WO2015146775A1 - Electric brake device - Google Patents

Electric brake device Download PDF

Info

Publication number
WO2015146775A1
WO2015146775A1 PCT/JP2015/058220 JP2015058220W WO2015146775A1 WO 2015146775 A1 WO2015146775 A1 WO 2015146775A1 JP 2015058220 W JP2015058220 W JP 2015058220W WO 2015146775 A1 WO2015146775 A1 WO 2015146775A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
rotation angle
motor rotation
brake force
electric
Prior art date
Application number
PCT/JP2015/058220
Other languages
French (fr)
Japanese (ja)
Inventor
唯 増田
Original Assignee
Ntn株式会社
唯 増田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 唯 増田 filed Critical Ntn株式会社
Priority to EP15769044.7A priority Critical patent/EP3124345B1/en
Priority to CN201580016254.5A priority patent/CN106132795B/en
Publication of WO2015146775A1 publication Critical patent/WO2015146775A1/en
Priority to US15/274,614 priority patent/US10100891B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P15/00Arrangements for controlling dynamo-electric brakes or clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/003Position, angle or speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/005Force, torque, stress or strain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • F16D2066/006Arrangements for monitoring working conditions, e.g. wear, temperature without direct measurement of the quantity monitored, e.g. wear or temperature calculated form force and duration of braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/50Rotating members in mutual engagement with parallel non-stationary axes, e.g. planetary gearing

