may be used. When producing an all-solid secondary battery, it is preferable to add a dispersion medium to the solid electrolyte composition to make a paste from the viewpoint of uniformly coating the solid electrolyte composition to form a film. When forming the solid electrolyte layer of the all-solid secondary battery, the dispersion medium is removed by drying.
Examples of the dispersion medium include water-soluble or water-insoluble organic solvents. Specific examples include the following.
Alcohol compound solvent Methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, 2-methyl- 2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, etc. ・ Ether compound solvents (including hydroxyl group-containing ether compounds)
Dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, anisole, tetrahydrofuran, alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether , Diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.) Amide compound solvents N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N-methylformamide, acetamide , N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc.Ketone compound solvents Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.Aromatic compound solvents benzene, toluene, etc. Aliphatic compound solvent Hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane, etc. ・ Nitrile compound solvent Acetonitrile
 本発明においては、なかでも、エーテル化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒を用いることが好ましい。分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、80℃以上であることがより好ましい。上限は220℃以下であることが好ましく、180℃以下であることがさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明において、固体電解質組成物における分散媒体の量は、固体電解質組成物の粘度と乾燥負荷とのバランスで任意の量とすることが出来る。一般的に、固体電解質組成物中、20~99質量%であることが好ましい。
In the present invention, it is particularly preferable to use an ether compound solvent, a ketone compound solvent, an aromatic compound solvent, or an aliphatic compound solvent. The dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 80 ° C. or higher at normal pressure (1 atm). The upper limit is preferably 220 ° C. or lower, and more preferably 180 ° C. or lower. The said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
In this invention, the quantity of the dispersion medium in a solid electrolyte composition can be made into arbitrary quantity with the balance of the viscosity of a solid electrolyte composition, and a dry load. Generally, it is preferably 20 to 99% by mass in the solid electrolyte composition.
(正極活物質)
 固体電解質組成物には正極活物質を含有させて、正極活物質層を形成する組成物としてもよい。それにより、正極材料用の組成物とすることができる。正極活物質には遷移金属酸化物を用いることが好ましく、中でも、遷移元素M(Co、Ni、Fe、Mn、Cu、Vから選択される1種以上の元素)を有することが好ましい。また、混合元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなど)を混合してもよい。この、遷移金属酸化物として例えば、下記式(MA)~(MC)のいずれかで表されるものを含む特定遷移金属酸化物、あるいはその他の遷移金属酸化物としてV、MnO等が挙げられる。正極活物質には、粒子状の正極活物質を用いてもよい。具体的に、可逆的にリチウムイオンを挿入・放出できる遷移金属酸化物を用いることができるが、上記特定遷移金属酸化物を用いるのが好ましい。
(Positive electrode active material)
The solid electrolyte composition may contain a positive electrode active material to form a positive electrode active material layer. Thereby, it can be set as the composition for positive electrode materials. It is preferable to use a transition metal oxide for the positive electrode active material, and it is preferable to have a transition element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). Further, mixed element M b (elements of the first (Ia) group of the metal periodic table other than lithium, elements of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Sb, Bi, Si , P, B, etc.) may be mixed. Examples of the transition metal oxide include specific transition metal oxides including those represented by any of the following formulas (MA) to (MC), or other transition metal oxides such as V 2 O 5 and MnO 2. Is mentioned. As the positive electrode active material, a particulate positive electrode active material may be used. Specifically, a transition metal oxide capable of reversibly inserting and releasing lithium ions can be used, but the specific transition metal oxide is preferably used.
 遷移金属酸化物としては、上記遷移元素Mを含む酸化物等が好適に挙げられる。このとき混合元素M(好ましくはAl)などを混合してもよい。混合量としては、遷移金属の量に対して0~30mol%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。 The transition metal oxides, oxides containing the above transition element M a is preferably exemplified. At this time, a mixed element M b (preferably Al) or the like may be mixed. The mixing amount is preferably 0 to 30 mol% with respect to the amount of the transition metal. That the molar ratio of li / M a was synthesized were mixed so that 0.3 to 2.2, more preferably.
〔式(MA)で表される遷移金属酸化物(層状岩塩型構造)〕
 リチウム含有遷移金属酸化物としては中でも下式で表されるものが好ましい。
  Li     ・・・ (MA)
[Transition metal oxide represented by formula (MA) (layered rock salt structure)]
As the lithium-containing transition metal oxide, those represented by the following formula are preferable.
Li a M 1 O b (MA)
 式中、Mは上記Maと同義である。aは0~1.2(0.2~1.2が好ましい)を表し、0.6~1.1であることが好ましい。bは1~3を表し、2であることが好ましい。Mの一部は上記混合元素Mで置換されていてもよい。上記式(MA)で表される遷移金属酸化物は典型的には層状岩塩型構造を有する。 Wherein, M 1 is as defined above Ma. a represents 0 to 1.2 (preferably 0.2 to 1.2), and preferably 0.6 to 1.1. b represents 1 to 3 and is preferably 2. A part of M 1 may be substituted with the mixed element M b . The transition metal oxide represented by the above formula (MA) typically has a layered rock salt structure.
 本遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MA-1)  LiCoO
 (MA-2)  LiNiO
 (MA-3)  LiMnO
 (MA-4)  LiCoNi1-j
 (MA-5)  LiNiMn1-j
 (MA-6)  LiCoNiAl1-j-i
 (MA-7)  LiCoNiMn1-j-i
The transition metal oxide is more preferably one represented by the following formulas.
(MA-1) Li g CoO k
(MA-2) Li g NiO k
(MA-3) Li g MnO k
(MA-4) Li g Co j Ni 1-j O k
(MA-5) Li g Ni j Mn 1-j O k
(MA-6) Li g Co j Ni i Al 1-j-i O k
(MA-7) Li g Co j Ni i Mn 1-j-i O k
 ここでgは上記aと同義である。jは0.1~0.9を表す。iは0~1を表す。ただし、1-j-iは0以上になる。kは上記bと同義である。上記遷移金属化合物の具体例を示すと、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.01Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi0.33Co0.33Mn0.33(ニッケルマンガンコバルト酸リチウム[NMC])、LiNi0.5Mn0.5(マンガンニッケル酸リチウム)である。 Here, g has the same meaning as a. j represents 0.1 to 0.9. i represents 0 to 1; However, 1-ji is 0 or more. k has the same meaning as b above. Specific examples of the transition metal compound include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate) LiNi 0.85 Co 0.01 Al 0.05 O 2 (nickel cobalt aluminum acid Lithium [NCA]), LiNi 0.33 Co 0.33 Mn 0.33 O 2 (lithium nickel manganese cobaltate [NMC]), LiNi 0.5 Mn 0.5 O 2 (lithium manganese nickelate).
 式(MA)で表される遷移金属酸化物は、一部重複するが、表記を変えて示すと、下記で表されるものも好ましい例として挙げられる。
(i)LiNiMnCo(x>0.2,y>0.2,z≧0,x+y+z=1)
 代表的なもの:
   LiNi1/3Mn1/3Co1/3
   LiNi1/2Mn1/2
(ii)LiNiCoAl(x>0.7,y>0.1,0.1>z≧0.05,x+y+z=1)
 代表的なもの:
   LiNi0.8Co0.15Al0.05
The transition metal oxide represented by the formula (MA) partially overlaps, but when represented by changing the notation, those represented by the following are also preferable examples.
(I) Li g Ni x Mn y Co z O 2 (x> 0.2, y> 0.2, z ≧ 0, x + y + z = 1)
Representative:
Li g Ni 1/3 Mn 1/3 Co 1/3 O 2
Li g Ni 1/2 Mn 1/2 O 2
(Ii) Li g Ni x Co y Al z O 2 (x> 0.7, y>0.1,0.1> z ≧ 0.05, x + y + z = 1)
Representative:
Li g Ni 0.8 Co 0.15 Al 0.05 O 2
〔式(MB)で表される遷移金属酸化物(スピネル型構造)〕
 リチウム含有遷移金属酸化物としては中でも下記式(MB)で表されるものも好ましい。
  Li     ・・・ (MB)
[Transition metal oxide represented by formula (MB) (spinel structure)]
Among the lithium-containing transition metal oxides, those represented by the following formula (MB) are also preferable.
Li c M 2 2 O d (MB)
 式中、Mは上記Maと同義である。cは0~2(0.2~2が好ましい)を表し、0.6~1.5であることが好ましい。dは3~5を表し、4であることが好ましい。 Wherein, M 2 is as defined above Ma. c represents 0 to 2 (preferably 0.2 to 2), and preferably 0.6 to 1.5. d represents 3 to 5 and is preferably 4.
 式(MB)で表される遷移金属酸化物は下記の各式で表されるものであることがより好ましい。
 (MB-1)  LiMn
 (MB-2)  LiMnAl2-p
 (MB-3)  LiMnNi2-p
The transition metal oxide represented by the formula (MB) is more preferably one represented by the following formulas.
(MB-1) Li m Mn 2 O n
(MB-2) Li m Mn p Al 2-p O n
(MB-3) Li m Mn p Ni 2-p O n
 mはcと同義である。nはdと同義である。pは0~2を表す。上記遷移金属化合物の具体例を示すと、LiMn、LiMn1.5Ni0.5である。 m is synonymous with c. n is synonymous with d. p represents 0-2. Specific examples of the transition metal compound are LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .
 式(MB)で表される遷移金属酸化物はさらに下記で表されるものも好ましい例として挙げられる。
 (a) LiCoMnO
 (b) LiFeMn
 (c) LiCuMn
 (d) LiCrMn
 (e) LiNiMn
 高容量、高出力の観点で上記のうちNiを含む電極が更に好ましい。
Preferred examples of the transition metal oxide represented by the formula (MB) include those represented by the following.
