WO2015146841A1 - Control device for rotating electric machine, and information processing device - Google Patents

Control device for rotating electric machine, and information processing device Download PDF

Info

Publication number
WO2015146841A1
WO2015146841A1 PCT/JP2015/058518 JP2015058518W WO2015146841A1 WO 2015146841 A1 WO2015146841 A1 WO 2015146841A1 JP 2015058518 W JP2015058518 W JP 2015058518W WO 2015146841 A1 WO2015146841 A1 WO 2015146841A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
current
winding
stator
stator winding
Prior art date
Application number
PCT/JP2015/058518
Other languages
French (fr)
Japanese (ja)
Inventor
亘 土方
渡辺 隆男
英滋 土屋
祥平 松本
雅英 上村
村上 新
遠山 智之
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2015146841A1 publication Critical patent/WO2015146841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to a control device that controls a current of a rotating electrical machine and an information processing device that calculates a current command value of the rotating electrical machine.
  • a control apparatus for a rotating electrical machine is driven by a first rotor that is provided with windings and mechanically coupled to an engine, and a permanent magnet that is electromagnetically coupled to the windings of the first rotor.
  • a second rotor mechanically coupled to the shaft; a stator having a winding electromagnetically coupled to a permanent magnet of the second rotor; and a slip ring electrically connected to the winding of the first rotor
  • a brush that is in electrical contact with the slip ring, a first inverter that controls power transfer between the battery and the stator winding, and a winding of the battery and the first rotor via the slip ring and the brush.
  • a second inverter that is controlled so as to be able to exchange power.
  • the power transmitted from the engine to the first rotor is transmitted to the second rotor by electromagnetic coupling between the windings of the first rotor and the permanent magnets of the second rotor.
  • the drive shaft can be driven.
  • the torque acting between the first rotor and the second rotor is controlled by controlling the current of the winding of the first rotor by the switching control of the second inverter.
  • the electromagnetic force between the stator winding and the permanent magnet of the second rotor allows the second rotor to generate power by using the electric power supplied to the stator winding via the first inverter.
  • the shaft can be driven. In that case, the torque which acts between a stator and a 2nd rotor is controlled by controlling the electric current of the coil
  • the torque between the first rotor and the second rotor is controlled by the current of the first rotor winding
  • the torque between the stator and the second rotor is controlled by the current of the stator winding.
  • the performance of the rotating electrical machine may decrease, such as a decrease in torque between the second rotor and a torque between the stator and the second rotor.
  • the present invention has an object to improve the performance of a rotating electrical machine capable of applying torque between the first rotor and the second rotor and between the stator and the second rotor. Another object of the present invention is to calculate a current command value for improving the performance of the rotating electrical machine.
  • control apparatus and information processing apparatus for a rotating electrical machine employ the following means in order to achieve at least a part of the above-described object.
  • a control device for a rotating electrical machine is a control device for a rotating electrical machine that controls a current of the rotating electrical machine, and the rotating electrical machine includes a first rotor provided with a rotor winding, and a stator winding. And a second rotor facing the first rotor and the stator and capable of rotating relative to the first rotor, and the magnetic flux generated by the current in the rotor winding is the second. Torque acts between the first rotor and the second rotor according to the action on the rotor, and the stator and the second according to the magnetic flux generated by the current of the stator winding acting on the second rotor.
  • Torque acts between the rotors, and the interlinkage magnetic flux of the stator winding can be adjusted by the current of the rotor winding, and the interlinkage magnetic flux of the rotor winding can be adjusted by the current of the stator winding
  • the control device includes a constraint including a condition using at least one of a current of the rotor winding and a current of the stator winding.
  • the current command value of the rotor winding and the current command value of the stator winding for optimizing the evaluation function which is a function of the current of the rotor winding and the current of the stator winding A current command value calculation unit that calculates using the second magnetic interference model is provided, and the first magnetic interference model shows the relationship between the rotor winding current and the stator winding current interlinkage magnetic flux with respect to the stator winding current.
  • the second magnetic interference model represents the rotor winding current and the relationship of the interlinkage magnetic flux of the stator winding with respect to the stator winding current, and the rotor winding current calculated by the current command value calculation unit
  • the gist is to control the current of the rotor winding and the current of the stator winding based on the current command value and the current command value of the stator winding.
  • the first and second magnetic interference models include a model formula relating to a magnetomotive force obtained by synthesizing a rotor winding current and a stator winding current in a set ratio.
  • the set ratio is 1: C, and C is preferably a coefficient representing the degree of magnetic interference.
  • the first and second magnetic interference models further include a model formula representing a degree of change in the interlinkage magnetic flux due to magnetic saturation.
  • the first and second magnetic interference models have a model related to the d-axis flux linkage and a model related to the q-axis flux linkage.
  • the constraint condition is that the torque between the first rotor and the second rotor is equal to the first torque command value, and the torque between the stator and the second rotor is the second torque command value.
  • the evaluation function includes equal conditions, and the evaluation function is a function obtained by adding the heat generation amount of the rotor winding and the heat generation amount of the stator winding by weighting according to a temperature difference between the rotor winding and the stator winding. Is preferred.
  • the current command value calculation unit increases the weighting of the heat generation amount of a winding having a high temperature among the rotor winding and the stator winding in the evaluation function.
  • the constraint condition is that the torque between the first rotor and the second rotor is equal to the first torque command value, and the torque between the stator and the second rotor is the second torque command value.
  • the evaluation function includes an equal condition, and the evaluation function is a function representing a total loss due to copper loss and iron loss of the rotating electrical machine.
  • the constraint condition is that the voltage of the rotor winding is not more than the first limit value, the condition that the voltage of the stator winding is not more than the second limit value, and the current of the rotor winding It is preferable to include at least one of a condition that is less than or equal to the third limit value and a condition that the stator winding current is less than or equal to the fourth limit value.
  • the current command value calculation unit sets the current command value of the rotor winding and the current command value of the stator winding so that the evaluation function is substantially minimum within a range that satisfies the constraint condition. It is preferable to calculate.
  • the evaluation function is preferably a function obtained by adding a torque between the first rotor and the second rotor and a torque between the stator and the second rotor with a predetermined weight. is there.
  • the constraint condition includes a condition in which a torque between the first rotor and the second rotor is equal to a first torque command value, and the evaluation function is between the stator and the second rotor.
  • a function representing torque is preferable.
  • the constraint condition includes a condition in which a sum of a torque between the first rotor and the second rotor and a torque between the stator and the second rotor is equal to the third torque command value.
  • the evaluation function is preferably a function representing an absolute value of torque between the first rotor and the second rotor.
  • the constraint condition includes a condition that a current of the stator winding is equal to or lower than a fifth limit value
  • the evaluation function is a function representing a torque between the stator and the second rotor. Is preferred.
  • the constraint condition includes a condition that the current of the rotor winding is equal to or less than a sixth limit value
  • the evaluation function is a function representing a torque between the first rotor and the second rotor. It is preferable that
  • the current command value calculator calculates the current command value of the rotor winding and the current command value of the stator winding so that the evaluation function is substantially maximum within a range that satisfies the constraint conditions. It is preferable to calculate.
  • power conversion can be performed between the power storage device and the stator winding by the first power conversion device, and between the power storage device and the rotor winding by the second power conversion device.
  • the first and second limit values are set to values smaller than the voltage of the power storage device, and the third limit value is set to a value smaller than the capacity of the second power conversion device.
  • the fourth limit value is preferably set to a value smaller than the capacity of the first power conversion device.
  • An information processing apparatus is an information processing apparatus that calculates a current command value of a rotating electrical machine
  • the rotating electrical machine includes a first rotor provided with a rotor winding and a stator winding. And a second rotor facing the first rotor and the stator and capable of rotating relative to the first rotor, and the magnetic flux generated by the current in the rotor winding is the second.
  • Torque acts between the first rotor and the second rotor according to the action on the rotor, and the stator and the second according to the magnetic flux generated by the current of the stator winding acting on the second rotor.
  • Torque acts between the rotors, and the interlinkage magnetic flux of the stator winding can be adjusted by the current of the rotor winding, and the interlinkage magnetic flux of the rotor winding can be adjusted by the current of the stator winding
  • the information processing apparatus includes a constraint condition including a condition using at least one of a current of the rotor winding and a current of the stator winding.
  • a current command value calculation unit that calculates using the second magnetic interference model is provided, and the first magnetic interference model shows the relationship between the rotor winding current and the stator winding current interlinkage magnetic flux with respect to the stator winding current.
  • the second magnetic interference model represents the relationship between the stator winding current and the stator winding current with respect to the stator winding current and the stator winding current.
  • the first magnetic interference model representing the relationship of the interlinkage magnetic flux of the rotor winding to the current of the rotor winding and the current of the stator winding, the current of the rotor winding and the stator winding
  • a second magnetic interference model representing the relationship of the stator winding linkage flux to the current of
  • FIG. 1 It is a figure which shows schematic structure of a hybrid drive device provided with the control apparatus of the rotary electric machine which concerns on embodiment of this invention. It is a figure which shows the structural example of a rotary electric machine. It is a figure which shows the structural example of a rotary electric machine. It is a figure which shows the structural example of a rotary electric machine. It is a figure which shows the structural example of a rotary electric machine. It is a figure which shows the flow of the d-axis magnetic flux when the d-axis current flows through the rotor winding. It is a figure which shows the flow of the q-axis magnetic flux when the q-axis current flows into the rotor winding.
  • FIG. 1 to 4 are diagrams showing an outline of a configuration of a hybrid drive system including a control device for a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 1 shows an overview of the overall configuration, and FIGS. An outline of 10 configurations is shown.
  • the hybrid drive system according to the present embodiment is provided between an engine (internal combustion engine) 36 provided as a prime mover capable of generating power (mechanical power), and between the engine 36 and a drive shaft 37 (wheel 38).
  • a transmission (mechanical transmission) 44 capable of changing the transmission ratio, and a rotating electrical machine 10 provided between the engine 36 and the transmission 44 and capable of generating power (mechanical power) and generating power.
  • the hybrid drive system according to the present embodiment can be used as a power output system for driving a vehicle, for example.
  • the rotating electrical machine 10 includes a stator 16 fixed to a stator case (not shown), a first rotor 28 that can rotate relative to the stator 16, a stator 16 and a first rotor 28 in a radial direction perpendicular to the rotor rotation axis, and a predetermined amount.
  • the second rotor 18 is opposed to the stator 16 and the first rotor 28 with a gap.
  • the stator 16 is disposed at a position radially outside the first rotor 28 and spaced from the first rotor 28, and the second rotor 18 is disposed in a radial direction with the stator 16. It is disposed at a position between the first rotor 28.
  • the first rotor 28 is disposed opposite to the second rotor 18 at a position radially inward of the second rotor 18, and the stator 16 is disposed opposite to the second rotor 18 at a position radially outward from the second rotor 18.
  • the first rotor 28 is mechanically connected to the engine 36, the power from the engine 36 is transmitted to the first rotor 28.
  • the second rotor 18 is mechanically coupled to the drive shaft 37 via the transmission 44, so that the power from the second rotor 18 is shifted by the transmission 44 to the drive shaft 37 (wheel 38). It is transmitted after.
  • the first rotor 28 is an input side rotor
  • the second rotor 18 is an output side rotor.
  • the stator 16 includes a stator core 51 and a plurality of (for example, three-phase) stator windings 20 disposed on the stator core 51 along the circumferential direction thereof.
  • a plurality of teeth 51a protruding radially inward (toward the output-side rotor 18) are arranged at intervals along the circumferential direction of the stator, and each stator winding 20 is formed of these teeth 51a.
  • the magnetic poles are configured by being wound around.
  • a plurality of phases (for example, three phases) of alternating current flows through the plurality of stator windings 20, the stator windings 20 can generate a rotating magnetic field that rotates in the stator circumferential direction.
  • one magnetic pole is formed for each of the six teeth 51 a around which the three-phase stator winding 20 is wound.
  • the input-side rotor 28 includes a rotor core 52 and a plurality of (for example, three-phase) rotor windings 30 disposed on the rotor core 52 along the circumferential direction thereof.
  • a plurality of teeth 52a protruding radially outward (toward the output-side rotor 18) are arranged at intervals along the circumferential direction of the rotor, and each rotor winding 30 is formed of these teeth 52a.
  • the magnetic poles are configured by being wound around.
  • the rotor windings 30 can generate a rotating magnetic field that rotates in the circumferential direction of the rotor.
  • one magnetic pole is formed for each of the three teeth 52 a around which the three-phase rotor winding 30 is wound.
  • the output-side rotor 18 has a plurality (16 in the example shown in FIGS. 3 and 4) of permanent magnets 33 that are spaced apart from each other (equally spaced) in the circumferential direction of the rotor and are adjacent to each other in the circumferential direction of the rotor.
  • a plurality of soft magnetic materials 53 (same number as the permanent magnets 33, 16 in the example shown in FIGS. 3 and 4) disposed between the permanent magnets 33.
  • Each of the plurality of soft magnetic materials 53 divided and arranged at equal intervals in the circumferential direction of the rotor includes an inner peripheral surface (first surface) 61 facing the input-side rotor 28 (tooth 52a) with a predetermined gap, and a stator.
  • each permanent magnet 33 is arranged to be inclined with respect to the radial direction, and the side surfaces 63 and 64 of each soft magnetic material 53 are also inclined to the radial direction. Yes.
  • the side surfaces 63 and 64 of each soft magnetic material 53 are also inclined to the radial direction.
  • the rotor circumferential width of the inner circumferential surface 61 is equal to the interval between the teeth 52 a that are separated by three in the rotor circumferential direction, and the rotor on the outer circumferential surface 62.
  • the circumferential width is equal to the interval between the teeth 51a that are separated by six in the circumferential direction of the rotor.
  • the magnetic pole surface of the permanent magnet 33 facing the side surface 63 and the magnetic pole surface of the permanent magnet 33 facing the side surface 64 have the same polarity, and the same polarity of the permanent magnet 33 adjacent in the circumferential direction of the rotor.
  • the two are connected via a soft magnetic material 53.
  • the magnetic pole surface of the permanent magnet 33-1 in contact with the side surface 63-1 is the N pole surface
  • the magnetic pole surface of the permanent magnet 33-2 in contact with the side surface 64-1 is the N pole surface. Surface.
  • the magnetic pole surface of the permanent magnet 33-2 facing the side surface 63-2 is the S pole.
  • the magnetic pole surface of the permanent magnet 33-3 that is a surface and is in contact with the side surface 64-2 is the S pole surface.
  • the magnetic pole surfaces of the permanent magnet 33 facing the side surfaces 63, 64 have opposite polarities, and the rotor In the circumferential direction, the soft magnetic material 53 whose side surfaces 63 and 64 are in contact with the N pole surface of the permanent magnet 33 and the soft magnetic material 53 whose side surfaces 63 and 64 are in contact with the S pole surface of the permanent magnet 33 are alternately arranged.
  • a gap 54 for increasing the magnetic resistance is provided between the soft magnetic materials 53 (for example, the soft magnetic materials 53-1, 53-2) adjacent in the rotor circumferential direction.
  • soft magnetic materials 53 for example, soft magnetic materials 53-1, 53-2 adjacent in the circumferential direction of the rotor may be connected by a bridge.
  • the flow of field magnetic flux by the permanent magnet 33 is shown in FIG. As shown by the arrows in FIG. 4, in the soft magnetic material 53-1, the field magnetic flux generated by the permanent magnet 33-1 flows from the side surface 63-1 to the inner peripheral surface 61-1 and the outer peripheral surface 62-1, and is permanently The field magnetic flux generated by the magnet 33-2 flows from the side surface 64-1 to the inner peripheral surface 61-1 and the outer peripheral surface 62-1.
  • the inner peripheral surface 61-1 of the soft magnetic material 53-1 functions as an N pole surface, and the field magnetic flux is input from the inner peripheral surface 61-1 of the soft magnetic material 53-1. It acts on the rotor 28 (the teeth 52a).
  • the outer peripheral surface 62-1 of the soft magnetic material 53-1 functions as an N pole surface, and the field magnetic flux is transferred from the outer peripheral surface 62-1 of the soft magnetic material 53-1 to the stator 16 (tooth 51a). Act on.
  • the soft magnetic material 53-2 the field magnetic flux generated by the permanent magnet 33-2 flows from the inner peripheral surface 61-2 and the outer peripheral surface 62-2 to the side surface 63-2, and the field magnet generated by the permanent magnet 33-3. Magnetic flux flows from the inner peripheral surface 61-2 and the outer peripheral surface 62-2 to the side surface 63-3.
  • the inner peripheral surface 61-2 of the soft magnetic material 53-2 functions as an S pole surface, and the field magnetic flux is transferred from the input side rotor 28 (tooth 52a) to the soft magnetic material 53-2. It acts on the inner peripheral surface 61-2.
  • the outer peripheral surface 62-2 of the soft magnetic material 53-2 functions as an S pole surface, and the field magnetic flux is transferred from the stator 16 (tooth 51a) to the outer peripheral surface 62-2 of the soft magnetic material 53-2. Act on.
  • the inner peripheral surface 61 and the outer peripheral surface 62 of the same soft magnetic material 53 function as magnetic pole surfaces having the same polarity.
  • the inner peripheral surface 61 that functions as the N pole surface and the inner peripheral surface 61 that functions as the S pole surface are alternately arranged, and functions as the outer peripheral surface 62 that functions as the N pole surface and the S pole surface.
  • the outer peripheral surfaces 62 are alternately arranged.
  • magnetic flux can be easily passed between the inner peripheral surface 61 and the outer peripheral surface 62, between the side surfaces 63 and 64 and the inner peripheral surface 61, and between the side surfaces 63 and 64 and the outer peripheral surface 62. Therefore, it is preferable that no gap and nonmagnetic material are provided, and it is preferable that a portion having a high magnetic resistance is not provided.
  • the chargeable / dischargeable power storage device 42 provided as a direct current power source can be constituted by a secondary battery, for example, and stores electrical energy.
  • Inverter 40 provided as a first power conversion device that performs power conversion between power storage device 42 and stator winding 20 includes a switching element and a diode (rectifier element) connected in reverse parallel to the switching element. It can be realized by a known configuration, and can be supplied to each phase of the stator winding 20 by converting DC power from the power storage device 42 to AC (for example, three-phase AC) by switching operation of the switching element. .
  • the inverter 40 can also convert power in a direction in which alternating current flowing in each phase of the stator winding 20 is converted into direct current and electric energy is collected in the power storage device 42.
  • the inverter 40 can perform bidirectional power conversion between the power storage device 42 and the stator winding 20.
  • the slip ring 95 is mechanically coupled to the input side rotor 28, and is further electrically connected to each phase of the rotor winding 30.
  • the brush 96 whose rotation is fixed is pressed against the slip ring 95 to be in electrical contact.
  • the slip ring 95 rotates with the input-side rotor 28 while sliding with respect to the brush 96 (maintaining electrical contact with the brush 96).
  • the brush 96 is electrically connected to the inverter 41.
  • An inverter 41 provided as a second power conversion device that performs power conversion between any of the power storage device 42 and the inverter 40 and the rotor winding 30 includes a switching element and a diode (rectifier connected in reverse parallel to the switching element).
  • the DC power from the power storage device 42 is converted into alternating current (for example, three-phase alternating current) by the switching operation of the switching element, and the rotor is connected via the brush 96 and the slip ring 95. It is possible to supply each phase of the winding 30. Furthermore, the inverter 41 can also perform power conversion in a direction in which an alternating current flowing in each phase of the rotor winding 30 is converted into a direct current. At that time, AC power of the rotor winding 30 is extracted by the slip ring 95 and the brush 96, and the extracted AC power is converted to DC by the inverter 41.
  • alternating current for example, three-phase alternating current
  • the electric power converted into direct current by the inverter 41 can be supplied to each phase of the stator winding 20 after being converted into alternating current by the inverter 40. That is, the inverter 40 can convert either (at least one) of the DC power from the inverter 41 and the DC power from the power storage device 42 into AC and supply it to each phase of the stator winding 20. In addition, the power converted into direct current by the inverter 41 can be recovered by the power storage device 42. Thus, the inverter 41 can perform bidirectional power conversion between any of the power storage device 42 and the inverter 40 and the rotor winding 30.
  • the electronic control unit 50 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port.
  • the electronic control unit 50 controls the switching operation of the switching element of the inverter 40 and controls the power conversion in the inverter 40, thereby controlling the alternating current flowing in each phase of the stator winding 20, and switching the switching element of the inverter 41.
  • the AC current flowing in each phase of the rotor winding 30 is controlled by controlling the power conversion in the inverter 41 by controlling the switching operation.
  • the electronic control unit 50 also controls the operating state of the engine 36 and the speed ratio of the transmission 44.
  • the stator winding 20 When a three-phase alternating current flows through the three-phase stator winding 20 by the switching operation of the inverter 40, the stator winding 20 generates a rotating magnetic field that rotates in the circumferential direction of the stator, and a magnetic flux generated by the current of the stator winding 20 is generated. It acts on the output side rotor 18. Accordingly, an electromagnetic interaction (attraction and repulsion) between the rotating magnetic field generated by the alternating current of the stator winding 20 and the field magnetic flux generated by the permanent magnet 33 flowing between the outer peripheral surface 62 and the side surfaces 63 and 64 of the soft magnetic material 53. By the action), the torque Tout can be applied between the stator 16 and the output side rotor 18, and the output side rotor 18 can be rotationally driven.
  • the electric power supplied from the power storage device 42 to the stator winding 20 via the inverter 40 can be converted into the power (mechanical power) of the output-side rotor 18, and the stator 16 and the output-side rotor 18 are connected to the synchronous motor ( PM motor part). Furthermore, it is possible to convert the power of the output side rotor 18 into the electric power of the stator winding 20 and collect it in the power storage device 42 via the inverter 40.
  • the electronic control unit 50 controls the torque (PM motor torque) T acting between the stator 16 and the output side rotor 18 by controlling the amplitude and phase angle of the alternating current flowing through the stator winding 20 by the switching operation of the inverter 40, for example. out can be controlled.
  • an induced electromotive force is generated in the rotor winding 30 as the input side rotor 28 rotates relative to the output side rotor 18 to cause a rotation difference between the input side rotor 28 and the output side rotor 18.
  • a rotating magnetic field is generated when an induced current (alternating current) flows through the rotor winding 30 due to the induced electromotive force, and a magnetic flux generated by the current of the rotor winding 30 acts on the output-side rotor 18.
  • an electromagnetic interaction between the rotating magnetic field generated by the induced current of the rotor winding 30 and the field magnetic flux generated by the permanent magnet 33 flowing between the inner peripheral surface 61 and the side surfaces 63 and 64 of the soft magnetic material 53 causes an input side rotor 28 and the torque T in can exert between the output side rotor 18, the output side rotor 18 can be rotated. Therefore, power (mechanical power) can be transmitted between the input side rotor 28 and the output side rotor 18, and the input side rotor 28 and the output side rotor 18 can function as an induction electromagnetic coupling unit.
  • the electronic control unit 50 When generating the torque (electromagnetic coupling torque) T in between the input side rotor 28 and the output side rotor 18 by the induced current in the rotor windings 30, the electronic control unit 50, an induced current flows through the rotor winding 30 The switching operation of the inverter 41 is performed so as to allow this. In that case, the electronic control unit 50 controls the alternating current flowing through the rotor winding 30 by the switching operation of the inverter 41, thereby causing an electromagnetic coupling torque T in acting between the input side rotor 28 and the output side rotor 18. Can be controlled.
  • the electronic control unit 50 maintains the switching element of the inverter 41 in the OFF state and stops the switching operation, so that the induced current does not flow through the rotor winding 30 and the input side rotor 28 and the output side rotor 18 are not connected. Torque T in stops working.
  • the power of the engine 36 is transmitted to the input side rotor 28, and the input side rotor 28 is rotationally driven in the engine rotation direction.
  • the rotational speed of the input side rotor 28 becomes higher than the rotational speed of the output side rotor 18, an induced electromotive force is generated in the rotor winding 30.
  • the electronic control unit 50 performs the switching operation of the inverter 41 so as to allow the induced current to flow through the rotor winding 30.
  • electromagnetic coupling torque Tin in the engine rotation direction acts on the output-side rotor 18 from the input-side rotor 28. Driven in the direction of engine rotation.
  • the power from the engine 36 transmitted to the input side rotor 28 is transmitted to the output side rotor 18 by electromagnetic coupling between the rotor winding 30 of the input side rotor 28 and the permanent magnet 33 of the output side rotor 18.
  • the power transmitted to the output side rotor 18 is transmitted to the drive shaft 37 (wheels 38) after being shifted by the transmission 44, and used for forward driving of the load such as forward drive of the vehicle. Therefore, the wheel 38 can be rotationally driven in the forward direction using the power of the engine 36, and the vehicle can be driven in the forward direction. Further, since the rotation difference between the input side rotor 28 and the output side rotor 18 can be allowed, the engine 36 does not stall even if the rotation of the wheels 38 is stopped. Therefore, the rotating electrical machine 10 can function as a starting device, and there is no need to separately provide a starting device such as a friction clutch or a torque converter.
  • AC power generated in the rotor winding 30 is taken out via the slip ring 95 and the brush 96.
  • the extracted AC power is converted into DC by the inverter 41.
  • the DC power from the inverter 41 is converted into AC by the inverter 40 and then supplied to the stator winding 20, whereby an AC current flows through the stator winding 20 and rotates to the stator 16.
  • a magnetic field is formed.
  • the torque T out in the engine rotation direction can be applied from the stator 16 to the output side rotor 18 in response to the magnetic flux generated by the current of the stator winding 20 acting on the output side rotor 18.
  • a torque amplification function for amplifying the torque of the output side rotor 18 in the engine rotation direction can be realized. It is also possible to collect DC power from the inverter 41 in the power storage device 42.
  • the wheel 38 is rotated in the normal rotation direction using the power of the engine 36, and the stator winding 20.
  • the rotational drive of the wheel 38 in the forward rotation direction can be assisted by the power of the output-side rotor 18 generated using the power supplied to the wheel.
  • the electronic control unit 50 controls the switching operation of the inverter 40 so that power is recovered from the stator winding 20 to the power storage device 42, so that the load power is transmitted to the stator winding 20 and the permanent magnet.
  • the electric power of the stator winding 20 can be converted by the electromagnetic coupling with 33 and recovered in the power storage device 42.
  • the electronic control unit 50 is connected to the inverter 40.
  • the electronic control unit 50 controls the switching operation of the inverter 40 so that the DC power from the power storage device 42 is converted into AC and supplied to the stator winding 20, thereby supplying power to the stator winding 20.
  • the drive shaft 37 is rotationally driven.
  • the wheels 38 can be rotationally driven by supplying power to the stator winding 20.
  • the electronic control unit 50 converts the DC power from the power storage device 42 into AC and supplies it to the rotor winding 30 via the brush 96 and the slip ring 95.
  • a torque Tin in the engine rotation direction is applied from the output side rotor 18 to the input side rotor 28 by the alternating current of the rotor winding 30. Thereby, the cranking of the engine 36 is performed.
  • Is the d-axis (magnetic flux axis), and the position shifted by 90 ° in electrical angle from the d-axis (the rotor circumferential end position of the outer peripheral surface 62) is the q-axis (torque axis).
  • the stator winding 20 for maximizing the d-axis magnetic flux passing through the rotor circumferential center position (minimizing the q-axis magnetic flux passing through the rotor circumferential end position).
  • the current of the stator winding 20 for maximizing the q-axis magnetic flux passing through the rotor circumferential end position (minimizing the d-axis magnetic flux passing through the rotor circumferential center position) is the q-axis current.
  • the direction in which the magnetomotive force by the permanent magnet 33 acts on the input side rotor 28 is taken as the d-axis, and the position shifted from the d-axis by an electrical angle of 90 ° (rotor circumferential end position of the inner peripheral surface 61) is taken as the q-axis.
  • the rotor winding 30 for maximizing the d-axis magnetic flux passing through the rotor circumferential center position (minimizing the q-axis magnetic flux passing through the rotor circumferential end position).
  • Current in the rotor winding 30 for maximizing the q-axis magnetic flux passing through the rotor circumferential end position (minimizing the d-axis magnetic flux passing through the rotor circumferential center position) Let it be current.
  • FIG. 5 shows the flow of the d-axis magnetic flux when the d-axis current flows through the rotor winding 30.
  • the d-axis magnetic flux due to the d-axis current of the rotor winding 30 acts on the inner peripheral surface 61-1 of the soft magnetic material 53-1 from the input side rotor 28 (tooth 52a), and soft
  • the magnetic material 53-1 flows from the inner peripheral surface 61-1 to the outer peripheral surface 62-1, and acts on the stator 16 (the teeth 51a) to interlink with the stator winding 20.
  • the d-axis magnetic flux flowing through the stator 16 acts on the outer peripheral surface 62-2 of the soft magnetic material 53-2 from the teeth 51a, and the soft magnetic material 53-2 moves from the outer peripheral surface 62-2 to the inner peripheral surface 61-2.
  • the flow returns to the input side rotor 28 (tooth 52a).
  • the d-axis magnetic flux due to the d-axis current of the rotor winding 30 behaves in the opposite direction to the field magnetic flux generated by the permanent magnet 33 for the input side rotor 28 and is permanent for the stator 16. It behaves in the same direction as the field magnetic flux generated by the magnet 33.
  • the field magnet acting on the stator 16 by the permanent magnet 33 is generated by generating the d-axis flux by the d-axis current of the rotor winding 30 so as to weaken the field flux acting on the input side rotor 28 by the permanent magnet 33. Magnetic flux can be strengthened.
  • the field magnet acting on the stator 16 by the permanent magnet 33 is generated by generating the d-axis flux by the d-axis current of the rotor winding 30 so that the field flux acting on the input side rotor 28 by the permanent magnet 33 is strengthened. Magnetic flux can be weakened.
  • the d-axis magnetic flux due to the d-axis current of the rotor winding 30 flows between the inner peripheral surface 61 and the outer peripheral surface 62 of the soft magnetic material 53 and acts on the stator 16, thereby causing a chain to the stator winding 20. Affects the magnetic flux.
  • the flow of the q-axis magnetic flux when the q-axis current flows through the rotor winding 30 is shown in FIG.
  • the q-axis magnetic flux due to the q-axis current of the rotor winding 30 acts on the inner peripheral surface 61-1 of the soft magnetic material 53-1, from the input side rotor 28 (tooth 52a), and the soft magnetic material. It flows through 53-1.
  • the q-axis magnetic flux acting on the stator 16 (the teeth 51a) from the outer peripheral surface 62-2 of the soft magnetic material 53-1 is small, and the q-axis magnetic flux flowing through the soft magnetic material 53-1 is small.
  • FIG. 7 shows the flow of the d-axis magnetic flux when the d-axis current flows through the stator winding 20.
  • the d-axis magnetic flux due to the d-axis current of the stator winding 20 acts on the outer peripheral surface 62-1 of the soft magnetic material 53-1, from the stator 16 (tooth 51a), and the soft magnetic material 53 -1 flows from the outer peripheral surface 62-1 to the inner peripheral surface 61-1, and acts on the input side rotor 28 (tooth 52a) to interlink with the rotor winding 30.
  • the d-axis magnetic flux flowing through the input side rotor 28 acts on the inner peripheral surface 61-2 of the soft magnetic material 53-2 from the teeth 52a, and the soft magnetic material 53-2 is changed from the inner peripheral surface 61-2 to the outer peripheral surface 62. -2 to return to the stator 16 (the teeth 51a).
  • the d-axis magnetic flux due to the d-axis current of the stator winding 20 behaves in the opposite direction to the field magnetic flux generated by the permanent magnet 33 for the stator 16 and is permanent for the input-side rotor 28. It behaves in the same direction as the field magnetic flux generated by the magnet 33.
  • the field magnet acting on the input-side rotor 28 by the permanent magnet 33 is generated by generating the d-axis flux by the d-axis current of the stator winding 20 so as to strengthen the field flux acting on the stator 16 by the permanent magnet 33. Magnetic flux can be weakened.
  • the d-axis magnetic flux due to the d-axis current of the stator winding 20 flows between the outer peripheral surface 62 and the inner peripheral surface 61 of the soft magnetic material 53 and acts on the input-side rotor 28, so that the rotor winding 30. Affects the flux linkage.
  • the flow of the q-axis magnetic flux when the q-axis current flows through the stator winding 20 is shown in FIG.
  • the q-axis magnetic flux due to the q-axis current of the stator winding 20 acts on the outer peripheral surface 62-1 of the soft magnetic material 53-1, from the stator 16 (tooth 51a), and the soft magnetic material 53-1.
  • the q-axis magnetic flux acting on the input-side rotor 28 (tooth 52a) from the inner peripheral surface 61-1 of the soft magnetic material 53-1 is small, and the q flowing through the soft magnetic material 53-1.
  • the d-axis magnetic flux component due to the d-axis current component of the rotor winding 30 is the field magnetic flux generated by the permanent magnet 33 acting on the input-side rotor 28. While weakening, the field magnetic flux by the permanent magnet 33 which acts on the stator 16 can be strengthened. That is, the d-axis magnetic flux component due to the d-axis current component of the rotor winding 30 can be used as the field-weakening magnetic flux of the rotor winding 30 and the field-enhancing magnetic flux of the stator winding 20.
  • This strong field magnetic flux interacts with the q-axis current component of the stator winding 20, so that additional torque is generated between the stator 16 and the output-side rotor 18 in addition to the magnet torque and reluctance torque. can get.
  • the field weakening of the rotor winding 30 itself is used, so that the counter electromotive voltage of the rotor winding 30 is suppressed and the stator 16 and the output-side rotor 18 are controlled.
  • the torque T out can be amplified.
  • the d-axis magnetic flux component due to the d-axis current component of the stator winding 20 weakens the field magnetic flux due to the permanent magnet 33 acting on the stator 16.
  • the field magnetic flux by the permanent magnet 33 acting on the input side rotor 28 can be increased.
  • the d-axis magnetic flux component due to the d-axis current component of the stator winding 20 can be used as the field weakening magnetic flux of the stator winding 20 and the strong field magnetic flux of the rotor winding 30.
  • This strong field magnetic flux interacts with the q-axis current component of the rotor winding 30, whereby additional torque is generated between the input side rotor 28 and the output side rotor 18, and a torque amplification effect is obtained.
  • the field weakening of the stator winding 20 itself is used, and therefore, the input side rotor 28 and the output side rotor 18 are suppressed while suppressing the back electromotive voltage of the stator winding 20.
  • the torque T in between can be amplified.
  • the torque T in between the input side rotor 28 and the output side rotor 18 and the torque T out between the stator 16 and the output side rotor 18 are mutually reduced while suppressing the back electromotive voltage of the rotor winding 30 and the stator winding 20.
  • a synergistic effect can be obtained.
  • the amount of permanent magnets 33 can be reduced.
  • the d-axis magnetic flux component due to the d-axis current component of the rotor winding 30 causes the field magnetic flux generated by the permanent magnet 33 acting on the input-side rotor 28. While strengthening, the field magnetic flux by the permanent magnet 33 which acts on the stator 16 can also be weakened. Thus, while suppressing the back EMF of the stator winding 20, it is possible to amplify the torque T in between the output side rotor 18 and the input side rotor 28.
  • the d-axis magnetic flux component due to the d-axis current component of the stator winding 20 strengthens the field magnetic flux due to the permanent magnet 33 acting on the stator 16 and the field magnetic flux due to the permanent magnet 33 acting on the input-side rotor 28. It can also be weakened.
  • the torque T out between the stator 16 and the output side rotor 18 can be amplified while suppressing the back electromotive voltage of the rotor winding 30.
  • the magnetic flux due to the current of the rotor winding 30 and the magnetic flux due to the current of the stator winding 20 interfere with each other, and the interlinkage magnetic flux to the stator winding 20 due to the current of the rotor winding 30. Can be adjusted, and the flux linkage to the rotor winding 30 can be adjusted by the current of the stator winding 20.
  • I out current value not using magnetic interference
  • FIG. 10 shows an example of a functional block diagram of the electronic control unit 50 for controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 of the rotating electrical machine 10.
  • the coupling torque command value calculation unit 135 acts between the input-side rotor 28 and the output-side rotor 18 based on, for example, the accelerator opening A (required driving force of the wheel 38) and the vehicle speed V (rotational speed of the wheel 38).
  • a command value T in_ref of the electromagnetic coupling torque to be calculated is calculated.
  • the MG torque command value calculation unit 155 is based on, for example, the accelerator opening A (the requested driving force of the wheel 38) and the electromagnetic coupling torque command value T in_ref calculated by the coupling torque command value calculation unit 135. A command value T out_ref of the MG torque acting between the rotor 16 and the output side rotor 18 is calculated.
  • the current command value setting unit 136 is based on the electromagnetic coupling torque command value T in_ref calculated by the coupling torque command value calculating unit 135 and the MG torque command value T out_ref calculated by the MG torque command value calculating unit 155. Te, set the d-axis current command value I In_d_ref and q-axis current command value I In_q_ref the rotor windings 30, and a d-axis current command value I Out_d_ref and q-axis current command value I Out_q_ref stator windings 20.
  • the model storage unit 172 stores a model formula (physical formula) for calculating the linkage flux ⁇ in of the rotor winding 30 and the linkage flux ⁇ out of the stator winding 20.
  • a model formula physical formula for calculating the linkage flux ⁇ in of the rotor winding 30 and the linkage flux ⁇ out of the stator winding 20.
  • the interlinkage magnetic flux ⁇ out of the stator winding 20 is also a function of the current I in of the rotor winding 30 and the current I out of the stator winding 20. Therefore, the model storage unit 172, magnetic interference model representing the relationship between flux linkage [Phi in the rotor windings 30 with respect to the current I out of the current I in and the stator windings 20 of the rotor windings 30 (first magnetic interference model) And a magnetic interference model (second magnetic interference model) representing the relationship of the interlinkage magnetic flux ⁇ out of the stator winding 20 with respect to the current I in of the rotor winding 30 and the current I out of the stator winding 20.
  • first magnetic interference model representing the relationship between flux linkage [Phi in the rotor windings 30 with respect to the current I out of the current I in and the stator windings 20 of the rotor windings 30
  • second magnetic interference model representing the relationship of the interlinkage magnetic flux ⁇ out of the stator winding
  • the current command value setting unit 136 reads the first and second magnetic interference models stored in the model storage unit 172, satisfies the set constraints, and optimizes the evaluation function f related to the performance of the rotating electrical machine 10. of the rotor winding 30 of the current command value I in_d_ref, I in_q_ref and stator windings 20 of the current command value I out_d_ref, the I out_q_ref, is calculated using the first and second magnetic interference model.
  • the constraint condition here includes a condition using at least one of the current I in of the rotor winding 30 and the current I out of the stator winding 20, and the evaluation function f here is the current of the rotor winding 30.
  • the temperature ⁇ in of the rotor winding 30 is detected by the rotor winding temperature sensor 81, and the temperature ⁇ out of the stator winding 20 is detected by the stator winding temperature sensor 82.
  • the rotor winding current control unit 140 includes a d-axis current command value I in_d_ref and a q-axis current command value I in which the d-axis current I in_d and the q-axis current I in_q of the rotor winding 30 are set by the current command value setting unit 136.
  • the switching operation of the inverter 41 (power conversion in the inverter 41) is controlled so as to match each of in_q_ref .
  • the stator winding current control unit 160 includes a d-axis current command value I out_d_ref and a q-axis current command value I in which the d-axis current I out_d and the q-axis current I out_q of the stator winding 20 are set by the current command value setting unit 136.
  • the switching operation of the inverter 40 (power conversion in the inverter 40) is controlled so as to match each out_q_ref .
  • the electromagnetic coupling torque T in between the input side rotor 28 and the output side rotor 18 is controlled to coincide with the torque command value T in_ref
  • the MG torque T out between the stator 16 and the output side rotor 18 is Control is performed so as to coincide with the torque command value Tout_ref .
  • the electromagnetic coupling torque T in between the input side rotor 28 and the output side rotor 18 is expressed by the following equation (1), and the MG torque T out between the stator 16 and the output side rotor 18 is 2)
  • the voltage V in of the rotor winding 30 is expressed by the following equation (3)
  • the voltage V out of the stator winding 20 is expressed by the following equation (4).
  • the current I in is expressed by the following equation (5)
  • the current I out of the stator winding 20 is expressed by the following equation (6).
  • the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 is expressed by the following equation (7).
  • I IN - D is d-axis current of the rotor winding 30, I in_q the q-axis current of the rotor winding 30, I OUT_D the d-axis current of the stator windings 20, I OUT_Q the stator q-axis current in the winding 20, [Phi iN - d is d-axis flux linkage of the rotor windings 30, ⁇ in_q the q-axis flux linkage of the rotor windings 30, [Phi OUT_D the d-axis flux linkage of the stator windings 20, [Phi OUT_Q the q-axis flux linkage of the stator windings 20, induced by R in the phase resistance of the rotor winding 30, the phase resistance R out the stator windings 20, P in is the input side rotor 28 and the output side rotor 18 the number of poles of electromagnetic coupling portions, P out is the number of poles of the PM motor with
  • the d-axis linkage magnetic flux ⁇ in_d (model relating to the d-axis linkage flux) of the rotor winding 30 is a function of I in_d , I in_q , I out_d , I out_q (8 ) Expression.
  • C d2 is a coefficient indicating the degree of d-axis magnetic interference
  • fm′2 is the d-axis magnetomotive force due to the magnetomotive force of the permanent magnet 33.
  • I in_d -C d2 * I out_d -f m'2 is, I IN - D and set the I OUT_D ratio 1: model equation relating the synthesized d JikuOkoshi magnetic force C d2, the magnetomotive force due to I IN - D and I The sum of magnetomotive force of d axis acting on the input side rotor 28 in consideration of magnetic interference with the magnetomotive force due to out_d .
  • ) represents the d-axis inductance of the induction electromagnetic coupling unit when there is no load ( Iin_d 0).
  • the numerator on the right side of the equation (8) corresponds to the product of the sum of the d-axis magnetomotive force and the d-axis inductance of the induction electromagnetic coupling unit when there is no load, and no magnetic saturation occurs in the d-axis magnetic circuit.
  • in represents a d-axis flux linkage of the rotor winding 30 in consideration of the magnetic interference between the magnetic flux by the magnetic flux and I OUT_D by I iN - d.
  • C d1 is a coefficient representing the degree of magnetic interference on the d axis
  • f m′1 is the d axis magnetomotive force due to the magnetomotive force of the permanent magnet 33
  • kdd is the induction electromagnetic coupling unit. It is an inherent constant, and
  • M dd represents the saturation coefficient of the d-axis magnetic circuit
  • M ddd represents the rate of change due to I out_d of the saturation coefficient of the d-axis magnetic circuit
  • ) represents the d axis according to I out_d. This corresponds to a coefficient representing the degree of magnetic saturation.
  • C q1 is a coefficient representing the degree of magnetic interference of the q-axis
  • Kdq is induced electromagnetic coupling portions specific constants
  • is caused by the magnetomotive force and I OUT_Q by I In_q It represents the magnitude of the q-axis magnetomotive force sum in consideration of magnetic interference with the magnetic force.
  • M dq represents the saturation coefficient of the q-axis magnetic circuit
  • M dqd represents the rate of change due to I out_d of the saturation coefficient of the q-axis magnetic circuit
  • ) represents the q-axis according to I out_d
  • kdq is a model formula representing the degree of change in d-axis flux linkage due to magnetic saturation caused by q-axis magnetomotive force.
  • equation (8) represents the d-axis flux linkage of the rotor winding 30 in consideration of magnetic interference between the magnetic flux due to I in_d and the magnetic flux due to I out_d when magnetic saturation occurs in the d-axis magnetic circuit. .
  • fm′1 in the denominator on the right side of the equation (8) changes the d-axis magnetomotive force due to the magnetic saturation of the d-axis magnetic circuit due to the magnetic flux caused by the q-axis current
  • the q-axis currents I in_q and I out_q It can be expressed by the following equation (9) which is a function.
  • fm′2 in the numerator on the right side of the equation (8) can also be represented by the following equation (10) that is a function of the q-axis currents I in_q and I out_q .
  • C 11 , C 12 , C 13 , C 21 , C 22 , and C 23 are coefficients representing the degree of magnetic interference
  • f m′1 and f m′2 are q This is an exponential function of (I in — q + C q1 * I out — q ) representing the total magnetomotive force of the shaft.
  • the q-axis linkage magnetic flux ⁇ in_q (model relating to the q-axis linkage flux) of the rotor winding 30 is a function of I in_d , I in_q , I out_d , I out_q as follows: It can be expressed by equation (11).
  • f M'3 is the magnetomotive force by the I OUT_Q represents magnetic interference degree in magnetomotive force due to I In_q, representing the influence of the magnetomotive force of the permanent magnet 33.
  • (I in_q -I out_q * f m'3 ) is a I In_q and I OUT_Q preset ratio 1: model equation relating to q JikuOkoshi force synthesized in f M'3, magnetomotive force and I OUT_Q by I In_q
  • L qq represents the rate of change due to I out_q of the q-axis inductance of the induction electromagnetic coupling unit
  • in represents a q-axis flux linkage of the rotor winding 30 in consideration of the magnetic interference between the magnetic flux by the magnetic flux and I OUT_Q by I in_q.
  • C d3 is a coefficient indicating the degree of magnetic interference of the d axis
  • f 0 is the d axis magnetomotive force due to the magnetomotive force of the permanent magnet 33
  • kqd is specific to the induction electromagnetic coupling unit. It is a constant, and
  • M qd represents the saturation coefficient of the d-axis magnetic circuit
  • M qdq represents the rate of change of the saturation coefficient of the d-axis magnetic circuit due to I out_q
  • ) represents the d axis according to I out_q This corresponds to a coefficient representing the degree of magnetic saturation.
  • C q3 and C q30 are coefficients indicating the degree of magnetic interference on the q axis
  • kqq is a constant specific to the induction electromagnetic coupling unit
  • Represents the size of the total magnetomotive force of the d-axis.
  • M qq represents the saturation coefficient of the q-axis magnetic circuit
  • M qqq represents the rate of change of the saturation coefficient of the q-axis magnetic circuit due to I out_q
  • ) represents the q axis according to I out_q This corresponds to a coefficient representing the degree of magnetic saturation.
  • Equation (11) represents the q-axis interlinkage magnetic flux of the rotor winding 30 in consideration of magnetic interference between the magnetic flux due to I in_q and the magnetic flux due to I out_q when magnetic saturation occurs in the q-axis magnetic circuit. .
  • f 0 in the denominator on the right side of the equation (11) is a function of the q-axis currents I in_q and I out_q because the d-axis magnetomotive force changes due to magnetic saturation of the d-axis magnetic circuit due to the magnetic flux caused by the q-axis current. It can be expressed by the following formula (12).
  • C o10 , C o1 , C o20 , C o2 , C o30 , C o3 , C q40 , and C q4 are coefficients representing the degree of magnetic interference.
  • the d-axis linkage magnetic flux ⁇ out_d (model relating to the d-axis linkage flux) of the stator winding 20 is a function of I in_d , I in_q , I out_d , I out_q (14).
  • L dd represents the rate of change of the d-axis inductance of the PM motor unit due to I in_d
  • kdd is a constant specific to the PM motor unit
  • represents the magnitude of the sum of magnetomotive forces of the d axis.
  • M dd represents the saturation coefficient of the d-axis magnetic circuit
  • M ddd represents the rate of change of the saturation coefficient of the d-axis magnetic circuit due to I in_d
  • ) represents the d axis according to I in_d This corresponds to a coefficient representing the degree of magnetic saturation.
  • Kdq is PM motor unit specific constants
  • is the magnetomotive force sum of q-axis in consideration of the magnetic interference between the magnetomotive force due to the magnetomotive force and I In_q by I OUT_Q size
  • M dq represents the saturation coefficient of the q-axis magnetic circuit
  • M dqd represents the rate of change due to I in_d of the saturation coefficient of the q-axis magnetic circuit
  • ) represents the q axis according to I in_d This corresponds to a coefficient representing the degree of magnetic saturation.
  • kdq is a model expression representing the degree of change in d-axis flux linkage due to magnetic saturation caused by q-axis magnetomotive force. This corresponds to the d-axis magnetic saturation due to the q-axis magnetomotive force.
  • the denominator on the right side of equation (14) is a model equation representing the degree of change in d-axis flux linkage due to magnetic saturation, and corresponds to the d-axis magnetic saturation due to d-axis and q-axis magnetomotive force.
  • equation (14) represents the d-axis flux linkage of the stator winding 20 in consideration of magnetic interference between the magnetic flux due to Iout_d and the magnetic flux due to Iin_d when magnetic saturation occurs in the d-axis magnetic circuit. .
  • f M'1 on the right side of the denominator of (14) since d JikuOkoshi force is changed by the magnetic saturation of the d-axis magnetic circuit according to the q-axis current due to the magnetic flux, the q-axis current I In_q, the I OUT_Q It can be expressed by the following equation (15) which is a function.
  • fm′2 in the numerator on the right side of the equation (14) can also be expressed by the following equation (16) that is a function of the q-axis currents I in_q and I out_q .
  • f m′1 and f m′2 are functions of (I out_q + C q1 * I in_q ) representing the total magnetomotive force of the q axis.
  • the q-axis linkage magnetic flux ⁇ out_q (model relating to the q-axis linkage flux) of the stator winding 20 is a function of I in_d , I in_q , I out_d , I out_q (17).
  • f M'3 is the magnetomotive force by the I In_q represents magnetic interference degree in magnetomotive force due to I OUT_Q, representing the influence of the magnetomotive force of the permanent magnet 33.
  • I out_q -I in_q * f m'3 is the I OUT_Q and I In_q preset ratio 1: model equation relating to q JikuOkoshi force synthesized in f M'3, magnetomotive force and I In_q by I OUT_Q
  • L qq represents the rate of change of the q-axis inductance of the PM motor unit due to I in_q
  • the numerator on the right side of the equation (17) indicates that the q-axis linkage of the stator winding 20 takes into account the magnetic interference between the magnetic flux due to Iout_q and the magnetic flux due to Iin_q when no magnetic saturation occurs in the q-axis magnetic circuit. Represents magnetic flux.
  • kqd is a constant specific to the PM motor unit
  • represents the magnitude of the magnetomotive force sum of the d axis.
  • M qd represents the saturation coefficient of the d-axis magnetic circuit
  • M qdq represents the rate of change due to I in_q of the saturation coefficient of the d-axis magnetic circuit
  • ) represents the d axis according to I in_q This corresponds to a coefficient representing the degree of magnetic saturation.
  • M qq represents the saturation coefficient of the q-axis magnetic circuit
  • M qqq represents the rate of change due to I in_q of the saturation coefficient of the q-axis magnetic circuit
  • ) represents the q axis according to I in_q This corresponds to a coefficient representing the degree of magnetic saturation.
  • Equation (17) represents the degree of change in q-axis flux linkage due to magnetic saturation, and corresponds to the magnetic saturation of the q-axis due to the d-axis and q-axis magnetomotive force.
  • equation (17) represents the q-axis interlinkage magnetic flux of the stator winding 20 in consideration of magnetic interference between the magnetic flux due to Iout_q and the magnetic flux due to Iin_q when magnetic saturation occurs in the q-axis magnetic circuit. .
  • f 0 in the denominator on the right side of the equation (17) is a function of the q-axis currents I in_q and I out_q because the d-axis magnetomotive force changes due to magnetic saturation of the d-axis magnetic circuit due to the magnetic flux caused by the q-axis current. It can be expressed by the following equation (18).
  • fm′3 in the numerator on the right side of the equation (17) changes the q-axis magnetomotive force due to the magnetic saturation of the q-axis magnetic circuit due to the magnetic flux caused by the d-axis current, so that the d-axis currents I in_d and I out_d It can be expressed by the following equation (19) which is a function.
  • FIG. 11 An example of processing executed by the electronic control unit 50 is shown in the flowchart of FIG.
  • the process of the flowchart of FIG. 11 is repeatedly executed at predetermined time intervals, and the initial value of ⁇ can be set to 0.5, for example.
  • step S101 a combination of torque command values (T in_ref , T out_ref ) is set.
  • T in can be obtained by substituting ⁇ in_d in Equation (8) and ⁇ in_q (first magnetic interference model) in Equation (11) into Equation (1)
  • T out can be obtained by substituting ⁇ out_d
  • ( 17) is obtained by substituting ⁇ out — q (second magnetic interference model) in equation (2) into equation (2)
  • step S103 currents (I in_d , I in_q , I out_d) that minimize the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 within a range that satisfies the constraint conditions set in step S102. , I out_q ) is calculated by the current command value setting unit 136.
  • the evaluation function f represents the heat generation amount R in * (I in — d 2 + I in — q 2 ) due to copper loss of the rotor winding 30 and the heat generation amount R out * (I out — d 2 + I out — q 2 ) due to copper loss of the stator winding 20 as ⁇ .
  • the current command value setting unit 136 repeats the process of calculating the value of the evaluation function f while changing the values of I in — d , I in — q , I out — d , and I out — q within a range that satisfies the constraint conditions, whereby the evaluation function f Are searched for a combination of currents (I in — d , I in — q , I out — d , I out — q ) that minimizes.
  • step S106 the current command value setting unit 136 determines whether e in > e out is satisfied. If e in > e out holds, the current command value setting unit 136 performs a process of decreasing the value of ⁇ in step S107. For example, the value of ⁇ is decreased by (e in ⁇ e out ) / e out . On the other hand, if e in > e out is not established, the current command value setting unit 136 performs a process of increasing the value of ⁇ in step S108. For example, the value of ⁇ is increased by (e out ⁇ e in ) / e out .
  • step S109 the calculated current in step S103 (I in_d, I in_q, I out_d, I out_q) combinations current command value (I in_d_ref, I in_q_ref, I out_d_ref, I out_q_ref) current command value set as the combination of Determined by the unit 136.
  • the current command values I in_d_ref and I in_q_ref of the rotor winding 30 calculated by the current command value setting unit 136 and the current command value I of the stator winding 20 The current I in of the rotor winding 30 and the current I out of the stator winding 20 are controlled based on out_d_ref and I out_q_ref , respectively.
  • the torques T in and T out follow the torque command values T in_ref and T out_ref , respectively, and the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 is minimized.
  • the current command value I In_d_ref determined by the current command value setting unit 136, I in_q_ref, I out_d_ref, as I Out_q_ref is necessarily current I IN - D to the evaluation function f is minimized, I in_q, I out_d, and I OUT_Q do not have to.
  • values that are slightly larger (or slightly smaller) than the currents I in_d , I in_q , I out_d , and I out_q that minimize the evaluation function f are set as the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref. Is also possible.
  • the temperature of the rotor winding 30 is changed.
  • the torques T in and T out can follow the torque command values T in_ref and T out_ref , respectively, while equalizing ⁇ in and the temperature ⁇ out of the stator winding 20.
  • the torques T in and T out are converted into torque by using magnetic interference between the magnetic flux due to the current I in of the rotor winding 30 and the magnetic flux due to the current I out of the stator winding 20.
  • a current command value (I in_d_ref ) that minimizes (or substantially minimizes) the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 from among an infinite number of combinations.
  • I in_q_ref , I out_d_ref , I out_q_ref ) can be selected using the first and second magnetic interference models.
  • I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref can be selected using the first and second magnetic interference models.
  • the evaluation function f among the rotor winding 30 and the stator winding 20, by increasing the weighting of the heat generation amount of the winding having a high temperature (decreasing the weighting of the heat generation amount of the winding having a low temperature). Therefore, it is possible to reduce the current distribution of the windings with high temperature (increase the distribution of the current of the windings with low temperature), and to reduce the temperature difference between the rotor winding 30 and the stator winding 20. As a result, it is possible to increase the time until either the temperature ⁇ in of the rotor winding 30 or the temperature ⁇ out of the stator winding 20 reaches the winding temperature upper limit value ⁇ limit. And the performance of the rotating electrical machine 10 can be improved.
  • torque T out is generated between the stator 16 and the output-side rotor 18.
  • the currents I in and I out of the rotor winding 30 and the stator winding 20 are reduced and the heat generation amount is reduced. For example, as shown by the solid line in FIG.
  • T in T in_ref
  • T out T out_ref
  • voltage V in limit of the rotor winding 30 (first limit value )
  • the condition that the voltage V out of the stator winding 20 is less than or equal to V in_limit , the condition that the voltage V out of the stator winding 20 is less than the limit value (second limit value) V out_limit , and the current I in of the rotor winding 30 is the limit value (third limit value) I in_limit less is conditional, and can be current I out of the stator winding 20 to add at least one or more limit values (fourth limit value) I out_limit less is conditional.
  • ⁇ out_d Equation (14)
  • ⁇ out_q second magnetic interference model
  • V in_limit and V out_limit are set to values smaller than the voltage of the power storage device 42, for example.
  • I in_limit is set to a value smaller than the capacity of the inverter 41, for example, and the limit value I out_limit is set to a value smaller than the capacity of the inverter 40, for example.
  • the rotor winding depends on the temperature ⁇ in of the rotor winding 30 and the temperature ⁇ out of the stator winding 20. It is also possible to change the phase resistance R in of 30 and the phase resistance R out of the stator winding 20 respectively.
  • the current command value setting unit 136 sets the phase resistance R in of the rotor winding 30 from the temperature ⁇ in of the rotor winding 30 detected by the rotor winding temperature sensor 81, and the stator winding temperature sensor 82 A phase resistance R out of the stator winding 20 is set from the detected temperature ⁇ out of the stator winding 20.
  • the value of the evaluation function f is calculated using the phase resistances R in and R out set from the temperatures ⁇ in and ⁇ out .
  • more evaluation function f which varies according to the temperature tau out temperature tau in and stator windings 20 of the rotor windings 30, representing a weighted heat value of the rotor windings 30 and the stator windings 20 It becomes possible to minimize with accuracy, and the current time rating of the rotating electrical machine 10 can be further extended.
  • the evaluation function f related to the performance of the rotating electrical machine 10 used in step S103 of the flowchart of FIG. 11 is not limited to the above-described one, and various functions can be used.
  • the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 can be expressed by the following equation (20).
  • Rc in is an equivalent iron loss resistance of the induction electromagnetic coupling part
  • Rc out is an equivalent iron loss resistance of the PM motor part.
  • ( ⁇ in ⁇ out ) 2 * ( ⁇ in — d 2 + ⁇ in — q 2 ) / Rc in represents the heat generation amount of the rotor winding 30 due to iron loss
  • ⁇ out 2 * ( ⁇ out — d 2 + ⁇ out — q 2 ) / Rc out represents the amount of heat generated by the stator winding 20 due to iron loss
  • the evaluation function f in the equation (20) is obtained by adding the heat generation amount of the rotor winding 30 due to copper loss and iron loss and the heat generation amount of the stator winding 20 due to copper loss and iron loss by weighting ⁇ : 1 ⁇ . It is expressed by a formula.
  • step S103 the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that minimize (or substantially minimize) the evaluation function f within the range that satisfies the constraint conditions are changed to the first and second magnetic fields .
  • the rotor winding due to copper loss and iron loss 30 and the amount of heat generated by the stator winding 20 can be suppressed. Furthermore, also in this evaluation function f, by changing the value of ⁇ in accordance with steps S104 to S108, among the rotor winding 30 and the stator winding 20, the weighting of the heat generation amount of the winding having a high temperature is increased. It is possible to reduce the current distribution of the high temperature winding.
  • the temperature difference between the rotor winding 30 and the stator winding 20 can be further reduced, and the temperature ⁇ in of the rotor winding 30 and the stator winding can be reduced.
  • the time until any of the temperature ⁇ out of the line 20 reaches the winding temperature upper limit value ⁇ limit can be further increased.
  • R in * (I in — d 2 + I in — q 2 ) represents the copper loss of the rotor winding
  • R out * (I out — d 2 + I out — q 2 ) represents the copper loss of the stator winding
  • ( ⁇ in ⁇ out ) 2 * ( ⁇ in — d 2 + ⁇ in — q 2 ) / Rc in represents the iron loss of the induction electromagnetic coupling unit
  • ⁇ out 2 * ( ⁇ out — d 2 + ⁇ out — q 2 ) / Rc out represents the PM motor.
  • the current command value setting unit 136 minimizes (or substantially minimizes) the current command value I that represents the total loss due to the copper loss and iron loss of the rotating electrical machine 10 within a range that satisfies the constraint conditions.
  • In_d_ref , Iin_q_ref , Iout_d_ref , and Iout_q_ref are calculated using the first and second magnetic interference models.
  • the power factor of the rotating electrical machine 10 can be improved, the total loss due to the copper loss and the iron loss of the rotating electrical machine 10 can be reduced, and the performance of the rotating electrical machine 10 can be improved.
  • phase resistance R of the rotor winding 30 depends on the temperature ⁇ in of the rotor winding 30 and the temperature ⁇ out of the stator winding 20. In and the phase resistance R out of the stator winding 20 can be changed.
  • the evaluation function f can be a function representing a weighted torque obtained by adding the torque T in and the torque T out with a predetermined weight.
  • the evaluation function f in that case can be expressed by the following equation (22).
  • W in and W out are weighting coefficients
  • the evaluation function f in Expression (22) is expressed by an expression in which the torque T in and the torque T out are added by weighting W in : W out. .
  • the evaluation function f is also a function of I.
  • the current command value setting unit 136 sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that maximize (or substantially maximize) the evaluation function f representing the weighted torque within a range that satisfies the constraint conditions. Calculation is performed using the first and second magnetic interference models. As a constraint condition at that time, for example, a condition of V in ⁇ V in_limit and V out ⁇ V out_limit can be set.
  • the algorithm for searching for the current that maximizes the evaluation function f can also be known in the art, and thus detailed description thereof is omitted.
  • the input side rotor 28 and the output side rotor 18 are controlled.
  • the torque T out that can be generated between the stator 16 and the output-side rotor 18 can be increased as compared with the case where the magnetic interference is not used while the torque T in between follows the torque command value T in_ref .
  • a condition of I out ⁇ I out_limit ⁇ (fifth limit value) can be used as a constraint condition.
  • is a parameter representing the current limit of the inverter 40.
  • the inverter 40 By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , for example, due to a failure of the inverter 40, the inverter 40 Even when it is necessary to limit the current, the torque T out that can be generated between the stator 16 and the output-side rotor 18 can be increased using magnetic interference.
  • I out ⁇ I out_limit ⁇ at least one condition of V in ⁇ V in_limit , V out ⁇ V out_limit , and I in ⁇ I in_limit can be added. is there.
  • V out ⁇ V out_limit a condition of V out ⁇ V out_limit, a condition of V in ⁇ V in_limit , a condition of V out ⁇ V out_limit, a condition of I in ⁇ I in_limit , and the like can be added.
  • a condition of I in ⁇ I in_limit ⁇ (sixth limit value) can be set.
  • is a parameter representing the current limit of the inverter 41.
  • the torque T in that can be generated between the input-side rotor 28 and the output-side rotor 18 can be increased using magnetic interference.
  • a constraint condition in addition to I in ⁇ I in_limit ⁇ , at least one condition of V in ⁇ V in_limit , V out ⁇ V out_limit , and I out ⁇ I out_limit can be added. is there.
  • a condition of V in ⁇ V in_limit, a condition of V in ⁇ V in_limit , a condition of V out ⁇ V out_limit, a condition of I out ⁇ I out_limit , etc. can be added.
  • maximum (or almost maximum) within a range that satisfies the constraint conditions. And using the second magnetic interference model. As a constraint condition at that time, for example, T in + T out T out_ref (third torque command value) can be set.
  • the torque T in + T of the output side rotor 18 is controlled.
  • the torque T out that can be generated between the input-side rotor 28 and the output-side rotor 18 can be increased while making the out follow the torque command value T in_ref as compared to the case where magnetic interference is not used.
  • within the range of the constraint condition of T in + T out T out_ref
  • the torque T in + T out (vehicle driving torque) of the output side rotor 18 is maintained at T out_ref , and the engine 36 is closed .
  • the ranking torque T in can be increased.
  • V in ⁇ V in_limit V out ⁇ V out_limit
  • I in ⁇ I in_limit at least one or more conditions of I out ⁇ I out_limit
  • a condition of V in ⁇ V in_limit a condition of I in ⁇ I in_limit, a condition of V in ⁇ V in_limit , and I in ⁇ I in_limit
  • conditions of V in ⁇ V in_limit and V out ⁇ V out_limit and conditions of I in ⁇ I in_limit and I out ⁇ I out_limit .
  • the processing for calculating the combination of the current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) described above is executed by the information processing device 70 as shown in the functional block diagram of FIG. 14, for example. It is also possible.
  • the information processing apparatus 70 can be configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port.
  • the current command value calculation unit 174 reads the first and second magnetic interference models stored in the model storage unit 172, and based on the set constraint condition and the evaluation function f, the rotor winding 30.
  • the current command value I in_d_ref, I in_q_ref and stator windings 20 of the current command value I out_d_ref, the I out_q_ref, is calculated using the first and second magnetic interference model.
  • the combination of the current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) calculated by the information processing device 70 (current command value calculation unit 174) is stored in the current characteristic storage unit 137 of the electronic control unit 50. .
  • the combination of the current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) is associated with the torque command value T in_ref. It is stored in the current characteristic storage unit 137.
  • a combination of current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) is a torque command value T It is stored in the current characteristic storage unit 137 in association with out_ref .
  • the current command value setting unit 136 reads and sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref calculated by the information processing device 70 and stored in the current characteristic storage unit 137.
  • the current command values I in_d_ref and I in_q_ref of the rotor winding 30 set by the current command value setting unit 136 and the current command of the stator winding 20 Based on the values I out_d_ref and I out_q_ref , the current I in of the rotor winding 30 and the current I out of the stator winding 20 are controlled.
  • the output side The torque of the rotor 18 (vehicle driving torque) can be increased.
  • the torque T in can be increased by controlling the currents I in and I out based on the values I in_d_ref , I in_q_ref , I out_d_ref and I out_q_ref .
  • the torque command value T Out_ref By controlling the currents I in , I out based on the relationship between the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , the torque of the output side rotor 18 (vehicle driving torque) is maintained at T out_ref . while, it is possible to increase the cranking torque T in the engine 36.
  • first and second magnetic interference models are not limited to those described above, and various modifications and simplifications are possible.
  • the exponential function part can be approximated by a polynomial.
  • f M'1 as d JikuOkoshi force by magnetomotive force of the permanent magnet 33 is intended to be constant, f M'2, it is also possible to simplify the f 0 to a constant, the magnetomotive force due to I OUT_Q is I it is also possible to simplify the f M'3 constant as magnetic interference degree is constant magnetomotive force by In_q.
  • the magnetic interaction magnitude at q axis magnetomotive force by magnetomotive force and I OUT_Q by I In_q is, compared to the magnetic interference degree of at d-axis magnetomotive force by magnetomotive force and I OUT_D by I IN - D
  • C q1 0 in the denominator of the right side of equation (8)
  • first and second magnetic interference models are not limited to the mathematical model described above, and each interlinkage magnetic flux map, denominator, and numerator for each current that can be obtained by magnetic field analysis are provided. It may be a rational function model represented by a polynomial of an arbitrary order with respect to the current.
  • the interlinkage magnetic flux of the stator winding 20 can be adjusted by the current of the rotor winding 30 and the interlinkage magnetic flux of the rotor winding 30 can be adjusted by the current of the stator winding 20,
  • magnet arrangement structures such as the structure of FIG.
  • the permanent magnet 33 disposed between the soft magnetic materials 53 adjacent in the rotor circumferential direction can be disposed in a state where the inclination angle of the magnetic pole surface with respect to the radial direction is 90 °. is there.
  • FIG. 15 also shows the flow of field magnetic flux by the permanent magnet 33, as in FIG. It is also possible to arrange the magnetic pole surface of the permanent magnet 33 along the radial direction.
  • the output side rotor 18 may be an axial type rotating electrical machine 10 that faces the input side rotor 28 and the stator 16 in the rotor rotation axis direction.
  • 16 shows a configuration example of the axial type rotating electrical machine 10
  • FIG. 17 shows a configuration example of the stator 16
  • FIG. 18 shows a configuration example of the input side rotor 28
  • FIG. 19 shows a configuration example of the output side rotor 18. Show.
  • Each of the plurality of soft magnetic materials 53 divided and arranged at equal intervals in the circumferential direction of the rotor includes a lower surface (first surface) 61 facing the input-side rotor 28 (tooth 52a) with a predetermined gap, and a stator 16 ( An upper surface (second surface) 62 facing the teeth 51a) with a predetermined gap, a side surface (third surface) 63 facing (contacting) the magnetic pole surface of one adjacent permanent magnet 33, and the other adjacent And a side surface (fourth surface) 64 facing (contacting) the magnetic pole surface of the permanent magnet 33.
  • the magnetic pole surface of each permanent magnet 33 is arranged along the radial direction.
  • a nonmagnetic material 35 can be provided instead of the permanent magnet 33.
  • the plurality of soft magnetic materials 53 are divided and arranged at intervals (equal intervals) in the rotor circumferential direction.
  • a plurality (the same number as the soft magnetic material 53) of non-magnetic members 35 are arranged at equal intervals (equal intervals) in the rotor circumferential direction, and each of them is arranged between the soft magnetic materials 53 adjacent in the rotor circumferential direction. ing.
  • Each of the soft magnetic materials 53 disposed between the non-magnetic members 35 adjacent to each other in the rotor circumferential direction has an inner peripheral surface (first surface) 61 facing the input-side rotor 28 (tooth 52a) with a predetermined gap therebetween.
  • the soft magnetic materials 53 adjacent in the rotor circumferential direction may be connected by a bridge.
  • the d-axis magnetic flux due to the d-axis current of the rotor winding 30 flows between the inner peripheral surface 61 and the outer peripheral surface 62 of the soft magnetic material 53 and acts on the stator 16, thereby causing the stator winding 20. Affects interlinkage magnetic flux. Therefore, the d-axis magnetic flux due to the d-axis current of the rotor winding 30 behaves in the same manner as the field magnetic flux when the permanent magnet 33 is provided at the position of the nonmagnetic material 35 for the stator 16. Therefore, the interlinkage magnetic flux of the stator winding 20 can be adjusted by the current of the rotor winding 30.
  • the d-axis magnetic flux due to the d-axis current of the stator winding 20 flows between the outer peripheral surface 62 and the inner peripheral surface 61 of the soft magnetic material 53 and acts on the input-side rotor 28, thereby Affects flux linkage. Therefore, the d-axis magnetic flux due to the d-axis current of the stator winding 20 behaves in the same way as the field magnetic flux when the permanent magnet 33 is provided at the position of the nonmagnetic material 35 for the input side rotor 28. Therefore, the interlinkage magnetic flux of the rotor winding 30 can be adjusted by the current of the stator winding 20.