Definitions

  • This invention relates to an electric brake device capable of improving control accuracy without requiring an increase in cost.
  • a brake force estimating means is provided for accurately controlling the brake force. It is necessary to provide a control system having a feedback element. At that time, it is common to configure a digital control system that repeats the calculation every predetermined sampling time using an arithmetic unit such as a microcomputer.
  • the shorter the sampling time is set the higher the speed and accuracy of the control becomes possible, while the higher the requirement for the resolution of the brake force estimating means. If the resolution is insufficient, the responsiveness of the control system is impaired, and the control accuracy may be reduced. For example, in the ABS control, it is required to control the braking force at high speed and with high accuracy in order to prevent the wheel from slipping. Insufficient response speed and control accuracy may cause problems such as the wheels exceeding the slip limit and adversely affecting steering, or conversely, the braking distance may increase due to a decrease in braking force.
  • An object of the present invention is to provide an electric brake device capable of improving control accuracy without requiring an increase in cost.
  • the electric brake device includes an electric motor 2, a brake rotor 5, a friction pad 6 that comes into contact with the brake rotor 5 to generate a braking force, and a rotational motion of the electric motor 2.
  • the transmission mechanism 4 that converts the motion of the friction pad 6, the brake force command means 26 a that generates a target brake force command value from the operation amount of the brake operation means 29, and the friction pad 6 is pressed against the brake rotor 5.
  • Brake force estimating means 30 for obtaining an estimated value of the brake force
  • motor rotation angle detecting means 28 for detecting the rotation angle of the electric motor 2, and controlling the electric motor 2 according to the command value and the estimated value of the brake force
  • An electric brake device provided with a control device 7,
  • the motor rotation angle detection means 28 has a resolution higher than a motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means 30;
  • the control device 7 has resolution interpolation means 37 for interpolating the minimum braking force resolution obtained by the braking force estimation means 30 with the motor rotation angle detected by the motor rotation angle detection means 28.
  • the minimum brake force is a minimum brake force that can be detected by the brake force estimating means 30.
  • the maximum brake force is a brake force that is the maximum value of the command value generated by the brake force command means 26a.
  • the “resolution” represents a minimum interval between a detectable braking force or a motor rotation angle, and is represented by a bit number or the like in digital data.
  • the motor rotation angle detection means 28 has a higher resolution than the motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means 30. Since the motor rotation angle detection means 28 is inexpensive and has high resolution, it is easy to mount the motor rotation angle detection means 28 in the electric brake device. Further, since the motor rotation angle detection means 28 can be an existing detection means originally provided in the electric motor 2, it is not necessary to secure a mounting space for the motor rotation angle detection means, and a dedicated sensor is used as the electric brake. Since there is no need to add a new device, the cost can be reduced.
  • the detected motor rotation angle changes the full scale from the angle “0” to the maximum angle in the motor rotation angle detection means 28 a plurality of times. How much the motor rotation angle detected by the motor rotation angle detection means 28 changes with respect to the minimum resolution of the braking force can be estimated from information given in advance such as caliper rigidity and equivalent lead. Based on this estimation result, the resolution interpolation means 37 of the control device 7 interpolates the minimum resolution of the braking force obtained by the braking force estimation means 30 by the motor rotation angle detected by the motor rotation angle detection means 28. Then, for example, even when the resolution for detecting the braking force is lower than the required resolution for the target braking force, the intermediate value can be interpolated and controlled by the motor rotation angle. Thus, the control accuracy can be improved without requiring an increase in cost.
  • the brake force estimation means 30 may use a detection value of a load sensor 13 that detects an axial load of the transmission mechanism 4.
  • the control device 7 advances the linear motion portion 14 of the transmission mechanism 4 from the position away from the brake rotor 5 to the outboard side so that the friction pad 6 contacts the brake rotor 5, and the reaction force is applied to the load sensor.
  • the minimum detection value that can be detected at 13, that is, the braking force is acquired.
  • the brake force detected by the load sensor 13 gradually increases in accordance with the operation amount that further depresses the brake operation means 29. By using this load sensor 13, it is possible to detect the braking force with higher accuracy than obtaining the estimated value of the braking force from the sensor output of the brake operating means 29 and the motor current.
  • the resolution interpolation unit 37 includes: Determining the relationship between the braking force estimation result when the braking force calculated by the braking force estimation means 30 changes by a predetermined value or more and the motor rotation angle detected by the motor rotation angle detection means 28; Interpolating intermediate values up to each subsequent braking force estimation result obtained by adding positive and negative addition values determined in the braking force estimation result based on the motor rotation angle detected by the motor rotation angle detection means 28 It is also good.
  • the predetermined value is arbitrarily determined according to a request from results of experiments and simulations, for example.
  • the resolution interpolation unit 37 may increase the determined value as the difference between the brake force command value generated by the brake force command unit 26a and the brake force estimation result increases.
  • the resolution interpolation unit 37 increases the predetermined value as the change rate of the difference between the brake force command value generated by the brake force command unit 26a and the brake force estimation result increases. May be.
  • the resolution interpolation means 37 has a relatively small effect of interpolating the resolution. A so-called thinning process for increasing the predetermined value according to the rate is executed. Thereby, the calculation load of the control device 7 can be reduced.
  • the control device 7 has a calculation means 37 for associating a motor rotation angle detected by the motor rotation angle detection means 28 with a predetermined motor rotation angle and a braking force based on a braking force obtained by the braking force estimation means 30. You may have.
  • the calculation means 37 determines the absolute motor rotation angle by specifying the number of rotations of the motor rotation angle in the plurality of rotations based on the braking force.
  • the motor rotation angle detected by the motor rotation angle detection means 28 changes the full scale from the angle “0” to the maximum angle several times, and also due to friction pad wear, etc. Since the piston position at which the friction pad and the brake rotor start to contact, that is, the motor rotation angle changes, the absolute angle of the motor rotation angle for accurately exhibiting the desired braking force is unknown only by the motor rotation angle detection means 28. . According to this configuration, the calculation means 37 of the control device 7 exhibits a desired braking force from the relationship between the motor rotation angle detected by the motor rotation angle detection means 28 and the braking force obtained by the brake force estimation means 30. The absolute angle of the motor rotation angle to be obtained can be obtained. Therefore, it is possible to improve the control accuracy without requiring an increase in cost.
  • the electric brake device includes a housing 1, an electric motor 2, a speed reduction mechanism 3 that decelerates rotation of the electric motor 2, a linear motion mechanism 4 that is a transmission mechanism, a brake rotor 5, and the like. And a friction pad 6, a lock mechanism (not shown), and a control device 7 for controlling the electric motor 2.
  • An electric motor 2 is supported on a housing 1 that is a caliper.
  • a linear motion mechanism 4 that loads a braking force to the brake rotor 5 (in this example, a disk rotor) by the output of the electric motor 2 is incorporated in the housing 1.
  • the open end of the housing 1 is covered with a cover 8.
  • the linear motion mechanism 4 is a mechanism for converting the rotational motion output from the speed reduction mechanism 3 into a linear motion and bringing the friction pad 6 into contact with and separating from the brake rotor 5.
  • the linear motion mechanism 4 includes a rotary shaft 9 that is rotationally driven by the electric motor 2, a conversion mechanism unit 10 that converts the rotary motion of the rotary shaft 9 into linear motion, restraint portions 11 and 12, a load meter and a force. And a load sensor 13 also called a sensor.
  • the conversion mechanism section 10 includes a linear motion section 14, a bearing member 15, an annular thrust plate 16, a thrust bearing 17, a plurality of rolling bearings 18, a carrier 19, sliding bearings 20 and 21, and a plurality of planetary planets. And a roller 22.
  • a cylindrical linear motion portion 14 is supported on the inner peripheral surface of the housing 1 so as to be prevented from rotating and movable in the axial direction.
  • a spiral protrusion is provided that protrudes a predetermined distance radially inward and is formed in a spiral shape.
  • a plurality of planetary rollers 22 are engaged with the spiral protrusions.
  • a bearing member 15 is provided on one axial end side of the linear motion portion 14 in the housing 1.
  • the bearing member 15 has a flange portion extending radially outward and a boss portion.
  • a plurality of rolling bearings 18 are fitted in the boss portions, and the rotary shaft 9 is fitted to the inner ring inner surface of the rolling bearings 18.
  • the rotating shaft 9 is rotatably supported by the bearing member 15 via a plurality of rolling bearings 18.
  • a carrier 19 that can rotate about the rotation shaft 9 is provided on the inner periphery of the linear motion portion 14.
  • the carrier 19 has disks that are arranged to face each other in the axial direction.
  • the disk close to the bearing member 15 may be referred to as an inner disk, and the other disk may be referred to as an outer disk.
  • a side surface facing the inner side disk is provided with a spacing adjusting member that protrudes in the axial direction from the outer peripheral edge portion on the side surface.
  • a plurality of the interval adjusting members are arranged at equal intervals in the circumferential direction. Both the disks are integrally provided by these distance adjusting members.
  • the inner disk is rotatably supported by a sliding bearing 20 fitted between the rotating shaft 9 and the inner disk.
  • a shaft insertion hole is formed in the center of the outer disk, and a slide bearing 21 is fitted in this shaft insertion hole.
  • the outer disk is rotatably supported on the rotary shaft 9 by the slide bearing 21.
  • constraining portions 11 and 12 that receive a thrust load and constrain the axial position of the rotating shaft 9 are provided.
  • Each restraining part 11 and 12 contains the stopper piece which consists of a washer etc., for example.
  • Retaining rings for preventing the restraining portions 11 and 12 from coming off are provided at both ends of the rotating shaft 9.
  • the carrier 19 is provided with a plurality of roller shafts 23 at intervals in the circumferential direction. Both end portions of each roller shaft 23 are supported across the inner side disk and the outer side disk. That is, a plurality of shaft insertion holes each having a long hole are formed in both discs, and both end portions of each roller shaft 23 are inserted into the respective shaft insertion holes, and the roller shafts 23 are radially formed within the range of the respective shaft insertion holes. It is supported movably. Elastic rings 24 that urge the roller shafts 23 inward in the radial direction are respectively hung on both ends in the axial direction of the plurality of roller shafts 23.
  • Each planetary roller 22 is rotatably supported by each roller shaft 23, and each planetary roller 22 is interposed between the outer peripheral surface of the rotary shaft 9 and the inner peripheral surface of the linear motion portion 14.
  • Each planetary roller 22 is pressed against the outer peripheral surface of the rotating shaft 9 by the urging force of the elastic ring 24 spanned across the plurality of roller shafts 23.
  • each planetary roller 22 that contacts the outer peripheral surface of the rotating shaft 9 rotates due to contact friction.
  • On the outer peripheral surface of the planetary roller 22, a spiral groove that meshes with the spiral protrusion of the linear motion portion 14 is formed.
  • the speed reduction mechanism 3 is a mechanism that transmits the rotation of the electric motor 2 at a reduced speed to the output gear 25 fixed to the rotary shaft 9, and includes a plurality of gear trains (not shown). In this example, the speed reduction mechanism 3 can sequentially transmit the rotation of an input gear (not shown) attached to a rotor shaft (not shown) of the electric motor 2 to the output gear 25 by the gear train.
  • the locking mechanism is configured to be switchable between a locked state in which the braking force slack operation of the linear motion mechanism 4 is prevented and an unlocked state in which the braking force slack operation is allowed.
  • FIG. 2 is a block diagram of the control system of this electric brake device.
  • the control device 7 of the electric brake device is an inverter device 27, and an electric control unit for controlling the vehicle as a whole is applied as the ECU 26 which is a host control means of the inverter device 27, for example.
  • the ECU 26 is provided with a brake force command means 26a.
  • the brake force command means 26a is configured to use a predetermined conversion function of a LUT (Look / Up / Table) or a library (Library) in accordance with the output of the sensor 29a that changes according to the amount of operation of the brake pedal as the brake operation means 29. Used to generate and output a target brake force command value.
  • the brake operation means 29 is not limited to a pedal input type as long as it is a means for an operator to instruct braking, and may be a button input type, a lever input type, or the like.
  • the inverter device 27 includes a brake force estimating means 30 for obtaining an estimated value of a brake force that presses the friction pad 6 (FIG. 1) against the brake rotor 5 (FIG. 1), and a power circuit unit 31 provided for each electric motor 2. And a motor control unit 32 for controlling the power circuit unit 31 and a current detection means 34.
  • the brake force estimation means 30 calculates an estimated value of the corresponding brake force from the output of the sensor 29a that changes according to the operation amount of the brake operation means 29 and the motor current detected by the current detection means 34, in the LUT or the library. It is obtained by calculation using a predetermined conversion function or the like. The relationship between the output of the sensor 29a, the motor current, and the estimated value of the braking force is determined in advance by results of experiments and simulations, and is recorded in the recording means 38 so as to be rewritable.
  • the brake force estimating means 30 may use the detection value of the load sensor 13 that detects the axial load of the linear motion mechanism 4.
  • the control device 7 outboards the position where the linear motion portion 14 (FIG. 1) is separated from the brake rotor 5 (FIG. 1).
  • the friction pad 6 comes into contact with the brake rotor 5 by being advanced to the side (FIG. 1).
  • the minimum detectable value that is, the minimum braking force is obtained.
  • the brake force detected by the load sensor 13 gradually increases in accordance with the operation amount that further depresses the brake operation means 29.
  • the detection value of the load sensor 13 it is possible to detect the braking force with higher accuracy than obtaining the estimated value of the braking force from the output of the sensor 29a and the motor current.
  • the motor control unit 32 includes a computer having a processor, a ROM (Read Only Memory) having a program executed by the processor, and an electronic circuit such as a RAM (Random Access Memory) and a coprocessor (Co-Processor). Composed.
  • the motor control unit 32 converts the braking force command value given from the braking force command means 26a and the estimated braking force value estimated by the braking force estimation means 30 into a current command expressed by a voltage value.
  • the current command is given to the power circuit unit 31.
  • the motor control unit 32 has a function of outputting information such as detection values and control values related to the electric motor 2 to the ECU 26.
  • the power circuit unit 31 includes an inverter 31b that converts the DC power of the power source 35 into three-phase AC power used to drive the electric motor 2, and a PWM control unit 31a that controls the inverter 31b.
  • the electric motor 2 is composed of a three-phase synchronous motor or the like.
  • the electric motor 2 is provided with motor rotation angle detection means 28 that detects the rotation angle of a rotor (not shown), for example, a rotation angle sensor or a rotary encoder.
  • the inverter 31b is composed of a plurality of semiconductor switching elements (not shown), and the PWM control unit 31a performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
  • the motor control unit 32 has a motor drive control unit 36 as a basic control unit.
  • This motor drive control unit 36 converts it into a current command represented by a voltage value in accordance with the command value and estimated value of the brake force described above, and sends a motor operation command comprising the current command to the PWM control unit 31a of the power circuit unit 31. Give value.
  • the motor drive control unit 36 obtains a motor current flowing from the inverter 31b to the electric motor 2 from the current detection unit 34 and performs current feedback control with respect to the command value of the braking force.
  • the motor drive control unit 36 obtains the rotation angle of the rotor (not shown) of the electric motor 2, that is, the motor rotation angle from the motor rotation angle detecting means 28, so that efficient motor driving according to the motor rotation angle can be performed.
  • a current command is given to the PWM control unit 31a.
  • the motor drive control unit 36 is provided with resolution interpolation means 37.
  • the resolution interpolation unit 37 interpolates the minimum resolution of the braking force obtained by the braking force estimation unit 30 based on the motor rotation angle detected by the motor rotation angle detection unit 28.
  • the motor rotation angle detection means 28 used in at least a part of the braking force region from the minimum braking force to the maximum braking force is applied to a brake equivalent to the minimum braking force resolution of the braking force estimation means 30. It has a higher resolution than the motor rotation angle that generates force fluctuations.
  • the resolution interpolating means 37 includes a braking force estimation result when the braking force obtained by the braking force estimating means 30 changes from a predetermined value by a predetermined value or more, and a motor rotation angle detected by the motor rotation angle detecting means 28. Determine the relationship. Further, the resolution interpolation means 37 adds each of the following braking force estimation results (estimation) obtained by adding positive and negative addition values (for example, positive when the brake pedal 29 is depressed and negative when the brake pedal 29 is released) determined in the braking force estimation result. The intermediate value existing up to (value) is interpolated based on the motor rotation angle detected by the motor rotation angle detection means 28 using the LUT, a predetermined conversion function of the library, or the like. As described above, the resolution interpolation unit 37 interpolates the minimum resolution based on the motor rotation angle.
  • the calculation means 37 converts the motor rotation angle ⁇ (relative angle) detected by the motor rotation angle detection means 28 into a plurality of rotations (the brake force F obtained by the brake force estimation means 30).
  • the absolute angle of the motor rotation angle is obtained by specifying the number of rotations of the motor rotation angle in the multiple times transition). While the braking force changes from zero to the maximum value, the motor rotation angle detected by the motor rotation angle detection means 28 changes a full scale from the angle “0” to the maximum angle (360 °: relative angle) a plurality of times. .
  • the absolute angle of rotation is unknown.
  • the motor rotation angle for exerting a desired braking force from the relationship between the motor rotation angle detected by the motor rotation angle detection means 28 and the braking force obtained by the braking force estimation means 30 is calculated.
  • the absolute angle can be obtained by using an LUT, an addition function of a library, an adder, or the like. Therefore, it is possible to improve the control accuracy without requiring an increase in cost.
  • the predetermined value is arbitrarily determined according to a request from the result of, for example, an experiment or a simulation, and is recorded in the recording means 38 so as to be rewritable.
  • the resolution interpolation unit 37 has a change rate of a difference between the brake force command value generated by the brake force command unit 26a and the brake force estimation result or a difference between the brake force command value and the brake force estimation result. The larger the value, the larger the predetermined value.
  • the resolution is reduced but the noise resistance is improved. If the difference between the braking force command value and the braking force estimation result, or the rate of change of this difference is large, the effect of interpolating the resolution is relatively small. In response to this, a so-called thinning process for increasing the predetermined value is executed. Thereby, the calculation load of the control device 7 can be reduced.
  • FIG. 3 is a conceptual diagram illustrating a brake operation in the electric brake device.
  • the detected motor rotation angle is a relative angle
  • the motor rotation angle detecting means 28 The full scale from the angle “0” to the maximum angle (360 °) is changed a plurality of times.
  • FIG. 3B shows an example in which the braking force detection result is interpolated in a partial section surrounded by a one-dot chain line in FIG.
  • How much the motor rotation angle detected by the motor rotation angle detection means 28 changes with respect to the minimum resolution of the braking force that is, when the braking force changes by an amount corresponding to the minimum resolution, the motor rotation angle. It can be estimated from information given in advance such as caliper rigidity and equivalent lead.
  • the resolution interpolation means 37 of the control device 7 interpolates the minimum resolution of the braking force obtained by the braking force estimation means 30 by the motor rotation angle detected by the motor rotation angle detection means 28 as described above. To do. In this case, for example, even when the brake force detection resolution is lower than the target required brake force resolution, the intermediate value can be interpolated and controlled by the motor rotation angle.
  • FIG. 4 is a flowchart showing an example of interpolating the estimated brake force value by the motor rotation angle in this electric brake device.
  • this processing is started under the condition that the main power supply of a vehicle equipped with this electric brake device is turned on, and the resolution interpolation means 37, which is also referred to as computing means (FIG. 2), depresses the brake pedal 29 from the brake force estimating means 30.
  • the brake force F (k) after being obtained is acquired, and the motor rotation angle ⁇ (k) at the brake force F (k) is acquired from the motor rotation angle detection means 28 (step S1).
  • the acquired braking force F (k) and motor rotation angle ⁇ (k) are temporarily recorded in the recording means 38.
  • the resolution interpolation unit 37 determines whether or not the acquired braking force F (k) has changed with respect to the latest past braking force F (k ⁇ 1) recorded in the recording unit 38. (Step S2). When it is determined that the change has occurred (step S2: yes), the resolution interpolation unit 37 stores the braking force F (k) in the reference braking force Fb, and the motor rotation angle ⁇ (k) at the braking force F (k). Is stored in the reference rotation angle ⁇ b (step S3). Thereafter, the resolution interpolation unit 37 stores F (k) in the current brake force F (step S4), and ends this process. The reference brake force Fb and the reference rotation angle ⁇ b are recorded in the recording means 38.
  • step S2 it is determined that the brake force F (k) has not changed with respect to the latest brake force F (k-1) (step S2: no), and the resolution interpolation unit 37 determines that Nbit (N is a natural number).
  • the resolution interpolation unit 37 calculates the change rate ⁇ r of the motor rotation angle per brake force 1LSB (step S6).
  • the change rate ⁇ r is obtained by dividing the value obtained by subtracting the reference rotation angle ⁇ b from the motor rotation angle ⁇ (k) by the motor rotation angle ⁇ LSB .
  • F LSB is expressed as a digital value of N bits (N is a natural number)
  • F LSB F M / 2N .
  • LSB is a least significant bit (abbreviated as Least Significant Bit, LSB) is a bit position that means the smallest binary value in a computer.
  • the volume of the electric brake device is preferably as small as possible.
  • the pressing force of the friction pad 6 with respect to the motor torque of the electric brake device is a performance that is the sum of the reduction ratio by the speed reduction mechanism 3 and the linear motion distance with respect to the rotational input of the linear motion mechanism 4, that is, equivalent to motor rotation. Determined by lead.
  • the motor torque generally depends on the motor volume. That is, in order to reduce the volume of the electric brake device, it is necessary to make the equivalent lead sufficiently small.
  • the peripheral members are deformed by this pressing force. It is necessary to project the linear motion mechanism 4 according to the amount of deformation.
  • the deformation amount including the friction pad 6 and the housing 1, that is, the caliper at the time of exerting the maximum braking force is often about 0.5 mm to 1 mm.
  • the equivalent lead per motor rotation is set to about 0.05 mm to 0.2 mm. With this setting, it is possible to realize a motor-sized electric brake device that can be mounted in a mounting space that is almost similar to an existing hydraulic brake.
  • the motor rotation angle detection means used in the above-mentioned part of the brake force region is a motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means. Higher resolution.
  • this motor rotation angle detection means an inexpensive and high resolution sensor, for example, a resolver, a GMR sensor, etc. are widely used in practical use. Therefore, it is easy to mount this motor rotation angle detection means in an electric brake device. It is.
  • the motor rotation angle detection means can be applied to the existing detection means inherent in the electric motor, it is not necessary to secure a mounting space for the motor rotation angle detection means, and a dedicated sensor is provided in the electric brake device. Costs can be reduced because there is no need to add new ones.
  • the detected motor rotation angle is a full scale from the angle “0” to the maximum angle (360 °: relative angle) in the motor rotation angle detection means 28 a plurality of times. Transition to. How much the motor rotation angle detected by the motor rotation angle detecting means changes with respect to the minimum resolution of the braking force can be estimated by information given in advance such as caliper rigidity and equivalent lead. Based on this estimation result, the resolution interpolation means of the control device interpolates the minimum resolution of the brake force obtained by the brake force estimation means by the motor rotation angle detected by the motor rotation angle detection means. Then, for example, even when the resolution for detecting the braking force is lower than the required resolution for the target braking force, the intermediate value can be interpolated and controlled by the motor rotation angle. Thus, the control accuracy can be improved without requiring an increase in cost.
  • an electric brake device of a disc brake type is applied as an example, but it is not limited to the disc brake type but may be a drum brake type.
  • the planetary roller type has been described as the linear motion mechanism, other types such as a ball screw type and a ball ramp type may be used.
  • An electric brake device comprising: a motor rotation angle detecting means for detecting the control signal; and a control device for controlling the electric motor in accordance with a command value and an estimated value of the brake force,
  • the motor rotation angle detection means has a resolution higher than the motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means;
  • the control device identifies the

