JPH05298915A - Electrolyte composite body - Google Patents

Electrolyte composite body

Info

Publication number
JPH05298915A
JPH05298915A JP12109992A JP12109992A JPH05298915A JP H05298915 A JPH05298915 A JP H05298915A JP 12109992 A JP12109992 A JP 12109992A JP 12109992 A JP12109992 A JP 12109992A JP H05298915 A JPH05298915 A JP H05298915A
Authority
JP
Japan
Prior art keywords
electrolyte
solid electrolyte
solid
polymer
inorganic solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12109992A
Other languages
Japanese (ja)
Inventor
Masataka Yahagi
政隆 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP12109992A priority Critical patent/JPH05298915A/en
Publication of JPH05298915A publication Critical patent/JPH05298915A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide an electrolyte composite body suitable for solid electrochemical elemental devices, especially, lithium batteries and provide a solid-electrolyte battery having high processability and productivity, cation transporting ratio near 1, and high energy density. CONSTITUTION:An inorganic solid electrolyte powder containing lithium ion as a main charge carrier is dispersed in a lithium ion conductive polymer in 5-95% volume ratio. Consequently ion conductivity and cation transporting ratio of the resulting solid electrolyte are improved and high processibility and productivity is obtained and it becomes easy to make the solid electrolyte thin and give it with a wide surface area. Furthermore, no electric charge transporting reaction occurs in the interfaces of the solid polymer and the inorganic solid and the drastic decrease of conductivity due to polarization of the interfaces following the reaction does not occur, either. Using the composite body, a primary or a secondary solid electrolyte battery can have a large capacity and charge-discharge cycle properties of it is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解質複合体に関し、さ
らに詳しくは固体電気化学素子、特にリチウム電池に好
適な電解質複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte composite, and more particularly to an electrolyte composite suitable for a solid-state electrochemical device, particularly a lithium battery.

【0002】[0002]

【従来技術】従来、電池用固体電解質は、LiIのような
無機物、リチウム塩を含有したポリエチレンオキシドの
ような高分子、もしくは無機固体電解質粉を絶縁性高分
子に分散させた複合体が用いられてきた。しかし、これ
らの電解質はいずれも、電池用電解質として大きな問題
がある。
2. Description of the Related Art Conventionally, solid electrolytes for batteries have been made of inorganic materials such as LiI, polymers such as polyethylene oxide containing lithium salt, or composites of inorganic solid electrolyte powder dispersed in an insulating polymer. Came. However, all of these electrolytes have serious problems as battery electrolytes.

【0003】無機固体電解質は、高密度化するために焼
結などによりブロック化する必要があり、生産性、均一
性を得る上で大きな障害がある。さらに、得られるブロ
ックは硬く脆いため、薄型化に限界が有り、大きな電流
を得る事が困難である。
The inorganic solid electrolyte needs to be blocked by sintering or the like in order to increase the density, which is a major obstacle in obtaining productivity and uniformity. Furthermore, since the obtained block is hard and brittle, there is a limit to thinning it, and it is difficult to obtain a large current.

【0004】この問題点を解消するために開発された高
分子固体電解質は、機械的性質は良好で薄型化も可能で
あるが、移動イオンの選択性が悪く、目的のカチオン
(例え
The solid polymer electrolyte developed to solve this problem has good mechanical properties and can be made thin, but the selectivity of mobile ions is poor, and the desired cation (eg,

【外1】 る。[Outer 1] It

【0005】そこでイオン選択性に優れた無機固体電解
質を絶縁性高分子中に分散させ、加工性を改善し、薄型
化を可能にする試みがなされてきたが、絶縁体マトリク
ス中での無機固体電解質粉体は、相互の電気的接触面積
が非常に小さく、ほとんど絶
Therefore, attempts have been made to disperse an inorganic solid electrolyte having excellent ion selectivity in an insulating polymer to improve workability and enable thinning. Inorganic solids in an insulator matrix have been tried. Electrolyte powders have very small mutual electrical contact areas and

【外2】 [Outside 2]

【0006】仮にこの絶縁性高分子に僅かな電子伝導性
があったとしても、絶縁性高分子/無機固体電解質界面
で電荷移動反応が生じ、イオン電導の大きな障害になり
得る。
Even if the insulating polymer has a slight electron conductivity, a charge transfer reaction occurs at the interface of the insulating polymer / inorganic solid electrolyte, which may be a great obstacle to ionic conduction.

