WO2015146657A1 - Highly oriented metal nanofiber sheet material and method for manufacturing same - Google Patents

Highly oriented metal nanofiber sheet material and method for manufacturing same Download PDF

Info

Publication number
WO2015146657A1
WO2015146657A1 PCT/JP2015/057619 JP2015057619W WO2015146657A1 WO 2015146657 A1 WO2015146657 A1 WO 2015146657A1 JP 2015057619 W JP2015057619 W JP 2015057619W WO 2015146657 A1 WO2015146657 A1 WO 2015146657A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sheet
nanofiber sheet
producing
reaction solution
Prior art date
Application number
PCT/JP2015/057619
Other languages
French (fr)
Japanese (ja)
Inventor
松原 英一郎
博紀 有馬
亮輔 冨岡
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Publication of WO2015146657A1 publication Critical patent/WO2015146657A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4234Metal fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering

Definitions

  • the present invention relates to a highly oriented metal nanofiber sheet and a method for producing the same.
  • metal nanostructures such as metal nanoparticles, metal nanowires, and metal nanorods exhibit different physical properties from metal bulk materials, such as high catalytic activity, depending on the type of metal constituting the metal nanostructure. It has been. For this reason, the metal nanostructure is expected to be used in various industrial fields as a material such as an electronic component, an optical component, and a magnetic material.
  • Patent Document 1 As a method for producing metal nanoparticles, a method of reducing metal ions or metal compounds using a reducing agent is known (see Patent Document 1). In this method, silver nanoparticles are obtained by mixing silver oxide, gelatin or a gelatin derivative, and a reducing monosaccharide or disaccharide and heating at 55 to 80 ° C. in an aqueous solvent.
  • Patent Document 1 only metal nanoparticles are obtained, and a one-dimensional metal nanostructure such as nanofiber cannot be obtained.
  • a method for producing metal nanofibers such as nanorods, nanotubes, and nanowires for example, electrodeposition of metal is performed in the pores of a template such as a porous film having minute pores, thereby forming rods or tubes.
  • a method of growing a wire-like nanostructure is known (referred to as “template method”).
  • the template method is not suitable for mass production of metal nanostructures because the preparation of the template and the operation of separating and recovering the metal nanostructure from the template are complicated.
  • a ferromagnetic metal nanostructure can be obtained by reducing a metal ion and precipitating a ferromagnetic metal in a solution containing a ferromagnetic metal ion while applying a magnetic field.
  • the growth direction of the deposited nanometal cannot be controlled, and the structure is in an entangled state in the reaction solution, and a highly oriented sheet-like structure in which metal nanofibers are aligned in a certain direction. It cannot be made into a body.
  • the present invention has been made in view of the current state of the prior art described above, and its main purpose is a structure made of fibrous nanometal, and the metal nanofibers constituting the structure are in a certain direction.
  • the object is to provide a metal nanofiber sheet having a high orientation and aligned, and a method for producing the same.
  • the present inventors have conducted intensive research to achieve the above-described purpose.
  • the method of reducing and precipitating a ferromagnetic metal in a state where a magnetic field is applied from a reaction solution containing a ferromagnetic metal ion and a reducing agent by applying the magnetic field so that the magnetic flux density at the bottom of the reaction vessel becomes the highest.
  • the ferromagnetic metal nanoparticles that have been reduced and precipitated are arranged by magnetic interaction and grow into a fiber shape, and the metal nanofibers are aligned in the direction of the magnetic field lines near the bottom surface of the reaction vessel having the highest magnetic flux density.
  • the present invention relates to the following highly oriented metal nanofiber sheet and a method for producing the same.
  • Item 1 A method of producing a sheet-like metal nanofiber structure by reducing and precipitating a ferromagnetic metal from a reaction solution containing a ferromagnetic metal ion and a reducing agent, A method for producing a highly oriented metal nanofiber sheet, wherein the reduction reaction is allowed to proceed in a state where a magnetic field is applied so that the magnetic flux density at the bottom of the reaction vessel containing the reaction solution is maximized.
  • a method of applying a magnetic field is a method of arranging a reaction vessel containing a reaction solution on a sheet-like magnet, or a method of forming a magnetic field by arranging a magnetic source below or near the bottom of the reaction vessel.
  • the method for producing a metal nanofiber sheet according to Item 1 wherein Item 3.
  • Item 3. The method for producing a metal nanofiber sheet according to Item 1 or 2, wherein the reaction solution containing the ferromagnetic metal ion and the reducing agent further contains a complexing agent.
  • Item 4. Item 4.
  • Item 5 The method for producing a metal nanofiber sheet according to any one of Items 1 to 4, wherein the reaction solution has a pH of 12 or more and a liquid temperature of 55 to 85 ° C. Item 6. Item 6. The method for producing a metal nanofiber sheet according to any one of Items 1 to 5, wherein the ferromagnetic metal is Fe, Co, Ni, or an alloy thereof. Item 7.
  • Item 9. After obtaining a highly oriented nanofiber sheet by the method according to any one of items 1 to 6 above, further comprising the step of applying pressure to the sheet surface of the sheet, to produce a metal nanofiber sheet Method.
  • Item 10. The method for producing a metal nanofiber sheet according to Item 9, wherein the method of applying pressure to the sheet surface is by rolling.
  • Item 11 Item 10. The method for producing a metal nanofiber sheet according to Item 9, wherein the method of applying pressure to the sheet surface is by pressing.
  • Item 12. 12. A metal nanofiber sheet with improved orientation obtained by the method of any one of Items 9 to 11 above.
  • the metal nanofiber sheet-like material of the present invention is a sheet-like material in which metal fibers with nano-sized wire diameters are aligned in a certain direction, and compared with a sheet made of conventionally known metal nanofibers. And a sheet-like structure having high orientation.
  • the metal nanofiber sheet-like material of the present invention having such a feature realizes both homogenization of the thickness distribution of the metal nanofiber sheet-like material and thinning, for example, an electrode substrate, It can be effectively used for various applications such as solar cell base materials, capacitor electrode base materials, catalyst carriers, gas filters, and sensor element base materials.
  • a novel metal nanofiber sheet having such excellent performance can be easily produced by a simple method of reduction precipitation from a solution.
  • FIG. Drawing which shows the process in which a metal nanofiber is formed typically.
  • Drawing which shows an example of the arrangement
  • FIG. Drawing which shows an example of a magnetic sheet typically.
  • FIG. 7 is a scanning electron microscope (SEM) photograph of the metal nanofiber sheet shown in the right diagram of FIG. 6.
  • Drawing which shows an example of the fiber orientation distribution figure used for the orientation degree measurement of the metal nanofiber sheet-like material of this invention.
  • the graph which shows the relationship between reaction time and deposited Ni mass.
  • the photograph which shows the metal nanofiber sheet-like material obtained in Example 2.
  • the scanning electron microscope (SEM) photograph of the glossy part of the metal nanofiber sheet shown in the left figure of FIG.
  • the reduction reaction proceeds while a magnetic field is applied to a reaction solution containing ferromagnetic metal ions and a reducing agent. Let At this time, it is necessary to apply a magnetic field to the reaction solution so that the magnetic flux density at the bottom of the reaction vessel containing the reaction solution, that is, the lower part of the reaction vessel in the direction of gravity is maximized, so that the reduction reaction proceeds. is there.
  • the ferromagnetic metal nanoparticles formed by the reduction reaction are arranged by magnetic interaction along the magnetic field direction, and the reduction reaction proceeds.
  • the metal nanoparticles are bonded to form a nanofiber made of a ferromagnetic metal.
  • the metal nanoparticles formed by the reduction reaction are attracted to the bottom of the reaction vessel having a high magnetic flux density.
  • the entanglement of the metal nanofibers due to the bubbles generated by the reduction reaction or the convection of the reaction solution is suppressed, and it grows into a fiber shape in the state of being aligned in the direction of the magnetic force lines in the vicinity of the bottom surface of the reaction vessel, and has a high orientation.
  • the metal nanofiber structure is obtained.
  • the vicinity of the bottom surface means the vicinity of about 10 mm on the upper side to 10 mm on the lower side of the bottom surface of the reaction vessel.
