WO2015146740A1 - Internal gear pump - Google Patents
Internal gear pump Download PDFInfo
- Publication number
- WO2015146740A1 WO2015146740A1 PCT/JP2015/058017 JP2015058017W WO2015146740A1 WO 2015146740 A1 WO2015146740 A1 WO 2015146740A1 JP 2015058017 W JP2015058017 W JP 2015058017W WO 2015146740 A1 WO2015146740 A1 WO 2015146740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- internal gear
- gear pump
- drive shaft
- liquid
- groove
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/08—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C2/10—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
- F04C2/102—Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
- F04C2240/54—Hydrostatic or hydrodynamic bearing assemblies specially adapted for rotary positive displacement pumps or compressors
Definitions
- the present invention relates to an internal gear pump (trochoid pump) that pumps liquids such as oil, water, and chemicals.
- An internal gear pump (trochoid pump) contains an outer rotor and an inner rotor having a trochoidal tooth shape sealed in a casing, and an inner rotor and an outer rotor fixed to the drive shaft rotate as the drive shaft rotates. It is a pump which acts to inhale and discharge.
- Patent Document 1 has been proposed as this type of pump.
- FIG. 7 and FIG. 8 show an example of a conventional internal gear pump.
- 7 is an assembled perspective view of a conventional internal gear pump
- FIG. 8 (a) is a cross-sectional view of the internal gear pump of FIG. 7
- FIG. 8 (b) is a cross-sectional view of another form of internal gear pump.
- the pump 21 is mainly composed of a trochoid 24 in which an inner rotor 23 having a plurality of external teeth is accommodated in an annular outer rotor 22 having a plurality of internal teeth.
- the trochoid 24 is rotatably accommodated in a circular trochoid accommodating recess 25a formed in a cylindrical casing 25 with a flange.
- a cover 26 that closes the trochoid-containing recess 25 a is fixed to the casing 25.
- the casing 25 and the cover 26 are fastened and fixed to a fixing plate 28 of the apparatus main body by a fixing screw 30.
- the mating surface of the casing 25 and the cover 26 is a machined surface and is surface-sealed.
- the trochoid 24 is configured such that the inner rotor 23 is rotatably accommodated in the outer rotor 22 with the outer teeth of the inner rotor 23 meshing with the inner teeth of the outer rotor 22 and is eccentric. Between the partition points where the rotors contact each other, the suction-side and discharge-side volume chambers are formed according to the rotational direction of the trochoid 24.
- a drive shaft 31 (not shown in FIG. 7) that is rotated by a drive source such as a motor (not shown) is fixed through the shaft center of the inner rotor 23.
- a bearing 32 is press-fitted into the cover 26 and supports the drive shaft 31.
- a liquid suction nozzle 27 extending from the casing 25 is provided at the suction port communicating with the suction-side volume chamber as required (FIG. 8B).
- a metal or resin mesh filter 29 for removing foreign matter in the sucked liquid is attached to an arbitrary position of the liquid suction path including the nozzle 27 to the suction side volume chamber.
- the mesh filter 29 is physically fixed by spot welding or a C ring. Further, the mesh filter 29 and the liquid suction nozzle 27 are attached with rubber seals interposed therebetween while ensuring sealing performance.
- the bearing 32 can be a rolling bearing, a sliding bearing such as a metal bush (alloy such as copper, tin, lead) or a polytetrafluoroethylene (hereinafter referred to as PTFE) resin-wound bush. Of these, inexpensive sliding bearings are frequently used.
- a sliding bearing such as a metal bush (alloy such as copper, tin, lead) or a polytetrafluoroethylene (hereinafter referred to as PTFE) resin-wound bush.
- PTFE polytetrafluoroethylene
- the lubrication state of the sliding part is higher than that of high-speed rotation.
- the oil film is less likely to be formed in the low-speed rotation, it is designed to ensure the necessary discharge flow rate in the low-speed rotation.
- the flow rate of the liquid to be discharged with the rotation of the drive shaft is almost proportional to the rotation speed. Therefore, due to the above design, the flow rate increases at high speed rotation and the oil is excessively supplied. On the contrary, it is not preferable in terms of efficiency.
- the present invention has been made to cope with such problems, and an object of the present invention is to provide an internal gear pump that suppresses the liquid discharge flow rate when the drive shaft rotates at a high speed.
- an inner rotor having a plurality of external teeth is rotatably accommodated in an outer rotor having a plurality of internal teeth in a state where the external teeth mesh with the internal teeth and are eccentric.
- An internal gear pump having a trochoid in which a suction side volume chamber for sucking liquid and a discharge side volume chamber for discharging liquid sucked into the suction side volume chamber are formed between the inner teeth and the outer teeth And having a drive shaft fixed to the inner rotor, a casing formed with a recess for accommodating the trochoid, and a cover for closing the recess of the casing, and at least selected from the cover and the casing
- One member has a slide bearing that rotatably supports the drive shaft, and a sliding portion between the drive shaft and the slide bearing has an inside space (single unit) of the trochoid. And having a liquid discharge groove for discharging part of the liquid also referred to) and "pump internal".
- the slide bearing has a radial slide bearing that supports an outer peripheral surface of the drive shaft, and the liquid discharge groove is at least one of the outer peripheral surface of the drive shaft and the inner peripheral surface of the radial slide bearing. It is characterized by being formed. Further, the liquid discharge groove on the radial sliding surface is a groove communicating with both axial ends of the sliding surface.
- the sliding bearing includes a thrust sliding bearing that supports an end surface of the drive shaft, and the liquid discharge groove is formed on at least one thrust sliding surface of the driving shaft and the bearing surface of the thrust sliding bearing. It is characterized by being.
- the liquid sliding groove on the thrust sliding surface is a groove communicating with the inner and outer diameters of the sliding surface.
- the drive shaft is inserted and fixed to the inner rotor, and a through groove that penetrates the fixed portion in the axial direction is formed in a fixed portion between the drive shaft and the inner rotor.
- the internal gear pump is a pump for supplying the liquid to the sliding portion of the scroll compressor.
- the internal gear pump of the present invention has a sliding bearing in which at least one member of a casing in which a recess for accommodating a trochoid is formed and a cover for closing the recess of the casing rotatably supports a drive shaft, Since the liquid discharge groove is provided in the sliding portion between the drive shaft and the slide bearing, a part of the liquid inside the pump can be discharged through the liquid discharge groove during driving, and excessive supply of liquid during high-speed rotation can be suppressed. Further, when the drive shaft rotates, the liquid discharge groove generates a force for sucking the liquid, and the slope of the discharge flow rate with respect to the rotation speed can be made gentle. Further, since a large amount of liquid is also supplied to the bearing sliding surface, low friction and low wear characteristics can be obtained by improving the cooling effect of the sliding surface and the lubrication state.
- the liquid discharge groove on the radial sliding surface is a groove communicating with both axial ends of the sliding surface, and the liquid discharge groove on the thrust sliding surface is a groove communicating the inner and outer diameters of the sliding surface. Therefore, the liquid discharge performance is excellent, and the above effect is further improved.
- the drive shaft is inserted and fixed to the inner rotor, and a through groove is formed in the fixed portion between the drive shaft and the inner rotor so as to penetrate the fixed portion in the axial direction. It becomes the flow path which discharges.
- the internal gear pump of the present invention can be suitably used as a pump for supplying liquid to the sliding portion of the scroll compressor for an air conditioner.
- FIG. 1 is an axial sectional view of an internal gear pump used in a scroll compressor.
- the internal gear pump 1 includes a trochoid 4 in which an inner rotor 3 is accommodated in an annular outer rotor 2, and a circular recess (trochoid accommodating recess) 5a in which the trochoid 4 is rotatably accommodated.
- a cover 6 that closes the trochoid-receiving recess 5a of the casing 5.
- the cover 6 has a shape that matches the outer shape of the upper surface of the casing 5 in which the trochoid-containing recess 5a is opened.
- the casing 5 and the cover 6 are fastened and fixed to a fixing plate 10 of the apparatus main body by fixing screws 8.
- the drive shaft 9 is coaxially fixed to the rotation center of the inner rotor 3.
- the outer teeth of the inner rotor 3 are one less than the inner teeth of the outer rotor 2, and the inner rotor 3 is housed in the outer rotor 2 in an eccentric state in which the outer teeth are inscribed in mesh with the inner teeth.
- the suction-side and discharge-side volume chambers are formed according to the rotational direction of the trochoid 4.
- a suction port communicating with the volume chamber on the suction side is formed on the bottom surface 5 b of the trochoid-accommodating recess 5 a of the casing 5.
- the suction-side volume chamber changes to a discharge-side volume chamber in which the volume decreases and the internal pressure increases as the trochoid 4 rotates, and the sucked liquid is discharged from the discharge-side volume chamber to the discharge port.
- the above pumping action is continuously performed by the rotation of the trochoid 4, and the liquid is continuously pumped. Furthermore, due to the liquid sealing effect in which the sealing performance of each volume chamber is enhanced by the sucked liquid, the differential pressure generated between the volume chambers is increased, and a large pumping action is obtained.
- the drive shaft 9 is rotatably supported by a radial slide bearing 11 and a thrust slide bearing 12 provided on the cover 6.