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

Provided is an electric brake device that can improve control precision without requiring a cost increase. This electric brake device comprises an electric motor (2), a brake rotor (5), a friction pad (6), a transmission mechanism (4), a brake force command means (26a), a brake force estimating means (30), a motor rotation angle detecting means (28), and a control device (7). The motor rotation angle detecting means (28) is used in a brake force region that is between the exertion of minimum brake force and maximum brake force, and has a resolution that is higher than the resolution of a motor rotation angle that generates a brake force variation that is equivalent to the minimum brake force resolution of the brake force estimating means (30). The control device (7) has a resolution interpolating means (37) that uses the motor rotation angle detected by the motor rotation angle detecting means (28) to interpolate the minimum resolution of the brake force that is found by the brake force estimating means (30).

Description

電動ブレーキ装置Electric brake device 関連出願Related applications
 本出願は、2014年3月27日出願の特願2014-65267の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-65267 filed on Mar. 27, 2014, the entire contents of which are incorporated herein by reference.
 この発明は、コスト増加を必要とせずに制御精度の向上を図ることが可能な電動ブレーキ装置に関する。 This invention relates to an electric brake device capable of improving control accuracy without requiring an increase in cost.
 従来、電動ブレーキ装置として、以下のものが提案されている。
(1)ブレーキペダルを踏み込むことで、モータの回転運動を直動機構を介して直線運動に変換して、ブレーキパッドをブレーキディスクに押圧接触させて制動力を負荷する(特許文献1)。
(2)遊星ローラねじ機構を使用した電動式直動アクチュエータ(特許文献2)。
(3)歪センサを用いたブレーキ力推定手段(特許文献3)。
Conventionally, the following are proposed as an electric brake device.
(1) By depressing the brake pedal, the rotational motion of the motor is converted into a linear motion through a linear motion mechanism, and the brake pad is pressed against the brake disc to apply a braking force (Patent Document 1).
(2) An electric linear actuator using a planetary roller screw mechanism (Patent Document 2).
(3) Brake force estimation means using a strain sensor (Patent Document 3).
特開平6-327190号公報JP-A-6-327190 特開2006-194356号公報JP 2006-194356 A 特開2003-287063号公報JP 2003-287063 A
 モータの回転運動を直線運動に変換する前記(1)の電動ブレーキ装置、遊星ローラねじ機構を使用した前記(2)の電動ブレーキ装置において、ブレーキ力を精度良く制御するためにブレーキ力推定手段を設け、フィードバック要素を持つ制御系を構成する必要がある。その際、例えばマイクロコンピュータ等の演算器を用いて、所定のサンプリング時間毎に演算を繰り返すディジタル制御系を構成することが一般的である。 In the electric brake device of the above (1) that converts the rotational motion of the motor into a linear motion, and the electric brake device of the above (2) that uses a planetary roller screw mechanism, a brake force estimating means is provided for accurately controlling the brake force. It is necessary to provide a control system having a feedback element. At that time, it is common to configure a digital control system that repeats the calculation every predetermined sampling time using an arithmetic unit such as a microcomputer.
 このとき、サンプリング時間を短く設定するほど高速・高精度な制御が可能となる一方、前記ブレーキ力推定手段の分解能への要求も高くなる。前記分解能が不足すると、制御系の応答性が損なわれ、制御精度が低下する可能性がある。また、例えば、ABS制御においては、車輪のスリップを防止するためにブレーキ力を高速・高精度に制御することが要求される。応答速度や制御精度が不足すると、車輪がスリップ限界を超えて操舵に悪影響を与える、あるいは逆にブレーキ力の低下により制動距離が伸びてしまう、等の問題が発生する可能性がある。 At this time, the shorter the sampling time is set, the higher the speed and accuracy of the control becomes possible, while the higher the requirement for the resolution of the brake force estimating means. If the resolution is insufficient, the responsiveness of the control system is impaired, and the control accuracy may be reduced. For example, in the ABS control, it is required to control the braking force at high speed and with high accuracy in order to prevent the wheel from slipping. Insufficient response speed and control accuracy may cause problems such as the wheels exceeding the slip limit and adversely affecting steering, or conversely, the braking distance may increase due to a decrease in braking force.
 摩擦パッド押圧時の反力による変形や歪を検出し、ブレーキ力を推定する前記(3)の電動ブレーキ装置では、高精度なセンサを使用するためには、構成部材を大きく変形させる必要があるため、剛性や耐久性の低下が問題となる可能性がある。また、ノイズ対策として効果の高いシールドや絶縁が必要になる場合があるため、コスト増加や実装スペースの増加となる可能性がある。 In the electric brake device (3) that detects deformation and distortion due to reaction force when the friction pad is pressed and estimates the braking force, it is necessary to greatly deform the constituent members in order to use a highly accurate sensor. Therefore, a decrease in rigidity and durability may be a problem. In addition, since shielding and insulation that are highly effective as noise countermeasures may be required, there is a possibility of increasing costs and mounting space.
 この発明の目的は、コスト増加を必要とせずに制御精度の向上を図ることができる電動ブレーキ装置を提供することである。 An object of the present invention is to provide an electric brake device capable of improving control accuracy without requiring an increase in cost.
 以下、この発明について、理解を容易にするために、便宜上実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, the present invention will be described with reference to the reference numerals of the embodiments for convenience.
 この発明における第1の発明の電動ブレーキ装置は、電動モータ2と、ブレーキロータ5と、このブレーキロータ5と接触して制動力を発生させる摩擦パッド6と、前記電動モータ2の回転運動を前記摩擦パッド6の運動に変換する伝達機構4と、ブレーキ操作手段29の操作量から目標とするブレーキ力の指令値を生成するブレーキ力指令手段26aと、前記摩擦パッド6を前記ブレーキロータ5に押し付けるブレーキ力の推定値を求めるブレーキ力推定手段30と、前記電動モータ2の回転角を検出するモータ回転角検出手段28と、前記ブレーキ力の指令値および推定値に応じて前記電動モータ2を制御する制御装置7とを備えた電動ブレーキ装置であって、
 前記モータ回転角検出手段28が、前記ブレーキ力推定手段30の最小ブレーキ力分解能と同等のブレーキ力変動を発生させるモータ回転角よりも高い分解能を有し、
 前記制御装置7は、前記ブレーキ力推定手段30で求められるブレーキ力の最小分解能を、前記モータ回転角検出手段28で検出されるモータ回転角により補間する分解能補間手段37を有する。
 前記最小ブレーキ力は、前記ブレーキ力推定手段30で検出可能な最小のブレーキ力である。前記最大ブレーキ力は、前記ブレーキ力指令手段26aで生成される指令値の最大値となるブレーキ力である。前記「分解能」は、検出可能なブレーキ力またはモータ回転角の最小間隔を表し、ディジタルデータではbit数等で表される。例えば、分解能は、連続量たるブレーキ力(またはモータ回転角)の最大値Mを、Lビット(Lは自然数)ディジタルの最大値(2-1)に1を加えた数で除算した値、つまり前記ブレーキ力(またはモータ回転角)の最大値Mに対する1bitあたりの値(=M/2)である。
The electric brake device according to a first aspect of the present invention includes an electric motor 2, a brake rotor 5, a friction pad 6 that comes into contact with the brake rotor 5 to generate a braking force, and a rotational motion of the electric motor 2. The transmission mechanism 4 that converts the motion of the friction pad 6, the brake force command means 26 a that generates a target brake force command value from the operation amount of the brake operation means 29, and the friction pad 6 is pressed against the brake rotor 5. Brake force estimating means 30 for obtaining an estimated value of the brake force, motor rotation angle detecting means 28 for detecting the rotation angle of the electric motor 2, and controlling the electric motor 2 according to the command value and the estimated value of the brake force An electric brake device provided with a control device 7,
The motor rotation angle detection means 28 has a resolution higher than a motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means 30;
The control device 7 has resolution interpolation means 37 for interpolating the minimum braking force resolution obtained by the braking force estimation means 30 with the motor rotation angle detected by the motor rotation angle detection means 28.
The minimum brake force is a minimum brake force that can be detected by the brake force estimating means 30. The maximum brake force is a brake force that is the maximum value of the command value generated by the brake force command means 26a. The “resolution” represents a minimum interval between a detectable braking force or a motor rotation angle, and is represented by a bit number or the like in digital data. For example, the resolution is the value obtained by dividing the maximum value M of the braking force (or motor rotation angle), which is a continuous amount, by the number obtained by adding 1 to the L bit (L is a natural number) digital maximum value (2 L −1) That is, the value per bit (= M / 2 L ) with respect to the maximum value M of the braking force (or motor rotation angle).
 この構成によると、モータ回転角検出手段28は、ブレーキ力推定手段30の最小ブレーキ力分解能と同等のブレーキ力変動を発生させるモータ回転角よりも高い分解能を有する。このモータ回転角検出手段28は安価で且つ高分解能なものが広く実用に供されているため、このモータ回転角検出手段28を電動ブレーキ装置に実装することが容易である。またモータ回転角検出手段28は、電動モータ2に本来備わっている既存の検出手段を適用し得るため、このモータ回転角検出手段の実装スペースを確保する必要がなく、専用のセンサをこの電動ブレーキ装置に新たに追加する必要がないため、コスト低減を図れる。 According to this configuration, the motor rotation angle detection means 28 has a higher resolution than the motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means 30. Since the motor rotation angle detection means 28 is inexpensive and has high resolution, it is easy to mount the motor rotation angle detection means 28 in the electric brake device. Further, since the motor rotation angle detection means 28 can be an existing detection means originally provided in the electric motor 2, it is not necessary to secure a mounting space for the motor rotation angle detection means, and a dedicated sensor is used as the electric brake. Since there is no need to add a new device, the cost can be reduced.
 ブレーキ力が零から最大値まで推移する間、例えば、検出されるモータ回転角は、モータ回転角検出手段28における角度「0」から最大角度までのフルスケールを複数回推移する。ブレーキ力の最小分解能に対して、モータ回転角検出手段28で検出されるモータ回転角がどれだけ推移するかは、キャリパ剛性や等価リード等の予め与えられる情報により推定することができる。この推定結果に基づき、制御装置7の分解能補間手段37は、ブレーキ力推定手段30で求められるブレーキ力の最小分解能を、モータ回転角検出手段28で検出されるモータ回転角により補間する。そうすると、例えば、ブレーキ力の検出分解能が、目標とするブレーキ力の要求分解能より低い場合においても、中間値をモータ回転角により補間して制御することができる。このようにコスト増加を必要とせずに制御精度の向上を図ることができる。 During the transition of the braking force from zero to the maximum value, for example, the detected motor rotation angle changes the full scale from the angle “0” to the maximum angle in the motor rotation angle detection means 28 a plurality of times. How much the motor rotation angle detected by the motor rotation angle detection means 28 changes with respect to the minimum resolution of the braking force can be estimated from information given in advance such as caliper rigidity and equivalent lead. Based on this estimation result, the resolution interpolation means 37 of the control device 7 interpolates the minimum resolution of the braking force obtained by the braking force estimation means 30 by the motor rotation angle detected by the motor rotation angle detection means 28. Then, for example, even when the resolution for detecting the braking force is lower than the required resolution for the target braking force, the intermediate value can be interpolated and controlled by the motor rotation angle. Thus, the control accuracy can be improved without requiring an increase in cost.
 前記ブレーキ力推定手段30は、前記伝達機構4の軸方向荷重を検出する荷重センサ13の検出値を用いても良い。この場合、制御装置7は、伝達機構4の直動部14がブレーキロータ5から離反した位置からアウトボード側に前進させて摩擦パッド6がブレーキロータ5に当接し、その反力をこの荷重センサ13で検出可能な最小の検出値つまりブレーキ力を取得する。ブレーキ操作手段29をさらに踏込む操作量に従って、荷重センサ13で検出されるブレーキ力は次第に大きくなる。この荷重センサ13を用いることで、ブレーキ操作手段29のセンサ出力とモータ電流とから、ブレーキ力の推定値を求めるよりも、ブレーキ力を精度良く検出し得る。 The brake force estimation means 30 may use a detection value of a load sensor 13 that detects an axial load of the transmission mechanism 4. In this case, the control device 7 advances the linear motion portion 14 of the transmission mechanism 4 from the position away from the brake rotor 5 to the outboard side so that the friction pad 6 contacts the brake rotor 5, and the reaction force is applied to the load sensor. The minimum detection value that can be detected at 13, that is, the braking force is acquired. The brake force detected by the load sensor 13 gradually increases in accordance with the operation amount that further depresses the brake operation means 29. By using this load sensor 13, it is possible to detect the braking force with higher accuracy than obtaining the estimated value of the braking force from the sensor output of the brake operating means 29 and the motor current.
 前記分解能補間手段37は、
 前記ブレーキ力推定手段30で求められるブレーキ力が定められた値以上変化した時点でのブレーキ力推定結果と、前記モータ回転角検出手段28で検出されるモータ回転角との関係を決定し、
 前記ブレーキ力推定結果に定められた正負の加算値を加算したそれぞれの次なるブレーキ力推定結果までの中間値を、前記モータ回転角検出手段28で検出されるモータ回転角に基づいて補間するものとしても良い。
 前記定められた値は、例えば、実験やシミュレーション等の結果から、要求に応じて任意に定められる。
The resolution interpolation unit 37 includes:
Determining the relationship between the braking force estimation result when the braking force calculated by the braking force estimation means 30 changes by a predetermined value or more and the motor rotation angle detected by the motor rotation angle detection means 28;
Interpolating intermediate values up to each subsequent braking force estimation result obtained by adding positive and negative addition values determined in the braking force estimation result based on the motor rotation angle detected by the motor rotation angle detection means 28 It is also good.
The predetermined value is arbitrarily determined according to a request from results of experiments and simulations, for example.
 前記分解能補間手段37は、前記ブレーキ力指令手段26aで生成される前記ブレーキ力の指令値と、前記ブレーキ力推定結果との差が大きい程、前記定められた値を大きくしても良い。また、前記分解能補間手段37は、前記ブレーキ力指令手段26aで生成される前記ブレーキ力の指令値と、前記ブレーキ力推定結果との差の変化率が大きい程、前記定められた値を大きくしても良い。 The resolution interpolation unit 37 may increase the determined value as the difference between the brake force command value generated by the brake force command unit 26a and the brake force estimation result increases. The resolution interpolation unit 37 increases the predetermined value as the change rate of the difference between the brake force command value generated by the brake force command unit 26a and the brake force estimation result increases. May be.