Abstract

In the present invention, a current command value setting unit (136) uses first and second magnetic interference models to calculate current command values (Iin_d_ref, Iin_q_ref) for a rotor winding (30) and current command values (Iout_d_ref, Iout_q_ref) for a stator winding (20), on the basis of an evaluation function (f) expressing a weighted heat generation amount for the rotor winding (30) and the stator winding (20). The first magnetic interference model represents the relationship of the interlinkage magnetic flux (ϕin) of the rotor winding (30) with respect to the current (Iin) of the rotor winding (30) and the current (Iout) of the stator winding (20), and the second magnetic interference model represents the relationship of the interlinkage magnetic flux (ϕout) of the stator winding (20) with respect to the current (Iin) of the rotor winding (30) and the current (Iout) of the stator winding (20).

Description

回転電機の制御装置及び情報処理装置Rotating electrical machine control device and information processing device
 本発明は、回転電機の電流を制御する制御装置、及び回転電機の電流指令値を演算する情報処理装置に関する。 The present invention relates to a control device that controls a current of a rotating electrical machine and an information processing device that calculates a current command value of the rotating electrical machine.
 下記特許文献1による回転電機の制御装置は、巻線が配設されエンジンに機械的に連結された第1ロータと、第1ロータの巻線と電磁気的に結合する永久磁石が配設され駆動軸に機械的に連結された第2ロータと、第2ロータの永久磁石と電磁気的に結合する巻線が配設されたステータと、第1ロータの巻線と電気的に接続されたスリップリングと、スリップリングと電気的に接触するブラシと、バッテリーとステータの巻線との間で電力を授受可能に制御する第1インバータと、スリップリング及びブラシを介してバッテリーと第1ロータの巻線との間で電力を授受可能に制御する第2インバータと、を備える。特許文献1においては、第1ロータに伝達されたエンジンからの動力は、第1ロータの巻線と第2ロータの永久磁石との電磁気結合により第2ロータに伝達されるため、エンジンの動力により駆動軸を駆動することができる。その際には、第2インバータのスイッチング制御により第1ロータの巻線の電流を制御することで、第1ロータと第2ロータ間に作用するトルクを制御する。さらに、ステータの巻線と第2ロータの永久磁石との電磁気結合により、第1インバータを介してステータの巻線に供給された電力を用いて第2ロータに動力を発生させることによっても、駆動軸を駆動することができる。その際には、第1インバータのスイッチング制御によりステータの巻線の電流を制御することで、ステータと第2ロータ間に作用するトルクを制御する。 A control apparatus for a rotating electrical machine according to Patent Document 1 below is driven by a first rotor that is provided with windings and mechanically coupled to an engine, and a permanent magnet that is electromagnetically coupled to the windings of the first rotor. A second rotor mechanically coupled to the shaft; a stator having a winding electromagnetically coupled to a permanent magnet of the second rotor; and a slip ring electrically connected to the winding of the first rotor A brush that is in electrical contact with the slip ring, a first inverter that controls power transfer between the battery and the stator winding, and a winding of the battery and the first rotor via the slip ring and the brush. And a second inverter that is controlled so as to be able to exchange power. In Patent Document 1, the power transmitted from the engine to the first rotor is transmitted to the second rotor by electromagnetic coupling between the windings of the first rotor and the permanent magnets of the second rotor. The drive shaft can be driven. At that time, the torque acting between the first rotor and the second rotor is controlled by controlling the current of the winding of the first rotor by the switching control of the second inverter. Further, the electromagnetic force between the stator winding and the permanent magnet of the second rotor allows the second rotor to generate power by using the electric power supplied to the stator winding via the first inverter. The shaft can be driven. In that case, the torque which acts between a stator and a 2nd rotor is controlled by controlling the electric current of the coil | winding of a stator by switching control of a 1st inverter.
特開2000-50585号公報Japanese Unexamined Patent Publication No. 2000-50585 特開2011-205741号公報JP 2011-205741 A 特開2009-33917号公報JP 2009-33917 A 特開2009-73472号公報JP 2009-73472 A 特開2009-274536号公報JP 2009-274536 A
 特許文献1の回転電機では、第1ロータと第2ロータ間のトルクを第1ロータの巻線の電流により制御し、ステータと第2ロータ間のトルクをステータの巻線の電流により制御している。そのため、第1ロータの巻線の電流値、及びステータの巻線の電流値によっては、例えば第1ロータの巻線の発熱量や、ステータの巻線の発熱量が増大したり、第1ロータと第2ロータ間のトルクや、ステータと第2ロータ間のトルクが低下したりする等、回転電機の性能が低下する場合がある。 In the rotating electrical machine of Patent Document 1, the torque between the first rotor and the second rotor is controlled by the current of the first rotor winding, and the torque between the stator and the second rotor is controlled by the current of the stator winding. Yes. Therefore, depending on the current value of the winding of the first rotor and the current value of the winding of the stator, for example, the amount of heat generated by the winding of the first rotor, the amount of heat generated by the stator winding, or the first rotor In some cases, the performance of the rotating electrical machine may decrease, such as a decrease in torque between the second rotor and a torque between the stator and the second rotor.
 本発明は、第1回転子と第2回転子間、及び固定子と第2回転子間にトルクを作用させることが可能な回転電機の性能を向上させることを目的の1つとする。また、本発明は、回転電機の性能を向上させるための電流指令値を演算することを目的の1つとする。 The present invention has an object to improve the performance of a rotating electrical machine capable of applying torque between the first rotor and the second rotor and between the stator and the second rotor. Another object of the present invention is to calculate a current command value for improving the performance of the rotating electrical machine.
 本発明に係る回転電機の制御装置及び情報処理装置は、上述した目的の少なくとも一部を達成するために以下の手段を採った。 The control apparatus and information processing apparatus for a rotating electrical machine according to the present invention employ the following means in order to achieve at least a part of the above-described object.
 本発明に係る回転電機の制御装置は、回転電機の電流を制御する回転電機の制御装置であって、回転電機は、回転子巻線が配設された第1回転子と、固定子巻線が配設された固定子と、第1回転子及び固定子と対向し、第1回転子に対し相対回転可能な第2回転子と、を備え、回転子巻線の電流による磁束が第2回転子に作用するのに応じて第1回転子と第2回転子間にトルクが作用し、固定子巻線の電流による磁束が第2回転子に作用するのに応じて固定子と第2回転子間にトルクが作用し、さらに、回転子巻線の電流により固定子巻線の鎖交磁束を調整可能で、固定子巻線の電流により回転子巻線の鎖交磁束を調整可能であり、制御装置は、回転子巻線の電流及び固定子巻線の電流の少なくとも1つ以上を用いた条件を含む制約条件を満たし、回転子巻線の電流及び固定子巻線の電流の関数である評価関数を最適化するための回転子巻線の電流指令値及び固定子巻線の電流指令値を、第1及び第2磁気干渉モデルを用いて演算する電流指令値演算部を備え、第1磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する回転子巻線の鎖交磁束の関係を表し、第2磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する固定子巻線の鎖交磁束の関係を表し、電流指令値演算部で演算された回転子巻線の電流指令値及び固定子巻線の電流指令値を基に、回転子巻線の電流及び固定子巻線の電流を制御することを要旨とする。 A control device for a rotating electrical machine according to the present invention is a control device for a rotating electrical machine that controls a current of the rotating electrical machine, and the rotating electrical machine includes a first rotor provided with a rotor winding, and a stator winding. And a second rotor facing the first rotor and the stator and capable of rotating relative to the first rotor, and the magnetic flux generated by the current in the rotor winding is the second. Torque acts between the first rotor and the second rotor according to the action on the rotor, and the stator and the second according to the magnetic flux generated by the current of the stator winding acting on the second rotor. Torque acts between the rotors, and the interlinkage magnetic flux of the stator winding can be adjusted by the current of the rotor winding, and the interlinkage magnetic flux of the rotor winding can be adjusted by the current of the stator winding And the control device includes a constraint including a condition using at least one of a current of the rotor winding and a current of the stator winding. However, the current command value of the rotor winding and the current command value of the stator winding for optimizing the evaluation function which is a function of the current of the rotor winding and the current of the stator winding, A current command value calculation unit that calculates using the second magnetic interference model is provided, and the first magnetic interference model shows the relationship between the rotor winding current and the stator winding current interlinkage magnetic flux with respect to the stator winding current. The second magnetic interference model represents the rotor winding current and the relationship of the interlinkage magnetic flux of the stator winding with respect to the stator winding current, and the rotor winding current calculated by the current command value calculation unit The gist is to control the current of the rotor winding and the current of the stator winding based on the current command value and the current command value of the stator winding.
 本発明の一態様では、第1及び第2磁気干渉モデルは、回転子巻線の電流と固定子巻線の電流を設定比率で合成した起磁力に関わるモデル式を含むことが好適である。 In one aspect of the present invention, it is preferable that the first and second magnetic interference models include a model formula relating to a magnetomotive force obtained by synthesizing a rotor winding current and a stator winding current in a set ratio.
 本発明の一態様では、前記設定比率は1:Cであり、Cは磁気干渉の度合いを表す係数であることが好適である。 In one aspect of the present invention, the set ratio is 1: C, and C is preferably a coefficient representing the degree of magnetic interference.
 本発明の一態様では、第1及び第2磁気干渉モデルは、磁気飽和による鎖交磁束変化の度合いを表すモデル式をさらに含むことが好適である。 In one aspect of the present invention, it is preferable that the first and second magnetic interference models further include a model formula representing a degree of change in the interlinkage magnetic flux due to magnetic saturation.
 本発明の一態様では、第1及び第2磁気干渉モデルは、d軸鎖交磁束に関わるモデルと、q軸鎖交磁束に関わるモデルとを有することが好適である。 In one aspect of the present invention, it is preferable that the first and second magnetic interference models have a model related to the d-axis flux linkage and a model related to the q-axis flux linkage.
 本発明の一態様では、前記制約条件は、第1回転子と第2回転子間のトルクが第1トルク指令値に等しく、固定子と第2回転子間のトルクが第2トルク指令値に等しい条件を含み、前記評価関数は、回転子巻線と固定子巻線の温度差に応じた重み付けで回転子巻線の発熱量と固定子巻線の発熱量を加算した関数であることが好適である。 In one aspect of the present invention, the constraint condition is that the torque between the first rotor and the second rotor is equal to the first torque command value, and the torque between the stator and the second rotor is the second torque command value. The evaluation function includes equal conditions, and the evaluation function is a function obtained by adding the heat generation amount of the rotor winding and the heat generation amount of the stator winding by weighting according to a temperature difference between the rotor winding and the stator winding. Is preferred.
 本発明の一態様では、電流指令値演算部は、前記評価関数において、回転子巻線及び固定子巻線のうち、温度が高い巻線の発熱量の重み付けを増加させることが好適である。 In one aspect of the present invention, it is preferable that the current command value calculation unit increases the weighting of the heat generation amount of a winding having a high temperature among the rotor winding and the stator winding in the evaluation function.
 本発明の一態様では、前記制約条件は、第1回転子と第2回転子間のトルクが第1トルク指令値に等しく、固定子と第2回転子間のトルクが第2トルク指令値に等しい条件を含み、前記評価関数は、回転電機の銅損及び鉄損による総合損失を表す関数であることが好適である。 In one aspect of the present invention, the constraint condition is that the torque between the first rotor and the second rotor is equal to the first torque command value, and the torque between the stator and the second rotor is the second torque command value. It is preferable that the evaluation function includes an equal condition, and the evaluation function is a function representing a total loss due to copper loss and iron loss of the rotating electrical machine.
 本発明の一態様では、前記制約条件は、回転子巻線の電圧が第1制限値以下である条件、固定子巻線の電圧が第2制限値以下である条件、回転子巻線の電流が第3制限値以下である条件、及び固定子巻線の電流が第4制限値以下である条件の少なくとも1つ以上を含むことが好適である。 In one aspect of the present invention, the constraint condition is that the voltage of the rotor winding is not more than the first limit value, the condition that the voltage of the stator winding is not more than the second limit value, and the current of the rotor winding It is preferable to include at least one of a condition that is less than or equal to the third limit value and a condition that the stator winding current is less than or equal to the fourth limit value.
 本発明の一態様では、電流指令値演算部は、前記制約条件を満たす範囲内で前記評価関数が略最小となるように回転子巻線の電流指令値及び固定子巻線の電流指令値を演算することが好適である。 In one aspect of the present invention, the current command value calculation unit sets the current command value of the rotor winding and the current command value of the stator winding so that the evaluation function is substantially minimum within a range that satisfies the constraint condition. It is preferable to calculate.
 本発明の一態様では、前記評価関数は、第1回転子と第2回転子間のトルクと、固定子と第2回転子間のトルクを所定の重み付けで加算した関数であることが好適である。 In one aspect of the present invention, the evaluation function is preferably a function obtained by adding a torque between the first rotor and the second rotor and a torque between the stator and the second rotor with a predetermined weight. is there.
 本発明の一態様では、前記制約条件は、第1回転子と第2回転子間のトルクが第1トルク指令値に等しい条件を含み、前記評価関数は、固定子と第2回転子間のトルクを表す関数であることが好適である。 In one aspect of the present invention, the constraint condition includes a condition in which a torque between the first rotor and the second rotor is equal to a first torque command value, and the evaluation function is between the stator and the second rotor. A function representing torque is preferable.
 本発明の一態様では、前記制約条件は、第1回転子と第2回転子間のトルクと、固定子と第2回転子間のトルクとの和が第3トルク指令値に等しい条件を含み、前記評価関数は、第1回転子と第2回転子間のトルクの絶対値を表す関数であることが好適である。 In one aspect of the present invention, the constraint condition includes a condition in which a sum of a torque between the first rotor and the second rotor and a torque between the stator and the second rotor is equal to the third torque command value. The evaluation function is preferably a function representing an absolute value of torque between the first rotor and the second rotor.
 本発明の一態様では、前記制約条件は、固定子巻線の電流が第5制限値以下である条件を含み、前記評価関数は、固定子と第2回転子間のトルクを表す関数であることが好適である。 In one aspect of the present invention, the constraint condition includes a condition that a current of the stator winding is equal to or lower than a fifth limit value, and the evaluation function is a function representing a torque between the stator and the second rotor. Is preferred.
 本発明の一態様では、前記制約条件は、回転子巻線の電流が第6制限値以下である条件を含み、前記評価関数は、第1回転子と第2回転子間のトルクを表す関数であることが好適である。 In one aspect of the present invention, the constraint condition includes a condition that the current of the rotor winding is equal to or less than a sixth limit value, and the evaluation function is a function representing a torque between the first rotor and the second rotor. It is preferable that
 本発明の一態様では、電流指令値演算部は、前記制約条件を満たす範囲内で前記評価関数が略最大となるように回転子巻線の電流指令値及び固定子巻線の電流指令値を演算することが好適である。 In one aspect of the present invention, the current command value calculator calculates the current command value of the rotor winding and the current command value of the stator winding so that the evaluation function is substantially maximum within a range that satisfies the constraint conditions. It is preferable to calculate.
 本発明の一態様では、第1電力変換装置により蓄電装置と固定子巻線との間で電力変換を行うことが可能であり、第2電力変換装置により蓄電装置と回転子巻線との間で電力変換を行うことが可能であり、第1及び第2制限値は、蓄電装置の電圧より小さい値に設定され、第3制限値は、第2電力変換装置の容量より小さい値に設定され、第4制限値は、第1電力変換装置の容量より小さい値に設定されることが好適である。 In one aspect of the present invention, power conversion can be performed between the power storage device and the stator winding by the first power conversion device, and between the power storage device and the rotor winding by the second power conversion device. The first and second limit values are set to values smaller than the voltage of the power storage device, and the third limit value is set to a value smaller than the capacity of the second power conversion device. The fourth limit value is preferably set to a value smaller than the capacity of the first power conversion device.
 また、本発明に係る情報処理装置は、回転電機の電流指令値を演算する情報処理装置であって、回転電機は、回転子巻線が配設された第1回転子と、固定子巻線が配設された固定子と、第1回転子及び固定子と対向し、第1回転子に対し相対回転可能な第2回転子と、を備え、回転子巻線の電流による磁束が第2回転子に作用するのに応じて第1回転子と第2回転子間にトルクが作用し、固定子巻線の電流による磁束が第2回転子に作用するのに応じて固定子と第2回転子間にトルクが作用し、さらに、回転子巻線の電流により固定子巻線の鎖交磁束を調整可能で、固定子巻線の電流により回転子巻線の鎖交磁束を調整可能であり、情報処理装置は、回転子巻線の電流及び固定子巻線の電流の少なくとも1つ以上を用いた条件を含む制約条件を満たし、回転子巻線の電流及び固定子巻線の電流の関数である評価関数を最適化するための回転子巻線の電流指令値及び固定子巻線の電流指令値を、第1及び第2磁気干渉モデルを用いて演算する電流指令値演算部を備え、第1磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する回転子巻線の鎖交磁束の関係を表し、第2磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する固定子巻線の鎖交磁束の関係を表すことを要旨とする。 An information processing apparatus according to the present invention is an information processing apparatus that calculates a current command value of a rotating electrical machine, and the rotating electrical machine includes a first rotor provided with a rotor winding and a stator winding. And a second rotor facing the first rotor and the stator and capable of rotating relative to the first rotor, and the magnetic flux generated by the current in the rotor winding is the second. Torque acts between the first rotor and the second rotor according to the action on the rotor, and the stator and the second according to the magnetic flux generated by the current of the stator winding acting on the second rotor. Torque acts between the rotors, and the interlinkage magnetic flux of the stator winding can be adjusted by the current of the rotor winding, and the interlinkage magnetic flux of the rotor winding can be adjusted by the current of the stator winding The information processing apparatus includes a constraint condition including a condition using at least one of a current of the rotor winding and a current of the stator winding. And a rotor winding current command value and a stator winding current command value for optimizing an evaluation function that is a function of the rotor winding current and the stator winding current, A current command value calculation unit that calculates using the second magnetic interference model is provided, and the first magnetic interference model shows the relationship between the rotor winding current and the stator winding current interlinkage magnetic flux with respect to the stator winding current. The second magnetic interference model represents the relationship between the stator winding current and the stator winding current with respect to the stator winding current and the stator winding current.
 本発明によれば、回転子巻線の電流及び固定子巻線の電流に対する回転子巻線の鎖交磁束の関係を表す第1磁気干渉モデルと、回転子巻線の電流及び固定子巻線の電流に対する固定子巻線の鎖交磁束の関係を表す第2磁気干渉モデルとを用いて、回転子巻線の電流及び固定子巻線の電流の関数である評価関数を最適化するための回転子巻線の電流指令値及び固定子巻線の電流指令値を演算することで、回転電機の性能を向上させるための電流指令値を演算することができる。さらに、演算した電流指令値を基に回転子巻線の電流及び固定子巻線の電流を制御することで、回転電機の性能を向上させることができる。 According to the present invention, the first magnetic interference model representing the relationship of the interlinkage magnetic flux of the rotor winding to the current of the rotor winding and the current of the stator winding, the current of the rotor winding and the stator winding To optimize an evaluation function that is a function of the rotor winding current and the stator winding current using a second magnetic interference model representing the relationship of the stator winding linkage flux to the current of By calculating the current command value of the rotor winding and the current command value of the stator winding, the current command value for improving the performance of the rotating electrical machine can be calculated. Furthermore, the performance of the rotating electrical machine can be improved by controlling the current of the rotor winding and the current of the stator winding based on the calculated current command value.
本発明の実施形態に係る回転電機の制御装置を備えるハイブリッド駆動装置の概略構成を示す図である。It is a figure which shows schematic structure of a hybrid drive device provided with the control apparatus of the rotary electric machine which concerns on embodiment of this invention. 回転電機の構成例を示す図である。It is a figure which shows the structural example of a rotary electric machine. 回転電機の構成例を示す図である。It is a figure which shows the structural example of a rotary electric machine. 回転電機の構成例を示す図である。It is a figure which shows the structural example of a rotary electric machine. ロータ巻線にd軸電流が流れた場合におけるd軸磁束の流れを示す図である。It is a figure which shows the flow of the d-axis magnetic flux when the d-axis current flows through the rotor winding. ロータ巻線にq軸電流が流れた場合におけるq軸磁束の流れを示す図である。It is a figure which shows the flow of the q-axis magnetic flux when the q-axis current flows into the rotor winding. ステータ巻線にd軸電流が流れた場合におけるd軸磁束の流れを示す図である。It is a figure which shows the flow of d-axis magnetic flux in case a d-axis current flows into a stator winding. ステータ巻線にq軸電流が流れた場合におけるq軸磁束の流れを示す図である。It is a figure which shows the flow of the q-axis magnetic flux when the q-axis current flows through the stator winding. in=0,Tout=90Nmのトルクに対する電流Iin,Ioutの関係の一例を示す図である。T in = 0, T out = current for torque 90 Nm I in, is a diagram showing an example of the relationship between I out. 電子制御ユニットの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of an electronic control unit. 電子制御ユニットにより実行される処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process performed by the electronic control unit. in=0,Tout=90Nm制約条件において、ロータ巻線の電流Iinに対するロータ巻線の発熱量の関係の一例を示す図である。In T in = 0, T out = 90Nm constraint is a diagram showing an example of a heating value of the relationship between the rotor windings against current I in the rotor windings. in=0,Tout=90Nm制約条件において、ロータ巻線の電流Iinに対するステータ巻線の発熱量の関係の一例を示す図である。In T in = 0, T out = 90Nm constraint is a diagram showing an example of the relationship between the heating value of the stator windings for current I in the rotor windings. ロータ巻線の温度τin及びステータ巻線の温度τoutの時間変化の一例を示す図である。It is a figure which shows an example of the time change of temperature (tau) in of a rotor winding, and temperature (tau) out of a stator winding. 電子制御ユニット及び情報処理装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of an electronic control unit and information processing apparatus. 回転電機の他の構成例を示す図である。It is a figure which shows the other structural example of a rotary electric machine. 回転電機の他の構成例を示す図である。It is a figure which shows the other structural example of a rotary electric machine. 回転電機の他の構成例を示す図である。It is a figure which shows the other structural example of a rotary electric machine. 回転電機の他の構成例を示す図である。It is a figure which shows the other structural example of a rotary electric machine. 回転電機の他の構成例を示す図である。It is a figure which shows the other structural example of a rotary electric machine. 回転電機の他の構成例を示す図である。It is a figure which shows the other structural example of a rotary electric machine.
 以下、本発明を実施するための形態(以下実施形態という)を図面に従って説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
 図1~4は、本発明の実施形態に係る回転電機の制御装置を備えるハイブリッド駆動システムの構成の概略を示す図であり、図1は全体構成の概略を示し、図2~4は回転電機10の構成の概略を示す。本実施形態に係るハイブリッド駆動システムは、動力(機械的動力)を発生可能な原動機として設けられたエンジン(内燃機関)36と、エンジン36と駆動軸37(車輪38)との間に設けられ、変速比の変更が可能な変速機(機械式変速機)44と、エンジン36と変速機44との間に設けられ、動力(機械的動力)の発生及び発電が可能な回転電機10と、を備える。なお、本実施形態に係るハイブリッド駆動システムについては、例えば車両を駆動するための動力出力システムとして用いることができる。 1 to 4 are diagrams showing an outline of a configuration of a hybrid drive system including a control device for a rotating electrical machine according to an embodiment of the present invention. FIG. 1 shows an overview of the overall configuration, and FIGS. An outline of 10 configurations is shown. The hybrid drive system according to the present embodiment is provided between an engine (internal combustion engine) 36 provided as a prime mover capable of generating power (mechanical power), and between the engine 36 and a drive shaft 37 (wheel 38). A transmission (mechanical transmission) 44 capable of changing the transmission ratio, and a rotating electrical machine 10 provided between the engine 36 and the transmission 44 and capable of generating power (mechanical power) and generating power. Prepare. Note that the hybrid drive system according to the present embodiment can be used as a power output system for driving a vehicle, for example.
 回転電機10は、図示しないステータケースに固定されたステータ16と、ステータ16に対し相対回転可能な第1ロータ28と、ロータ回転軸と直交する径方向においてステータ16及び第1ロータ28と所定の空隙を空けて対向し、ステータ16及び第1ロータ28に対し相対回転可能な第2ロータ18と、を有する。図1~4に示す例では、ステータ16は、第1ロータ28より径方向外側の位置に第1ロータ28と間隔を空けて配置されており、第2ロータ18は、径方向においてステータ16と第1ロータ28との間の位置に配置されている。つまり、第1ロータ28は第2ロータ18より径方向内側の位置で第2ロータ18と対向配置されており、ステータ16は第2ロータ18より径方向外側の位置で第2ロータ18と対向配置されている。第1ロータ28はエンジン36と機械的に連結されていることで、第1ロータ28にはエンジン36からの動力が伝達される。一方、第2ロータ18は変速機44を介して駆動軸37に機械的に連結されていることで、駆動軸37(車輪38)には第2ロータ18からの動力が変速機44で変速されてから伝達される。なお、以下の説明では、第1ロータ28を入力側ロータとし、第2ロータ18を出力側ロータとする。 The rotating electrical machine 10 includes a stator 16 fixed to a stator case (not shown), a first rotor 28 that can rotate relative to the stator 16, a stator 16 and a first rotor 28 in a radial direction perpendicular to the rotor rotation axis, and a predetermined amount. The second rotor 18 is opposed to the stator 16 and the first rotor 28 with a gap. In the example shown in FIGS. 1 to 4, the stator 16 is disposed at a position radially outside the first rotor 28 and spaced from the first rotor 28, and the second rotor 18 is disposed in a radial direction with the stator 16. It is disposed at a position between the first rotor 28. That is, the first rotor 28 is disposed opposite to the second rotor 18 at a position radially inward of the second rotor 18, and the stator 16 is disposed opposite to the second rotor 18 at a position radially outward from the second rotor 18. Has been. Since the first rotor 28 is mechanically connected to the engine 36, the power from the engine 36 is transmitted to the first rotor 28. On the other hand, the second rotor 18 is mechanically coupled to the drive shaft 37 via the transmission 44, so that the power from the second rotor 18 is shifted by the transmission 44 to the drive shaft 37 (wheel 38). It is transmitted after. In the following description, the first rotor 28 is an input side rotor, and the second rotor 18 is an output side rotor.
 ステータ16は、ステータコア51と、ステータコア51にその周方向に沿って配設された複数相(例えば3相)のステータ巻線20と、を含む。ステータコア51には、径方向内側へ(出力側ロータ18へ向けて)突出した複数のティース51aがステータ周方向に沿って間隔をおいて配列されており、各ステータ巻線20がこれらのティース51aに巻回されていることで、磁極が構成される。複数相のステータ巻線20に複数相(例えば3相)の交流電流が流れることで、ステータ巻線20は、ステータ周方向に回転する回転磁界を発生することができる。図3,4に示す例では、3相のステータ巻線20が巻装された6つのティース51aあたり、1つの磁極が構成される。 The stator 16 includes a stator core 51 and a plurality of (for example, three-phase) stator windings 20 disposed on the stator core 51 along the circumferential direction thereof. In the stator core 51, a plurality of teeth 51a protruding radially inward (toward the output-side rotor 18) are arranged at intervals along the circumferential direction of the stator, and each stator winding 20 is formed of these teeth 51a. The magnetic poles are configured by being wound around. When a plurality of phases (for example, three phases) of alternating current flows through the plurality of stator windings 20, the stator windings 20 can generate a rotating magnetic field that rotates in the stator circumferential direction. In the example shown in FIGS. 3 and 4, one magnetic pole is formed for each of the six teeth 51 a around which the three-phase stator winding 20 is wound.
 入力側ロータ28は、ロータコア52と、ロータコア52にその周方向に沿って配設された複数相(例えば3相)のロータ巻線30と、を含む。ロータコア52には、径方向外側へ(出力側ロータ18へ向けて)突出した複数のティース52aがロータ周方向に沿って間隔をおいて配列されており、各ロータ巻線30がこれらのティース52aに巻回されていることで、磁極が構成される。複数相のロータ巻線30に複数相(例えば3相)の交流電流が流れることで、ロータ巻線30は、ロータ周方向に回転する回転磁界を発生することができる。図3,4に示す例では、3相のロータ巻線30が巻装された3つのティース52aあたり、1つの磁極が構成される。 The input-side rotor 28 includes a rotor core 52 and a plurality of (for example, three-phase) rotor windings 30 disposed on the rotor core 52 along the circumferential direction thereof. In the rotor core 52, a plurality of teeth 52a protruding radially outward (toward the output-side rotor 18) are arranged at intervals along the circumferential direction of the rotor, and each rotor winding 30 is formed of these teeth 52a. The magnetic poles are configured by being wound around. When a plurality of phases (for example, three phases) of alternating current flows through the plurality of rotor windings 30, the rotor windings 30 can generate a rotating magnetic field that rotates in the circumferential direction of the rotor. In the example shown in FIGS. 3 and 4, one magnetic pole is formed for each of the three teeth 52 a around which the three-phase rotor winding 30 is wound.
 出力側ロータ18は、ロータ周方向に互いに間隔をおいて(等間隔で)配置された複数(図3,4に示す例では16個)の永久磁石33と、各々がロータ周方向に隣接する永久磁石33間に配置された複数(永久磁石33と同数、図3,4に示す例では16個)の軟磁性材53と、を含む。ロータ周方向に等間隔で分割配置された複数の軟磁性材53の各々は、入力側ロータ28(ティース52a)と所定の空隙を空けて対向する内周面(第1面)61と、ステータ16(ティース51a)と所定の空隙を空けて対向する外周面(第2面)62と、隣接する一方の永久磁石33の磁極面に面する(接触する)側面(第3面)63と、隣接する他方の永久磁石33の磁極面に面する(接触する)側面(第4面)64と、を有し、内周面61と外周面62間で磁束を通す。図3,4に示す例では、各永久磁石33の磁極面が径方向に対して傾斜して配置され、各軟磁性材53の側面63,64も径方向に対して傾斜して形成されている。そして、図3,4に示す例では、各軟磁性材53において、内周面61のロータ周方向幅が、ロータ周方向に3個離れたティース52a間の間隔に等しく、外周面62のロータ周方向幅が、ロータ周方向に6個離れたティース51a間の間隔に等しい。以下の説明において、複数の永久磁石33を区別する必要があるときは、以降33-1,33-2,33-3の符号を用いて説明する。そして、複数の軟磁性材53を区別する必要があるときは、以降53-1,53-2の符号を用いて説明し、軟磁性材53の内周面61、外周面62、側面63,64についても、以降61-1,61-2,62-1,62-2,63-1,63-2,64-1,64-2の符号を用いて説明する。 The output-side rotor 18 has a plurality (16 in the example shown in FIGS. 3 and 4) of permanent magnets 33 that are spaced apart from each other (equally spaced) in the circumferential direction of the rotor and are adjacent to each other in the circumferential direction of the rotor. A plurality of soft magnetic materials 53 (same number as the permanent magnets 33, 16 in the example shown in FIGS. 3 and 4) disposed between the permanent magnets 33. Each of the plurality of soft magnetic materials 53 divided and arranged at equal intervals in the circumferential direction of the rotor includes an inner peripheral surface (first surface) 61 facing the input-side rotor 28 (tooth 52a) with a predetermined gap, and a stator. 16 (teeth 51a) and an outer peripheral surface (second surface) 62 facing a predetermined gap, a side surface (third surface) 63 facing (contacting) the magnetic pole surface of one of the adjacent permanent magnets 33, A side surface (fourth surface) 64 that faces (contacts) the magnetic pole surface of the other adjacent permanent magnet 33, and allows magnetic flux to pass between the inner peripheral surface 61 and the outer peripheral surface 62. In the example shown in FIGS. 3 and 4, the magnetic pole surface of each permanent magnet 33 is arranged to be inclined with respect to the radial direction, and the side surfaces 63 and 64 of each soft magnetic material 53 are also inclined to the radial direction. Yes. In the example shown in FIGS. 3 and 4, in each soft magnetic material 53, the rotor circumferential width of the inner circumferential surface 61 is equal to the interval between the teeth 52 a that are separated by three in the rotor circumferential direction, and the rotor on the outer circumferential surface 62. The circumferential width is equal to the interval between the teeth 51a that are separated by six in the circumferential direction of the rotor. In the following description, when it is necessary to distinguish between the plurality of permanent magnets 33, the following description will be made using the reference numerals 33-1, 33-2, 33-3. When it is necessary to distinguish between the plurality of soft magnetic materials 53, the following explanation will be made using the reference numerals 53-1, 53-2, and the inner peripheral surface 61, outer peripheral surface 62, side surface 63, 64 will be described below using reference numerals 61-1, 61-2, 62-1, 62-2, 63-1, 63-2, 64-1, 64-2.
 各軟磁性材53においては、側面63が面する永久磁石33の磁極面と側面64が面する永久磁石33の磁極面が互いに同じ極性であり、ロータ周方向に隣接する永久磁石33の同極同士が軟磁性材53を介して繋がっている。例えば軟磁性材53-1においては、側面63-1が接触する永久磁石33-1の磁極面がN極面であり、側面64-1が接触する永久磁石33-2の磁極面がN極面である。一方、永久磁石33-2を挟んで軟磁性材53-1とロータ周方向に隣接する軟磁性材53-2においては、側面63-2が面する永久磁石33-2の磁極面がS極面であり、側面64-2が接触する永久磁石33-3の磁極面がS極面である。そのため、ロータ周方向に隣接する軟磁性材53(例えば軟磁性材53-1,53-2)においては、側面63,64が面する永久磁石33の磁極面が互いに逆の極性であり、ロータ周方向において、側面63,64が永久磁石33のN極面に接触する軟磁性材53と、側面63,64が永久磁石33のS極面に接触する軟磁性材53が交互に配置される。また、ロータ周方向に隣接する軟磁性材53(例えば軟磁性材53-1,53-2)間には、永久磁石33の他に、磁気抵抗を高くするための空隙54が設けられている。空隙54に代えて非磁性材料を設けることも可能である。ただし、ロータ周方向に隣接する軟磁性材53(例えば軟磁性材53-1,53-2)同士がブリッジで繋がっていてもよい。 In each soft magnetic material 53, the magnetic pole surface of the permanent magnet 33 facing the side surface 63 and the magnetic pole surface of the permanent magnet 33 facing the side surface 64 have the same polarity, and the same polarity of the permanent magnet 33 adjacent in the circumferential direction of the rotor. The two are connected via a soft magnetic material 53. For example, in the soft magnetic material 53-1, the magnetic pole surface of the permanent magnet 33-1 in contact with the side surface 63-1 is the N pole surface, and the magnetic pole surface of the permanent magnet 33-2 in contact with the side surface 64-1 is the N pole surface. Surface. On the other hand, in the soft magnetic material 53-2 adjacent to the soft magnetic material 53-1 in the circumferential direction of the rotor with the permanent magnet 33-2 interposed therebetween, the magnetic pole surface of the permanent magnet 33-2 facing the side surface 63-2 is the S pole. The magnetic pole surface of the permanent magnet 33-3 that is a surface and is in contact with the side surface 64-2 is the S pole surface. Therefore, in the soft magnetic material 53 (for example, soft magnetic materials 53-1, 53-2) adjacent in the rotor circumferential direction, the magnetic pole surfaces of the permanent magnet 33 facing the side surfaces 63, 64 have opposite polarities, and the rotor In the circumferential direction, the soft magnetic material 53 whose side surfaces 63 and 64 are in contact with the N pole surface of the permanent magnet 33 and the soft magnetic material 53 whose side surfaces 63 and 64 are in contact with the S pole surface of the permanent magnet 33 are alternately arranged. . In addition to the permanent magnet 33, a gap 54 for increasing the magnetic resistance is provided between the soft magnetic materials 53 (for example, the soft magnetic materials 53-1, 53-2) adjacent in the rotor circumferential direction. . It is also possible to provide a nonmagnetic material instead of the gap 54. However, soft magnetic materials 53 (for example, soft magnetic materials 53-1, 53-2) adjacent in the circumferential direction of the rotor may be connected by a bridge.
