WO2015147147A1 - Method for high-speed fixing of biological specimen by using hydrogel and device therefor - Google Patents

Method for high-speed fixing of biological specimen by using hydrogel and device therefor Download PDF

Info

Publication number
WO2015147147A1
WO2015147147A1 PCT/JP2015/059332 JP2015059332W WO2015147147A1 WO 2015147147 A1 WO2015147147 A1 WO 2015147147A1 JP 2015059332 W JP2015059332 W JP 2015059332W WO 2015147147 A1 WO2015147147 A1 WO 2015147147A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
biological sample
hydrogel
monomer
contact
Prior art date
Application number
PCT/JP2015/059332
Other languages
French (fr)
Japanese (ja)
Inventor
田中 勲
篠田 晃
閔 姚
田中 良和
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to JP2016510474A priority Critical patent/JPWO2015147147A1/en
Publication of WO2015147147A1 publication Critical patent/WO2015147147A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1037Using surface tension, e.g. pins or wires

Definitions

  • the present invention relates to a method for fixing protein crystals, cells, biological tissues and other biological samples at high speed with a hydrogel, and an apparatus for performing the method.
  • Proteins, protein crystals, cells, biological tissues, nucleic acids and other biological samples are generally unstable against drying and high temperatures. Such a biological sample can be stably fixed while maintaining its original function, and simply fixed so as not to affect measurement and analysis at all stages from basic research to applied research. Is an important basic technology, and the need for such technology is still high.
  • Patent Document 1 proposes forming protein crystals in a hydrogel such as agarose.
  • Patent Document 2 proposes a hydrogel substrate for long-term storage and proliferation of cell tissues containing gelatin and polar amino acids.
  • sodium alginate is widely used as a hydrogel having excellent biocompatibility.
  • hydrogelation usually requires at least minutes time to have the strength required for the fixation of biological samples.
  • Such hydrogelation of minute units can be fixed when it is required to complete fixation in as short a time as possible, for example, when cells are sterically arranged in a living state, or protein crystals are fixed without collapsing. It is disadvantageous in some cases.
  • sodium alginate which is excellent in biocompatibility, has problems such as high viscosity of the monomer but weak gel strength and high concentration of calcium ions required for gelation.
  • calcium ions are ions involved in cell signal transmission, fixation of cells with a hydrogel containing such calcium ions at a high concentration can have an undesirable effect.
  • the present inventors appropriately select and combine the monomers that form the hydrogel, contact them in the form of microdroplets, and further allow the hydrogelation accelerator to coexist when the droplets contact,
  • the inventors found that a biological sample can be fixed at high speed with a hydrogel, and completed the following inventions.
  • a method in which a biological sample is fast-fixed with a hydrogel which comprises preparing a solution 1 and a solution 2 that form a hydrogel by mixing, and the solution 1 and the solution 2 Said method comprising the step B of contacting the droplet with the surface of the biological sample and fast fixing the biological sample with hydrogel.
  • the step A is a step of preparing a solution 1 containing one of a combination of at least two monomers forming a hydrogel and a solution 2 containing the other.
  • the solution 1 and / or the solution 2 further contains a hydrogelation accelerator.
  • Step A is a step of preparing a solution 1 containing one kind of monomer that forms a hydrogel and a solution 2 containing a hydrogelation accelerator for the monomer.
  • the step A is a step of preparing a solution 1 containing a combination of at least two monomers forming a hydrogel and a solution 2 containing a hydrogelation accelerator for the monomer.
  • Method. (6)
  • Step B is a step in which droplets of solution 1 and solution 2 discharged from the liquid discharge nozzle are brought into contact with the surface of the biological sample, and the biological sample is fast-fixed with a hydrogel.
  • the biological sample is a protein crystal.
  • the automatic adjustment means optically detects the position of the biological sample in the holding means, and the detection signal from the detection means is analyzed to contact the droplet on the surface of the biological sample.
  • a biological sample can be fixed in a very short time with a hydrogel.
  • the three-dimensional molded article containing the biological sample fixed with hydrogel can be prepared by moving continuously, controlling the position which a droplet contacts.
  • 1 is an overall schematic view of an apparatus for rapidly fixing a biological sample with a hydrogel.
  • 1 and 2 are inkjet nozzles
  • 3 is a rotation motor
  • 4 is a biological sample holder
  • 5 is a linear stage for moving the position of the inkjet nozzle
  • 6 is a holder and a rotation motor.
  • 7 is a linear stage or XY stage drive motor
  • 8 is a CCD camera
  • 9 is a pump for sucking and / or discharging a solution
  • 10 is a control unit. It is the schematic showing the center part of the apparatus for fixing a biological sample at high speed with hydrogel.
  • reference numerals 1 and 2 denote inkjet nozzles
  • 3 denotes a rotary motor
  • 4 denotes a biological sample holder
  • 5 denotes a linear stage
  • 6 denotes an XY stage.
  • the present invention is a method for rapidly fixing a biological sample with a hydrogel, which comprises preparing a solution 1 and a solution 2 to form a hydrogel by mixing, and the solution 1 and the solution 2 described above.
  • the method comprises the step B of contacting the biological sample with the surface of the biological sample and fast fixing the biological sample with a hydrogel.
  • biological samples to be fixed in the present invention include biological tissues having a size of several mm square or less, fragments or sections thereof (hereinafter referred to as biological tissues, etc.), isolated cells, fungi or bacteria, Examples thereof include intracellular organelles such as mitochondria, endoplasmic reticulum or cell nucleus, and biopolymers such as nucleic acids and proteins.
  • the preferred subject of the method of the present invention is a cell or protein, and a particularly preferred subject is a protein crystal.
  • biological samples include those in a state suspended in a solvent such as water or a suitable buffer as a preferred example. Therefore, the present invention includes a method of fixing a biological sample suspended in such a solvent with a hydrogel.
  • the high speed referred to in the present invention means at least 10 seconds from the time when the droplets of the solution 1 and the droplets of the solution 2 that are formed by mixing are in contact with each other until the hydrogel is formed. Within 5 seconds, preferably within 5 seconds, more preferably within 3 seconds, and even more preferably within 1 second.
  • the fixation includes that all of the biological sample is covered and fixed with the hydrogel and a part thereof is covered and fixed with the hydrogel.
  • a part a case where a biological sample is fixed to the object as a result of formation of a hydrogel between a part of the biological sample and another object can be mentioned. .
  • fixation as used in the present invention is used in the broad sense of immobilizing an object. Specifically, biological samples such as cells, organelles, and protein crystals retain their biological or biochemical functions. Leaving the desired position with the hydrogel. When preparing biological specimens, in order to protect against degradation due to self-degradation or decay, stopping all biochemical reactions using paraffin or formalin, etc., is also called immobilization. However, the fixation in the present invention is not limited to such a narrow meaning.
  • One of the preferred embodiments of the present invention is a method for rapidly fixing a biological sample with a hydrogel, which includes a solution 1 containing one of a combination of at least two monomers forming the hydrogel and a solution 2 containing the other. And a step B in which droplets of the solution 1 and the solution 2 are brought into contact with the surface of the biological sample and the biological sample is fast-fixed with a hydrogel.
  • the combination of at least two types of monomers that form a hydrogel is a combination of monomers in which functional groups that form a cross-linked structure in pairs are introduced separately, and a hydrogel is formed by a cross-linking reaction between the functional groups. It is.
  • the solution 1 in this embodiment includes one of the above combinations, and the solution 2 includes the other of the above combinations, but each solution may further include another combination of monomers that form a hydrogel. That is, in addition to the form of one solution and one solute containing one monomer in one solution, the form of one solution and multiple solutes containing one or more solutes in one solution may also be used as long as an undesirable phenomenon does not occur in one solution. It can be used as a solution in the invention.
  • the solution 1 containing one of the combinations of at least two monomers forming the hydrogel and the solution 2 containing the other are used, which means that only these two types of solutions are used. is not. Therefore, as long as the formation of the hydrogel is not impaired, a solution containing another combination of monomers forming the hydrogel may be additionally used. That is, the combination of the solution may be one or more, and the solution different from the solution 1 and the solution 2 containing the monomer and other substances in a combination different from the combination included in the solution 1 and the solution 2 is used as the solution.
  • Embodiments used with 1 and 2 are also included in this aspect.
  • Two different types of functional groups that form a cross-linked structure in pairs are combinations of functional groups that cause a so-called click reaction, such as the thiol Michael addition reaction (Devatha et al., Chem. Mater., 2014, Vol. 26, 724-744), for example, thiol groups and maleimide groups, carboxyl groups, vinyl sulfone groups, ⁇ , ⁇ unsaturated acrylate groups, ⁇ , ⁇ unsaturated methacrylate groups, ⁇ , ⁇ unsaturated acrylamide groups or A combination with an ⁇ , ⁇ unsaturated methacrylamide group, a combination of a carboxyl group and an amino group, and the like can be mentioned.
  • Monomers that can form a hydrogel include poly (2-hydroxyethyl methacrylate), poly (2-hydroxyethyl acrylate), poly (2-hydroxypropyl acrylate), poly (2-hydroxypropyl methacrylate), poly (2- 2-hydroxybutyl acrylate), poly (2-hydroxybutyl methacrylate) and other hydroxyl group-containing poly (meth) acrylate derivatives with functional groups introduced, poly (methoxypolyethylene glycol acrylate), poly (methoxypolyethylene glycol methacrylate), etc.
  • Phosphoric acid having a phospholipid-like structure such as poly (2-methacryloxyethyl phosphorylcholine), a derivative in which a functional group is introduced into poly (meth) acrylate containing polyethylene glycol chain Derivative functional group is introduced into containing polymethacrylate, and poly such derivatives which functional groups are introduced to the amino group-containing polymers such as (allylamine), a biocompatible polymer monomer is exemplified.
  • natural polysaccharides such as chondroitin sulfate, heparin, and hyaluronic acid, or derivatives having functional groups introduced into salts or modified products thereof can also be used.
  • the method of introducing the above functional group into the monomer is known for each functional group.
  • a carboxyl group and an amine it was described in Sakai et al. (Macromolecules, 2008, Vol. 41, pages 5379-5384). The method can be used.
  • One of the combinations of monomers that can be used in the present invention is a biocompatible polymer thiol having a thiol group introduced in hyaluronic acid, chondroitin sulfate or other biocompatible polymer described in JP-T-2010-532396. And a multi-branched polyethylene glycol derivative containing a thiol group-reactive functional group.
  • Another monomer combination that can be used in the present invention is a multi-branched polyalkylene glycol derivative, preferably a multi-branched polyethylene glycol (PEG) derivative containing a thiol group and a multi-branched PEG derivative containing a thiol-reactive functional group It is a combination.
  • PEG polyethylene glycol
  • the combination of such a multi-branched PEG derivative is, for example, a combination of the SUNBRIGHT series SH series (multi-branched PEG derivative having a thiol group) and MA series (multi-branched PEG derivative having a maleimide group) commercially available from NOF Corporation.
  • PA series multi-branched PEG derivatives having an amine such as PTE-150PA or HGEO-150PA
  • HS series multi-branched PEG derivatives having a succinimidylcarboxypentyl group
  • GS series succinimidyl glutarate
  • CS series multi-branched PEG derivatives with succinimidyl succinate groups
  • NP series multi-branched PEG derivatives with p-nitrophenyl carbonate groups, eg HGEO- 200NP
  • a hydrogelation accelerator that is, a substance capable of promoting the formation of a hydrogel, such as a polymerization initiator or a polymerization accelerator, according to the substituent of the monomer.
  • the hydrogelation accelerator include TEMED, Tris, and disodium hydrogen phosphate when the crosslinking reaction is performed between a thiol group and a maleimide group.
  • the hydrogelation accelerator may be contained in one or both solutions.
  • Another preferred embodiment of the present invention is a method for rapidly fixing a biological sample with a hydrogel, comprising a solution 1 containing one kind of monomer that forms the hydrogel, and a hydrogelation accelerator for the monomer.
  • the method includes the step A of preparing the solution 2 and the step B of bringing the droplets of the solution 1 and the solution 2 into contact with the surface of the biological sample and fast-fixing the biological sample with a hydrogel. .
  • a monomer that can form a hydrogel by itself prepare a solution 1 containing such a monomer and a solution 2 containing a hydrogelation accelerator such as a polymerization initiator or a polymerization accelerator for the monomer.
  • a hydrogelation accelerator such as a polymerization initiator or a polymerization accelerator for the monomer.
  • the biological sample can be fast-fixed with the hydrogel by bringing the droplets of the solution 1 and the solution 2 into contact with the surface of the biological sample.
  • examples of such monomers include multi-branched PEG derivatives having thiol groups, and examples of hydrogelation accelerators for these monomers include tetramethylethylenediamine (TEMED).
  • Yet another embodiment of the present invention is a method for rapidly fixing a biological sample with a hydrogel, which comprises a solution 1 containing a combination of at least two monomers forming a hydrogel and a hydrogelation accelerator for the monomer.
  • the method comprising: a step A for preparing a solution 2 containing a solution; and a step B for bringing the droplets of the solution 1 and the solution 2 into contact with the surface of the biological sample and fast-fixing the biological sample with a hydrogel. It is.
  • a solution 1 containing the two kinds of monomers and a polymerization initiator or polymerization promotion for hydrogel formation by these monomers It is possible to fix a biological sample at high speed with a hydrogel by preparing a solution 2 containing a hydrogelation accelerator such as an agent and bringing the droplets of solution 1 and solution 2 into contact with the surface of the biological sample. it can.
  • a hydrogelation accelerator such as an agent