  • reaction solution used to obtain the highly oriented metal nanofiber sheet of the present invention is a solution containing ferromagnetic metal ions and a reducing agent.
  • the metal nanoparticles in order to arrange metal nanoparticles by a reduction reaction in a magnetic field, the metal nanoparticles need to be a ferromagnetic metal. Therefore, a solution containing ferromagnetic metal ions is used as the reaction solution.
  • ferromagnetic metals include iron group metals such as Fe, Co, and Ni, and alloys thereof (eg, Fe-Co, Fe-Ni, Co-Ni, and the like). As the ferromagnetic metal, Co, Ni, and alloys thereof are preferable.
  • a solution containing ferromagnetic metal ions can be obtained by dissolving the above-mentioned ferromagnetic metal salt in a solvent.
  • a known metal salt that is soluble in the solvent to be used and can form a metal ion that can be easily reduced can be widely used.
  • the above-described ferromagnetic metal chlorides, sulfates, nitrates, acetates, and the like can be used. These salts may be hydrates or anhydrides.
  • the metal salt of the ferromagnetic metal include, for example, cobalt acetate (II) tetrahydrate, cobalt acetate (II) anhydride, cobalt sulfate (II) heptahydrate, cobalt sulfate (II) anhydride, Cobalt (II) chloride hexahydrate, cobalt (II) chloride anhydride, cobalt nitrate (II) hexahydrate, cobalt nitrate (II) anhydride, nickel acetate (II) tetrahydrate, nickel acetate (II) ) Anhydride, nickel (II) chloride hexahydrate, nickel chloride (II) anhydride, nickel sulfate (II) hexahydrate, nickel sulfate (II) anhydride, nickel nitrate (II) hexahydrate, Examples thereof include nickel (II) nitrate anhydride, nickel
  • the ferromagnetic metal is an alloy
  • two kinds of metal salts constituting the alloy are used.
  • the alloy is, for example, Co—Ni
  • a cobalt salt such as cobalt acetate (II) tetrahydrate and a nickel salt such as nickel acetate (II) tetrahydrate are used.
  • the concentration of ions of the ferromagnetic metal is not particularly limited, and can be, for example, about 0.001 to 1 mol / dm 3 , preferably about 0.01 to 1 mol / dm 3 .
  • Any reducing agent can be used without particular limitation as long as it can form a ferromagnetic metal by reducing ions of the ferromagnetic metal.
  • reducing agent include hydrazine, ferrous chloride (FeCl 2 ), hypophosphorous acid, borohydride, salts thereof, dimethylamine borane (DMAB), and the like.
  • hydrazine is used as the reducing agent from the viewpoint of maintaining the ferromagnetic properties of the metal, fully exhibiting the effect of applying a strong magnetic field, and obtaining high-purity ferromagnetic metal nanofibers. preferable.
  • the concentration of the reducing agent in the reaction solution is not particularly limited, and may be a concentration at which the reduction reaction proceeds favorably in the combination of the ferromagnetic metal ion and the reducing agent to be used.
  • the concentration of the reducing agent is about 0.1 to 10 mol / dm 3 , and preferably about equimolar to 10 times the molar concentration of the ferromagnetic metal ions in the reaction solution.
  • the form of the nanofiber to be generated for example, the wire diameter, the aspect ratio, etc.
  • the concentration of the reducing agent within the above-described concentration range, the form of the nanofiber to be generated, for example, the wire diameter, the aspect ratio, etc. can be controlled.
  • the concentration of the reducing agent in the reaction solution it is possible to control the nanofiber to have a small wire diameter and a large aspect ratio.
  • the concentration of the reducing agent it is possible to control the nanofiber to have a large wire diameter and a small aspect ratio.
  • a complexing agent it is preferable to further add a complexing agent to the reaction solution for forming the metal nanofiber sheet.
  • a complexing agent By adding a complexing agent, the reduction reaction rate of the ferromagnetic metal ion can be controlled. In particular, for metal ions with relatively weak magnetization, such as Ni, if the reduction reaction is too fast, the reduction reaction proceeds without the generated metal nanoparticles being aligned along the magnetic field, and metal nanoparticles are likely to be formed. However, by adding a complexing agent, the reduction reaction rate can be reduced and the formation of metal nanofibers can be facilitated.
  • the complexing agent is not particularly limited, and it is preferable to use a complexing agent having a high complex formation constant with a ferromagnetic metal ion.
  • a complexing agent include citrate, tartrate, ethylenediaminetetraacetic acid, ammonia, cyano complex and the like.
  • the amount of the complexing agent to be used is not particularly limited, and is a molar concentration of 1/10 times mol or more with respect to the transition metal ion to be used, and the concentration in the reaction solution is 0.01 to 10 mol / dm. Preferably it is about 3 .
  • a noble metal salt is further added to the reaction solution described above as a nucleating agent that provides nuclei for forming ferromagnetic metal nanoparticles.
  • noble metal salts are easy to reduce and are liable to be liquid phase reduced as fine particles.
  • by adding a noble metal salt to the reaction solution it is possible to provide fine nuclei and control the particle size of the formed particles.
  • the wire diameter of the metal nanofiber can be controlled.
  • the concentration of the nucleating agent in the liquid the wire diameter of the metal nanofiber can be controlled to be small and the aspect ratio to be large.
  • By reducing the concentration of the nucleating agent in the liquid it is possible to control the metal nanofiber to have a large wire diameter and a small aspect ratio.
  • the concentration of the nucleating agent in the reaction solution is high, the amount of ferromagnetic metal in contact with one nanoparticle nucleus formed by this nucleating agent is relatively reduced, and the particle size of the formed metal nanoparticles Is considered to be smaller.
  • concentration is low, it is thought that the quantity of the ferromagnetic metal which contacts one nanoparticle nucleus formed with this nucleating agent increases relatively, and the particle size of the metal nanoparticle formed becomes large.
  • a salt having a redox potential more noble than a pig iron group metal ion is preferable.
  • Specific examples of the nucleating agent include noble metal salts such as chloroplatinic acid, chloroauric acid, palladium chloride, ruthenium chloride, and silver nitrate.
  • the concentration of the nucleating agent in the reaction solution is not particularly limited, and can be usually 0.01 to 10 mmol / dm 3 , preferably 0.1 to 1 mol / dm 3 . This concentration is a concentration in terms of metal ions.
  • a solvent used in the reaction solution water, a polar organic solvent, or the like can be used.
  • the polar organic solvent is not particularly limited, and examples thereof include alcohols having 1 to 6 carbon atoms, alkylene glycols having 2 to 4 carbon atoms, ketones having 3 to 6 carbon atoms, and alkylene glycol alkyl ethers having 3 to 6 carbon atoms. Can be used.
  • examples of the alcohol include methanol, ethanol, isopropyl alcohol, propyl alcohol, butanol, pentanol, and hexanol.
  • examples of the alkylene glycol include ethylene glycol and propylene glycol.
  • examples of the ketone include acetone, methyl ethyl ketone, ethyl isobutyl ketone, and methyl isobutyl ketone.
  • alkylene glycol alkyl ether examples include ethylene glycol methyl ether, ethylene glycol mono-n-propyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether, propylene glycol propyl ether and the like.
  • alkylene glycols having 2 to 4 carbon atoms such as ethylene glycol and propylene glycol are preferred from the viewpoint of availability and excellent dispersibility of metal particles in the liquid phase.
  • the pH of the reaction solution may be a pH at which metal ions can be reduced according to the type of ferromagnetic metal ions and the type of reducing agent in the reaction solution.
  • the higher the pH the higher the reducing power of the reducing agent. Therefore, by increasing the pH, it is possible to promote the generation of metal particles and reduce the diameter of the formed metal nanofibers. it can.
  • the pH is preferably about 12 or more, more preferably 12.5 or more, from the viewpoint of favoring the reduction reaction.
  • the upper limit of pH it can be set as about 14, for example.
  • the liquid temperature of the reaction solution is not particularly limited, and the liquid temperature at which the metal nanofibers are formed at an appropriate rate according to the type and concentration of the ferromagnetic metal ion, the reducing agent, and the strength of the magnetic field applied. And it is sufficient.
  • the liquid temperature can usually be about 25 to 90 ° C., preferably about 55 to 85 ° C.