(A) LiCoMnO 4
(B) Li 2 FeMn 3 O 8
(C) Li 2 CuMn 3 O 8
(D) Li 2 CrMn 3 O 8
(E) Li 2 NiMn 3 O 8
Of these, an electrode containing Ni is more preferable from the viewpoint of high capacity and high output.
〔式(MC)で表される遷移金属酸化物〕
 リチウム含有遷移金属酸化物としてはリチウム含有遷移金属リン酸化物を用いることも好ましく、中でも下記式(MC)で表されるものも好ましい。
  Li(PO ・・・ (MC)
[Transition metal oxide represented by formula (MC)]
As the lithium-containing transition metal oxide, it is also preferable to use a lithium-containing transition metal phosphor oxide, and among them, one represented by the following formula (MC) is also preferable.
Li e M 3 (PO 4 ) f ... (MC)
 式中、eは0~2(0.2~2が好ましい)を表し、0.5~1.5であることが好ましい。fは1~5を表し、0.5~2であることが好ましい。 In the formula, e represents 0 to 2 (preferably 0.2 to 2), and is preferably 0.5 to 1.5. f represents 1 to 5, and preferably 0.5 to 2.
 上記MはV、Ti、Cr、Mn、Fe、Co、Ni、Cuから選択される一種以上の元素を表す。上記Mは、上記の混合元素Mのほか、Ti、Cr、Zn、Zr、Nb等の他の金属で置換していてもよい。具体例としては、例えば、LiFePO、LiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類、Li(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 なお、Liの組成を表す上記a,c,g,m,e値は、充放電により変化する値であり、典型的には、Liを含有したときの安定な状態の値で評価される。上記式(a)~(e)では特定値としてLiの組成を示しているが、これも同様に電池の動作により変化するものである。
The M 3 represents one or more elements selected from V, Ti, Cr, Mn, Fe, Co, Ni, and Cu. The M 3 are, in addition to the mixing element M b above, Ti, Cr, Zn, Zr, may be substituted by other metals such as Nb. Specific examples include, for example, olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and Li 3. Monoclinic Nasicon type vanadium phosphate salts such as V 2 (PO 4 ) 3 (lithium vanadium phosphate) can be mentioned.
The a, c, g, m, and e values representing the composition of Li are values that change due to charge and discharge, and are typically evaluated as values in a stable state when Li is contained. In the above formulas (a) to (e), the composition of Li is shown as a specific value, but this also varies depending on the operation of the battery.
 正極活物質の平均粒子サイズは特に限定されないが、0.1μm~50μmが好ましい。正極活物質を所定の粒子サイズにするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。 The average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 μm to 50 μm. In order to make the positive electrode active material have a predetermined particle size, an ordinary pulverizer or classifier may be used. The positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
 正極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、20~90質量%であることが好ましく、40~80質量%であることがより好ましい。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
The concentration of the positive electrode active material is not particularly limited, but is preferably 20 to 90% by mass, and more preferably 40 to 80% by mass in 100% by mass of the solid component in the solid electrolyte composition.
The positive electrode active materials may be used alone or in combination of two or more.
(負極活物質)
 固体電解質組成物には負極活物質を含有させて、負極活物質層の形成用組成物としてもよい。それにより、負極材料用の組成物とすることができる。負極活物質としては、可逆的にリチウムイオンを挿入・放出できるものが好ましい。その材料は、特に制限はなく、炭素質材料、酸化錫や酸化ケイ素等の金属酸化物、金属複合酸化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金、及び、SnやSi、In等のリチウムと合金形成可能な金属等が挙げられる。なかでも炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵、放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
(Negative electrode active material)
It is good also as a composition for forming a negative electrode active material layer by making a solid electrolyte composition contain a negative electrode active material. Thereby, it can be set as the composition for negative electrode materials. As the negative electrode active material, those capable of reversibly inserting and releasing lithium ions are preferable. The material is not particularly limited, and is a carbonaceous material, a metal oxide such as tin oxide or silicon oxide, a metal composite oxide, a lithium alloy such as lithium alone or a lithium aluminum alloy, and a lithium such as Sn, Si, or In. And metals capable of forming an alloy. Of these, carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability. In addition, the metal composite oxide is preferably capable of inserting and extracting lithium. The material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、天然黒鉛、気相成長黒鉛等の人造黒鉛、及びPAN系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維、活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー、平板状の黒鉛等を挙げることもできる。 The carbonaceous material used as the negative electrode active material is a material substantially made of carbon. Examples thereof include carbonaceous materials obtained by baking various synthetic resins such as artificial pitches such as petroleum pitch, natural graphite, and vapor-grown graphite, and PAN-based resins and furfuryl alcohol resins. Furthermore, various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA-based carbon fiber, lignin carbon fiber, glassy carbon fiber, activated carbon fiber, mesophase micro Examples thereof include spheres, graphite whiskers, and flat graphite.
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素材料と黒鉛系炭素材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔や密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。 These carbonaceous materials can be divided into non-graphitizable carbon materials and graphite-based carbon materials depending on the degree of graphitization. Further, the carbonaceous material preferably has a face spacing, density, and crystallite size described in JP-A-62-222066, JP-A-2-6856, and 3-45473. The carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, or the like is used. You can also.
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°以上70°以下に見られる結晶性の回折線の内最も強い強度が、2θ値で20°以上40°以下に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。 As the metal oxide and metal composite oxide applied as the negative electrode active material, an amorphous oxide is particularly preferable, and chalcogenite, which is a reaction product of a metal element and an element of Group 16 of the periodic table, is also preferably used. It is done. The term “amorphous” as used herein means an X-ray diffraction method using CuKα rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2θ, and is a crystalline diffraction line. You may have. The strongest intensity of crystalline diffraction lines seen from 2 ° to 40 ° to 70 ° is 100 times the diffraction line intensity at the peak of the broad scattering band seen from 2 ° to 20 °. It is preferable that it is 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
 上記非晶質酸化物及びカルコゲナイドからなる化合物群のなかでも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb、Biの一種単独あるいはそれらの2種以上の組み合わせからなる酸化物、及びカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、Sb、Bi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb、SnSiSなどが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。 Among the group of compounds consisting of the above amorphous oxide and chalcogenide, amorphous metal oxides and chalcogenides are more preferable, and elements in groups 13 (IIIB) to 15 (VB) of the periodic table are preferable. Particularly preferred are oxides and chalcogenides composed of one kind of Al, Ga, Si, Sn, Ge, Pb, Sb, Bi or a combination of two or more kinds thereof. Specific examples of preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , Bi 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 , such as SnSiS 3 may preferably be mentioned. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
 負極活物質の平均粒子サイズは、0.1μm~60μmが好ましい。所定の粒子サイズにするには、よく知られた粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式、湿式ともに用いることができる。 The average particle size of the negative electrode active material is preferably 0.1 μm to 60 μm. To obtain a predetermined particle size, a well-known pulverizer or classifier is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used. When pulverizing, wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary. In order to obtain a desired particle size, classification is preferably performed. The classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。 The chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
 Sn、Si、Geを中心とする非晶質酸化物負極活物質に併せて用いることができる負極活物質としては、リチウムイオン又はリチウム金属を吸蔵・放出できる炭素材料や、リチウム、リチウム合金、リチウムと合金可能な金属が好適に挙げられる。 Examples of the negative electrode active material that can be used in combination with the amorphous oxide negative electrode active material centering on Sn, Si, and Ge include carbon materials that can occlude and release lithium ions or lithium metal, lithium, lithium alloys, lithium A metal that can be alloyed with is preferable.
 負極活物質はチタン原子を含有することが好ましい。より具体的にはLiTi12がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。特定の負極と更に特定の電解液を組合せることにより、様々な使用条件においても二次電池の安定性が向上する。 The negative electrode active material preferably contains a titanium atom. More specifically, since Li 4 Ti 5 O 12 has a small volume fluctuation at the time of occlusion and release of lithium ions, it has excellent rapid charge / discharge characteristics, suppresses electrode deterioration, and improves the life of lithium ion secondary batteries. This is preferable. By combining a specific negative electrode and a specific electrolyte, the stability of the secondary battery is improved even under various usage conditions.
 本発明の全固体二次電池においては、Si元素を含有する負極活物質を適用することも好ましい。一般的にSi負極は、現行の炭素負極(黒鉛、アセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、重量あたりのLiイオン吸蔵量が増加するため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点があり、車用のバッテリー等への使用が今後期待されている。一方で、Liイオンの吸蔵、放出に伴う体積変化が大きいことが知られており、一例では、炭素負極で体積膨張が1.2~1.5倍程度のところ、Si負極では約3倍になる例もある。この膨張収縮を繰り返すこと(充放電を繰り返すこと)によって、電極層の耐久性が不足し、例えば接触不足を起こしやすくなったり、サイクル寿命(電池寿命)が短くなったりすることも挙げられる。
 本発明に係る固体電解質組成物によれば、このような膨張・収縮が大きくなる電極層においてもその高い耐久性(強度)を発揮し、より効果的にその優れた利点を発揮しうるものである。
In the all solid state secondary battery of the present invention, it is also preferable to apply a negative electrode active material containing Si element. In general, a Si negative electrode can occlude more Li ions than current carbon negative electrodes (graphite, acetylene black, etc.). That is, since the amount of Li ion storage per weight increases, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended, and use in a battery for vehicles is expected in the future. On the other hand, it is known that the volume change associated with insertion and extraction of Li ions is large. In one example, the volume expansion of the carbon negative electrode is about 1.2 to 1.5 times, and the volume of Si negative electrode is about three times. There is also an example. By repeating this expansion and contraction (repeating charge and discharge), the durability of the electrode layer is insufficient, and for example, contact shortage is likely to occur, and cycle life (battery life) is shortened.
According to the solid electrolyte composition according to the present invention, even in an electrode layer in which such expansion / contraction increases, the high durability (strength) can be exhibited, and the excellent advantages can be exhibited more effectively. is there.