 前記定められた値を大きくすると、分解能は低下するが耐ノイズ性が向上する。ブレーキ力の指令値とブレーキ力推定結果との差、または、この差の変化率が大きい場合は、分解能を補間する効果が比較的小さいため、分解能補間手段37は、前記差または前記差の変化率に応じて前記定められた値を大きくするいわゆる間引き処理を実行する。これにより制御装置7の演算負荷の軽減を図ることができる。 When the predetermined value is increased, the resolution is reduced but the noise resistance is improved. When the difference between the braking force command value and the braking force estimation result or the change rate of the difference is large, the resolution interpolation means 37 has a relatively small effect of interpolating the resolution. A so-called thinning process for increasing the predetermined value according to the rate is executed. Thereby, the calculation load of the control device 7 can be reduced.
 前記制御装置7は、前記モータ回転角検出手段28で検出されるモータ回転角を、前記ブレーキ力推定手段30で求められるブレーキ力により、所定のモータ回転角とブレーキ力とを関連付ける演算手段37を有してもよい。例えば、演算手段37は、前記モータ回転角を前記ブレーキ力により複数回転における何回転目のモータ回転角であるかを特定することによって、前記モータ回転角の絶対角度を求める。 The control device 7 has a calculation means 37 for associating a motor rotation angle detected by the motor rotation angle detection means 28 with a predetermined motor rotation angle and a braking force based on a braking force obtained by the braking force estimation means 30. You may have. For example, the calculation means 37 determines the absolute motor rotation angle by specifying the number of rotations of the motor rotation angle in the plurality of rotations based on the braking force.
 ブレーキ力が零から最大値まで推移する間、モータ回転角検出手段28で検出されるモータ回転角は、角度「0」から最大角度までのフルスケールを複数回推移し、また摩擦パッド摩耗等により摩擦パッドとブレーキロータが接触を開始するピストン位置すなわちモータ回転角が変化するため、モータ回転角検出手段28のみでは所望のブレーキ力を精度よく発揮するためのモータ回転角の絶対角度は不明である。この構成によると、制御装置7の演算手段37は、モータ回転角検出手段28で検出されるモータ回転角と、前記ブレーキ力推定手段30で求められるブレーキ力との関係から所望のブレーキ力を発揮するためのモータ回転角の絶対角度を求め得る。したがってコスト増加を必要とせずに制御精度の向上を図ることができる。 While the braking force changes from zero to the maximum value, the motor rotation angle detected by the motor rotation angle detection means 28 changes the full scale from the angle “0” to the maximum angle several times, and also due to friction pad wear, etc. Since the piston position at which the friction pad and the brake rotor start to contact, that is, the motor rotation angle changes, the absolute angle of the motor rotation angle for accurately exhibiting the desired braking force is unknown only by the motor rotation angle detection means 28. . According to this configuration, the calculation means 37 of the control device 7 exhibits a desired braking force from the relationship between the motor rotation angle detected by the motor rotation angle detection means 28 and the braking force obtained by the brake force estimation means 30. The absolute angle of the motor rotation angle to be obtained can be obtained. Therefore, it is possible to improve the control accuracy without requiring an increase in cost.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。 The present invention will be understood more clearly from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
この発明の一の実施形態に係る電動ブレーキ装置の要部の断面図である。It is sectional drawing of the principal part of the electric brake device which concerns on one Embodiment of this invention. 同電動ブレーキ装置の制御系のブロック図である。It is a block diagram of a control system of the electric brake device. 同電動ブレーキ装置におけるブレーキ動作を説明する概念図である。It is a conceptual diagram explaining the brake operation | movement in the electric brake device. 同電動ブレーキ装置において、モータ回転角でブレーキ力推定値を補間する一例を示すフローチャートである。4 is a flowchart showing an example of interpolating a brake force estimated value with a motor rotation angle in the electric brake device.
 この発明の一の実施形態に係る電動ブレーキ装置を図1ないし図4と共に説明する。図1に示すように、この電動ブレーキ装置は、ハウジング1と、電動モータ2と、この電動モータ2の回転を減速する減速機構3と、伝達機構である直動機構4と、ブレーキロータ5と、摩擦パッド6と、図示外のロック機構と、電動モータ2を制御する制御装置7とを有する。キャリパであるハウジング1に電動モータ2が支持される。ハウジング1内には、電動モータ2の出力によりブレーキロータ5(この例ではディスクロータ)に対して制動力を負荷する直動機構4が組み込まれている。ハウジング1の開口端はカバー8によって覆われている。 An electric brake device according to one embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the electric brake device includes a housing 1, an electric motor 2, a speed reduction mechanism 3 that decelerates rotation of the electric motor 2, a linear motion mechanism 4 that is a transmission mechanism, a brake rotor 5, and the like. And a friction pad 6, a lock mechanism (not shown), and a control device 7 for controlling the electric motor 2. An electric motor 2 is supported on a housing 1 that is a caliper. A linear motion mechanism 4 that loads a braking force to the brake rotor 5 (in this example, a disk rotor) by the output of the electric motor 2 is incorporated in the housing 1. The open end of the housing 1 is covered with a cover 8.
 直動機構4について説明する。直動機構4は、減速機構3で出力される回転運動を直線運動に変換して、ブレーキロータ5に対して摩擦パッド6を当接および離隔させる機構である。この直動機構4は、電動モータ2により回転駆動される回転軸9と、この回転軸9の回転運動を直線運動に変換する変換機構部10と、拘束部11,12と、荷重計やフォースセンサとも呼ばれる荷重センサ13とを有する。変換機構部10は、直動部14と、軸受部材15と、環状のスラスト板16と、スラスト軸受17と、複数の転がり軸受18と、キャリア19と、すべり軸受20,21と、複数の遊星ローラ22とを有する。 The linear motion mechanism 4 will be described. The linear motion mechanism 4 is a mechanism for converting the rotational motion output from the speed reduction mechanism 3 into a linear motion and bringing the friction pad 6 into contact with and separating from the brake rotor 5. The linear motion mechanism 4 includes a rotary shaft 9 that is rotationally driven by the electric motor 2, a conversion mechanism unit 10 that converts the rotary motion of the rotary shaft 9 into linear motion, restraint portions 11 and 12, a load meter and a force. And a load sensor 13 also called a sensor. The conversion mechanism section 10 includes a linear motion section 14, a bearing member 15, an annular thrust plate 16, a thrust bearing 17, a plurality of rolling bearings 18, a carrier 19, sliding bearings 20 and 21, and a plurality of planetary planets. And a roller 22.
 ハウジング1の内周面に、円筒状の直動部14が、回り止めされ且つ軸方向に移動自在に支持されている。直動部14の内周面には、径方向内方に所定距離突出し螺旋状に形成された螺旋突起が設けられている。この螺旋突起に複数の遊星ローラ22が噛合している。 A cylindrical linear motion portion 14 is supported on the inner peripheral surface of the housing 1 so as to be prevented from rotating and movable in the axial direction. On the inner peripheral surface of the linear motion portion 14, a spiral protrusion is provided that protrudes a predetermined distance radially inward and is formed in a spiral shape. A plurality of planetary rollers 22 are engaged with the spiral protrusions.
 ハウジング1内における直動部14の軸方向一端側に、軸受部材15が設けられている。この軸受部材15は、径方向外方に延びるフランジ部と、ボス部とを有する。このボス部内に複数の転がり軸受18が嵌合され、これら転がり軸受18の内輪内径面に回転軸9が嵌合されている。回転軸9は、軸受部材15に複数の転がり軸受18を介して回転自在に支持される。 A bearing member 15 is provided on one axial end side of the linear motion portion 14 in the housing 1. The bearing member 15 has a flange portion extending radially outward and a boss portion. A plurality of rolling bearings 18 are fitted in the boss portions, and the rotary shaft 9 is fitted to the inner ring inner surface of the rolling bearings 18. The rotating shaft 9 is rotatably supported by the bearing member 15 via a plurality of rolling bearings 18.
 直動部14の内周には、回転軸9を中心に回転可能なキャリア19が設けられている。キャリア19は、軸方向に互いに対向して配置されるディスクを有する。軸受部材15に近いディスクをインナ側ディスクといい、他方のディスクをアウタ側ディスクという場合がある。アウタ側ディスクのうち、インナ側ディスクに臨む側面には、この側面における外周縁部から軸方向に突出する間隔調整部材が設けられる。この間隔調整部材は、複数の遊星ローラ22の間隔を調整するため、円周方向に等間隔を空けて複数配設されている。これら間隔調整部材により、両ディスクが一体に設けられる。 A carrier 19 that can rotate about the rotation shaft 9 is provided on the inner periphery of the linear motion portion 14. The carrier 19 has disks that are arranged to face each other in the axial direction. The disk close to the bearing member 15 may be referred to as an inner disk, and the other disk may be referred to as an outer disk. Of the outer side disk, a side surface facing the inner side disk is provided with a spacing adjusting member that protrudes in the axial direction from the outer peripheral edge portion on the side surface. In order to adjust the interval between the plurality of planetary rollers 22, a plurality of the interval adjusting members are arranged at equal intervals in the circumferential direction. Both the disks are integrally provided by these distance adjusting members.
 インナ側ディスクは、回転軸9との間に嵌合されたすべり軸受20により、回転自在に支持されている。アウタ側ディスクには、中心部に軸挿入孔が形成され、この軸挿入孔にすべり軸受21が嵌合されている。アウタ側ディスクは、すべり軸受21により回転軸9に回転自在に支持される。回転軸9の両端部には、スラスト荷重を受けて回転軸9の軸方向位置を拘束する拘束部11,12が設けられる。各拘束部11,12は、例えば、ワッシャ等からなるストッパ片を含む。回転軸9の両端部には、これら拘束部11,12の抜け止め用の止め輪が設けられる。 The inner disk is rotatably supported by a sliding bearing 20 fitted between the rotating shaft 9 and the inner disk. A shaft insertion hole is formed in the center of the outer disk, and a slide bearing 21 is fitted in this shaft insertion hole. The outer disk is rotatably supported on the rotary shaft 9 by the slide bearing 21. At both ends of the rotating shaft 9, constraining portions 11 and 12 that receive a thrust load and constrain the axial position of the rotating shaft 9 are provided. Each restraining part 11 and 12 contains the stopper piece which consists of a washer etc., for example. Retaining rings for preventing the restraining portions 11 and 12 from coming off are provided at both ends of the rotating shaft 9.
 キャリア19には、複数のローラ軸23が周方向に間隔を空けて設けられている。各ローラ軸23の両端部が、インナ側ディスク,アウタ側ディスクにわたって支持されている。すなわち両ディスクには、それぞれ長孔から成る軸挿入孔が複数形成され、各軸挿入孔に各ローラ軸23の両端部が挿入されてこれらローラ軸23が各軸挿入孔の範囲で径方向に移動自在に支持される。複数のローラ軸23における軸方向両端部には、それぞれ、これらローラ軸23を径方向内方に付勢する弾性リング24が掛け渡されている。 The carrier 19 is provided with a plurality of roller shafts 23 at intervals in the circumferential direction. Both end portions of each roller shaft 23 are supported across the inner side disk and the outer side disk. That is, a plurality of shaft insertion holes each having a long hole are formed in both discs, and both end portions of each roller shaft 23 are inserted into the respective shaft insertion holes, and the roller shafts 23 are radially formed within the range of the respective shaft insertion holes. It is supported movably. Elastic rings 24 that urge the roller shafts 23 inward in the radial direction are respectively hung on both ends in the axial direction of the plurality of roller shafts 23.
 各ローラ軸23に、遊星ローラ22が回転自在に支持され、各遊星ローラ22は、回転軸9の外周面と、直動部14の内周面との間に介在される。複数のローラ軸23に渡って掛け渡された弾性リング24の付勢力により、各遊星ローラ22が回転軸9の外周面に押し付けられる。回転軸9が回転することで、この回転軸9の外周面に接触する各遊星ローラ22が接触摩擦により回転する。遊星ローラ22の外周面には、直動部14の螺旋突起に噛合する螺旋溝が形成されている。 Each planetary roller 22 is rotatably supported by each roller shaft 23, and each planetary roller 22 is interposed between the outer peripheral surface of the rotary shaft 9 and the inner peripheral surface of the linear motion portion 14. Each planetary roller 22 is pressed against the outer peripheral surface of the rotating shaft 9 by the urging force of the elastic ring 24 spanned across the plurality of roller shafts 23. As the rotating shaft 9 rotates, each planetary roller 22 that contacts the outer peripheral surface of the rotating shaft 9 rotates due to contact friction. On the outer peripheral surface of the planetary roller 22, a spiral groove that meshes with the spiral protrusion of the linear motion portion 14 is formed.
 減速機構3は、電動モータ2の回転を、回転軸9に固定された出力ギヤ25に減速して伝える機構であり、複数のギヤ列(図示せず)を含む。この例では、減速機構3は、電動モータ2の図示外のロータ軸に取り付けられた入力ギヤ(図示せず)の回転を前記ギヤ列により順次減速して、出力ギヤ25に伝達可能としている。前記ロック機構は、直動機構4の制動力弛み動作を阻止するロック状態と、制動力弛み動作を許容するアンロック状態とにわたって切換え可能に構成されている。 The speed reduction mechanism 3 is a mechanism that transmits the rotation of the electric motor 2 at a reduced speed to the output gear 25 fixed to the rotary shaft 9, and includes a plurality of gear trains (not shown). In this example, the speed reduction mechanism 3 can sequentially transmit the rotation of an input gear (not shown) attached to a rotor shaft (not shown) of the electric motor 2 to the output gear 25 by the gear train. The locking mechanism is configured to be switchable between a locked state in which the braking force slack operation of the linear motion mechanism 4 is prevented and an unlocked state in which the braking force slack operation is allowed.
 図2は、この電動ブレーキ装置の制御系のブロック図である。この電動ブレーキ装置の制御装置7はインバータ装置27であり、このインバータ装置27の上位制御手段であるECU26として、例えば、車両全般を制御する電気制御ユニットが適用される。ECU26にブレーキ力指令手段26aが設けられる。このブレーキ力指令手段26aは、ブレーキ操作手段29であるブレーキペダルの操作量に応じて変化するセンサ29aの出力に応じて、LUT(Look Up Table)やライブラリ(Library)の所定の変換関数等を用いて、目標とするブレーキ力の指令値を生成し出力する。なお、ブレーキ操作手段29は、操作者がブレーキを指示するための手段であれば、ペダル入力式に限られず、ボタン入力式、レバー入力式等であってもよい。 FIG. 2 is a block diagram of the control system of this electric brake device. The control device 7 of the electric brake device is an inverter device 27, and an electric control unit for controlling the vehicle as a whole is applied as the ECU 26 which is a host control means of the inverter device 27, for example. The ECU 26 is provided with a brake force command means 26a. The brake force command means 26a is configured to use a predetermined conversion function of a LUT (Look / Up / Table) or a library (Library) in accordance with the output of the sensor 29a that changes according to the amount of operation of the brake pedal as the brake operation means 29. Used to generate and output a target brake force command value. The brake operation means 29 is not limited to a pedal input type as long as it is a means for an operator to instruct braking, and may be a button input type, a lever input type, or the like.