- a cylindrical radial sliding bearing 11 receives a radial load of the drive shaft 9, and a disc-shaped thrust sliding bearing 12 receives a thrust load of the driving shaft 9.
- the drive shaft 9 is a stepped shaft having a main body portion 9 b and a tip portion 9 c having a smaller diameter than the main body portion 9 b, and the tip portion 9 c is fixed to the inner rotor 3.
- the radial plain bearing 11 rotatably supports the outer peripheral surface of the tip end portion 9c of the drive shaft 9 on its inner peripheral surface.
- the thrust slide bearing 12 supports the end surface of the main body portion 9b of the drive shaft 9 with its bearing surface (disk surface on the drive shaft side).
- the cover 6 is provided with the sliding bearing, but may be provided on the casing 5. Further, the cover and the casing may be used as a slide bearing as they are.
- both the radial sliding bearing and the thrust sliding bearing are provided, but only one of them may be provided.
- the internal gear pump 1 has a liquid discharge groove for discharging part of the liquid in the trochoid accommodating space at the sliding portion between the drive shaft 9 and the sliding bearings 11 and 12.
- a part of the liquid in the trochoid accommodating space (inside the pump) can be discharged to the outside of the space through the liquid discharge groove during driving (the dashed line arrow in the figure).
- the sliding portion is a radial sliding portion between the driving shaft 9 and the radial sliding bearing 11 and a thrust sliding portion between the driving shaft 9 and the thrust sliding bearing 12, and either one or both of these sliding portions are used.
- Forming the liquid discharge groove Since it is excellent in the liquid discharge effect, it is preferable to form both. Note that a small amount of liquid is also present on the sliding surface even in the sliding portion where the liquid discharge groove is not formed.
- a radial sliding bearing 11 if a liquid discharge groove can be formed on the sliding surface (inner peripheral surface), a metal bush (alloy such as copper, tin, lead), a sintered bearing (iron, copper-based, etc.), A sliding bearing of any material such as a polytetrafluoroethylene resin-wound bush, a polyether ether ketone resin or a polyphenylene sulfide resin resin bearing can be used.
- the thrust slide bearing 12 a slide bearing made of the same material as the radial slide bearing described above can be used. Each plain bearing is fixed by press fitting or the like.
- the groove can be formed on at least one radial sliding surface of the outer peripheral surface of the drive shaft 9 and the inner peripheral surface of the radial sliding bearing 11.
- the radial plain bearing 11 supports the outer peripheral surface of the tip end portion 9 c of the drive shaft 9, but the radial slide bearing position is not limited to this, and supports the outer peripheral surface of the main body portion 9 b of the drive shaft 9. It is good also as a form to do.
- the groove can be formed in at least one of the thrust sliding surfaces of the end surface of the drive shaft 9 and the bearing surface of the thrust slide bearing 12. In FIG. 1, although the end surface of the main-body part 9b of the drive shaft 9 is supported, a thrust bearing position is not limited to this.
- the shape of the liquid discharge groove formed on the radial sliding surface is not particularly limited, but it may be a groove having an action of sucking and discharging the liquid inside the pump when the drive shaft and the slide bearing rotate relative to each other. preferable.
- a linear groove (FIG. 2A) or a spiral groove (FIG. 2B) parallel to the axial direction is used. Can be mentioned. Black portions in the figure are liquid discharge grooves.
- the liquid discharge groove 11 a is formed on the inner peripheral surface of the radial sliding bearing 11.
- the liquid discharge groove on the radial sliding surface is preferably a groove that communicates (penetrates) with both axial ends of the sliding surface.
- the groove width and groove depth are wide at the inlet (inner side of the pump for suction) in the liquid flow direction and narrowed at the outlet (discharge side) to generate dynamic pressure, and the liquid is pushed into the closed sliding surface. Therefore, the friction coefficient can be lowered.
- the cross-sectional shape of the liquid discharge groove 11a formed on the radial sliding surface is, for example, a square groove (FIGS. 3A and 3D), an R groove (see FIG. 3). 3 (b)), V-groove (FIG. 3 (c)), and the like.
- the load capacity of the liquid film due to the dynamic pressure effect is small compared to the load applied to the radial slide bearing, and it is difficult to completely make no contact between the radial slide bearing and the drive shaft. Accordingly, the radial slide bearing and the drive shaft slide in contact with each other, and a mixed lubrication state is obtained.
- the V-groove and the R-groove having a wedge shape (narrowed shape) in the groove cross-sectional shape are more likely to generate dynamic pressure due to the wedge effect than the square groove.
- V grooves and R grooves are preferable to square grooves.
- a V-groove having a large area with a small gap as a cross-sectional shape is preferable to the R-groove.
- the angle of the V groove is not particularly limited, and the groove need not be a symmetric groove with respect to the axial rotation direction. As shown in FIG.
- the sliding surface on the side where the liquid flows into the sliding surface by rotation It is preferable that the groove has an acute angle. The same applies to the R groove, and as shown in FIG. 3 (e), it is preferable that the inclination on the side where the liquid flows into the sliding surface by rotation is gentle. The greater the number of liquid discharge grooves, the easier it is to generate dynamic pressure, but the surface pressure of the sliding surface increases, so it may be set in consideration of the use conditions.
- the shape of the liquid discharge groove formed on the thrust sliding surface is not particularly limited, but as described above, the liquid discharge groove has a function of sucking and discharging the liquid inside the pump when the drive shaft and the slide bearing rotate relative to each other. It is preferable that As a specific planar shape of the liquid discharge groove formed on the thrust sliding surface, for example, as shown in FIG. 4, herringbone (FIGS. 4A to 4C, 4E), radial (FIG. 4) (D)), spiral (FIG. 4 (f)) and the like. Black portions in the figure are liquid discharge grooves.
- a liquid discharge groove 12a is formed on the bearing surface of the thrust slide bearing 12 (the disk surface on the drive shaft side).
- action may be sufficient by complicating a flow path.
- the liquid inside the pump is sucked from the gap between the inner diameter surface and the outer peripheral surface of the drive shaft and introduced into the thrust sliding surface according to the shape shown in the figure and the bearing rotation direction.
- the liquid can be discharged to the outside directly from the outer diameter side or through a liquid discharge groove of a radial sliding bearing depending on the bearing type of the pump.
- These shapes may be used alone or in combination.
- a spiral capable of generating dynamic pressure and smoothly discharging liquid is preferable.
- the liquid discharge groove on the thrust sliding surface is preferably a groove that communicates (penetrates) the inner and outer diameters of the sliding surface. By using the communication groove, the liquid can be easily discharged from the inner diameter to the outer diameter, and the liquid can be discharged more smoothly.
- the groove folding position in the herringbone as shown in FIGS. 4 (a) to 4 (c) can be set as appropriate.
- the force from the inner diameter side toward the outer diameter side increases as the turn-back position goes to the outer circumference side.
- 4 (d) and 4 (e) are such that the groove flow path from the inner diameter to the outer diameter is longer than the case where the inner diameter and the outer diameter are connected by a radial straight line or curve from the center. Forming.
- a circumferential groove concentric with the disk is provided at a substantially central position in the radial direction of the disk bearing surface of the thrust slide bearing, and an inner diameter side groove from the inner diameter to the circumferential groove, and from the circumferential groove to the outer diameter.
- the outer diameter side groove has a shape connected to the circumferential groove at a circumferential position that does not overlap the circumferential groove.
- the connection position of the inner diameter side groove and the circumferential groove and the connection position of the outer diameter side groove and the circumferential groove are arranged alternately at substantially equal intervals in the circumferential direction.
- the groove width, groove depth, and cross-sectional shape of the groove are the same as those in the above-described radial sliding surface.
- the liquid sucked by the rotation of the inner rotor and the outer rotor is pumped from the lower part of the rotor to the upper part through the discharge passage in the central part of the drive shaft.
- a through-groove that penetrates the fixed portion in the axial direction in the fixed portion between the drive shaft and the inner rotor as a flow path for sending the liquid inside the pump to the sliding surface of the slide bearing.
- a through groove penetrating the fixed width of both is formed in either the inner periphery of the inner rotor or the outer periphery of the drive shaft.
- a through groove 3 a is formed on the inner periphery (drive shaft fixed side) of the inner rotor 3.
- the through groove 3a is a groove penetrating along the axial direction from the upper surface to the lower surface of the inner rotor, and its axial length is equal to the axial thickness of the inner rotor.
- the cover and casing are made of metal (iron, stainless steel, sintered metal, aluminum alloy, etc.), resin (polyphenylene sulfide resin, polybutylene terephthalate resin, and resin in which a filler is blended). Composition etc.) can be used, and the composite molded article of a metal and resin may be sufficient.
- a sintered metal iron-based, copper-iron-based, copper-based, stainless-based, etc.
- iron is particularly preferable from the viewpoint of price.
- a trochoid pump that pumps water, chemicals, or the like may employ a stainless steel type that has a high rust prevention capability.
- FIG. 6 is a conceptual diagram showing the relationship between the rotational speed and the discharge flow rate in the internal gear pump.