 負極活物質の濃度は特に限定されないが、固体電解質組成物中、固形成分100質量%において、10~80質量%であることが好ましく、20~70質量%であることがより好ましい。 The concentration of the negative electrode active material is not particularly limited, but is preferably 10 to 80% by mass, more preferably 20 to 70% by mass in 100% by mass of the solid component in the solid electrolyte composition.
 なお、上記の実施形態では、固体電解質組成物に正極活物質ないし負極活物質を含有させる例を考慮して示したが、本発明はこれにより限定して解釈されるものではない。例えば、上記バインダーを含まない組成物として正極活物質ないし負極活物質を含むペーストを調製してもよい。また、正極および負極の活物質層には、適宜必要に応じて導電助剤を含有させてもよい。一般的な電子伝導性材料として、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素繊維や金属粉、金属繊維、ポリフェニレン誘導体などを含ませることができる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
In the above-described embodiment, the solid electrolyte composition is shown in consideration of an example in which a positive electrode active material or a negative electrode active material is contained. However, the present invention is not construed as being limited thereto. For example, you may prepare the paste containing a positive electrode active material thru | or a negative electrode active material as a composition which does not contain the said binder. Moreover, you may make the active material layer of a positive electrode and a negative electrode contain a conductive support agent suitably as needed. As general electron conductive materials, carbon fibers such as graphite, carbon black, acetylene black, ketjen black, carbon nanotubes, metal powders, metal fibers, polyphenylene derivatives, and the like can be included.
The said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
<集電体(金属箔)>
 正・負極の集電体としては、化学変化を起こさない電子伝導体が用いられることが好ましい。正極の集電体としては、アルミニウム、ステンレス鋼、ニッケル、チタンなどの他にアルミニウムやステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、その中でも、アルミニウム、アルミニウム合金がより好ましい。負極の集電体としては、アルミニウム、銅、ステンレス鋼、ニッケル、チタンが好ましく、アルミニウム、銅、銅合金がより好ましい。
<Current collector (metal foil)>
As the positive / negative current collector, an electron conductor that does not cause a chemical change is preferably used. As the current collector of the positive electrode, in addition to aluminum, stainless steel, nickel, titanium, etc., the surface of aluminum or stainless steel is preferably treated with carbon, nickel, titanium, or silver. Among them, aluminum and aluminum alloys are preferable. More preferred. As the negative electrode current collector, aluminum, copper, stainless steel, nickel, and titanium are preferable, and aluminum, copper, and a copper alloy are more preferable.
 上記集電体の形状としては、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。上記集電体の厚みとしては、特に限定されないが、1μm~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。 As the shape of the current collector, a film sheet is usually used, but a net, a punched one, a lath body, a porous body, a foamed body, a molded body of a fiber group, and the like can also be used. The thickness of the current collector is not particularly limited, but is preferably 1 μm to 500 μm. Moreover, it is also preferable that the current collector surface is roughened by surface treatment.
<全固体二次電池の作製>
 全固体二次電池の作製は常法によればよい。具体的には、上記固体電解質組成物を集電体となる金属箔上に塗布し、塗膜を形成した電池用電極シートとする方法が挙げられる。例えば、正極集電体である金属箔上に正極材料となる組成物を塗布後、乾燥し、正極層を形成する。次いでその電池用正極シート上に、固体電解質組成物を塗布後、乾燥し、固体電解質層を形成する。さらに、その上に、負極材料となる組成物を塗布後、乾燥し、負極層を形成する。その上に、負極側の集電体(金属箔)を重ねることで、正極層と負極層の間に、固体電解質層が挟まれた全固体二次電池の構造を得ることができる。なお、上記の各組成物の塗布方法は常法によればよい。このとき、正極活物質層をなす組成物、無機固体電解質層をなす組成物(固体電解質組成物)、及び負極活物質層をなす組成物のそれぞれの塗布の後に、乾燥処理を施しても良いし、重層塗布した後に乾燥処理をしても良い。乾燥温度は特に限定されないが、30℃以上が好ましく、60℃以上がより好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態とさせることができる。これにより、全固体二次電池において、良好な結着性と非加圧でのイオン伝導性を得ることができる。
<Preparation of all-solid secondary battery>
The all-solid-state secondary battery may be manufactured by a conventional method. Specifically, there is a method in which the solid electrolyte composition is applied onto a metal foil serving as a current collector to form a battery electrode sheet having a coating film formed thereon. For example, a composition serving as a positive electrode material is applied onto a metal foil that is a positive electrode current collector and then dried to form a positive electrode layer. Next, the solid electrolyte composition is applied onto the positive electrode sheet for a battery and then dried to form a solid electrolyte layer. Furthermore, after applying the composition used as a negative electrode material on it, it dries and forms a negative electrode layer. A structure of an all-solid-state secondary battery in which a solid electrolyte layer is sandwiched between a positive electrode layer and a negative electrode layer can be obtained by stacking a current collector (metal foil) on the negative electrode side thereon. In addition, the application | coating method of said each composition should just follow a conventional method. At this time, a drying treatment may be performed after each application of the composition forming the positive electrode active material layer, the composition forming the inorganic solid electrolyte layer (solid electrolyte composition), and the composition forming the negative electrode active material layer. Then, after the multilayer coating, a drying process may be performed. Although drying temperature is not specifically limited, 30 degreeC or more is preferable and 60 degreeC or more is more preferable. The upper limit is preferably 300 ° C. or lower, and more preferably 250 ° C. or lower. By heating in such a temperature range, a dispersion medium can be removed and it can be set as a solid state. Thereby, in an all-solid secondary battery, good binding properties and non-pressurized ion conductivity can be obtained.
<全固体二次電池の用途>
 本発明に係る全固体二次電池は種々の用途に適用することができる。適用態様は特に限定されないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
<Use of all-solid-state secondary battery>
The all solid state secondary battery according to the present invention can be applied to various uses. Although the application mode is not particularly limited, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a cellular phone, a cordless phone, a pager, a handy terminal, a portable fax machine, a portable copy, Examples include portable printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, memory cards, portable tape recorders, radios, backup power supplies, and memory cards. Other consumer products include automobiles, electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (such as pacemakers, hearing aids, and shoulder grinders). Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
 なかでも、高容量且つ高レート放電特性が要求されるアプリケーションに適用されることが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い信頼性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定され、過充電時に対して一層の信頼性が求められる。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。 In particular, it is preferably applied to applications that require high capacity and high rate discharge characteristics. For example, in power storage facilities and the like that are expected to increase in capacity in the future, high reliability is indispensable and further compatibility of battery performance is required. In addition, electric vehicles and the like are equipped with high-capacity secondary batteries and are expected to be charged every day at home, and thus more reliability is required for overcharging. According to the present invention, it is possible to exhibit the excellent effect correspondingly to such a usage pattern.
 本発明の好ましい実施形態によれば、以下のような各応用形態が導かれる。
・周期律表第一族または第二族に属する金属のイオンの挿入放出が可能な活物質を含んでいる固体電解質組成物(正極または負極の電極用組成物)。
・上記固体電解質組成物を金属箔上に製膜した電池用電極シート。
・正極活物質層と負極活物質層と無機固体電解質層とを具備する全固体二次電池であって、上記正極活物質層、負極活物質層、および無機固体電解質層の少なくともいずれかを上記固体電解質組成物で構成した層とした全固体二次電池。
・上記固体電解質組成物を金属箔上に配置し、これを製膜する電池用電極シートの製造方法。
・上記電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。
According to a preferred embodiment of the present invention, the following applications are derived.
A solid electrolyte composition (positive electrode or negative electrode composition) containing an active material capable of inserting and releasing metal ions belonging to Group 1 or Group 2 of the Periodic Table.
-The battery electrode sheet which formed the said solid electrolyte composition on metal foil.
-An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and an inorganic solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the inorganic solid electrolyte layer is All-solid-state secondary battery made into the layer comprised with the solid electrolyte composition.
-The manufacturing method of the electrode sheet for batteries which arrange | positions the said solid electrolyte composition on metal foil, and forms this into a film.
-The manufacturing method of the all-solid-state secondary battery which manufactures an all-solid-state secondary battery via the manufacturing method of the said battery electrode sheet.
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLLTやLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に高分子化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質粒子のバインダーとして高分子化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLLTやLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがあるが、上記のイオン輸送材料としての電解質と区別するときにはこれを「電解質塩」または「支持電解質」と呼ぶ。電解質塩としては例えばLiTFSI(リチウムビストリフルオロメタンスルホンイミド)が挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte. In this, this invention presupposes an inorganic all-solid-state secondary battery. The all-solid-state secondary battery is classified into an organic (polymer) all-solid-state secondary battery that uses a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state secondary battery that uses the above LLT, LLZ, or the like. . The application of the polymer compound to the inorganic all-solid secondary battery is not hindered, and the polymer compound can be applied as a binder for the positive electrode active material, the negative electrode active material, and the inorganic solid electrolyte particles.
The inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above LLT and LLZ. The inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function. On the other hand, a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte, but it is distinguished from the electrolyte as the ion transport material. This is sometimes referred to as “electrolyte salt” or “supporting electrolyte”. Examples of the electrolyte salt include LiTFSI (lithium bistrifluoromethanesulfonimide).
In the present invention, the term “composition” means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
 以下に本発明について実施例に基づきさらに詳細に説明するが、本発明がこれにより限定して解釈されるものではない。なお、配合量や濃度の表示において部、%としたときには、特に断らない限り、質量基準によるものとする。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited thereto. In addition, when it is set as a part and% in the display of a compounding quantity and a density | concentration, it shall be based on mass unless there is particular notice.