 インバータ装置27は、摩擦パッド6(図1)をブレーキロータ5(図1)に押し付けるブレーキ力の推定値を求めるブレーキ力推定手段30と、各電動モータ2に対して設けられたパワー回路部31と、このパワー回路部31を制御するモータコントロール部32と、電流検出手段34とを有する。 The inverter device 27 includes a brake force estimating means 30 for obtaining an estimated value of a brake force that presses the friction pad 6 (FIG. 1) against the brake rotor 5 (FIG. 1), and a power circuit unit 31 provided for each electric motor 2. And a motor control unit 32 for controlling the power circuit unit 31 and a current detection means 34.
 ブレーキ力推定手段30は、ブレーキ操作手段29の操作量に応じて変化するセンサ29aの出力と、電流検出手段34で検出されるモータ電流とから、相応のブレーキ力の推定値をLUTやライブラリの所定の変換関数等を用いた演算により求める。前記センサ29aの出力、モータ電流、およびブレーキ力の推定値の関係は、予め、実験やシミュレーション等の結果により定められ、記録手段38に書換え可能に記録されている。 The brake force estimation means 30 calculates an estimated value of the corresponding brake force from the output of the sensor 29a that changes according to the operation amount of the brake operation means 29 and the motor current detected by the current detection means 34, in the LUT or the library. It is obtained by calculation using a predetermined conversion function or the like. The relationship between the output of the sensor 29a, the motor current, and the estimated value of the braking force is determined in advance by results of experiments and simulations, and is recorded in the recording means 38 so as to be rewritable.
 ブレーキ力推定手段30は、この他に、直動機構4の軸方向荷重を検出する荷重センサ13の検出値を用いるものとして良い。この場合、車両の運転者がブレーキ操作手段29をリリースした状態から踏込むと、制御装置7は、直動部14(図1)をブレーキロータ5(図1)に対し離隔した位置からアウトボード側(図1)に前進させることで、摩擦パッド6がブレーキロータ5に当接する。この当接の際の反力をこの荷重センサ13で検出することで、検出可能な最小の検出値つまり最小ブレーキ力を取得する。 In addition to this, the brake force estimating means 30 may use the detection value of the load sensor 13 that detects the axial load of the linear motion mechanism 4. In this case, when the driver of the vehicle depresses the brake operating means 29 from the released state, the control device 7 outboards the position where the linear motion portion 14 (FIG. 1) is separated from the brake rotor 5 (FIG. 1). The friction pad 6 comes into contact with the brake rotor 5 by being advanced to the side (FIG. 1). By detecting the reaction force at the time of this contact by the load sensor 13, the minimum detectable value, that is, the minimum braking force is obtained.
 ブレーキ操作手段29をさらに踏込む操作量に従って、荷重センサ13で検出されるブレーキ力は次第に大きくなる。この荷重センサ13の検出値を用いることで、センサ29aの出力とモータ電流とから、ブレーキ力の推定値を求めるよりも、ブレーキ力を精度良く検出し得る。 The brake force detected by the load sensor 13 gradually increases in accordance with the operation amount that further depresses the brake operation means 29. By using the detection value of the load sensor 13, it is possible to detect the braking force with higher accuracy than obtaining the estimated value of the braking force from the output of the sensor 29a and the motor current.
 モータコントロール部32は、プロセッサ(Processor)を有するコンピュータと前記プロセッサで実行されるプログラムを有するROM(Read Only Memory)、およびRAM(Random Access Memory)やコプロセッサ(Co-Processor)等の電子回路により構成される。モータコントロール部32は、ブレーキ力指令手段26aから与えられるブレーキ力の指令値およびブレーキ力推定手段30で推定されるブレーキ力の推定値に応じて、電圧値で表される電流指令に変換して、この電流指令をパワー回路部31に与える。モータコントロール部32は、電動モータ2に関する各検出値や制御値等の各情報をECU26に出力する機能を有する。 The motor control unit 32 includes a computer having a processor, a ROM (Read Only Memory) having a program executed by the processor, and an electronic circuit such as a RAM (Random Access Memory) and a coprocessor (Co-Processor). Composed. The motor control unit 32 converts the braking force command value given from the braking force command means 26a and the estimated braking force value estimated by the braking force estimation means 30 into a current command expressed by a voltage value. The current command is given to the power circuit unit 31. The motor control unit 32 has a function of outputting information such as detection values and control values related to the electric motor 2 to the ECU 26.
 パワー回路部31は、電源35の直流電力を電動モータ2の駆動に用いる3相の交流電力に変換するインバータ31bと、このインバータ31bを制御するPWM制御部31aとを有する。電動モータ2は3相の同期モータ等からなる。この電動モータ2には、ロータ(図示せず)の回転角を検出する、例えば回転角センサやロータリエンコーダ等であるモータ回転角検出手段28が設けられている。インバータ31bは、複数の半導体スイッチング素子(図示せず)で構成され、PWM制御部31aは、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。 The power circuit unit 31 includes an inverter 31b that converts the DC power of the power source 35 into three-phase AC power used to drive the electric motor 2, and a PWM control unit 31a that controls the inverter 31b. The electric motor 2 is composed of a three-phase synchronous motor or the like. The electric motor 2 is provided with motor rotation angle detection means 28 that detects the rotation angle of a rotor (not shown), for example, a rotation angle sensor or a rotary encoder. The inverter 31b is composed of a plurality of semiconductor switching elements (not shown), and the PWM control unit 31a performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
 モータコントロール部32は、その基本となる制御部としてモータ駆動制御部36を有する。このモータ駆動制御部36は、前述のブレーキ力の指令値および推定値に従い、電圧値で表される電流指令に変換して、パワー回路部31のPWM制御部31aに電流指令からなるモータ動作指令値を与える。モータ駆動制御部36は、ブレーキ力の指令値に対し、インバータ31bから電動モータ2に流すモータ電流を電流検出手段34から得て、電流フィードバック制御を行う。またモータ駆動制御部36は、電動モータ2のロータ(図示せず)の回転角すなわちモータ回転角をモータ回転角検出手段28から得て、モータ回転角に応じた効率的なモータ駆動が行えるように、PWM制御部31aに電流指令を与える。 The motor control unit 32 has a motor drive control unit 36 as a basic control unit. This motor drive control unit 36 converts it into a current command represented by a voltage value in accordance with the command value and estimated value of the brake force described above, and sends a motor operation command comprising the current command to the PWM control unit 31a of the power circuit unit 31. Give value. The motor drive control unit 36 obtains a motor current flowing from the inverter 31b to the electric motor 2 from the current detection unit 34 and performs current feedback control with respect to the command value of the braking force. Further, the motor drive control unit 36 obtains the rotation angle of the rotor (not shown) of the electric motor 2, that is, the motor rotation angle from the motor rotation angle detecting means 28, so that efficient motor driving according to the motor rotation angle can be performed. In addition, a current command is given to the PWM control unit 31a.
 モータ駆動制御部36には、分解能補間手段37が設けられる。この分解能補間手段37は、ブレーキ力推定手段30で求められるブレーキ力の最小分解能を、モータ回転角検出手段28で検出されるモータ回転角により補間する。この場合に、最小ブレーキ力から最大ブレーキ力を発揮するまでの少なくとも一部のブレーキ力領域において使用される、モータ回転角検出手段28は、ブレーキ力推定手段30の最小ブレーキ力分解能と同等のブレーキ力変動を発生させるモータ回転角よりも高い分解能を有する。 The motor drive control unit 36 is provided with resolution interpolation means 37. The resolution interpolation unit 37 interpolates the minimum resolution of the braking force obtained by the braking force estimation unit 30 based on the motor rotation angle detected by the motor rotation angle detection unit 28. In this case, the motor rotation angle detection means 28 used in at least a part of the braking force region from the minimum braking force to the maximum braking force is applied to a brake equivalent to the minimum braking force resolution of the braking force estimation means 30. It has a higher resolution than the motor rotation angle that generates force fluctuations.
 分解能補間手段37は、ブレーキ力推定手段30で求められるブレーキ力が所定の値から定められた値以上変化した時点におけるブレーキ力推定結果と、モータ回転角検出手段28で検出されるモータ回転角との関係を決定する。さらに分解能補間手段37は、ブレーキ力推定結果に定められた正負の加算値(例えばブレーキペダル29の踏込み時が正、リリース時が負である)を加算したそれぞれの次なるブレーキ力推定結果(推定値)までの間に存在する中間値を、モータ回転角検出手段28で検出されるモータ回転角に基づいて、LUTやライブラリの所定の変換関数等を用いて、補間する。以上の様に、分解能補間手段37は、前記最小分解能を前記モータ回転角により補間する。 The resolution interpolating means 37 includes a braking force estimation result when the braking force obtained by the braking force estimating means 30 changes from a predetermined value by a predetermined value or more, and a motor rotation angle detected by the motor rotation angle detecting means 28. Determine the relationship. Further, the resolution interpolation means 37 adds each of the following braking force estimation results (estimation) obtained by adding positive and negative addition values (for example, positive when the brake pedal 29 is depressed and negative when the brake pedal 29 is released) determined in the braking force estimation result. The intermediate value existing up to (value) is interpolated based on the motor rotation angle detected by the motor rotation angle detection means 28 using the LUT, a predetermined conversion function of the library, or the like. As described above, the resolution interpolation unit 37 interpolates the minimum resolution based on the motor rotation angle.
 また、演算手段37(図2)は、例えば、モータ回転角検出手段28で検出されるモータ回転角θ(相対角)を、ブレーキ力推定手段30で求められるブレーキ力Fにより、複数の回転(前記複数回推移)において何回転目のモータ回転角であるかを特定することにより、モータ回転角の絶対角度を求める。ブレーキ力が零から最大値まで推移する間、モータ回転角検出手段28で検出されるモータ回転角は、角度「0」から最大角度(360°:相対角)までのフルスケールを複数回推移する。また、摩擦パッド摩耗等により摩擦パッドとブレーキロータが接触を開始するピストン位置(すなわちモータ回転角)が変化するため、モータ回転角検出手段28のみでは所望のブレーキ力を精度よく発揮するためのモータ回転角の絶対角度は不明である。この演算手段37によれば、モータ回転角検出手段28で検出されるモータ回転角と、ブレーキ力推定手段30で求められるブレーキ力との関係から所望のブレーキ力を発揮するためのモータ回転角の絶対角度を、LUTやライブラリの加算関数または加算器等を用いて、求め得る。したがってコスト増加を必要とせずに制御精度の向上を図ることができる。 Further, the calculation means 37 (FIG. 2), for example, converts the motor rotation angle θ (relative angle) detected by the motor rotation angle detection means 28 into a plurality of rotations (the brake force F obtained by the brake force estimation means 30). The absolute angle of the motor rotation angle is obtained by specifying the number of rotations of the motor rotation angle in the multiple times transition). While the braking force changes from zero to the maximum value, the motor rotation angle detected by the motor rotation angle detection means 28 changes a full scale from the angle “0” to the maximum angle (360 °: relative angle) a plurality of times. . Further, since the piston position (that is, the motor rotation angle) at which the friction pad and the brake rotor start to contact changes due to friction pad wear or the like, the motor for accurately exerting a desired braking force only by the motor rotation angle detection means 28. The absolute angle of rotation is unknown. According to the calculation means 37, the motor rotation angle for exerting a desired braking force from the relationship between the motor rotation angle detected by the motor rotation angle detection means 28 and the braking force obtained by the braking force estimation means 30 is calculated. The absolute angle can be obtained by using an LUT, an addition function of a library, an adder, or the like. Therefore, it is possible to improve the control accuracy without requiring an increase in cost.
 前記定められた値は、例えば、実験やシミュレーション等の結果から、要求に応じて任意に定められ、記録手段38に書換え可能に記録される。分解能補間手段37は、ブレーキ力指令手段26aで生成されるブレーキ力の指令値と前記ブレーキ力推定結果との差、または、ブレーキ力の指令値と前記ブレーキ力推定結果との差の変化率が大きい程、前記定められた値を大きくする。 The predetermined value is arbitrarily determined according to a request from the result of, for example, an experiment or a simulation, and is recorded in the recording means 38 so as to be rewritable. The resolution interpolation unit 37 has a change rate of a difference between the brake force command value generated by the brake force command unit 26a and the brake force estimation result or a difference between the brake force command value and the brake force estimation result. The larger the value, the larger the predetermined value.
 前記定められた値を大きくすると、分解能は低下するが耐ノイズ性が向上する。ブレーキ力の指令値とブレーキ力推定結果との差、または、この差の変化率が大きい場合は、分解能を補間する効果が比較的小さいため、分解能補間手段は、前記差または前記差の変化率に応じて前記定められた値を大きくするいわゆる間引き処理を実行する。これにより制御装置7の演算負荷の軽減を図ることができる。 When the predetermined value is increased, the resolution is reduced but the noise resistance is improved. If the difference between the braking force command value and the braking force estimation result, or the rate of change of this difference is large, the effect of interpolating the resolution is relatively small. In response to this, a so-called thinning process for increasing the predetermined value is executed. Thereby, the calculation load of the control device 7 can be reduced.
 図3は、この電動ブレーキ装置におけるブレーキ動作を説明する概念図である。以後、図1、図2も適宜参照しつつ説明する。図3(a)に示すように、この電動ブレーキ装置において、ブレーキ力が零から最大値まで推移する間、例えば、検出されるモータ回転角は、相対角であり、モータ回転角検出手段28における角度「0」から最大角度(360°)までのフルスケールを複数回推移する。 FIG. 3 is a conceptual diagram illustrating a brake operation in the electric brake device. Hereinafter, description will be made with reference to FIGS. 1 and 2 as appropriate. As shown in FIG. 3A, in this electric brake device, while the braking force changes from zero to the maximum value, for example, the detected motor rotation angle is a relative angle, and the motor rotation angle detecting means 28 The full scale from the angle “0” to the maximum angle (360 °) is changed a plurality of times.