 永久磁石33による界磁磁束の流れを図4に示す。図4の矢印に示すように、軟磁性材53-1においては、永久磁石33-1による界磁磁束が側面63-1から内周面61-1及び外周面62-1へ流れるとともに、永久磁石33-2による界磁磁束が側面64-1から内周面61-1及び外周面62-1へ流れる。入力側ロータ28に対しては、軟磁性材53-1の内周面61-1がN極面として機能し、界磁磁束が軟磁性材53-1の内周面61-1から入力側ロータ28(ティース52a)に作用する。ステータ16に対しては、軟磁性材53-1の外周面62-1がN極面として機能し、界磁磁束が軟磁性材53-1の外周面62-1からステータ16(ティース51a)に作用する。一方、軟磁性材53-2においては、永久磁石33-2による界磁磁束が内周面61-2及び外周面62-2から側面63-2へ流れるとともに、永久磁石33-3による界磁磁束が内周面61-2及び外周面62-2から側面63-3へ流れる。入力側ロータ28に対しては、軟磁性材53-2の内周面61-2がS極面として機能し、界磁磁束が入力側ロータ28(ティース52a)から軟磁性材53-2の内周面61-2に作用する。ステータ16に対しては、軟磁性材53-2の外周面62-2がS極面として機能し、界磁磁束がステータ16(ティース51a)から軟磁性材53-2の外周面62-2に作用する。このように、同一の軟磁性材53における内周面61と外周面62が互いに同じ極性の磁極面として機能する。そして、ロータ周方向において、N極面として機能する内周面61とS極面として機能する内周面61が交互に配置され、N極面として機能する外周面62とS極面として機能する外周面62が交互に配置される。なお、各軟磁性材53の内部には、内周面61と外周面62間、側面63,64と内周面61間、及び側面63,64と外周面62間で磁束をそれぞれ通しやすくするために、空隙及び非磁性材料が設けられていないことが好ましく、磁気抵抗の高い部分が設けられていないことが好ましい。 The flow of field magnetic flux by the permanent magnet 33 is shown in FIG. As shown by the arrows in FIG. 4, in the soft magnetic material 53-1, the field magnetic flux generated by the permanent magnet 33-1 flows from the side surface 63-1 to the inner peripheral surface 61-1 and the outer peripheral surface 62-1, and is permanently The field magnetic flux generated by the magnet 33-2 flows from the side surface 64-1 to the inner peripheral surface 61-1 and the outer peripheral surface 62-1. For the input-side rotor 28, the inner peripheral surface 61-1 of the soft magnetic material 53-1 functions as an N pole surface, and the field magnetic flux is input from the inner peripheral surface 61-1 of the soft magnetic material 53-1. It acts on the rotor 28 (the teeth 52a). For the stator 16, the outer peripheral surface 62-1 of the soft magnetic material 53-1 functions as an N pole surface, and the field magnetic flux is transferred from the outer peripheral surface 62-1 of the soft magnetic material 53-1 to the stator 16 (tooth 51a). Act on. On the other hand, in the soft magnetic material 53-2, the field magnetic flux generated by the permanent magnet 33-2 flows from the inner peripheral surface 61-2 and the outer peripheral surface 62-2 to the side surface 63-2, and the field magnet generated by the permanent magnet 33-3. Magnetic flux flows from the inner peripheral surface 61-2 and the outer peripheral surface 62-2 to the side surface 63-3. For the input side rotor 28, the inner peripheral surface 61-2 of the soft magnetic material 53-2 functions as an S pole surface, and the field magnetic flux is transferred from the input side rotor 28 (tooth 52a) to the soft magnetic material 53-2. It acts on the inner peripheral surface 61-2. For the stator 16, the outer peripheral surface 62-2 of the soft magnetic material 53-2 functions as an S pole surface, and the field magnetic flux is transferred from the stator 16 (tooth 51a) to the outer peripheral surface 62-2 of the soft magnetic material 53-2. Act on. Thus, the inner peripheral surface 61 and the outer peripheral surface 62 of the same soft magnetic material 53 function as magnetic pole surfaces having the same polarity. In the circumferential direction of the rotor, the inner peripheral surface 61 that functions as the N pole surface and the inner peripheral surface 61 that functions as the S pole surface are alternately arranged, and functions as the outer peripheral surface 62 that functions as the N pole surface and the S pole surface. The outer peripheral surfaces 62 are alternately arranged. In each soft magnetic material 53, magnetic flux can be easily passed between the inner peripheral surface 61 and the outer peripheral surface 62, between the side surfaces 63 and 64 and the inner peripheral surface 61, and between the side surfaces 63 and 64 and the outer peripheral surface 62. Therefore, it is preferable that no gap and nonmagnetic material are provided, and it is preferable that a portion having a high magnetic resistance is not provided.
 直流電源として設けられた充放電可能な蓄電装置42は、例えば二次電池により構成することができ、電気エネルギーを蓄える。蓄電装置42とステータ巻線20との間で電力変換を行う第1電力変換装置として設けられたインバータ40は、スイッチング素子と、スイッチング素子に対し逆並列接続されたダイオード(整流素子)とを備える公知の構成により実現可能であり、スイッチング素子のスイッチング動作により蓄電装置42からの直流電力を交流(例えば3相交流)に変換して、ステータ巻線20の各相に供給することが可能である。さらに、インバータ40は、ステータ巻線20の各相に流れる交流電流を直流に変換して、電気エネルギーを蓄電装置42に回収する方向の電力変換も可能である。このように、インバータ40は、蓄電装置42とステータ巻線20との間で双方向の電力変換を行うことが可能である。 The chargeable / dischargeable power storage device 42 provided as a direct current power source can be constituted by a secondary battery, for example, and stores electrical energy. Inverter 40 provided as a first power conversion device that performs power conversion between power storage device 42 and stator winding 20 includes a switching element and a diode (rectifier element) connected in reverse parallel to the switching element. It can be realized by a known configuration, and can be supplied to each phase of the stator winding 20 by converting DC power from the power storage device 42 to AC (for example, three-phase AC) by switching operation of the switching element. . Furthermore, the inverter 40 can also convert power in a direction in which alternating current flowing in each phase of the stator winding 20 is converted into direct current and electric energy is collected in the power storage device 42. Thus, the inverter 40 can perform bidirectional power conversion between the power storage device 42 and the stator winding 20.
 スリップリング95は、入力側ロータ28と機械的に連結されており、さらに、ロータ巻線30の各相と電気的に接続されている。回転が固定されたブラシ96は、スリップリング95に押し付けられて電気的に接触する。スリップリング95は、ブラシ96に対し摺動しながら(ブラシ96との電気的接触を維持しながら)、入力側ロータ28とともに回転する。ブラシ96は、インバータ41と電気的に接続されている。蓄電装置42及びインバータ40のいずれかとロータ巻線30との間で電力変換を行う第2電力変換装置として設けられたインバータ41は、スイッチング素子と、スイッチング素子に対し逆並列接続されたダイオード(整流素子)とを備える公知の構成により実現可能であり、スイッチング素子のスイッチング動作により蓄電装置42からの直流電力を交流(例えば3相交流)に変換して、ブラシ96及びスリップリング95を介してロータ巻線30の各相に供給することが可能である。さらに、インバータ41は、ロータ巻線30の各相に流れる交流電流を直流に変換する方向の電力変換も可能である。その際には、ロータ巻線30の交流電力がスリップリング95及びブラシ96により取り出され、この取り出された交流電力がインバータ41で直流に変換される。インバータ41で直流に変換された電力は、インバータ40で交流に変換されてからステータ巻線20の各相へ供給可能である。つまり、インバータ40は、インバータ41からの直流電力と蓄電装置42からの直流電力とのいずれか(少なくとも一方)を交流に変換してステータ巻線20の各相へ供給することが可能である。また、インバータ41で直流に変換された電力を蓄電装置42に回収することも可能である。このように、インバータ41は、蓄電装置42及びインバータ40のいずれかとロータ巻線30との間で双方向の電力変換を行うことが可能である。 The slip ring 95 is mechanically coupled to the input side rotor 28, and is further electrically connected to each phase of the rotor winding 30. The brush 96 whose rotation is fixed is pressed against the slip ring 95 to be in electrical contact. The slip ring 95 rotates with the input-side rotor 28 while sliding with respect to the brush 96 (maintaining electrical contact with the brush 96). The brush 96 is electrically connected to the inverter 41. An inverter 41 provided as a second power conversion device that performs power conversion between any of the power storage device 42 and the inverter 40 and the rotor winding 30 includes a switching element and a diode (rectifier connected in reverse parallel to the switching element). Element), the DC power from the power storage device 42 is converted into alternating current (for example, three-phase alternating current) by the switching operation of the switching element, and the rotor is connected via the brush 96 and the slip ring 95. It is possible to supply each phase of the winding 30. Furthermore, the inverter 41 can also perform power conversion in a direction in which an alternating current flowing in each phase of the rotor winding 30 is converted into a direct current. At that time, AC power of the rotor winding 30 is extracted by the slip ring 95 and the brush 96, and the extracted AC power is converted to DC by the inverter 41. The electric power converted into direct current by the inverter 41 can be supplied to each phase of the stator winding 20 after being converted into alternating current by the inverter 40. That is, the inverter 40 can convert either (at least one) of the DC power from the inverter 41 and the DC power from the power storage device 42 into AC and supply it to each phase of the stator winding 20. In addition, the power converted into direct current by the inverter 41 can be recovered by the power storage device 42. Thus, the inverter 41 can perform bidirectional power conversion between any of the power storage device 42 and the inverter 40 and the rotor winding 30.
 電子制御ユニット50は、CPUを中心としたマイクロプロセッサとして構成され、処理プログラムを記憶したROMと、一時的にデータを記憶するRAMと、入出力ポートとを備える。電子制御ユニット50は、インバータ40のスイッチング素子のスイッチング動作を制御してインバータ40での電力変換を制御することで、ステータ巻線20の各相に流れる交流電流を制御し、インバータ41のスイッチング素子のスイッチング動作を制御してインバータ41での電力変換を制御することで、ロータ巻線30の各相に流れる交流電流を制御する。さらに、電子制御ユニット50は、エンジン36の運転状態の制御、及び変速機44の変速比の制御も行う。 The electronic control unit 50 is configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port. The electronic control unit 50 controls the switching operation of the switching element of the inverter 40 and controls the power conversion in the inverter 40, thereby controlling the alternating current flowing in each phase of the stator winding 20, and switching the switching element of the inverter 41. The AC current flowing in each phase of the rotor winding 30 is controlled by controlling the power conversion in the inverter 41 by controlling the switching operation. Furthermore, the electronic control unit 50 also controls the operating state of the engine 36 and the speed ratio of the transmission 44.
 インバータ40のスイッチング動作により3相のステータ巻線20に3相の交流電流が流れることで、ステータ巻線20はステータ周方向に回転する回転磁界を発生し、ステータ巻線20の電流による磁束が出力側ロータ18に作用する。それに応じて、ステータ巻線20の交流電流により発生した回転磁界と、軟磁性材53の外周面62と側面63,64間を流れる永久磁石33による界磁磁束との電磁気相互作用(吸引及び反発作用)により、ステータ16と出力側ロータ18間にトルクToutを作用させることができ、出力側ロータ18を回転駆動することができる。つまり、蓄電装置42からインバータ40を介してステータ巻線20に供給された電力を出力側ロータ18の動力(機械的動力)に変換することができ、ステータ16及び出力側ロータ18を同期電動機(PMモータ部)として機能させることができる。さらに、出力側ロータ18の動力をステータ巻線20の電力に変換してインバータ40を介して蓄電装置42に回収することも可能である。電子制御ユニット50は、インバータ40のスイッチング動作により例えばステータ巻線20に流す交流電流の振幅や位相角を制御することで、ステータ16と出力側ロータ18間に作用するトルク(PMモータトルク)Toutを制御することができる。 When a three-phase alternating current flows through the three-phase stator winding 20 by the switching operation of the inverter 40, the stator winding 20 generates a rotating magnetic field that rotates in the circumferential direction of the stator, and a magnetic flux generated by the current of the stator winding 20 is generated. It acts on the output side rotor 18. Accordingly, an electromagnetic interaction (attraction and repulsion) between the rotating magnetic field generated by the alternating current of the stator winding 20 and the field magnetic flux generated by the permanent magnet 33 flowing between the outer peripheral surface 62 and the side surfaces 63 and 64 of the soft magnetic material 53. By the action), the torque Tout can be applied between the stator 16 and the output side rotor 18, and the output side rotor 18 can be rotationally driven. That is, the electric power supplied from the power storage device 42 to the stator winding 20 via the inverter 40 can be converted into the power (mechanical power) of the output-side rotor 18, and the stator 16 and the output-side rotor 18 are connected to the synchronous motor ( PM motor part). Furthermore, it is possible to convert the power of the output side rotor 18 into the electric power of the stator winding 20 and collect it in the power storage device 42 via the inverter 40. The electronic control unit 50 controls the torque (PM motor torque) T acting between the stator 16 and the output side rotor 18 by controlling the amplitude and phase angle of the alternating current flowing through the stator winding 20 by the switching operation of the inverter 40, for example. out can be controlled.
 また、入力側ロータ28が出力側ロータ18に対し相対回転して入力側ロータ28と出力側ロータ18との間に回転差が生じるのに伴ってロータ巻線30に誘導起電力が発生し、この誘導起電力に起因してロータ巻線30に誘導電流(交流電流)が流れることで回転磁界が生じ、ロータ巻線30の電流による磁束が出力側ロータ18に作用する。それに応じて、ロータ巻線30の誘導電流により生じる回転磁界と、軟磁性材53の内周面61と側面63,64間を流れる永久磁石33による界磁磁束との電磁気相互作用により、入力側ロータ28と出力側ロータ18間にトルクTinを作用させることができ、出力側ロータ18を回転駆動することができる。そのため、入力側ロータ28と出力側ロータ18間で動力(機械的動力)を伝達することができ、入力側ロータ28及び出力側ロータ18を誘導電磁カップリング部として機能させることができる。 In addition, an induced electromotive force is generated in the rotor winding 30 as the input side rotor 28 rotates relative to the output side rotor 18 to cause a rotation difference between the input side rotor 28 and the output side rotor 18. A rotating magnetic field is generated when an induced current (alternating current) flows through the rotor winding 30 due to the induced electromotive force, and a magnetic flux generated by the current of the rotor winding 30 acts on the output-side rotor 18. Accordingly, an electromagnetic interaction between the rotating magnetic field generated by the induced current of the rotor winding 30 and the field magnetic flux generated by the permanent magnet 33 flowing between the inner peripheral surface 61 and the side surfaces 63 and 64 of the soft magnetic material 53 causes an input side rotor 28 and the torque T in can exert between the output side rotor 18, the output side rotor 18 can be rotated. Therefore, power (mechanical power) can be transmitted between the input side rotor 28 and the output side rotor 18, and the input side rotor 28 and the output side rotor 18 can function as an induction electromagnetic coupling unit.
 ロータ巻線30の誘導電流により入力側ロータ28と出力側ロータ18間にトルク(電磁カップリングトルク)Tinを発生させる際には、電子制御ユニット50は、ロータ巻線30に誘導電流が流れるのを許容するように、インバータ41のスイッチング動作を行う。その際には、電子制御ユニット50は、インバータ41のスイッチング動作によりロータ巻線30に流れる交流電流を制御することで、入力側ロータ28と出力側ロータ18間に作用する電磁カップリングトルクTinを制御することができる。一方、電子制御ユニット50は、インバータ41のスイッチング素子をオフ状態に維持してスイッチング動作を停止させることで、ロータ巻線30に誘導電流が流れなくなり、入力側ロータ28と出力側ロータ18間にトルクTinは作用しなくなる。 When generating the torque (electromagnetic coupling torque) T in between the input side rotor 28 and the output side rotor 18 by the induced current in the rotor windings 30, the electronic control unit 50, an induced current flows through the rotor winding 30 The switching operation of the inverter 41 is performed so as to allow this. In that case, the electronic control unit 50 controls the alternating current flowing through the rotor winding 30 by the switching operation of the inverter 41, thereby causing an electromagnetic coupling torque T in acting between the input side rotor 28 and the output side rotor 18. Can be controlled. On the other hand, the electronic control unit 50 maintains the switching element of the inverter 41 in the OFF state and stops the switching operation, so that the induced current does not flow through the rotor winding 30 and the input side rotor 28 and the output side rotor 18 are not connected. Torque T in stops working.
 エンジン36が動力を発生している場合は、エンジン36の動力が入力側ロータ28に伝達され、入力側ロータ28がエンジン回転方向に回転駆動する。入力側ロータ28の回転速度が出力側ロータ18の回転速度より高くなると、ロータ巻線30に誘導起電力が発生する。電子制御ユニット50は、ロータ巻線30に誘導電流が流れるのを許容するように、インバータ41のスイッチング動作を行う。ロータ巻線30の電流による磁束が出力側ロータ18に作用するのに応じて、入力側ロータ28から出力側ロータ18にエンジン回転方向の電磁カップリングトルクTinが作用して出力側ロータ18がエンジン回転方向に回転駆動する。このように、入力側ロータ28に伝達されたエンジン36からの動力は、入力側ロータ28のロータ巻線30と出力側ロータ18の永久磁石33との電磁気結合によって、出力側ロータ18へ伝達される。出力側ロータ18に伝達された動力は、変速機44で変速されてから駆動軸37(車輪38)へ伝達されることで、車両の前進駆動等、負荷の正転駆動に用いられる。したがって、エンジン36の動力を用いて車輪38を正転方向に回転駆動することができ、車両を前進方向に駆動することができる。さらに、入力側ロータ28と出力側ロータ18との回転差を許容することができるため、車輪38の回転が停止してもエンジン36がストールすることはない。そのため、回転電機10を発進装置として機能させることができ、摩擦クラッチやトルクコンバータ等の発進装置を別に設ける必要がなくなる。 When the engine 36 is generating power, the power of the engine 36 is transmitted to the input side rotor 28, and the input side rotor 28 is rotationally driven in the engine rotation direction. When the rotational speed of the input side rotor 28 becomes higher than the rotational speed of the output side rotor 18, an induced electromotive force is generated in the rotor winding 30. The electronic control unit 50 performs the switching operation of the inverter 41 so as to allow the induced current to flow through the rotor winding 30. In response to the magnetic flux generated by the current of the rotor winding 30 acting on the output-side rotor 18, electromagnetic coupling torque Tin in the engine rotation direction acts on the output-side rotor 18 from the input-side rotor 28. Driven in the direction of engine rotation. Thus, the power from the engine 36 transmitted to the input side rotor 28 is transmitted to the output side rotor 18 by electromagnetic coupling between the rotor winding 30 of the input side rotor 28 and the permanent magnet 33 of the output side rotor 18. The The power transmitted to the output side rotor 18 is transmitted to the drive shaft 37 (wheels 38) after being shifted by the transmission 44, and used for forward driving of the load such as forward drive of the vehicle. Therefore, the wheel 38 can be rotationally driven in the forward direction using the power of the engine 36, and the vehicle can be driven in the forward direction. Further, since the rotation difference between the input side rotor 28 and the output side rotor 18 can be allowed, the engine 36 does not stall even if the rotation of the wheels 38 is stopped. Therefore, the rotating electrical machine 10 can function as a starting device, and there is no need to separately provide a starting device such as a friction clutch or a torque converter.
 さらに、ロータ巻線30に発生した交流電力は、スリップリング95及びブラシ96を介して取り出される。取り出された交流電力はインバータ41で直流に変換される。そして、インバータ40のスイッチング動作により、インバータ41からの直流電力がインバータ40で交流に変換されてからステータ巻線20に供給されることで、ステータ巻線20に交流電流が流れ、ステータ16に回転磁界が形成される。ステータ巻線20の電流による磁束が出力側ロータ18に作用するのに応じて、ステータ16から出力側ロータ18にエンジン回転方向のトルクToutを作用させることができる。これによって、出力側ロータ18のエンジン回転方向のトルクを増幅させるトルク増幅機能を実現することができる。また、インバータ41からの直流電力を蓄電装置42に回収することも可能である。 Further, AC power generated in the rotor winding 30 is taken out via the slip ring 95 and the brush 96. The extracted AC power is converted into DC by the inverter 41. Then, by the switching operation of the inverter 40, the DC power from the inverter 41 is converted into AC by the inverter 40 and then supplied to the stator winding 20, whereby an AC current flows through the stator winding 20 and rotates to the stator 16. A magnetic field is formed. The torque T out in the engine rotation direction can be applied from the stator 16 to the output side rotor 18 in response to the magnetic flux generated by the current of the stator winding 20 acting on the output side rotor 18. As a result, a torque amplification function for amplifying the torque of the output side rotor 18 in the engine rotation direction can be realized. It is also possible to collect DC power from the inverter 41 in the power storage device 42.
 さらに、蓄電装置42からステータ巻線20へ電力供給するようにインバータ40のスイッチング動作を制御することで、エンジン36の動力を用いて車輪38を正転方向に回転駆動するとともに、ステータ巻線20への供給電力を用いて発生させた出力側ロータ18の動力により車輪38の正転方向の回転駆動をアシストすることができる。また、負荷の減速運転時には、電子制御ユニット50は、ステータ巻線20から蓄電装置42へ電力回収するようにインバータ40のスイッチング動作を制御することで、負荷の動力をステータ巻線20と永久磁石33との電磁気結合によってステータ巻線20の電力に変換して蓄電装置42に回収することができる。 Further, by controlling the switching operation of the inverter 40 so that electric power is supplied from the power storage device 42 to the stator winding 20, the wheel 38 is rotated in the normal rotation direction using the power of the engine 36, and the stator winding 20. The rotational drive of the wheel 38 in the forward rotation direction can be assisted by the power of the output-side rotor 18 generated using the power supplied to the wheel. Further, at the time of load deceleration operation, the electronic control unit 50 controls the switching operation of the inverter 40 so that power is recovered from the stator winding 20 to the power storage device 42, so that the load power is transmitted to the stator winding 20 and the permanent magnet. The electric power of the stator winding 20 can be converted by the electromagnetic coupling with 33 and recovered in the power storage device 42.
 また、エンジン36の動力を用いずに回転電機10の動力を用いて負荷を駆動する(車輪38を回転駆動する)EV(Electric Vehicle)走行を行う場合は、電子制御ユニット50は、インバータ40のスイッチング動作を制御することで、負荷の駆動制御を行う。例えば、電子制御ユニット50は、蓄電装置42からの直流電力を交流に変換してステータ巻線20へ供給するように、インバータ40のスイッチング動作を制御することで、ステータ巻線20への供給電力をステータ巻線20と永久磁石33との電磁気結合によって出力側ロータ18の動力に変換し、駆動軸37(車輪38)を回転駆動する。このように、エンジン36が動力を発生していなくても、ステータ巻線20への電力供給により車輪38を回転駆動することができる。 In addition, when EV (Electric Vehicle) traveling is performed by driving the load using the power of the rotating electrical machine 10 without using the power of the engine 36 (rotating and driving the wheel 38), the electronic control unit 50 is connected to the inverter 40. By controlling the switching operation, drive control of the load is performed. For example, the electronic control unit 50 controls the switching operation of the inverter 40 so that the DC power from the power storage device 42 is converted into AC and supplied to the stator winding 20, thereby supplying power to the stator winding 20. Is converted into power of the output-side rotor 18 by electromagnetic coupling between the stator winding 20 and the permanent magnet 33, and the drive shaft 37 (wheel 38) is rotationally driven. Thus, even if the engine 36 is not generating power, the wheels 38 can be rotationally driven by supplying power to the stator winding 20.
 また、エンジン36の始動を行う場合は、電子制御ユニット50は、蓄電装置42からの直流電力を交流に変換してブラシ96及びスリップリング95を介してロータ巻線30へ供給するようインバータ41のスイッチング動作を制御することで、ロータ巻線30の交流電流により出力側ロータ18から入力側ロータ28にエンジン回転方向のトルクTinを作用させる。これによって、エンジン36のクランキングを行う。 When starting the engine 36, the electronic control unit 50 converts the DC power from the power storage device 42 into AC and supplies it to the rotor winding 30 via the brush 96 and the slip ring 95. By controlling the switching operation, a torque Tin in the engine rotation direction is applied from the output side rotor 18 to the input side rotor 28 by the alternating current of the rotor winding 30. Thereby, the cranking of the engine 36 is performed.
 ここで、ステータ16及び出力側ロータ18において、永久磁石33による起磁力がステータ16に作用する方向、より具体的には、軟磁性材53の外周面62のロータ周方向中央位置を通る磁石磁束の方向をd軸(磁束軸)とし、d軸と電気角で90°ずれた位置(外周面62のロータ周方向端部位置)をq軸(トルク軸)とする。そして、軟磁性材53の外周面62において、ロータ周方向中央位置を通るd軸磁束を最大にする(ロータ周方向端部位置を通るq軸磁束を最小にする)ためのステータ巻線20の電流をd軸電流とし、ロータ周方向端部位置を通るq軸磁束を最大にする(ロータ周方向中央位置を通るd軸磁束を最小にする)ためのステータ巻線20の電流をq軸電流とする。同様に、入力側ロータ28及び出力側ロータ18において、永久磁石33による起磁力が入力側ロータ28に作用する方向、より具体的には、軟磁性材53の内周面61のロータ周方向中央位置を通る磁石磁束の方向をd軸とし、d軸と電気角で90°ずれた位置(内周面61のロータ周方向端部位置)をq軸とする。そして、軟磁性材53の内周面61において、ロータ周方向中央位置を通るd軸磁束を最大にする(ロータ周方向端部位置を通るq軸磁束を最小にする)ためのロータ巻線30の電流をd軸電流とし、ロータ周方向端部位置を通るq軸磁束を最大にする(ロータ周方向中央位置を通るd軸磁束を最小にする)ためのロータ巻線30の電流をq軸電流とする。 Here, in the stator 16 and the output-side rotor 18, the magnetic flux that passes through the rotor circumferential direction center position of the outer peripheral surface 62 of the outer peripheral surface 62 of the soft magnetic material 53 in the direction in which the magnetomotive force by the permanent magnet 33 acts on the stator 16. Is the d-axis (magnetic flux axis), and the position shifted by 90 ° in electrical angle from the d-axis (the rotor circumferential end position of the outer peripheral surface 62) is the q-axis (torque axis). And on the outer peripheral surface 62 of the soft magnetic material 53, the stator winding 20 for maximizing the d-axis magnetic flux passing through the rotor circumferential center position (minimizing the q-axis magnetic flux passing through the rotor circumferential end position). The current of the stator winding 20 for maximizing the q-axis magnetic flux passing through the rotor circumferential end position (minimizing the d-axis magnetic flux passing through the rotor circumferential center position) is the q-axis current. And Similarly, in the input side rotor 28 and the output side rotor 18, the direction in which the magnetomotive force by the permanent magnet 33 acts on the input side rotor 28, more specifically, the center in the rotor circumferential direction of the inner peripheral surface 61 of the soft magnetic material 53. The direction of the magnet magnetic flux passing through the position is taken as the d-axis, and the position shifted from the d-axis by an electrical angle of 90 ° (rotor circumferential end position of the inner peripheral surface 61) is taken as the q-axis. Then, on the inner peripheral surface 61 of the soft magnetic material 53, the rotor winding 30 for maximizing the d-axis magnetic flux passing through the rotor circumferential center position (minimizing the q-axis magnetic flux passing through the rotor circumferential end position). Current in the rotor winding 30 for maximizing the q-axis magnetic flux passing through the rotor circumferential end position (minimizing the d-axis magnetic flux passing through the rotor circumferential center position) Let it be current.
 ロータ巻線30にd軸電流が流れた場合におけるd軸磁束の流れを図5に示す。図5の矢印に示すように、ロータ巻線30のd軸電流によるd軸磁束は、入力側ロータ28(ティース52a)から軟磁性材53-1の内周面61-1に作用し、軟磁性材53-1を内周面61-1から外周面62-1へ流れ、ステータ16(ティース51a)に作用してステータ巻線20に鎖交する。さらに、ステータ16を流れるd軸磁束は、ティース51aから軟磁性材53-2の外周面62-2に作用し、軟磁性材53-2を外周面62-2から内周面61-2へ流れ、入力側ロータ28(ティース52a)に戻る。図4,5の矢印に示すように、ロータ巻線30のd軸電流によるd軸磁束が、入力側ロータ28にとっては永久磁石33による界磁磁束と逆方向に振る舞うとともに、ステータ16にとっては永久磁石33による界磁磁束と同方向に振る舞う。そのため、永久磁石33により入力側ロータ28に作用する界磁磁束を弱めるように、ロータ巻線30のd軸電流によりd軸磁束を発生させることで、永久磁石33によりステータ16に作用する界磁磁束を強めることができる。また、永久磁石33により入力側ロータ28に作用する界磁磁束を強めるように、ロータ巻線30のd軸電流によりd軸磁束を発生させることで、永久磁石33によりステータ16に作用する界磁磁束を弱めることもできる。このように、ロータ巻線30のd軸電流によるd軸磁束は、軟磁性材53の内周面61と外周面62間を流れてステータ16に作用することで、ステータ巻線20への鎖交磁束に影響を与える。 FIG. 5 shows the flow of the d-axis magnetic flux when the d-axis current flows through the rotor winding 30. As indicated by the arrows in FIG. 5, the d-axis magnetic flux due to the d-axis current of the rotor winding 30 acts on the inner peripheral surface 61-1 of the soft magnetic material 53-1 from the input side rotor 28 (tooth 52a), and soft The magnetic material 53-1 flows from the inner peripheral surface 61-1 to the outer peripheral surface 62-1, and acts on the stator 16 (the teeth 51a) to interlink with the stator winding 20. Further, the d-axis magnetic flux flowing through the stator 16 acts on the outer peripheral surface 62-2 of the soft magnetic material 53-2 from the teeth 51a, and the soft magnetic material 53-2 moves from the outer peripheral surface 62-2 to the inner peripheral surface 61-2. The flow returns to the input side rotor 28 (tooth 52a). As indicated by the arrows in FIGS. 4 and 5, the d-axis magnetic flux due to the d-axis current of the rotor winding 30 behaves in the opposite direction to the field magnetic flux generated by the permanent magnet 33 for the input side rotor 28 and is permanent for the stator 16. It behaves in the same direction as the field magnetic flux generated by the magnet 33. Therefore, the field magnet acting on the stator 16 by the permanent magnet 33 is generated by generating the d-axis flux by the d-axis current of the rotor winding 30 so as to weaken the field flux acting on the input side rotor 28 by the permanent magnet 33. Magnetic flux can be strengthened. In addition, the field magnet acting on the stator 16 by the permanent magnet 33 is generated by generating the d-axis flux by the d-axis current of the rotor winding 30 so that the field flux acting on the input side rotor 28 by the permanent magnet 33 is strengthened. Magnetic flux can be weakened. In this way, the d-axis magnetic flux due to the d-axis current of the rotor winding 30 flows between the inner peripheral surface 61 and the outer peripheral surface 62 of the soft magnetic material 53 and acts on the stator 16, thereby causing a chain to the stator winding 20. Affects the magnetic flux.
 一方、ロータ巻線30にq軸電流が流れた場合におけるq軸磁束の流れを図6に示す。図6に示すように、ロータ巻線30のq軸電流によるq軸磁束は、入力側ロータ28(ティース52a)から軟磁性材53-1の内周面61-1に作用し、軟磁性材53-1を流れる。ただし、d軸磁束と比較して、軟磁性材53-1の外周面62-2からステータ16(ティース51a)に作用するq軸磁束は少なく、軟磁性材53-1を流れるq軸磁束の多くが、軟磁性材53-1の内周面61-1から入力側ロータ28(ティース52a)に戻る。軟磁性材53-2におけるq軸磁束の流れも、軟磁性材53-1と同様である。したがって、d軸磁束と比較して、ロータ巻線30のq軸電流によるq軸磁束がステータ巻線20への鎖交磁束に与える影響は少ない。 On the other hand, the flow of the q-axis magnetic flux when the q-axis current flows through the rotor winding 30 is shown in FIG. As shown in FIG. 6, the q-axis magnetic flux due to the q-axis current of the rotor winding 30 acts on the inner peripheral surface 61-1 of the soft magnetic material 53-1, from the input side rotor 28 (tooth 52a), and the soft magnetic material. It flows through 53-1. However, compared with the d-axis magnetic flux, the q-axis magnetic flux acting on the stator 16 (the teeth 51a) from the outer peripheral surface 62-2 of the soft magnetic material 53-1 is small, and the q-axis magnetic flux flowing through the soft magnetic material 53-1 is small. Most of them return from the inner peripheral surface 61-1 of the soft magnetic material 53-1 to the input side rotor 28 (tooth 52a). The flow of the q-axis magnetic flux in the soft magnetic material 53-2 is the same as that of the soft magnetic material 53-1. Therefore, compared to the d-axis magnetic flux, the q-axis magnetic flux due to the q-axis current of the rotor winding 30 has less influence on the linkage magnetic flux to the stator winding 20.
 また、ステータ巻線20にd軸電流が流れた場合におけるd軸磁束の流れを図7に示す。図7の矢印に示すように、ステータ巻線20のd軸電流によるd軸磁束は、ステータ16(ティース51a)から軟磁性材53-1の外周面62-1に作用し、軟磁性材53-1を外周面62-1から内周面61-1へ流れ、入力側ロータ28(ティース52a)に作用してロータ巻線30に鎖交する。さらに、入力側ロータ28を流れるd軸磁束は、ティース52aから軟磁性材53-2の内周面61-2に作用し、軟磁性材53-2を内周面61-2から外周面62-2へ流れ、ステータ16(ティース51a)に戻る。図4,7の矢印に示すように、ステータ巻線20のd軸電流によるd軸磁束が、ステータ16にとっては永久磁石33による界磁磁束と逆方向に振る舞うとともに、入力側ロータ28にとっては永久磁石33による界磁磁束と同方向に振る舞う。そのため、永久磁石33によりステータ16に作用する界磁磁束を弱めるように、ステータ巻線20のd軸電流によりd軸磁束を発生させることで、永久磁石33により入力側ロータ28に作用する界磁磁束を強めることができる。また、永久磁石33によりステータ16に作用する界磁磁束を強めるように、ステータ巻線20のd軸電流によりd軸磁束を発生させることで、永久磁石33により入力側ロータ28に作用する界磁磁束を弱めることもできる。このように、ステータ巻線20のd軸電流によるd軸磁束は、軟磁性材53の外周面62と内周面61間を流れて入力側ロータ28に作用することで、ロータ巻線30への鎖交磁束に影響を与える。 FIG. 7 shows the flow of the d-axis magnetic flux when the d-axis current flows through the stator winding 20. As shown by the arrows in FIG. 7, the d-axis magnetic flux due to the d-axis current of the stator winding 20 acts on the outer peripheral surface 62-1 of the soft magnetic material 53-1, from the stator 16 (tooth 51a), and the soft magnetic material 53 -1 flows from the outer peripheral surface 62-1 to the inner peripheral surface 61-1, and acts on the input side rotor 28 (tooth 52a) to interlink with the rotor winding 30. Further, the d-axis magnetic flux flowing through the input side rotor 28 acts on the inner peripheral surface 61-2 of the soft magnetic material 53-2 from the teeth 52a, and the soft magnetic material 53-2 is changed from the inner peripheral surface 61-2 to the outer peripheral surface 62. -2 to return to the stator 16 (the teeth 51a). As shown by arrows in FIGS. 4 and 7, the d-axis magnetic flux due to the d-axis current of the stator winding 20 behaves in the opposite direction to the field magnetic flux generated by the permanent magnet 33 for the stator 16 and is permanent for the input-side rotor 28. It behaves in the same direction as the field magnetic flux generated by the magnet 33. Therefore, by generating a d-axis magnetic flux by the d-axis current of the stator winding 20 so as to weaken the field magnetic flux acting on the stator 16 by the permanent magnet 33, the field magnet acting on the input-side rotor 28 by the permanent magnet 33. Magnetic flux can be strengthened. Further, the field magnet acting on the input side rotor 28 by the permanent magnet 33 is generated by generating the d-axis flux by the d-axis current of the stator winding 20 so as to strengthen the field flux acting on the stator 16 by the permanent magnet 33. Magnetic flux can be weakened. In this way, the d-axis magnetic flux due to the d-axis current of the stator winding 20 flows between the outer peripheral surface 62 and the inner peripheral surface 61 of the soft magnetic material 53 and acts on the input-side rotor 28, so that the rotor winding 30. Affects the flux linkage.
 一方、ステータ巻線20にq軸電流が流れた場合におけるq軸磁束の流れを図8に示す。図8に示すように、ステータ巻線20のq軸電流によるq軸磁束は、ステータ16(ティース51a)から軟磁性材53-1の外周面62-1に作用し、軟磁性材53-1を流れる。ただし、d軸磁束と比較して、軟磁性材53-1の内周面61-1から入力側ロータ28(ティース52a)に作用するq軸磁束は少なく、軟磁性材53-1を流れるq軸磁束の多くが、軟磁性材53-1の外周面62-1からステータ16(ティース51a)に戻る。軟磁性材53-2におけるq軸磁束の流れも、軟磁性材53-1と同様である。したがって、d軸磁束と比較して、ステータ巻線20のq軸電流によるq軸磁束がロータ巻線30への鎖交磁束に与える影響は少ない。 On the other hand, the flow of the q-axis magnetic flux when the q-axis current flows through the stator winding 20 is shown in FIG. As shown in FIG. 8, the q-axis magnetic flux due to the q-axis current of the stator winding 20 acts on the outer peripheral surface 62-1 of the soft magnetic material 53-1, from the stator 16 (tooth 51a), and the soft magnetic material 53-1. Flowing. However, compared to the d-axis magnetic flux, the q-axis magnetic flux acting on the input-side rotor 28 (tooth 52a) from the inner peripheral surface 61-1 of the soft magnetic material 53-1 is small, and the q flowing through the soft magnetic material 53-1. Most of the axial magnetic flux returns from the outer peripheral surface 62-1 of the soft magnetic material 53-1 to the stator 16 (tooth 51a). The flow of the q-axis magnetic flux in the soft magnetic material 53-2 is the same as that of the soft magnetic material 53-1. Therefore, compared with the d-axis magnetic flux, the q-axis magnetic flux due to the q-axis current of the stator winding 20 has less influence on the linkage magnetic flux to the rotor winding 30.
 したがって、ロータ巻線30及びステータ巻線20に交流電流を流す場合は、ロータ巻線30のd軸電流成分によるd軸磁束成分が、入力側ロータ28に作用する永久磁石33による界磁磁束を弱めるとともに、ステータ16に作用する永久磁石33による界磁磁束を強めることができる。つまり、ロータ巻線30のd軸電流成分によるd軸磁束成分を、自身の弱め界磁磁束とするとともに、ステータ巻線20の強め界磁磁束とすることができる。この強め界磁磁束がステータ巻線20のq軸電流成分と相互作用することで、ステータ16と出力側ロータ18間に磁石トルクやリラクタンストルクとは別に追加のトルクが発生し、トルク増幅効果が得られる。その際には、従来の強め界磁制御と異なり、ロータ巻線30自身の弱め界磁を利用しているため、ロータ巻線30の逆起電圧を抑制しつつ、ステータ16と出力側ロータ18間のトルクToutを増幅させることができる。 Therefore, when an alternating current is passed through the rotor winding 30 and the stator winding 20, the d-axis magnetic flux component due to the d-axis current component of the rotor winding 30 is the field magnetic flux generated by the permanent magnet 33 acting on the input-side rotor 28. While weakening, the field magnetic flux by the permanent magnet 33 which acts on the stator 16 can be strengthened. That is, the d-axis magnetic flux component due to the d-axis current component of the rotor winding 30 can be used as the field-weakening magnetic flux of the rotor winding 30 and the field-enhancing magnetic flux of the stator winding 20. This strong field magnetic flux interacts with the q-axis current component of the stator winding 20, so that additional torque is generated between the stator 16 and the output-side rotor 18 in addition to the magnet torque and reluctance torque. can get. In this case, unlike the conventional strong field control, the field weakening of the rotor winding 30 itself is used, so that the counter electromotive voltage of the rotor winding 30 is suppressed and the stator 16 and the output-side rotor 18 are controlled. The torque T out can be amplified.
 同様に、ロータ巻線30及びステータ巻線20に交流電流を流す場合は、ステータ巻線20のd軸電流成分によるd軸磁束成分が、ステータ16に作用する永久磁石33による界磁磁束を弱めるとともに、入力側ロータ28に作用する永久磁石33による界磁磁束を強めることができる。つまり、ステータ巻線20のd軸電流成分によるd軸磁束成分を、自身の弱め界磁磁束とするとともに、ロータ巻線30の強め界磁磁束とすることができる。この強め界磁磁束がロータ巻線30のq軸電流成分と相互作用することで、入力側ロータ28と出力側ロータ18間にも追加のトルクが発生し、トルク増幅効果が得られる。その際には、従来の強め界磁制御と異なり、ステータ巻線20自身の弱め界磁を利用しているため、ステータ巻線20の逆起電圧を抑制しつつ、入力側ロータ28と出力側ロータ18間のトルクTinを増幅させることができる。したがって、ロータ巻線30及びステータ巻線20の逆起電圧を抑制しつつ、入力側ロータ28と出力側ロータ18間のトルクTinと、ステータ16と出力側ロータ18間のトルクToutが相互に強め合う相乗効果が得られる。その結果、永久磁石33の量を低減することができる。 Similarly, when an alternating current is passed through the rotor winding 30 and the stator winding 20, the d-axis magnetic flux component due to the d-axis current component of the stator winding 20 weakens the field magnetic flux due to the permanent magnet 33 acting on the stator 16. At the same time, the field magnetic flux by the permanent magnet 33 acting on the input side rotor 28 can be increased. In other words, the d-axis magnetic flux component due to the d-axis current component of the stator winding 20 can be used as the field weakening magnetic flux of the stator winding 20 and the strong field magnetic flux of the rotor winding 30. This strong field magnetic flux interacts with the q-axis current component of the rotor winding 30, whereby additional torque is generated between the input side rotor 28 and the output side rotor 18, and a torque amplification effect is obtained. In this case, unlike the conventional strong field control, the field weakening of the stator winding 20 itself is used, and therefore, the input side rotor 28 and the output side rotor 18 are suppressed while suppressing the back electromotive voltage of the stator winding 20. The torque T in between can be amplified. Therefore, the torque T in between the input side rotor 28 and the output side rotor 18 and the torque T out between the stator 16 and the output side rotor 18 are mutually reduced while suppressing the back electromotive voltage of the rotor winding 30 and the stator winding 20. A synergistic effect can be obtained. As a result, the amount of permanent magnets 33 can be reduced.