ポリロタキサン合成例・・・B-1
 水300g中に重量平均分子量20000のポリエチレングリコールビスアミン10g(特表2009-507943に従って合成)とα-シクロデキストリン(和光純薬工業株式会社製)35gを加え、80℃に加熱し溶解させた。その溶液を2時間攪拌した後5℃に冷却し8時間静置した。生成した沈殿を乾燥し、2,4-ジニトロフルオロベンゼン(和光純薬工業株式会社製)25gとジメチルホルムアミド(和光純薬工業株式会社製)100gの溶液に加えて室温で12時間攪拌した。その反応物にジメチルスルホキシド(DMSO)500gを加え溶解した後、濃度0.1%の食塩水10kgに注いで生成物を析出させ、分取した。析出物を水とメタノールで各5回ずつ洗浄後、50℃で8時間真空乾燥した。このようにして、ポリエチレングリコールビスアミンにα-シクロデキストリンが貫通され、かつ両末端アミノ基に2,4-ジニトロフェニル基が結合したポリロタキサン化合物30gを得た。H-NMRから算出した包接化合物の組成比はエチレンオキシド単位のモル数:α―シクロデキストリン分子のモル数の比で100:17であった(表1の反応性基M-13は、シクロデキストリンの水酸基である)。
Example of polyrotaxane synthesis B-1
In 300 g of water, 10 g of polyethylene glycol bisamine having a weight average molecular weight of 20000 (synthesized according to JP 2009-507943) and 35 g of α-cyclodextrin (manufactured by Wako Pure Chemical Industries, Ltd.) were added and heated to 80 ° C. for dissolution. The solution was stirred for 2 hours, cooled to 5 ° C. and allowed to stand for 8 hours. The produced precipitate was dried, added to a solution of 25 g of 2,4-dinitrofluorobenzene (Wako Pure Chemical Industries, Ltd.) and 100 g of dimethylformamide (Wako Pure Chemical Industries, Ltd.) and stirred at room temperature for 12 hours. The reaction product was dissolved by adding 500 g of dimethyl sulfoxide (DMSO), and then poured into 10 kg of 0.1% strength saline to precipitate the product. The precipitate was washed with water and methanol 5 times each and then dried in vacuo at 50 ° C. for 8 hours. In this way, 30 g of a polyrotaxane compound in which α-cyclodextrin was penetrated by polyethylene glycol bisamine and 2,4-dinitrophenyl groups were bonded to both terminal amino groups was obtained. The composition ratio of the clathrate compound calculated from 1 H-NMR was 100: 17 in terms of the ratio of the number of moles of ethylene oxide units to the number of moles of α-cyclodextrin molecules (the reactive group M-13 in Table 1 is cyclohexane). Dextrin hydroxyl group).
官能基導入例(M-4アルケニル基含有基)・・・B-2
 上記で得られたポリロタキサン5g、2-イソシアナトエチルメタクリレート3g(和光純薬工業株式会社製)、ビスマストリス(2-エチルへキサノエート)(日東化成社製、ネオスタンU-600)0.03gをジメチルスルホキシド30gに溶解させ、60℃に加熱し3時間攪拌した。得られた溶液を濃度0.1%の食塩水500gに注いで生成物を析出させ、分取することでM-4が環状分子に導入されたポリロタキサンを得た。
Functional group introduction example (M-4 alkenyl group-containing group) ... B-2
5 g of the polyrotaxane obtained above, 3 g of 2-isocyanatoethyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.03 g of bismuth tris (2-ethylhexanoate) (manufactured by Nitto Kasei Co., Ltd., Neostan U-600) were added to dimethyl It was dissolved in 30 g of sulfoxide, heated to 60 ° C. and stirred for 3 hours. The obtained solution was poured into 500 g of 0.1% strength saline to precipitate the product, and fractionated to obtain a polyrotaxane in which M-4 was introduced into the cyclic molecule.
官能基導入例(M-6チオール基)・・・B-3
 上記で得られたポリロタキサン5gを水3g、エタノール27gの混合溶液に加え、さらに3-メルカプトプロピルメチルジメトキシシラン(東京化成工業株式会社製)3g加え、50℃で1時間攪拌した。析出物を分取することでM-6が環状分子に導入されたポリロタキサンを得た。同様の方法でM-7も導入することができる。
Functional group introduction example (M-6 thiol group) B-3
5 g of the polyrotaxane obtained above was added to a mixed solution of 3 g of water and 27 g of ethanol, 3 g of 3-mercaptopropylmethyldimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was further added, and the mixture was stirred at 50 ° C. for 1 hour. By separating the precipitate, a polyrotaxane in which M-6 was introduced into a cyclic molecule was obtained. M-7 can also be introduced in the same manner.
官能基導入例(M-12カルボン酸基)・・・B-4
 上記で得られたポリロタキサン5gをジメチルスルホキシド30gに溶解させ、トリエチルアミン(和光純薬工業株式会社製)1.1g、無水コハク酸(和光純薬工業株式会社製)2.3gを加えて40℃で5時間攪拌した。得られた溶液を濃度0.1%の食塩水500gに注いで生成物を析出させ、分取することでM-12が環状分子に導入されたポリロタキサンを得た。
Functional group introduction example (M-12 carboxylic acid group) B-4
5 g of the polyrotaxane obtained above was dissolved in 30 g of dimethyl sulfoxide, and 1.1 g of triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 2.3 g of succinic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) were added at 40 ° C. Stir for 5 hours. The obtained solution was poured into 500 g of 0.1% strength saline to precipitate the product, and fractionated to obtain a polyrotaxane in which M-12 was introduced into the cyclic molecule.
 その他のバインダー(ポリロタキサン化合物)についても、上記の合成法を参考に、同様にして調製した。 Other binders (polyrotaxane compounds) were similarly prepared with reference to the above synthesis method.
(固体電解質組成物の調製例)
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、無機固体電解質LLT(豊島製作所製)9.7g、バインダーB-1を0.3g(固形分重量)、分散媒体として、N-メチルピロリドン15.0gを投入した後に、フリッチュ社製遊星ボールミルに容器をセットし、回転数300rpmで2時間混合を続け、固体電解質組成物S-1を得た。
 下記表2に示す固体電解質組成物S-2~S-10およびT-1~T-3も、固体電解質組成物S-1と同様にして調製した。
(Preparation example of solid electrolyte composition)
180 pieces of zirconia beads having a diameter of 5 mm are put into a 45 mL container (manufactured by Fritsch) made of zirconia, 9.7 g of inorganic solid electrolyte LLT (manufactured by Toyoshima Seisakusho), 0.3 g of binder B-1 (solid weight), dispersed After charging 15.0 g of N-methylpyrrolidone as a medium, the container was set on a planetary ball mill manufactured by Fritsch, and mixing was continued at 300 rpm for 2 hours to obtain a solid electrolyte composition S-1.
The solid electrolyte compositions S-2 to S-10 and T-1 to T-3 shown in Table 2 below were also prepared in the same manner as the solid electrolyte composition S-1.
(二次電池正極用組成物の調製例)
 プラネタリーミキサー(TKハイビスミックス、PRIMIX社製)に、下記表4記載の正極活物質100部(平均粒径 10μm)、アセチレンブラック5部、上記により得られた固体電解質組成物S-1 75部、N-メチルピロリドン270部を加え、40rpmで一時間撹拌をおこない、下記表4に示す試験No.201における二次電池正極用組成物を調製した。
 下記表4に示す試験No.202~205における二次電池正極用組成物も同様にして調製した。
(Preparation Example of Composition for Secondary Battery Positive Electrode)
In a planetary mixer (TK Hibismix, manufactured by PRIMIX), 100 parts of the positive electrode active material (average particle size 10 μm) described in Table 4 below, 5 parts of acetylene black, 75 parts of the solid electrolyte composition S-1 obtained as described above , 270 parts of N-methylpyrrolidone was added and stirred at 40 rpm for 1 hour. A composition for a secondary battery positive electrode in 201 was prepared.
Test No. shown in Table 4 below. The compositions for secondary battery positive electrodes in 202 to 205 were similarly prepared.
(二次電池負極用組成物の調製例)
 プラネタリーミキサー(TKハイビスミックス、PRIMIX社製)に、下記表4記載の負極活物質100部(平均粒径 6μm)、アセチレンブラック5部、上記で得られた固体電解質組成物S-1 75部、N-メチルピロリドン270部を加え、40rpmで一時間撹拌をおこない、下記表4に示す試験No.201における二次電池負極用組成物を調製した。
 下記表4に示す試験No.202~205における二次電池負極用組成物も同様にして調製した。
(Preparation example of secondary battery negative electrode composition)
In a planetary mixer (TK Hibismix, manufactured by PRIMIX), 100 parts of the negative electrode active material (average particle size 6 μm) described in Table 4 below, 5 parts of acetylene black, 75 parts of the solid electrolyte composition S-1 obtained above , 270 parts of N-methylpyrrolidone was added and stirred at 40 rpm for 1 hour. A composition for a secondary battery negative electrode in 201 was prepared.
Test No. shown in Table 4 below. The secondary battery negative electrode compositions in 202 to 205 were prepared in the same manner.
(二次電池用正極の作製例)
 上記で得られた二次電池正極用組成物を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃で2時間乾燥させた。その後、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、二次電池用正極を得た。
(Example of making a positive electrode for a secondary battery)
The composition for a positive electrode of the secondary battery obtained above was applied onto an aluminum foil having a thickness of 20 μm with an applicator having an arbitrary clearance and dried at 80 ° C. for 2 hours. Then, it heated and pressurized so that it might become arbitrary density using the heat press machine, and the positive electrode for secondary batteries was obtained.
(二次電池用電極シートの作製例)
 上記で得られた二次電池用正極上に、上記で得られた固体電解質組成物を、任意のクリアランスを有するアプリケーターにより塗布し、80℃ 2時間加熱し、乾燥させた。
 その後、上記で得られた二次電池負極用組成物をさらに塗布し、80℃ 2時間加熱し、乾燥させた。負極層上に厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、二次電池用電極シートを得た。
(Production example of electrode sheet for secondary battery)
On the positive electrode for secondary batteries obtained above, the solid electrolyte composition obtained above was applied with an applicator having an arbitrary clearance, heated at 80 ° C. for 2 hours, and dried.