 図3(b)は、図3(a)の一点鎖線で囲んだ一部区間において、ブレーキ力検出結果を補間する例を示す。ブレーキ力の最小分解能に対して、モータ回転角検出手段28で検出されるモータ回転角がどれだけ推移するかは、すなわちブレーキ力が最小分解能に相当する分だけ変化する場合に、前記モータ回転角がどれだけ推移するかは、キャリパ剛性や等価リード等の予め与えられる情報により推定し得る。この推定結果に基づき、制御装置7の分解能補間手段37は、ブレーキ力推定手段30で求められるブレーキ力の最小分解能を、上述のようにモータ回転角検出手段28で検出されるモータ回転角により補間する。そうすると、例えば、ブレーキ力の検出分解能が、目標とするブレーキ力の要求分解能より低い場合においても、中間値をモータ回転角により補間して制御し得る。 FIG. 3B shows an example in which the braking force detection result is interpolated in a partial section surrounded by a one-dot chain line in FIG. How much the motor rotation angle detected by the motor rotation angle detection means 28 changes with respect to the minimum resolution of the braking force, that is, when the braking force changes by an amount corresponding to the minimum resolution, the motor rotation angle. It can be estimated from information given in advance such as caliper rigidity and equivalent lead. Based on this estimation result, the resolution interpolation means 37 of the control device 7 interpolates the minimum resolution of the braking force obtained by the braking force estimation means 30 by the motor rotation angle detected by the motor rotation angle detection means 28 as described above. To do. In this case, for example, even when the brake force detection resolution is lower than the target required brake force resolution, the intermediate value can be interpolated and controlled by the motor rotation angle.
 図4は、この電動ブレーキ装置において、モータ回転角によりブレーキ力推定値を補間する一例を示すフローチャートである。例えば、この電動ブレーキ装置を搭載する車両の主電源を投入する条件で本処理を開始し、演算手段(図2)とも呼ぶ分解能補間手段37は、ブレーキ力推定手段30から、ブレーキペダル29が踏み込まれた後のブレーキ力F(k)を取得し、そのブレーキ力F(k)のときのモータ回転角θ(k)をモータ回転角検出手段28から取得する(ステップS1)。取得されたブレーキ力F(k)およびモータ回転角θ(k)は、記録手段38に一時的に記録される。 FIG. 4 is a flowchart showing an example of interpolating the estimated brake force value by the motor rotation angle in this electric brake device. For example, this processing is started under the condition that the main power supply of a vehicle equipped with this electric brake device is turned on, and the resolution interpolation means 37, which is also referred to as computing means (FIG. 2), depresses the brake pedal 29 from the brake force estimating means 30. The brake force F (k) after being obtained is acquired, and the motor rotation angle θ (k) at the brake force F (k) is acquired from the motor rotation angle detection means 28 (step S1). The acquired braking force F (k) and motor rotation angle θ (k) are temporarily recorded in the recording means 38.
 次に、分解能補間手段37は、取得されたブレーキ力F(k)が、記録手段38に記録された直近の過去のブレーキ力F(k-1)に対して変化したか否かを判定する(ステップS2)。変化したとの判定で(ステップS2:yes)、分解能補間手段37は、ブレーキ力F(k)を基準ブレーキ力Fbに保存し、ブレーキ力F(k)のときのモータ回転角θ(k)を基準回転角θbに保存する(ステップS3)。その後、分解能補間手段37は、現在のブレーキ力FにF(k)を保存して(ステップS4)本処理を終了する。なお前記基準ブレーキ力Fbおよび前記基準回転角θbは記録手段38に記録される。 Next, the resolution interpolation unit 37 determines whether or not the acquired braking force F (k) has changed with respect to the latest past braking force F (k−1) recorded in the recording unit 38. (Step S2). When it is determined that the change has occurred (step S2: yes), the resolution interpolation unit 37 stores the braking force F (k) in the reference braking force Fb, and the motor rotation angle θ (k) at the braking force F (k). Is stored in the reference rotation angle θb (step S3). Thereafter, the resolution interpolation unit 37 stores F (k) in the current brake force F (step S4), and ends this process. The reference brake force Fb and the reference rotation angle θb are recorded in the recording means 38.
 ステップS2において、ブレーキ力F(k)が直近のブレーキ力F(k-1)に対し変化していないとの判定で(ステップS2:no)、分解能補間手段37は、Nbit(Nは自然数)のディジタル値で表した時の2個の各段階に対応するブレーキ力1LSB当たりのモータ回転角θLSBを演算する(ステップS5)。具体的には、全Nbitが1のときの値(2-1)に対応するモータ回転角θの最大値θ(絶対角)に対して、θLSB=θ/2である。次に、分解能補間手段37は、ブレーキ力1LSB当たりのモータ回転角の変化率θrを算出する(ステップS6)。変化率θrは、モータ回転角θ(k)から基準回転角θbを減じた値を、モータ回転角θLSBで除して求められる。次に、分解能補間手段37は、現在のブレーキ力Fを次式F=Fb+(FLSB×θr)により演算する(ステップS7)。FLSBは、Nbit(Nは自然数)のディジタル値で表した時、全Nbitが1のときの値(2-1)に対応するブレーキ力Fの最大値Fに対して、FLSB=F/2である。その後本処理を終了する。なお、LSBとは最下位ビット(最下位ビット、Least Significant Bit、LSBと略記)は、コンピュータにおいて二進数で最も小さな値を意味するビット位置のことである。 In step S2, it is determined that the brake force F (k) has not changed with respect to the latest brake force F (k-1) (step S2: no), and the resolution interpolation unit 37 determines that Nbit (N is a natural number). The motor rotation angle θ LSB per brake force 1LSB corresponding to each of 2N stages represented by the digital value is calculated (step S5). Specifically, θ LSB = θ M / 2N with respect to the maximum value θ M (absolute angle) of the motor rotation angle θ corresponding to the value (2 N −1) when all Nbits are 1. Next, the resolution interpolation unit 37 calculates the change rate θr of the motor rotation angle per brake force 1LSB (step S6). The change rate θr is obtained by dividing the value obtained by subtracting the reference rotation angle θb from the motor rotation angle θ (k) by the motor rotation angle θLSB . Next, the resolution interpolation unit 37 calculates the current braking force F by the following equation F = Fb + (F LSB × θr) (step S7). When F LSB is expressed as a digital value of N bits (N is a natural number), the maximum value F M of the brake force F corresponding to the value when all N bits are 1 (2 N −1), F LSB = F M / 2N . Thereafter, this process is terminated. Note that LSB is a least significant bit (abbreviated as Least Significant Bit, LSB) is a bit position that means the smallest binary value in a computer.
 ところで図1に示す電動ブレーキ装置は、例えば、この電動ブレーキ装置を搭載する車両の車輪ホイール内部に搭載されるため、同電動ブレーキ装置の体積は極力小さいことが好ましい。この電動ブレーキ装置のモータトルクに対する摩擦パッド6の押圧力すなわちブレーキ力は、減速機構3による減速比、および、直動機構4の回転入力に対する直動距離を総じた性能、つまりモータ回転に対する等価リードにより決定される。また、モータトルクは一般にモータ体積に依存する。すなわち電動ブレーキ装置の体積を小さくするうえで、前記等価リードを十分小さくする必要がある。 Incidentally, since the electric brake device shown in FIG. 1 is mounted, for example, inside a wheel wheel of a vehicle on which the electric brake device is mounted, the volume of the electric brake device is preferably as small as possible. The pressing force of the friction pad 6 with respect to the motor torque of the electric brake device, that is, the braking force, is a performance that is the sum of the reduction ratio by the speed reduction mechanism 3 and the linear motion distance with respect to the rotational input of the linear motion mechanism 4, that is, equivalent to motor rotation. Determined by lead. The motor torque generally depends on the motor volume. That is, in order to reduce the volume of the electric brake device, it is necessary to make the equivalent lead sufficiently small.
 一方で、摩擦パッド6をブレーキロータ5に押圧させる際、周辺部材はこの押圧力によって変形する。この変形量に応じて、直動機構4を突出させる必要がある。例えば、ディスクブレーキの場合、一般に、最大ブレーキ力を発揮する際の摩擦パッド6や、ハウジング1すなわちキャリパを含めた変形量は0.5mm~1mm程度であることが多い。この実施形態に係る電動ブレーキ装置において、例えば、モータ1回転当たりの等価リードを0.05mm~0.2mm程度に設定する。この設定によって、概ね既存の油圧式ブレーキに近い搭載スペースに実装することが可能なモータサイズの電動ブレーキ装置を実現できる。 On the other hand, when the friction pad 6 is pressed against the brake rotor 5, the peripheral members are deformed by this pressing force. It is necessary to project the linear motion mechanism 4 according to the amount of deformation. For example, in the case of a disc brake, generally, the deformation amount including the friction pad 6 and the housing 1, that is, the caliper at the time of exerting the maximum braking force is often about 0.5 mm to 1 mm. In the electric brake device according to this embodiment, for example, the equivalent lead per motor rotation is set to about 0.05 mm to 0.2 mm. With this setting, it is possible to realize a motor-sized electric brake device that can be mounted in a mounting space that is almost similar to an existing hydraulic brake.
 以上説明した電動ブレーキ装置によると、前述の一部のブレーキ力領域において使用される、モータ回転角検出手段は、ブレーキ力推定手段の最小ブレーキ力分解能と同等のブレーキ力変動を発生させるモータ回転角よりも高い分解能を有する。このモータ回転角検出手段としては、安価で且つ高分解能なセンサ、例えば、レゾルバやGMRセンサ等が広く実用に供されているため、このモータ回転角検出手段を電動ブレーキ装置に実装することが容易である。またモータ回転角検出手段は、電動モータに本来備わっている既存の検出手段を適用し得るため、このモータ回転角検出手段の実装スペースを確保する必要がなく、専用のセンサをこの電動ブレーキ装置に新たに追加する必要がないため、コスト低減を図れる。 According to the electric brake device described above, the motor rotation angle detection means used in the above-mentioned part of the brake force region is a motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means. Higher resolution. As this motor rotation angle detection means, an inexpensive and high resolution sensor, for example, a resolver, a GMR sensor, etc. are widely used in practical use. Therefore, it is easy to mount this motor rotation angle detection means in an electric brake device. It is. In addition, since the motor rotation angle detection means can be applied to the existing detection means inherent in the electric motor, it is not necessary to secure a mounting space for the motor rotation angle detection means, and a dedicated sensor is provided in the electric brake device. Costs can be reduced because there is no need to add new ones.
 ブレーキ力が零から最大値まで推移する間、例えば、検出されるモータ回転角は、モータ回転角検出手段28における角度「0」から最大角度(360°:相対角)までのフルスケールを複数回推移する。ブレーキ力の最小分解能に対して、モータ回転角検出手段で検出されるモータ回転角がどれだけ推移するかは、キャリパ剛性や等価リード等の予め与えられる情報により推定することができる。この推定結果に基づき、制御装置の分解能補間手段は、ブレーキ力推定手段で求められるブレーキ力の最小分解能を、モータ回転角検出手段で検出されるモータ回転角により補間する。そうすると、例えば、ブレーキ力の検出分解能が、目標とするブレーキ力の要求分解能より低い場合においても、中間値をモータ回転角により補間して制御することができる。このようにコスト増加を必要とせずに制御精度の向上を図ることができる。 While the braking force transitions from zero to the maximum value, for example, the detected motor rotation angle is a full scale from the angle “0” to the maximum angle (360 °: relative angle) in the motor rotation angle detection means 28 a plurality of times. Transition to. How much the motor rotation angle detected by the motor rotation angle detecting means changes with respect to the minimum resolution of the braking force can be estimated by information given in advance such as caliper rigidity and equivalent lead. Based on this estimation result, the resolution interpolation means of the control device interpolates the minimum resolution of the brake force obtained by the brake force estimation means by the motor rotation angle detected by the motor rotation angle detection means. Then, for example, even when the resolution for detecting the braking force is lower than the required resolution for the target braking force, the intermediate value can be interpolated and controlled by the motor rotation angle. Thus, the control accuracy can be improved without requiring an increase in cost.
 この実施形態では、一例としてディスクブレーキタイプの電動ブレーキ装置が適用されるが、ディスクブレーキタイプだけに限定されるものではなくドラムブレーキタイプであっても良い。また直動機構として、遊星ローラタイプを用いて説明したが、ボールねじタイプ、ボールランプタイプなど、他のタイプを用いても良い。 In this embodiment, an electric brake device of a disc brake type is applied as an example, but it is not limited to the disc brake type but may be a drum brake type. Further, although the planetary roller type has been described as the linear motion mechanism, other types such as a ball screw type and a ball ramp type may be used.
  なお、本発明は、分解能補間手段を有することを前提としない実施の態様として、以下の内容を含む。
〔態様〕
 電動モータと、ブレーキロータと、このブレーキロータと接触して制動力を発生させる摩擦パッドと、前記電動モータの回転運動を前記摩擦パッドが制動力を発生させる運動に変換する伝達機構と、ブレーキ操作手段の操作量から目標とするブレーキ力の指令値を生成するブレーキ力指令手段と、前記摩擦パッドを前記ブレーキロータに押し付けるブレーキ力の推定値を求めるブレーキ力推定手段と、前記電動モータの回転角を検出するモータ回転角検出手段と、前記ブレーキ力の指令値および推定値に応じて前記電動モータを制御する制御装置とを備えた電動ブレーキ装置であって、
 前記モータ回転角検出手段が、前記ブレーキ力推定手段の最小ブレーキ力分解能と同等のブレーキ力変動を発生させるモータ回転角よりも高い分解能を有し、
 前記制御装置は、前記モータ回転角検出手段で検出されるモータ回転角を、前記ブレーキ力推定手段で求められるブレーキ力により、複数回転における何回転目のモータ回転角であるかを特定することにより、前記モータ回転角の絶対角度を求める演算手段を有する電動ブレーキ装置。
It should be noted that the present invention includes the following contents as an embodiment not premised on having the resolution interpolation means.
[Aspect]
An electric motor, a brake rotor, a friction pad that contacts the brake rotor and generates a braking force, a transmission mechanism that converts a rotational motion of the electric motor into a motion that the friction pad generates a braking force, and a brake operation A brake force command means for generating a target brake force command value from an operation amount of the means, a brake force estimation means for obtaining an estimated value of a brake force pressing the friction pad against the brake rotor, and a rotation angle of the electric motor An electric brake device comprising: a motor rotation angle detecting means for detecting the control signal; and a control device for controlling the electric motor in accordance with a command value and an estimated value of the brake force,
The motor rotation angle detection means has a resolution higher than the motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means;
The control device identifies the motor rotation angle in a plurality of rotations based on the brake force obtained by the brake force estimation unit, based on the motor rotation angle detected by the motor rotation angle detection unit. An electric brake device having a calculating means for obtaining an absolute angle of the motor rotation angle.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
2…電動モータ
4…直動機構(伝達機構)
5…ブレーキロータ
6…摩擦パッド
7…制御装置
13…荷重センサ
26a…ブレーキ力指令手段
28…モータ回転角検出手段
29…ブレーキ操作手段
30…ブレーキ力推定手段
37…分解能補間手段
2 ... Electric motor 4 ... Linear motion mechanism (transmission mechanism)
DESCRIPTION OF SYMBOLS 5 ... Brake rotor 6 ... Friction pad 7 ... Control apparatus 13 ... Load sensor 26a ... Brake force command means 28 ... Motor rotation angle detection means 29 ... Brake operation means 30 ... Brake force estimation means 37 ... Resolution interpolation means