- a sliding bearing in an internal gear pump having a conventional structure (for example, see FIG. 8A) is lubricated by liquid leaking from the inside of the trochoid housing space through a gap around the drive shaft. Since the bearing is oil-sealed, liquid leakage to the outside is very small.
- internal gear pumps such as scroll compressors are designed to ensure the required discharge flow rate at low speed rotation. Therefore, with the conventional structure described above, the flow rate increases at high speed rotation, and oil is excessively supplied. It is easy to be in a state (comparative example in FIG. 6).
- the liquid discharge groove is provided in the sliding portion between the slide bearing and the drive shaft, the liquid discharge groove sucks the liquid when the drive shaft rotates. A force is generated according to the rotational speed, and a part of the liquid inside the pump can be discharged to the outside through the liquid discharge groove. Thereby, the gradient of the discharge flow rate with respect to the rotation speed can be made gentle, and the excessive supply of liquid at the time of high-speed rotation can be suppressed (the embodiment of FIG. 6).
- the internal gear pump of the present invention suppresses the liquid flow rate at high speed rotation and is stable in terms of function by improving the cooling effect and lubrication state. It can be used as a contact gear pump (trochoid pump). In particular, it can be suitably used as a pump for supplying a liquid to a sliding part of a scroll compressor for electric water heaters, room air conditioners, and car air conditioners that use alternative chlorofluorocarbon or carbon dioxide as a refrigerant.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Provided is an internal gear pump in which the fluid discharge flow rate during the high speed rotation of a drive shaft is suppressed. The internal gear pump (1) is equipped with a trochoid (4) in which an inner rotor (3) having a plurality of outer teeth is rotatably accommodated in an outer rotor (2) having a plurality of inner teeth, in a state such that the outer teeth are meshed with the inner teeth and in an eccentric state. A suction-side volume chamber that draws in a fluid, and a discharge-side volume chamber that discharges the fluid drawn into the suction-side volume chamber are formed between the inner teeth and the outer teeth. The pump is also equipped with a drive shaft (9) which is fixed to the inner rotor (3), a casing (5) in which a recess (5a) for housing the trochoid (4) is formed, and a cover (6) which closes off the recess (5a) in the casing (5). The cover (6) includes sliding bearings (11, 12) that rotatably support the drive shaft (9), and the part where the drive shaft (9) and the sliding bearings slide against each other includes a fluid expulsion groove for expelling some of the fluid within the trochoid storage space.
Description
本発明は、油や水、薬液などの液体を圧送する内接歯車ポンプ(トロコイドポンプ)に関する。
The present invention relates to an internal gear pump (trochoid pump) that pumps liquids such as oil, water, and chemicals.
内接歯車ポンプ(トロコイドポンプ)は、トロコイド歯形を有するアウタロータおよびインナロータがケーシング内に密閉された状態で収容され、駆動シャフトの回転に伴い、駆動シャフトに固定されたインナロータとアウタロータが回転し、液体を吸入して吐出するように作用するポンプである。この種のポンプとして、例えば、特許文献1が提案されている。
An internal gear pump (trochoid pump) contains an outer rotor and an inner rotor having a trochoidal tooth shape sealed in a casing, and an inner rotor and an outer rotor fixed to the drive shaft rotate as the drive shaft rotates. It is a pump which acts to inhale and discharge. For example, Patent Document 1 has been proposed as this type of pump.
図7および図8に基づき、従来の内接歯車ポンプの一例を示す。図7は従来の内接歯車ポンプの組み立て斜視図を、図8(a)は図7の内接歯車ポンプの断面図を、図8(b)は他の形態の内接歯車ポンプの断面図をそれぞれ示す。図7に示すように、このポンプ21は、複数の内歯を有する環状のアウタロータ22内に、複数の外歯を有するインナロータ23が収容されてなるトロコイド24を主体としている。このトロコイド24は、フランジ付き円柱状のケーシング25に形成された円形のトロコイド収容凹部25aに回転自在に収容されている。ケーシング25には、トロコイド収容凹部25aを閉塞するカバー26が固定されている。図8(a)に示すように、ケーシグ25とカバー26とは、機器本体の固定プレート28に固定ねじ30で締結固定されている。ケーシング25とカバー26との合わせ面は、機械加工面であり、面シールされている。
FIG. 7 and FIG. 8 show an example of a conventional internal gear pump. 7 is an assembled perspective view of a conventional internal gear pump, FIG. 8 (a) is a cross-sectional view of the internal gear pump of FIG. 7, and FIG. 8 (b) is a cross-sectional view of another form of internal gear pump. Respectively. As shown in FIG. 7, the pump 21 is mainly composed of a trochoid 24 in which an inner rotor 23 having a plurality of external teeth is accommodated in an annular outer rotor 22 having a plurality of internal teeth. The trochoid 24 is rotatably accommodated in a circular trochoid accommodating recess 25a formed in a cylindrical casing 25 with a flange. A cover 26 that closes the trochoid-containing recess 25 a is fixed to the casing 25. As shown in FIG. 8A, the casing 25 and the cover 26 are fastened and fixed to a fixing plate 28 of the apparatus main body by a fixing screw 30. The mating surface of the casing 25 and the cover 26 is a machined surface and is surface-sealed.
トロコイド24は、インナロータ23の外歯が、アウタロータ22の内歯に噛み合い、かつ、偏心した状態で、インナロータ23がアウタロータ22内に回転自在に収容されて構成される。各ロータが互いに接触する仕切点間に、トロコイド24の回転方向に応じて、吸入側および吐出側の容積室が形成される。インナロータ23の軸心には、図示しないモータなどの駆動源によって回転させられる駆動シャフト31(図7では省略)が貫通して固定されている。カバー26には軸受32が圧入され、駆動シャフト31を支持している。駆動シャフト31が回転してインナロータ23が回転すると、外歯がアウタロータ22の内歯に噛み合うことによりアウタロータ22が同一方向に連れ回りし、この回転によって容積が増大し、負圧となる吸入側容積室に吸入口から液体が吸入される。この吸入側容積室は、トロコイド24が回転することによって容積が減少して内圧が上昇する吐出側容積室に変わり、ここから、吸入された液体が吐出口に吐出される。
The trochoid 24 is configured such that the inner rotor 23 is rotatably accommodated in the outer rotor 22 with the outer teeth of the inner rotor 23 meshing with the inner teeth of the outer rotor 22 and is eccentric. Between the partition points where the rotors contact each other, the suction-side and discharge-side volume chambers are formed according to the rotational direction of the trochoid 24. A drive shaft 31 (not shown in FIG. 7) that is rotated by a drive source such as a motor (not shown) is fixed through the shaft center of the inner rotor 23. A bearing 32 is press-fitted into the cover 26 and supports the drive shaft 31. When the drive shaft 31 rotates and the inner rotor 23 rotates, the outer teeth mesh with the inner teeth of the outer rotor 22 so that the outer rotor 22 rotates in the same direction. Liquid is sucked into the chamber from the inlet. The suction-side volume chamber is changed to a discharge-side volume chamber in which the volume is reduced and the internal pressure is increased by the rotation of the trochoid 24, from which the sucked liquid is discharged to the discharge port.
吸入側容積室に連通する吸入口には、必要に応じてケーシング25から伸びた液体吸入ノズル27が設けられている(図8(b))。該ノズル27を含めた、吸入側容積室までの液体吸入経路の任意の場所に、吸入した液体の異物を除去するための金属製や樹脂製のメッシュフィルタ29が取り付けられている。メッシュフィルタ29は、スポット溶接固定や、Cリングなどで物理固定されている。また、メッシュフィルタ29や液体吸入ノズル27は、ゴムパッキンを介在させてシール性を担保しつつ取り付けられている。
A liquid suction nozzle 27 extending from the casing 25 is provided at the suction port communicating with the suction-side volume chamber as required (FIG. 8B). A metal or resin mesh filter 29 for removing foreign matter in the sucked liquid is attached to an arbitrary position of the liquid suction path including the nozzle 27 to the suction side volume chamber. The mesh filter 29 is physically fixed by spot welding or a C ring. Further, the mesh filter 29 and the liquid suction nozzle 27 are attached with rubber seals interposed therebetween while ensuring sealing performance.
軸受32には転がり軸受、メタルブッシュ(銅、錫、鉛などの合金)やポリテトラフルオロエチレン(以下、PTFEと記す)樹脂巻きブッシュなどの滑り軸受が使用可能である。この中でも、安価な滑り軸受が多用されている。
The bearing 32 can be a rolling bearing, a sliding bearing such as a metal bush (alloy such as copper, tin, lead) or a polytetrafluoroethylene (hereinafter referred to as PTFE) resin-wound bush. Of these, inexpensive sliding bearings are frequently used.
スクロール型コンプレッサのように、圧縮部や、駆動シャフトを支持する滑り軸受などの摺動部に潤滑油を送ることを目的とした内接歯車ポンプの場合、摺動部の潤滑状態は高速回転よりも低速回転の方が油膜形成され難いため、低速回転で必要な吐出流量を確保する設計としている。内接歯車ポンプにおいては、駆動シャフトの回転に伴い吐出する液体の流量が回転数にほぼ比例するため、上述の設計上、高速回転では流量が増加して油が供給過剰な状態となり、コンプレッサの効率面などから逆に好ましくない。
In the case of an internal gear pump that aims to send lubricating oil to a sliding part such as a sliding bearing that supports a compression part or a drive shaft, like a scroll compressor, the lubrication state of the sliding part is higher than that of high-speed rotation. However, since the oil film is less likely to be formed in the low-speed rotation, it is designed to ensure the necessary discharge flow rate in the low-speed rotation. In the internal gear pump, the flow rate of the liquid to be discharged with the rotation of the drive shaft is almost proportional to the rotation speed. Therefore, due to the above design, the flow rate increases at high speed rotation and the oil is excessively supplied. On the contrary, it is not preferable in terms of efficiency.