 また、ロータ巻線30及びステータ巻線20に交流電流を流す場合は、ロータ巻線30のd軸電流成分によるd軸磁束成分が、入力側ロータ28に作用する永久磁石33による界磁磁束を強めるとともに、ステータ16に作用する永久磁石33による界磁磁束を弱めることもできる。これによって、ステータ巻線20の逆起電圧を抑制しつつ、入力側ロータ28と出力側ロータ18間のトルクTinを増幅させることができる。同様に、ステータ巻線20のd軸電流成分によるd軸磁束成分が、ステータ16に作用する永久磁石33による界磁磁束を強めるとともに、入力側ロータ28に作用する永久磁石33による界磁磁束を弱めることもできる。これによって、ロータ巻線30の逆起電圧を抑制しつつ、ステータ16と出力側ロータ18間のトルクToutを増幅させることができる。 Further, when an alternating current is passed through the rotor winding 30 and the stator winding 20, the d-axis magnetic flux component due to the d-axis current component of the rotor winding 30 causes the field magnetic flux generated by the permanent magnet 33 acting on the input-side rotor 28. While strengthening, the field magnetic flux by the permanent magnet 33 which acts on the stator 16 can also be weakened. Thus, while suppressing the back EMF of the stator winding 20, it is possible to amplify the torque T in between the output side rotor 18 and the input side rotor 28. Similarly, the d-axis magnetic flux component due to the d-axis current component of the stator winding 20 strengthens the field magnetic flux due to the permanent magnet 33 acting on the stator 16 and the field magnetic flux due to the permanent magnet 33 acting on the input-side rotor 28. It can also be weakened. Thus, the torque T out between the stator 16 and the output side rotor 18 can be amplified while suppressing the back electromotive voltage of the rotor winding 30.
 このように、回転電機10においては、ロータ巻線30の電流による磁束とステータ巻線20の電流による磁束が互いに磁気干渉し合い、ロータ巻線30の電流によりステータ巻線20への鎖交磁束を調整することができるとともに、ステータ巻線20の電流によりロータ巻線30への鎖交磁束を調整することができる。ロータ巻線30の電流による磁束とステータ巻線20の電流による磁束との磁気干渉を利用する場合、入力側ロータ28と出力側ロータ18間のトルクTin、及びステータ16と出力側ロータ18間のトルクToutをそれぞれ要求値にするためのロータ巻線30の電流Iinとステータ巻線20の電流Ioutの組み合わせは無数に存在する。例えばTin=0,Tout=90Nmを発生するIin,Ioutの組み合わせの関係を図9に示す。図9においては、ロータ巻線30の電流進角βin=90°、ステータ巻線20の電流進角βout=30°とし、横軸のIin及び縦軸のIoutについては、Iin=0でTout=90Nmを発生するIout(磁気干渉を利用しない電流値)で割って正規化している。図9に示すように、磁気干渉を利用することで、Tin=0,Tout=90Nmを発生するIin,Ioutの組み合わせが無数に存在することがわかる。 Thus, in the rotating electrical machine 10, the magnetic flux due to the current of the rotor winding 30 and the magnetic flux due to the current of the stator winding 20 interfere with each other, and the interlinkage magnetic flux to the stator winding 20 due to the current of the rotor winding 30. Can be adjusted, and the flux linkage to the rotor winding 30 can be adjusted by the current of the stator winding 20. When using magnetic interference between the magnetic flux due to the current of the rotor winding 30 and the magnetic flux due to the current of the stator winding 20, the torque T in between the input side rotor 28 and the output side rotor 18, and between the stator 16 and the output side rotor 18. There are an infinite number of combinations of the current I in of the rotor winding 30 and the current I out of the stator winding 20 in order to set the torque T out of the rotor to the required value. For example, FIG. 9 shows the relationship between combinations of I in and I out that generate T in = 0 and T out = 90 Nm. In FIG. 9, the current advance angle β in = 90 ° of the rotor winding 30 and the current advance angle β out = 30 ° of the stator winding 20, and the horizontal axis I in and the vertical axis I out are I in It is normalized by dividing by I out (current value not using magnetic interference) that generates T out = 90 Nm at = 0. As shown in FIG. 9, it can be seen that there are innumerable combinations of I in and I out that generate T in = 0 and T out = 90 Nm by using magnetic interference.
 回転電機10のロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御するための電子制御ユニット50の機能ブロック図の一例を図10に示す。カップリングトルク指令値演算部135は、例えばアクセル開度A(車輪38の要求駆動力)と車速V(車輪38の回転速度)とに基づいて、入力側ロータ28と出力側ロータ18間に作用する電磁カップリングトルクの指令値Tin_refを演算する。MGトルク指令値演算部155は、例えばアクセル開度A(車輪38の要求駆動力)と、カップリングトルク指令値演算部135で演算された電磁カップリングトルク指令値Tin_refとに基づいて、ステータ16と出力側ロータ18間に作用するMGトルクの指令値Tout_refを演算する。 FIG. 10 shows an example of a functional block diagram of the electronic control unit 50 for controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 of the rotating electrical machine 10. The coupling torque command value calculation unit 135 acts between the input-side rotor 28 and the output-side rotor 18 based on, for example, the accelerator opening A (required driving force of the wheel 38) and the vehicle speed V (rotational speed of the wheel 38). A command value T in_ref of the electromagnetic coupling torque to be calculated is calculated. The MG torque command value calculation unit 155 is based on, for example, the accelerator opening A (the requested driving force of the wheel 38) and the electromagnetic coupling torque command value T in_ref calculated by the coupling torque command value calculation unit 135. A command value T out_ref of the MG torque acting between the rotor 16 and the output side rotor 18 is calculated.
 電流指令値設定部136は、カップリングトルク指令値演算部135で演算された電磁カップリングトルク指令値Tin_refと、MGトルク指令値演算部155で演算されたMGトルク指令値Tout_refとに基づいて、ロータ巻線30のd軸電流指令値Iin_d_ref及びq軸電流指令値Iin_q_refと、ステータ巻線20のd軸電流指令値Iout_d_ref及びq軸電流指令値Iout_q_refとを設定する。モデル記憶部172は、ロータ巻線30の鎖交磁束Φin及びステータ巻線20の鎖交磁束Φoutを演算するためのモデル式(物理式)を記憶する。前述のように、回転電機10においては、ロータ巻線30の電流Iinによる磁束とステータ巻線20の電流Ioutによる磁束が互いに磁気干渉し合うため、ロータ巻線30の鎖交磁束Φinは、ロータ巻線30の電流Iinによって変化するだけでなく、ステータ巻線20の電流Ioutによっても変化し、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutの関数となる。同様に、ステータ巻線20の鎖交磁束Φoutも、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutの関数となる。そこで、モデル記憶部172は、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutに対するロータ巻線30の鎖交磁束Φinの関係を表す磁気干渉モデル(第1磁気干渉モデル)と、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutに対するステータ巻線20の鎖交磁束Φoutの関係を表す磁気干渉モデル(第2磁気干渉モデル)とを記憶する。電流指令値設定部136は、モデル記憶部172に記憶された第1及び第2磁気干渉モデルを読み出し、設定された制約条件を満たし、回転電機10の性能に関わる評価関数fを最適化するためのロータ巻線30の電流指令値Iin_d_ref,Iin_q_ref及びステータ巻線20の電流指令値Iout_d_ref,Iout_q_refを、第1及び第2磁気干渉モデルを用いて演算する。ここでの制約条件は、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutの少なくとも1つ以上を用いた条件を含み、ここでの評価関数fは、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutの関数であり、例えばロータ巻線30とステータ巻線20の温度差に応じた重み付けでロータ巻線30の発熱量とステータ巻線20の発熱量を加算した重み付け発熱量を表す関数とすることが可能である。その際に、ロータ巻線30の温度τinはロータ巻線温度センサ81により検出され、ステータ巻線20の温度τoutはステータ巻線温度センサ82により検出される。 The current command value setting unit 136 is based on the electromagnetic coupling torque command value T in_ref calculated by the coupling torque command value calculating unit 135 and the MG torque command value T out_ref calculated by the MG torque command value calculating unit 155. Te, set the d-axis current command value I In_d_ref and q-axis current command value I In_q_ref the rotor windings 30, and a d-axis current command value I Out_d_ref and q-axis current command value I Out_q_ref stator windings 20. The model storage unit 172 stores a model formula (physical formula) for calculating the linkage flux Φ in of the rotor winding 30 and the linkage flux Φ out of the stator winding 20. As described above, in the rotary electric machine 10, the magnetic flux due to the current I out of the flux and the stator winding 20 by current I in the rotor windings 30 are mutually magnetically interfere with one another, the rotor windings 30 flux linkage [Phi in not only changed by the current I in the rotor windings 30, also varies with current I out of the stator winding 20, the function of the current I out of the current I in and the stator windings 20 of the rotor windings 30 Become. Similarly, the interlinkage magnetic flux Φ out of the stator winding 20 is also a function of the current I in of the rotor winding 30 and the current I out of the stator winding 20. Therefore, the model storage unit 172, magnetic interference model representing the relationship between flux linkage [Phi in the rotor windings 30 with respect to the current I out of the current I in and the stator windings 20 of the rotor windings 30 (first magnetic interference model) And a magnetic interference model (second magnetic interference model) representing the relationship of the interlinkage magnetic flux Φ out of the stator winding 20 with respect to the current I in of the rotor winding 30 and the current I out of the stator winding 20. The current command value setting unit 136 reads the first and second magnetic interference models stored in the model storage unit 172, satisfies the set constraints, and optimizes the evaluation function f related to the performance of the rotating electrical machine 10. of the rotor winding 30 of the current command value I in_d_ref, I in_q_ref and stator windings 20 of the current command value I out_d_ref, the I out_q_ref, is calculated using the first and second magnetic interference model. The constraint condition here includes a condition using at least one of the current I in of the rotor winding 30 and the current I out of the stator winding 20, and the evaluation function f here is the current of the rotor winding 30. I in and the current I out of the stator winding 20, for example, the amount of heat generated by the rotor winding 30 and the amount of heat generated by the stator winding 20 by weighting according to the temperature difference between the rotor winding 30 and the stator winding 20. It is possible to use a function representing the added weighted heat generation amount. At that time, the temperature τ in of the rotor winding 30 is detected by the rotor winding temperature sensor 81, and the temperature τ out of the stator winding 20 is detected by the stator winding temperature sensor 82.
 ロータ巻線電流制御部140は、ロータ巻線30のd軸電流Iin_d及びq軸電流Iin_qが電流指令値設定部136で設定されたd軸電流指令値Iin_d_ref及びq軸電流指令値Iin_q_refにそれぞれ一致するように、インバータ41のスイッチング動作(インバータ41での電力変換)を制御する。ステータ巻線電流制御部160は、ステータ巻線20のd軸電流Iout_d及びq軸電流Iout_qが電流指令値設定部136で設定されたd軸電流指令値Iout_d_ref及びq軸電流指令値Iout_q_refにそれぞれ一致するように、インバータ40のスイッチング動作(インバータ40での電力変換)を制御する。これによって、入力側ロータ28と出力側ロータ18間の電磁カップリングトルクTinがトルク指令値Tin_refに一致するように制御されるとともに、ステータ16と出力側ロータ18間のMGトルクToutがトルク指令値Tout_refに一致するように制御される。 The rotor winding current control unit 140 includes a d-axis current command value I in_d_ref and a q-axis current command value I in which the d-axis current I in_d and the q-axis current I in_q of the rotor winding 30 are set by the current command value setting unit 136. The switching operation of the inverter 41 (power conversion in the inverter 41) is controlled so as to match each of in_q_ref . The stator winding current control unit 160 includes a d-axis current command value I out_d_ref and a q-axis current command value I in which the d-axis current I out_d and the q-axis current I out_q of the stator winding 20 are set by the current command value setting unit 136. The switching operation of the inverter 40 (power conversion in the inverter 40) is controlled so as to match each out_q_ref . Thus, the electromagnetic coupling torque T in between the input side rotor 28 and the output side rotor 18 is controlled to coincide with the torque command value T in_ref , and the MG torque T out between the stator 16 and the output side rotor 18 is Control is performed so as to coincide with the torque command value Tout_ref .
 回転電機10において、入力側ロータ28と出力側ロータ18間の電磁カップリングトルクTinは以下の(1)式で表され、ステータ16と出力側ロータ18間のMGトルクToutは以下の(2)式で表され、ロータ巻線30の電圧Vinは以下の(3)式で表され、ステータ巻線20の電圧Voutは以下の(4)式で表され、ロータ巻線30の電流Iinは以下の(5)式で表され、ステータ巻線20の電流Ioutは以下の(6)式で表される。そして、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す評価関数fは、以下の(7)式で表される。(1)~(7)式において、Iin_dはロータ巻線30のd軸電流、Iin_qはロータ巻線30のq軸電流、Iout_dはステータ巻線20のd軸電流、Iout_qはステータ巻線20のq軸電流、Φin_dはロータ巻線30のd軸鎖交磁束、Φin_qはロータ巻線30のq軸鎖交磁束、Φout_dはステータ巻線20のd軸鎖交磁束、Φout_qはステータ巻線20のq軸鎖交磁束、Rinはロータ巻線30の相抵抗、Routはステータ巻線20の相抵抗、Pinは入力側ロータ28及び出力側ロータ18による誘導電磁カップリング部の極数、Poutはステータ16及び出力側ロータ18によるPMモータ部の極数、ωinは入力側ロータ28の回転角速度、ωoutは出力側ロータ18の回転角速度である。(7)式において、α,1-αは、0≦α≦1を満たす重み係数であり、ステータ巻線20とロータ巻線30の温度差τout-τinに応じて設定される。 In the rotating electrical machine 10, the electromagnetic coupling torque T in between the input side rotor 28 and the output side rotor 18 is expressed by the following equation (1), and the MG torque T out between the stator 16 and the output side rotor 18 is 2), the voltage V in of the rotor winding 30 is expressed by the following equation (3), and the voltage V out of the stator winding 20 is expressed by the following equation (4). The current I in is expressed by the following equation (5), and the current I out of the stator winding 20 is expressed by the following equation (6). The evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 is expressed by the following equation (7). (1) to (7), I IN - D is d-axis current of the rotor winding 30, I in_q the q-axis current of the rotor winding 30, I OUT_D the d-axis current of the stator windings 20, I OUT_Q the stator q-axis current in the winding 20, [Phi iN - d is d-axis flux linkage of the rotor windings 30, Φ in_q the q-axis flux linkage of the rotor windings 30, [Phi OUT_D the d-axis flux linkage of the stator windings 20, [Phi OUT_Q the q-axis flux linkage of the stator windings 20, induced by R in the phase resistance of the rotor winding 30, the phase resistance R out the stator windings 20, P in is the input side rotor 28 and the output side rotor 18 the number of poles of electromagnetic coupling portions, P out is the number of poles of the PM motor with the stator 16 and the output rotor 18, the omega in angular velocity of the input side rotor 28, the omega out is the angular velocity of the output side rotor 18 In the equation (7), α, 1−α is a weighting coefficient that satisfies 0 ≦ α ≦ 1, and is set according to the temperature difference τ out −τ in between the stator winding 20 and the rotor winding 30.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1磁気干渉モデルにおいて、ロータ巻線30のd軸鎖交磁束Φin_d(d軸鎖交磁束に関わるモデル)は、Iin_d,Iin_q,Iout_d,Iout_qの関数である以下の(8)式で表すことが可能である。 In the first magnetic interference model, the d-axis linkage magnetic flux Φ in_d (model relating to the d-axis linkage flux) of the rotor winding 30 is a function of I in_d , I in_q , I out_d , I out_q (8 ) Expression.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 (8)式の右辺の分子において、Cd2はd軸の磁気干渉の度合いを表す係数、fm’2は永久磁石33の起磁力によるd軸起磁力である。(Iin_d-Cd2*Iout_d-fm’2)は、Iin_dとIout_dを設定比率1:Cd2で合成したd軸起磁力に関わるモデル式であり、Iin_dによる起磁力とIout_dによる起磁力との磁気干渉を考慮した、入力側ロータ28に作用するd軸の起磁力総和を表す。そして、Lは誘導電磁カップリング部のd軸インダクタンス(Iin_d=Iout_d=0)、Lddは誘導電磁カップリング部のd軸インダクタンスのIout_dによる変化率を表し、(L+Ldd*|Iout_d|)は、誘導電磁カップリング部の無負荷時(Iin_d=0)のd軸インダクタンスを表す。したがって、(8)式の右辺の分子は、d軸の起磁力総和と誘導電磁カップリング部の無負荷時のd軸インダクタンスとの積に相当し、d軸磁気回路に磁気飽和が発生しない場合において、Iin_dによる磁束とIout_dによる磁束との磁気干渉を考慮したロータ巻線30のd軸鎖交磁束を表す。 In the numerator on the right side of the equation (8), C d2 is a coefficient indicating the degree of d-axis magnetic interference, and fm′2 is the d-axis magnetomotive force due to the magnetomotive force of the permanent magnet 33. (I in_d -C d2 * I out_d -f m'2) is, I IN - D and set the I OUT_D ratio 1: model equation relating the synthesized d JikuOkoshi magnetic force C d2, the magnetomotive force due to I IN - D and I The sum of magnetomotive force of d axis acting on the input side rotor 28 in consideration of magnetic interference with the magnetomotive force due to out_d . Then, L d is the induction coupling portion of the d-axis inductance (I in_d = I out_d = 0 ), L dd represents the rate of change due to I OUT_D the d-axis inductance of the inductive electromagnetic coupling portions, (L d + L dd * | Iout_d |) represents the d-axis inductance of the induction electromagnetic coupling unit when there is no load ( Iin_d = 0). Therefore, the numerator on the right side of the equation (8) corresponds to the product of the sum of the d-axis magnetomotive force and the d-axis inductance of the induction electromagnetic coupling unit when there is no load, and no magnetic saturation occurs in the d-axis magnetic circuit. in represents a d-axis flux linkage of the rotor winding 30 in consideration of the magnetic interference between the magnetic flux by the magnetic flux and I OUT_D by I iN - d.
 一方、(8)式の右辺の分母において、Cd1はd軸の磁気干渉の度合いを表す係数、fm’1は永久磁石33の起磁力によるd軸起磁力、kddは誘導電磁カップリング部固有の定数であり、|Iin_d-Cd1*Iout_d-fm’1|は、d軸の起磁力総和の大きさを表す。そして、Mddはd軸磁気回路の飽和係数、Mdddはd軸磁気回路の飽和係数のIout_dによる変化率を表し、(Mdd+Mddd*|Iout_d|)は、Iout_dによるd軸の磁気飽和度合いを表す係数に相当する。したがって、(Mdd+Mddd*|Iout_d|)*|Iin_d-Cd1*Iout_d-fm’1kddは、d軸起磁力に起因する磁気飽和によるd軸鎖交磁束変化の度合いを表すモデル式であり、d軸起磁力によるd軸の磁気飽和度に相当する。また、Cq1はq軸の磁気干渉の度合いを表す係数、kdqは誘導電磁カップリング部固有の定数であり、|Iin_q+Cq1*Iout_q|は、Iin_qによる起磁力とIout_qによる起磁力との磁気干渉を考慮したq軸の起磁力総和の大きさを表す。そして、Mdqはq軸磁気回路の飽和係数、Mdqdはq軸磁気回路の飽和係数のIout_dによる変化率を表し、(Mdq+Mdqd*|Iout_d|)は、Iout_dによるq軸の磁気飽和度合いを表す係数に相当する。したがって、(Mdq+Mdqd*|Iout_d|)*|Iin_q+Cq1*Iout_qkdqは、q軸起磁力に起因する磁気飽和によるd軸鎖交磁束変化の度合いを表すモデル式であり、q軸起磁力によるd軸の磁気飽和度に相当する。そして、(8)式の右辺の分母は、磁気飽和によるd軸鎖交磁束変化の度合いを表すモデル式であり、d軸及びq軸起磁力によるd軸の磁気飽和度に相当する。その結果、(8)式は、d軸磁気回路に磁気飽和が発生する場合において、Iin_dによる磁束とIout_dによる磁束との磁気干渉を考慮したロータ巻線30のd軸鎖交磁束を表す。 On the other hand, in the denominator on the right side of equation (8), C d1 is a coefficient representing the degree of magnetic interference on the d axis, f m′1 is the d axis magnetomotive force due to the magnetomotive force of the permanent magnet 33, and kdd is the induction electromagnetic coupling unit. It is an inherent constant, and | I in — d −C d1 * I out — d −f m′1 | represents the magnitude of the sum of magnetomotive forces of the d axis. M dd represents the saturation coefficient of the d-axis magnetic circuit, M ddd represents the rate of change due to I out_d of the saturation coefficient of the d-axis magnetic circuit, and (M dd + M ddd * | I out_d |) represents the d axis according to I out_d. This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M dd + M ddd * | I outd |) * | I in —d −C d1 * I out —d −f m′1 | kdd is the degree of change in d-axis linkage magnetic flux due to magnetic saturation caused by d-axis magnetomotive force Is equivalent to the d-axis magnetic saturation due to the d-axis magnetomotive force. Also, C q1 is a coefficient representing the degree of magnetic interference of the q-axis, Kdq is induced electromagnetic coupling portions specific constants, | I in_q + C q1 * I out_q | is caused by the magnetomotive force and I OUT_Q by I In_q It represents the magnitude of the q-axis magnetomotive force sum in consideration of magnetic interference with the magnetic force. M dq represents the saturation coefficient of the q-axis magnetic circuit, M dqd represents the rate of change due to I out_d of the saturation coefficient of the q-axis magnetic circuit, and (M dq + M dqd * | I out_d |) represents the q-axis according to I out_d This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M dq + M dqd * | I outd |) * | I in —q + C q1 * I out —q | kdq is a model formula representing the degree of change in d-axis flux linkage due to magnetic saturation caused by q-axis magnetomotive force. This corresponds to the d-axis magnetic saturation due to the q-axis magnetomotive force. The denominator on the right side of equation (8) is a model equation representing the degree of change in d-axis flux linkage due to magnetic saturation, and corresponds to the d-axis magnetic saturation due to d-axis and q-axis magnetomotive force. As a result, equation (8) represents the d-axis flux linkage of the rotor winding 30 in consideration of magnetic interference between the magnetic flux due to I in_d and the magnetic flux due to I out_d when magnetic saturation occurs in the d-axis magnetic circuit. .
 なお、(8)式の右辺の分母におけるfm’1は、q軸電流起因の磁束によるd軸磁気回路の磁気飽和によってd軸起磁力が変化するため、q軸電流Iin_q,Iout_qの関数である以下の(9)式で表すことが可能である。同様に、(8)式の右辺の分子におけるfm’2も、q軸電流Iin_q,Iout_qの関数である以下の(10)式で表すことが可能である。(9)、(10)式において、C11,C12,C13,C21,C22,C23は磁気干渉の度合いを表す係数であり、fm’1,fm’2は、q軸の起磁力総和を表す(Iin_q+Cq1*Iout_q)の指数関数となる。 In addition, since fm′1 in the denominator on the right side of the equation (8) changes the d-axis magnetomotive force due to the magnetic saturation of the d-axis magnetic circuit due to the magnetic flux caused by the q-axis current, the q-axis currents I in_q and I out_q It can be expressed by the following equation (9) which is a function. Similarly, fm′2 in the numerator on the right side of the equation (8) can also be represented by the following equation (10) that is a function of the q-axis currents I in_q and I out_q . In the expressions (9) and (10), C 11 , C 12 , C 13 , C 21 , C 22 , and C 23 are coefficients representing the degree of magnetic interference, and f m′1 and f m′2 are q This is an exponential function of (I in — q + C q1 * I out — q ) representing the total magnetomotive force of the shaft.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、第1磁気干渉モデルにおいて、ロータ巻線30のq軸鎖交磁束Φin_q(q軸鎖交磁束に関わるモデル)は、Iin_d,Iin_q,Iout_d,Iout_qの関数である以下の(11)式で表すことが可能である。 In the first magnetic interference model, the q-axis linkage magnetic flux Φ in_q (model relating to the q-axis linkage flux) of the rotor winding 30 is a function of I in_d , I in_q , I out_d , I out_q as follows: It can be expressed by equation (11).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (11)式の右辺の分子において、fm’3は、Iout_qによる起磁力がIin_qによる起磁力に磁気干渉する度合いを表し、永久磁石33の起磁力による影響を表す。(Iin_q-Iout_q*fm’3)は、Iin_qとIout_qを設定比率1:fm’3で合成したq軸起磁力に関わるモデル式であり、Iin_qによる起磁力とIout_qによる起磁力との磁気干渉を考慮した、入力側ロータ28に作用するq軸の起磁力総和を表す。そして、Lは誘導電磁カップリング部のq軸インダクタンス(Iin_q=Iout_q=0)、Lqqは誘導電磁カップリング部のq軸インダクタンスのIout_qによる変化率を表し、(L+Lqq*|Iout_q|)は、誘導電磁カップリング部の無負荷時(Iin_q=0)のq軸インダクタンスを表す。したがって、(11)式の右辺の分子は、q軸の起磁力総和と誘導電磁カップリング部の無負荷時のq軸インダクタンスとの積に相当し、q軸磁気回路に磁気飽和が発生しない場合において、Iin_qによる磁束とIout_qによる磁束との磁気干渉を考慮したロータ巻線30のq軸鎖交磁束を表す。 (11) In the molecule of the right side of the equation, f M'3 is the magnetomotive force by the I OUT_Q represents magnetic interference degree in magnetomotive force due to I In_q, representing the influence of the magnetomotive force of the permanent magnet 33. (I in_q -I out_q * f m'3 ) is a I In_q and I OUT_Q preset ratio 1: model equation relating to q JikuOkoshi force synthesized in f M'3, magnetomotive force and I OUT_Q by I In_q The q-axis magnetomotive force sum acting on the input side rotor 28 in consideration of the magnetic interference with the magnetomotive force due to. L q represents the q-axis inductance (I in_q = I out_q = 0) of the induction electromagnetic coupling unit, L qq represents the rate of change due to I out_q of the q-axis inductance of the induction electromagnetic coupling unit, and (L q + L qq * | Iout_q |) represents the q-axis inductance of the induction electromagnetic coupling unit when there is no load (I in_q = 0). Therefore, the numerator on the right side of equation (11) corresponds to the product of the q-axis magnetomotive force sum and the q-axis inductance of the induction electromagnetic coupling unit when there is no load, and no magnetic saturation occurs in the q-axis magnetic circuit. in represents a q-axis flux linkage of the rotor winding 30 in consideration of the magnetic interference between the magnetic flux by the magnetic flux and I OUT_Q by I in_q.
 一方、(11)式の右辺の分母において、Cd3はd軸の磁気干渉の度合いを表す係数、fは永久磁石33の起磁力によるd軸起磁力、kqdは誘導電磁カップリング部固有の定数であり、|Iin_d+Cd3*Iout_d-f|は、d軸の起磁力総和の大きさを表す。そして、Mqdはd軸磁気回路の飽和係数、Mqdqはd軸磁気回路の飽和係数のIout_qによる変化率を表し、(Mqd+Mqdq*|Iout_q|)は、Iout_qによるd軸の磁気飽和度合いを表す係数に相当する。したがって、(Mqd+Mqdq*|Iout_q|)*|Iin_d+Cd3*Iout_d-fkqdは、d軸起磁力に起因する磁気飽和によるq軸鎖交磁束変化の度合いを表すモデル式であり、d軸起磁力によるq軸の磁気飽和度に相当する。また、Cq3,Cq30はq軸の磁気干渉の度合いを表す係数、kqqは誘導電磁カップリング部固有の定数であり、|Iin_q+(Cq30+Cq3*|Iout_q|)*Iout_q|は、d軸の起磁力総和の大きさを表す。そして、Mqqはq軸磁気回路の飽和係数、Mqqqはq軸磁気回路の飽和係数のIout_qによる変化率を表し、(Mqq+Mqqq*|Iout_q|)は、Iout_qによるq軸の磁気飽和度合いを表す係数に相当する。したがって、(Mqq+Mqqq*|Iout_q|)*|Iin_q+(Cq30+Cq3*|Iout_q|)*Iout_qkqqは、q軸起磁力に起因する磁気飽和によるq軸鎖交磁束変化の度合いを表すモデル式であり、q軸起磁力によるq軸の磁気飽和度に相当する。そして、(11)式の右辺の分母は、磁気飽和によるq軸鎖交磁束変化の度合いを表すモデル式であり、d軸及びq軸起磁力によるq軸の磁気飽和度に相当する。その結果、(11)式は、q軸磁気回路に磁気飽和が発生する場合において、Iin_qによる磁束とIout_qによる磁束との磁気干渉を考慮したロータ巻線30のq軸鎖交磁束を表す。 On the other hand, in the denominator on the right side of equation (11), C d3 is a coefficient indicating the degree of magnetic interference of the d axis, f 0 is the d axis magnetomotive force due to the magnetomotive force of the permanent magnet 33, and kqd is specific to the induction electromagnetic coupling unit. It is a constant, and | I in — d + C d3 * I out — d −f 0 | represents the magnitude of the sum of magnetomotive forces of the d axis. M qd represents the saturation coefficient of the d-axis magnetic circuit, M qdq represents the rate of change of the saturation coefficient of the d-axis magnetic circuit due to I out_q , and (M qd + M qdq * | I out_q |) represents the d axis according to I out_q This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M qd + M qdq * | I out_q |) * | I in_d + C d3 * I out_d -f 0 | kqd the model representing the degree of q-axis flux linkage changes due to magnetic saturation caused by the d JikuOkoshi force Which corresponds to the q-axis magnetic saturation due to the d-axis magnetomotive force. C q3 and C q30 are coefficients indicating the degree of magnetic interference on the q axis, kqq is a constant specific to the induction electromagnetic coupling unit, and | I in_q + (C q30 + C q3 * | I out_q |) * I out_q | Represents the size of the total magnetomotive force of the d-axis. M qq represents the saturation coefficient of the q-axis magnetic circuit, M qqq represents the rate of change of the saturation coefficient of the q-axis magnetic circuit due to I out_q , and (M qq + M qqq * | I out_q |) represents the q axis according to I out_q This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M qq + M qqq * | I out_q |) * | I in_q + (C q30 + C q3 * | I out_q |) * I out_q | kqq is, q Jikukusari交due to magnetic saturation caused by the q JikuOkoshi force It is a model formula representing the degree of magnetic flux change, and corresponds to the q-axis magnetic saturation due to the q-axis magnetomotive force. The denominator on the right side of equation (11) is a model equation that represents the degree of change in the q-axis flux linkage due to magnetic saturation, and corresponds to the magnetic saturation of the q-axis due to the d-axis and q-axis magnetomotive force. As a result, Equation (11) represents the q-axis interlinkage magnetic flux of the rotor winding 30 in consideration of magnetic interference between the magnetic flux due to I in_q and the magnetic flux due to I out_q when magnetic saturation occurs in the q-axis magnetic circuit. .
 なお、(11)式の右辺の分母におけるfは、q軸電流起因の磁束によるd軸磁気回路の磁気飽和によってd軸起磁力が変化するため、q軸電流Iin_q,Iout_qの関数である以下の(12)式で表すことが可能である。(12)式において、Co10,Co1,Co20,Co2,Co30,Co3,Cq40,Cq4は磁気干渉の度合いを表す係数である。一方、(11)式の右辺の分子におけるfm’3は、d軸電流起因の磁束によるq軸磁気回路の磁気飽和によってq軸起磁力が変化するため、d軸電流Iin_d,Iout_dの関数である以下の(13)式で表すことが可能である。(13)式において、C31,C32,C33,C34,Cd4は磁気干渉の度合いを表す係数である。 Note that f 0 in the denominator on the right side of the equation (11) is a function of the q-axis currents I in_q and I out_q because the d-axis magnetomotive force changes due to magnetic saturation of the d-axis magnetic circuit due to the magnetic flux caused by the q-axis current. It can be expressed by the following formula (12). In the equation (12), C o10 , C o1 , C o20 , C o2 , C o30 , C o3 , C q40 , and C q4 are coefficients representing the degree of magnetic interference. On the other hand, f M'3 in molecules of the right-hand side of (11), since the q JikuOkoshi force is changed by the magnetic saturation of the q-axis magnetic circuit according to the d-axis current-induced magnetic flux, d-axis current I IN - D, the I OUT_D It can be expressed by the following equation (13) that is a function. In the equation (13), C 31 , C 32 , C 33 , C 34 , and C d4 are coefficients representing the degree of magnetic interference.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 同様に、第2磁気干渉モデルにおいて、ステータ巻線20のd軸鎖交磁束Φout_d(d軸鎖交磁束に関わるモデル)は、Iin_d,Iin_q,Iout_d,Iout_qの関数である以下の(14)式で表すことが可能である。 Similarly, in the second magnetic interference model, the d-axis linkage magnetic flux Φ out_d (model relating to the d-axis linkage flux) of the stator winding 20 is a function of I in_d , I in_q , I out_d , I out_q (14).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 (14)式の右辺の分子において、(Iout_d-Cd2*Iin_d-fm’2)は、Iout_dとIin_dを設定比率1:Cd2で合成したd軸起磁力に関わるモデル式であり、Iout_dによる起磁力とIin_dによる起磁力との磁気干渉を考慮した、ステータ16に作用するd軸の起磁力総和を表す。そして、LはPMモータ部のd軸インダクタンス(Iout_d=Iin_d=0)、LddはPMモータ部のd軸インダクタンスのIin_dによる変化率を表し、(L+Ldd*|Iin_d|)は、PMモータ部の無負荷時(Iout_d=0)のd軸インダクタンスを表す。したがって、(14)式の右辺の分子は、d軸磁気回路に磁気飽和が発生しない場合において、Iout_dによる磁束とIin_dによる磁束との磁気干渉を考慮したステータ巻線20のd軸鎖交磁束を表す。 In molecules of the right-hand side of (14), (I out_d -C d2 * I in_d -f m'2) is set to I OUT_D and I IN - D Ratio 1: model equation involving d JikuOkoshi force synthesized in C d2 , and the consideration of the magnetic interference between the magnetomotive force due to the magnetomotive force and I iN - d by I OUT_D, represents the magnetomotive force sum of the d-axis acting on the stator 16. L d represents the d-axis inductance of the PM motor unit (I out_d = I in_d = 0), L dd represents the rate of change of the d-axis inductance of the PM motor unit due to I in_d , and (L d + L dd * | I in_d |) Represents the d-axis inductance of the PM motor unit when there is no load (I out_d = 0). Therefore, the numerator on the right side of the equation (14) indicates the d-axis linkage of the stator winding 20 in consideration of the magnetic interference between the magnetic flux due to Iout_d and the magnetic flux due to Iin_d when no magnetic saturation occurs in the d-axis magnetic circuit. Represents magnetic flux.
 一方、(14)式の右辺の分母において、kddはPMモータ部固有の定数であり、|Iout_d-Cd1*Iin_d-fm’1|は、d軸の起磁力総和の大きさを表す。そして、Mddはd軸磁気回路の飽和係数、Mdddはd軸磁気回路の飽和係数のIin_dによる変化率を表し、(Mdd+Mddd*|Iin_d|)は、Iin_dによるd軸の磁気飽和度合いを表す係数に相当する。したがって、(Mdd+Mddd*|Iin_d|)*|Iout_d-Cd1*Iin_d-fm’1kddは、d軸起磁力に起因する磁気飽和によるd軸鎖交磁束変化の度合いを表すモデル式であり、d軸起磁力によるd軸の磁気飽和度に相当する。また、kdqはPMモータ部固有の定数であり、|Iout_q+Cq1*Iin_q|は、Iout_qによる起磁力とIin_qによる起磁力との磁気干渉を考慮したq軸の起磁力総和の大きさを表す。そして、Mdqはq軸磁気回路の飽和係数、Mdqdはq軸磁気回路の飽和係数のIin_dによる変化率を表し、(Mdq+Mdqd*|Iin_d|)は、Iin_dによるq軸の磁気飽和度合いを表す係数に相当する。したがって、(Mdq+Mdqd*|Iin_d|)*|Iout_q+Cq1*Iin_qkdqは、q軸起磁力に起因する磁気飽和によるd軸鎖交磁束変化の度合いを表すモデル式であり、q軸起磁力によるd軸の磁気飽和度に相当する。そして、(14)式の右辺の分母は、磁気飽和によるd軸鎖交磁束変化の度合いを表すモデル式であり、d軸及びq軸起磁力によるd軸の磁気飽和度に相当する。その結果、(14)式は、d軸磁気回路に磁気飽和が発生する場合において、Iout_dによる磁束とIin_dによる磁束との磁気干渉を考慮したステータ巻線20のd軸鎖交磁束を表す。 On the other hand, in the denominator on the right side of the equation (14), kdd is a constant specific to the PM motor unit, and | I out_d −C d1 * I in_d −f m′1 | represents the magnitude of the sum of magnetomotive forces of the d axis. To express. M dd represents the saturation coefficient of the d-axis magnetic circuit, M ddd represents the rate of change of the saturation coefficient of the d-axis magnetic circuit due to I in_d , and (M dd + M ddd * | I in_d |) represents the d axis according to I in_d This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M dd + M ddd * | I in_d |) * | I out_d −C d1 * I in_d −f m′1 | kdd is the degree of change in the d-axis linkage magnetic flux due to magnetic saturation caused by the d-axis magnetomotive force. Is equivalent to the d-axis magnetic saturation due to the d-axis magnetomotive force. Further, Kdq is PM motor unit specific constants, | I out_q + C q1 * I in_q | is the magnetomotive force sum of q-axis in consideration of the magnetic interference between the magnetomotive force due to the magnetomotive force and I In_q by I OUT_Q size Represents M dq represents the saturation coefficient of the q-axis magnetic circuit, M dqd represents the rate of change due to I in_d of the saturation coefficient of the q-axis magnetic circuit, and (M dq + M dqd * | I in_d |) represents the q axis according to I in_d This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M dq + M dqd * | I in — d |) * | I out —q + C q1 * I in —q | kdq is a model expression representing the degree of change in d-axis flux linkage due to magnetic saturation caused by q-axis magnetomotive force. This corresponds to the d-axis magnetic saturation due to the q-axis magnetomotive force. The denominator on the right side of equation (14) is a model equation representing the degree of change in d-axis flux linkage due to magnetic saturation, and corresponds to the d-axis magnetic saturation due to d-axis and q-axis magnetomotive force. As a result, equation (14) represents the d-axis flux linkage of the stator winding 20 in consideration of magnetic interference between the magnetic flux due to Iout_d and the magnetic flux due to Iin_d when magnetic saturation occurs in the d-axis magnetic circuit. .
 なお、(14)式の右辺の分母におけるfm’1は、q軸電流起因の磁束によるd軸磁気回路の磁気飽和によってd軸起磁力が変化するため、q軸電流Iin_q,Iout_qの関数である以下の(15)式で表すことが可能である。同様に、(14)式の右辺の分子におけるfm’2も、q軸電流Iin_q,Iout_qの関数である以下の(16)式で表すことが可能である。(15)、(16)式において、fm’1,fm’2は、q軸の起磁力総和を表す(Iout_q+Cq1*Iin_q)の関数となる。 Incidentally, f M'1 on the right side of the denominator of (14), since d JikuOkoshi force is changed by the magnetic saturation of the d-axis magnetic circuit according to the q-axis current due to the magnetic flux, the q-axis current I In_q, the I OUT_Q It can be expressed by the following equation (15) which is a function. Similarly, fm′2 in the numerator on the right side of the equation (14) can also be expressed by the following equation (16) that is a function of the q-axis currents I in_q and I out_q . In equations (15) and (16), f m′1 and f m′2 are functions of (I out_q + C q1 * I in_q ) representing the total magnetomotive force of the q axis.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 同様に、第2磁気干渉モデルにおいて、ステータ巻線20のq軸鎖交磁束Φout_q(q軸鎖交磁束に関わるモデル)は、Iin_d,Iin_q,Iout_d,Iout_qの関数である以下の(17)式で表すことが可能である。 Similarly, in the second magnetic interference model, the q-axis linkage magnetic flux Φ out_q (model relating to the q-axis linkage flux) of the stator winding 20 is a function of I in_d , I in_q , I out_d , I out_q (17).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 (17)式の右辺の分子において、fm’3は、Iin_qによる起磁力がIout_qによる起磁力に磁気干渉する度合いを表し、永久磁石33の起磁力による影響を表す。(Iout_q-Iin_q*fm’3)は、Iout_qとIin_qを設定比率1:fm’3で合成したq軸起磁力に関わるモデル式であり、Iout_qによる起磁力とIin_qによる起磁力との磁気干渉を考慮した、ステータ16に作用するq軸の起磁力総和を表す。そして、LはPMモータ部のq軸インダクタンス(Iout_q=Iin_q=0)、LqqはPMモータ部のq軸インダクタンスのIin_qによる変化率を表し、(L+Lqq*|Iin_q|)は、PMモータ部の無負荷時(Iout_q=0)のq軸インダクタンスを表す。したがって、(17)式の右辺の分子は、q軸磁気回路に磁気飽和が発生しない場合において、Iout_qによる磁束とIin_qによる磁束との磁気干渉を考慮したステータ巻線20のq軸鎖交磁束を表す。 (17) In the molecule of the right side of the equation, f M'3 is the magnetomotive force by the I In_q represents magnetic interference degree in magnetomotive force due to I OUT_Q, representing the influence of the magnetomotive force of the permanent magnet 33. (I out_q -I in_q * f m'3 ) is the I OUT_Q and I In_q preset ratio 1: model equation relating to q JikuOkoshi force synthesized in f M'3, magnetomotive force and I In_q by I OUT_Q The q-axis magnetomotive force sum acting on the stator 16 in consideration of the magnetic interference with the magnetomotive force due to. L q represents the q-axis inductance of the PM motor unit (I out_q = I in_q = 0), L qq represents the rate of change of the q-axis inductance of the PM motor unit due to I in_q , and (L q + L qq * | I in_q |) Represents the q-axis inductance of the PM motor unit when there is no load (I out_q = 0). Accordingly, the numerator on the right side of the equation (17) indicates that the q-axis linkage of the stator winding 20 takes into account the magnetic interference between the magnetic flux due to Iout_q and the magnetic flux due to Iin_q when no magnetic saturation occurs in the q-axis magnetic circuit. Represents magnetic flux.