Claims (6)

  1.  電動モータと、ブレーキロータと、このブレーキロータと接触して制動力を発生させる摩擦パッドと、前記電動モータの回転運動を前記摩擦パッドの運動に変換する伝達機構と、ブレーキ操作手段の操作量から目標とするブレーキ力の指令値を生成するブレーキ力指令手段と、前記摩擦パッドを前記ブレーキロータに押し付けるブレーキ力の推定値を求めるブレーキ力推定手段と、前記電動モータの回転角を検出するモータ回転角検出手段と、前記ブレーキ力の指令値および推定値に応じて前記電動モータを制御する制御装置とを備えた電動ブレーキ装置であって、
     前記モータ回転角検出手段が、前記ブレーキ力推定手段の最小ブレーキ力分解能と同等のブレーキ力変動を発生させるモータ回転角よりも高い分解能を有し、
     前記制御装置は、前記ブレーキ力推定手段で求められるブレーキ力の最小分解能を、前記モータ回転角検出手段で検出されるモータ回転角により補間する分解能補間手段を有する電動ブレーキ装置。
    From an operation amount of an electric motor, a brake rotor, a friction pad that comes into contact with the brake rotor to generate a braking force, a transmission mechanism that converts a rotational motion of the electric motor into a motion of the friction pad, and a brake operation means Brake force command means for generating a target brake force command value, brake force estimation means for obtaining an estimated value of the brake force that presses the friction pad against the brake rotor, and motor rotation for detecting the rotation angle of the electric motor An electric brake device comprising angle detection means and a control device that controls the electric motor in accordance with a command value and an estimated value of the brake force,
    The motor rotation angle detection means has a resolution higher than the motor rotation angle that generates a brake force fluctuation equivalent to the minimum brake force resolution of the brake force estimation means;
    The control device includes an electric brake device having a resolution interpolation unit that interpolates a minimum brake force resolution obtained by the brake force estimation unit based on a motor rotation angle detected by the motor rotation angle detection unit.
  2.  請求項1記載の電動ブレーキ装置において、前記ブレーキ力推定手段は、前記伝達機構の軸方向荷重を検出する荷重センサの検出値を用いる電動ブレーキ装置。 2. The electric brake device according to claim 1, wherein the brake force estimating means uses a detection value of a load sensor for detecting an axial load of the transmission mechanism.
  3.  請求項1または請求項2記載の電動ブレーキ装置において、
     前記分解能補間手段は、
     前記ブレーキ力推定手段で求められるブレーキ力が定められた値以上変化した時点でのブレーキ力推定結果と、前記モータ回転角検出手段で検出されるモータ回転角との関係を決定し、
     前記ブレーキ力推定結果に定められた正負の加算値を加算したそれぞれの次なるブレーキ力推定結果までの中間値を、前記モータ回転角検出手段で検出されるモータ回転角に基づいて補間する電動ブレーキ装置。
    In the electric brake device according to claim 1 or 2,
    The resolution interpolation means includes
    Determining the relationship between the braking force estimation result when the braking force calculated by the braking force estimation means changes by a predetermined value or more and the motor rotation angle detected by the motor rotation angle detection means;
    Electric brake for interpolating intermediate values up to each subsequent brake force estimation result obtained by adding positive and negative addition values determined in the brake force estimation result based on the motor rotation angle detected by the motor rotation angle detection means apparatus.
  4.  請求項3記載の電動ブレーキ装置において、前記分解能補間手段は、前記ブレーキ力指令手段で生成される前記ブレーキ力の指令値と、前記ブレーキ力推定結果との差が大きい程、前記定められた値を大きくする電動ブレーキ装置。 4. The electric brake device according to claim 3, wherein the resolution interpolation means increases the difference between the brake force command value generated by the brake force command means and the brake force estimation result as the difference is larger. Electric brake device to increase the size.
  5.  請求項3記載の電動ブレーキ装置において、前記分解能補間手段は、前記ブレーキ力指令手段で生成される前記ブレーキ力の指令値と、前記ブレーキ力推定結果との差の変化率が大きい程、前記定められた値を大きくする電動ブレーキ装置。 4. The electric brake device according to claim 3, wherein the resolution interpolation means determines the larger the rate of change of the difference between the brake force command value generated by the brake force command means and the brake force estimation result, the larger the change rate. Electric brake device that increases the value obtained.
  6.  請求項1記載の電動ブレーキ装置において、
     前記制御装置は、前記モータ回転角検出手段で検出されるモータ回転角を、前記ブレーキ力推定手段で求められるブレーキ力により、複数回転における何回転目のモータ回転角であるかを特定することにより、前記モータ回転角の絶対角度を求める演算手段を有する電動ブレーキ装置。
    In the electric brake device according to claim 1,
    The control device identifies the motor rotation angle in a plurality of rotations based on the brake force obtained by the brake force estimation unit, based on the motor rotation angle detected by the motor rotation angle detection unit. An electric brake device having a calculating means for obtaining an absolute angle of the motor rotation angle.
PCT/JP2015/058220 2014-03-27 2015-03-19 Electric brake device WO2015146775A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15769044.7A EP3124345B1 (en) 2014-03-27 2015-03-19 Electric brake device
CN201580016254.5A CN106132795B (en) 2014-03-27 2015-03-19 Electrical braking device
US15/274,614 US10100891B2 (en) 2014-03-27 2016-09-23 Electric brake device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014065267A JP6309322B2 (en) 2014-03-27 2014-03-27 Electric brake device
JP2014-065267 2014-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/274,614 Continuation US10100891B2 (en) 2014-03-27 2016-09-23 Electric brake device