本発明はこのような問題に対処するためになされたものであり、駆動シャフトの高速回転時の液体の吐出流量を抑制した内接歯車ポンプを提供することを目的とする。
The present invention has been made to cope with such problems, and an object of the present invention is to provide an internal gear pump that suppresses the liquid discharge flow rate when the drive shaft rotates at a high speed.
本発明の内接歯車ポンプは、複数の内歯を有するアウタロータ内に、複数の外歯を有するインナロータが、上記外歯が上記内歯に噛み合い、かつ、偏心する状態で回転自在に収容され、上記内歯と上記外歯との間に、液体を吸入する吸入側容積室と、この吸入側容積室に吸入した液体を吐出する吐出側容積室とが形成されるトロコイドを有する内接歯車ポンプであって、上記インナロータに固定される駆動シャフトと、上記トロコイドを収容する凹部が形成されたケーシングと、該ケーシングの上記凹部を閉塞するカバーとを有し、上記カバーおよび上記ケーシングから選ばれる少なくとも一方の部材が、上記駆動シャフトを回転自在に支持する滑り軸受を有し、該駆動シャフトと該滑り軸受との摺動部に上記トロコイドの収容空間内(単に「ポンプ内部」ともいう)の上記液体を一部排出するための液体排出溝を有することを特徴とする。
In the internal gear pump of the present invention, an inner rotor having a plurality of external teeth is rotatably accommodated in an outer rotor having a plurality of internal teeth in a state where the external teeth mesh with the internal teeth and are eccentric. An internal gear pump having a trochoid in which a suction side volume chamber for sucking liquid and a discharge side volume chamber for discharging liquid sucked into the suction side volume chamber are formed between the inner teeth and the outer teeth And having a drive shaft fixed to the inner rotor, a casing formed with a recess for accommodating the trochoid, and a cover for closing the recess of the casing, and at least selected from the cover and the casing One member has a slide bearing that rotatably supports the drive shaft, and a sliding portion between the drive shaft and the slide bearing has an inside space (single unit) of the trochoid. And having a liquid discharge groove for discharging part of the liquid also referred to) and "pump internal".
上記滑り軸受として、上記駆動シャフトの外周面を支持するラジアル滑り軸受を有し、上記液体排出溝が、上記駆動シャフトの外周面および上記ラジアル滑り軸受の内周面の少なくとも一方のラジアル摺動面に形成されていることを特徴とする。また、上記ラジアル摺動面の液体排出溝は、該摺動面の軸方向両端に連通する溝であることを特徴とする。
The slide bearing has a radial slide bearing that supports an outer peripheral surface of the drive shaft, and the liquid discharge groove is at least one of the outer peripheral surface of the drive shaft and the inner peripheral surface of the radial slide bearing. It is characterized by being formed. Further, the liquid discharge groove on the radial sliding surface is a groove communicating with both axial ends of the sliding surface.
上記滑り軸受として、上記駆動シャフトの端面を支持するスラスト滑り軸受を有し、上記液体排出溝が、駆動シャフトの端面および上記スラスト滑り軸受の軸受面の少なくとも一方のスラスト摺動面に形成されていることを特徴とする。また、上記スラスト摺動面の液体排出溝は、該摺動面の内外径に連通する溝であることを特徴とする。
The sliding bearing includes a thrust sliding bearing that supports an end surface of the drive shaft, and the liquid discharge groove is formed on at least one thrust sliding surface of the driving shaft and the bearing surface of the thrust sliding bearing. It is characterized by being. The liquid sliding groove on the thrust sliding surface is a groove communicating with the inner and outer diameters of the sliding surface.
上記駆動シャフトは、上記インナロータに挿入固定されており、該駆動シャフトと上記インナロータとの固定部に、該固定部を軸方向に貫通する貫通溝が形成されていることを特徴とする。
The drive shaft is inserted and fixed to the inner rotor, and a through groove that penetrates the fixed portion in the axial direction is formed in a fixed portion between the drive shaft and the inner rotor.
上記内接歯車ポンプが、スクロール型コンプレッサの摺動部に上記液体を供給するためのポンプであることを特徴とする。
The internal gear pump is a pump for supplying the liquid to the sliding portion of the scroll compressor.
本発明の内接歯車ポンプは、トロコイドを収容する凹部が形成されたケーシング、および、ケーシングの凹部を閉塞するカバーの少なくとも一方の部材が、駆動シャフトを回転自在に支持する滑り軸受を有し、駆動シャフトと滑り軸受との摺動部に液体排出溝を有するので、駆動時に該液体排出溝を通って、ポンプ内部の液体を一部排出でき、高速回転時の液体の供給過剰を抑制できる。また、駆動シャフトの回転時に液体排出溝が液体を吸引する力を発生し、回転数に対する吐出流量の傾きを緩やかにできる。さらに、軸受摺動面にも液体が多く供給されるため、摺動面の冷却効果、潤滑状態の向上により、低摩擦低摩耗特性も得られる。
The internal gear pump of the present invention has a sliding bearing in which at least one member of a casing in which a recess for accommodating a trochoid is formed and a cover for closing the recess of the casing rotatably supports a drive shaft, Since the liquid discharge groove is provided in the sliding portion between the drive shaft and the slide bearing, a part of the liquid inside the pump can be discharged through the liquid discharge groove during driving, and excessive supply of liquid during high-speed rotation can be suppressed. Further, when the drive shaft rotates, the liquid discharge groove generates a force for sucking the liquid, and the slope of the discharge flow rate with respect to the rotation speed can be made gentle. Further, since a large amount of liquid is also supplied to the bearing sliding surface, low friction and low wear characteristics can be obtained by improving the cooling effect of the sliding surface and the lubrication state.
ラジアル摺動面の液体排出溝が、該摺動面の軸方向両端に連通する溝であり、また、スラスト摺動面の液体排出溝が、該摺動面の内外径を連通する溝であるので、液体排出性能に優れ、上記効果がより向上する。
The liquid discharge groove on the radial sliding surface is a groove communicating with both axial ends of the sliding surface, and the liquid discharge groove on the thrust sliding surface is a groove communicating the inner and outer diameters of the sliding surface. Therefore, the liquid discharge performance is excellent, and the above effect is further improved.
駆動シャフトがインナロータに挿入固定されており、駆動シャフトとインナロータとの固定部に、該固定部を軸方向に貫通する貫通溝が形成されているので、ポンプ内部の液体を上記軸受の摺動面に排出する流路となる。
The drive shaft is inserted and fixed to the inner rotor, and a through groove is formed in the fixed portion between the drive shaft and the inner rotor so as to penetrate the fixed portion in the axial direction. It becomes the flow path which discharges.
以上のような仕様により、本発明の内接歯車ポンプは、エアコン用スクロール型コンプレッサの摺動部に液体を供給するためのポンプとして好適に利用できる。
With the specifications as described above, the internal gear pump of the present invention can be suitably used as a pump for supplying liquid to the sliding portion of the scroll compressor for an air conditioner.
本発明の内接歯車ポンプの一実施形態を図1に基づき説明する。図1は、スクロール型コンプレッサに用いる内接歯車ポンプの軸方向断面図である。図1に示すように、内接歯車ポンプ1は、環状のアウタロータ2内にインナロータ3が収容されたトロコイド4と、このトロコイド4を回転自在に収容する円形の凹部(トロコイド収容凹部)5aが形成されたケーシング5と、ケーシング5のトロコイド収容凹部5aを閉塞するカバー6とを有する。カバー6は、トロコイド収容凹部5aが開口するケーシング5の上面の外形に合致する形状である。ケーシング5とカバー6とは、固定ねじ8により、機器本体の固定プレート10に締結固定されている。また、インナロータ3の回転中心に同軸で固定された駆動シャフト9を有している。
An embodiment of the internal gear pump of the present invention will be described with reference to FIG. FIG. 1 is an axial sectional view of an internal gear pump used in a scroll compressor. As shown in FIG. 1, the internal gear pump 1 includes a trochoid 4 in which an inner rotor 3 is accommodated in an annular outer rotor 2, and a circular recess (trochoid accommodating recess) 5a in which the trochoid 4 is rotatably accommodated. And a cover 6 that closes the trochoid-receiving recess 5a of the casing 5. The cover 6 has a shape that matches the outer shape of the upper surface of the casing 5 in which the trochoid-containing recess 5a is opened. The casing 5 and the cover 6 are fastened and fixed to a fixing plate 10 of the apparatus main body by fixing screws 8. In addition, the drive shaft 9 is coaxially fixed to the rotation center of the inner rotor 3.