 一方、(17)式の右辺の分母において、kqdはPMモータ部固有の定数であり、|Iout_d+Cd3*Iin_d-f|は、d軸の起磁力総和の大きさを表す。そして、Mqdはd軸磁気回路の飽和係数、Mqdqはd軸磁気回路の飽和係数のIin_qによる変化率を表し、(Mqd+Mqdq*|Iin_q|)は、Iin_qによるd軸の磁気飽和度合いを表す係数に相当する。したがって、(Mqd+Mqdq*|Iin_q|)*|Iout_d+Cd3*Iin_d-fkqdは、d軸起磁力に起因する磁気飽和によるq軸鎖交磁束変化の度合いを表すモデル式であり、d軸起磁力によるq軸の磁気飽和度に相当する。また、kqqはPMモータ部固有の定数であり、|Iout_q+(Cq30+Cq3*|Iin_q|)*Iin_q|は、d軸の起磁力総和の大きさを表す。そして、Mqqはq軸磁気回路の飽和係数、Mqqqはq軸磁気回路の飽和係数のIin_qによる変化率を表し、(Mqq+Mqqq*|Iin_q|)は、Iin_qによるq軸の磁気飽和度合いを表す係数に相当する。したがって、(Mqq+Mqqq*|Iin_q|)*|Iout_q+(Cq30+Cq3*|Iin_q|)*Iin_qkqqは、q軸起磁力に起因する磁気飽和によるq軸鎖交磁束変化の度合いを表すモデル式であり、q軸起磁力によるq軸の磁気飽和度に相当する。そして、(17)式の右辺の分母は、磁気飽和によるq軸鎖交磁束変化の度合いを表すモデル式であり、d軸及びq軸起磁力によるq軸の磁気飽和度に相当する。その結果、(17)式は、q軸磁気回路に磁気飽和が発生する場合において、Iout_qによる磁束とIin_qによる磁束との磁気干渉を考慮したステータ巻線20のq軸鎖交磁束を表す。 On the other hand, in the denominator on the right side of the equation (17), kqd is a constant specific to the PM motor unit, and | I out_d + C d3 * I in_d −f 0 | represents the magnitude of the magnetomotive force sum of the d axis. M qd represents the saturation coefficient of the d-axis magnetic circuit, M qdq represents the rate of change due to I in_q of the saturation coefficient of the d-axis magnetic circuit, and (M qd + M qdq * | I in_q |) represents the d axis according to I in_q This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M qd + M qdq * | I in_q |) * | I out_d + C d3 * I in_d -f 0 | kqd the model representing the degree of q-axis flux linkage changes due to magnetic saturation caused by the d JikuOkoshi force Which corresponds to the q-axis magnetic saturation due to the d-axis magnetomotive force. Further, kqq is a constant unique to the PM motor unit, and | I out_q + (C q30 + C q3 * | I in_q |) * I in_q | represents the magnitude of the sum of magnetomotive forces of the d axis. M qq represents the saturation coefficient of the q-axis magnetic circuit, M qqq represents the rate of change due to I in_q of the saturation coefficient of the q-axis magnetic circuit, and (M qq + M qqq * | I in_q |) represents the q axis according to I in_q This corresponds to a coefficient representing the degree of magnetic saturation. Therefore, (M qq + M qqq * | I in_q |) * | I out_q + (C q30 + C q3 * | I in_q |) * I in_q | kqq is, q Jikukusari交due to magnetic saturation caused by the q JikuOkoshi force It is a model formula representing the degree of magnetic flux change, and corresponds to the q-axis magnetic saturation due to the q-axis magnetomotive force. The denominator on the right side of equation (17) is a model equation representing the degree of change in q-axis flux linkage due to magnetic saturation, and corresponds to the magnetic saturation of the q-axis due to the d-axis and q-axis magnetomotive force. As a result, equation (17) represents the q-axis interlinkage magnetic flux of the stator winding 20 in consideration of magnetic interference between the magnetic flux due to Iout_q and the magnetic flux due to Iin_q when magnetic saturation occurs in the q-axis magnetic circuit. .
 なお、(17)式の右辺の分母におけるfは、q軸電流起因の磁束によるd軸磁気回路の磁気飽和によってd軸起磁力が変化するため、q軸電流Iin_q,Iout_qの関数である以下の(18)式で表すことが可能である。一方、(17)式の右辺の分子におけるfm’3は、d軸電流起因の磁束によるq軸磁気回路の磁気飽和によってq軸起磁力が変化するため、d軸電流Iin_d,Iout_dの関数である以下の(19)式で表すことが可能である。 Note that f 0 in the denominator on the right side of the equation (17) is a function of the q-axis currents I in_q and I out_q because the d-axis magnetomotive force changes due to magnetic saturation of the d-axis magnetic circuit due to the magnetic flux caused by the q-axis current. It can be expressed by the following equation (18). On the other hand, fm′3 in the numerator on the right side of the equation (17) changes the q-axis magnetomotive force due to the magnetic saturation of the q-axis magnetic circuit due to the magnetic flux caused by the d-axis current, so that the d-axis currents I in_d and I out_d It can be expressed by the following equation (19) which is a function.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 電子制御ユニット50により実行される処理の一例を図11のフローチャートに示す。図11のフローチャートの処理は、所定時間毎に繰り返し実行され、αの初期値としては、例えば0.5とすることが可能である。 An example of processing executed by the electronic control unit 50 is shown in the flowchart of FIG. The process of the flowchart of FIG. 11 is repeatedly executed at predetermined time intervals, and the initial value of α can be set to 0.5, for example.
 ステップS101では、トルク指令値(Tin_ref,Tout_ref)の組み合わせが設定される。ステップS102では、制約条件としてトルクTinがトルク指令値(第1トルク指令値)Tin_refに等しく(Tin=Tin_ref)、且つトルクToutがトルク指令値(第2トルク指令値)Tout_refに等しい(Tout=Tout_ref)条件が電流指令値設定部136で設定される。Tinは(8)式のΦin_d及び(11)式のΦin_q(第1磁気干渉モデル)を(1)式に代入することで得られ、Toutは(14)式のΦout_d及び(17)式のΦout_q(第2磁気干渉モデル)を(2)式に代入することで得られ、Tin,ToutはI=(Iin_d,Iin_q,Iout_d,Iout_q)の関数となる。 In step S101, a combination of torque command values (T in_ref , T out_ref ) is set. In step S102, as a constraint condition, the torque T in is equal to the torque command value (first torque command value) T in_ref (T in = T in_ref ), and the torque T out is the torque command value (second torque command value) T out_ref. (T out = T out_ref ) is set in the current command value setting unit 136. T in can be obtained by substituting Φ in_d in Equation (8) and Φ in_q (first magnetic interference model) in Equation (11) into Equation (1), and T out can be obtained by substituting Φ out_d and ( 17) is obtained by substituting Φ out — q (second magnetic interference model) in equation (2) into equation (2), and T in and T out are functions of I = (I in — d , I in — q , I out — d , I out — q ) Become.
 ステップS103では、ステップS102で設定された制約条件を満たす範囲内で、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す評価関数fを最小にする電流(Iin_d,Iin_q,Iout_d,Iout_q)の組み合わせが電流指令値設定部136で演算される。評価関数fは、ロータ巻線30の銅損による発熱量Rin*(Iin_d +Iin_q )とステータ巻線20の銅損による発熱量Rout*(Iout_d +Iout_q )をα:1-αの重み付けで加算した(7)式で表され、I=(Iin_d,Iin_q,Iout_d,Iout_q)の関数となる。電流指令値設定部136では、制約条件を満たす範囲内でIin_d,Iin_q,Iout_d,Iout_qの値を変化させながら、評価関数fの値を算出する処理を繰り返すことで、評価関数fを最小にする電流(Iin_d,Iin_q,Iout_d,Iout_q)の組み合わせを探索する。その際に、評価関数fを最小化する電流を探索するアルゴリズムについては、公知技術を利用可能であるため詳細な説明を省略する。例えばTin=Tin_ref=0、且つTout=Tout_ref=90Nmの制約条件において、ロータ巻線30の電流Iinに対するロータ巻線30の発熱量及びステータ巻線20の発熱量の関係を図12A,12Bに示す。図12A,12Bにおいても、横軸のIinについては、Iin=0でTout=90Nmを発生するIout(磁気干渉を利用しない電流値)で割って正規化している。図12A,12Bの例では、Iin=0.6の場合に評価関数fが最小となる。 In step S103, currents (I in_d , I in_q , I out_d) that minimize the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 within a range that satisfies the constraint conditions set in step S102. , I out_q ) is calculated by the current command value setting unit 136. The evaluation function f represents the heat generation amount R in * (I in — d 2 + I in — q 2 ) due to copper loss of the rotor winding 30 and the heat generation amount R out * (I out — d 2 + I out — q 2 ) due to copper loss of the stator winding 20 as α. : It is expressed by the equation (7) added by weighting 1−α, and becomes a function of I = (I in — d , I in — q , I out — d , I out — q ). The current command value setting unit 136 repeats the process of calculating the value of the evaluation function f while changing the values of I in — d , I in — q , I out — d , and I out — q within a range that satisfies the constraint conditions, whereby the evaluation function f Are searched for a combination of currents (I in — d , I in — q , I out — d , I out — q ) that minimizes. At this time, a known technique can be used for an algorithm for searching for a current that minimizes the evaluation function f, and thus a detailed description thereof will be omitted. For example, the relationship between the heat generation amount of the rotor winding 30 and the heat generation amount of the stator winding 20 with respect to the current I in of the rotor winding 30 is shown in the constraint condition of T in = T inref = 0 and T out = T outref = 90 Nm. 12A and 12B. 12A and 12B, I in on the horizontal axis is normalized by dividing by I out (current value not using magnetic interference) that generates T out = 90 Nm when I in = 0. In the example of FIGS. 12A and 12B, the evaluation function f is minimized when I in = 0.6.
 ステップS104では、巻線温度上限値τlimitとロータ巻線30の温度τinとの差ein(=τlimit-τin)、及び巻線温度上限値τlimitとステータ巻線20の温度τoutとの差eout(=τlimit-τout)が電流指令値設定部136で算出される。ステップS105では、ein=eout=0が成立するか否かが電流指令値設定部136で判定され、ein=eout=0が成立する場合はステップS110に進み、ein=eout=0が成立しない場合はステップS106に進む。ステップS106では、ein>eoutが成立するか否かが電流指令値設定部136で判定される。ein>eoutが成立する場合は、ステップS107において、αの値を減少させる処理が電流指令値設定部136で行われる。例えば(ein-eout)/eoutだけαの値を減少させる。一方、ein>eoutが成立しない場合は、ステップS108において、αの値を増加させる処理が電流指令値設定部136で行われる。例えば(eout-ein)/eoutだけαの値を増加させる。 In step S104, the difference e in (= τ limit −τ in ) between the winding temperature upper limit value τ limit and the temperature τ in of the rotor winding 30, and the winding temperature upper limit value τ limit and the temperature τ of the stator winding 20 the difference between the out e out (= τ limit -τ out) is calculated by the current command value setting unit 136. In step S105, whether or not e in = e out = 0 is satisfied is determined by the current command value setting unit 136, if the e in = e out = 0 is satisfied, the process proceeds to step S110, e in = e out If = 0 is not established, the process proceeds to step S106. In step S106, the current command value setting unit 136 determines whether e in > e out is satisfied. If e in > e out holds, the current command value setting unit 136 performs a process of decreasing the value of α in step S107. For example, the value of α is decreased by (e in −e out ) / e out . On the other hand, if e in > e out is not established, the current command value setting unit 136 performs a process of increasing the value of α in step S108. For example, the value of α is increased by (e out −e in ) / e out .
 ステップS109では、ステップS103で演算された電流(Iin_d,Iin_q,Iout_d,Iout_q)の組み合わせが電流指令値(Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_ref)の組み合わせとして電流指令値設定部136で決定される。ロータ巻線電流制御部140及びステータ巻線電流制御部160では、電流指令値設定部136で演算されたロータ巻線30の電流指令値Iin_d_ref,Iin_q_ref及びステータ巻線20の電流指令値Iout_d_ref,Iout_q_refを基に、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutがそれぞれ制御される。これによって、トルクTin,Toutがトルク指令値Tin_ref,Tout_refにそれぞれ追従するとともに、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す評価関数fが最小になるように、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutが制御される。一方、ステップS110では、ロータ巻線30の温度τin及びステータ巻線20の温度τoutが巻線温度上限値τlimitを超えないように、Iin_d_ref=Iin_q_ref=Iout_d_ref=Iout_q_ref=0が電流指令値設定部136で設定され、ロータ巻線30及びステータ巻線20の電流停止が行われる。 In step S109, the calculated current in step S103 (I in_d, I in_q, I out_d, I out_q) combinations current command value (I in_d_ref, I in_q_ref, I out_d_ref, I out_q_ref) current command value set as the combination of Determined by the unit 136. In the rotor winding current control unit 140 and the stator winding current control unit 160, the current command values I in_d_ref and I in_q_ref of the rotor winding 30 calculated by the current command value setting unit 136 and the current command value I of the stator winding 20 The current I in of the rotor winding 30 and the current I out of the stator winding 20 are controlled based on out_d_ref and I out_q_ref , respectively. As a result, the torques T in and T out follow the torque command values T in_ref and T out_ref , respectively, and the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 is minimized. The current I in of the winding 30 and the current I out of the stator winding 20 are controlled. On the other hand, in step S110, so that the temperature tau in and temperature tau out of the stator windings 20 of the rotor winding 30 does not exceed the winding temperature limit τ limit, I in_d_ref = I in_q_ref = I out_d_ref = I out_q_ref = 0 Is set by the current command value setting unit 136, and the current of the rotor winding 30 and the stator winding 20 is stopped.
 なお、電流指令値設定部136で決定される電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refとしては、必ずしも評価関数fが最小になる電流Iin_d,Iin_q,Iout_d,Iout_qとする必要はない。例えば、評価関数fが最小になる電流Iin_d,Iin_q,Iout_d,Iout_qに対し若干大きい(あるいは若干小さい)値を電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refとして設定することも可能である。 The current command value I In_d_ref determined by the current command value setting unit 136, I in_q_ref, I out_d_ref, as I Out_q_ref is necessarily current I IN - D to the evaluation function f is minimized, I in_q, I out_d, and I OUT_Q do not have to. For example, values that are slightly larger (or slightly smaller) than the currents I in_d , I in_q , I out_d , and I out_q that minimize the evaluation function f are set as the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref. Is also possible.
 図11のフローチャートの処理によれば、ein>eout(τin<τout)のときは、αの値を減少させる(1-αの値を増加させる)ことで、評価関数fにおいて、ロータ巻線30の発熱量の重み付けが減少し、ステータ巻線20の発熱量の重み付けが増加する。そのため、ステータ巻線20の温度τoutが先に巻線温度上限値τlimitに達しそうなときは、Tin=Tin_ref、且つTout=Tout_refを達成するステータ巻線20の電流Ioutが減少して発熱量が減少するとともにロータ巻線30の電流Iinが増加して発熱量が増加することで、ステータ巻線20とロータ巻線30の温度差τout-τinが減少する。一方、ein<eout(τin>τout)のときは、αの値を増加させる(1-αの値を減少させる)ことで、評価関数fにおいて、ロータ巻線30の発熱量の重み付けが増加し、ステータ巻線20の発熱量の重み付けが減少する。そのため、ロータ巻線30の温度τinが先に巻線温度上限値τlimitに達しそうなときは、Tin=Tin_ref、且つTout=Tout_refを達成するロータ巻線30の電流Iinが減少して発熱量が減少するとともにステータ巻線20の電流Ioutが増加して発熱量が増加することで、ロータ巻線30とステータ巻線20の温度差τin-τoutが減少する。このように、ロータ巻線30とステータ巻線20の発熱状況に応じてロータ巻線30の電流Iinとステータ巻線20の電流Ioutの配分を変化させることで、ロータ巻線30の温度τinとステータ巻線20の温度τoutの均等化を図りつつ、トルクTin,Toutをトルク指令値Tin_ref,Tout_refにそれぞれ追従させることができる。 According to the processing of the flowchart of FIG. 11, when e in > e outinout ), the value of α is decreased (the value of 1−α is increased). The weighting of the heat generation amount of the rotor winding 30 is reduced, and the weighting of the heat generation amount of the stator winding 20 is increased. Therefore, when the temperature τ out of the stator winding 20 is likely to reach the winding temperature upper limit value τ limit first , the current I out of the stator winding 20 that achieves T in = T inref and T out = T outref Decreases, the amount of heat generation decreases, and the current I in of the rotor winding 30 increases to increase the amount of heat generation, whereby the temperature difference τ outin between the stator winding 20 and the rotor winding 30 decreases. . On the other hand, when e in <e outin > τ out ), by increasing the value of α (decreasing the value of 1−α), the amount of heat generated by the rotor winding 30 in the evaluation function f is increased. The weighting increases and the weighting of the heat generation amount of the stator winding 20 decreases. Therefore, when the temperature τ in of the rotor winding 30 is likely to reach the winding temperature upper limit value τ limit first , the current I in of the rotor winding 30 that achieves T in = T inref and T out = T outref Decreases, the amount of heat generation decreases, and the current I out of the stator winding 20 increases to increase the amount of heat generation, whereby the temperature difference τ in −τ out between the rotor winding 30 and the stator winding 20 decreases. . Thus, by changing the distribution of the current I in of the rotor winding 30 and the current I out of the stator winding 20 in accordance with the heat generation status of the rotor winding 30 and the stator winding 20, the temperature of the rotor winding 30 is changed. The torques T in and T out can follow the torque command values T in_ref and T out_ref , respectively, while equalizing τ in and the temperature τ out of the stator winding 20.
 前述のように、回転電機10においては、ロータ巻線30の電流Iinによる磁束とステータ巻線20の電流Ioutによる磁束との磁気干渉を利用することで、トルクTin,Toutをトルク指令値Tin_ref,Tout_refにそれぞれ一致させるための電流(Iin,Iout)の組み合わせは無数に存在する。これに対して本実施形態では、無数の組み合わせの中から、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す評価関数fを最小化(あるいはほぼ最小化)する電流指令値(Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_ref)の組み合わせを第1及び第2磁気干渉モデルを利用して選択することができる。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、磁気干渉を利用しない場合と比較して、ロータ巻線30及びステータ巻線20の発熱量を抑制することができる。さらに、評価関数fにおいては、ロータ巻線30及びステータ巻線20のうち、温度が高い巻線の発熱量の重み付けを増加させる(温度が低い巻線の発熱量の重み付けを減少させる)ことで、温度が高い巻線の電流の配分を減少させる(温度が低い巻線の電流の配分を増加させる)ことができ、ロータ巻線30とステータ巻線20の温度差を低減することができる。その結果、ロータ巻線30の温度τin及びステータ巻線20の温度τoutのいずれかが巻線温度上限値τlimitに達するまでの時間を長くすることができ、回転電機10の電流時間定格を延長することができ、回転電機10の性能を向上させることができる。 As described above, in the rotating electrical machine 10, the torques T in and T out are converted into torque by using magnetic interference between the magnetic flux due to the current I in of the rotor winding 30 and the magnetic flux due to the current I out of the stator winding 20. There are an infinite number of combinations of currents (I in , I out ) for matching the command values T in_ref and T out_ref , respectively. On the other hand, in the present embodiment, a current command value (I in_d_ref ) that minimizes (or substantially minimizes) the evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 from among an infinite number of combinations. , I in_q_ref , I out_d_ref , I out_q_ref ) can be selected using the first and second magnetic interference models. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , compared with the case where magnetic interference is not used. Thus, the amount of heat generated by the rotor winding 30 and the stator winding 20 can be suppressed. Further, in the evaluation function f, among the rotor winding 30 and the stator winding 20, by increasing the weighting of the heat generation amount of the winding having a high temperature (decreasing the weighting of the heat generation amount of the winding having a low temperature). Therefore, it is possible to reduce the current distribution of the windings with high temperature (increase the distribution of the current of the windings with low temperature), and to reduce the temperature difference between the rotor winding 30 and the stator winding 20. As a result, it is possible to increase the time until either the temperature τ in of the rotor winding 30 or the temperature τ out of the stator winding 20 reaches the winding temperature upper limit value τ limit. And the performance of the rotating electrical machine 10 can be improved.
 例えばTin=Tin_ref=0、且つTout=Tout_ref≠0のときに、磁気干渉を利用しない場合は、ロータ巻線30及びステータ巻線20のうち、ステータ巻線20だけに電流Ioutを流してステータ16と出力側ロータ18間にトルクToutを発生させる。ただし、その場合は、ステータ巻線20の電流Ioutが増加して発熱量が大きくなるため、例えば図13の破線に示すように、ステータ巻線20の温度τoutが大きく上昇して短時間で巻線温度上限値τlimitに達する。その結果、Tout=Tout_refのトルクを発生可能な時間が短くなる。これに対して本実施形態では、Tin=Tin_ref=0、且つTout=Tout_ref≠0のときに、磁気干渉を利用して、温度が高い巻線の電流の配分を減少させるようロータ巻線30及びステータ巻線20の両方に電流Iin,Ioutを流すことで、ステータ16と出力側ロータ18間にトルクToutを発生させる。これによって、磁気干渉を利用しない場合と比較して、ロータ巻線30及びステータ巻線20の電流Iin,Ioutが減少して発熱量が小さくなり、例えば図13の実線に示すように、ロータ巻線30の温度τin及びステータ巻線20の温度τoutのいずれかが巻線温度上限値τlimitに達するまでの時間が長くなる。その結果、Tout=Tout_refのトルクを発生可能な時間を延長することができる。同様に、Tin=Tin_ref≠0、且つTout=Tout_ref=0のときにも、磁気干渉を利用して、温度が高い巻線の電流の配分を減少させるようロータ巻線30及びステータ巻線20の両方に電流Iin,Ioutを流すことで、磁気干渉を利用しない場合と比較して、Tin=Tin_refのトルクを発生可能な時間を延長することができる。 For example, when T in = T inref = 0 and T out = T outref ≠ 0, when the magnetic interference is not used, only the stator winding 20 out of the rotor winding 30 and the stator winding 20 has a current I out. To generate torque T out between the stator 16 and the output-side rotor 18. However, in that case, since the current I out of the stator winding 20 is the amount of heat generated becomes large to increase, for example, as shown in broken line in FIG. 13, a short time the temperature tau out of the stator winding 20 rises significantly Reaches the winding temperature upper limit value τ limit . As a result, the time during which torque of T out = T out_ref can be generated is shortened. In contrast, in the present embodiment, when T in = T inref = 0 and T out = T outref ≠ 0, the rotor is used to reduce the current distribution of the high-temperature winding using magnetic interference. By causing currents I in and I out to flow through both the winding 30 and the stator winding 20, torque T out is generated between the stator 16 and the output-side rotor 18. As a result, compared to the case where magnetic interference is not used, the currents I in and I out of the rotor winding 30 and the stator winding 20 are reduced and the heat generation amount is reduced. For example, as shown by the solid line in FIG. The time until either the temperature τ in of the rotor winding 30 or the temperature τ out of the stator winding 20 reaches the winding temperature upper limit value τ limit becomes longer. As a result, it is possible to extend the time in which the torque of T out = T out_ref can be generated. Similarly, when T in = T inref ≠ 0 and T out = T outref = 0, the rotor winding 30 and the stator are reduced to reduce the current distribution of the high temperature winding using magnetic interference. By allowing the currents I in and I out to flow through both of the windings 20, it is possible to extend the time during which the torque of T in = T inref can be generated as compared with the case where magnetic interference is not used.
 また、図11のフローチャートのステップS102で設定される制約条件としては、Tin=Tin_ref、且つTout=Tout_refの他に、ロータ巻線30の電圧Vinが制限値(第1制限値)Vin_limit以下である条件、ステータ巻線20の電圧Voutが制限値(第2制限値)Vout_limit以下である条件、ロータ巻線30の電流Iinが制限値(第3制限値)Iin_limit以下である条件、及びステータ巻線20の電流Ioutが制限値(第4制限値)Iout_limit以下である条件の少なくとも1つ以上を追加することも可能である。例えば制約条件として、Vin≦Vin_limit、且つVout≦Vout_limitの条件を追加することも可能である。Vinは、(8)式のΦin_d及び(11)式のΦin_q(第1磁気干渉モデル)を(3)式に代入することで得られ、I=(Iin_d,Iin_q,Iout_d,Iout_q)及びωin,ωoutの関数となり、Voutは、(14)式のΦout_d及び(17)式のΦout_q(第2磁気干渉モデル)を(2)式に代入することで得られ、I及びωoutの関数となる。ωin,ωoutについては、回転角速度センサによる検出値をそれぞれ用い、制限値Vin_limit,Vout_limitについては、例えば蓄電装置42の電圧より小さい値に設定される。Vin≦Vin_limit、且つVout≦Vout_limitの制約条件を追加することで、ロータ巻線30の逆起電圧及びステータ巻線20の逆起電圧を抑制しつつ、回転電機10の電流時間定格を延長することができる。 As the constraint condition set in step S102 in the flowchart of FIG. 11, T in = T in_ref, and in addition to the T out = T out_ref, voltage V in limit of the rotor winding 30 (first limit value ) The condition that the voltage V out of the stator winding 20 is less than or equal to V in_limit , the condition that the voltage V out of the stator winding 20 is less than the limit value (second limit value) V out_limit , and the current I in of the rotor winding 30 is the limit value (third limit value) I in_limit less is conditional, and can be current I out of the stator winding 20 to add at least one or more limit values (fourth limit value) I out_limit less is conditional. For example, conditions of V in ≦ V in_limit and V out ≦ V out_limit can be added as constraints. V in is obtained by substituting Φ in_d in the equation (8) and Φ in_q (the first magnetic interference model) in the equation (11) into the equation (3), and I = (I in_d , I in_q , I out_d , I out_q ) and ω in , ω out , and V out is obtained by substituting Φ out_d in Equation (14) and Φ out_q (second magnetic interference model) in Equation (17) into Equation (2). Which is a function of I and ω out . For ω in and ω out , detection values by the rotational angular velocity sensor are used, respectively, and the limit values V in_limit and V out_limit are set to values smaller than the voltage of the power storage device 42, for example. By adding the constraints of V in ≦ V in_limit and V out ≦ V out_limit , the current time rating of the rotating electrical machine 10 is suppressed while suppressing the counter electromotive voltage of the rotor winding 30 and the counter electromotive voltage of the stator winding 20. Can be extended.
 また、制約条件として、Iin≦Iin_limit、且つIout≦Iout_limitの条件を追加することも可能である。IinはIin_d,Iin_qの関数である(5)式で表され、IoutはIout_d,Iout_qの関数である(6)式で表される。制限値Iin_limitについては、例えばインバータ41の容量より小さい値に設定され、制限値Iout_limitについては、例えばインバータ40の容量より小さい値に設定される。Iin≦Iin_limit、且つIout≦Iout_limitの制約条件を追加することで、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを抑制しつつ、回転電機10の電流時間定格を延長することができる。 Moreover, it is also possible to add conditions of I in ≦ I in_limit and I out ≦ I out_limit as constraint conditions. I in the I IN - D, represented by a function of I in_q (5) formula, I out is I OUT_D, represented by a function of I out_q (6) formula. The limit value I in_limit is set to a value smaller than the capacity of the inverter 41, for example, and the limit value I out_limit is set to a value smaller than the capacity of the inverter 40, for example. I in ≦ I in_limit, and by adding a constraint I outI out_limit, while suppressing the current I out of the current I in and the stator windings 20 of the rotor winding 30, the current time rating of the rotary electric machine 10 Can be extended.
 また、制約条件として、Vin≦Vin_limit、且つIin≦Iin_limitの条件を追加することも可能であり、これによって、ロータ巻線30の逆起電圧及び電流Iinを抑制しつつ、回転電機10の電流時間定格を延長することができる。また、制約条件として、Vout≦Vout_limit、且つIout≦Iout_limitの条件を追加することも可能であり、これによって、ステータ巻線20の逆起電圧及び電流Ioutを抑制しつつ、回転電機10の電流時間定格を延長することができる。 Further, as constraints, it is possible to add conditions of V in ≦ V in_limit and I in ≦ I in_limit , thereby rotating the rotor winding 30 while suppressing the back electromotive voltage and the current I in. The current time rating of the electric machine 10 can be extended. Moreover, it is also possible to add the conditions of V out ≦ V out_limit and I out ≦ I out_limit as constraints, and thereby, while suppressing the counter electromotive voltage and current I out of the stator winding 20, the rotation can be performed. The current time rating of the electric machine 10 can be extended.
 また、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す(7)式の評価関数fにおいて、ロータ巻線30の温度τin及びステータ巻線20の温度τoutに応じてロータ巻線30の相抵抗Rin及びステータ巻線20の相抵抗Routをそれぞれ変化させることも可能である。その場合、電流指令値設定部136では、ロータ巻線温度センサ81で検出されたロータ巻線30の温度τinからロータ巻線30の相抵抗Rinを設定し、ステータ巻線温度センサ82で検出されたステータ巻線20の温度τoutからステータ巻線20の相抵抗Routを設定する。そして、温度τin,τoutから設定された相抵抗Rin,Routを用いて評価関数fの値を算出する。この構成例によれば、ロータ巻線30の温度τin及びステータ巻線20の温度τoutに応じて変化する、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す評価関数fをより精度よく最小化することが可能となり、回転電機10の電流時間定格をさらに延長することができる。 Further, in the evaluation function f of the equation (7) representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20, the rotor winding depends on the temperature τ in of the rotor winding 30 and the temperature τ out of the stator winding 20. It is also possible to change the phase resistance R in of 30 and the phase resistance R out of the stator winding 20 respectively. In that case, the current command value setting unit 136 sets the phase resistance R in of the rotor winding 30 from the temperature τ in of the rotor winding 30 detected by the rotor winding temperature sensor 81, and the stator winding temperature sensor 82 A phase resistance R out of the stator winding 20 is set from the detected temperature τ out of the stator winding 20. Then, the value of the evaluation function f is calculated using the phase resistances R in and R out set from the temperatures τ in and τ out . According to this configuration example, more evaluation function f which varies according to the temperature tau out temperature tau in and stator windings 20 of the rotor windings 30, representing a weighted heat value of the rotor windings 30 and the stator windings 20 It becomes possible to minimize with accuracy, and the current time rating of the rotating electrical machine 10 can be further extended.
 なお、図11のフローチャートのステップS103で用いられる回転電機10の性能に関わる評価関数fについては、上記に説明したものに限られるものではなく、様々な関数を用いることが可能である。例えばロータ巻線30及びステータ巻線20の発熱量については、銅損による発熱量に加え、鉄損によるコアの発熱が巻線への伝導する影響も考慮することが可能であり、その場合において、ロータ巻線30及びステータ巻線20の重み付け発熱量を表す評価関数fは、以下の(20)式で表すことが可能である。(20)式において、Rcinは誘導電磁カップリング部の等価鉄損抵抗、RcoutはPMモータ部の等価鉄損抵抗である。 Note that the evaluation function f related to the performance of the rotating electrical machine 10 used in step S103 of the flowchart of FIG. 11 is not limited to the above-described one, and various functions can be used. For example, regarding the heat generation amount of the rotor winding 30 and the stator winding 20, in addition to the heat generation amount due to copper loss, it is possible to consider the effect of heat generation of the core due to iron loss to the winding. The evaluation function f representing the weighted heat generation amount of the rotor winding 30 and the stator winding 20 can be expressed by the following equation (20). In the equation (20), Rc in is an equivalent iron loss resistance of the induction electromagnetic coupling part, and Rc out is an equivalent iron loss resistance of the PM motor part.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (20)式において、(ωin-ωout*(Φin_d +Φin_q )/Rcinは鉄損によるロータ巻線30の発熱量を表し、ωout *(Φout_d +Φout_q )/Rcoutは鉄損によるステータ巻線20の発熱量を表す。(20)式の評価関数fは、銅損及び鉄損によるロータ巻線30の発熱量と、銅損及び鉄損によるステータ巻線20の発熱量とをα:1-αの重み付けで加算した式で表される。(8)式のΦin_d及び(11)式のΦin_q(第1磁気干渉モデル)と、(14)式のΦout_d及び(17)式のΦout_q(第2磁気干渉モデル)とを(20)式に代入することで、評価関数fは、I=(Iin_d,Iin_q,Iout_d,Iout_q)及びωin,ωoutの関数となる。 In the equation (20), (ω in −ω out ) 2 * (Φ in — d 2 + Φ in — q 2 ) / Rc in represents the heat generation amount of the rotor winding 30 due to iron loss, and ω out 2 * (Φ out — d 2 + Φ out — q 2 ) / Rc out represents the amount of heat generated by the stator winding 20 due to iron loss. The evaluation function f in the equation (20) is obtained by adding the heat generation amount of the rotor winding 30 due to copper loss and iron loss and the heat generation amount of the stator winding 20 due to copper loss and iron loss by weighting α: 1−α. It is expressed by a formula. And (8) of [Phi IN - D and (11) of [Phi In_q (first magnetic interference model), and (14) of [Phi OUT_D and (17) of [Phi OUT_Q (second magnetic interference model) (20 The evaluation function f becomes a function of I = (I in — d , I in — q , I out — d , I out — q ) and ω in , ω out .
 その場合、ステップS103では、制約条件を満たす範囲内で、この評価関数fを最小化(あるいはほぼ最小化)する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。その際の制約条件としては、Tin=Tin_ref、且つTout=Tout_refの条件を用い、さらに、前述した条件のいずれかを追加することも可能である。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、銅損及び鉄損によるロータ巻線30及びステータ巻線20の発熱量を抑制することができる。さらに、この評価関数fにおいても、ステップS104~S108に従ってαの値を変化させて、ロータ巻線30及びステータ巻線20のうち、温度が高い巻線の発熱量の重み付けを増加させることで、温度が高い巻線の電流の配分を減少させることができる。その結果、銅損による発熱及び鉄損による発熱の両方を考慮して、ロータ巻線30とステータ巻線20の温度差をさらに低減することができ、ロータ巻線30の温度τin及びステータ巻線20の温度τoutのいずれかが巻線温度上限値τlimitに達するまでの時間をさらに長くすることができる。 In this case, in step S103, the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that minimize (or substantially minimize) the evaluation function f within the range that satisfies the constraint conditions are changed to the first and second magnetic fields . Calculate using the interference model. As a constraint condition at that time, a condition of T in = T in_ref and T out = T out_ref can be used, and any of the above-described conditions can be added. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , the rotor winding due to copper loss and iron loss 30 and the amount of heat generated by the stator winding 20 can be suppressed. Furthermore, also in this evaluation function f, by changing the value of α in accordance with steps S104 to S108, among the rotor winding 30 and the stator winding 20, the weighting of the heat generation amount of the winding having a high temperature is increased. It is possible to reduce the current distribution of the high temperature winding. As a result, in consideration of both heat generation due to copper loss and heat generation due to iron loss, the temperature difference between the rotor winding 30 and the stator winding 20 can be further reduced, and the temperature τ in of the rotor winding 30 and the stator winding can be reduced. The time until any of the temperature τ out of the line 20 reaches the winding temperature upper limit value τ limit can be further increased.
 また、評価関数fとして、回転電機10の銅損及び鉄損による総合損失を表す関数を用いることも可能である。その場合の評価関数fは、以下の(21)式で表すことが可能である。(21)式において、Rin*(Iin_d +Iin_q )はロータ巻線30の銅損を表し、Rout*(Iout_d +Iout_q )はステータ巻線20の銅損を表し、(ωin-ωout*(Φin_d +Φin_q )/Rcinは誘導電磁カップリング部の鉄損を表し、ωout *(Φout_d +Φout_q )/RcoutはPMモータ部の鉄損を表す。(21)式の評価関数fは、これらの銅損と鉄損を加算した式で表され、(8)式のΦin_d及び(11)式のΦin_qと、(14)式のΦout_d及び(17)式のΦout_qとを(21)式に代入することで、I及びωin,ωoutの関数となる。 Further, as the evaluation function f, it is possible to use a function representing the total loss due to the copper loss and the iron loss of the rotating electrical machine 10. The evaluation function f in that case can be expressed by the following equation (21). In Formula (21), R in * (I in — d 2 + I in — q 2 ) represents the copper loss of the rotor winding 30, R out * (I out — d 2 + I out — q 2 ) represents the copper loss of the stator winding 20, (Ω in −ω out ) 2 * (Φ in — d 2 + Φ in — q 2 ) / Rc in represents the iron loss of the induction electromagnetic coupling unit, and ω out 2 * (Φ out — d 2 + Φ out — q 2 ) / Rc out represents the PM motor. Represents the iron loss of the part. (21) the evaluation function f of formula is represented by formula obtained by adding these copper loss and iron loss, (8) and equation [Phi IN - D and (11) of Φ in_q, (14) formula [Phi OUT_D and By substituting Φ out_q in equation (17) into equation (21), it becomes a function of I, ω in , and ω out .
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 その場合、電流指令値設定部136は、制約条件を満たす範囲内で、回転電機10の銅損及び鉄損による総合損失を表す評価関数fを最小化(あるいはほぼ最小化)する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。その際の制約条件としては、Tin=Tin_ref、且つTout=Tout_refの条件を用い、さらに、前述した条件のいずれかを追加することも可能である。また、図11のフローチャートにおいて、ステップS104~S108,S110による処理は省略する。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、磁気干渉を利用しない場合と比較して、回転電機10の力率を向上させることができ、回転電機10の銅損及び鉄損による総合損失を低減することができ、回転電機10の性能を向上させることができる。なお、回転電機10の銅損及び鉄損による総合損失を表す評価関数fにおいても、ロータ巻線30の温度τin及びステータ巻線20の温度τoutに応じてロータ巻線30の相抵抗Rin及びステータ巻線20の相抵抗Routをそれぞれ変化させることが可能である。 In this case, the current command value setting unit 136 minimizes (or substantially minimizes) the current command value I that represents the total loss due to the copper loss and iron loss of the rotating electrical machine 10 within a range that satisfies the constraint conditions. In_d_ref , Iin_q_ref , Iout_d_ref , and Iout_q_ref are calculated using the first and second magnetic interference models. As a constraint condition at that time, a condition of T in = T in_ref and T out = T out_ref can be used, and any of the above-described conditions can be added. Further, in the flowchart of FIG. 11, the processes in steps S104 to S108 and S110 are omitted. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , compared with the case where magnetic interference is not used. Thus, the power factor of the rotating electrical machine 10 can be improved, the total loss due to the copper loss and the iron loss of the rotating electrical machine 10 can be reduced, and the performance of the rotating electrical machine 10 can be improved. Even in the evaluation function f representing the total loss due to the copper loss and the iron loss of the rotating electrical machine 10, the phase resistance R of the rotor winding 30 depends on the temperature τ in of the rotor winding 30 and the temperature τ out of the stator winding 20. In and the phase resistance R out of the stator winding 20 can be changed.