Then, the composition for secondary battery negative electrodes obtained above was further applied, heated at 80 ° C. for 2 hours, and dried. A copper foil having a thickness of 20 μm was combined on the negative electrode layer, and heated and pressurized to a desired density using a heat press machine, to obtain an electrode sheet for a secondary battery.
(固体電解質シートの作製例)
 上記により得られた固体電解質組成物S-1を厚み20μmのアルミ箔上に、任意のクリアランスを有するアプリケーターにより塗布し、80℃で2時間乾燥させた。その後、厚み20μmの銅箔を合わせ、ヒートプレス機を用いて、任意の密度になるように加熱および加圧し、下記表3に示す試験No.101の固体電解質シートを得た。
 下記表3に示す試験No.102~112およびc11~c13の固体電解質シートも同様にして作製した。
(Example of production of solid electrolyte sheet)
The solid electrolyte composition S-1 obtained as described above was applied onto an aluminum foil having a thickness of 20 μm with an applicator having an arbitrary clearance, and dried at 80 ° C. for 2 hours. Thereafter, a copper foil having a thickness of 20 μm was combined, heated and pressurized to a desired density using a heat press machine, and the test nos. 101 solid electrolyte sheet was obtained.
Test No. shown in Table 3 below. The solid electrolyte sheets 102 to 112 and c11 to c13 were produced in the same manner.
<分子量の測定>
 本発明においてポリマーの分子量については、特に断らない限り、重量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の重量平均分子量を計測する。測定方法としては、下記条件1の方法により測定した値とする。ただし、ポリマー種によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
カラム:TOSOH TSKgel Super AWM-Hをつなげる
キャリア:10mMLiBr/N-メチルピロリドン
<Measurement of molecular weight>
In the present invention, the molecular weight of the polymer means the weight average molecular weight unless otherwise specified, and the weight average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC). The measurement method is a value measured by the method of Condition 1 below. However, an appropriate eluent may be selected and used depending on the polymer type.
(Condition 1)
Column: TOSOH TSKgel Super AWM-H carrier: 10 mM LiBr / N-methylpyrrolidone
<結着性の評価>
 二次電池用電極シート作製工程において、負極用組成物を塗布する前の状態(固体電解質組成物を乾燥させた状態)の電極シートを用いて結着性の評価を行った。硬化させた固体電解質組成物表面に粘着テープ(セロハンテープ(「CT24」,ニチバン(株)製))を貼り、一定速度で引き剥がした際に、剥離した面積を目視で確認した。剥離しなかった部分の面積の比率を下記のように評価した。
 5: 0%
 4: 0%超5%未満
 3: 5%以上20%未満
 2: 20%以上50%未満
 1: 50%以上
<Evaluation of binding properties>
In the secondary battery electrode sheet manufacturing step, the binding property was evaluated using the electrode sheet in a state before applying the negative electrode composition (a state where the solid electrolyte composition was dried). An adhesive tape (cellophane tape (“CT24”, manufactured by Nichiban Co., Ltd.)) was applied to the cured solid electrolyte composition surface, and when peeled at a constant speed, the peeled area was visually confirmed. The area ratio of the part that was not peeled was evaluated as follows.
5: 0%
4: More than 0% and less than 5% 3: 5% or more and less than 20% 2: 20% or more and less than 50% 1: 50% or more
<折り曲げ耐久性の評価>
 電極シート(複合固体電解質シート、二次電池用電極)を4cm角に打ち抜き、太さの異なるSUS棒に巻きつけ、電極シートから各組成物がはがれる際の棒の半径で評価した。
 5: はがれず
 4: 0mm以上2mm未満
 3: 2mm以上5mm未満
 2: 5mm以上30mm未満
 1: 50mm以上
<Evaluation of bending durability>
An electrode sheet (composite solid electrolyte sheet, secondary battery electrode) was punched into a 4 cm square, wound around a SUS rod having a different thickness, and evaluated by the radius of the rod when each composition was peeled off from the electrode sheet.
5: No peeling 4: 0 mm or more and less than 2 mm 3: 2 mm or more and less than 5 mm 2: 5 mm or more and less than 30 mm 1: 50 mm or more
<イオン伝導度の測定>
 上記で得られた電極シート(複合固体電解質シート、二次電池用電極シート)を直径14.5mmの円板状に切り出し、スペーサーとワッシャーを組み込んだステンレス製の2032型コインケースに入れてコイン電池を作製した。コイン電池の外部より、電極間に圧力をかけることができるジグに挟み、各種電気化学的測定に用いた。電極間の圧力は500kgf/cmとした。
 上記で得られたコイン電池を用いて、30℃の恒温槽中、交流インピーダンス法により求めた。このとき、電池の加圧には図3に示した試験体を用いた。11が上部支持板、12が下部支持板、13がコイン電池、14がコインケース、15が電極シート(固体電解質シートまたは二次電池電極シート)、Sがネジである。
 固体電解質シートの電極結着性、加圧および非加圧状態でのイオン伝導度の測定結果を表3に示す。このとき加圧状態での測定とは、コイン電池を前記ジグで挟んだ状態で測定した場合であり、非加圧状態での測定は、コイン電池をそのまま測定したことを表す。
<Measurement of ionic conductivity>
The electrode sheet (composite solid electrolyte sheet, secondary battery electrode sheet) obtained above was cut into a disk shape having a diameter of 14.5 mm, and placed in a stainless steel 2032 type coin case incorporating a spacer and washer. Was made. From the outside of the coin battery, it was sandwiched between jigs capable of applying pressure between the electrodes, and used for various electrochemical measurements. The pressure between the electrodes was 500 kgf / cm 2 .
It calculated | required by the alternating current impedance method in a 30 degreeC thermostat using the coin battery obtained above. At this time, the test body shown in FIG. 3 was used for pressurization of the battery. 11 is an upper support plate, 12 is a lower support plate, 13 is a coin battery, 14 is a coin case, 15 is an electrode sheet (solid electrolyte sheet or secondary battery electrode sheet), and S is a screw.
Table 3 shows the measurement results of the electrode binding properties of the solid electrolyte sheet, and the ionic conductivity in the pressurized and non-pressurized states. At this time, the measurement in the pressurized state is a case where measurement is performed with the coin battery sandwiched between the jigs, and the measurement in the non-pressurized state indicates that the coin battery is measured as it is.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
導入量:環状分子の導入量・・・線状分子のモノマー単位のモル数を100としたときの環状分子のモル数
 末端基は2,4-ジニトロフェニル基とした。
 分子量は上記GPC測定により求め1000以下の値は四捨五入した。
Amount introduced: Amount of cyclic molecule introduced: Number of moles of cyclic molecule when the number of moles of monomer units of the linear molecule is 100 The terminal group was a 2,4-dinitrophenyl group.
The molecular weight was determined by the GPC measurement, and values below 1000 were rounded off.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
<表の注釈>
 表中数字は質量比(%)
 化合物の番号は上記例示化合物の例示を参照
 LLT  :Li0.33La0.55TiO
 LLZ  :LiLaZr2O12
 NMP :N-メチルピロリドン
<Table notes>
Numbers in the table are mass ratios (%)
For compound numbers, refer to the examples of the above exemplified compounds. LLT: Li 0.33 La 0.55 TiO 3
LLZ: Li 7 La 3 Zr2O 12
NMP: N-methylpyrrolidone
 PA :下記の合成方法で得たポリマー粒子
 オートクレーブに、アクリル酸n-ブチル700部、スチレン200部、メタクリル酸5部、ジビニルベンゼン10部、乳化剤としてのポリオキシエチレンラウリルエーテル(花王社製、エマルゲン108、非イオン性界面活性剤、アルキル基の炭素数12、HLB値12.1)25部、イオン交換水1500部、重合開始剤としてのアゾビスブチロニトリル15部を仕込み、十分攪拌した。その後、80℃に加温して重合を行なった。そして、重合開始後、冷却して重合反応を停止することで、ポリマー粒子のラテックスを得た。
PA: Polymer particles obtained by the following synthesis method In an autoclave, 700 parts of n-butyl acrylate, 200 parts of styrene, 5 parts of methacrylic acid, 10 parts of divinylbenzene, polyoxyethylene lauryl ether as an emulsifier (Emulgen, manufactured by Kao Corporation) 108, a nonionic surfactant, an alkyl group having 12 carbon atoms, an HLB value of 12.1) 25 parts, 1500 parts of ion-exchanged water, and 15 parts of azobisbutyronitrile as a polymerization initiator were charged and sufficiently stirred. Then, it superposed | polymerized by heating at 80 degreeC. Then, after the polymerization was started, the polymerization reaction was stopped by cooling to obtain a latex of polymer particles.