  • Examples of such combinations of two monomers include a combination of a multi-branched PEG derivative having a thiol group and a multi-branched PEG derivative having a maleimide group, and examples of hydrogelation accelerators for these monomers include tetramethylethylenediamine (TEMED), trishydroxymethylaminomethane (Tris), and disodium hydrogen phosphate.
  • the solution 1 containing two kinds of monomers contains an inhibitor for hydrogelation at the same time, or the hydrogel is contained in the solution 1 before the contact with the solution 2 that is adjusted to a pH that does not hydrogel. It is preferable to add a condition that does not form.
  • the monomer is used in the form of a solution, particularly an aqueous solution.
  • the pH of the solution is desirably adjusted with an appropriate acid, alkali, or a buffering agent so that the pH when the solutions come into contact with each other is a pH suitable for the gelation reaction of the monomer.
  • a hydrogelation accelerator is used.
  • the pH at which the solutions come into contact with each other is in the range of 5 to 8, preferably 6.5 to 7.5. It is preferable to adjust so that it may exist in this range.
  • the pH when the solutions are in contact with each other is preferably 7 or more.
  • the solution may contain arbitrary components such as sodium chloride and other salts and sugars for isotonicity as long as high-speed gelation is not hindered.
  • the monomer concentration in the solution must be higher than the concentration at which high-speed gelation is possible in the combination used, but in any combination, the lower limit may be 5% by weight or more.
  • the lower limit may be 3% by weight or more, or 1% by weight or more.
  • the upper limit of the concentration depends on the volume of the ejected droplet, but in the present invention, it may be 30% by weight or less, preferably 20% by weight or less.
  • the present invention includes a step B in which the droplets of the solution 1 and the solution 2 are brought into contact with the surface of the biological sample and the biological sample is fixed at high speed with a hydrogel.
  • One of the preferred embodiments of the step B is to bring the droplet of the solution 1 and the droplet of the solution 2 into contact with the biological sample supported by an appropriate holder on the surface of the biological sample.
  • all or part of a biological sample is fixed with a hydrogel.
  • the solution is preferably ejected from a suitable liquid ejection nozzle as a droplet having a volume (volume) ranging from several tens of picoliters (pL) to 1 ⁇ L.
  • a suitable liquid ejection nozzle for example, when a portion of a protein crystal placed on a suitable holding member is fast-fixed with a hydrogel so that the protein crystal is fixed to the holding member, a liquid having a volume per drop of 50 to 200 pL. It is preferable to eject the droplet toward the protein crystal.
  • Such a small amount of droplets can be mixed in a short time after contact, and a hydrogel can be formed in a shorter time.
  • the volume per droplet discharged may be larger.
  • any liquid discharge nozzle of plunger type, air pressure type, screw valve type or the like can be used as long as it can discharge the above-mentioned droplets.
  • Microinjectors and low-capacity automatic pipetters can also be used.
  • a particularly preferred liquid discharge nozzle for the purpose of the present invention is an inkjet nozzle.
  • a nozzle for discharging a droplet (volume) in the range of several tens of picoliters (pL) to 1 ⁇ L an inkjet nozzle having a piezo element or a heating type inkjet can be used.
  • the use of an ink jet nozzle having elements is more preferred.
  • the droplets of the two solutions are ejected while adjusting the direction and the distance between the ejection nozzle and the contact position so that the droplets come into contact with each other on or close to the surface of the biological sample.
  • the droplets of the solution 1 and the solution 2 and the droplet of the biological sample are ejected toward a single point substantially simultaneously or successively.
  • the biological sample is fast-fixed with a hydrogel by contacting these solutions.
  • a molded product in which a biological sample is fixed with a hydrogel can be produced by continuously moving the solution in contact with the solution.
  • multiple solutions containing different biological samples are prepared, and the order in which they are discharged or the position where they are brought into contact is appropriately controlled, so that different biological samples are fixed with hydrogel at controlled positions. It is also possible to produce a three-dimensional molded product.
  • 3-D printer technology to biological samples is described in Chemistry and Biology, 2013, Volume 512, for example, Nakamura et al. (Vol. 30-34), Furukawa et al. (Vol. 36- 37 pages) and various other proposals have been made.
  • the method of the present invention can be easily performed by utilizing such additive manufacturing type 3-D printer technology. Specifically, ABS resin, photo-curing resin, and other three-dimensional molding materials used in 3-D printer technology are replaced with a solution of the monomer according to the present invention, preferably a biocompatible monomer, to obtain a desired biological material. By controlling the discharge together with the solution containing the sample, a three-dimensional molded product in which the biological sample is fixed with a hydrogel can be produced.
  • one or both of the solution 1 and the solution 2 contains a biological sample, for example, a cell, and the droplets of the solution 1 and the solution 2 are ejected toward one point.
  • a biological sample is fast-fixed with a hydrogel by contact.
  • a molded article in which a biological sample is fixed with a hydrogel by continuously moving while controlling the position where the solution is brought into contact.
  • the hydrogels are controlled at the positions where the different biological samples are controlled.
  • a three-dimensional molded product fixed in (1) Such a molded product can also be easily manufactured by utilizing the 3-D printer technology as described above.
  • the solution In the case of discharging droplets of a solution containing a biological sample, the solution must be a suitable solvent that can keep the biological sample stable, as long as it does not interfere with high-speed hydrogelation with monomers.
  • a suitable solvent such as PBS (phosphate buffered saline).
  • PBS phosphate buffered saline
  • optional components such as stabilizers and preservatives may be added as necessary.
  • the present invention provides a means for holding a biological sample, at least for discharging droplets of two kinds of solutions that form a hydrogel by mixing to the biological sample held by the holding means, respectively.
  • an apparatus for rapidly fixing a biological sample with a hydrogel comprising two discharge nozzles and means for automatically adjusting the position of the holding means and / or the discharge nozzle.
  • the automatic adjustment means optically detects the position of the biological sample in the holding means, the detection signal from the detection means is analyzed, and the droplet is brought into contact with the surface of the biological sample.
  • a biological sample is fast-fixed with a hydrogel, comprising means for determining the position of the holding means and / or the position of the discharge nozzle for moving and means for moving the holding means and / or the discharge nozzle to the determined position
  • An apparatus is provided.
  • FIGS. 1 and 2 An example of the configuration of the apparatus is shown in FIGS. 1 and 2 as an example.
  • FIG. 1 is a schematic view of the entire apparatus
  • FIG. 2 is a schematic view of a central portion of the apparatus.
  • the apparatus shown in FIG. 1 is an example of an apparatus intended to immobilize protein crystals.
  • Inkjet nozzles 1 and 2 rotation motor 3, holder 4, linear stage 5, XY stage 6, drive motor 7, includes a CCD camera 8, a pump 9 and a control unit 10.
  • the inkjet nozzles 1 and 2 are attached to a linear stage 5 that operates in the Z-axis direction.
  • the rotary motor 3 in which the holder 4 is coupled to the rotary shaft is attached to an XY stage 6 that operates in the X-axis and Y-axis directions.
  • Each of the linear stage 5 and the XY stage 6 includes a drive motor 7 that moves each stage according to a command from the control unit 10.
  • the solution is sent to the inkjet nozzles 1 and 2 from the two containers filled with the solutions 1 and 2 by the pump 9, and the droplet of the solution 1 from the inkjet nozzle 1 and the droplet of the solution 2 from the inkjet nozzle 2. Each is discharged. It is desirable that the tip of the inkjet nozzle and the liquid level in the container are arranged at the same height in the vertical direction.
  • the CCD camera 8 is arranged so as to photograph the tip of the holder 4 connected to the rotation shaft of the rotary motor 3.
  • the rotary motor 3 is driven, the holder 4 is rotated, and the position of the biological sample is photographed by the CCD camera 8 from a plurality of angles.
  • Image data captured by the CCD camera 8 is sent to the control unit 10.
  • the control unit 10 analyzes detailed positional information of the biological sample sent from the CCD camera 8 as image data under program control, and performs inkjet recording so that the droplets ejected on the surface of the biological sample come into contact with each other.
  • Signals for moving the nozzles 1 and 2 and the rotary motor 3 are transmitted to the drive motor 7 of the linear stage 5 and the XY stage 6.
  • a signal for adjusting the direction of the sample is transmitted to the rotary motor 3, and a signal for discharging the solution is transmitted to the inkjet nozzles 1 and 2, respectively.
  • the means for holding the biological sample may be any member that can hold the biological sample by other methods such as pinching, scooping, puncturing, hanging, and placing.
  • the biological sample is a protein crystal
  • a preferable example of the means is a protein crystal holder, Protein Wave, which has a mesh structure, Mounted LithoLoops (mesh diameter 0.4 ⁇ ), and a product made by Hampton Research, which has a loop structure. Examples include Mounted Cryo Loop.
  • the holding means may be an independent member so that the operator can work manually, or may be formed integrally with another member, for example, the rotation shaft of the rotary motor 3. .
  • the discharge nozzle is preferably an ink jet nozzle, and may be appropriately selected from commercially available ink jet nozzles according to the amount of liquid droplets to be discharged. Special materials and shapes are not particularly required. Preferred examples include IJHD series (IJHD-100, IJHD-300, etc.) manufactured by Microjet.
  • the means for automatically adjusting the position of the holding means and / or the discharge nozzle is based on the positional information of the holding means and / or the discharge nozzle, and the droplet of the solution 1 and the droplet of the solution 2 on the surface of the biological sample.
  • One aspect of the automatic adjustment means is a means for optically detecting the position of the biological sample in the holding means; a detection signal from the detection means is analyzed, and a droplet is brought into contact with the surface of the biological sample.
  • Automatic adjusting means including means for determining the position of the holding means and / or the position of the discharge nozzle for causing the nozzle to move, and means for moving the holding means and / or the discharge nozzle to the determined position.
  • the detection means may be an optical detection device having a resolution and sensitivity sufficient to measure or identify the position of the biological sample held by the holder at least on the order of mm, preferably on the order of ⁇ m.
  • the optical detection device is preferably capable of transmitting captured image data as a detection signal to a spatial position determination unit described later.
  • the optical detection unit is preferably a CCD camera.
  • the present invention is not limited to this, and an infrared camera or other optical detection device may be used.
  • the means for analyzing the detection signal from the detection means and determining the position of the holding means and / or the discharge nozzle for discharging the droplet onto the biological sample is typically a computer having a high speed processor.
  • the control unit which is the determination means, includes a process for calculating a position for discharging a droplet to the biological sample of the holding means and / or the discharge nozzle based on a detection signal transmitted from the detection means, that is, image data.
  • a program for executing a process for transmitting a command for moving the holding means and / or the discharge nozzle toward the position to the moving means described below is incorporated.
  • the means for moving the holding means and / or the discharge nozzle is a driving means that can move the holding means and / or the discharge nozzle in a three-dimensional space in accordance with a command from the determining means.
  • driving means include an electric motor or other electrically driven one, a hydraulic or hydraulic pressure driven one, a compressed air driven one or the like.
  • an electrical drive means that can finely adjust the spatial position, that is, the X-axis direction, the Y-axis direction, and the Z-axis direction, is easy to assemble the device, and is easy to reduce the size of the entire device. It is preferable to use a linear stage, an automatic stage, a servo motor, or a stepping motor.
  • the object to be moved by the driving means may be either the holding means, the discharge nozzle, or both of them.
  • Example 1 1) Manufacture of high-speed fixing device CCD camera (Watec) combining two inkjet nozzles (both IJHD-100 from Microjet) connected to two liquid holding containers and zoom lens TV-ZH manufactured by Chuo Seiki WAT-231S2), Rotating motor (OMRON), Protein Wave Mounted Loops that can be connected to the tip of the rotating shaft of the rotating motor, XY stage for adjusting the position of the rotating motor in the X-axis direction and Y-axis direction, 2
  • a high-speed fixing device including a linear stage that adjusts the position of two inkjet nozzles in the Z-axis direction and a computer unit in which a position control program for both stages is incorporated was manufactured. The position control program was self-made.
  • Lysozyme crystals 100 ⁇ 100 ⁇ 30 ⁇ m 3 cubes
  • 0.1 M sodium acetate buffer solution pH 4.6
  • Protein Wave's Mounted Litho Loops mesh diameter 0.4 ⁇
  • the high-speed fixing device is operated, and droplets of solution 1 and solution 2 (200 pL / droplet) are ejected from the inkjet nozzles toward the biological sample on the holder, and are brought into contact with the surface of the lysozyme crystal.
  • a hydrogel was formed.
  • FIG. 3 shows an enlarged photograph of lysozyme crystals fixed with hydrogel on Mounted LithoLoops as a holder.
  • the transparent cube on the left side of each panel is a lysozyme crystal fixed with hydrogel together with the buffer solution.
  • the holder was removed from the shaft of the rotary motor, and the fixed lysozyme crystal was soaked in a 0.1 M sodium acetate buffer solution (pH 4.6) containing 1.25 M sodium chloride. It was kept stable without collapsing, and could be used for searching for inhibitors using subsequent X-ray crystal structure analysis.
  • the present invention can fix a biological sample in a shorter time, and is used for, for example, protein crystal analysis, drug development using protein crystals (search for inhibitors), functional analysis of cells or biological tissues, and the like. be able to. It can also be used for the production of three-dimensional molded products containing biological samples.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