インナロータ3の外歯はアウタロータ2の内歯よりも1つ少なく、インナロータ3は、上記外歯が上記内歯に内接して噛み合う偏心した状態で、アウタロータ2内に収容されている。各ロータが互いに接触する仕切点間には、トロコイド4の回転方向に応じて、吸入側および吐出側の容積室が形成される。ケーシング5のトロコイド収容凹部5aの底面5bには、吸入側の容積室に連通する吸入口が形成されている。ロータ下部の吐出側の容積室に連通する吐出口から、駆動シャフト9の中心部の吐出流路9aを通して、図中上方の圧縮部(図示省略)に液体が圧送される(図中二点鎖線矢印)。
The outer teeth of the inner rotor 3 are one less than the inner teeth of the outer rotor 2, and the inner rotor 3 is housed in the outer rotor 2 in an eccentric state in which the outer teeth are inscribed in mesh with the inner teeth. Between the partition points where the rotors are in contact with each other, the suction-side and discharge-side volume chambers are formed according to the rotational direction of the trochoid 4. A suction port communicating with the volume chamber on the suction side is formed on the bottom surface 5 b of the trochoid-accommodating recess 5 a of the casing 5. From the discharge port communicating with the discharge-side volume chamber at the lower part of the rotor, the liquid is pumped to the upper compression portion (not shown) in the drawing through the discharge passage 9a in the center of the drive shaft 9 (two-dot chain line in the drawing). Arrow).
内接歯車ポンプ1では、駆動シャフト9によってトロコイド4が回転することにより、容積が増大して負圧となる吸入側容積室に、吸入口から液体がポンプ内部に吸入される。この吸入側容積室は、トロコイド4が回転することによって容積が減少して内圧が上昇する吐出側容積室に変わり、この吐出側容積室から、吸入された液体が吐出口に吐出される。上記のポンプ作用が、トロコイド4の回転によって連続的に行われ、液体が連続的に圧送される。さらに、吸入された液体によって各容積室の密閉性が高められる液体シール効果によって、各容積室間に生じる差圧が大きくなり、大きなポンプ作用が得られる。
In the internal gear pump 1, when the trochoid 4 is rotated by the drive shaft 9, liquid is sucked into the pump from the suction port into the suction-side volume chamber where the volume increases and becomes negative pressure. The suction-side volume chamber changes to a discharge-side volume chamber in which the volume decreases and the internal pressure increases as the trochoid 4 rotates, and the sucked liquid is discharged from the discharge-side volume chamber to the discharge port. The above pumping action is continuously performed by the rotation of the trochoid 4, and the liquid is continuously pumped. Furthermore, due to the liquid sealing effect in which the sealing performance of each volume chamber is enhanced by the sucked liquid, the differential pressure generated between the volume chambers is increased, and a large pumping action is obtained.
駆動シャフト9は、カバー6に設けられたラジアル滑り軸受11およびスラスト滑り軸受12により、回転自在に支持されている。円筒状のラジアル滑り軸受11により駆動シャフト9のラジアル荷重を受け、円盤状のスラスト滑り軸受12により駆動シャフト9のスラスト荷重を受けている。駆動シャフト9は、本体部9bと、本体部9bよりも小径の先端部9cとを有する段差状の軸であり、先端部9cがインナロータ3に固定される。ラジアル滑り軸受11は、その内周面で駆動シャフト9の先端部9cの外周面を回転自在に支持している。スラスト滑り軸受12は、その軸受面(駆動シャフト側の円盤表面)で駆動シャフト9の本体部9bの端面を支持している。なお、図1では、カバー6に滑り軸受を設けているが、ケーシング5に設ける形態としてもよい。また、カバー、ケーシングをそのまま滑り軸受としてもよい。また、図1では、ラジアル滑り軸受とスラスト滑り軸受の両方を設けているが、いずれか一方のみを設ける形態としてもよい。
The drive shaft 9 is rotatably supported by a radial slide bearing 11 and a thrust slide bearing 12 provided on the cover 6. A cylindrical radial sliding bearing 11 receives a radial load of the drive shaft 9, and a disc-shaped thrust sliding bearing 12 receives a thrust load of the driving shaft 9. The drive shaft 9 is a stepped shaft having a main body portion 9 b and a tip portion 9 c having a smaller diameter than the main body portion 9 b, and the tip portion 9 c is fixed to the inner rotor 3. The radial plain bearing 11 rotatably supports the outer peripheral surface of the tip end portion 9c of the drive shaft 9 on its inner peripheral surface. The thrust slide bearing 12 supports the end surface of the main body portion 9b of the drive shaft 9 with its bearing surface (disk surface on the drive shaft side). In FIG. 1, the cover 6 is provided with the sliding bearing, but may be provided on the casing 5. Further, the cover and the casing may be used as a slide bearing as they are. In FIG. 1, both the radial sliding bearing and the thrust sliding bearing are provided, but only one of them may be provided.
内接歯車ポンプ1は、駆動シャフト9と滑り軸受11、12との摺動部にトロコイドの収容空間内の液体を一部排出するための液体排出溝を有する。駆動時にこの液体排出溝を通って、トロコイドの収容空間内(ポンプ内部)の液体を空間外部に一部排出できる(図中一点鎖線矢印)。上記の摺動部は、駆動シャフト9とラジアル滑り軸受11とのラジアル摺動部と、駆動シャフト9とスラスト滑り軸受12とのスラスト摺動部であり、これら摺動部のいずれか一方または両方に上記液体排出溝を形成する。液体排出効果に優れることから、両方に形成することが好ましい。なお、液体排出溝を形成しない摺動部においても、少量の液体は摺動面に介在する。
The internal gear pump 1 has a liquid discharge groove for discharging part of the liquid in the trochoid accommodating space at the sliding portion between the drive shaft 9 and the sliding bearings 11 and 12. A part of the liquid in the trochoid accommodating space (inside the pump) can be discharged to the outside of the space through the liquid discharge groove during driving (the dashed line arrow in the figure). The sliding portion is a radial sliding portion between the driving shaft 9 and the radial sliding bearing 11 and a thrust sliding portion between the driving shaft 9 and the thrust sliding bearing 12, and either one or both of these sliding portions are used. Forming the liquid discharge groove. Since it is excellent in the liquid discharge effect, it is preferable to form both. Note that a small amount of liquid is also present on the sliding surface even in the sliding portion where the liquid discharge groove is not formed.
ラジアル滑り軸受11としては、摺動面(内周面)に液体排出溝を形成可能であれば、メタルブッシュ(銅、錫、鉛などの合金)、焼結軸受(鉄、銅系など)、ポリテトラフルオロエチレン樹脂巻きブッシュ、ポリエーテルエーテルケトン樹脂やポリフェニレンサルファイド樹脂の樹脂軸受などの任意の材質の滑り軸受を使用できる。また、スラスト滑り軸受12としては、上記したラジアル滑り軸受と同様の材質の滑り軸受を使用できる。各滑り軸受は、圧入などにより固定される。
As a radial sliding bearing 11, if a liquid discharge groove can be formed on the sliding surface (inner peripheral surface), a metal bush (alloy such as copper, tin, lead), a sintered bearing (iron, copper-based, etc.), A sliding bearing of any material such as a polytetrafluoroethylene resin-wound bush, a polyether ether ketone resin or a polyphenylene sulfide resin resin bearing can be used. Further, as the thrust slide bearing 12, a slide bearing made of the same material as the radial slide bearing described above can be used. Each plain bearing is fixed by press fitting or the like.
ラジアル摺動部に液体排出溝を形成する場合、該溝は、駆動シャフト9の外周面およびラジアル滑り軸受11の内周面の少なくとも一方のラジアル摺動面に形成できる。図1では、ラジアル滑り軸受11は、駆動シャフト9の先端部9cの外周面を支持しているが、ラジアル滑り軸受位置はこれに限定されず、駆動シャフト9の本体部9bの外周面を支持する形態としてもよい。また、スラスト摺動部に液体排出溝を形成する場合、該溝は、駆動シャフト9の端面およびスラスト滑り軸受12の軸受面の少なくとも一方のスラスト摺動面に形成できる。図1では、駆動シャフト9の本体部9bの端面を支持しているが、スラスト軸受位置はこれに限定しない。
When the liquid discharge groove is formed in the radial sliding portion, the groove can be formed on at least one radial sliding surface of the outer peripheral surface of the drive shaft 9 and the inner peripheral surface of the radial sliding bearing 11. In FIG. 1, the radial plain bearing 11 supports the outer peripheral surface of the tip end portion 9 c of the drive shaft 9, but the radial slide bearing position is not limited to this, and supports the outer peripheral surface of the main body portion 9 b of the drive shaft 9. It is good also as a form to do. Further, when the liquid discharge groove is formed in the thrust sliding portion, the groove can be formed in at least one of the thrust sliding surfaces of the end surface of the drive shaft 9 and the bearing surface of the thrust slide bearing 12. In FIG. 1, although the end surface of the main-body part 9b of the drive shaft 9 is supported, a thrust bearing position is not limited to this.