HBR:下記の合成方法で得たポリマー
 オートクレーブにシクロヘキサン30部、ブタジエン10部を加え、n-ブチルリチウム14%テトラヒドロフラン溶液を30部加える。70℃に昇温し、転化率が100%になったところでさらにブタジエン30部、テトラヒドロフラン120部を加え、70℃で反応を行う。転化率が100%になった時点でジクロロシラン20%テトラヒドロフラン溶液を30部加え、20分間反応させることでトリブロック重合体を得た。その後、反応液を70℃にし、n-ブチルリチウム3部、2,6-ジ-t-ブチル-p-クレゾール3部とビス(シクロペンタジエニル)チタニウムジクロライド1部およびジエチルアルミニウムクロライド2部を加え、水素圧10kg/cm で1時間反応させ、留去し、乾燥させることでブロックポリマーを得た。
HBR: Polymer obtained by the following synthesis method 30 parts of cyclohexane and 10 parts of butadiene are added to an autoclave, and 30 parts of a 14% tetrahydrofuran solution of n-butyllithium is added. The temperature is raised to 70 ° C., and when the conversion rate reaches 100%, 30 parts of butadiene and 120 parts of tetrahydrofuran are further added, and the reaction is carried out at 70 ° C. When the conversion rate reached 100%, 30 parts of 20% dichlorosilane tetrahydrofuran solution was added and reacted for 20 minutes to obtain a triblock polymer. Thereafter, the reaction solution was brought to 70 ° C., and 3 parts of n-butyllithium, 3 parts of 2,6-di-t-butyl-p-cresol, 1 part of bis (cyclopentadienyl) titanium dichloride and 2 parts of diethylaluminum chloride were added. In addition, a block polymer was obtained by reacting at a hydrogen pressure of 10 kg / cm 2 for 1 hour, evaporating and drying.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
<表の注釈>
 化合物の番号は上記例示化合物の例示を参照
 TDI  :トリレンジイソシアナート
 V-601 :ジメチル2,2’-アゾビス(2-メチルプロピオネート)
 TEGDV :トリエチレングリコールジビニルエーテル
 TAC :テレフタル酸クロライド
 ECH :エピクロロヒドリン
 添加量:添加剤の添加量・・・バインダー重量を100としたときの質量%
<Table notes>
For compound numbers, refer to the examples of the above exemplified compounds. TDI: Tolylene diisocyanate V-601: Dimethyl 2,2′-azobis (2-methylpropionate)
TEGDV: Triethylene glycol divinyl ether TAC: Terephthalic acid chloride ECH: Epichlorohydrin Addition amount: Addition amount of additive:% by mass when binder weight is 100
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
<表の注釈>
LMO:LiMn マンガン酸リチウム
LTO:LiTi12 チタン酸リチウム
   (商品名「エナマイトLT-106」、石原産業株式会社製)
LCO:LiCoO コバルト酸リチウム
NMC:Li(Ni1/3Mn1/3Co1/3)O 
    ニッケル、マンガン、コバルト酸リチウム
黒鉛:日本黒鉛工業製の球状化黒鉛粉末
添加量:添加剤の添加量・・・バインダー重量を100としたときの質量%
<Table notes>
LMO: LiMn 2 O 4 lithium manganate LTO: Li 4 Ti 5 O 12 lithium titanate (trade name “Enamite LT-106”, manufactured by Ishihara Sangyo Co., Ltd.)
LCO: LiCoO 2 Lithium cobaltate NMC: Li (Ni 1/3 Mn 1/3 Co 1/3 ) O 2
Nickel, manganese, lithium cobalt oxide graphite: Spheroidized graphite powder manufactured by Nippon Graphite Industries Co., Ltd .: Amount of additive added:% by mass when binder weight is 100
 上記の試験102で使用したポリロタキサン化合物B-1に代え、下記の化合物を合成して使用した。その結果、折り曲げ耐久性、結着性、イオン伝導度ともに、c11~c13よりも良好な性能が得られることを確認した。 The following compound was synthesized and used instead of the polyrotaxane compound B-1 used in Test 102 above. As a result, it was confirmed that better performance than c11 to c13 was obtained in all of bending durability, binding property and ionic conductivity.
Figure JPOXMLDOC01-appb-T000025
 導入量:環状分子の導入量・・・線状分子のモノマー単位のモル数を100としたときの環状分子のモル数
 分子量は上記GPC測定により求め1000以下の値は四捨五入した。
 末端基:2,4-ジニトロフェニル基
Figure JPOXMLDOC01-appb-T000025
Amount introduced: amount of cyclic molecule introduced ... number of moles of cyclic molecule when the number of moles of monomer units of the linear molecule is 100.
Terminal group: 2,4-dinitrophenyl group
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年3月28日に日本国で特許出願された特願2014-070095に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-070095 filed in Japan on March 28, 2014, which is hereby incorporated herein by reference. Capture as part.
1 負極集電体
2 負極活物質層
3 無機固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13 コイン電池(全固体二次電池)
14 コインケース
15 電極シート
S ネジ
20 ポリロタキサン化合物
21 線状分子
22 環状分子
23 架橋鎖(反応性基による連結鎖)
24 末端置換基
200 ポリロタキサン化合物の架橋物
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode active material layer 3 Inorganic solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode collector 6 Working part 10 All-solid secondary battery 11 Upper support plate 12 Lower support plate 13 Coin cell (all-solid secondary battery)
14 Coin case 15 Electrode sheet S Screw 20 Polyrotaxane compound 21 Linear molecule 22 Cyclic molecule 23 Cross-linked chain (linkage chain by reactive group)
24 Terminal substituent 200 Cross-linked product of polyrotaxane compound

Claims (30)

  1.  正極活物質層と負極活物質層と固体電解質層とを具備する全固体二次電池であって、上記正極活物質層、負極活物質層、および固体電解質層の少なくともいずれかが周期律表第一族または第二族に属する金属のイオンの伝導性を有する無機固体電解質とバインダーとを含み、上記バインダーが環状分子に線状分子が貫通した構造を有する化合物を含む全固体二次電池。 An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer is a periodic table. An all-solid secondary battery comprising an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 and a binder, wherein the binder comprises a compound having a structure in which a linear molecule penetrates a cyclic molecule.
  2.  上記環状分子がシクロデキストリンまたはその誘導体である請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the cyclic molecule is cyclodextrin or a derivative thereof.
  3.  上記線状分子がポリオレフィン、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリアクリレート、ポリウレタン、ポリウレア、ヘテロ環を主鎖に有するポリマー、又はポリエン構造を含む化合物である請求項1または2に記載の全固体二次電池。 The whole linear molecule according to claim 1 or 2, wherein the linear molecule is a polyolefin, a polyether, a polyester, a polysiloxane, a polycarbonate, a polyacrylate, a polyurethane, a polyurea, a polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure. Solid secondary battery.
  4.  上記線状分子の分子量が10,000以上である請求項1~3のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 3, wherein the molecular weight of the linear molecule is 10,000 or more.
  5.  上記環状分子または線状分子が下記反応性置換基(A)および下記反応性連結基(B)の少なくともいずれか1つ又はその反応性置換基もしくは反応性連結基を介した架橋構造を有する請求項1~4のいずれか1項に記載の全固体二次電池。
    反応性置換基(A)
     アミノ基、チオール基、テトラヒドロフリル基、オキセタン基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基
    反応性連結基(B)
     イミノ基、アルケニレン基含有基
    The claim wherein the cyclic molecule or linear molecule has a crosslinked structure via at least one of the following reactive substituent (A) and the following reactive linking group (B), or the reactive substituent or reactive linking group. Item 5. The all solid state secondary battery according to any one of Items 1 to 4.
    Reactive substituent (A)
    Amino group, thiol group, tetrahydrofuryl group, oxetane group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group reactive linking group (B)
    Imino group, alkenylene group-containing group
  6.  上記線状分子の末端にかさ高い置換基を有する請求項1~5のいずれか1項に記載の全固体二次電池。 6. The all-solid-state secondary battery according to claim 1, which has a bulky substituent at the end of the linear molecule.
  7.  上記環状分子が下記式(2-1)~(2-4)のいずれかで表される構造を有する請求項1~6のいずれか1項に記載の全固体二次電池。
    Figure JPOXMLDOC01-appb-C000001
     Lは先の連結基である。
     Arは環状構造基である。
     RA1~RA4は水素原子、ハロゲン原子、メチル基、エチル基、シアノ基、またはヒドロキシル基である。
     環αはXA1を一つ以上含む環状構造基あり、酸素原子、硫黄原子、イミノ基、カルボニル基、アルキレン基、アルケニレン基、アリーレン基またはこれらの組み合わせで環構造を形成している。
     XA1、XA2はそれぞれ独立にヘテロ原子含有連結基を表す。
    The all-solid-state secondary battery according to any one of claims 1 to 6, wherein the cyclic molecule has a structure represented by any of the following formulas (2-1) to (2-4).
    Figure JPOXMLDOC01-appb-C000001
    L A is a preceding linking group.
    Ar 2 is a cyclic structural group.
    R A1 to R A4 are a hydrogen atom, a halogen atom, a methyl group, an ethyl group, a cyano group, or a hydroxyl group.
    Ring α is a cyclic structure group containing one or more X A1 , and forms a ring structure with an oxygen atom, a sulfur atom, an imino group, a carbonyl group, an alkylene group, an alkenylene group, an arylene group, or a combination thereof.
    X A1 and X A2 each independently represent a hetero atom-containing linking group.
  8.  上記環状分子に線状分子が貫通した構造を有する化合物において、上記線状分子が複数の単量体を有する高分子化合物であり、線状分子と環状分子の割合が、線状分子を構成する単量体単位のモル数:環状分子の数の比で、100:0.1~100:70である請求項1~7のいずれか1項に記載の全固体二次電池。 In the compound having a structure in which a linear molecule penetrates the cyclic molecule, the linear molecule is a polymer compound having a plurality of monomers, and the ratio of the linear molecule and the cyclic molecule constitutes the linear molecule. 8. The all-solid-state secondary battery according to claim 1, wherein the ratio of the number of moles of monomer units to the number of cyclic molecules is 100: 0.1 to 100: 70.
  9.  上記線状分子が下記式(1-1)~(1-5)のいずれかで表される構造を含む化合物である請求項1~8のいずれか1項に記載の全固体二次電池。
    Figure JPOXMLDOC01-appb-C000002
     Lはアルキレン基またはアルケニレン基である。Lは、連結基である。R31およびR32はそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アラルキル基である。R41、R42、R51、R52はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ヒドロキシル基、アルキル基、アリール基、アラルキル基である。分子内に複数あるL、L、R31、R32、R41、R42、R51、R52は互いに同じでも異なっていてもよい。
    9. The all solid state secondary battery according to claim 1, wherein the linear molecule is a compound including a structure represented by any of the following formulas (1-1) to (1-5).