  • the reaction time may be appropriately determined according to the ferromagnetic metal ion concentration in the reaction solution, the thickness of the target metal nanofiber sheet, and is usually in the range of about 1 to 10 hours.
  • FIG. 1 is a drawing schematically showing a process of forming metal nanofibers.
  • a magnetic field is applied to the reaction solution so that the magnetic flux density at the bottom of the reaction vessel is maximized in the above-described method of proceeding the reduction reaction of the ferromagnetic metal ions in the presence of the magnetic field.
  • the specific magnetic field application method is not particularly limited.
  • the magnetic flux density at the bottom of the reaction vessel can be maximized by arranging the reaction vessel with the reaction solution on a magnetic sheet. .
  • a magnetic field such as a permanent magnet or a superconducting magnet may be arranged on both sides of the reaction vessel to form a magnetic field in the reaction solution.
  • a magnetic field may be formed using two magnetic sources, and a reaction vessel containing a reaction solution may be disposed in the magnetic field. At this time, the magnetic flux density at the bottom of the reaction vessel can be maximized by arranging the magnetic force source below the bottom surface of the reaction vessel or near the bottom surface of the reaction vessel.
  • FIG. 2 is a drawing showing an example of a method of arranging magnetic sources in this method.
  • the strength of the magnetic field applied to the reaction solution varies depending on the magnetic strength of the metal nanoparticles to be formed, the particle size of the target metal nanofibers, etc., and thus cannot be specified unconditionally.
  • the ferromagnetic metal does not precipitate as metal nanoparticles, the metal nanoparticles are arranged by magnetic interaction, and the metal particles are produced by the progress of the reduction precipitation reaction.
  • a magnetic field having a strength necessary to cause the coupling is applied.
  • the magnetic field is applied so that the magnetic flux density at the bottom of the solution is about 0.01 to 1 Tesla, preferably about 0.05 to 1 Tesla.
  • the shape of the bottom surface of the reaction vessel is not particularly limited.
  • the reaction vessel may be formed by using the above-described magnetic sheet and arranging the reaction vessel thereon, or arranging magnetic force sources on both sides of the reaction vessel.
  • the magnetic field can be applied so that the magnetic flux density at the bottom of the substrate is maximized.
  • the bottom surface of the reaction vessel may have an inclination.
  • the magnetic flux density on the bottom surface of the reaction vessel can be maximized by arranging the magnetic sheet along the inclination.
  • a ribbon-like metal nanofiber structure can be obtained.
  • the ribbon-like structure in which the metal nanofibers are aligned in the length direction of the ribbon-like metal nanofiber structure, or the metal nanofibers are aligned in the direction perpendicular to the length direction can be obtained.
  • the magnetic field may be applied only to a part of the bottom surface without applying the magnetic field to the entire bottom surface of the reaction vessel.
  • the magnetic field may be applied only to a part of the bottom surface without applying the magnetic field to the entire bottom surface of the reaction vessel.
  • two or more bar magnets each having N and S poles at both ends are used, and a reaction vessel is arranged thereon, magnetic lines of force are formed between both poles, and a bar magnet is arranged at the bottom portion of the reaction vessel. A portion having the maximum magnetic flux density is formed along the position.
  • FIG. 3 is a photograph showing a state in which the reaction vessel is arranged on the magnetic sheet used in Example 1 described later.
  • the magnetic sheet used includes a plurality of bar magnets, one side of which has N poles and the other side has S poles, so that the N pole surfaces and S pole surfaces of each bar magnet are alternately adjacent to each other. Are arranged in parallel, and this is a sheet-like material covered with synthetic rubber.
  • FIG. 4 is a drawing schematically showing this magnetic sheet, and a curve with an arrow shown in the drawing indicates the direction of the lines of magnetic force.
  • magnetic field lines are formed from the N pole surface side to the S curved surface side in the direction perpendicular to the length direction between adjacent bar magnets, and the magnetic flux density of the surface portion of the magnetic sheet is maximized. Therefore, by arranging the reaction vessel on the magnetic sheet, a magnetic field is formed in the reaction solution in the same direction as the magnetic force lines of the magnetic sheet at the bottom of the reaction vessel, and the magnetic flux density at the bottom of the reaction vessel is maximized. .
  • FIG. 5 is a drawing schematically showing a state in which the reduction reaction of the ferromagnetic metal ions proceeds while the reaction vessel is arranged on the magnetic sheet shown in FIG.
  • ferromagnetic metal nanoparticles are formed by a reduction reaction, which is attracted to the bottom of the reaction vessel, grows in a fiber shape along the direction of magnetic force, and has a highly oriented metal. The state where a nanofiber sheet is obtained is shown.
  • FIG. 6 is a photograph showing the metal nanofiber sheet obtained in Example 1 described later as an example of the metal nanofiber sheet obtained by this method.
  • the left figure in FIG. 6 is a photograph of the surface (lower surface) in contact with the bottom surface of the reaction vessel of the formed metal nanofiber sheet
  • the right figure is the opposite surface of the metal nanofiber sheet shown in the left figure, That is, it is a photograph of the surface (upper surface) on the reaction solution side of the metal nanofiber sheet.
  • the surface of the formed metal nanofiber sheet is striped with alternating glossy and matte parts.
  • the glossy portion is a portion corresponding to the gap portion between the bar magnets arranged in parallel in the magnetic sheet arranged under the reaction vessel, and the bar magnet in the sheet surface is perpendicular to the adjacent bar magnets.
  • This is a portion where magnetic field lines having a high magnetic flux density are formed.
  • FIG. 7 is a scanning electron microscope (SEM) photograph of this glossy portion. From FIG. 7, in the glossy part of the surface of the metal nanofiber sheet that is in contact with the bottom surface of the reaction vessel, a highly oriented metal nanofiber sheet is formed in which the metal nanofibers are grown in a certain direction. I understand.
  • the matte part in the left figure of FIG. 6 is a part directly above the bar magnet in the magnetic sheet placed under the reaction vessel, and is a part where the magnetic flux density in the vertical direction of the bar magnet in the sheet is weak.
  • FIG. 8 is an SEM photograph of the metal nanofiber sheet (matte portion) formed in this portion, and it can be seen that the metal nanoparticles are in a disordered state.
  • FIG. 6 that is, the surface on the reaction solution side of the formed metal nanofiber sheet is less glossy than the glossy surface of the surface in contact with the bottom surface of the reaction vessel of the metal nanofiber sheet.
  • FIG. 9 is an SEM photograph of this surface. Although the fiber which remained the shape of the metal nanoparticle can be confirmed, the orientation is largely inferior to the glossy part. This is thought to be due to the fact that the influence of the magnetic field was reduced on the reaction solution side surface due to the increase in the film thickness of the metal nanofiber sheet.
  • the reaction vessel is strongly influenced by a magnetic field by reducing the reduction precipitation amount of the metal nanoparticles to reduce the thickness of the sheet-like material.
  • a sheet-like structure of metal nanofibers is formed only in the vicinity of the bottom surface.
  • the amount of deposited metal nanoparticles can be reduced by a method of reducing the ferromagnetic metal ion concentration in the reaction solution, a method of shortening the reaction time, or the like.
  • the method for producing a metal nanofiber sheet according to the present invention after obtaining a highly oriented metal nanofiber sheet by the above-described method, further, if necessary, on the sheet surface of the obtained sheet.
  • the method for applying pressure to the sheet surface of the sheet-like material is not particularly limited, and examples thereof include a method that can apply pressure uniformly to the sheet surface from a substantially vertical direction. For example, a method of rolling the sheet material, a method of pressing the sheet material, and the like can be applied.
  • the strength of the pressure varies depending on the thickness of the sheet-like material, the type of fiber constituting the sheet-like material, the diameter, and the like, it cannot be defined unconditionally.
  • the pressure include a pressure within a range in which the sheet-like material does not collapse, and a pressure that can uniformly smooth the whole.
  • the metal nanofiber sheet material obtained by the production method of the present invention has a nano-sized metal fiber, for example, a metal nano-fiber having a wire diameter of about 50 nm to 500 nm, having a constant directivity. It is a sheet-like structure that is aligned in the direction, and is a sheet-like material having a higher orientation as compared with a sheet made of conventionally known metal nanofibers.