[Problem] The purpose of the present invention is to provide a novel biological specimen fixing means that is capable of reducing, as much as possible, the amount of time that the biological specimen is exposed to the environment and whereby there is little damage to the biological specimen. [Solution] The present invention provides a method for fixing a biological specimen at high speed by using hydrogel and includes: a step (A) in which a solution (1) and a solution (2) are prepared that form a hydrogel by being mixed; and a step (B) in which droplets of the solution (1) and the solution (2) are brought into contact with the surface of the biological specimen and the biological specimen is fixed at high speed by the hydrogel. As a result of the present invention, a biological specimen can be fixed at high speed, by using a hydrogel having high biocompatibility.

Description

生物学的試料をハイドロゲルで高速固定する方法及びそのための装置Method and apparatus for fast fixation of biological samples with hydrogel
 本発明は、タンパク質結晶、細胞、生体組織その他の生物学的試料をハイドロゲルで高速固定する方法、及びその方法を行うための装置に関する。 The present invention relates to a method for fixing protein crystals, cells, biological tissues and other biological samples at high speed with a hydrogel, and an apparatus for performing the method.
 タンパク質、タンパク質結晶、細胞、生体組織、核酸その他の生物学的試料は、一般に乾燥や高温などに対して不安定である。この様な生物学的試料を、本来の機能を保ったまま安定に保護し、かつ測定や解析にほとんど影響を与えないように簡便に固定する方法は、基礎的研究から応用的研究のあらゆる段階において重要な基礎技術であり、かかる技術に対するニーズは依然として高い。 Proteins, protein crystals, cells, biological tissues, nucleic acids and other biological samples are generally unstable against drying and high temperatures. Such a biological sample can be stably fixed while maintaining its original function, and simply fixed so as not to affect measurement and analysis at all stages from basic research to applied research. Is an important basic technology, and the need for such technology is still high.
 生物学的試料を固定する方法の1つとして、生物学的試料に与える物理的又は化学的なダメージが少ないハイドロゲルの利用が挙げられる。例えば、特許文献1では、タンパク質結晶をアガロース等のハイドロゲルの中で形成させることが提案されている。また、特許文献2には、ゼラチンと極性アミノ酸とを含む細胞組織の長期保存及び増殖のためのヒドロゲル基質が提案されている。また、アルギン酸ナトリウムは、生体適合性に優れるハイドロゲルとして広く用いられている。 One method for immobilizing a biological sample is to use a hydrogel that causes little physical or chemical damage to the biological sample. For example, Patent Document 1 proposes forming protein crystals in a hydrogel such as agarose. Patent Document 2 proposes a hydrogel substrate for long-term storage and proliferation of cell tissues containing gelatin and polar amino acids. In addition, sodium alginate is widely used as a hydrogel having excellent biocompatibility.
 しかし、ハイドロゲル化は通常、生物学的試料の固定に求められる強度を有するまでに少なくとも分単位の時間を必要とする。この様な分単位のハイドロゲル化は、可能な限り短時間に固定を完了させることが求められる場合、例えば細胞を生きたまま立体的に配列させる場合、あるいはタンパク質結晶を崩壊させることなく固定する場合には不利である。 However, hydrogelation usually requires at least minutes time to have the strength required for the fixation of biological samples. Such hydrogelation of minute units can be fixed when it is required to complete fixation in as short a time as possible, for example, when cells are sterically arranged in a living state, or protein crystals are fixed without collapsing. It is disadvantageous in some cases.
 また、生体適合性に優れるアルギン酸ナトリウムは、モノマーの粘性が高い一方でゲルの強度が弱いこと、ゲル化に高濃度のカルシウムイオンを必要とすることなどの問題を有する。特に、カルシウムイオンは細胞の信号伝達に関与するイオンであるため、これを高濃度に含むハイドロゲルによる細胞の固定は、望ましくない影響を与え得る。 Moreover, sodium alginate, which is excellent in biocompatibility, has problems such as high viscosity of the monomer but weak gel strength and high concentration of calcium ions required for gelation. In particular, since calcium ions are ions involved in cell signal transmission, fixation of cells with a hydrogel containing such calcium ions at a high concentration can have an undesirable effect.
 一方、単にハイドロゲル化に要する時間を短縮することは、一般的には高濃度のラジカルを存在させること又はハイドロゲルモノマーの混合物を加温することなどによって可能である。しかし、殆どのラジカル及び加温処理は、生物学的試料にとって有害であり得る。 On the other hand, it is generally possible to reduce the time required for hydrogelation simply by allowing a high concentration of radicals to exist or heating a mixture of hydrogel monomers. However, most radical and warming treatments can be detrimental to biological samples.
国際公開第2009/091053号International Publication No. 2009/091053 特表2002-520013号公報Special Table 2002-520013
 本発明は、生物学的試料を可能な限り短時間で固定することができ、かつ生物学的試料に与えるダメージが少ない、生物学的試料を固定する方法を新たに提供することを目的とするものである。 It is an object of the present invention to newly provide a method for immobilizing a biological sample, which can immobilize the biological sample in as short a time as possible and has little damage to the biological sample. Is.
 本発明者らは、ハイドロゲルを形成するモノマーを適切に選択して組み合わせ、これらを微小液滴の状態で接触させることで、さらに液滴の接触時にハイドロゲル化促進剤を共存させることで、生物学的試料をハイドロゲルで高速固定することができることを見いだし、下記の各発明を完成させた。 The present inventors appropriately select and combine the monomers that form the hydrogel, contact them in the form of microdroplets, and further allow the hydrogelation accelerator to coexist when the droplets contact, The inventors found that a biological sample can be fixed at high speed with a hydrogel, and completed the following inventions.
(1)生物学的試料をハイドロゲルで高速固定する方法であって、混合されることでハイドロゲルが形成される溶液1と溶液2とを用意する工程A、並びに前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む、前記方法。
(2)工程Aが、ハイドロゲルを形成する少なくとも2種のモノマーの組合せの一方を含む溶液1と他方を含む溶液2とを用意する工程である、(1)に記載の方法。
(3)溶液1及び/又は溶液2がハイドロゲル化促進剤をさらに含む、(1)又は(2)に記載の方法。
(4)工程Aが、ハイドロゲルを形成する1種のモノマーを含む溶液1と、前記モノマーに対するハイドロゲル化促進剤を含む溶液2とを用意する工程である、(1)に記載の方法。
(5)工程Aが、ハイドロゲルを形成する少なくとも2種のモノマーの組合せを含む溶液1と前記モノマーに対するハイドロゲル化促進剤を含む溶液2とを用意する工程である、(1)に記載の方法。
(6)工程Bが、液体吐出ノズルから吐出させた溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程である、(1)~(5)のいずれかに記載の方法。
(7)生物学的試料がタンパク質結晶である、(1)~(6)のいずれかに記載の方法。
(8)溶液1及び/又は溶液2が生物学的試料を含む溶液である、(1)~(6)のいずれかに記載の方法。
(9)モノマーが多分岐ポリアルキレングリコール誘導体である、(2)~(8)のいずれかに記載の方法。
(10)生物学的試料を保持する手段、混合されることでハイドロゲルが形成される2種の溶液の液滴を前記保持手段に保持された生物学的試料にそれぞれ吐出させるための少なくとも2つの吐出ノズル、並びに前記保持手段及び/又は吐出ノズルの位置を自動調節する手段を備える、生物学的試料をハイドロゲルで高速固定するための装置。
(11)前記自動調節手段が、前記保持手段中の生物学的試料の位置を光学的に検出する手段、前記検出手段からの検出信号を解析して生物学的試料の表面で液滴を接触させるための前記保持手段の位置及び/又は吐出ノズルの位置を決定する手段、並びに決定された位置に前記保持手段及び/又は吐出ノズルを移動させる手段を含む、(10)に記載の装置。
(1) A method in which a biological sample is fast-fixed with a hydrogel, which comprises preparing a solution 1 and a solution 2 that form a hydrogel by mixing, and the solution 1 and the solution 2 Said method comprising the step B of contacting the droplet with the surface of the biological sample and fast fixing the biological sample with hydrogel.
(2) The method according to (1), wherein the step A is a step of preparing a solution 1 containing one of a combination of at least two monomers forming a hydrogel and a solution 2 containing the other.
(3) The method according to (1) or (2), wherein the solution 1 and / or the solution 2 further contains a hydrogelation accelerator.
(4) The method according to (1), wherein the step A is a step of preparing a solution 1 containing one kind of monomer that forms a hydrogel and a solution 2 containing a hydrogelation accelerator for the monomer.
(5) The step A is a step of preparing a solution 1 containing a combination of at least two monomers forming a hydrogel and a solution 2 containing a hydrogelation accelerator for the monomer. Method.
(6) Step B is a step in which droplets of solution 1 and solution 2 discharged from the liquid discharge nozzle are brought into contact with the surface of the biological sample, and the biological sample is fast-fixed with a hydrogel. ) To (5).
(7) The method according to any one of (1) to (6), wherein the biological sample is a protein crystal.
(8) The method according to any one of (1) to (6), wherein the solution 1 and / or the solution 2 is a solution containing a biological sample.
(9) The method according to any one of (2) to (8), wherein the monomer is a multi-branched polyalkylene glycol derivative.
(10) Means for holding the biological sample, at least two for discharging the droplets of the two types of solutions that form a hydrogel by mixing to the biological sample held by the holding means, respectively. An apparatus for rapidly fixing a biological sample with a hydrogel, comprising two discharge nozzles and means for automatically adjusting the position of the holding means and / or the discharge nozzle.
(11) The automatic adjustment means optically detects the position of the biological sample in the holding means, and the detection signal from the detection means is analyzed to contact the droplet on the surface of the biological sample. The apparatus according to (10), further comprising: means for determining the position of the holding means and / or the position of the discharge nozzle for causing to move; and means for moving the holding means and / or the discharge nozzle to the determined position.
 本発明によれば、ハイドロゲルで生物学的試料を極めて短時間に固定することができる。また、液滴を接触させる位置を制御しながら連続的に移動させることにより、ハイドロゲルで固定された生物学的試料を含む立体成形物を調製することができる。 According to the present invention, a biological sample can be fixed in a very short time with a hydrogel. Moreover, the three-dimensional molded article containing the biological sample fixed with hydrogel can be prepared by moving continuously, controlling the position which a droplet contacts.
ハイドロゲルで生物学的試料を高速固定するための装置の全体の概略図である。図中の符号は、1及び2がインクジェットノズル、3が回転モータ、4が生物学的試料の保持具、5がインクジェットノズルの位置を移動させるためのリニアステージ、6が保持具及び回転モータを移動させるためのXYステージ、7がリニアステージ又はXYステージの駆動モータ、8がCCDカメラ、9が溶液を吸引及び/又は排出するポンプ、10がコントロールユニットを、それぞれ表す。1 is an overall schematic view of an apparatus for rapidly fixing a biological sample with a hydrogel. In the figure, 1 and 2 are inkjet nozzles, 3 is a rotation motor, 4 is a biological sample holder, 5 is a linear stage for moving the position of the inkjet nozzle, and 6 is a holder and a rotation motor. An XY stage for movement, 7 is a linear stage or XY stage drive motor, 8 is a CCD camera, 9 is a pump for sucking and / or discharging a solution, and 10 is a control unit. ハイドロゲルで生物学的試料を高速固定するための装置の中心部を表す概略図である。図中の符号は、1及び2がインクジェットノズル、3が回転モータ、4が生物学的試料の保持具、5がリニアステージ、及び6がXYステージを表す。It is the schematic showing the center part of the apparatus for fixing a biological sample at high speed with hydrogel. In the figure, reference numerals 1 and 2 denote inkjet nozzles, 3 denotes a rotary motor, 4 denotes a biological sample holder, 5 denotes a linear stage, and 6 denotes an XY stage. 保持具であるMounted LithoLoops上に固定されたリゾチーム結晶の拡大写真である。パネルA及びBは保持具とその上に固定化された結晶を上から及び横からそれぞれ写したものである。It is an enlarged photograph of the lysozyme crystal fixed on Mounted LithoLoops which is a holder. Panels A and B are a copy of the holder and the crystal fixed thereon, from above and from the side.