    Figure JPOXMLDOC01-appb-C000002
    L 1 is an alkylene group or an alkenylene group. L 2 is a linking group. R 31 and R 32 are each independently a hydrogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, an alkyl group, an aryl group or an aralkyl group. A plurality of L 1 , L 2 , R 31 , R 32 , R 41 , R 42 , R 51 , R 52 in the molecule may be the same as or different from each other.
  10.  上記反応性置換基(A)が下記官能基の少なくともいずれか1つである請求項5に記載の全固体二次電池。
    官能基
     チオール基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基
    The all-solid-state secondary battery according to claim 5, wherein the reactive substituent (A) is at least one of the following functional groups.
    Functional group Thiol group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group
  11.  上記バインダーを上記無機固体電解質100質量部に対して、0.1質量部以上20質量部以下で含有させた請求項1~10のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 10, wherein the binder is contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the inorganic solid electrolyte.
  12.  上記反応性置換基(A)が下記官能基の少なくともいずれか1つである請求項10に記載の全固体二次電池。
    官能基
     カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基
    The all-solid-state secondary battery according to claim 10, wherein the reactive substituent (A) is at least one of the following functional groups.
    Functional group Carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group
  13.  上記無機固体電解質が酸化物系の無機固体電解質である請求項1~12のいずれか1項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 12, wherein the inorganic solid electrolyte is an oxide-based inorganic solid electrolyte.
  14.  上記無機固体電解質が下記式の化合物から選ばれる請求項13に記載の全固体二次電池。
    ・LixaLayaTiO
       xa=0.3~0.7、ya=0.3~0.7
    ・LiLaZr12
    ・Li3.5Zn0.25GeO
    ・LiTi12
    ・Li1+xh+yh(Al,Ga)xh(Ti,Ge)xhSiyhyh12
       0≦xh≦1、0≦yh≦1
    ・LiPO
    ・LiPON
    ・LiPOD
        Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、
        Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、及びAu
        から選ばれた少なくとも1種
    ・LiAON
        Aは、Si、B、Ge、Al、C、Ga等から選ばれた
        少なくとも1種
    The all-solid-state secondary battery according to claim 13, wherein the inorganic solid electrolyte is selected from the following formulae.
    ・ Li xa La ya TiO 3
    xa = 0.3 to 0.7, ya = 0.3 to 0.7
    ・ Li 7 La 3 Zr 2 O 12
    ・ Li 3.5 Zn 0.25 GeO 4
    ・ LiTi 2 P 3 O 12
    Li 1 + xh + yh (Al, Ga) xh (Ti, Ge) 2 -xh Si yh P 3 -yh O 12
    0 ≦ xh ≦ 1, 0 ≦ yh ≦ 1
    ・ Li 3 PO 4
    ・ LiPON
    ・ LiPOD 1
    D 1 is Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
    Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, and Au
    At least one selected from LiA 1 ON
    A 1 is at least one selected from Si, B, Ge, Al, C, Ga and the like
  15.  全固体二次電池用の固体電解質組成物であって、周期律表第一族または第二族に属する金属のイオンの伝導性を有する無機固体電解質と環状分子に線状分子が貫通した構造を有する化合物を含むバインダーを含む固体電解質組成物。 A solid electrolyte composition for an all-solid-state secondary battery having a structure in which a linear molecule penetrates an inorganic solid electrolyte having a conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table and a cyclic molecule. The solid electrolyte composition containing the binder containing the compound which has.
  16.  さらに分散媒体を含有する請求項15に記載の固体電解質組成物。 The solid electrolyte composition according to claim 15, further comprising a dispersion medium.
  17.  上記分散媒体が、アルコール化合物溶媒、エーテル化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、およびニトリル化合物溶媒から選ばれる請求項16に記載の固体電解質組成物。 The solid electrolyte composition according to claim 16, wherein the dispersion medium is selected from an alcohol compound solvent, an ether compound solvent, an amide compound solvent, a ketone compound solvent, an aromatic compound solvent, an aliphatic compound solvent, and a nitrile compound solvent.
  18.  さらにラジカル重合開始剤および/または架橋剤を含む請求項15~17のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 15 to 17, further comprising a radical polymerization initiator and / or a crosslinking agent.
  19.  上記バインダーを上記無機固体電解質100質量部に対して、0.1質量部以上20質量部以下で含有させた請求項15~18のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 15 to 18, wherein the binder is contained in an amount of 0.1 to 20 parts by mass with respect to 100 parts by mass of the inorganic solid electrolyte.
  20.  上記環状分子がシクロデキストリンまたはその誘導体である請求項15~19のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 15 to 19, wherein the cyclic molecule is cyclodextrin or a derivative thereof.
  21.  上記線状分子がポリオレフィン、ポリエーテル、ポリエステル、ポリシロキサン、ポリカーボネート、ポリアクリレート、ポリウレタン、ポリウレア、ヘテロ環を主鎖に有するポリマー又はポリエン構造を含む化合物である請求項15~20のいずれか1項に記載の固体電解質組成物。 The linear molecule is a polyolefin, polyether, polyester, polysiloxane, polycarbonate, polyacrylate, polyurethane, polyurea, a polymer having a heterocyclic ring in the main chain, or a compound containing a polyene structure. The solid electrolyte composition described in 1.
  22.  上記環状分子または線状分子が下記反応性置換基(A)および下記反応性連結基(B)の少なくともいずれか1つ又はその反応性置換基を介した架橋構造を有する請求項15~21のいずれか1項に記載の固体電解質組成物。
    反応性置換基(A)
     アミノ基、チオール基、テトラヒドロフリル基、オキセタン基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸、アルケニル基含有基
    反応性連結基(B)
     イミノ基、アルケニレン基含有基
    The cyclic molecule or linear molecule has a crosslinked structure via at least one of the following reactive substituent (A) and the following reactive linking group (B) or the reactive substituent: The solid electrolyte composition according to any one of the above.
    Reactive substituent (A)
    Amino group, thiol group, tetrahydrofuryl group, oxetane group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid, alkenyl group-containing group reactive linking group (B)
    Imino group, alkenylene group-containing group
  23.  上記線状分子の末端にかさ高い置換基を有する請求項15~22のいずれか1項に記載の固体電解質組成物。 The solid electrolyte composition according to any one of claims 15 to 22, which has a bulky substituent at an end of the linear molecule.
  24.  上記線状分子が下記式(1-1)~(1-5)のいずれかで表される構造を含む化合物である請求項15~23のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000003
     Lはアルキレン基またはアルケニレン基である。Lは、連結基である。R31およびR32はそれぞれ独立に水素原子、ヒドロキシル基、アルキル基、アルケニル基、アリール基、アラルキル基である。R41、R42、R51、R52はそれぞれ独立に水素原子、ハロゲン原子、シアノ基、ヒドロキシル基、アルキル基、アリール基、アラルキル基である。分子内に複数あるL、L、R31、R32、R41、R42、R51、R52は互いに同じでも異なっていてもよい。
    The solid electrolyte composition according to any one of claims 15 to 23, wherein the linear molecule is a compound containing a structure represented by any of the following formulas (1-1) to (1-5).
    Figure JPOXMLDOC01-appb-C000003
    L 1 is an alkylene group or an alkenylene group. L 2 is a linking group. R 31 and R 32 are each independently a hydrogen atom, a hydroxyl group, an alkyl group, an alkenyl group, an aryl group, or an aralkyl group. R 41 , R 42 , R 51 and R 52 are each independently a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, an alkyl group, an aryl group or an aralkyl group. A plurality of L 1 , L 2 , R 31 , R 32 , R 41 , R 42 , R 51 , R 52 in the molecule may be the same as or different from each other.
  25.  上記反応性置換基(A)が下記官能基の少なくともいずれか1つである請求項22に記載の固体電解質組成物。
    官能基
     チオール基、エポキシ基、ヒドロキシル基、イソシアナート基、カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基、アルケニル基含有基
    The solid electrolyte composition according to claim 22, wherein the reactive substituent (A) is at least one of the following functional groups.
    Functional group Thiol group, epoxy group, hydroxyl group, isocyanate group, carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group, alkenyl group-containing group
  26.  上記反応性置換基(A)が下記官能基の少なくともいずれか1つである請求項25に記載の固体電解質組成物。
    官能基
     カルボキシル基、リン酸基、スルホン酸基、ホスホン酸基
    The solid electrolyte composition according to claim 25, wherein the reactive substituent (A) is at least one of the following functional groups.
    Functional group Carboxyl group, phosphoric acid group, sulfonic acid group, phosphonic acid group
  27.  請求項15~26のいずれか1項に記載の固体電解質組成物を金属箔上に製膜した電池用電極シート。 An electrode sheet for a battery, wherein the solid electrolyte composition according to any one of claims 15 to 26 is formed on a metal foil.
  28.  請求項15~27のいずれか1項に記載の固体電解質組成物を金属箔上に製膜する電池用電極シートの製造方法。 A method for producing an electrode sheet for a battery, wherein the solid electrolyte composition according to any one of claims 15 to 27 is formed on a metal foil.
  29.  上記製膜した固体電解質組成物を80℃以上で加熱する請求項28に記載の電池用電極シートの製造方法。 The method for producing an electrode sheet for a battery according to claim 28, wherein the formed solid electrolyte composition is heated at 80 ° C or higher.
  30.  請求項28または請求項29に記載の電池用電極シートの製造方法を介して、全固体二次電池を製造する全固体二次電池の製造方法。 A method for producing an all-solid-state secondary battery, wherein an all-solid-state secondary battery is produced via the method for producing an electrode sheet for a battery according to claim 28 or claim 29.