【0007】[0007]

【問題点を解決するための手段】本発明の目的は、前記
従来技術の問題点を解決し、機械的性質、加工性に優
れ、カチオンの輸率が1に近く、高エネルギ−密度の固
体電池を得ることができる電解質複合体を提供する事に
ある。
The object of the present invention is to solve the above-mentioned problems of the prior art, to have excellent mechanical properties and processability, a cation transport number close to 1, and a high energy-density solid. An object is to provide an electrolyte composite capable of obtaining a battery.

【0008】そのために本発明者らは、無機固体電解質
粉体を、従来のような絶縁性高分子ではなく高分子固体
電解質中に分散させる事により、加工性に優れ、カチオ
ンの輸率が1に近く、さらに高分子マトリクスまたは高
分子/無機粉体界面でのカチオン伝導の障害の無い電解
質複合体を得た。
Therefore, the present inventors have made it possible to disperse the inorganic solid electrolyte powder in the polymer solid electrolyte instead of the conventional insulating polymer, whereby the workability is excellent and the cation transport number is 1 In addition, an electrolyte composite was obtained which was close to that of the polymer matrix and had no hindrance of cation conduction at the polymer matrix or the polymer / inorganic powder interface.

【0009】[0009]

【発明の構成】すなわち本発明は、目的とするイオンが
主な荷電体となる無機固体電解質粉体を、同種イオンが
主な荷電体となる高分子固体電解質中に5〜95%の体
積分率で分散させた事を特徴とする電解質複合体に関す
る。
That is, according to the present invention, an inorganic solid electrolyte powder whose intended ions are the main charged bodies is added to a polymer solid electrolyte whose similar ions are the main charged bodies in an amount of 5 to 95% by volume. The present invention relates to an electrolyte composite characterized by being dispersed at a rate.

【0010】[0010]

【発明の具体的説明】本発明の理解を容易にするため具
体的かつ詳細に説明する。本発明の複合体は、基本的に
は高分子固体電解質のマトリクスとこれに分散する無機
固体電解質粉体から構成される。
DETAILED DESCRIPTION OF THE INVENTION Specific and detailed description will be given to facilitate understanding of the present invention. The composite of the present invention is basically composed of a matrix of polymer solid electrolyte and inorganic solid electrolyte powder dispersed therein.

【0011】分散方法は特に限定されるものではない
が、例えば高分子固体電解質のアセトニトリル溶液を調
製し、これに無機固体電解質粉体を5〜95容量%分散
させ、ドクタ−ブレ−ド法により剥離紙上にキャスティ
ングし、溶媒を除去後剥離紙を除き、電解質複合体フィ
ルムが得られる。
The dispersion method is not particularly limited, but for example, an acetonitrile solution of a polymer solid electrolyte is prepared, and 5 to 95% by volume of an inorganic solid electrolyte powder is dispersed in this solution, and a doctor blade method is used. After casting on release paper and removing the solvent, the release paper is removed to obtain an electrolyte composite film.

【0012】この無機固体電解質の体積分率が5%より
少ないと、カチオンの輸率に関する効果がほとんど認め
られず、95%より高いと複合体が脆くなりフィルムへ
の加工が困難になる。このようにして得られる電解質複
合体は、構成材料がともに同種イオンの伝導体であるた
め高分子/無機粉体界面における電荷移動反応がなく、
これにともなう界面分極による電導度の低下を抑えるこ
とができる。
When the volume fraction of this inorganic solid electrolyte is less than 5%, almost no effect on the cation transport number is observed, and when it is more than 95%, the composite becomes brittle and it becomes difficult to process it into a film. The electrolyte composite thus obtained does not have a charge transfer reaction at the polymer / inorganic powder interface because both constituent materials are conductors of the same ion.
It is possible to suppress a decrease in electrical conductivity due to interfacial polarization accompanying this.

【0013】本発明に用いられる無機固体電解質は、リ
チウム超イオン電導体、例えば金属塩添加のLiTi2(PO4)
3、Li3N、Li―βAl2O3、LiI、LiI―Li2S―P2O5、LiI―L
i2S―B2S3、Li3N―LiI―LiOH等があるが、これ以外の無
機固体電解質粉を併用する事もできる。その他の固体電
解質粉としては、例えばαAgI、AgI―Ag2O―MoO3ガラス
等の銀イオン電導体、Na―βAl2O3のナトリウムイオン
電導体等のカチオン電導体が用いられる。
The inorganic solid electrolyte used in the present invention is a lithium superionic conductor such as LiTi 2 (PO 4 ) containing a metal salt.
3 , Li 3 N, Li-β Al 2 O 3 , LiI, LiI-Li 2 S-P 2 O 5 , LiI-L
There are i 2 S-B 2 S 3 , Li 3 N-LiI-LiOH and the like, but inorganic solid electrolyte powders other than these can be used together. As the other solid electrolyte powder, for example, silver ion conductors such as αAgI and AgI-Ag 2 O-MoO 3 glass and cation conductors such as sodium ion conductor of Na-βAl 2 O 3 are used.