 本発明は、生物学的試料をハイドロゲルで高速固定する方法であって、混合されることでハイドロゲルが形成される溶液1と溶液2とを用意する工程A、並びに前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む、前記方法に関する。 The present invention is a method for rapidly fixing a biological sample with a hydrogel, which comprises preparing a solution 1 and a solution 2 to form a hydrogel by mixing, and the solution 1 and the solution 2 described above. The method comprises the step B of contacting the biological sample with the surface of the biological sample and fast fixing the biological sample with a hydrogel.
 本発明において固定される対象となる生物学的試料としては、数mm四方以下の大きさの生体組織、その断片若しくは切片(以下、これらを生体組織等とする)、分離細胞、真菌又は細菌、ミトコンドリア、小胞体又は細胞核などの細胞内オルガネラ、核酸又はタンパク質などの生体高分子などを挙げることができる。 Examples of biological samples to be fixed in the present invention include biological tissues having a size of several mm square or less, fragments or sections thereof (hereinafter referred to as biological tissues, etc.), isolated cells, fungi or bacteria, Examples thereof include intracellular organelles such as mitochondria, endoplasmic reticulum or cell nucleus, and biopolymers such as nucleic acids and proteins.
 本発明の方法の好適な対象は細胞又はタンパク質であり、特に好ましい対象はタンパク質結晶である。なお、かかる生物学的試料は、水又は適当な緩衝液等の溶媒に懸濁された状態にあるものを好ましい例として含む。従って、本発明はかかる溶媒に懸濁された状態の生物学的試料をハイドロゲルで固定する方法も含むものである。 The preferred subject of the method of the present invention is a cell or protein, and a particularly preferred subject is a protein crystal. Such biological samples include those in a state suspended in a solvent such as water or a suitable buffer as a preferred example. Therefore, the present invention includes a method of fixing a biological sample suspended in such a solvent with a hydrogel.
 本発明にいう高速とは、混合されることでハイドロゲルが形成される溶液1の液滴と溶液2の液滴とが接触してからハイドロゲルが形成されるまでに要する時間が少なくとも10秒以内、好ましくは5秒以内、より好ましくは3秒以内、さらに好ましくは1秒以内であることをいう。また固定には、生物学的試料の全部がハイドロゲルで覆われて固定されること及びその一部がハイドロゲルで覆われて固定されることが含まれる。一部が固定される例としては、生物学的試料の一部とその他の物との間にハイドロゲルが形成される結果、生物学的試料が前記物に固定される場合を挙げることができる。 The high speed referred to in the present invention means at least 10 seconds from the time when the droplets of the solution 1 and the droplets of the solution 2 that are formed by mixing are in contact with each other until the hydrogel is formed. Within 5 seconds, preferably within 5 seconds, more preferably within 3 seconds, and even more preferably within 1 second. In addition, the fixation includes that all of the biological sample is covered and fixed with the hydrogel and a part thereof is covered and fixed with the hydrogel. As an example in which a part is fixed, a case where a biological sample is fixed to the object as a result of formation of a hydrogel between a part of the biological sample and another object can be mentioned. .
 本発明にいう固定は物を動かなくするという広い意味で用いられ、具体的には、細胞、オルガネラ、タンパク質結晶などの生物学的試料を、それらの生物学的又は生化学的機能を保持したまま、ハイドロゲルによって所望の位置から動かなくすることを含む。生物学的な標本を作製する際に、自己分解や腐敗による劣化から保護するために、パラフィン又はホルマリンなどを用いてあらゆる生化学反応を停止させ、生物試料の保存性を高めることも固定と呼ばれるが、本発明における固定はかかる狭義の意味には限定されない。 The term “fixation” as used in the present invention is used in the broad sense of immobilizing an object. Specifically, biological samples such as cells, organelles, and protein crystals retain their biological or biochemical functions. Leaving the desired position with the hydrogel. When preparing biological specimens, in order to protect against degradation due to self-degradation or decay, stopping all biochemical reactions using paraffin or formalin, etc., is also called immobilization. However, the fixation in the present invention is not limited to such a narrow meaning.
 本発明の好ましい態様の一つは、生物学的試料をハイドロゲルで高速固定する方法であって、ハイドロゲルを形成する少なくとも2種のモノマーの組合せの一方を含む溶液1と他方を含む溶液2とを用意する工程A、並びに前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む、前記方法である。 One of the preferred embodiments of the present invention is a method for rapidly fixing a biological sample with a hydrogel, which includes a solution 1 containing one of a combination of at least two monomers forming the hydrogel and a solution 2 containing the other. And a step B in which droplets of the solution 1 and the solution 2 are brought into contact with the surface of the biological sample and the biological sample is fast-fixed with a hydrogel.
 ハイドロゲルを形成する少なくとも2種のモノマーの組合せとは、対になって架橋構造を形成する官能基がそれぞれ別々に導入され、当該官能基間の架橋反応によりハイドロゲルが形成されるモノマーの組合せである。 The combination of at least two types of monomers that form a hydrogel is a combination of monomers in which functional groups that form a cross-linked structure in pairs are introduced separately, and a hydrogel is formed by a cross-linking reaction between the functional groups. It is.
 本態様における溶液1は、前記組合せの一方を含み、溶液2は前記組合せの他方を含むものであるが、それぞれの溶液はハイドロゲルを形成するモノマーの別の組合せをさらに含んでいてもよい。すなわち1つの溶液が1つのモノマーを含む一溶液一溶質の形態に加え、1つの溶液が二以上の溶質を含む一溶液多溶質の形態も、一溶液中で望ましくない現象が生じない限り、本発明における溶液として利用可能である。 The solution 1 in this embodiment includes one of the above combinations, and the solution 2 includes the other of the above combinations, but each solution may further include another combination of monomers that form a hydrogel. That is, in addition to the form of one solution and one solute containing one monomer in one solution, the form of one solution and multiple solutes containing one or more solutes in one solution may also be used as long as an undesirable phenomenon does not occur in one solution. It can be used as a solution in the invention.
 また、本態様ではハイドロゲルを形成する少なくとも2種のモノマーの組合せの一方を含む溶液1と他方を含む溶液2とを利用するが、これらの2種類の溶液のみを利用することを意味するものではない。したがって、ハイドロゲルの形成が損なわれない限り、ハイドロゲルを形成するモノマーの別の組合せを含む溶液をさらに追加して利用してもよい。すなわち、溶液の組合せは1つ又は複数であってもよく、溶液1及び溶液2に含まれる組合せとは別の組合せのモノマーその他の物質を含む、溶液1及び溶液2とは別の溶液を溶液1及び2とともに使用する実施形態も本態様に含まれる。 In this embodiment, the solution 1 containing one of the combinations of at least two monomers forming the hydrogel and the solution 2 containing the other are used, which means that only these two types of solutions are used. is not. Therefore, as long as the formation of the hydrogel is not impaired, a solution containing another combination of monomers forming the hydrogel may be additionally used. That is, the combination of the solution may be one or more, and the solution different from the solution 1 and the solution 2 containing the monomer and other substances in a combination different from the combination included in the solution 1 and the solution 2 is used as the solution. Embodiments used with 1 and 2 are also included in this aspect.
 対になって架橋構造を形成する異なる2種の官能基は、いわゆるクリック反応が生じる官能基の組合せであり、例えばチオールマイケル付加反応(Devathaら、Chem.Mater.、2014年、第26巻、724-744ページ)が生じる官能基の組合せ、例えばチオール基とマレイミド基、カルボキシル基、ビニルスルホン基、α,β不飽和アクリレート基、α,β不飽和メタクリレート基、α,β不飽和アクリルアミド基又はα,β不飽和メタクリルアミド基との組合せ、カルボキシル基とアミノ基との組み合わせなどを挙げることができる。 Two different types of functional groups that form a cross-linked structure in pairs are combinations of functional groups that cause a so-called click reaction, such as the thiol Michael addition reaction (Devatha et al., Chem. Mater., 2014, Vol. 26, 724-744), for example, thiol groups and maleimide groups, carboxyl groups, vinyl sulfone groups, α, β unsaturated acrylate groups, α, β unsaturated methacrylate groups, α, β unsaturated acrylamide groups or A combination with an α, β unsaturated methacrylamide group, a combination of a carboxyl group and an amino group, and the like can be mentioned.
 ハイドロゲルを形成することのできるモノマーとしては、ポリ(2-ヒドロキシエチルメタクリレート)、ポリ(2-ヒドロキシエチルアクリレート)、ポリ(2-ヒドロキシプロピルアクリレート)、ポリ(2-ヒドロキシプロピルメタクリレート)、ポリ(2-ヒドロキシブチルアクリレート)、ポリ(2-ヒドロキシブチルメタアクリレート)などの水酸基含有ポリ(メタ)アクリレートに官能基が導入された誘導体、ポリ(メトキシポリエチレングリコールアクリレート)、ポリ(メトキシポリエチレングリコールメタクリレート)などのポリエチレングリコール鎖を含有するポリ(メタ)アクリレートに官能基が導入された誘導体、ポリ(2-メタクリルオキシエチルホスホリルコリン)などのリン脂質類似構造を有するリン酸基含有ポリメタクリレートに官能基が導入された誘導体、及びポリ(アリルアミン)などのアミノ基含有ポリマーに官能基が導入された誘導体などの、生体適合性高分子モノマーが例示される。また、コンドロイチン硫酸、ヘパリン、ヒアルロン酸等の天然多糖類又はそれらの塩若しくは変性体などに官能基が導入された誘導体も利用可能である。 Monomers that can form a hydrogel include poly (2-hydroxyethyl methacrylate), poly (2-hydroxyethyl acrylate), poly (2-hydroxypropyl acrylate), poly (2-hydroxypropyl methacrylate), poly (2- 2-hydroxybutyl acrylate), poly (2-hydroxybutyl methacrylate) and other hydroxyl group-containing poly (meth) acrylate derivatives with functional groups introduced, poly (methoxypolyethylene glycol acrylate), poly (methoxypolyethylene glycol methacrylate), etc. Phosphoric acid having a phospholipid-like structure such as poly (2-methacryloxyethyl phosphorylcholine), a derivative in which a functional group is introduced into poly (meth) acrylate containing polyethylene glycol chain Derivative functional group is introduced into containing polymethacrylate, and poly such derivatives which functional groups are introduced to the amino group-containing polymers such as (allylamine), a biocompatible polymer monomer is exemplified. In addition, natural polysaccharides such as chondroitin sulfate, heparin, and hyaluronic acid, or derivatives having functional groups introduced into salts or modified products thereof can also be used.
 前記の官能基をモノマーに導入する方法は官能基ごとに公知であり、例えばカルボキシル基及びアミンの場合には、Sakaiら(Macromolecules、2008年、第41巻、5379-5384ページ)に記載された方法を利用することができる。 The method of introducing the above functional group into the monomer is known for each functional group. For example, in the case of a carboxyl group and an amine, it was described in Sakai et al. (Macromolecules, 2008, Vol. 41, pages 5379-5384). The method can be used.
 本発明で利用可能なモノマーの組合せの1つは、特表2010-532396号公報に記載された、ヒアルロン酸、コンドロイチン硫酸その他の生体適合性高分子にチオール基を導入した生体適合性高分子チオール化誘導体と、チオール基反応性官能基を含む多分岐ポリエチレングリコール誘導体との組合せである。特表2010-532396号公報の教示に従い、各誘導体を含む溶液の性質を調節し、酸アルカリを選択的に加えて反応性混合物溶液のpH値を調節することにより、ゲル化を10秒以下、特に数秒間で行うことができる。 One of the combinations of monomers that can be used in the present invention is a biocompatible polymer thiol having a thiol group introduced in hyaluronic acid, chondroitin sulfate or other biocompatible polymer described in JP-T-2010-532396. And a multi-branched polyethylene glycol derivative containing a thiol group-reactive functional group. By adjusting the properties of the solution containing each derivative and adjusting the pH value of the reactive mixture solution by selectively adding an acid-alkaline according to the teaching of JP-T-2010-532396, gelation is performed for 10 seconds or less, In particular, it can be performed in a few seconds.
 本発明で利用可能なモノマーの組合せのもう一つは、多分岐ポリアルキレングリコール誘導体、好ましくはチオール基を含む多分岐ポリエチレングリコール(PEG)誘導体とチオール基反応性官能基を含む多分岐PEG誘導体との組合せである。 Another monomer combination that can be used in the present invention is a multi-branched polyalkylene glycol derivative, preferably a multi-branched polyethylene glycol (PEG) derivative containing a thiol group and a multi-branched PEG derivative containing a thiol-reactive functional group It is a combination.