  • the metal nanofiber sheet material of the present invention is a sheet-like structure exhibiting high orientation, and has a high degree of orientation of 1.65 or more determined by a method using Fourier transform image analysis described later. It is.
  • a microphotograph at a magnification of 500 times is taken, and this image is binarized in order to correct the influence of uneven illumination, 0.2 Take out the area of millimeter square or more.
  • FIG. 10 is a drawing showing an example of a fiber orientation distribution diagram obtained by this method.
  • the long axis indicates that the undulations of the shading are large in that direction, and is in the direction crossing many fibers.
  • the minor axis direction is the direction with the least shading, indicating that the minor axis direction is the direction of the main orientation of the fiber.
  • this fiber orientation distribution diagram is approximated to an ellipse, and the major / short axis ratio of the approximated ellipse is defined as the degree of orientation.
  • this method when the orientation direction of the fiber is completely disordered, the lengths of the major axis and the minor axis are the same, the degree of orientation is 1, and the higher the degree of orientation, the more the metal nanofibers are in the same direction. It becomes a highly oriented sheet-like structure that is aligned and aligned.
  • This method is based on, for example, a method for obtaining fiber orientation described in “Method for analyzing physical properties of paper using image processing (Paper Pulp Technology Times, 48 (11) 1-5 (2005))”. For example, it can be analyzed using a non-destructive paper surface fiber orientation analysis program (http://www.enomae.com/FiberOri/index.htm).
  • the metal nanofiber sheet obtained by the method of the present invention exhibits a high degree of orientation of 1.55 or more, and the metal nanofibers having a high degree of orientation of 1.70 or more.
  • a sheet-like material can be obtained.
  • a metal nanofiber sheet having a very high degree of orientation of 1.8 or more can be obtained by applying a force from a direction perpendicular to the sheet surface and pressing it for smoothing.
  • the metal nanofiber sheet-like material of the present invention can be formed by a reduction reaction using the above-described reaction solution, and the kind or addition amount of components contained in the reaction solution, reaction conditions, etc. are adjusted according to the aforementioned conditions. Thus, it is possible to control the wire diameter, orientation degree, film thickness, and the like of the metal nanofibers.
  • the thickness distribution of the metal nanofibers is uniform, and the thickness variation can be about 10% or less.
  • the orientation of the metal nanofibers is high, it is possible to obtain a sheet-like structure with a thinner film thickness by reducing the amount of deposited metal nanoparticles.
  • the film thickness is about 10 ⁇ m. It can be a sheet.
  • the thickness variation of the sheet-like material can be reduced to about 5% or less.
  • the metal nanofiber sheet of the present invention is a two-dimensional metal sheet material that includes the characteristics of a one-dimensional nanofiber exhibiting a large specific surface area or curvature peculiar to nanomaterials. It is a substance.
  • the metal nanofiber sheet-like material of the present invention having such characteristics can control the sheet thickness on the order of submicrons, which corresponds to the diameter of the nanofiber, by aligning the nanofibers in a certain direction. It can also be integrated by stacking, and as a metal nanosheet with a uniform thickness of micron order and capable of high integration, for example, it can be used for electrode manufacturing, making it compact and lightweight, and fast charge and discharge etc. Applicable electrodes can be obtained. Furthermore, by making use of the characteristics of the large specific surface area inherent to nanofibers, a supported catalyst having a high specific surface area and excellent reactivity can be obtained by supporting various catalysts as a catalyst carrier. In addition, from the point that it becomes a fine and high-density electrode material, it can be developed in fields or applications such as a next-generation multilayer capacitor, a fine high-capacity on-board storage battery, and a capacitor.
  • the metal nanofiber sheet material of the present invention can be effectively used as an electrode of a secondary battery, for example, by forming an electrode active material layer on the surface of the sheet material.
  • the method for forming the electrode active material layer on the surface of the metal nanofiber sheet of the present invention is not particularly limited, and known methods can be applied as means for applying the electrode active material to various substrates.
  • an active material layer made of a metal oxide can be formed by a simple method by oxidizing the surface of the metal nanofiber sheet to form a metal oxide film.
  • the metal nanofiber sheet is usually heated in an oxidizing atmosphere.
  • the surface of the metal nanofibers constituting the metal nanofiber sheet is oxidized to form an oxide film.
  • a metal film can be formed on the surface of the metal nanofiber sheet by an electrodeposition method.
  • a metal nanofiber sheet having a Sn—Ni alloy layer can be obtained by forming a Sn—Ni alloy plating film by an electrodeposition method.
  • the conditions for the electrodeposition method are not particularly limited, and a known method for forming a Sn—Ni plating film can be applied.
  • the thickness of the Sn—Ni film is not particularly limited, and conditions that can coat the surface of the metal nanofibers as uniformly as possible can be appropriately employed.
  • the metal nanofiber sheet-like material on which the Sn—Ni alloy plating film is formed in this way can be effectively used, for example, as a negative electrode for a lithium ion secondary battery, and there is a volume change accompanying the insertion and removal of Li.
  • the negative electrode is relaxed and has excellent cycle characteristics.
  • a semi-metal or oxide coating can be formed on the surface of the metal nanofiber sheet by a dry method.
  • a metal nanofiber sheet-like material coated with silicon can be obtained by forming a silicon coating by sputtering.
  • the thickness of the silicon coating is not particularly limited, and a condition that allows the surface of the metal nanofibers to be coated as uniformly as possible may be adopted as appropriate.
  • the metal nanofiber sheet with the silicon coating formed can be effectively used as, for example, a negative electrode for a lithium ion secondary battery.
  • the negative electrode has excellent characteristics.
  • it can use for various uses by applying a well-known sol-gel method and forming various oxide films in the metal nanofiber sheet-like material of this invention.
  • it can be used as a photoresponsive electrode by coating TiO 2 on a metal nanofiber sheet.
  • it can be used as a catalyst electrode by coating a metal nanofiber sheet with a catalyst substance.
  • a surface film by an electrodeposition method, a method of immersing in a nanoparticle dispersion liquid, or the like.
  • it can be used as a high-efficiency hydrogen generating electrode by forming a Ni-Mo plating film by electrodeposition.
  • Nickel (II) chloride hexahydrate NiCl 2 ⁇ 6H 2 O 0.10 mol / L, and trisodium citrate dihydrate (Na 3 C 6 H 5 O 7 ⁇ 2H 2 O) 37.5 mmol / L It melt
  • the solution containing Ni (II) ions and the solution containing a reducing agent were each heated to 60 ° C., and these solutions were mixed in a beaker having a capacity of 100 mL to obtain 80 cm 3 of a reaction solution.
  • a beaker containing the reaction solution is placed on a planar sheet-like magnet, and a magnetic field is applied in a state where the magnetic flux density at the bottom of the beaker is highest.
  • the reduction reaction of nickel ions was started.
  • the reaction was terminated by leaving it in this state at 60 ° C. for 240 minutes.
  • FIG. 1 Schematic diagram of the sheet magnet used in this method is as shown in FIG.
  • the size of the sheet magnet is about 10cm square
  • the bar magnet is 95mm in the longitudinal direction ⁇ 5mm in width ⁇ 1mm in thickness
  • the number of the bar magnets is 18, and the strength of the magnetic flux density is about 80mT at the center of the bar magnet just above the magnet. It was about 20mT.
  • FIG. 7 is a scanning electron microscope (SEM) photograph of the glossy part, and it was confirmed that a highly oriented metal nanofiber sheet was formed in which the metal nanofibers grew in a certain direction.
  • the SEM image of the glossy part obtained by the above method is converted into 2
  • obtain the angle distribution of the average amplitude of the power spectrum create a fiber orientation distribution diagram displaying the average amplitude in polar coordinates with respect to the angle ⁇ , and elliptically approximate the plot of the average amplitude
  • the degree of orientation of the Ni nanofibers was determined from the long axis / short axis ratio of the obtained ellipse.
  • the degree of orientation of the glossy portion of the surface in contact with the bottom surface of the beaker was 1.78, confirming that the orientation was extremely high.
  • FIG. 11 is a graph showing the relationship between the reaction time and the deposited Ni mass in the above-described method for producing the Ni nanofiber sheet.