ラジアル摺動面に形成される液体排出溝は、形状は特に限定されないが、駆動シャフトと滑り軸受との相対回転時にポンプ内部の液体を吸引して外部に排出する作用を有する溝であることが好ましい。ラジアル摺動面に形成される液体排出溝の平面形状としては、例えば図2に示すような、軸方向に平行な直線溝(図2(a))や螺旋溝(図2(b))が挙げられる。図中の黒塗り部分が液体排出溝である。図2では、ラジアル滑り軸受11の内周面に上記の液体排出溝11aを形成している。特に、螺旋溝において、螺旋回転方向を駆動シャフトの回転方向と同じにすることで、駆動シャフトが回転した際にポンプ内部の液体を吸引し、外部へ排出する効果を有するため好ましい。また、ラジアル摺動面の液体排出溝は、該摺動面の軸方向両端に連通(貫通)する溝であることが好ましい。このような連通溝とすることで、液体を排出しやすく、よりスムーズな液体排出が可能となる。
The shape of the liquid discharge groove formed on the radial sliding surface is not particularly limited, but it may be a groove having an action of sucking and discharging the liquid inside the pump when the drive shaft and the slide bearing rotate relative to each other. preferable. As the planar shape of the liquid discharge groove formed on the radial sliding surface, for example, as shown in FIG. 2, a linear groove (FIG. 2A) or a spiral groove (FIG. 2B) parallel to the axial direction is used. Can be mentioned. Black portions in the figure are liquid discharge grooves. In FIG. 2, the liquid discharge groove 11 a is formed on the inner peripheral surface of the radial sliding bearing 11. In particular, it is preferable to make the spiral rotation direction the same as the rotation direction of the drive shaft in the spiral groove because the liquid inside the pump is sucked and discharged to the outside when the drive shaft rotates. In addition, the liquid discharge groove on the radial sliding surface is preferably a groove that communicates (penetrates) with both axial ends of the sliding surface. By using such a communication groove, the liquid can be easily discharged, and the liquid can be discharged more smoothly.
液体排出溝を液体が通過することで、ラジアル摺動面が冷却され、かつ、該摺動面へ液体が供給されるため、ラジアル滑り軸受の摩擦摩耗特性が向上する。溝幅、溝深さは液体の流れ方向の入口(吸入するポンプ内部側)を広く、出口(排出側)を狭くすることで動圧が発生し、閉塞した摺動面に液体が押込まれるため、摩擦係数を下げることもできる。
Since the liquid passes through the liquid discharge groove, the radial sliding surface is cooled and the liquid is supplied to the sliding surface, so that the frictional wear characteristics of the radial sliding bearing are improved. The groove width and groove depth are wide at the inlet (inner side of the pump for suction) in the liquid flow direction and narrowed at the outlet (discharge side) to generate dynamic pressure, and the liquid is pushed into the closed sliding surface. Therefore, the friction coefficient can be lowered.
ラジアル滑り軸受11において、ラジアル摺動面に形成される液体排出溝11aの断面形状としては、例えば図3に示すような、角溝(図3(a)、(d))、R溝(図3(b))、V溝(図3(c))などが挙げられる。ラジアル滑り軸受に加わる荷重に比べて動圧効果による液膜の負荷容量が小さく、ラジアル滑り軸受と駆動シャフト間を完全に非接触にすることは困難である。したがって、ラジアル滑り軸受と駆動シャフトは当接して摺動し、混合潤滑状態となる。このように液膜によって完全に非接触支持できない場合、溝断面形状において楔形状(末狭まり形状)を有するV溝やR溝の方が角溝に比べて楔効果によって動圧を発生させやすいため、角溝よりもV溝、R溝が好ましい。更には、楔形状の空間内に満たされた液体は、すきまの小さい部分程圧力が高まるため、断面形状としてすきまの小さい領域を多く有するV溝がR溝よりも好ましい。V溝の角度は特に限定されず、軸回転方向に対して対称な溝である必要はなく、図3(f)に示すように、回転により摺動面に液体の流れ込む側の摺動面と溝の角度が鋭角の方が好ましい。R溝についても同様であり、図3(e)に示すように、回転により摺動面に液体の流れ込む側の傾斜が緩い方が好ましい。液体排出溝の本数は多いほど動圧を発生させやすいが、摺動面の面圧が高くなるため、使用条件を考慮し設定すればよい。
In the radial sliding bearing 11, the cross-sectional shape of the liquid discharge groove 11a formed on the radial sliding surface is, for example, a square groove (FIGS. 3A and 3D), an R groove (see FIG. 3). 3 (b)), V-groove (FIG. 3 (c)), and the like. The load capacity of the liquid film due to the dynamic pressure effect is small compared to the load applied to the radial slide bearing, and it is difficult to completely make no contact between the radial slide bearing and the drive shaft. Accordingly, the radial slide bearing and the drive shaft slide in contact with each other, and a mixed lubrication state is obtained. In this way, when the liquid film cannot be supported completely in a non-contact manner, the V-groove and the R-groove having a wedge shape (narrowed shape) in the groove cross-sectional shape are more likely to generate dynamic pressure due to the wedge effect than the square groove. V grooves and R grooves are preferable to square grooves. Furthermore, since the pressure of the liquid filled in the wedge-shaped space increases as the gap becomes smaller, a V-groove having a large area with a small gap as a cross-sectional shape is preferable to the R-groove. The angle of the V groove is not particularly limited, and the groove need not be a symmetric groove with respect to the axial rotation direction. As shown in FIG. 3 (f), the sliding surface on the side where the liquid flows into the sliding surface by rotation, It is preferable that the groove has an acute angle. The same applies to the R groove, and as shown in FIG. 3 (e), it is preferable that the inclination on the side where the liquid flows into the sliding surface by rotation is gentle. The greater the number of liquid discharge grooves, the easier it is to generate dynamic pressure, but the surface pressure of the sliding surface increases, so it may be set in consideration of the use conditions.
スラスト摺動面に形成される液体排出溝は、形状は特に限定されないが、上記同様に、駆動シャフトと滑り軸受との相対回転時にポンプ内部の液体を吸引して外部に排出する作用を有する溝であることが好ましい。スラスト摺動面に形成される液体排出溝の具体的な平面形状としては、例えば図4に示すような、ヘリングボーン(図4(a)~(c)、(e))、放射状(図4(d))、スパイラル(図4(f))などが挙げられる。図中の黒塗り部分が液体排出溝である。図4では、スラスト滑り軸受12の軸受面(駆動シャフト側の円盤表面)に液体排出溝12aを形成している。また、流路を複雑することで吸引作用がある形状でもよい。いずれの形状も図に示す形状と軸受回転方向により、内径面と駆動シャフトの外周面との隙間からポンプ内部の液体を吸引して、スラスト摺動面に導入し、さらに該液体を外径側に圧送できる。この外径側から直接に、または、ポンプの軸受形態によってはラジアル滑り軸受の液体排出溝を通って、外部に液体を排出できる。これらの形状は、単独あるいは併用してもよい。平面形状としては、動圧を発生させ、かつ液体をスムーズに排出できるスパイラルが好ましい。また、スラスト摺動面の液体排出溝は、摺動面の内外径を連通(貫通)する溝であることが好ましい。連通溝とすることで、液体を内径から外径に排出しやすく、よりスムーズな液体排出が可能となる。
The shape of the liquid discharge groove formed on the thrust sliding surface is not particularly limited, but as described above, the liquid discharge groove has a function of sucking and discharging the liquid inside the pump when the drive shaft and the slide bearing rotate relative to each other. It is preferable that As a specific planar shape of the liquid discharge groove formed on the thrust sliding surface, for example, as shown in FIG. 4, herringbone (FIGS. 4A to 4C, 4E), radial (FIG. 4) (D)), spiral (FIG. 4 (f)) and the like. Black portions in the figure are liquid discharge grooves. In FIG. 4, a liquid discharge groove 12a is formed on the bearing surface of the thrust slide bearing 12 (the disk surface on the drive shaft side). Moreover, the shape which has a suction effect | action may be sufficient by complicating a flow path. In any of the shapes, the liquid inside the pump is sucked from the gap between the inner diameter surface and the outer peripheral surface of the drive shaft and introduced into the thrust sliding surface according to the shape shown in the figure and the bearing rotation direction. Can be pumped. The liquid can be discharged to the outside directly from the outer diameter side or through a liquid discharge groove of a radial sliding bearing depending on the bearing type of the pump. These shapes may be used alone or in combination. As the planar shape, a spiral capable of generating dynamic pressure and smoothly discharging liquid is preferable. The liquid discharge groove on the thrust sliding surface is preferably a groove that communicates (penetrates) the inner and outer diameters of the sliding surface. By using the communication groove, the liquid can be easily discharged from the inner diameter to the outer diameter, and the liquid can be discharged more smoothly.