 かかる多分岐PEG誘導体の組合せは、例えば日油株式会社から市販されているSUNBRIGHTシリーズのSHシリーズ(チオール基を有する多分岐PEG誘導体)とMAシリーズ(マレイミド基を有する多分岐PEG誘導体)との組合せ、PAシリーズ(アミンを有する多分岐PEG誘導体、例えばPTE-150PA又はHGEO-150PAなど)とHSシリーズ(スクシニミジルカルボキシペンチル基を有する多分岐PEG誘導体)、GSシリーズ(スクシニミジルグルタレート基を有する多分岐PEG誘導体)又はCSシリーズ(スクシニミジルスクシネート基を有する多分岐PEG誘導体)との組合せ、NPシリーズ(p-ニトロフェニルカルボネート基を有する多分岐PEG誘導体、例えばHGEO-200NP)と前記PAシリーズとの組合せなどを挙げることができる。 The combination of such a multi-branched PEG derivative is, for example, a combination of the SUNBRIGHT series SH series (multi-branched PEG derivative having a thiol group) and MA series (multi-branched PEG derivative having a maleimide group) commercially available from NOF Corporation. , PA series (multi-branched PEG derivatives having an amine such as PTE-150PA or HGEO-150PA) and HS series (multi-branched PEG derivatives having a succinimidylcarboxypentyl group), GS series (succinimidyl glutarate) In combination with CS series (multi-branched PEG derivatives with succinimidyl succinate groups), NP series (multi-branched PEG derivatives with p-nitrophenyl carbonate groups, eg HGEO- 200NP) and before Or the like can be mentioned a combination of a PA series.
 なお、PEGの分岐数と置換基の種類には特別な制限はない。したがって、市販されている多分岐PEG誘導体には見られない構造、例えばマレイミド基を有する8分岐PEG誘導体又はチオール基を有する6分岐PEG誘導体などは、市販されている多分岐PEG誘導体の合成法に準じて任意に調製することができるが、本発明ではこの様な多分岐PEG誘導体も利用可能である。 There are no special restrictions on the number of PEG branches and the types of substituents. Therefore, structures that are not found in commercially available multi-branched PEG derivatives, such as 8-branched PEG derivatives having a maleimide group or 6-branched PEG derivatives having a thiol group, can be used for the synthesis of commercially available multi-branched PEG derivatives. According to the present invention, such a multi-branched PEG derivative can also be used.
 本発明では、特にハイドロゲル化促進剤、すなわち重合開始剤又は重合促進剤などのハイドロゲルの形成を促進することのできる物質をモノマーの置換基に応じて選択し、利用することが好ましい。ハイドロゲル化促進剤としては、架橋反応がチオール基とマレイミド基との間で行われる場合にはTEMED、Tris、リン酸水素2ナトリウムなどを挙げることができる。少なくとも2種のモノマーの組合せの一方を含む溶液1と他方を含む溶液2とを利用する上記の態様において、ハイドロゲル化促進剤は、一方又は両方の溶液に含まれていてもよい。 In the present invention, it is particularly preferable to select and utilize a hydrogelation accelerator, that is, a substance capable of promoting the formation of a hydrogel, such as a polymerization initiator or a polymerization accelerator, according to the substituent of the monomer. Examples of the hydrogelation accelerator include TEMED, Tris, and disodium hydrogen phosphate when the crosslinking reaction is performed between a thiol group and a maleimide group. In the above embodiment using the solution 1 containing one of the combinations of at least two monomers and the solution 2 containing the other, the hydrogelation accelerator may be contained in one or both solutions.
 本発明における別の好ましい態様は、生物学的試料をハイドロゲルで高速固定する方法であって、ハイドロゲルを形成する1種のモノマーを含む溶液1と、前記モノマーに対するハイドロゲル化促進剤を含む溶液2とを用意する工程A、並びに前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む、前記方法である。 Another preferred embodiment of the present invention is a method for rapidly fixing a biological sample with a hydrogel, comprising a solution 1 containing one kind of monomer that forms the hydrogel, and a hydrogelation accelerator for the monomer. The method includes the step A of preparing the solution 2 and the step B of bringing the droplets of the solution 1 and the solution 2 into contact with the surface of the biological sample and fast-fixing the biological sample with a hydrogel. .
 自身が単独でハイドロゲルを形成することができるモノマーを利用するときは、かかるモノマーを含む溶液1と、そのモノマーに対する重合開始剤又は重合促進剤などのハイドロゲル化促進剤を含む溶液2を用意し、溶液1及び溶液2の液滴を生物学的試料の表面で接触させることでも、生物学的試料をハイドロゲルで高速固定することができる。そのようなモノマーの例としてはチオール基を有する多分岐PEG誘導体を、またこれらモノマーに対するハイドロゲル化促進剤の例はテトラメチルエチレンジアミン(TEMED)を挙げることができる。 When using a monomer that can form a hydrogel by itself, prepare a solution 1 containing such a monomer and a solution 2 containing a hydrogelation accelerator such as a polymerization initiator or a polymerization accelerator for the monomer. Alternatively, the biological sample can be fast-fixed with the hydrogel by bringing the droplets of the solution 1 and the solution 2 into contact with the surface of the biological sample. Examples of such monomers include multi-branched PEG derivatives having thiol groups, and examples of hydrogelation accelerators for these monomers include tetramethylethylenediamine (TEMED).
 本発明におけるさらに別の態様は、生物学的試料をハイドロゲルで高速固定する方法であって、ハイドロゲルを形成する少なくとも2種のモノマーの組合せを含む溶液1と前記モノマーに対するハイドロゲル化促進剤を含む溶液2とを用意する工程A、並びに前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む、前記方法である。 Yet another embodiment of the present invention is a method for rapidly fixing a biological sample with a hydrogel, which comprises a solution 1 containing a combination of at least two monomers forming a hydrogel and a hydrogelation accelerator for the monomer. The method comprising: a step A for preparing a solution 2 containing a solution; and a step B for bringing the droplets of the solution 1 and the solution 2 into contact with the surface of the biological sample and fast-fixing the biological sample with a hydrogel. It is.
 単に混合されるだけではハイドロゲルが形成されない又は形成しにくい2種のモノマーを利用するときは、かかる2種のモノマーを含む溶液1と、それらのモノマーによるハイドロゲル形成に対する重合開始剤又は重合促進剤などのハイドロゲル化促進剤を含む溶液2を用意し、溶液1及び溶液2の液滴を生物学的試料の表面で接触させることでも、生物学的試料をハイドロゲルで高速固定することができる。そのような2種のモノマーの組合せの例としてはチオール基を有する多分岐PEG誘導体とマレイミド基を有する多分岐PEG誘導体の組み合わせを、またこれらモノマーに対するハイドロゲル化促進剤の例はテトラメチルエチレンジアミン(TEMED)、トリスヒドロキシメチルアミノメタン(Tris)、リン酸水素2ナトリウムを挙げることができる。なお、2種のモノマーを含む溶液1には、ハイドロゲル化に対する阻害剤を同時に含ませる、又はハイドロゲル化しないpHに調節するその他の、溶液2との接触前に溶液1内でハイドロゲルが形成されない条件を付加しておくことが好ましい。 When two kinds of monomers that do not form or hardly form a hydrogel simply by mixing are used, a solution 1 containing the two kinds of monomers and a polymerization initiator or polymerization promotion for hydrogel formation by these monomers It is possible to fix a biological sample at high speed with a hydrogel by preparing a solution 2 containing a hydrogelation accelerator such as an agent and bringing the droplets of solution 1 and solution 2 into contact with the surface of the biological sample. it can. Examples of such combinations of two monomers include a combination of a multi-branched PEG derivative having a thiol group and a multi-branched PEG derivative having a maleimide group, and examples of hydrogelation accelerators for these monomers include tetramethylethylenediamine ( TEMED), trishydroxymethylaminomethane (Tris), and disodium hydrogen phosphate. In addition, the solution 1 containing two kinds of monomers contains an inhibitor for hydrogelation at the same time, or the hydrogel is contained in the solution 1 before the contact with the solution 2 that is adjusted to a pH that does not hydrogel. It is preferable to add a condition that does not form.
 本発明では、上記モノマーは溶液、特に水溶液の形態で使用される。溶液のpHは、適当な酸、アルカリ又はこれらと緩衝剤によって、溶液同士が接触する際のpHが、モノマーのゲル化反応に好適なpHとなるように調節されることが望ましい。ハイドロゲル化促進剤を利用する場合も同様である。チオール基を有する多分岐PEG誘導体とマレイミド基を有する多分岐PEG誘導体との組合せの場合には、溶液同士が接触する際のpHは5~8の範囲内、好ましくはpH6.5~7.5の範囲内となるように調節されることが好ましい。特にチオールマイケル付加反応の場合には、溶液同士が接触する際のpHは7以上であることが好ましい。さらに溶液は、高速ゲル化を妨げない範囲で塩化ナトリウムその他の塩、等張化のための糖類などの任意の成分を含んでいてもよい。 In the present invention, the monomer is used in the form of a solution, particularly an aqueous solution. The pH of the solution is desirably adjusted with an appropriate acid, alkali, or a buffering agent so that the pH when the solutions come into contact with each other is a pH suitable for the gelation reaction of the monomer. The same applies when a hydrogelation accelerator is used. In the case of a combination of a multi-branched PEG derivative having a thiol group and a multi-branched PEG derivative having a maleimide group, the pH at which the solutions come into contact with each other is in the range of 5 to 8, preferably 6.5 to 7.5. It is preferable to adjust so that it may exist in this range. Particularly in the case of the thiol Michael addition reaction, the pH when the solutions are in contact with each other is preferably 7 or more. Furthermore, the solution may contain arbitrary components such as sodium chloride and other salts and sugars for isotonicity as long as high-speed gelation is not hindered.
 溶液中のモノマーの濃度は、用いられる組合せにおいて高速ゲル化が可能となる濃度以上であることが必要であるが、いずれの組合せの場合でも下限は5重量%以上であればよく、ハイドロゲル化促進剤を用いるときは下限を3重量%以上、又は1重量%以上とすることもできる。一方、濃度の上限は吐出する液滴の体積に依存するが、本発明では30重量%以下、好ましくは20重量%以下であればよい。 The monomer concentration in the solution must be higher than the concentration at which high-speed gelation is possible in the combination used, but in any combination, the lower limit may be 5% by weight or more. When using an accelerator, the lower limit may be 3% by weight or more, or 1% by weight or more. On the other hand, the upper limit of the concentration depends on the volume of the ejected droplet, but in the present invention, it may be 30% by weight or less, preferably 20% by weight or less.
 本発明は、前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む。 The present invention includes a step B in which the droplets of the solution 1 and the solution 2 are brought into contact with the surface of the biological sample and the biological sample is fixed at high speed with a hydrogel.
 工程Bの好ましい態様のひとつは、適当な保持具で支持された生物学的試料に対して、前記溶液1の液滴と溶液2の液滴とを生物学的試料の表面で接触させることで、生物学的試料の全部又は一部をハイドロゲルで固定する方法である。 One of the preferred embodiments of the step B is to bring the droplet of the solution 1 and the droplet of the solution 2 into contact with the biological sample supported by an appropriate holder on the surface of the biological sample. In this method, all or part of a biological sample is fixed with a hydrogel.
 溶液は、一滴が数十ピコリットル(pL)~1μLの範囲の量(体積)である液滴として、適当な液体吐出ノズルから吐出されることが好ましい。例えば、適当な保持部材の上に置かれたタンパク質結晶の一部を、タンパク質結晶が保持部材に固定されるようにハイドロゲルで高速固定するときは、一滴当たりの体積が50~200pLである液滴をタンパク質結晶に向けて吐出することが好ましい。かかる微量の液滴は接触後短時間で混ざりあうことができ、より短時間でハイドロゲルを形成させることができる。ただし、大きな生物学的試料を固定するとき又は細胞が含まれる液滴の場合は、吐出される液滴の一滴当たりの体積はより大きいものであってもよい。 The solution is preferably ejected from a suitable liquid ejection nozzle as a droplet having a volume (volume) ranging from several tens of picoliters (pL) to 1 μL. For example, when a portion of a protein crystal placed on a suitable holding member is fast-fixed with a hydrogel so that the protein crystal is fixed to the holding member, a liquid having a volume per drop of 50 to 200 pL. It is preferable to eject the droplet toward the protein crystal. Such a small amount of droplets can be mixed in a short time after contact, and a hydrogel can be formed in a shorter time. However, when fixing a large biological sample or in the case of a droplet containing cells, the volume per droplet discharged may be larger.