  • the Ni mass is a value obtained by the quartz crystal microbalance (QCM) method.
  • QCM quartz crystal microbalance
  • Example 2 In the same manner as in Example 1, a solution containing Ni (II) ions and a reducing agent were prepared. 20 cm 3 of each of these solutions was heated to 60 ° C. and mixed in a beaker having a capacity of 100 mL to obtain 40 cm 3 of a reaction solution.
  • a Ni nanofiber sheet was produced in the same manner as in Example 1 except that the amount of the reaction solution was 40 cm 3 . By this method, a sheet of Ni nanofibers having a thickness of about 100 ⁇ m was obtained along the shape of the bottom surface of the beaker.
  • the surface photograph of the lower surface of the obtained Ni nanofiber sheet, that is, the surface in contact with the bottom surface of the beaker is shown in the left figure of FIG. 12, and the upper surface of the Ni nanofiber sheet, that is, the surface photograph in contact with the reaction solution is shown in FIG.
  • the right figure shows.
  • the glossy part on the bottom surface of the Ni nanofiber sheet is formed in the upper part of the gap between the bar magnets arranged in parallel in the sheet magnet installed under the bottom of the beaker, that is, the magnetic field lines with high magnetic flux density are formed. It is a part corresponding to the part.
  • FIG. 13 is a scanning electron microscope (SEM) photograph of this glossy portion. Similar to the Ni nanofiber sheet obtained in Example 1, it was confirmed that the lower surface of the Ni nanofiber sheet showed good orientation.
  • FIG. 14 is an SEM photograph of the upper surface of the Ni nanofiber sheet, that is, the surface in contact with the reaction solution. Compared to Example 1, it was found that the orientation of the Ni nanofibers on the upper surface of the Ni nanofiber sheet was improved. This is considered to be because the formed sheet became thinner and the magnetic field on the upper surface of the Ni nanofiber sheet became stronger by reducing the amount of the reaction solution. In this case, the degree of orientation of the Ni nanofiber sheet was 1.72 on the lower surface and 1.59 on the upper surface.
  • Example 3 The Ni nanofiber sheet produced in Example 2 was pressed with a press at a pressure of 5 MPa for 1 minute to obtain a Ni nanofiber sheet having a thickness of about 5 ⁇ m and a thickness variation of 10%.
  • FIG. 15 is a scanning electron microscope (SEM) photograph of the lower surface (the surface facing the sheet magnet) of the Ni nanofiber sheet.
  • FIG. 16 is a scanning electron microscope (SEM) photograph of the upper surface of the Ni nanofiber sheet (the side opposite to the surface facing the sheet magnet).
  • the degree of orientation on the lower and upper surfaces of the Ni nanosheet is further improved compared to before the press treatment.
  • the alignment of the Ni nanofibers is promoted and the degree of orientation is improved. it is conceivable that.
  • the degree of orientation of the Ni nanofiber sheet was 1.81 on the lower surface and 1.69 on the upper surface.

Abstract

The problem addressed by the present invention is to provide a metal nanofiber sheet material, which is a structure formed from fibrous nano-metal and has a high degree of orientation wherein the metal nanofibers that constitute the structure are aligned along a fixed direction, and a method for manufacturing the same. The method manufactures a sheet-shaped metal nanofiber structure by reducing and depositing ferromagnetic metal from a reaction solution that includes ions of the ferromagnetic metal and a reducing agent. The metal nanofiber sheet material having a high degree of orientation is obtained by a method of making the reduction reaction progress in a state wherein a magnetic field is applied so as to maximize the magnetic flux density at the bottom of a reaction vessel accommodating the reaction solution.

Description

高配向金属ナノ繊維シート状物、及びその製造方法Highly oriented metal nanofiber sheet and method for producing the same
 本発明は、高配向金属ナノ繊維シート状物、及びその製造方法に関する。 The present invention relates to a highly oriented metal nanofiber sheet and a method for producing the same.
 金属ナノ粒子、金属ナノワイヤー、金属ナノロッドなどの金属ナノ構造体は、当該金属ナノ構造体を構成する金属の種類によって、金属のバルク材料とは異なる物性、例えば高い触媒活性などを示すことが知られている。このため、金属ナノ構造体は、電子部品、光学部品、磁性材料などの材料として種々の工業分野での利用が期待されている。 It is known that metal nanostructures such as metal nanoparticles, metal nanowires, and metal nanorods exhibit different physical properties from metal bulk materials, such as high catalytic activity, depending on the type of metal constituting the metal nanostructure. It has been. For this reason, the metal nanostructure is expected to be used in various industrial fields as a material such as an electronic component, an optical component, and a magnetic material.
 金属ナノ粒子を製造する方法として、還元剤を用いて金属イオン又は金属化合物を還元する方法が知られている(特許文献1参照)。この方法では、酸化銀とゼラチンまたはゼラチン誘導体と還元性を有する単糖類または二糖類とを混合し、水溶媒中55~80℃で加熱することによって、銀ナノ粒子が得られる。 As a method for producing metal nanoparticles, a method of reducing metal ions or metal compounds using a reducing agent is known (see Patent Document 1). In this method, silver nanoparticles are obtained by mixing silver oxide, gelatin or a gelatin derivative, and a reducing monosaccharide or disaccharide and heating at 55 to 80 ° C. in an aqueous solvent.
 しかしながら、特許文献1の方法では、金属ナノ粒子が得られるだけであり、ナノファイバーなどのような1次元形状の金属ナノ構造体を得ることはできない。 However, in the method of Patent Document 1, only metal nanoparticles are obtained, and a one-dimensional metal nanostructure such as nanofiber cannot be obtained.
 一方、ナノロッド、ナノチューブ、ナノワイヤーなどの金属ナノファイバーの製造方法としては、例えば、微小な孔を有する多孔性膜などのテンプレートの孔内で金属の電解析出を行って、ロッド状、チューブ状またはワイヤー状のナノ構造体を成長させる方法が知られている(「テンプレート法」という)。しかしながら、テンプレート法は、テンプレートの作製、及びテンプレートから金属ナノ構造体を分離し、回収する操作が煩雑であるため、金属ナノ構造体の大量生産には不向きである。 On the other hand, as a method for producing metal nanofibers such as nanorods, nanotubes, and nanowires, for example, electrodeposition of metal is performed in the pores of a template such as a porous film having minute pores, thereby forming rods or tubes. Alternatively, a method of growing a wire-like nanostructure is known (referred to as “template method”). However, the template method is not suitable for mass production of metal nanostructures because the preparation of the template and the operation of separating and recovering the metal nanostructure from the template are complicated.
 下記特許文献2には、強磁性金属のイオンを含む溶液中において、磁場を印加した状態で金属イオンを還元して強磁性金属を析出させることによって、強磁性金属ナノ構造体が得られることが記載されている。しかしながら、この方法では、析出したナノ金属の成長方向を制御することができず、反応溶液中で絡み合った状態の構造体となり、一定方向に金属ナノ繊維が整列した配向性の高いシート状の構造体とすることはできない。 In Patent Document 2 described below, a ferromagnetic metal nanostructure can be obtained by reducing a metal ion and precipitating a ferromagnetic metal in a solution containing a ferromagnetic metal ion while applying a magnetic field. Are listed. However, with this method, the growth direction of the deposited nanometal cannot be controlled, and the structure is in an entangled state in the reaction solution, and a highly oriented sheet-like structure in which metal nanofibers are aligned in a certain direction. It cannot be made into a body.
特開2009-97082号公報JP 2009-97082 A 特開2011-58021号公報JP 2011-58021 A
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、繊維状ナノ金属からなる構造体であって、該構造体を構成する金属ナノ繊維が一定方向に揃って整列した高い配向性を有する金属ナノ繊維シート状物、及びその製造方法を提供することである。 The present invention has been made in view of the current state of the prior art described above, and its main purpose is a structure made of fibrous nanometal, and the metal nanofibers constituting the structure are in a certain direction. The object is to provide a metal nanofiber sheet having a high orientation and aligned, and a method for producing the same.