【0014】本発明に用いられる高分子固体電解質とし
ては、公知の代表的な材料であるPEO(ポリエチレンオ
キシド)、PPO(ポリプロピレンオキシド)等のポリエ
−テルを主鎖あるいは側鎖に有する無定形非晶性ポリマ
−にリチウム塩(そのアニオンは、例えばI-、Br-、ClO
4 -、SCN-またはF3CSO3 -である。)を溶解した固体電解
質がある。
As the solid polymer electrolyte used in the present invention, an amorphous non-crystalline polymer having a known typical material such as PEO (polyethylene oxide) or PPO (polypropylene oxide) in its main chain or side chain is used. Lithium salt of crystalline polymer (the anion of which is, for example, I , Br , ClO
4 -, SCN - or F 3 CSO 3 - a. ) Is dissolved in the solid electrolyte.

【0015】さらにEC(エチレンカ−ボネ−ト)及びPC
(プロピレンカ−ボネ−ト)の混合物を添加し、成分の
モル比が以下の一般式(1)で表されるものが、高い電
導度を示し有用である。 [PEOa:[xEC:yPC]b]n:LiX (I) (但し、式中のPEOはポリエチレンオキシドを表し、EC
はエチレンカ−ボネ−トを表し、PCはプロピレンカ−ボ
ネ−トを表し、a、b、x、y及びnは有限で各々モル量を
表し、Xはアニオンである。)
Further, EC (ethylene carbonate) and PC
It is useful that a mixture of (propylene carbonate) is added and the molar ratio of the components is represented by the following general formula (1), which shows a high electric conductivity. [PEOa: [xEC: yPC] b] n: LiX (I) (However, PEO in the formula represents polyethylene oxide, and
Represents ethylene carbonate, PC represents propylene carbonate, a, b, x, y and n are finite and each represents a molar amount, and X is an anion. )

【0016】例えば無機固体電解質はリチウム塩添加の
LiTi2(PO4)3粉を、高分子電解質は[PEO:[2EC:2PC]]20Li
ClO4を使用する場合、先ず出発原料としてLi2CO3、Ti
O2、(NH4)2・HPO4を混合し、850〜950℃で1〜4
時間仮焼してボ−ルミルで3〜9時間粉砕する。この粉
体にLi3PO4を混合し、再度同じ条件で仮焼した後、ボ−
ルミルで3〜9時間粉砕し無機固体電解質粉体を得る。
For example, an inorganic solid electrolyte is a lithium salt-added
LiTi 2 (PO 4 ) 3 powder, polymer electrolyte is [PEO: [2EC: 2PC]] 20 Li
When ClO 4 is used, the starting materials are Li 2 CO 3 and Ti.
O 2 , (NH 4 ) 2 · HPO 4 are mixed, and the mixture is heated at 850 to 950 ° C. for 1 to 4
It is calcined for an hour and crushed in a ball mill for 3-9 hours. After mixing Li3PO4 with this powder and calcining again under the same conditions,
It is pulverized with a rumill for 3 to 9 hours to obtain an inorganic solid electrolyte powder.

【0017】この粉体を[PEO:[2EC:2PC]]20LiClO4高分
子電解質中に5〜95容量%分散し、ドクタ−ブレ−ド
法等を用いて、フィルム状に剥離紙上にキャスティング
し、この後真空恒温槽またはドラフト内において乾燥
し、目的の電解質複合体を得る。
This powder was dispersed in [PEO: [2EC: 2PC]] 20 LiClO 4 polymer electrolyte in an amount of 5 to 95% by volume, and was cast on a release paper in a film form by a doctor blade method or the like. After that, it is dried in a vacuum thermostat or a draft to obtain an intended electrolyte complex.