 液体吐出ノズルとしては、上記の液滴を吐出できるものであれば、プランジャー式、エアー圧送式、スクリューバルブ式などの液体吐出ノズルのいずれも利用することができる。また、マイクロインジェクターや低容量自動ピペッターなども利用可能である。 As the liquid discharge nozzle, any liquid discharge nozzle of plunger type, air pressure type, screw valve type or the like can be used as long as it can discharge the above-mentioned droplets. Microinjectors and low-capacity automatic pipetters can also be used.
 本発明の目的において特に好ましい液体吐出ノズルは、インクジェットノズルである。一滴が数十ピコリットル(pL)~1μLの範囲の量(体積)の液滴を吐出するためのノズルとしては、ピエゾ素子を有するインクジェットノズル又は加熱式のインクジェットを利用することができるが、ピエゾ素子を有するインクジェットノズルの使用がより好ましい。 A particularly preferred liquid discharge nozzle for the purpose of the present invention is an inkjet nozzle. As a nozzle for discharging a droplet (volume) in the range of several tens of picoliters (pL) to 1 μL, an inkjet nozzle having a piezo element or a heating type inkjet can be used. The use of an ink jet nozzle having elements is more preferred.
 また、2つの溶液の液滴は、生物学的試料の表面上若しくはその直近で液滴同士が接触するように、方向及び吐出ノズルと接触位置との間の距離を調節して吐出される。 Also, the droplets of the two solutions are ejected while adjusting the direction and the distance between the ejection nozzle and the contact position so that the droplets come into contact with each other on or close to the surface of the biological sample.
 工程Bの別の好ましい態様は、前記溶液1及び溶液2の液滴と、生物学的試料例えば細胞を含む溶液3の液滴とを、実質的に同時に又は連続して一点に向けて吐出し、これら溶液を接触させて生物学的試料をハイドロゲルで高速固定する方法である。 In another preferred embodiment of the step B, the droplets of the solution 1 and the solution 2 and the droplet of the biological sample, for example, the solution 3 containing cells, are ejected toward a single point substantially simultaneously or successively. In this method, the biological sample is fast-fixed with a hydrogel by contacting these solutions.
 この態様において、溶液を接触させる位置を制御しながら連続的に移動させることによって、生物学的試料がハイドロゲルで固定された成形物を製造することができる。また、異なる生物学的試料をそれぞれ含む複数の溶液を用意し、それらを吐出する順序又は接触させる位置などを適切に制御することで、異なる生物学的試料が制御された位置においてハイドロゲルで固定された立体成形物を製造することもできる。 In this embodiment, a molded product in which a biological sample is fixed with a hydrogel can be produced by continuously moving the solution in contact with the solution. In addition, multiple solutions containing different biological samples are prepared, and the order in which they are discharged or the position where they are brought into contact is appropriately controlled, so that different biological samples are fixed with hydrogel at controlled positions. It is also possible to produce a three-dimensional molded product.
 生物学的試料への3-Dプリンタ技術の適用は、化学と生物、2013年、第512巻の特集、例えば中村ら(同巻、第30~34ページ)、古川ら(同巻第36~37ページ)を始め、様々な提唱がなされている。本発明の方法は、この様な積層造形型の3-Dプリンタ技術を利用することにより、簡便に行うことができる。具体的には、3-Dプリンタ技術で用いられるABS樹脂や光硬化性樹脂その他の立体物成形用材料を本発明にいうモノマー、好ましくは生体適合性モノマーの溶液に置き換え、所望の生物学的試料を含む溶液と合わせて吐出を制御することで、生物学的試料がハイドロゲルで固定された立体成形物を作製することができる。 The application of 3-D printer technology to biological samples is described in Chemistry and Biology, 2013, Volume 512, for example, Nakamura et al. (Vol. 30-34), Furukawa et al. (Vol. 36- 37 pages) and various other proposals have been made. The method of the present invention can be easily performed by utilizing such additive manufacturing type 3-D printer technology. Specifically, ABS resin, photo-curing resin, and other three-dimensional molding materials used in 3-D printer technology are replaced with a solution of the monomer according to the present invention, preferably a biocompatible monomer, to obtain a desired biological material. By controlling the discharge together with the solution containing the sample, a three-dimensional molded product in which the biological sample is fixed with a hydrogel can be produced.
 工程Bのさらに別の好ましい態様は、溶液1と溶液2の一方又は両方に生物学的試料、例えば細胞を含ませておき、これら溶液1と溶液2の液滴を一点に向けて吐出して接触させることで生物学的試料をハイドロゲルで高速固定する方法である。 In another preferred embodiment of the step B, one or both of the solution 1 and the solution 2 contains a biological sample, for example, a cell, and the droplets of the solution 1 and the solution 2 are ejected toward one point. In this method, a biological sample is fast-fixed with a hydrogel by contact.
 この態様においても、溶液を接触させる位置を制御しながら連続的に移動させることによって、生物学的試料がハイドロゲルで固定された成形物を製造することができる。また、異なる生物学的試料をそれぞれ含む溶液を複数用意し、それらの液滴を吐出する順序又は接触させる位置などを適切に制御することで、異なる生物学的試料が制御された位置においてハイドロゲルで固定された立体成形物を製造することもできる。この様な成形物の製造もまた、前記のような3-Dプリンタ技術を利用することにより、簡便に行うことができる。 Also in this embodiment, it is possible to produce a molded article in which a biological sample is fixed with a hydrogel by continuously moving while controlling the position where the solution is brought into contact. In addition, by preparing multiple solutions each containing different biological samples and appropriately controlling the order in which the droplets are ejected or the position where they are brought into contact with each other, the hydrogels are controlled at the positions where the different biological samples are controlled. It is also possible to produce a three-dimensional molded product fixed in (1). Such a molded product can also be easily manufactured by utilizing the 3-D printer technology as described above.
 なお、生物学的試料を含む溶液の液滴を吐出させる場合には、その溶液は、モノマーによる高速ハイドロゲル化を妨げない範囲において、生物学的試料を安定に保つことのできる適切な溶媒、典型的にはPBS(リン酸緩衝化生理食塩水)などの生体適合性の高い緩衝液を基に調製されることが望ましい。その他、必要に応じて安定化剤、防腐剤などの任意成分を添加してもよい。 In the case of discharging droplets of a solution containing a biological sample, the solution must be a suitable solvent that can keep the biological sample stable, as long as it does not interfere with high-speed hydrogelation with monomers. Typically, it is desirable to prepare based on a highly biocompatible buffer such as PBS (phosphate buffered saline). In addition, optional components such as stabilizers and preservatives may be added as necessary.
 本発明は、生物学的試料を保持する手段、混合されることでハイドロゲルが形成される2種の溶液の液滴を前記保持手段に保持された生物学的試料にそれぞれ吐出させるための少なくとも2つの吐出ノズル、並びに前記保持手段及び/又は吐出ノズルの位置を自動調節する手段を備える、生物学的試料をハイドロゲルで高速固定するための装置を提供する。特に、前記自動調節手段が、前記保持手段中の生物学的試料の位置を光学的に検出する手段、前記検出手段からの検出信号を解析して生物学的試料の表面で液滴を接触させるための前記保持手段の位置及び/又は吐出ノズルの位置を決定する手段並びに決定された位置に前記保持手段及び/又は吐出ノズルを移動させる手段を含む、生物学的試料をハイドロゲルで高速固定するための装置を提供する。 The present invention provides a means for holding a biological sample, at least for discharging droplets of two kinds of solutions that form a hydrogel by mixing to the biological sample held by the holding means, respectively. There is provided an apparatus for rapidly fixing a biological sample with a hydrogel, comprising two discharge nozzles and means for automatically adjusting the position of the holding means and / or the discharge nozzle. In particular, the automatic adjustment means optically detects the position of the biological sample in the holding means, the detection signal from the detection means is analyzed, and the droplet is brought into contact with the surface of the biological sample. A biological sample is fast-fixed with a hydrogel, comprising means for determining the position of the holding means and / or the position of the discharge nozzle for moving and means for moving the holding means and / or the discharge nozzle to the determined position An apparatus is provided.
 前記装置の構成の一態様を例として図1及び図2に示す。図1は装置全体の概略図、図2は装置の中心部の概略図である。図1に示される装置は、タンパク質の結晶を固定化することを目的とした装置の例であり、インクジェットノズル1及び2、回転モータ3、保持具4、リニアステージ5、XYステージ6、駆動モータ7、CCDカメラ8、ポンプ9及びコントロールユニット10を含む。 An example of the configuration of the apparatus is shown in FIGS. 1 and 2 as an example. FIG. 1 is a schematic view of the entire apparatus, and FIG. 2 is a schematic view of a central portion of the apparatus. The apparatus shown in FIG. 1 is an example of an apparatus intended to immobilize protein crystals. Inkjet nozzles 1 and 2, rotation motor 3, holder 4, linear stage 5, XY stage 6, drive motor 7, includes a CCD camera 8, a pump 9 and a control unit 10.
 本態様において、インクジェットノズル1及び2は、Z軸方向に稼働するリニアステージ5にとりつけられている。また、保持具4が回転軸に連結された回転モータ3は、X軸及びY軸方向に稼働するXYステージ6にとりつけられている。リニアステージ5及びXYステージ6は、コントロールユニット10の指令によってそれぞれのステージを移動させる駆動モータ7をそれぞれ含む。 In this embodiment, the inkjet nozzles 1 and 2 are attached to a linear stage 5 that operates in the Z-axis direction. Further, the rotary motor 3 in which the holder 4 is coupled to the rotary shaft is attached to an XY stage 6 that operates in the X-axis and Y-axis directions. Each of the linear stage 5 and the XY stage 6 includes a drive motor 7 that moves each stage according to a command from the control unit 10.
 インクジェットノズル1及び2には、溶液1及び2がそれぞれ充填された2つの容器からポンプ9によって溶液が送られ、インクジェットノズル1から溶液1の液滴が、インクジェットノズル2から溶液2の液滴がそれぞれ吐出される。なお、インクジェットノズルの先端と容器内の液面は垂直方向において同じ高さに配置されることが望ましい。 The solution is sent to the inkjet nozzles 1 and 2 from the two containers filled with the solutions 1 and 2 by the pump 9, and the droplet of the solution 1 from the inkjet nozzle 1 and the droplet of the solution 2 from the inkjet nozzle 2. Each is discharged. It is desirable that the tip of the inkjet nozzle and the liquid level in the container are arranged at the same height in the vertical direction.
 CCDカメラ8は、回転モータ3の回転軸に連結された保持具4の先端を撮影するように配置される。回転モータ3が駆動することで保持具4が回転し、生物学的試料の位置が複数の角度からCCDカメラ8によって撮影される。CCDカメラ8が撮影した画像データはコントロールユニット10に送られる。 The CCD camera 8 is arranged so as to photograph the tip of the holder 4 connected to the rotation shaft of the rotary motor 3. When the rotary motor 3 is driven, the holder 4 is rotated, and the position of the biological sample is photographed by the CCD camera 8 from a plurality of angles. Image data captured by the CCD camera 8 is sent to the control unit 10.
 コントロールユニット10は、プログラム制御によって、画像データとしてCCDカメラ8から送られる生物学的試料の詳細な位置情報を解析し、生物学的試料の表面で吐出された液滴が接触するように、インクジェットノズル1及び2並びに回転モータ3を移動させるための信号をリニアステージ5及びXYステージ6の駆動モータ7に送信する。また、試料の向きを調整する信号を回転モータ3に、溶液の吐出を行う信号をインクジェットノズル1及び2に、それぞれ送信する。 The control unit 10 analyzes detailed positional information of the biological sample sent from the CCD camera 8 as image data under program control, and performs inkjet recording so that the droplets ejected on the surface of the biological sample come into contact with each other. Signals for moving the nozzles 1 and 2 and the rotary motor 3 are transmitted to the drive motor 7 of the linear stage 5 and the XY stage 6. In addition, a signal for adjusting the direction of the sample is transmitted to the rotary motor 3, and a signal for discharging the solution is transmitted to the inkjet nozzles 1 and 2, respectively.
 所定の位置に配置されたインクジェットノズル1及び2から、溶液1及び2の液滴がそれぞれ生物学的試料に向けて吐出され、生物学的試料の表面で接触することによってハイドロゲルの形成が開始される。また、吐出と共に、リニアステージ5、XYステージ6の駆動モータ7及び/又は回転モータ3を適宜駆動させることで、生物学的試料の表面上で液滴が接触する位置を微調整することができる。 From the inkjet nozzles 1 and 2 arranged at predetermined positions, droplets of the solutions 1 and 2 are ejected toward the biological sample, respectively, and contact with the surface of the biological sample starts formation of a hydrogel. Is done. In addition, by appropriately driving the drive motor 7 and / or the rotary motor 3 of the linear stage 5 and the XY stage 6 together with the discharge, the position where the droplet contacts on the surface of the biological sample can be finely adjusted. .