 また、評価関数fとして、トルクTinとトルクToutを所定の重み付けで加算した重み付けトルクを表す関数とすることも可能である。その場合の評価関数fは、以下の(22)式で表すことが可能である。(22)式において、Win,Woutは重み係数であり、(22)式の評価関数fは、トルクTinとトルクToutをWin:Woutの重み付けで加算した式で表される。前述のように、Tin,ToutはI=(Iin_d,Iin_q,Iout_d,Iout_q)の関数であるため、評価関数fもIの関数となる。 The evaluation function f can be a function representing a weighted torque obtained by adding the torque T in and the torque T out with a predetermined weight. The evaluation function f in that case can be expressed by the following equation (22). In Expression (22), W in and W out are weighting coefficients, and the evaluation function f in Expression (22) is expressed by an expression in which the torque T in and the torque T out are added by weighting W in : W out. . As described above, since T in and T out are functions of I = (I in — d , I in — q , I out — d , I out — q ), the evaluation function f is also a function of I.
 f=Win×Tin+Wout×Tout   (22) f = W in × T in + W out × T out (22)
 その場合、電流指令値設定部136は、制約条件を満たす範囲内で、重み付けトルクを表す評価関数fを最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。その際の制約条件としては、例えばVin≦Vin_limit、且つVout≦Vout_limitの条件とすることが可能である。評価関数fを最大化する電流を探索するアルゴリズムについても、公知技術を利用可能であるため詳細な説明を省略する。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、磁気干渉を利用しない場合と比較して、出力側ロータ18に発生可能なトルクを増加させることができ、回転電機10の性能を向上させることができる。その際には、Vin≦Vin_limit、且つVout≦Vout_limitの制約条件とすることで、ロータ巻線30の逆起電圧及びステータ巻線20の逆起電圧を抑制することができる。また、Iin≦Iin_limit、且つIout≦Iout_limitの制約条件とすることも可能であり、これによって、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを抑制することができる。さらに、Vin≦Vin_limit、Vout≦Vout_limit、Iin≦Iin_limit、且つIout≦Iout_limitの制約条件とすることも可能である。 In this case, the current command value setting unit 136 sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that maximize (or substantially maximize) the evaluation function f representing the weighted torque within a range that satisfies the constraint conditions. Calculation is performed using the first and second magnetic interference models. As a constraint condition at that time, for example, a condition of V in ≦ V in_limit and V out ≦ V out_limit can be set. The algorithm for searching for the current that maximizes the evaluation function f can also be known in the art, and thus detailed description thereof is omitted. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , compared with the case where magnetic interference is not used. Thus, the torque that can be generated in the output-side rotor 18 can be increased, and the performance of the rotating electrical machine 10 can be improved. In that case, the counter electromotive voltage of the rotor winding 30 and the counter electromotive voltage of the stator winding 20 can be suppressed by setting the constraint conditions of V in ≦ V in_limit and V out ≦ V out_limit . Also, it is possible to set the constraints of I in ≦ I in_limit and I out ≦ I out_limit , thereby suppressing the current I in of the rotor winding 30 and the current I out of the stator winding 20. it can. Furthermore, it is also possible to make the constraint conditions V in ≦ V in_limit , V out ≦ V out_limit , I in ≦ I in_limit , and I out ≦ I out_limit .
 また、評価関数fとしてトルクToutを用いることも可能である。その場合の評価関数f=Toutは、I=(Iin_d,Iin_q,Iout_d,Iout_q)の関数となる。電流指令値設定部136は、制約条件を満たす範囲内で、評価関数f=Toutを最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。その際の制約条件としては、例えばTin=Tin_refの条件とすることが可能であり、さらに、Vin≦Vin_limit、Vout≦Vout_limit、Iin≦Iin_limit、及びIout≦Iout_limitの少なくとも1つ以上の条件を追加することも可能である。例えばVout≦Vout_limitの条件や、Iout≦Iout_limitの条件や、Vout≦Vout_limit、且つIout≦Iout_limitの条件を追加することが可能である。また、Vin≦Vin_limit、且つVout≦Vout_limitの条件や、Iin≦Iin_limit、且つIout≦Iout_limitの条件を追加することも可能である。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、入力側ロータ28と出力側ロータ18間のトルクTinをトルク指令値Tin_refに追従させつつ、磁気干渉を利用しない場合と比較して、ステータ16と出力側ロータ18間に発生可能なトルクToutを増加させることができる。例えばEV走行中にエンジン36の始動を行う場合、Tin=Tin_refの制約条件の範囲内で評価関数f=Toutを最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基に電流Iin,Ioutを制御することで、エンジン36のクランキングトルクTinをTin_refに保ちつつ、車両の駆動トルクを増加させることができる。 It is also possible to use the torque T out as the evaluation function f. In this case, the evaluation function f = T out is a function of I = (I in — d , I in — q , I out — d , I out — q ). The current command value setting unit 136 sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that maximize (or substantially maximize) the evaluation function f = T out within a range that satisfies the constraint conditions. 2. Calculation is performed using a magnetic interference model. As a constraint condition at that time, for example, a condition of T in = T in_ref can be set, and further, V in ≦ V in_limit , V out ≦ V out_limit , I in ≦ I in_limit , and I out ≦ I out_limit It is also possible to add at least one condition. For example, a condition of V out ≦ V out_limit, a condition of I out ≦ I out_limit, a condition of V out ≦ V out_limit , and I out ≦ I out_limit can be added. It is also possible to add conditions of V in ≦ V in_limit and V out ≦ V out_limit , and conditions of I in ≦ I in_limit and I out ≦ I out_limit . By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , the input side rotor 28 and the output side rotor 18 are controlled. The torque T out that can be generated between the stator 16 and the output-side rotor 18 can be increased as compared with the case where the magnetic interference is not used while the torque T in between follows the torque command value T in_ref . For example, when starting the engine 36 during EV travel, current command values I in_d_ref , I in_q_ref , I that maximize the evaluation function f = T out within the range of the constraint condition of T in = T in_ref By controlling the currents I in and I out based on out_d_ref and I out_q_ref , the driving torque of the vehicle can be increased while maintaining the cranking torque T in of the engine 36 at T in_ref .
 また、評価関数fとしてトルクToutを用いる場合は、制約条件として、Iout≦Iout_limit-β(第5制限値)の条件を用いることも可能である。ここでのβは、インバータ40の電流の制限を表すパラメータである。電流指令値設定部136は、制約条件を満たす範囲内で、評価関数f=Toutを最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、例えばインバータ40の故障等によりインバータ40の電流を制限する必要がある場合でも、磁気干渉を利用して、ステータ16と出力側ロータ18間に発生可能なトルクToutを増加させることができる。なお、制約条件としては、Iout≦Iout_limit-βの他に、Vin≦Vin_limit、Vout≦Vout_limit、及びIin≦Iin_limitの少なくとも1つ以上の条件を追加することも可能である。例えばVout≦Vout_limitの条件や、Vin≦Vin_limit、且つVout≦Vout_limitの条件や、Iin≦Iin_limitの条件等を追加することが可能である。 When the torque T out is used as the evaluation function f, a condition of I out ≦ I out_limit −β (fifth limit value) can be used as a constraint condition. Here, β is a parameter representing the current limit of the inverter 40. The current command value setting unit 136 sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that maximize (or substantially maximize) the evaluation function f = T out within a range that satisfies the constraint conditions. 2. Calculation is performed using a magnetic interference model. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , for example, due to a failure of the inverter 40, the inverter 40 Even when it is necessary to limit the current, the torque T out that can be generated between the stator 16 and the output-side rotor 18 can be increased using magnetic interference. As a constraint condition, in addition to I out ≦ I out_limit −β, at least one condition of V in ≦ V in_limit , V out ≦ V out_limit , and I in ≦ I in_limit can be added. is there. For example, a condition of V out ≦ V out_limit, a condition of V in ≦ V in_limit , a condition of V out ≦ V out_limit, a condition of I in ≦ I in_limit , and the like can be added.
 また、評価関数fとしてトルクTinを用いることも可能である。その場合の評価関数f=Tinも、I=(Iin_d,Iin_q,Iout_d,Iout_q)の関数となる。電流指令値設定部136は、制約条件を満たす範囲内で、評価関数f=Tinを最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。その際の制約条件としては、例えばIin≦Iin_limit-β(第6制限値)の条件とすることが可能である。ここでのβは、インバータ41の電流の制限を表すパラメータである。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、例えばインバータ41の故障等によりインバータ41の電流を制限する必要がある場合でも、磁気干渉を利用して、入力側ロータ28と出力側ロータ18間に発生可能なトルクTinを増加させることができる。なお、制約条件としては、Iin≦Iin_limit-βの他に、Vin≦Vin_limit、Vout≦Vout_limit、及びIout≦Iout_limitの少なくとも1つ以上の条件を追加することも可能である。例えばVin≦Vin_limitの条件や、Vin≦Vin_limit、且つVout≦Vout_limitの条件や、Iout≦Iout_limitの条件等を追加することが可能である。 It is also possible to use the torque T in as the evaluation function f. In this case, the evaluation function f = T in is also a function of I = (I in — d , I in — q , I out — d , I out — q ). The current command value setting unit 136 sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that maximize (or substantially maximize) the evaluation function f = T in within a range that satisfies the constraint conditions. 2. Calculation is performed using a magnetic interference model. As a constraint condition at that time, for example, a condition of I in ≦ I in_limit −β (sixth limit value) can be set. Here, β is a parameter representing the current limit of the inverter 41. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 on the basis of the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , for example, an inverter 41 due to a failure of the inverter 41 or the like. Even when it is necessary to limit the current, the torque T in that can be generated between the input-side rotor 28 and the output-side rotor 18 can be increased using magnetic interference. As a constraint condition, in addition to I in ≦ I in_limit −β, at least one condition of V in ≦ V in_limit , V out ≦ V out_limit , and I out ≦ I out_limit can be added. is there. For example, a condition of V in ≦ V in_limit, a condition of V in ≦ V in_limit , a condition of V out ≦ V out_limit, a condition of I out ≦ I out_limit , etc. can be added.
 また、評価関数fとしてトルクTinの絶対値を用いることも可能である。電流指令値設定部136は、制約条件を満たす範囲内で、評価関数f=|Tin|を最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを第1及び第2磁気干渉モデルを用いて演算する。その際の制約条件としては、例えばTin+Tout=Tout_ref(第3トルク指令値)とすることが可能である。この電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基にロータ巻線30の電流Iin及びステータ巻線20の電流Ioutを制御することで、出力側ロータ18のトルクTin+Toutをトルク指令値Tin_refに追従させつつ、磁気干渉を利用しない場合と比較して、入力側ロータ28と出力側ロータ18間に発生可能なトルクToutを増加させることができる。例えばEV走行中にエンジン36の始動を行う場合、Tin+Tout=Tout_refの制約条件の範囲内で評価関数f=|Tin|を最大(あるいはほぼ最大)にする電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基に電流Iin,Ioutを制御することで、出力側ロータ18のトルクTin+Tout(車両の駆動トルク)をTout_refに保ちつつ、エンジン36のクランキングトルクTinを増加させることができる。なお、制約条件としては、Tin+Tout=Tout_refの他に、Vin≦Vin_limit、Vout≦Vout_limit、Iin≦Iin_limit、及びIout≦Iout_limitの少なくとも1つ以上の条件を追加することも可能である。例えばVin≦Vin_limitの条件や、Iin≦Iin_limitの条件や、Vin≦Vin_limit、且つIin≦Iin_limitの条件を追加することが可能である。また、Vin≦Vin_limit、且つVout≦Vout_limitの条件や、Iin≦Iin_limit、且つIout≦Iout_limitの条件を追加することも可能である。 It is also possible to use the absolute value of the torque T in as the evaluation function f. The current command value setting unit 136 sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that make the evaluation function f = | T in | maximum (or almost maximum) within a range that satisfies the constraint conditions. And using the second magnetic interference model. As a constraint condition at that time, for example, T in + T out = T out_ref (third torque command value) can be set. By controlling the current I in of the rotor winding 30 and the current I out of the stator winding 20 based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , the torque T in + T of the output side rotor 18 is controlled. The torque T out that can be generated between the input-side rotor 28 and the output-side rotor 18 can be increased while making the out follow the torque command value T in_ref as compared to the case where magnetic interference is not used. For example, when starting the engine 36 during EV traveling, the current command value I in_d_ref , which maximizes (or substantially maximizes) the evaluation function f = | T in | within the range of the constraint condition of T in + T out = T out_ref By controlling the currents I in , I out based on I in_q_ref , I out_d_ref , I out_q_ref , the torque T in + T out (vehicle driving torque) of the output side rotor 18 is maintained at T out_ref , and the engine 36 is closed . The ranking torque T in can be increased. As the constraint condition, in addition to T in + T out = T out_ref , V in ≦ V in_limit, V out ≦ V out_limit, I in ≦ I in_limit, and at least one or more conditions of I outI out_limit It is also possible to add. For example, it is possible to add a condition of V in ≦ V in_limit, a condition of I in ≦ I in_limit, a condition of V in ≦ V in_limit , and I in ≦ I in_limit . It is also possible to add conditions of V in ≦ V in_limit and V out ≦ V out_limit , and conditions of I in ≦ I in_limit and I out ≦ I out_limit .
 なお、上記に説明した電流指令値(Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_ref)の組み合わせを演算する処理については、例えば図14の機能ブロック図に示すように、情報処理装置70により実行することも可能である。情報処理装置70は、CPUを中心としたマイクロプロセッサとして構成可能であり、処理プログラムを記憶したROMと、一時的にデータを記憶するRAMと、入出力ポートとを備える。情報処理装置70において、電流指令値演算部174は、モデル記憶部172に記憶された第1及び第2磁気干渉モデルを読み出し、設定された制約条件と評価関数fとに基づき、ロータ巻線30の電流指令値Iin_d_ref,Iin_q_ref及びステータ巻線20の電流指令値Iout_d_ref,Iout_q_refを、第1及び第2磁気干渉モデルを用いて演算する。情報処理装置70(電流指令値演算部174)で演算された電流指令値(Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_ref)の組み合わせは、電子制御ユニット50の電流特性記憶部137に記憶される。例えばTin=Tin_refの制約条件、及びf=Toutの評価関数の場合は、電流指令値(Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_ref)の組み合わせがトルク指令値Tin_refと対応付けて電流特性記憶部137に記憶される。また、Tin+Tout=Tout_refの制約条件、及びf=|Tin|の評価関数の場合は、電流指令値(Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_ref)の組み合わせがトルク指令値Tout_refと対応付けて電流特性記憶部137に記憶される。 The processing for calculating the combination of the current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) described above is executed by the information processing device 70 as shown in the functional block diagram of FIG. 14, for example. It is also possible. The information processing apparatus 70 can be configured as a microprocessor centered on a CPU, and includes a ROM that stores a processing program, a RAM that temporarily stores data, and an input / output port. In the information processing apparatus 70, the current command value calculation unit 174 reads the first and second magnetic interference models stored in the model storage unit 172, and based on the set constraint condition and the evaluation function f, the rotor winding 30. the current command value I in_d_ref, I in_q_ref and stator windings 20 of the current command value I out_d_ref, the I out_q_ref, is calculated using the first and second magnetic interference model. The combination of the current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) calculated by the information processing device 70 (current command value calculation unit 174) is stored in the current characteristic storage unit 137 of the electronic control unit 50. . For example, in the case of the constraint condition of T in = T in_ref and the evaluation function of f = T out , the combination of the current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) is associated with the torque command value T in_ref. It is stored in the current characteristic storage unit 137. In the case of a constraint condition of T in + T out = T out_ref and an evaluation function of f = | T in |, a combination of current command values (I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref ) is a torque command value T It is stored in the current characteristic storage unit 137 in association with out_ref .
 電流指令値設定部136は、情報処理装置70で演算され電流特性記憶部137に記憶された電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを読み出して設定する。そして、ロータ巻線電流制御部140及びステータ巻線電流制御部160では、電流指令値設定部136で設定されたロータ巻線30の電流指令値Iin_d_ref,Iin_q_ref及びステータ巻線20の電流指令値Iout_d_ref,Iout_q_refを基に、ロータ巻線30の電流Iin及びステータ巻線20の電流Ioutがそれぞれ制御される。例えば(22)式の評価関数fを最大化(あるいはほぼ最大化)する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基に電流Iin,Ioutを制御することで、出力側ロータ18のトルク(車両の駆動トルク)を増加させることができる。また、EV走行中にエンジン36の始動を行う場合、Tin=Tin_refを満たす範囲内で評価関数f=Toutを最大化(あるいはほぼ最大化)する、トルク指令値Tin_refに対する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refの関係を基に、電流Iin,Ioutを制御することで、エンジン36のクランキングトルクTinをTin_refに保ちつつ、車両の駆動トルクを増加させることができる。また、インバータ40の故障等によりインバータ40の電流を制限する必要がある場合、Iout≦Iout_limit-βを満たす範囲内で評価関数f=Toutを最大化(あるいはほぼ最大化)する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基に電流Iin,Ioutを制御することで、トルクToutを増加させることができる。また、インバータ41の故障等によりインバータ41の電流を制限する必要がある場合、Iin≦Iin_limit-βを満たす範囲内で評価関数f=Tinを最大化(あるいはほぼ最大化)する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refを基に電流Iin,Ioutを制御することで、トルクTinを増加させることができる。また、EV走行中にエンジン36の始動を行う場合、Tin+Tout=Tout_refを満たす範囲内で評価関数f=|Tin|を最大化(あるいはほぼ最大化)する、トルク指令値Tout_refに対する電流指令値Iin_d_ref,Iin_q_ref,Iout_d_ref,Iout_q_refの関係を基に、電流Iin,Ioutを制御することで、出力側ロータ18のトルク(車両の駆動トルク)をTout_refに保ちつつ、エンジン36のクランキングトルクTinを増加させることができる。 The current command value setting unit 136 reads and sets the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref calculated by the information processing device 70 and stored in the current characteristic storage unit 137. In the rotor winding current control unit 140 and the stator winding current control unit 160, the current command values I in_d_ref and I in_q_ref of the rotor winding 30 set by the current command value setting unit 136 and the current command of the stator winding 20 Based on the values I out_d_ref and I out_q_ref , the current I in of the rotor winding 30 and the current I out of the stator winding 20 are controlled. For example, by controlling the currents I in and I out based on the current command values I in_d_ref , I in_q_ref , I out_d_ref , and I out_q_ref that maximize (or substantially maximize) the evaluation function f in the expression (22), the output side The torque of the rotor 18 (vehicle driving torque) can be increased. Further, when starting the engine 36 during EV traveling, the current command value for the torque command value T in_ref that maximizes (or substantially maximizes) the evaluation function f = T out within a range that satisfies T in = T in_ref. By controlling the currents I in , I out based on the relationship of I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , the driving torque of the vehicle is increased while maintaining the cranking torque T in of the engine 36 at T in_ref. Can be made. Further, when it is necessary to limit the current of the inverter 40 due to a failure of the inverter 40 or the like, a current command for maximizing (or substantially maximizing) the evaluation function f = T out within a range satisfying I out ≦ I out_limit −β. By controlling the currents I in and I out based on the values I in_d_ref , I in_q_ref , I out_d_ref and I out_q_ref , the torque T out can be increased. Further, when it is necessary to limit the current of the inverter 41 due to the failure of the inverter 41 or the like, a current command for maximizing (or substantially maximizing) the evaluation function f = T in within a range satisfying I in ≦ I in_limit −β. The torque T in can be increased by controlling the currents I in and I out based on the values I in_d_ref , I in_q_ref , I out_d_ref and I out_q_ref . When performing the start of the engine 36 during EV traveling, T in + T out = rated within a range that satisfies T Out_ref function f = | T in | maximization to (or substantially maximized), the torque command value T Out_ref By controlling the currents I in , I out based on the relationship between the current command values I in_d_ref , I in_q_ref , I out_d_ref , I out_q_ref , the torque of the output side rotor 18 (vehicle driving torque) is maintained at T out_ref . while, it is possible to increase the cranking torque T in the engine 36.
 なお、第1及び第2磁気干渉モデルについては、上記に説明したものに限られるものではなく、様々な変形や簡素化が可能である。例えば(8)式の右辺の分母において、kdd=1、kdq=1に簡素化し、(11)式の右辺の分母において、kqd=1、kqq=1に簡素化することも可能である。同様に、(14)式の右辺の分母において、kdd=1、kdq=1に簡素化し、(17)式の右辺の分母において、kqd=1、kqq=1に簡素化することも可能である。 Note that the first and second magnetic interference models are not limited to those described above, and various modifications and simplifications are possible. For example, it is possible to simplify to kdd = 1 and kdq = 1 in the denominator of the right side of equation (8), and to simplify to kqd = 1 and kqq = 1 in the denominator of the right side of equation (11). Similarly, it is possible to simplify to kdd = 1 and kdq = 1 in the denominator of the right side of equation (14), and to simplify to kqd = 1 and kqq = 1 in the denominator of the right side of equation (17). .
 また、(9)、(10)、(12)、(13)式においては、指数関数部分を多項式に近似することも可能である。あるいは、永久磁石33の起磁力によるd軸起磁力が一定であるものとしてfm’1,fm’2,fを定数に簡素化することも可能であり、Iout_qによる起磁力がIin_qによる起磁力に磁気干渉する度合いが一定であるものとしてfm’3を定数に簡素化することも可能である。 Further, in the formulas (9), (10), (12), and (13), the exponential function part can be approximated by a polynomial. Alternatively, f M'1 as d JikuOkoshi force by magnetomotive force of the permanent magnet 33 is intended to be constant, f M'2, it is also possible to simplify the f 0 to a constant, the magnetomotive force due to I OUT_Q is I it is also possible to simplify the f M'3 constant as magnetic interference degree is constant magnetomotive force by In_q.
 また、図5~8から、Iin_qによる起磁力とIout_qによる起磁力のq軸での磁気干渉度合いが、Iin_dによる起磁力とIout_dによる起磁力のd軸での磁気干渉度合いに比べて十分小さいものとして、(8)式の右辺の分母においてCq1=0、(11)式の右辺の分母においてCq3=Cq30=0、(11)式の右辺の分子においてfm’3=0に簡素化することも可能である。同様に、(14)式の右辺の分母においてCq1=0、(17)式の右辺の分母においてCq3=Cq30=0、(17)式の右辺の分子においてfm’3=0に簡素化することも可能である。 Further, from FIGS. 5-8, the magnetic interaction magnitude at q axis magnetomotive force by magnetomotive force and I OUT_Q by I In_q is, compared to the magnetic interference degree of at d-axis magnetomotive force by magnetomotive force and I OUT_D by I IN - D C q1 = 0 in the denominator of the right side of equation (8), C q3 = C q30 = 0 in the denominator of the right side of equation (11), and f m′3 in the numerator of the right side of equation (11). It is also possible to simplify to = 0. Similarly, C q1 = 0 in the denominator on the right side of equation (14), C q3 = C q30 = 0 in the denominator on the right side of equation (17), and f m′3 = 0 in the numerator on the right side of equation (17). Simplification is also possible.
 また、(8)式の右辺の分子において、誘導電磁カップリング部のd軸インダクタンスが一定であるものとしてLdd=0に簡素化することも可能であり、(11)式の右辺の分子において、誘導電磁カップリング部のq軸インダクタンスが一定であるものとしてLqq=0に簡素化することも可能である。同様に、(14)式の右辺の分子において、PMモータ部のd軸インダクタンスが一定であるものとしてLdd=0に簡素化することも可能であり、(17)式の右辺の分子において、PMモータ部のq軸インダクタンスが一定であるものとしてLqq=0に簡素化することも可能である。 Further, in the numerator on the right side of the equation (8), it can be simplified to L dd = 0 assuming that the d-axis inductance of the induction electromagnetic coupling portion is constant. In the numerator on the right side of the equation (11), It is also possible to simplify to L qq = 0 assuming that the q-axis inductance of the induction electromagnetic coupling unit is constant. Similarly, in the numerator on the right side of the equation (14), it can be simplified to L dd = 0 assuming that the d-axis inductance of the PM motor unit is constant. In the numerator on the right side of the equation (17), It is possible to simplify to L qq = 0 assuming that the q-axis inductance of the PM motor unit is constant.
 また、(8)式の右辺の分母において、d軸磁気回路の飽和係数が一定であるものとしてMddd=0に簡素化することも可能であり、q軸磁気回路の飽和係数が一定であるものとしてMdqd=0に簡素化することも可能である。(11)式の右辺の分母においても、d軸磁気回路の飽和係数が一定であるものとしてMqdq=0に簡素化することも可能であり、q軸磁気回路の飽和係数が一定であるものとしてMqqq=0に簡素化することも可能である。同様に、(14)式の右辺の分母において、d軸磁気回路の飽和係数が一定であるものとしてMddd=0に簡素化することも可能であり、q軸磁気回路の飽和係数が一定であるものとしてMdqd=0に簡素化することも可能である。(17)式の右辺の分母においても、d軸磁気回路の飽和係数が一定であるものとしてMqdq=0に簡素化することも可能であり、q軸磁気回路の飽和係数が一定であるものとしてMqqq=0に簡素化することも可能である。 In addition, in the denominator on the right side of the equation (8), it is possible to simplify to M ddd = 0 assuming that the saturation coefficient of the d-axis magnetic circuit is constant, and the saturation coefficient of the q-axis magnetic circuit is constant. It is also possible to simplify to M dqd = 0. In the denominator on the right side of equation (11), it can be simplified to M qdq = 0 assuming that the saturation coefficient of the d-axis magnetic circuit is constant, and the saturation coefficient of the q-axis magnetic circuit is constant. It is also possible to simplify to M qqq = 0. Similarly, in the denominator on the right side of the equation (14), it is possible to simplify to M ddd = 0 assuming that the saturation coefficient of the d-axis magnetic circuit is constant, and the saturation coefficient of the q-axis magnetic circuit is constant. It is also possible to simplify to M dqd = 0. In the denominator on the right side of the equation (17), it is possible to simplify to M qdq = 0 assuming that the saturation coefficient of the d-axis magnetic circuit is constant, and the saturation coefficient of the q-axis magnetic circuit is constant. It is also possible to simplify to M qqq = 0.
 さらに、(8)式の右辺の分母において、q軸起磁力によるd軸の磁気飽和への影響がd軸起磁力に比べて十分小さいものとしてMdq=Mdqd=0に簡素化することも可能であり、(11)式の右辺の分母において、d軸起磁力によるq軸の磁気飽和への影響がq軸起磁力に比べて十分小さいものとしてMqd=Mqdq=0に簡素化することも可能である。同様に、(14)式の右辺の分母において、q軸起磁力によるd軸の磁気飽和への影響がd軸起磁力に比べて十分小さいものとしてMdq=Mdqd=0に簡素化することも可能であり、(17)式の右辺の分母において、d軸起磁力によるq軸の磁気飽和への影響がq軸起磁力に比べて十分小さいものとしてMqd=Mqdq=0に簡素化することも可能である。 Further, in the denominator on the right side of the equation (8), the influence of the q-axis magnetomotive force on the d-axis magnetic saturation is sufficiently smaller than the d-axis magnetomotive force, so that it is simplified to M dq = M dqd = 0. In the denominator on the right side of equation (11), the influence of the d-axis magnetomotive force on the q-axis magnetic saturation is sufficiently smaller than the q-axis magnetomotive force, and is simplified to M qd = M qdq = 0. It is also possible. Similarly, in the denominator on the right side of the equation (14), the influence of the q-axis magnetomotive force on the d-axis magnetic saturation is sufficiently smaller than the d-axis magnetomotive force, and is simplified to M dq = M dqd = 0. In the denominator on the right side of equation (17), the influence of the d-axis magnetomotive force on the q-axis magnetic saturation is sufficiently smaller than the q-axis magnetomotive force, and is simplified to M qd = M qdq = 0. It is also possible to do.
 さらに、d軸の磁気飽和を考慮せずに(8)式の右辺の分母を1(Mdd=Mddd=Mdq=Mdqd=0)に簡素化することも可能であり、q軸の磁気飽和を考慮せずに(11)式の右辺の分母を1(Mqd=Mqdq=Mqq=Mqqq=0)に簡素化することも可能である。同様に、d軸の磁気飽和を考慮せずに(14)式の右辺の分母を1に簡素化することも可能であり、q軸の磁気飽和を考慮せずに(17)式の右辺の分母を1に簡素化することも可能である。 Furthermore, the denominator on the right side of the equation (8) can be simplified to 1 (M dd = M ddd = M dq = M dqd = 0) without considering the magnetic saturation of the d axis. It is also possible to simplify the denominator on the right side of equation (11) to 1 (M qd = M qdq = M qq = M qqq = 0) without considering magnetic saturation. Similarly, the denominator of the right side of the equation (14) can be simplified to 1 without considering the magnetic saturation of the d axis, and the right side of the equation (17) can be simplified without considering the magnetic saturation of the q axis. It is also possible to simplify the denominator to 1.
 さらに、第1及び第2磁気干渉モデルについては、上記に説明した数式モデルに限られるものではなく、磁場解析により得ることの可能な各電流に対する各鎖交磁束のマップや、分母、分子が各電流に対する任意の次数の多項式で表される有理関数モデルであってもよい。 Further, the first and second magnetic interference models are not limited to the mathematical model described above, and each interlinkage magnetic flux map, denominator, and numerator for each current that can be obtained by magnetic field analysis are provided. It may be a rational function model represented by a polynomial of an arbitrary order with respect to the current.
 また、回転電機10についても、ロータ巻線30の電流によりステータ巻線20の鎖交磁束を調整可能で、ステータ巻線20の電流によりロータ巻線30の鎖交磁束を調整可能であれば、上記に説明した構成をはじめ、特許文献3の図6の構造等、磁石配置構造に限られるものではない。例えばロータ周方向に隣接する軟磁性材53間に配置された永久磁石33については、図15に示すように、磁極面の径方向に対する傾斜角度が90°になる状態で配置することも可能である。図15には、図4と同様に、永久磁石33による界磁磁束の流れも示してある。また、永久磁石33の磁極面を径方向に沿って配置することも可能である。 Also, for the rotating electrical machine 10, if the interlinkage magnetic flux of the stator winding 20 can be adjusted by the current of the rotor winding 30 and the interlinkage magnetic flux of the rotor winding 30 can be adjusted by the current of the stator winding 20, It is not restricted to magnet arrangement structures, such as the structure of FIG. For example, as shown in FIG. 15, the permanent magnet 33 disposed between the soft magnetic materials 53 adjacent in the rotor circumferential direction can be disposed in a state where the inclination angle of the magnetic pole surface with respect to the radial direction is 90 °. is there. FIG. 15 also shows the flow of field magnetic flux by the permanent magnet 33, as in FIG. It is also possible to arrange the magnetic pole surface of the permanent magnet 33 along the radial direction.
 また、例えば図16~19に示すように、出力側ロータ18が入力側ロータ28及びステータ16とロータ回転軸方向に対向するアキシャル型の回転電機10とすることも可能である。図16はアキシャル型の回転電機10の構成例を示し、図17はステータ16の構成例を示し、図18は入力側ロータ28の構成例を示し、図19は出力側ロータ18の構成例を示す。ロータ周方向に等間隔で分割配置された複数の軟磁性材53の各々は、入力側ロータ28(ティース52a)と所定の空隙を空けて対向する下面(第1面)61と、ステータ16(ティース51a)と所定の空隙を空けて対向する上面(第2面)62と、隣接する一方の永久磁石33の磁極面に面する(接触する)側面(第3面)63と、隣接する他方の永久磁石33の磁極面に面する(接触する)側面(第4面)64と、を有する。図19に示す例では、各永久磁石33の磁極面が径方向に沿って配置されている。 For example, as shown in FIGS. 16 to 19, the output side rotor 18 may be an axial type rotating electrical machine 10 that faces the input side rotor 28 and the stator 16 in the rotor rotation axis direction. 16 shows a configuration example of the axial type rotating electrical machine 10, FIG. 17 shows a configuration example of the stator 16, FIG. 18 shows a configuration example of the input side rotor 28, and FIG. 19 shows a configuration example of the output side rotor 18. Show. Each of the plurality of soft magnetic materials 53 divided and arranged at equal intervals in the circumferential direction of the rotor includes a lower surface (first surface) 61 facing the input-side rotor 28 (tooth 52a) with a predetermined gap, and a stator 16 ( An upper surface (second surface) 62 facing the teeth 51a) with a predetermined gap, a side surface (third surface) 63 facing (contacting) the magnetic pole surface of one adjacent permanent magnet 33, and the other adjacent And a side surface (fourth surface) 64 facing (contacting) the magnetic pole surface of the permanent magnet 33. In the example shown in FIG. 19, the magnetic pole surface of each permanent magnet 33 is arranged along the radial direction.
 また、出力側ロータ18においては、例えば図20に示すように、永久磁石33に代えて非磁性体35を設けることも可能である。図20に示す構成例において、複数の軟磁性材53は、ロータ周方向に互いに間隔をおいて(等間隔で)分割配置されている。複数(軟磁性材53と同数)の非磁性体35は、ロータ周方向に互いに間隔をおいて(等間隔で)配置され、その各々がロータ周方向に隣接する軟磁性材53間に配置されている。ロータ周方向に隣接する非磁性体35間に配置された軟磁性材53の各々は、入力側ロータ28(ティース52a)と所定の空隙を空けて対向する内周面(第1面)61と、ステータ16(ティース51a)と所定の空隙を空けて対向する外周面(第2面)62と、隣接する一方の非磁性体35に面する(接触する)側面(第3面)63と、隣接する他方の非磁性体35に面する(接触する)側面(第4面)64と、を有し、内周面61と外周面62間で磁束を通す。なお、非磁性体35に代えて空隙を設けることも可能である。また、ロータ周方向に隣接する軟磁性材53同士がブリッジで繋がっていてもよい。 Further, in the output-side rotor 18, for example, as shown in FIG. 20, a nonmagnetic material 35 can be provided instead of the permanent magnet 33. In the configuration example shown in FIG. 20, the plurality of soft magnetic materials 53 are divided and arranged at intervals (equal intervals) in the rotor circumferential direction. A plurality (the same number as the soft magnetic material 53) of non-magnetic members 35 are arranged at equal intervals (equal intervals) in the rotor circumferential direction, and each of them is arranged between the soft magnetic materials 53 adjacent in the rotor circumferential direction. ing. Each of the soft magnetic materials 53 disposed between the non-magnetic members 35 adjacent to each other in the rotor circumferential direction has an inner peripheral surface (first surface) 61 facing the input-side rotor 28 (tooth 52a) with a predetermined gap therebetween. An outer peripheral surface (second surface) 62 facing the stator 16 (tooth 51a) with a predetermined gap, and a side surface (third surface) 63 facing (contacting) one of the adjacent non-magnetic bodies 35, And a side surface (fourth surface) 64 facing (contacting) the other non-magnetic body 35 adjacent thereto, and allows magnetic flux to pass between the inner peripheral surface 61 and the outer peripheral surface 62. It is also possible to provide a gap in place of the nonmagnetic material 35. Moreover, the soft magnetic materials 53 adjacent in the rotor circumferential direction may be connected by a bridge.
 図20に示すように、ロータ巻線30のd軸電流によるd軸磁束は、軟磁性材53の内周面61と外周面62間を流れてステータ16に作用することで、ステータ巻線20への鎖交磁束に影響を与える。そのため、ロータ巻線30のd軸電流によるd軸磁束は、ステータ16にとっては、非磁性体35の位置に永久磁石33が設けられている場合の界磁磁束と同様に振る舞う。したがって、ロータ巻線30の電流によりステータ巻線20の鎖交磁束を調整することができる。同様に、ステータ巻線20のd軸電流によるd軸磁束は、軟磁性材53の外周面62と内周面61間を流れて入力側ロータ28に作用することで、ロータ巻線30への鎖交磁束に影響を与える。そのため、ステータ巻線20のd軸電流によるd軸磁束は、入力側ロータ28にとっては、非磁性体35の位置に永久磁石33が設けられている場合の界磁磁束と同様に振る舞う。したがって、ステータ巻線20の電流によりロータ巻線30の鎖交磁束を調整することができる。 As shown in FIG. 20, the d-axis magnetic flux due to the d-axis current of the rotor winding 30 flows between the inner peripheral surface 61 and the outer peripheral surface 62 of the soft magnetic material 53 and acts on the stator 16, thereby causing the stator winding 20. Affects interlinkage magnetic flux. Therefore, the d-axis magnetic flux due to the d-axis current of the rotor winding 30 behaves in the same manner as the field magnetic flux when the permanent magnet 33 is provided at the position of the nonmagnetic material 35 for the stator 16. Therefore, the interlinkage magnetic flux of the stator winding 20 can be adjusted by the current of the rotor winding 30. Similarly, the d-axis magnetic flux due to the d-axis current of the stator winding 20 flows between the outer peripheral surface 62 and the inner peripheral surface 61 of the soft magnetic material 53 and acts on the input-side rotor 28, thereby Affects flux linkage. Therefore, the d-axis magnetic flux due to the d-axis current of the stator winding 20 behaves in the same way as the field magnetic flux when the permanent magnet 33 is provided at the position of the nonmagnetic material 35 for the input side rotor 28. Therefore, the interlinkage magnetic flux of the rotor winding 30 can be adjusted by the current of the stator winding 20.
 なお、永久磁石33に代えて非磁性体35または空隙を設けた場合の第1及び第2磁気干渉モデルについては、上記の説明においてfm’1=fm’2=f=0としたものを考えればよい。 For the first and second magnetic interference models in the case where a non-magnetic material 35 or a gap is provided instead of the permanent magnet 33, f m′1 = f m′2 = f 0 = 0 in the above description. Think about things.
 以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。 As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.
 10 回転電機、16 ステータ(固定子)、18 出力側ロータ(第2ロータ、第2回転子)、20 ステータ巻線(固定子巻線)、28 入力側ロータ(第1ロータ、第1回転子)、30 ロータ巻線(回転子巻線)、33 永久磁石、35 非磁性体、36 エンジン、37 駆動軸、38 車輪、40,41 インバータ、42 蓄電装置、44 変速機、50 電子制御ユニット、51 ステータコア、52 ロータコア、53 軟磁性材、54 空隙、61 内周面(第1面)、62 外周面(第2面)、63,64 側面(第3面、第4面)、70 情報処理装置、81 ロータ巻線温度センサ、82 ステータ巻線温度センサ、95 スリップリング、96 ブラシ、135 カップリングトルク指令値演算部、136 電流指令値設定部、137 電流特性記憶部、140 ロータ巻線電流制御部、155 MGトルク指令値演算部、160 ステータ巻線電流制御部、172 モデル記憶部、174 電流指令値演算部。 10 rotary electric machine, 16 stator (stator), 18 output rotor (second rotor, second rotor), 20 stator winding (stator winding), 28 input rotor (first rotor, first rotor) ), 30 rotor winding (rotor winding), 33 permanent magnet, 35 non-magnetic material, 36 engine, 37 drive shaft, 38 wheels, 40, 41 inverter, 42 power storage device, 44 transmission, 50 electronic control unit, 51 stator core, 52 rotor core, 53 soft magnetic material, 54 gap, 61 inner peripheral surface (first surface), 62 outer peripheral surface (second surface), 63, 64 side surfaces (third surface, fourth surface), 70 information processing Equipment, 81 rotor winding temperature sensor, 82 stator winding temperature sensor, 95 slip ring, 96 brush, 135 coupling torque command value calculation unit, 136 Flow command value setting unit, 137 current characteristic storage unit, 140 the rotor winding current controller, 155 MG torque command value calculating unit, 160 stator winding current controller, 172 model storage unit, 174 current command value calculating section.