Publications (1)

Publication Number Publication Date
WO2015146775A1 true WO2015146775A1 (en) 2015-10-01

Family

ID=54195296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058220 WO2015146775A1 (en) 2014-03-27 2015-03-19 Electric brake device

Country Status (5)

Country Link
US (1) US10100891B2 (en)
EP (1) EP3124345B1 (en)
JP (1) JP6309322B2 (en)
CN (1) CN106132795B (en)
WO (1) WO2015146775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107336699A (en) * 2016-05-03 2017-11-10 现代自动车株式会社 Electromechanical braking device and its control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545988B2 (en) * 2015-03-26 2019-07-17 Ntn株式会社 Electric brake device
EP3412926B1 (en) 2017-06-08 2020-11-11 IMS Gear SE & Co. KGaA Planetary gearing transmission assembly, in particular for an electromechanical service brake or an electromechanical parking brake for a motor vehicle
DE112019000912T5 (en) * 2018-02-21 2020-11-12 Hitachi Automotive Systems, Ltd. Electric brake and control device
CN110550011B (en) * 2018-05-31 2021-11-12 比亚迪股份有限公司 Braking force estimation method and device, storage medium and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280799A (en) * 1998-03-27 1999-10-15 Tokico Ltd Motor-driven brake device
JP2000078892A (en) * 1998-08-28 2000-03-14 Matsushita Electric Ind Co Ltd Driving apparatus of stepping motor
JP2000213575A (en) * 1999-01-22 2000-08-02 Toyota Motor Corp Braking device
JP2003202042A (en) * 2001-10-22 2003-07-18 Tokico Ltd Electric disk brake and control program for the disk brake
JP2006105224A (en) * 2004-10-04 2006-04-20 Kayaba Ind Co Ltd Electric brake

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341233A (en) * 1989-07-06 1991-02-21 Honda Motor Co Ltd Electric brake
JP3166401B2 (en) 1993-05-17 2001-05-14 日産自動車株式会社 Electric brake actuator
JP4399754B2 (en) * 2000-05-31 2010-01-20 日立オートモティブシステムズ株式会社 Electric disc brake
JP4605684B2 (en) * 2001-01-19 2011-01-05 キヤノン株式会社 Rotating unit and developer stirring device
JP2003194119A (en) * 2001-12-28 2003-07-09 Nissan Motor Co Ltd Electric braking device
JP3880427B2 (en) 2002-03-29 2007-02-14 日信工業株式会社 Electric disc brake
JP4032386B2 (en) * 2002-11-29 2008-01-16 株式会社日立製作所 Electric disc brake
JP4418259B2 (en) * 2004-02-27 2010-02-17 株式会社日立製作所 Electric brake device
JP4898123B2 (en) 2005-01-13 2012-03-14 Ntn株式会社 Electric linear actuator and electric brake device
JP2007045271A (en) * 2005-08-09 2007-02-22 Hitachi Ltd Electric brake and controller therefor
US8093842B2 (en) * 2005-12-21 2012-01-10 Exact Products, Inc. Position controlled drive mechanism
JP4521369B2 (en) * 2006-02-28 2010-08-11 日立オートモティブシステムズ株式会社 Electric brake device
ITTO20060735A1 (en) * 2006-10-13 2008-04-14 St Microelectronics Srl SYSTEM AND METHOD OF ADAPTIVE CONTROL OF AN ELECTROMECHANICAL BRAKE
JP5737500B2 (en) 2011-01-31 2015-06-17 日立オートモティブシステムズ株式会社 Electric brake device
JP5937334B2 (en) * 2011-11-02 2016-06-22 Ntn株式会社 Electric linear actuator
JP6338902B2 (en) * 2014-03-24 2018-06-06 Ntn株式会社 Electric brake device and electric brake device system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280799A (en) * 1998-03-27 1999-10-15 Tokico Ltd Motor-driven brake device
JP2000078892A (en) * 1998-08-28 2000-03-14 Matsushita Electric Ind Co Ltd Driving apparatus of stepping motor
JP2000213575A (en) * 1999-01-22 2000-08-02 Toyota Motor Corp Braking device
JP2003202042A (en) * 2001-10-22 2003-07-18 Tokico Ltd Electric disk brake and control program for the disk brake
JP2006105224A (en) * 2004-10-04 2006-04-20 Kayaba Ind Co Ltd Electric brake

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107336699A (en) * 2016-05-03 2017-11-10 现代自动车株式会社 Electromechanical braking device and its control method
CN107336699B (en) * 2016-05-03 2021-05-07 现代自动车株式会社 Electromechanical brake device and control method thereof

Also Published As

Publication number Publication date
US10100891B2 (en) 2018-10-16
US20170009830A1 (en) 2017-01-12
CN106132795B (en) 2019-08-16
EP3124345A1 (en) 2017-02-01
EP3124345A4 (en) 2017-12-13
EP3124345B1 (en) 2020-08-05
JP6309322B2 (en) 2018-04-11
CN106132795A (en) 2016-11-16
JP2015186972A (en) 2015-10-29

Similar Documents

Publication Publication Date Title
US10479342B2 (en) Electrically powered brake device
WO2015146774A1 (en) Electric brake device
WO2015146775A1 (en) Electric brake device
WO2015146688A1 (en) Electric brake device and electric brake device system
US10427661B2 (en) Electric brake device
EP3042813B1 (en) Electric brake device
EP3042814B1 (en) Electric brake device
WO2015174314A1 (en) Electric brake device
EP3045358B1 (en) Electric brake device
CN109789858B (en) Electric brake device
JP2004286054A (en) Brake apparatus for vehicle
JP6605647B2 (en) Electric brake device
WO2017154790A1 (en) Linear actuator
KR20200101972A (en) Control device and brake device of electric motor
JP6466261B2 (en) Electric brake device
JP5915863B2 (en) Electric braking device for vehicle
JP2018118735A (en) Electric brake device system
JP2014121964A (en) Electric brake device and brake system with the device
JP2018118731A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769044

Country of ref document: EP