 生物学的試料を保持する手段は、挟む、すくう、穿刺する、吊す、載せるその他の方法によって、生物学的試料を保持することができる部材であればいずれでもよい。生物学的試料がタンパク質結晶である場合の当該手段の好ましい例はタンパク質結晶保持具であり、メッシュ構造を有するProtein Wave社のMounted LithoLoops(メッシュ径0.4Φ)、ループ構造を有するHampton Research製のMounted CryoLoopなどを挙げることができる。また、保持手段は、作業者がマニュアルで作業できるように独立した部材であってもよく、又は他の部材、例えば回転モータ3の回転軸などと一体的に成形されたものであってもよい。 The means for holding the biological sample may be any member that can hold the biological sample by other methods such as pinching, scooping, puncturing, hanging, and placing. When the biological sample is a protein crystal, a preferable example of the means is a protein crystal holder, Protein Wave, which has a mesh structure, Mounted LithoLoops (mesh diameter 0.4Φ), and a product made by Hampton Research, which has a loop structure. Examples include Mounted Cryo Loop. The holding means may be an independent member so that the operator can work manually, or may be formed integrally with another member, for example, the rotation shaft of the rotary motor 3. .
 吐出ノズルはインクジェットノズルであることが好ましく、吐出される液滴の液量に合わせ、市販のインクジェットノズルから適宜選択して利用すればよく、特殊な材質や形状などは特に必要ではない。好適な例としては、Microjet社のIJHDシリーズ(IJHD-100、IJHD-300など)を挙げることができる。 The discharge nozzle is preferably an ink jet nozzle, and may be appropriately selected from commercially available ink jet nozzles according to the amount of liquid droplets to be discharged. Special materials and shapes are not particularly required. Preferred examples include IJHD series (IJHD-100, IJHD-300, etc.) manufactured by Microjet.
 前記保持手段及び/又は吐出ノズルの位置を自動調節する手段は、前記保持手段及び/又は吐出ノズルの位置情報を基に、生物学的試料の表面で溶液1の液滴と溶液2の液滴とが接触するように、前記保持手段及び/又は吐出ノズルの位置を自動的に調節する手段である。前記自動調節手段の一態様は、前記保持手段中の生物学的試料の位置を光学的に検出する手段、前記検出手段からの検出信号を解析して生物学的試料の表面で液滴を接触させるための前記保持手段の位置及び/又は吐出ノズルの位置を決定する手段、並びに決定された位置に前記保持手段及び/又は吐出ノズルを移動させる手段を含む自動調節手段である。 The means for automatically adjusting the position of the holding means and / or the discharge nozzle is based on the positional information of the holding means and / or the discharge nozzle, and the droplet of the solution 1 and the droplet of the solution 2 on the surface of the biological sample. Is a means for automatically adjusting the position of the holding means and / or the discharge nozzle so as to come into contact with each other. One aspect of the automatic adjustment means is a means for optically detecting the position of the biological sample in the holding means; a detection signal from the detection means is analyzed, and a droplet is brought into contact with the surface of the biological sample. Automatic adjusting means including means for determining the position of the holding means and / or the position of the discharge nozzle for causing the nozzle to move, and means for moving the holding means and / or the discharge nozzle to the determined position.
 検出手段は、保持具によって保持されている生物学的試料の位置を少なくともmmオーダー好ましくはμmオーダーで測定ないし識別できる程度の解像度及び感度を有している光学的検出機器であればよい。光学的検出機器は、撮影した画像データを検出信号として後に説明する空間位置決定手段に送信できるものであることが好ましく、典型的には当該光学的検出手段はCCDカメラであることが好ましい。ただしこれに限定されるものではなく、赤外線カメラその他の光学的検出機器を利用してもよい。 The detection means may be an optical detection device having a resolution and sensitivity sufficient to measure or identify the position of the biological sample held by the holder at least on the order of mm, preferably on the order of μm. The optical detection device is preferably capable of transmitting captured image data as a detection signal to a spatial position determination unit described later. Typically, the optical detection unit is preferably a CCD camera. However, the present invention is not limited to this, and an infrared camera or other optical detection device may be used.
 検出手段からの検出信号を解析して生物学的試料に液滴を吐出するための前記保持手段及び/又は吐出ノズルの位置を決定する手段は、典型的には高速演算プロセッサを有するコンピュータであるコントロールユニットである。当該決定手段であるコントロールユニットには、検出手段から送信される検出信号すなわち画像データを元に保持手段及び/又は吐出ノズルの生物学的試料に液滴を吐出するための位置を算出する処理と、その位置に向けて保持手段及び/又は吐出ノズルを移動させるための指令を以下に説明する移動手段に送信する処理とを行うプログラムが組み込まれる。 The means for analyzing the detection signal from the detection means and determining the position of the holding means and / or the discharge nozzle for discharging the droplet onto the biological sample is typically a computer having a high speed processor. Control unit. The control unit, which is the determination means, includes a process for calculating a position for discharging a droplet to the biological sample of the holding means and / or the discharge nozzle based on a detection signal transmitted from the detection means, that is, image data. A program for executing a process for transmitting a command for moving the holding means and / or the discharge nozzle toward the position to the moving means described below is incorporated.
 保持手段及び/又は吐出ノズルを移動させる手段は、前記決定手段からの指令に従って保持手段及び/又は吐出ノズルを3次元空間的に移動させることのできる駆動手段である。そのような駆動手段としては、電気モータその他の電気的に駆動するもの、油圧又は水圧等によって駆動するもの、圧搾空気等によって駆動するもの、その他の駆動手段を挙げることができる。本発明では、空間的位置すなわちX軸方向、Y軸方向及びZ軸方向それぞれについて微調整が可能であり、また装置の組み立てが容易で装置全体を小型化しやすい電気的駆動手段、具体的にはリニアステージ、自動ステージ、サーボモータ又はステッピングモータを用いることが好ましい。また駆動手段により移動させる対象は、保持手段又は吐出ノズル若しくはそれらの両方のいずれであってもよい。 The means for moving the holding means and / or the discharge nozzle is a driving means that can move the holding means and / or the discharge nozzle in a three-dimensional space in accordance with a command from the determining means. Examples of such driving means include an electric motor or other electrically driven one, a hydraulic or hydraulic pressure driven one, a compressed air driven one or the like. In the present invention, an electrical drive means that can finely adjust the spatial position, that is, the X-axis direction, the Y-axis direction, and the Z-axis direction, is easy to assemble the device, and is easy to reduce the size of the entire device. It is preferable to use a linear stage, an automatic stage, a servo motor, or a stepping motor. Further, the object to be moved by the driving means may be either the holding means, the discharge nozzle, or both of them.
 以下の実施例によって本発明をさらに詳細に説明する。 The following examples further illustrate the present invention.
<実施例1>
1)高速固定装置の製作
 2つの液体保持容器にそれぞれ連結させた2つのインクジェットノズル(いずれもMicrojet社のIJHD-100)、中央精機製のズームレンズTV-Z-Hを組み合わせたCCDカメラ(Watec社 WAT-231S2)、回転モータ(オムロン社)、回転モータの回転軸の先端に連結可能なProtein Wave社のMounted LithoLoops、回転モータの位置をX軸方向及びY軸方向に調節するXYステージ、2つのインクジェットノズルの位置をZ軸方向に調節するリニアステージ、及び両ステージの位置制御プログラムが組み込まれたコンピュータユニットを含む高速固定装置を作製した。前記位置制御プログラムは自作した。
<Example 1>
1) Manufacture of high-speed fixing device CCD camera (Watec) combining two inkjet nozzles (both IJHD-100 from Microjet) connected to two liquid holding containers and zoom lens TV-ZH manufactured by Chuo Seiki WAT-231S2), Rotating motor (OMRON), Protein Wave Mounted Loops that can be connected to the tip of the rotating shaft of the rotating motor, XY stage for adjusting the position of the rotating motor in the X-axis direction and Y-axis direction, 2 A high-speed fixing device including a linear stage that adjusts the position of two inkjet nozzles in the Z-axis direction and a computer unit in which a position control program for both stages is incorporated was manufactured. The position control program was self-made.
2)タンパク質結晶の高速固定
 前記1)の高速固定装置の液体保持容器1に日油株式会社の高純度活性化PEG誘導体であるSUNBRIGHT(登録商標)PTE-100MA溶液(10重量%、ハイドロゲル化促進剤として2mMのTEMEDを含む)を、液体保持容器2に同社のSUNBRIGHT(登録商標)PTE-100SH溶液(10重量%)を、それぞれ150μL充填した。
2) High-speed fixation of protein crystals In the liquid holding container 1 of the high-speed fixation apparatus of 1) above, a SUBRIGHT (registered trademark) PTE-100MA solution (10% by weight, hydrogelation), a high purity activated PEG derivative from NOF Corporation The liquid holding container 2 was filled with 150 μL each of the company's SUNBRIGHT (registered trademark) PTE-100SH solution (10 wt%).
 1.25Mの塩化ナトリウムを含む0.1M酢酸ナトリウム緩衝溶液(pH4.6)中のリゾチーム結晶(100×100×30μmの立方体)をProtein Wave社のMounted LithoLoops(メッシュ径0.4Φ)を用いて緩衝液約1μLごとすくい取り、1)の高速固定装置の回転モータの回転軸に連結させた。高速固定装置を作動させて、保持具上の生物学的試料に向けて溶液1及び溶液2の液滴(200pL/滴)をインクジェットノズルからそれぞれ吐出して、リゾチーム結晶の表面上で接触させてハイドロゲルを形成させた。この吐出を、保持具の位置を連続的に移動させながら行い、リゾチーム結晶を保持具に固定した。液滴の吐出から固定までに要した時間は約3秒であった。保持具であるMounted LithoLoops上にハイドロゲルで固定されたリゾチーム結晶の拡大写真を図3に示す。各パネルの左側にある透明な立方体が、緩衝液ごとハイドロゲルで固定化されたリゾチーム結晶である。 Using Lysozyme crystals (100 × 100 × 30 μm 3 cubes) in 0.1 M sodium acetate buffer solution (pH 4.6) containing 1.25 M sodium chloride using Protein Wave's Mounted Litho Loops (mesh diameter 0.4Φ) Then, about 1 μL of the buffer solution was scooped up and connected to the rotary shaft of the rotary motor of the high-speed fixing device of 1). The high-speed fixing device is operated, and droplets of solution 1 and solution 2 (200 pL / droplet) are ejected from the inkjet nozzles toward the biological sample on the holder, and are brought into contact with the surface of the lysozyme crystal. A hydrogel was formed. This discharge was performed while continuously moving the position of the holder to fix the lysozyme crystal to the holder. The time required from discharging the droplet to fixing was about 3 seconds. FIG. 3 shows an enlarged photograph of lysozyme crystals fixed with hydrogel on Mounted LithoLoops as a holder. The transparent cube on the left side of each panel is a lysozyme crystal fixed with hydrogel together with the buffer solution.
 保持具を回転モータの軸から外し、固定されたリゾチーム結晶を1.25Mの塩化ナトリウムを含む0.1M酢酸ナトリウム緩衝溶液(pH4.6)に浸けたが、結晶は保持具から脱落したり、崩壊したりすることなく安定に保たれ、その後のX線結晶構造解析を用いた阻害剤探索に利用可能であった。 The holder was removed from the shaft of the rotary motor, and the fixed lysozyme crystal was soaked in a 0.1 M sodium acetate buffer solution (pH 4.6) containing 1.25 M sodium chloride. It was kept stable without collapsing, and could be used for searching for inhibitors using subsequent X-ray crystal structure analysis.
 本発明は、生物学的試料をより短時間で固定することが可能であり、例えばタンパク質結晶解析、タンパク質結晶を使った医薬品開発(阻害剤探索)、細胞又は生体組織の機能解析等に利用することができる。また生物学的試料を含む立体成形物の製造にも利用可能である。 The present invention can fix a biological sample in a shorter time, and is used for, for example, protein crystal analysis, drug development using protein crystals (search for inhibitors), functional analysis of cells or biological tissues, and the like. be able to. It can also be used for the production of three-dimensional molded products containing biological samples.
1 インクジェットノズル1
2 インクジェットノズル2
3 回転モータ
4 保持具
5 リニアステージ
6 XYステージ
7 駆動モータ
8 CCDカメラ
9 ポンプ
10 コントロールユニット