Claims (19)

  1.  回転電機の電流を制御する回転電機の制御装置であって、
     回転電機は、
     回転子巻線が配設された第1回転子と、固定子巻線が配設された固定子と、第1回転子及び固定子と対向し、第1回転子に対し相対回転可能な第2回転子と、を備え、
     回転子巻線の電流による磁束が第2回転子に作用するのに応じて第1回転子と第2回転子間にトルクが作用し、固定子巻線の電流による磁束が第2回転子に作用するのに応じて固定子と第2回転子間にトルクが作用し、
     さらに、回転子巻線の電流により固定子巻線の鎖交磁束を調整可能で、固定子巻線の電流により回転子巻線の鎖交磁束を調整可能であり、
     制御装置は、回転子巻線の電流及び固定子巻線の電流の少なくとも1つ以上を用いた条件を含む制約条件を満たし、回転子巻線の電流及び固定子巻線の電流の関数である評価関数を最適化するための回転子巻線の電流指令値及び固定子巻線の電流指令値を、第1及び第2磁気干渉モデルを用いて演算する電流指令値演算部を備え、
     第1磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する回転子巻線の鎖交磁束の関係を表し、
     第2磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する固定子巻線の鎖交磁束の関係を表し、
     電流指令値演算部で演算された回転子巻線の電流指令値及び固定子巻線の電流指令値を基に、回転子巻線の電流及び固定子巻線の電流を制御する、回転電機の制御装置。
    A control device for a rotating electrical machine that controls the current of the rotating electrical machine,
    The rotating electrical machine
    A first rotor provided with a rotor winding, a stator provided with a stator winding, a first rotor and a stator that are opposed to the first rotor and capable of rotating relative to the first rotor. A two-rotor,
    Torque acts between the first rotor and the second rotor in response to the magnetic flux caused by the rotor winding current acting on the second rotor, and the magnetic flux caused by the stator winding current acts on the second rotor. Torque acts between the stator and the second rotor as it acts,
    Furthermore, the linkage flux of the stator winding can be adjusted by the current of the rotor winding, and the linkage flux of the rotor winding can be adjusted by the current of the stator winding,
    The controller satisfies constraints including a condition using at least one of a rotor winding current and a stator winding current, and is a function of the rotor winding current and the stator winding current. A current command value calculation unit for calculating the current command value of the rotor winding and the current command value of the stator winding for optimizing the evaluation function using the first and second magnetic interference models;
    The first magnetic interference model represents the relationship between the rotor winding current and the stator winding current relative to the rotor winding current and the stator winding current,
    The second magnetic interference model represents the relationship between the stator winding current and the stator winding current with respect to the stator winding current and the stator winding current,
    Based on the current command value of the rotor winding and the current command value of the stator winding calculated by the current command value calculation unit, the current of the rotor winding and the current of the stator winding are controlled. Control device.
  2.  請求項1に記載の回転電機の制御装置であって、
     第1及び第2磁気干渉モデルは、回転子巻線の電流と固定子巻線の電流を設定比率で合成した起磁力に関わるモデル式を含む、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The first and second magnetic interference models are control devices for a rotating electrical machine including a model formula relating to a magnetomotive force obtained by synthesizing a rotor winding current and a stator winding current in a set ratio.
  3.  請求項2に記載の回転電機の制御装置であって、
     前記設定比率は1:Cであり、Cは磁気干渉の度合いを表す係数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 2,
    The control apparatus for a rotating electrical machine, wherein the setting ratio is 1: C, and C is a coefficient representing the degree of magnetic interference.
  4.  請求項2に記載の回転電機の制御装置であって、
     第1及び第2磁気干渉モデルは、磁気飽和による鎖交磁束変化の度合いを表すモデル式をさらに含む、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 2,
    The first and second magnetic interference models are control devices for a rotating electrical machine, further including a model formula representing a degree of change in linkage flux due to magnetic saturation.
  5.  請求項1に記載の回転電機の制御装置であって、
     第1及び第2磁気干渉モデルは、d軸鎖交磁束に関わるモデルと、q軸鎖交磁束に関わるモデルとを有する、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The first and second magnetic interference models have a model related to a d-axis interlinkage magnetic flux and a model related to a q-axis interlinkage magnetic flux.
  6.  請求項1に記載の回転電機の制御装置であって、
     前記制約条件は、第1回転子と第2回転子間のトルクが第1トルク指令値に等しく、固定子と第2回転子間のトルクが第2トルク指令値に等しい条件を含み、
     前記評価関数は、回転子巻線と固定子巻線の温度差に応じた重み付けで回転子巻線の発熱量と固定子巻線の発熱量を加算した関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The constraint condition includes a condition in which the torque between the first rotor and the second rotor is equal to the first torque command value, and the torque between the stator and the second rotor is equal to the second torque command value,
    The evaluation function is a control device for a rotating electrical machine, which is a function obtained by adding a heat generation amount of a rotor winding and a heat generation amount of a stator winding by weighting according to a temperature difference between the rotor winding and the stator winding.
  7.  請求項6に記載の回転電機の制御装置であって、
     電流指令値演算部は、前記評価関数において、回転子巻線及び固定子巻線のうち、温度が高い巻線の発熱量の重み付けを増加させる、回転電機の制御装置。
    It is a control apparatus of the rotary electric machine of Claim 6, Comprising:
    The current command value calculation unit is a control device for a rotating electrical machine that increases weighting of a heat generation amount of a winding having a high temperature among the rotor winding and the stator winding in the evaluation function.
  8.  請求項1に記載の回転電機の制御装置であって、
     前記制約条件は、第1回転子と第2回転子間のトルクが第1トルク指令値に等しく、固定子と第2回転子間のトルクが第2トルク指令値に等しい条件を含み、
     前記評価関数は、回転電機の銅損及び鉄損による総合損失を表す関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The constraint condition includes a condition in which the torque between the first rotor and the second rotor is equal to the first torque command value, and the torque between the stator and the second rotor is equal to the second torque command value,
    The said evaluation function is a control apparatus of a rotary electric machine which is a function showing the total loss by the copper loss and iron loss of a rotary electric machine.
  9.  請求項6に記載の回転電機の制御装置であって、
     前記制約条件は、回転子巻線の電圧が第1制限値以下である条件、固定子巻線の電圧が第2制限値以下である条件、回転子巻線の電流が第3制限値以下である条件、及び固定子巻線の電流が第4制限値以下である条件の少なくとも1つ以上を含む、回転電機の制御装置。
    It is a control apparatus of the rotary electric machine of Claim 6, Comprising:
    The constraint condition is that the rotor winding voltage is less than or equal to the first limit value, the stator winding voltage is less than or equal to the second limit value, and the rotor winding current is less than or equal to the third limit value. A control device for a rotating electrical machine, including at least one of a certain condition and a condition in which a current of a stator winding is a fourth limit value or less.
  10.  請求項6に記載の回転電機の制御装置であって、
     電流指令値演算部は、前記制約条件を満たす範囲内で前記評価関数が略最小となるように回転子巻線の電流指令値及び固定子巻線の電流指令値を演算する、回転電機の制御装置。
    It is a control apparatus of the rotary electric machine of Claim 6, Comprising:
    The current command value calculation unit controls the rotating electrical machine to calculate the current command value of the rotor winding and the current command value of the stator winding so that the evaluation function is substantially minimized within the range satisfying the constraint condition. apparatus.
  11.  請求項1に記載の回転電機の制御装置であって、
     前記評価関数は、第1回転子と第2回転子間のトルクと、固定子と第2回転子間のトルクを所定の重み付けで加算した関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The evaluation function is a control device for a rotating electrical machine, which is a function obtained by adding a torque between the first rotor and the second rotor and a torque between the stator and the second rotor with a predetermined weight.
  12.  請求項1に記載の回転電機の制御装置であって、
     前記制約条件は、第1回転子と第2回転子間のトルクが第1トルク指令値に等しい条件を含み、
     前記評価関数は、固定子と第2回転子間のトルクを表す関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The constraint condition includes a condition in which the torque between the first rotor and the second rotor is equal to the first torque command value,
    The said evaluation function is a control apparatus of a rotary electric machine which is a function showing the torque between a stator and a 2nd rotor.
  13.  請求項1に記載の回転電機の制御装置であって、
     前記制約条件は、第1回転子と第2回転子間のトルクと、固定子と第2回転子間のトルクとの和が第3トルク指令値に等しい条件を含み、
     前記評価関数は、第1回転子と第2回転子間のトルクの絶対値を表す関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The constraint condition includes a condition that the sum of the torque between the first rotor and the second rotor and the torque between the stator and the second rotor is equal to the third torque command value,
    The said evaluation function is a control apparatus of a rotary electric machine which is a function showing the absolute value of the torque between a 1st rotor and a 2nd rotor.
  14.  請求項10に記載の回転電機の制御装置であって、
     前記制約条件は、回転子巻線の電圧が第1制限値以下である条件、固定子巻線の電圧が第2制限値以下である条件、回転子巻線の電流が第3制限値以下である条件、及び固定子巻線の電流が第4制限値以下である条件の少なくとも1つ以上を含む、回転電機の制御装置。
    The control apparatus for a rotating electrical machine according to claim 10,
    The constraint condition is that the rotor winding voltage is less than or equal to the first limit value, the stator winding voltage is less than or equal to the second limit value, and the rotor winding current is less than or equal to the third limit value. A control device for a rotating electrical machine, including at least one of a certain condition and a condition in which a current of a stator winding is a fourth limit value or less.
  15.  請求項1に記載の回転電機の制御装置であって、
     前記制約条件は、固定子巻線の電流が第5制限値以下である条件を含み、
     前記評価関数は、固定子と第2回転子間のトルクを表す関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The constraint condition includes a condition that the current of the stator winding is equal to or less than a fifth limit value,
    The said evaluation function is a control apparatus of a rotary electric machine which is a function showing the torque between a stator and a 2nd rotor.
  16.  請求項1に記載の回転電機の制御装置であって、
     前記制約条件は、回転子巻線の電流が第6制限値以下である条件を含み、
     前記評価関数は、第1回転子と第2回転子間のトルクを表す関数である、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 1,
    The constraint condition includes a condition that the current of the rotor winding is equal to or less than a sixth limit value,
    The said evaluation function is a control apparatus of a rotary electric machine which is a function showing the torque between a 1st rotor and a 2nd rotor.
  17.  請求項11に記載の回転電機の制御装置であって、
     電流指令値演算部は、前記制約条件を満たす範囲内で前記評価関数が略最大となるように回転子巻線の電流指令値及び固定子巻線の電流指令値を演算する、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 11,
    The current command value calculation unit calculates a rotor winding current command value and a stator winding current command value so that the evaluation function becomes substantially maximum within a range satisfying the constraint condition. apparatus.
  18.  請求項9に記載の回転電機の制御装置であって、
     第1電力変換装置により蓄電装置と固定子巻線との間で電力変換を行うことが可能であり、
     第2電力変換装置により蓄電装置と回転子巻線との間で電力変換を行うことが可能であり、
     第1及び第2制限値は、蓄電装置の電圧より小さい値に設定され、
     第3制限値は、第2電力変換装置の容量より小さい値に設定され、
     第4制限値は、第1電力変換装置の容量より小さい値に設定される、回転電機の制御装置。
    A control device for a rotating electrical machine according to claim 9,
    The first power conversion device can perform power conversion between the power storage device and the stator winding,
    It is possible to perform power conversion between the power storage device and the rotor winding by the second power conversion device,
    The first and second limit values are set to values smaller than the voltage of the power storage device,
    The third limit value is set to a value smaller than the capacity of the second power converter,
    The control device for a rotating electrical machine, wherein the fourth limit value is set to a value smaller than the capacity of the first power converter.
  19.  回転電機の電流指令値を演算する情報処理装置であって、
     回転電機は、
     回転子巻線が配設された第1回転子と、固定子巻線が配設された固定子と、第1回転子及び固定子と対向し、第1回転子に対し相対回転可能な第2回転子と、を備え、
     回転子巻線の電流による磁束が第2回転子に作用するのに応じて第1回転子と第2回転子間にトルクが作用し、固定子巻線の電流による磁束が第2回転子に作用するのに応じて固定子と第2回転子間にトルクが作用し、
     さらに、回転子巻線の電流により固定子巻線の鎖交磁束を調整可能で、固定子巻線の電流により回転子巻線の鎖交磁束を調整可能であり、
     情報処理装置は、回転子巻線の電流及び固定子巻線の電流の少なくとも1つ以上を用いた条件を含む制約条件を満たし、回転子巻線の電流及び固定子巻線の電流の関数である評価関数を最適化するための回転子巻線の電流指令値及び固定子巻線の電流指令値を、第1及び第2磁気干渉モデルを用いて演算する電流指令値演算部を備え、
     第1磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する回転子巻線の鎖交磁束の関係を表し、
     第2磁気干渉モデルは、回転子巻線の電流及び固定子巻線の電流に対する固定子巻線の鎖交磁束の関係を表す、情報処理装置。
    An information processing device for calculating a current command value of a rotating electrical machine,
    The rotating electrical machine
    A first rotor provided with a rotor winding, a stator provided with a stator winding, a first rotor and a stator that are opposed to the first rotor and capable of rotating relative to the first rotor. A two-rotor,
    Torque acts between the first rotor and the second rotor in response to the magnetic flux caused by the rotor winding current acting on the second rotor, and the magnetic flux caused by the stator winding current acts on the second rotor. Torque acts between the stator and the second rotor as it acts,
    Furthermore, the linkage flux of the stator winding can be adjusted by the current of the rotor winding, and the linkage flux of the rotor winding can be adjusted by the current of the stator winding,
    The information processing apparatus satisfies a constraint including a condition using at least one of a rotor winding current and a stator winding current, and is a function of the rotor winding current and the stator winding current. A current command value calculation unit for calculating the current command value of the rotor winding and the current command value of the stator winding for optimizing a certain evaluation function using the first and second magnetic interference models;
    The first magnetic interference model represents the relationship between the rotor winding current and the stator winding current relative to the rotor winding current and the stator winding current,
    The second magnetic interference model is an information processing apparatus that represents a relationship between a rotor winding current and a stator winding linkage flux current with respect to a stator winding current.
PCT/JP2015/058518 2014-03-27 2015-03-20 Control device for rotating electric machine, and information processing device WO2015146841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014066649A JP6237405B2 (en) 2014-03-27 2014-03-27 Rotating electrical machine control device and information processing device
JP2014-066649 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146841A1 true WO2015146841A1 (en) 2015-10-01