図4(a)~(c)などのヘリングボーンにおける溝の折り返し位置は、適宜設定できる。図4(a)~(c)に示す形状と軸受回転方向では、折り返し位置が円周外側に行くほど、内径側から外径側に向かう力が大きくなる。また、図4(d)および図4(e)の形状は、内径から外径までの溝流路が、内径と外径とを中心から放射状の直線や曲線で結ぶ場合よりも長くなるように形成している。具体的には、スラスト滑り軸受の円盤軸受面の半径方向略中央位置に該円盤と同心の円周溝を設けて、内径から円周溝までの内径側溝と、円周溝から外径までの外径側溝とが、円周溝上の重ならない円周位置で該円周溝に連結された形状を有する。さらに、内径側溝と円周溝との連結位置と、外径側溝と円周溝との連結位置とが、円周方向で交互に略等間隔で配された形状となっている。
The groove folding position in the herringbone as shown in FIGS. 4 (a) to 4 (c) can be set as appropriate. In the shape and the bearing rotation direction shown in FIGS. 4A to 4C, the force from the inner diameter side toward the outer diameter side increases as the turn-back position goes to the outer circumference side. 4 (d) and 4 (e) are such that the groove flow path from the inner diameter to the outer diameter is longer than the case where the inner diameter and the outer diameter are connected by a radial straight line or curve from the center. Forming. Specifically, a circumferential groove concentric with the disk is provided at a substantially central position in the radial direction of the disk bearing surface of the thrust slide bearing, and an inner diameter side groove from the inner diameter to the circumferential groove, and from the circumferential groove to the outer diameter. The outer diameter side groove has a shape connected to the circumferential groove at a circumferential position that does not overlap the circumferential groove. Furthermore, the connection position of the inner diameter side groove and the circumferential groove and the connection position of the outer diameter side groove and the circumferential groove are arranged alternately at substantially equal intervals in the circumferential direction.
液体排出溝を液体が通過することで、スラスト摺動面が冷却され、かつ、該摺動面へ液体が供給されるため、スラスト滑り軸受の摩擦摩耗特性が向上する。溝幅、溝深さ、溝の断面形状については、上述のラジアル摺動面における場合と同様である。
Since the liquid passes through the liquid discharge groove, the thrust sliding surface is cooled and the liquid is supplied to the sliding surface, so that the friction and wear characteristics of the thrust sliding bearing are improved. The groove width, groove depth, and cross-sectional shape of the groove are the same as those in the above-described radial sliding surface.
スクロール型コンプレッサに用いる内接歯車ポンプでは、上述のとおり、インナロータとアウタロータの回転により吸引された液体が、ロータ下部から駆動シャフトの中心部の吐出流路を通して上部に圧送される。このとき、インナロータと駆動シャフトとの隙間は小さいため、高速回転時に液体が多量に通過できない。そのため、ポンプ内部の液体を滑り軸受の摺動面に送る流路として、駆動シャフトとインナロータとの固定部に、該固定部を軸方向に貫通する貫通溝を形成することが好ましい。駆動シャフトはインナロータの中央部に挿入固定されるので、例えば、インナロータの内周もしくは駆動シャフトの外周のいずれか一方に、両者の固定幅を貫通する貫通溝を形成する。図5に示す例では、インナロータ3の内周(駆動シャフト固定側)に貫通溝3aを形成している。貫通溝3aは、インナロータの上面から下面まで軸方向に沿って貫通した溝であり、その軸方向長さはインナロータの軸方向厚みと等しい。
In the internal gear pump used for the scroll compressor, as described above, the liquid sucked by the rotation of the inner rotor and the outer rotor is pumped from the lower part of the rotor to the upper part through the discharge passage in the central part of the drive shaft. At this time, since the gap between the inner rotor and the drive shaft is small, a large amount of liquid cannot pass during high-speed rotation. Therefore, it is preferable to form a through-groove that penetrates the fixed portion in the axial direction in the fixed portion between the drive shaft and the inner rotor as a flow path for sending the liquid inside the pump to the sliding surface of the slide bearing. Since the drive shaft is inserted and fixed in the central portion of the inner rotor, for example, a through groove penetrating the fixed width of both is formed in either the inner periphery of the inner rotor or the outer periphery of the drive shaft. In the example shown in FIG. 5, a through groove 3 a is formed on the inner periphery (drive shaft fixed side) of the inner rotor 3. The through groove 3a is a groove penetrating along the axial direction from the upper surface to the lower surface of the inner rotor, and its axial length is equal to the axial thickness of the inner rotor.
本発明の内接歯車ポンプにおいて、カバー、ケーシングには、金属(鉄、ステンレス鋼、焼結金属、アルミニウム合金など)、樹脂(ポリフェニレンサルファイド樹脂、ポリブチレンテレフタレート樹脂およびこれらに充填剤を配合した樹脂組成物など)が使用可能であり、金属と樹脂の複合成形品であってもよい。また、アウタロータ、インナロータには、焼結金属(鉄系、銅鉄系、銅系、ステンレス系など)を使用することが好ましく、特に価格面からは鉄系が好ましい。しかし、水、薬液などを圧送するトロコイドポンプにおいては、防錆能力が高いステンレス系などを採用すればよい。
In the internal gear pump of the present invention, the cover and casing are made of metal (iron, stainless steel, sintered metal, aluminum alloy, etc.), resin (polyphenylene sulfide resin, polybutylene terephthalate resin, and resin in which a filler is blended). Composition etc.) can be used, and the composite molded article of a metal and resin may be sufficient. In addition, it is preferable to use a sintered metal (iron-based, copper-iron-based, copper-based, stainless-based, etc.) for the outer rotor and inner rotor, and iron is particularly preferable from the viewpoint of price. However, a trochoid pump that pumps water, chemicals, or the like may employ a stainless steel type that has a high rust prevention capability.
図6に内接歯車ポンプにおける回転数と吐出流量の関係を示す概念図を示す。従来の構造の内接歯車ポンプ(例えば、図8(a)参照)における滑り軸受は、トロコイドの収容空間内から駆動シャフト周囲の隙間を通って漏れる液体により潤滑がなされる。この軸受部分でオイルシールされるため、外部への液体の漏れは微量である。また、スクロール型コンプレッサなどの内接歯車ポンプでは、低速回転で必要な吐出流量を確保する設計とするため、上記した従来の構造のままでは、高速回転時に流量が増加し、油が供給過剰な状態となりやすい(図6の比較例)。これに対して、本発明の内接歯車ポンプでは、滑り軸受と駆動シャフトとの摺動部に上述の液体排出溝を設けているので、駆動シャフトの回転時に、液体排出溝が液体を吸引する力を回転速度に応じて発生し、該液体排出溝を通してポンプ内部の液体を外部に一部排出できる。これにより、回転数に対する吐出流量の傾きを緩やかにでき、高速回転時の液体の供給過剰を抑制できる(図6の実施例)。
FIG. 6 is a conceptual diagram showing the relationship between the rotational speed and the discharge flow rate in the internal gear pump. A sliding bearing in an internal gear pump having a conventional structure (for example, see FIG. 8A) is lubricated by liquid leaking from the inside of the trochoid housing space through a gap around the drive shaft. Since the bearing is oil-sealed, liquid leakage to the outside is very small. In addition, internal gear pumps such as scroll compressors are designed to ensure the required discharge flow rate at low speed rotation. Therefore, with the conventional structure described above, the flow rate increases at high speed rotation, and oil is excessively supplied. It is easy to be in a state (comparative example in FIG. 6). On the other hand, in the internal gear pump of the present invention, since the liquid discharge groove is provided in the sliding portion between the slide bearing and the drive shaft, the liquid discharge groove sucks the liquid when the drive shaft rotates. A force is generated according to the rotational speed, and a part of the liquid inside the pump can be discharged to the outside through the liquid discharge groove. Thereby, the gradient of the discharge flow rate with respect to the rotation speed can be made gentle, and the excessive supply of liquid at the time of high-speed rotation can be suppressed (the embodiment of FIG. 6).
本発明の内接歯車ポンプは、高速回転時の液体流量を抑制し、かつ、冷却効果・潤滑状態の向上により機能面でも安定しているので、油や水、薬液などの液体を圧送する内接歯車ポンプ(トロコイドポンプ)として利用できる。特に、代替フロン、炭酸ガス等を冷媒とする電気給湯機、ルームエアコン、カーエアコン用のスクロール型コンプレッサの摺動部に液体を供給するためのポンプとして好適に利用できる。
The internal gear pump of the present invention suppresses the liquid flow rate at high speed rotation and is stable in terms of function by improving the cooling effect and lubrication state. It can be used as a contact gear pump (trochoid pump). In particular, it can be suitably used as a pump for supplying a liquid to a sliding part of a scroll compressor for electric water heaters, room air conditioners, and car air conditioners that use alternative chlorofluorocarbon or carbon dioxide as a refrigerant.