 
1 Inkjet nozzle 1
2 Inkjet nozzle 2
3 Rotating motor 4 Holder 5 Linear stage 6 XY stage 7 Drive motor 8 CCD camera 9 Pump 10 Control unit

Claims (11)

  1.  生物学的試料をハイドロゲルで高速固定する方法であって、混合されることでハイドロゲルが形成される溶液1と溶液2とを用意する工程A、並びに前記溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程Bを含む、前記方法。 A method of fast-fixing a biological sample with a hydrogel, comprising preparing a solution 1 and a solution 2 that form a hydrogel by mixing, and a droplet of the solution 1 and the solution 2 Said method comprising the step B of bringing the biological sample into contact with the surface of the biological sample and fast fixing the biological sample with a hydrogel.
  2.  工程Aが、ハイドロゲルを形成する少なくとも2種のモノマーの組合せの一方を含む溶液1と他方を含む溶液2とを用意する工程である、請求項1に記載の方法。 The method according to claim 1, wherein step A is a step of preparing a solution 1 containing one of a combination of at least two monomers forming a hydrogel and a solution 2 containing the other.
  3.  溶液1及び/又は溶液2がハイドロゲル化促進剤をさらに含む、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the solution 1 and / or the solution 2 further contains a hydrogelation accelerator.
  4.  工程Aが、ハイドロゲルを形成する1種のモノマーを含む溶液1と、前記モノマーに対するハイドロゲル化促進剤を含む溶液2とを用意する工程である、請求項1に記載の方法。 The method according to claim 1, wherein the step A is a step of preparing a solution 1 containing one kind of monomer forming a hydrogel and a solution 2 containing a hydrogelation accelerator for the monomer.
  5.  工程Aが、ハイドロゲルを形成する少なくとも2種のモノマーの組合せを含む溶液1と前記モノマーに対するハイドロゲル化促進剤を含む溶液2とを用意する工程である、請求項1に記載の方法。 The method according to claim 1, wherein the step A is a step of preparing a solution 1 containing a combination of at least two monomers forming a hydrogel and a solution 2 containing a hydrogelation accelerator for the monomer.
  6.  工程Bが、液体吐出ノズルから吐出させた溶液1及び溶液2の液滴を生物学的試料の表面で接触させて生物学的試料をハイドロゲルで高速固定する工程である、請求項1~5のいずれかに記載の方法。 Step B is a step in which droplets of solution 1 and solution 2 discharged from the liquid discharge nozzle are brought into contact with the surface of the biological sample and the biological sample is fast-fixed with a hydrogel. The method in any one of.
  7.  生物学的試料がタンパク質結晶である、請求項1~6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the biological sample is a protein crystal.
  8.  溶液1及び/又は溶液2が生物学的試料を含む溶液である、請求項1~6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the solution 1 and / or the solution 2 is a solution containing a biological sample.
  9.  モノマーが多分岐ポリアルキレングリコール誘導体である、請求項2~8のいずれかに記載の方法。 The method according to any one of claims 2 to 8, wherein the monomer is a multi-branched polyalkylene glycol derivative.
  10.  生物学的試料を保持する手段、混合されることでハイドロゲルが形成される2種の溶液の液滴を前記保持手段に保持された生物学的試料にそれぞれ吐出させるための少なくとも2つの吐出ノズル、並びに前記保持手段及び/又は吐出ノズルの位置を自動調節する手段を備える、生物学的試料をハイドロゲルで高速固定するための装置。 Means for holding a biological sample, at least two discharge nozzles for discharging droplets of two kinds of solutions that form a hydrogel by mixing to the biological sample held by the holding means, respectively And a device for fast fixing a biological sample with a hydrogel, comprising means for automatically adjusting the position of the holding means and / or the discharge nozzle.
  11.  前記自動調節手段が、前記保持手段中の生物学的試料の位置を光学的に検出する手段、前記検出手段からの検出信号を解析して生物学的試料の表面で液滴を接触させるための前記保持手段の位置及び/又は吐出ノズルの位置を決定する手段、並びに決定された位置に前記保持手段及び/又は吐出ノズルを移動させる手段を含む、請求項10に記載の装置。

     
    A means for optically detecting the position of the biological sample in the holding means; and a means for analyzing a detection signal from the detection means to bring the droplet into contact with the surface of the biological sample. 11. The apparatus according to claim 10, comprising means for determining the position of the holding means and / or the position of the discharge nozzle, and means for moving the holding means and / or the discharge nozzle to the determined position.

PCT/JP2015/059332 2014-03-26 2015-03-26 Method for high-speed fixing of biological specimen by using hydrogel and device therefor WO2015147147A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510474A JPWO2015147147A1 (en) 2014-03-26 2015-03-26 Method and apparatus for fast fixation of biological samples with hydrogel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014064710 2014-03-26
JP2014-064710 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015147147A1 true WO2015147147A1 (en) 2015-10-01

Family

ID=54195654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059332 WO2015147147A1 (en) 2014-03-26 2015-03-26 Method for high-speed fixing of biological specimen by using hydrogel and device therefor

Country Status (2)

Country Link
JP (1) JPWO2015147147A1 (en)
WO (1) WO2015147147A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173031A (en) * 2016-03-22 2017-09-28 株式会社日進製作所 Cell three-dimensional object forming device
WO2020189645A1 (en) * 2019-03-20 2020-09-24 株式会社リコー Cell culture carrier, and method and device for producing same
JP2020533950A (en) * 2017-08-01 2020-11-26 イルミナ インコーポレイテッド Hydrogel beads for nucleotide sequencing
US11180752B2 (en) 2018-02-13 2021-11-23 Illumina, Inc. DNA sequencing using hydrogel beads
US11359226B2 (en) 2018-04-20 2022-06-14 Illumina, Inc. Contiguity particle formation and methods of use
US11999945B2 (en) 2018-10-26 2024-06-04 Illumina, Inc. Modulating polymer beads for DNA processing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258206A (en) * 1993-03-09 1994-09-16 Mitsui Petrochem Ind Ltd Immobilizing reagent, immobilizing method using immobilizing reagent, and its kit
US20030134294A1 (en) * 2001-12-05 2003-07-17 Sandford Andrew F. Method for immobilizing a biologic in a polyurethane-hydrogel composition, a composition prepared from the method, and biomedical applications
JP2004522175A (en) * 2001-09-01 2004-07-22 サムスン エレクトロニクス カンパニー リミテッド Method for producing hydrogel biochip using radial polyethylene glycol derivative having epoxy group
JP2004533500A (en) * 2001-04-03 2004-11-04 バイオセプト インコーポレイテッド Methods and gel compositions for encapsulating living cells and organic molecules
JP2010532396A (en) * 2007-07-06 2010-10-07 常州百瑞吉生物医▲薬▼有限公司 Biocompatible high-speed gelled hydrogel and method for preparing a spray thereof
JP2010261929A (en) * 2009-01-22 2010-11-18 Ntn Corp Microinjection apparatus
JP2012254969A (en) * 2011-05-18 2012-12-27 Institute Of Physical & Chemical Research Protein crystal production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258206A (en) * 1993-03-09 1994-09-16 Mitsui Petrochem Ind Ltd Immobilizing reagent, immobilizing method using immobilizing reagent, and its kit
JP2004533500A (en) * 2001-04-03 2004-11-04 バイオセプト インコーポレイテッド Methods and gel compositions for encapsulating living cells and organic molecules
JP2004522175A (en) * 2001-09-01 2004-07-22 サムスン エレクトロニクス カンパニー リミテッド Method for producing hydrogel biochip using radial polyethylene glycol derivative having epoxy group
US20030134294A1 (en) * 2001-12-05 2003-07-17 Sandford Andrew F. Method for immobilizing a biologic in a polyurethane-hydrogel composition, a composition prepared from the method, and biomedical applications
JP2010532396A (en) * 2007-07-06 2010-10-07 常州百瑞吉生物医▲薬▼有限公司 Biocompatible high-speed gelled hydrogel and method for preparing a spray thereof
JP2010261929A (en) * 2009-01-22 2010-11-18 Ntn Corp Microinjection apparatus
JP2012254969A (en) * 2011-05-18 2012-12-27 Institute Of Physical & Chemical Research Protein crystal production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017173031A (en) * 2016-03-22 2017-09-28 株式会社日進製作所 Cell three-dimensional object forming device
JP2020533950A (en) * 2017-08-01 2020-11-26 イルミナ インコーポレイテッド Hydrogel beads for nucleotide sequencing
JP7032452B2 (en) 2017-08-01 2022-03-08 イルミナ インコーポレイテッド Hydrogel beads for nucleotide sequencing
US11180752B2 (en) 2018-02-13 2021-11-23 Illumina, Inc. DNA sequencing using hydrogel beads
US11359226B2 (en) 2018-04-20 2022-06-14 Illumina, Inc. Contiguity particle formation and methods of use
US11999945B2 (en) 2018-10-26 2024-06-04 Illumina, Inc. Modulating polymer beads for DNA processing
WO2020189645A1 (en) * 2019-03-20 2020-09-24 株式会社リコー Cell culture carrier, and method and device for producing same
JPWO2020189645A1 (en) * 2019-03-20 2020-09-24
CN113614179A (en) * 2019-03-20 2021-11-05 株式会社理光 Cell culture carrier, and method and apparatus for producing same
AU2020240750B2 (en) * 2019-03-20 2023-07-06 Ricoh Company, Ltd. Cell culture carrier, and method and device for producing same
JP7472900B2 (en) 2019-03-20 2024-04-23 株式会社リコー Cell culture carrier, and manufacturing method and manufacturing device thereof

Also Published As

Publication number Publication date
JPWO2015147147A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015147147A1 (en) Method for high-speed fixing of biological specimen by using hydrogel and device therefor
Axpe et al. A multiscale model for solute diffusion in hydrogels
US7172866B2 (en) Methods and gel compositions for encapsulating living cells and organic molecules
US20220227838A1 (en) Covalent modification of biological macromolecules
EP1527158B1 (en) Advanced roller bottle system for cell and tissue culturing
Alvarez et al. Controlling microgel deformation via deposition method and surface functionalization of solid supports
WO2012092542A2 (en) Responsive cell culture hydrogel
CN103018492B (en) Device and method for preparing PVDF (polyvinylidene fluoride) micro-particle probe by physical adhesion method
EP1600498B1 (en) Substrates for high-density cell arrays and preparation processes and uses thereof
Kim et al. Discontinuous dewetting in a degassed mold for fabrication of homogeneous polymeric microparticles
CN1885035A (en) Cell organism microsystem for detecting cell surface marker and detection method thereof
Dennis et al. Viability of bioprinted cellular constructs using a three dispenser cartesian printer
TWI808510B (en) A zwitterionic material capable of preventing bio-inert performance decay, its fabricating membrane and application
Chiellini et al. Bioerodible hydrogels based on 2‐hydroxyethyl methacrylate: Synthesis and characterization
US20230044320A1 (en) Bioprinting system
CN114401796A (en) Coating device and coating method
JP2006001995A (en) Equipment for biochemical use
US20230311126A1 (en) Microfluidic chip, cell analysis device, cell analysis system, and cell analysis method
Kazimierska-Drobny PVA hydrogel deformation in response to change in temperature or pH
JP2011072970A (en) Tablet containing sugar chain trapping material and use thereof
JP2002515599A (en) Method and apparatus for immobilization of micro and / or nano analytes
WO2023140051A1 (en) Gel sheet chip, method for manufacturing gel sheet chip, sample collecting method, gel plate, sample collecting set, culture implement, and method for manufacturing culture implement
JP4866112B2 (en) Biological material structure and manufacturing method of biological material structure, biological material carrier, purification method of target substance, affinity chromatography container, separation chip, target substance analysis method, target substance analysis separation device, And sensor chip
Chen et al. Programmable protein delivery from microgel/hydrogel composites (MHCs) via discrete combinations of multi-state protein-loaded unit ingredients
JP6241564B1 (en) Sugar chain-capturing polymer particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769611

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016510474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769611

Country of ref document: EP

Kind code of ref document: A1