Family

ID=54195359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058518 WO2015146841A1 (en) 2014-03-27 2015-03-20 Control device for rotating electric machine, and information processing device

Country Status (2)

Country Link
JP (1) JP6237405B2 (en)
WO (1) WO2015146841A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036098A (en) * 2009-08-05 2011-02-17 Denso Corp Controller for electric rotating machine
JP2011205741A (en) * 2010-03-24 2011-10-13 Toyota Central R&D Labs Inc Drive controller of rotating-electric machine
JP2012239339A (en) * 2011-05-13 2012-12-06 Denso Corp Rotary electric machine device, vehicle driving device, control method of rotary electric machine and control method of vehicle driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036098A (en) * 2009-08-05 2011-02-17 Denso Corp Controller for electric rotating machine
JP2011205741A (en) * 2010-03-24 2011-10-13 Toyota Central R&D Labs Inc Drive controller of rotating-electric machine
JP2012239339A (en) * 2011-05-13 2012-12-06 Denso Corp Rotary electric machine device, vehicle driving device, control method of rotary electric machine and control method of vehicle driving device

Also Published As

Publication number Publication date
JP2015192494A (en) 2015-11-02
JP6237405B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP5901678B2 (en) Information processing device, information storage device, and control device for rotating electrical machine
Pyrhonen et al. Electrical machine drives control: An introduction
JP5571879B2 (en) Power transmission device
JP6072606B2 (en) Rotating electric machine
US20170005555A1 (en) Asymmetric salient permanent magnet synchronous machine
JP5381839B2 (en) Power transmission device
JP6424729B2 (en) Electric rotating machine
JP6017992B2 (en) Rotating electrical machine system
JP2013070527A (en) Rotary electric machine control system
CN103475112A (en) Switched reluctance generator
JP6237405B2 (en) Rotating electrical machine control device and information processing device
Biswas et al. A novel approach towards electrical loss minimization in vector controlled induction machine drive for EV/HEV
JP4910745B2 (en) Electric motor control device and control method thereof
Niguchi et al. Magnetizing directions of the permanent magnets of the magnetic-geared motor
JP6286115B2 (en) Structure of stator of rotating electrical machine
US9099912B2 (en) Electromagnetic coupling
Ni et al. Optimization of a spoke-type permanent magnet motor by combination of genetic algorithm and finite element method
JP2004187450A (en) Power converter using electric motor
Mashiko et al. Design of switched reluctance motors for electric hand tools
Ugale et al. A novel line start permanent magnet synchronous motor using two-part rotor
WO2024009686A1 (en) Control device for power converter and program
JP7326050B2 (en) A rotating electric machine, a drive control system for a vehicle, a program to be executed by a control device for the rotating electric machine, and a storage medium storing the program
WO2014038262A1 (en) Vehicle drive mechanism
Lee et al. Proposed Axial-Field Machine for Range-Extended Electric Vehicles
Wang Design, analysis and application of novel flux-controllable flux-modulated machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769781

Country of ref document: EP

Kind code of ref document: A1