【0018】[0018]

【外3】 性を合わせ持ち、さらに高分子/無機固体界面における
電荷移動反応も無く、したがってこの反応に伴う界面分
極による電導度の著しい低下も無い。
[Outside 3] In addition, there is no charge transfer reaction at the polymer / inorganic solid interface, and therefore there is no significant decrease in conductivity due to interfacial polarization accompanying this reaction.

【0019】[0019]

【実施例】以下、本発明を実施例により説明する。高分
子固体電解質であるPEO、LiClO4、EC及びPCのアセトニ
トリル溶液を組成が[PEO:[2EC:2PC]]20LiClO4に従うよ
うに調製し、これに無機固体電解質であるLi3PO4を10
mol%添加したLiTi2(PO4)3粉を50容量%分散さ
せ、剥離紙上にキャスティング後溶媒を除去すると、電
解質複合体フィルム(厚さ50〜100μm)が得られ
た。
EXAMPLES The present invention will be described below with reference to examples. A solution of polymer solid electrolytes PEO, LiClO 4 , EC and PC in acetonitrile was prepared so that the composition complies with [PEO: [2EC: 2PC]] 20 LiClO 4 , and inorganic solid electrolyte Li 3 PO 4 was added to the solution.
When 50% by volume of LiTi 2 (PO 4 ) 3 powder added with mol% was dispersed, and the solvent was removed after casting on release paper, an electrolyte composite film (thickness 50 to 100 μm) was obtained.

【0020】この電解質複合体の25℃における電導度
は5.5×10-4ohm-1cm-1であ
The conductivity of this electrolyte composite at 25 ° C. was 5.5 × 10 -4 ohm -1 cm -1.

【外4】 った。[Outside 4] It was.

【0021】比較のために測定した[PEO:[2EC:2PC]]20L
iClO4高分子電解質の電導度は25
[PEO: [2EC: 2PC]] 20 L measured for comparison
The conductivity of iClO 4 polymer electrolyte is 25

【外5】 った。したがって、本発明による電解質複合体はイオン
の輸率を飛躍的に向上させた。
[Outside 5] It was. Therefore, the electrolyte composite according to the present invention dramatically improved the ionic transport number.

【0022】[0022]

【発明の効果】本発明の電解質複合体は、イオン電導度
およびカチオン輸率に優れ、また加工性、生産性に優
れ、薄型化および大面積化が容易である。更に固体高分
子/無機固体界面における電荷移動反応が無く、これに
伴う界面分極による電導度の著しい低下も無い。したが
ってこの電解質複合体を用いる事により、一次または二
次の固体電解質電池の大容量化および充放電サイクル特
性の向上を図る事ができる。
INDUSTRIAL APPLICABILITY The electrolyte composite of the present invention is excellent in ionic conductivity and cation transport number, is excellent in processability and productivity, and can be easily thinned and made large in area. Furthermore, there is no charge transfer reaction at the solid polymer / inorganic solid interface, and there is no significant decrease in conductivity due to interfacial polarization. Therefore, by using this electrolyte composite, it is possible to increase the capacity of the primary or secondary solid electrolyte battery and improve the charge / discharge cycle characteristics.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンが主な荷電体となる無機
固体電解質粉を、リチウムイオン電導性固体高分子中に
5〜95%の体積分率で分散させたことを特徴とする電
解質複合体。
1. An electrolyte composite, wherein an inorganic solid electrolyte powder containing lithium ions as a main charged body is dispersed in a lithium ion conductive solid polymer at a volume fraction of 5 to 95%.
【請求項2】 前記無機固体電解質が、LiTi2(PO4)3、L
i3N、Li―βAl2O3、LiI、LiI―Li2S―P2O5、LiI―Li2S
―B2S3、Li3N―LiI―LiOHの中少なくとも一つを含む請
求項1記載の電解質複合体。
2. The inorganic solid electrolyte is LiTi 2 (PO 4 ) 3 , L
i 3 N, Li-β Al 2 O 3 , LiI, LiI-Li 2 S-P 2 O 5 , LiI-Li 2 S
The electrolyte composite according to claim 1, containing at least one of -B 2 S 3 and Li 3 N-LiI-LiOH.
【請求項3】 前記リチウムイオン電導性固体高分子の
モル比が以下の一般式(I): [PEOa:[xEC:yPC]b]n:LiX (I) (但し、式中のPEOはポリエチレンオキシドを表し、 ECはエチレンカ−ボネ−トを表し、 PCはプロピレンカ−ボネ−トを表し、 a、b、x、y及びnは有限で各々モル量を表し、 Xはアニオンである)で表される請求項1記載の電解質
複合体。
3. The lithium ion conductive solid polymer having a molar ratio of the following general formula (I): [PEOa: [xEC: yPC] b] n: LiX (I) (where PEO is a poly Represents ethylene oxide, EC represents ethylene carbonate, PC represents propylene carbonate, a, b, x, y and n are finite and each represent a molar amount, and X is an anion). The electrolyte composite according to claim 1, which is represented.
JP12109992A 1992-04-16 1992-04-16 Electrolyte composite body Pending JPH05298915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12109992A JPH05298915A (en) 1992-04-16 1992-04-16 Electrolyte composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12109992A JPH05298915A (en) 1992-04-16 1992-04-16 Electrolyte composite body