1 内接歯車ポンプ
2 アウタロータ
3 インナロータ
4 トロコイド
5 ケーシング
6 カバー
7 金属製フィルタ
8 固定ねじ
9 駆動シャフト
10 機器本体の固定プレート
11 ラジアル滑り軸受
12 スラスト滑り軸受 DESCRIPTION OFSYMBOLS 1 Internal gear pump 2 Outer rotor 3 Inner rotor 4 Trochoid 5 Casing 6 Cover 7 Metal filter 8 Fixing screw 9 Drive shaft 10 Fixing plate of an apparatus main body 11 Radial slide bearing 12 Thrust slide bearing
2 アウタロータ
3 インナロータ
4 トロコイド
5 ケーシング
6 カバー
7 金属製フィルタ
8 固定ねじ
9 駆動シャフト
10 機器本体の固定プレート
11 ラジアル滑り軸受
12 スラスト滑り軸受 DESCRIPTION OF
Claims (7)
- 複数の内歯を有するアウタロータ内に、複数の外歯を有するインナロータが、前記外歯が前記内歯に噛み合い、かつ、偏心する状態で回転自在に収容され、前記内歯と前記外歯との間に、液体を吸入する吸入側容積室と、この吸入側容積室に吸入した液体を吐出する吐出側容積室とが形成されるトロコイドを有する内接歯車ポンプであって、
前記インナロータに固定される駆動シャフトと、前記トロコイドを収容する凹部が形成されたケーシングと、該ケーシングの前記凹部を閉塞するカバーとを有し、
前記カバーおよび前記ケーシングから選ばれる少なくとも一方の部材が、前記駆動シャフトを回転自在に支持する滑り軸受を有し、前記駆動シャフトと前記滑り軸受との摺動部に前記トロコイドの収容空間内の前記液体を一部排出するための液体排出溝を有することを特徴とする内接歯車ポンプ。 An inner rotor having a plurality of external teeth is rotatably accommodated in an outer rotor having a plurality of internal teeth in a state where the external teeth mesh with the internal teeth and is eccentric. An internal gear pump having a trochoid in which a suction side volume chamber for sucking liquid and a discharge side volume chamber for discharging liquid sucked into the suction side volume chamber are formed,
A drive shaft fixed to the inner rotor, a casing formed with a recess for accommodating the trochoid, and a cover for closing the recess of the casing;
At least one member selected from the cover and the casing has a sliding bearing that rotatably supports the driving shaft, and the sliding portion between the driving shaft and the sliding bearing has the sliding space in the trochoid accommodating space. An internal gear pump characterized by having a liquid discharge groove for discharging a part of the liquid. - 前記滑り軸受として、前記駆動シャフトの外周面を支持するラジアル滑り軸受を有し、前記液体排出溝が、前記駆動シャフトの外周面および前記ラジアル滑り軸受の内周面から選ばれる少なくとも一方のラジアル摺動面に形成されていることを特徴とする請求項1記載の内接歯車ポンプ。 The slide bearing includes a radial slide bearing that supports an outer peripheral surface of the drive shaft, and the liquid discharge groove is at least one radial slide selected from an outer peripheral surface of the drive shaft and an inner peripheral surface of the radial slide bearing. The internal gear pump according to claim 1, wherein the internal gear pump is formed on a moving surface.
- 前記ラジアル摺動面の液体排出溝は、該摺動面の軸方向両端に連通する溝であることを特徴とする請求項2記載の内接歯車ポンプ。 3. The internal gear pump according to claim 2, wherein the liquid discharge groove on the radial sliding surface is a groove communicating with both axial ends of the sliding surface.
- 前記滑り軸受として、前記駆動シャフトの端面を支持するスラスト滑り軸受を有し、前記液体排出溝が、前記駆動シャフトの端面および前記スラスト滑り軸受の軸受面から選ばれる少なくとも一方のスラスト摺動面に形成されていることを特徴とする請求項1記載の内接歯車ポンプ。 The sliding bearing includes a thrust sliding bearing that supports an end surface of the drive shaft, and the liquid discharge groove is provided on at least one thrust sliding surface selected from the end surface of the driving shaft and the bearing surface of the thrust sliding bearing. The internal gear pump according to claim 1, wherein the internal gear pump is formed.
- 前記スラスト摺動面の液体排出溝は、該摺動面の内外径に連通する溝であることを特徴とする請求項4記載の内接歯車ポンプ。 5. The internal gear pump according to claim 4, wherein the liquid discharge groove on the thrust sliding surface is a groove communicating with the inner and outer diameters of the sliding surface.
- 前記駆動シャフトは、前記インナロータに挿入固定されており、該駆動シャフトと前記インナロータとの固定部に、該固定部を軸方向に貫通する貫通溝が形成されていることを特徴とする請求項1記載の内接歯車ポンプ。 2. The drive shaft is inserted and fixed to the inner rotor, and a through groove that penetrates the fixed portion in the axial direction is formed in a fixed portion between the drive shaft and the inner rotor. The described internal gear pump.
- 前記内接歯車ポンプが、スクロール型コンプレッサの摺動部に前記液体を供給するためのポンプであることを特徴とする請求項1記載の内接歯車ポンプ。 The internal gear pump according to claim 1, wherein the internal gear pump is a pump for supplying the liquid to a sliding portion of a scroll compressor.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-062198 | 2014-03-25 | ||
JP2014062198A JP6329411B2 (en) | 2014-03-25 | 2014-03-25 | Internal gear pump |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146740A1 true WO2015146740A1 (en) | 2015-10-01 |
Family
ID=54195262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058017 WO2015146740A1 (en) | 2014-03-25 | 2015-03-18 | Internal gear pump |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6329411B2 (en) |
WO (1) | WO2015146740A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104535A1 (en) * | 2014-12-22 | 2016-06-30 | イーグル工業株式会社 | Sliding bearing and pump |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3561301A4 (en) | 2016-12-22 | 2020-05-13 | NTN Corporation | Internal gear pump |
CN111936108B (en) * | 2018-04-03 | 2023-03-28 | 联合利华知识产权控股有限公司 | Microcapsules for cosmetic compositions |
WO2022009766A1 (en) * | 2020-07-06 | 2022-01-13 | イーグル工業株式会社 | Sliding component |
KR20230022986A (en) | 2020-07-06 | 2023-02-16 | 이구루코교 가부시기가이샤 | sliding parts |
KR20230025880A (en) | 2020-07-06 | 2023-02-23 | 이구루코교 가부시기가이샤 | sliding parts |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06272683A (en) * | 1993-03-16 | 1994-09-27 | Toshiba Corp | Lubrication pump device for compressor |
JP4215160B2 (en) * | 2003-10-01 | 2009-01-28 | 日立粉末冶金株式会社 | Internal gear pump and manufacturing method thereof |
JP2009030570A (en) * | 2007-07-30 | 2009-02-12 | Hitachi Appliances Inc | Fluid machine |
US20130078131A1 (en) * | 2011-09-28 | 2013-03-28 | Sungyong Ahn | Scroll compressor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4726116B2 (en) * | 2005-05-11 | 2011-07-20 | 日立粉末冶金株式会社 | Trochoid pump |
JP6084435B2 (en) * | 2012-08-08 | 2017-02-22 | Ntn株式会社 | Internal gear pump |
-
2014
- 2014-03-25 JP JP2014062198A patent/JP6329411B2/en not_active Expired - Fee Related
-
2015
- 2015-03-18 WO PCT/JP2015/058017 patent/WO2015146740A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06272683A (en) * | 1993-03-16 | 1994-09-27 | Toshiba Corp | Lubrication pump device for compressor |
JP4215160B2 (en) * | 2003-10-01 | 2009-01-28 | 日立粉末冶金株式会社 | Internal gear pump and manufacturing method thereof |
JP2009030570A (en) * | 2007-07-30 | 2009-02-12 | Hitachi Appliances Inc | Fluid machine |
US20130078131A1 (en) * | 2011-09-28 | 2013-03-28 | Sungyong Ahn | Scroll compressor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016104535A1 (en) * | 2014-12-22 | 2016-06-30 | イーグル工業株式会社 | Sliding bearing and pump |
JPWO2016104535A1 (en) * | 2014-12-22 | 2017-09-28 | イーグル工業株式会社 | Slide bearing and pump |
US10519966B2 (en) | 2014-12-22 | 2019-12-31 | Eagle Industry Co., Ltd. | Plain bearing and pump |
Also Published As
Publication number | Publication date |
---|---|
JP2015183631A (en) | 2015-10-22 |
JP6329411B2 (en) | 2018-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015146740A1 (en) | Internal gear pump | |
JP5577297B2 (en) | Scroll type fluid machine | |
JP5880513B2 (en) | Compressor | |
JP2018021493A (en) | Scroll compressor | |
JP6088212B2 (en) | Screw compressor | |
US8419286B2 (en) | Hermetic compressor | |
KR20180080885A (en) | Rotary compressor | |
JP5178612B2 (en) | Screw compressor | |
RU2638113C2 (en) | Pd geared pump | |
JP4835360B2 (en) | Scroll compressor | |
CN108350869A (en) | Fluid machinery | |
JP5865960B2 (en) | Compressor | |
JP2001193672A (en) | Positive displacement hydraulic unit having small relief at side face | |
CN210919828U (en) | Bearing for fluid pump | |
JP7010202B2 (en) | Fluid machine | |
CN210978222U (en) | Bearing for fluid pump | |
JP6757243B2 (en) | Inscribed gear pump | |
JP2022542034A (en) | scroll pump | |
JP2017066975A (en) | Internal gear pump | |
JP5114708B2 (en) | Hermetic scroll compressor | |
JP5334659B2 (en) | Screw compressor | |
CN205446430U (en) | Antifriction bearing structure and gear pump and crescent gear pump of gear pump | |
KR102683950B1 (en) | Trocoid gear pump for water soluble cutting oil that have anti-cavitation | |
KR102465393B1 (en) | Pump | |
JP6917845B2 (en) | Scroll type fluid machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15768394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15768394 Country of ref document: EP Kind code of ref document: A1 |