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、強磁性金属イオン及び還元剤を含む反応溶液から磁場を印加した状態で強磁性金属を還元析出させる方法において、反応容器の底部の磁束密度が最も高くなるように磁場を印加することによって、還元析出した強磁性金属のナノ粒子が磁気的相互作用によって配列して繊維状に成長すると共に、磁束密度が最も高い反応容器の底面近傍において、磁力線の方向に揃った状態で金属ナノ繊維の成長反応が進行し、従来得ることができなかった高い配向性を有する金属ナノ繊維からなるシート状物が形成されることを見出した。さらに、この金属ナノ繊維シート状物のシート面に圧力を加えることによって、より高い配向性を示す金属ナノ繊維シート状物が形成されることを見出した。本発明は、この様な知見に基づいて更に研究を重ねた結果完成されたものである。 The present inventors have conducted intensive research to achieve the above-described purpose. As a result, in the method of reducing and precipitating a ferromagnetic metal in a state where a magnetic field is applied from a reaction solution containing a ferromagnetic metal ion and a reducing agent, by applying the magnetic field so that the magnetic flux density at the bottom of the reaction vessel becomes the highest. In addition, the ferromagnetic metal nanoparticles that have been reduced and precipitated are arranged by magnetic interaction and grow into a fiber shape, and the metal nanofibers are aligned in the direction of the magnetic field lines near the bottom surface of the reaction vessel having the highest magnetic flux density. It has been found that a sheet-like material composed of metal nanofibers having a high orientation, which has not been obtained in the past, is formed as the growth reaction proceeds. Furthermore, it discovered that the metal nanofiber sheet-like material which shows a higher orientation is formed by applying a pressure to the sheet | seat surface of this metal nanofiber sheet-like material. The present invention has been completed as a result of further research based on such knowledge.
 即ち、本発明は、下記の高配向金属ナノ繊維シート状物、及びその製造方法に係る。
項1. 強磁性金属のイオン及び還元剤を含む反応溶液から強磁性金属を還元析出させて、シート状の金属ナノ繊維構造体を製造する方法であって、
該反応溶液を収容した反応容器の底部の磁束密度が最大となるように磁場を印加した状態で還元反応を進行させることを特徴とする、高配向金属ナノ繊維シート状物の製造方法。
項2. 磁場を印加する方法が、シート状磁石の上に反応溶液を収容した反応容器を配置する方法、又は磁力源を反応容器の底面より下若しくは反応容器の底面近傍に配置して磁場を形成する方法である、上記項1に記載の金属ナノ繊維シート状物の製造方法。
項3. 前記強磁性金属イオン及び還元剤を含む反応溶液が、更に、錯化剤を含有するものである、上記項1又は2に記載の金属ナノ繊維シート状物の製造方法。
項4. 前記強磁性金属イオン及び還元剤を含む反応溶液が、更に、核形成剤を含有するものである、上記項1~3のいずれかに記載の金属ナノ繊維シート状物の製造方法。
項5. 前記反応溶液のpHが12以上であって、液温が55~85℃である、上記項1~4のいずれかに記載の金属ナノ繊維シート状物の製造方法。
項6. 前記強磁性金属がFe、Co、Ni又はこれらの合金である、上記項1~5のいずれかに記載の金属ナノ繊維シート状物の製造方法。
項7. 線径がナノサイズの強磁性金属繊維からなるシート状の構造体であって、
下記(1)~(5)の方法で求められる配向度が1.65以上である、高配向金属ナノ繊維シート状物:
(1)該シート状物の顕微鏡写真を2値化し、
(2)2値化した像をフーリエ変換処理してパワースペクトルを得、
(3)パワースペクトルの平均振幅の角度分布を求め、
(4)平均振幅を角度θについて極座標で表示した繊維配向分布図を作成し、
(5)繊維配向分布図の平均振幅のプロットを楕円近似し、得られた楕円の長軸/短軸比を配向度とする。
項8. 前記配向度が1.8以上である、上記項7に記載の高配向金属ナノ繊維シート状物。
項9. 上記項1~6のいずれかの方法によって高配向ナノ繊維シート状物を得た後、更に、該シート状物のシート面に対して圧力を加える工程を含む、金属ナノ繊維シート状物の製造方法。
項10.シート面に圧力を加える方法が、圧延によるものである、上記項9に記載の金属ナノ繊維シート状物の製造方法。
項11.シート面に圧力を加える方法が、プレスによるものである、上記項9に記載の金属ナノ繊維シート状物の製造方法。
項12. 上記項9~11のいずれかの方法で得られる、配向性の向上した金属ナノ繊維シート状物。
That is, the present invention relates to the following highly oriented metal nanofiber sheet and a method for producing the same.
Item 1. A method of producing a sheet-like metal nanofiber structure by reducing and precipitating a ferromagnetic metal from a reaction solution containing a ferromagnetic metal ion and a reducing agent,
A method for producing a highly oriented metal nanofiber sheet, wherein the reduction reaction is allowed to proceed in a state where a magnetic field is applied so that the magnetic flux density at the bottom of the reaction vessel containing the reaction solution is maximized.
Item 2. A method of applying a magnetic field is a method of arranging a reaction vessel containing a reaction solution on a sheet-like magnet, or a method of forming a magnetic field by arranging a magnetic source below or near the bottom of the reaction vessel. The method for producing a metal nanofiber sheet according to Item 1, wherein
Item 3. Item 3. The method for producing a metal nanofiber sheet according to Item 1 or 2, wherein the reaction solution containing the ferromagnetic metal ion and the reducing agent further contains a complexing agent.
Item 4. Item 4. The method for producing a metal nanofiber sheet according to any one of Items 1 to 3, wherein the reaction solution containing the ferromagnetic metal ion and the reducing agent further contains a nucleating agent.
Item 5. Item 5. The method for producing a metal nanofiber sheet according to any one of Items 1 to 4, wherein the reaction solution has a pH of 12 or more and a liquid temperature of 55 to 85 ° C.
Item 6. Item 6. The method for producing a metal nanofiber sheet according to any one of Items 1 to 5, wherein the ferromagnetic metal is Fe, Co, Ni, or an alloy thereof.
Item 7. A sheet-like structure made of a ferromagnetic metal fiber having a nanowire diameter,
A highly oriented metal nanofiber sheet-like material having an orientation degree of 1.65 or more determined by the following methods (1) to (5):
(1) Binarize the micrograph of the sheet,
(2) The binarized image is Fourier transformed to obtain a power spectrum,
(3) Obtain the angular distribution of the average amplitude of the power spectrum,
(4) Create a fiber orientation distribution diagram with the average amplitude displayed in polar coordinates for the angle θ,
(5) Ellipse approximation of the plot of average amplitude in the fiber orientation distribution diagram is taken, and the major axis / minor axis ratio of the obtained ellipse is taken as the degree of orientation.
Item 8. Item 8. The highly oriented metal nanofiber sheet according to Item 7, wherein the degree of orientation is 1.8 or more.
Item 9. After obtaining a highly oriented nanofiber sheet by the method according to any one of items 1 to 6 above, further comprising the step of applying pressure to the sheet surface of the sheet, to produce a metal nanofiber sheet Method.
Item 10. Item 10. The method for producing a metal nanofiber sheet according to Item 9, wherein the method of applying pressure to the sheet surface is by rolling.
Item 11. Item 10. The method for producing a metal nanofiber sheet according to Item 9, wherein the method of applying pressure to the sheet surface is by pressing.
Item 12. 12. A metal nanofiber sheet with improved orientation obtained by the method of any one of Items 9 to 11 above.
 以上の通り、本発明の金属ナノ繊維シート状物は、線径がナノサイズの金属繊維が一定方向に揃って整列したシート状物であり、従来より公知の金属ナノ繊維からなるシートと比較して、高い配向性を有するシート状構造体である。この様な特徴を有する本発明の金属ナノ繊維シート状物は、金属ナノ繊維シート状物の厚さ分布の均質化と、薄膜化との両立を実現したものであり、例えば、電極基材、太陽電池用基材、キャパシター電極基材、触媒担体、ガスフィルター、センサー素子基材などの各種の用途に有効に用いることができる。 As described above, the metal nanofiber sheet-like material of the present invention is a sheet-like material in which metal fibers with nano-sized wire diameters are aligned in a certain direction, and compared with a sheet made of conventionally known metal nanofibers. And a sheet-like structure having high orientation. The metal nanofiber sheet-like material of the present invention having such a feature realizes both homogenization of the thickness distribution of the metal nanofiber sheet-like material and thinning, for example, an electrode substrate, It can be effectively used for various applications such as solar cell base materials, capacitor electrode base materials, catalyst carriers, gas filters, and sensor element base materials.