Publications (1)

Publication Number Publication Date
JPH05298915A true JPH05298915A (en) 1993-11-12

Family

ID=14802856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12109992A Pending JPH05298915A (en) 1992-04-16 1992-04-16 Electrolyte composite body

Country Status (1)

Country Link
JP (1) JPH05298915A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
WO2015147282A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid-state secondary cell, cell electrode sheet and solid electrolyte composition used in said cell, method for manufacturing cell electrode sheet, and method for manufacturing all-solid-state secondary cell
JP2016512649A (en) * 2013-02-21 2016-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium battery with composite solid electrolyte
WO2017074116A1 (en) * 2015-10-30 2017-05-04 주식회사 엘지화학 Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
US10522872B2 (en) 2015-10-30 2019-12-31 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
JP2016512649A (en) * 2013-02-21 2016-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium battery with composite solid electrolyte
WO2015147282A1 (en) * 2014-03-28 2015-10-01 富士フイルム株式会社 All-solid-state secondary cell, cell electrode sheet and solid electrolyte composition used in said cell, method for manufacturing cell electrode sheet, and method for manufacturing all-solid-state secondary cell
JP2015191866A (en) * 2014-03-28 2015-11-02 富士フイルム株式会社 All-solid type secondary battery, solid electrolytic composition used therefor, electrode sheet for batteries, method for manufacturing electrode sheet for batteries, and method for manufacturing all-solid type secondary battery
WO2017074116A1 (en) * 2015-10-30 2017-05-04 주식회사 엘지화학 Polymer electrolyte having multi-layer structure, and all-solid battery comprising same
US10522872B2 (en) 2015-10-30 2019-12-31 Lg Chem, Ltd. Polymer electrolyte having multi-layer structure, and all-solid battery comprising same

Similar Documents

Publication Publication Date Title
Xia et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries
Lu et al. Hybridizing poly (vinylidene fluoride-co-hexafluoropropylene) with Li6. 5La3Zr1. 5Ta0. 5O12 as a lithium-ion electrolyte for solid state lithium metal batteries
Ding et al. Interfaces: Key issue to be solved for all solid-state lithium battery technologies
Chen et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application
US10971761B2 (en) Interfacial layers for solid-state batteries and methods of making same
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP4787411B2 (en) Lithium-containing phosphate active material
KR100332080B1 (en) Solid electrolyte and battery
CN111033858B (en) Co-fired all-solid battery
JP6222142B2 (en) Method for manufacturing electrode body
CN115832288A (en) Positive electrode active material for sodium ion secondary battery
JP5970284B2 (en) All solid battery
US11223088B2 (en) Low-temperature ceramic-polymer nanocomposite solid state electrolyte
CN111868994A (en) Solid-state battery electrolyte with improved stability to cathode materials
KR20180036410A (en) All solid state battery
Woo et al. Characterization of LiCoO2/multiwall carbon nanotubes with garnet-type electrolyte fabricated by spark plasma sintering for bulk-type all-solid-state batteries
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
US10998583B1 (en) Composite solid electrolyte without self-discharge, battery unit cell having same, and method of manufacturing composite solid electrolyte
JPH05314995A (en) Electrolyte composite body
CN110556572A (en) Positive electrode mixture and method for producing same
WO2020050896A1 (en) Lithium metal secondary battery containing a protected lithium anode
KR20220008056A (en) All solid battery comprising an oxide based solid electrolyte for low temperature sintering process and manufacturing method thereof
Kurzweil Post-lithium-ion battery chemistries for hybrid electric vehicles and battery electric vehicles
KR100316587B1 (en) High capacity sulfur positive electrode for lithium battery, it's fabrication method and lithium battery using sulfur electrode
JPH05298915A (en) Electrolyte composite body