PCT/JP2015/059680 2014-03-28 2015-03-27 All-solid-state secondary cell, cell electrode sheet and solid electrolyte composition used in said cell, method for manufacturing cell electrode sheet, and method for manufacturing all-solid-state secondary cell WO2015147282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014070095A JP6096701B2 (en) 2014-03-28 2014-03-28 All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, method for producing battery electrode sheet, and method for producing all-solid secondary battery
JP2014-070095 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147282A1 true WO2015147282A1 (en) 2015-10-01

Family

ID=54195786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059680 WO2015147282A1 (en) 2014-03-28 2015-03-27 All-solid-state secondary cell, cell electrode sheet and solid electrolyte composition used in said cell, method for manufacturing cell electrode sheet, and method for manufacturing all-solid-state secondary cell

Country Status (2)

Country Link
JP (1) JP6096701B2 (en)
WO (1) WO2015147282A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114976A1 (en) * 2016-10-24 2018-04-26 Samsung Electronics Co., Ltd. Positive electrode for metal secondary battery and metal secondary battery including the same
CN110291675A (en) * 2017-02-16 2019-09-27 富士胶片株式会社 The manufacturing method of solid electrolyte composition, the sheet material containing solid electrolyte and solid state secondary battery and sheet material and solid state secondary battery containing solid electrolyte
CN112531209A (en) * 2019-09-18 2021-03-19 三星Sdi株式会社 Additive, electrolyte and rechargeable lithium battery including the same
CN112771626A (en) * 2018-12-26 2021-05-07 松下知识产权经营株式会社 Solid electrolyte composition and method for producing solid electrolyte member
CN113471520A (en) * 2021-06-29 2021-10-01 华南理工大学 Solid electrolyte with cyclodextrin as filler and preparation method and application thereof
US11296324B2 (en) * 2016-12-28 2022-04-05 Korea Advanced Institute Of Science And Technology Rotaxane polymer binder for lithium secondary battery, electrode comprising same, and secondary battery comprising same
CN114649586A (en) * 2022-03-11 2022-06-21 浙江南都电源动力股份有限公司 Oxide composite solid electrolyte membrane and preparation method and application thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475317B2 (en) * 2015-02-27 2019-02-27 富士フイルム株式会社 SOLID ELECTROLYTE COMPOSITION, BATTERY ELECTRODE SHEET AND METHOD FOR MANUFACTURING SAME
JP2018024768A (en) * 2016-08-10 2018-02-15 株式会社ブリヂストン Rubber composition and tire
JP6595431B2 (en) * 2016-09-21 2019-10-23 富士フイルム株式会社 Solid electrolyte composition, sheet for all-solid secondary battery, all-solid-state secondary battery, sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2018105338A1 (en) * 2016-12-08 2018-06-14 東レ株式会社 Binder composition for electricity storage elements, slurry composition for electricity storage elements, electrode, method for producing electrode, secondary battery and electric double layer capacitor
US20180254518A1 (en) * 2017-03-03 2018-09-06 Blue Current, Inc. Polymerized in-situ hybrid solid ion-conductive compositions
JP2018174038A (en) * 2017-03-31 2018-11-08 Tdk株式会社 Binder for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
CN109983613B (en) * 2017-08-11 2022-06-07 株式会社Lg化学 Electrode assembly, method of manufacturing the same, and secondary battery including the same
DE102017010000A1 (en) * 2017-10-27 2019-05-02 Forschungszentrum Jülich GmbH Solvent-free solid electrolyte for applications in lithium-ion batteries and lithium-ion secondary batteries
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
KR20220121243A (en) 2019-12-20 2022-08-31 블루 커런트, 인크. Composite electrolyte with binder
US11394054B2 (en) 2019-12-20 2022-07-19 Blue Current, Inc. Polymer microspheres as binders for composite electrolytes
WO2024034574A1 (en) * 2022-08-09 2024-02-15 株式会社レゾナック Non-aqueous secondary battery binder polymer, non-aqueous secondary battery binder composition, and non-aqueous secondary battery electrode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05298915A (en) * 1992-04-16 1993-11-12 Japan Energy Corp Electrolyte composite body
JPH11507467A (en) * 1994-06-29 1999-06-29 三菱化学株式会社 Molecular complexes for use as electrolyte components
JP2003257236A (en) * 2002-02-27 2003-09-12 Nippon Zeon Co Ltd Polymer solid electrolyte
JP2006241396A (en) * 2005-03-07 2006-09-14 Kaneka Corp Crosslinked polyrotaxane and its production method
JP2010086864A (en) * 2008-10-01 2010-04-15 Japan Aviation Electronics Industry Ltd Thin-film actuator and touch panel using this
JP2011086558A (en) * 2009-10-16 2011-04-28 Nippon Sheet Glass Co Ltd Scale-like inorganic solid electrolyte filler, solid electrolyte membrane containing the same, nonaqueous electrolyte secondary battery, and capacitor
WO2013099224A1 (en) * 2011-12-27 2013-07-04 国立大学法人山口大学 Network polymer and polymer gel electrolyte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05298915A (en) * 1992-04-16 1993-11-12 Japan Energy Corp Electrolyte composite body
JPH11507467A (en) * 1994-06-29 1999-06-29 三菱化学株式会社 Molecular complexes for use as electrolyte components
JP2003257236A (en) * 2002-02-27 2003-09-12 Nippon Zeon Co Ltd Polymer solid electrolyte
JP2006241396A (en) * 2005-03-07 2006-09-14 Kaneka Corp Crosslinked polyrotaxane and its production method
JP2010086864A (en) * 2008-10-01 2010-04-15 Japan Aviation Electronics Industry Ltd Thin-film actuator and touch panel using this
JP2011086558A (en) * 2009-10-16 2011-04-28 Nippon Sheet Glass Co Ltd Scale-like inorganic solid electrolyte filler, solid electrolyte membrane containing the same, nonaqueous electrolyte secondary battery, and capacitor
WO2013099224A1 (en) * 2011-12-27 2013-07-04 国立大学法人山口大学 Network polymer and polymer gel electrolyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180114976A1 (en) * 2016-10-24 2018-04-26 Samsung Electronics Co., Ltd. Positive electrode for metal secondary battery and metal secondary battery including the same
US11075373B2 (en) * 2016-10-24 2021-07-27 Samsung Electronics Co., Ltd. Positive electrode for metal secondary battery and metal secondary battery including the same
US11296324B2 (en) * 2016-12-28 2022-04-05 Korea Advanced Institute Of Science And Technology Rotaxane polymer binder for lithium secondary battery, electrode comprising same, and secondary battery comprising same
CN110291675A (en) * 2017-02-16 2019-09-27 富士胶片株式会社 The manufacturing method of solid electrolyte composition, the sheet material containing solid electrolyte and solid state secondary battery and sheet material and solid state secondary battery containing solid electrolyte
CN112771626A (en) * 2018-12-26 2021-05-07 松下知识产权经营株式会社 Solid electrolyte composition and method for producing solid electrolyte member
CN112531209A (en) * 2019-09-18 2021-03-19 三星Sdi株式会社 Additive, electrolyte and rechargeable lithium battery including the same
CN113471520A (en) * 2021-06-29 2021-10-01 华南理工大学 Solid electrolyte with cyclodextrin as filler and preparation method and application thereof
CN114649586A (en) * 2022-03-11 2022-06-21 浙江南都电源动力股份有限公司 Oxide composite solid electrolyte membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP2015191866A (en) 2015-11-02
JP6096701B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6096701B2 (en) All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, method for producing battery electrode sheet, and method for producing all-solid secondary battery
JP6101223B2 (en) Composite solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and battery electrode sheet and method for producing all-solid secondary battery
JP6253155B2 (en) Solid electrolyte composition, battery electrode sheet using the same, and all-solid secondary battery
JP6343850B2 (en) Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and battery electrode sheet and method for producing all-solid secondary battery
JP6295332B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6295333B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6110885B2 (en) Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and battery electrode sheet and method for producing all-solid secondary battery
JP6140631B2 (en) All-solid secondary battery, solid electrolyte composition and battery electrode sheet used therefor, and method for producing all-solid secondary battery
JP6332882B2 (en) All-solid secondary battery, solid electrolyte composition, battery electrode sheet using the same, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6415008B2 (en) Solid electrolyte composition, battery electrode sheet and all-solid secondary battery using the same, and battery electrode sheet and method for producing all-solid secondary battery
JP6245524B2 (en) Polymerized cured film manufacturing method, battery electrode sheet manufacturing method, and all-solid secondary battery manufacturing method
JP6071938B2 (en) ALL SOLID SECONDARY BATTERY, SOLID ELECTROLYTE COMPOSITION AND BATTERY ELECTRODE SHEET USED FOR THE SAME, AND BATTERY ELECTRODE SHEET AND METHOD FOR PRODUCING ALL SOLID SOLID BATTERY
JP6595715B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery, all-solid-state secondary battery, sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN114303271A (en) Composition containing inorganic solid electrolyte, sheet for all-solid-state secondary battery, and method for producing sheet for all-solid-state secondary battery and all-solid-state secondary battery
WO2019017310A1 (en) Solid electrolyte composition, sheet containing solid electrolyte, all-solid-state secondary battery, method for producing sheet containing solid electrolyte, and method for producing all-solid-state secondary battery
CN114144907A (en) Method for producing composition for electrode, method for producing electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN114144918A (en) Composition containing inorganic solid electrolyte, sheet for all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
WO2019017311A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and production method for solid electrolyte-containing sheet and all-solid-state secondary battery
WO2019017309A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and production method for solid electrolyte-containing sheet and all-solid-state secondary battery
JP6595431B2 (en) Solid electrolyte composition, sheet for all-solid secondary battery, all-solid-state secondary battery, sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
CN114631215A (en) Inorganic solid electrolyte-containing composition, sheet for all-solid secondary battery, and method for producing sheet for all-solid secondary battery and all-solid secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15768856

Country of ref document: EP

Kind code of ref document: A1