 また、本発明の製造方法によれば、この様な優れた性能を有する新規な金属ナノ繊維シート状物を、溶液中からの還元析出という簡単な方法によって容易に製造することができる。 Further, according to the production method of the present invention, a novel metal nanofiber sheet having such excellent performance can be easily produced by a simple method of reduction precipitation from a solution.
金属ナノ繊維が形成される過程を模式的に示す図面。Drawing which shows the process in which a metal nanofiber is formed typically. 金属ナノ繊維シート状物を作製する際の磁力源の配置方法の一例を示す図面。Drawing which shows an example of the arrangement | positioning method of the magnetic force source at the time of producing a metal nanofiber sheet-like thing. 実施例1で用いた磁性を有するシート上に反応容器を配置した状態の写真。The photograph of the state which has arrange | positioned the reaction container on the sheet | seat which has the magnetism used in Example 1. FIG. 磁性シートの一例を模式的に示す図面。Drawing which shows an example of a magnetic sheet typically. 磁性シートの上に反応容器を配置した状態で強磁性金属イオンの還元反応を進行させる状態を模式的に示す図面。The figure which shows typically the state which advances the reductive reaction of a ferromagnetic metal ion in the state which has arrange | positioned the reaction container on the magnetic sheet. 実施例1で得られた金属ナノ繊維シート状物を示す写真。The photograph which shows the metal nanofiber sheet-like material obtained in Example 1. 図6の左図に示す金属ナノ繊維シート状物の光沢部分の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the glossy part of the metal nanofiber sheet shown in the left figure of FIG. 図6の左図に示す金属ナノ繊維シート状物の無光沢部分の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the non-glossy part of the metal nanofiber sheet shown in the left figure of FIG. 図6の右図に示す金属ナノ繊維シート状物の走査型電子顕微鏡(SEM)写真。FIG. 7 is a scanning electron microscope (SEM) photograph of the metal nanofiber sheet shown in the right diagram of FIG. 6. 本発明の金属ナノ繊維シート状物の配向度測定に用いる繊維配向分布図の一例を示す図面。Drawing which shows an example of the fiber orientation distribution figure used for the orientation degree measurement of the metal nanofiber sheet-like material of this invention. 実施例1におけるNiナノ繊維シートの製造方法において、反応時間と析出したNi質量との関係を示すグラフ。In the manufacturing method of the Ni nanofiber sheet in Example 1, the graph which shows the relationship between reaction time and deposited Ni mass. 実施例2で得られた金属ナノ繊維シート状物を示す写真。The photograph which shows the metal nanofiber sheet-like material obtained in Example 2. 図12の左図に示す金属ナノ繊維シート状物の光沢部分の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the glossy part of the metal nanofiber sheet shown in the left figure of FIG. 図12の右図に示す金属ナノ繊維シート状物の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the metal nanofiber sheet-like material shown in the right figure of FIG. 実施例3で得られたNiナノ繊維シート下面の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the Ni nanofiber sheet lower surface obtained in Example 3. 実施例3で得られたNiナノ繊維シート上面の走査型電子顕微鏡(SEM)写真。The scanning electron microscope (SEM) photograph of the Ni nanofiber sheet upper surface obtained in Example 3.
 まず、本発明の高配向金属ナノ繊維シート状物の製造方法を説明する。 First, a method for producing a highly oriented metal nanofiber sheet according to the present invention will be described.
 高配向金属ナノ繊維シート状物の製造方法
 本発明の高配向金属ナノ繊維シート状物の製造方法では、強磁性金属のイオン及び還元剤を含む反応溶液に磁場を印加した状態で還元反応を進行させる。この際、該反応溶液を収容した反応容器の底部、即ち、重力方向における反応容器の下部の磁束密度が最大となるように該反応溶液に磁場を印加して還元反応を進行させることが必要である。
Method for producing highly oriented metal nanofiber sheet In the method for producing highly oriented metal nanofiber sheet of the present invention, the reduction reaction proceeds while a magnetic field is applied to a reaction solution containing ferromagnetic metal ions and a reducing agent. Let At this time, it is necessary to apply a magnetic field to the reaction solution so that the magnetic flux density at the bottom of the reaction vessel containing the reaction solution, that is, the lower part of the reaction vessel in the direction of gravity is maximized, so that the reduction reaction proceeds. is there.
 この方法によれば、磁場を印加した状態で還元反応を進行させることによって、還元反応によって形成された強磁性金属ナノ粒子が、磁場方向に沿って磁気的相互作用によって配列し、還元反応の進行に伴って金属ナノ粒子が結合して強磁性金属からなるナノ繊維が形成される。この際、反応溶液を収容した反応容器の底部の磁束密度が最大となるように磁場を印加することによって、還元反応で形成された金属ナノ粒子は、磁束密度が高い反応容器の底部に引き寄せられ、還元反応によって発生する気泡又は反応溶液の対流による金属ナノ繊維の絡み合いが抑制され、反応容器の底面近傍において磁力線の方向に揃った状態で繊維状に成長して、高い配向性を有するシート状の金属ナノ繊維構造体が得られる。ここで、底面近傍とは、反応容器の底面の上側10mm~下側10mm程度の近傍をいう。 According to this method, by proceeding the reduction reaction with a magnetic field applied, the ferromagnetic metal nanoparticles formed by the reduction reaction are arranged by magnetic interaction along the magnetic field direction, and the reduction reaction proceeds. As a result, the metal nanoparticles are bonded to form a nanofiber made of a ferromagnetic metal. At this time, by applying a magnetic field so that the magnetic flux density at the bottom of the reaction vessel containing the reaction solution is maximized, the metal nanoparticles formed by the reduction reaction are attracted to the bottom of the reaction vessel having a high magnetic flux density. In addition, the entanglement of the metal nanofibers due to the bubbles generated by the reduction reaction or the convection of the reaction solution is suppressed, and it grows into a fiber shape in the state of being aligned in the direction of the magnetic force lines in the vicinity of the bottom surface of the reaction vessel, and has a high orientation. The metal nanofiber structure is obtained. Here, the vicinity of the bottom surface means the vicinity of about 10 mm on the upper side to 10 mm on the lower side of the bottom surface of the reaction vessel.
 以下、本発明の高配向金属ナノ繊維シート状物の製造方法について具体的に説明する。 Hereinafter, the method for producing the highly oriented metal nanofiber sheet of the present invention will be specifically described.
 (i)反応溶液
 本発明の高配向金属ナノ繊維シート状物を得るために用いる反応溶液は、強磁性金属のイオンと還元剤とを含む溶液である。
(I) Reaction solution The reaction solution used to obtain the highly oriented metal nanofiber sheet of the present invention is a solution containing ferromagnetic metal ions and a reducing agent.
 本発明では、磁場中で還元反応によって金属ナノ粒子を配列させるために、金属ナノ粒子は、強磁性金属であることが必要である。このため、反応溶液としては、強磁性金属のイオンを含む溶液を用いる。 In the present invention, in order to arrange metal nanoparticles by a reduction reaction in a magnetic field, the metal nanoparticles need to be a ferromagnetic metal. Therefore, a solution containing ferromagnetic metal ions is used as the reaction solution.
 強磁性金属としては、例えば、Fe、Co、Ni等の鉄族金属、これらの合金(例えば、Fe-Co、Fe-Ni、Co-Ni等)等を挙げることができる。強磁性金属として、Co、Ni、及びこれらの合金が好ましい。 Examples of ferromagnetic metals include iron group metals such as Fe, Co, and Ni, and alloys thereof (eg, Fe-Co, Fe-Ni, Co-Ni, and the like). As the ferromagnetic metal, Co, Ni, and alloys thereof are preferable.
 強磁性金属のイオンを含む溶液は、上記した強磁性金属の塩を溶媒に溶解させることにより得ることができる。金属塩としては、使用する溶媒に可溶であって、還元しやすい状態の金属イオンを形成できる公知の金属塩を広く使用することができる。例えば、上記した強磁性金属の塩化物、硫酸塩、硝酸塩、酢酸塩等を用いることができる。これらの塩は、水和物であってもよく、無水物であってもよい。強磁性金属の金属塩の具体例としては、例えば、酢酸コバルト(II)四水和物、酢酸コバルト(II)無水物、硫酸コバルト(II)七水和物、硫酸コバルト(II)無水物、塩化コバルト(II)六水和物、塩化コバルト(II)無水物、硝酸コバルト(II)六水和物、硝酸コバルト(II)無水物、酢酸ニッケル(II)四水和物、酢酸ニッケル(II)無水物、塩化ニッケル(II)六水和物、塩化ニッケル(II)無水物、硫酸ニッケル(II)六水和物、硫酸ニッケル(II)無水物、硝酸ニッケル(II)六水和物、硝酸ニッケル(II)無水物、硫酸鉄(II)七水和物、硫酸鉄(II)無水物などが挙げられる。強磁性金属が合金の場合は、合金を構成する2種類の金属の塩を使用する。合金が、例えばCo-Niである場合には、酢酸コバルト(II)四水和物等のコバルト塩と、酢酸ニッケル(II)四水和物等のニッケル塩とを使用する。 A solution containing ferromagnetic metal ions can be obtained by dissolving the above-mentioned ferromagnetic metal salt in a solvent. As the metal salt, a known metal salt that is soluble in the solvent to be used and can form a metal ion that can be easily reduced can be widely used. For example, the above-described ferromagnetic metal chlorides, sulfates, nitrates, acetates, and the like can be used. These salts may be hydrates or anhydrides. Specific examples of the metal salt of the ferromagnetic metal include, for example, cobalt acetate (II) tetrahydrate, cobalt acetate (II) anhydride, cobalt sulfate (II) heptahydrate, cobalt sulfate (II) anhydride, Cobalt (II) chloride hexahydrate, cobalt (II) chloride anhydride, cobalt nitrate (II) hexahydrate, cobalt nitrate (II) anhydride, nickel acetate (II) tetrahydrate, nickel acetate (II) ) Anhydride, nickel (II) chloride hexahydrate, nickel chloride (II) anhydride, nickel sulfate (II) hexahydrate, nickel sulfate (II) anhydride, nickel nitrate (II) hexahydrate, Examples thereof include nickel (II) nitrate anhydride, iron (II) sulfate heptahydrate, and iron (II) sulfate anhydride. When the ferromagnetic metal is an alloy, two kinds of metal salts constituting the alloy are used. When the alloy is, for example, Co—Ni, a cobalt salt such as cobalt acetate (II) tetrahydrate and a nickel salt such as nickel acetate (II) tetrahydrate are used.
 強磁性金属のイオンの濃度については、特に限定的ではなく、例えば、0.001~1mol/dm程度、好ましくは0.01~1mol/dm程度とすることができる。 The concentration of ions of the ferromagnetic metal is not particularly limited, and can be, for example, about 0.001 to 1 mol / dm 3 , preferably about 0.01 to 1 mol / dm 3 .
 還元剤としては、強磁性金属のイオンを還元して強磁性金属を形成できるものであれば、特に限定無く使用できる。例えば、ヒドラジン、塩化第一鉄(FeCl2)、次亜リン酸、水素化ホウ素、これらの塩、ジメチルアミンボラン(DMAB)などが挙げられる。 Any reducing agent can be used without particular limitation as long as it can form a ferromagnetic metal by reducing ions of the ferromagnetic metal. Examples thereof include hydrazine, ferrous chloride (FeCl 2 ), hypophosphorous acid, borohydride, salts thereof, dimethylamine borane (DMAB), and the like.
 本発明では、特に、金属の強磁性の特性を維持し、強磁場印加の効果を十分に発揮させ、かつ高純度の強磁性金属ナノ繊維を得ることができる点から、還元剤としてはヒドラジンが好ましい。 In the present invention, in particular, hydrazine is used as the reducing agent from the viewpoint of maintaining the ferromagnetic properties of the metal, fully exhibiting the effect of applying a strong magnetic field, and obtaining high-purity ferromagnetic metal nanofibers. preferable.
 反応溶液中における還元剤の濃度は、特に限定的ではなく、使用する強磁性金属イオンと還元剤の組み合わせにおいて、還元反応が良好に進行する濃度とすればよい。通常は、還元剤の濃度として、0.1~10mol/dm程度であって、反応溶液中における強磁性金属のイオンの濃度に対して等モルから10倍モル程度とすることが望ましい。 The concentration of the reducing agent in the reaction solution is not particularly limited, and may be a concentration at which the reduction reaction proceeds favorably in the combination of the ferromagnetic metal ion and the reducing agent to be used. Usually, the concentration of the reducing agent is about 0.1 to 10 mol / dm 3 , and preferably about equimolar to 10 times the molar concentration of the ferromagnetic metal ions in the reaction solution.
 上記した濃度範囲において還元剤の濃度を調整することにより、生成されるナノ繊維の形態、例えば、線径、アスペクト比等を制御することができる。例えば、反応溶液中における還元剤の濃度を高くすることにより、ナノ繊維の線径が小さく、アスペクト比が大きい値となるように制御することができる。また、還元剤の濃度を低くすることにより、ナノ繊維の線径が大きくアスペクト比が小さい値となるように制御することができる。 By adjusting the concentration of the reducing agent within the above-described concentration range, the form of the nanofiber to be generated, for example, the wire diameter, the aspect ratio, etc. can be controlled. For example, by increasing the concentration of the reducing agent in the reaction solution, it is possible to control the nanofiber to have a small wire diameter and a large aspect ratio. Further, by reducing the concentration of the reducing agent, it is possible to control the nanofiber to have a large wire diameter and a small aspect ratio.
 金属ナノ繊維シート状物を形成するための反応溶液には、更に、錯化剤を配合することが好ましい。錯化剤を配合することによって強磁性金属イオンの還元反応速度を制御することができる。特に、Niなどの磁化が比較的弱い金属イオンについては、還元反応が速すぎると、生成した金属ナノ粒子が磁場に沿って配列することなく還元反応が進行して金属ナノ粒子が形成されやすくなるが、錯化剤を配合することによって、還元反応速度を低下させて、金属ナノ繊維の形成を容易にすることができる。 It is preferable to further add a complexing agent to the reaction solution for forming the metal nanofiber sheet. By adding a complexing agent, the reduction reaction rate of the ferromagnetic metal ion can be controlled. In particular, for metal ions with relatively weak magnetization, such as Ni, if the reduction reaction is too fast, the reduction reaction proceeds without the generated metal nanoparticles being aligned along the magnetic field, and metal nanoparticles are likely to be formed. However, by adding a complexing agent, the reduction reaction rate can be reduced and the formation of metal nanofibers can be facilitated.
 錯化剤については、特に限定的ではなく、強磁性金属イオンとの錯形成定数が高い錯化剤を用いることが好ましい。この様な錯化剤としては、クエン酸塩、酒石酸塩、エチレンジアミン四酢酸、アンモニア、シアノ錯体などを例示できる。 The complexing agent is not particularly limited, and it is preferable to use a complexing agent having a high complex formation constant with a ferromagnetic metal ion. Examples of such a complexing agent include citrate, tartrate, ethylenediaminetetraacetic acid, ammonia, cyano complex and the like.
 錯化剤の使用量については、特に限定的ではなく、使用する遷移金属イオンに対して1/10倍モル以上のモル濃度であって、反応溶液中の濃度として、0.01~10mol/dm程度とすることが好ましい。 The amount of the complexing agent to be used is not particularly limited, and is a molar concentration of 1/10 times mol or more with respect to the transition metal ion to be used, and the concentration in the reaction solution is 0.01 to 10 mol / dm. Preferably it is about 3 .
 上記した反応溶液には、更に、強磁性金属ナノ粒子形成のための核を提供する核形成剤として、貴金属塩を配合することが好ましい。一般的に、貴金属塩は還元しやすく、微小な粒子として液相還元され易い。このため、貴金属塩を反応溶液に添加することにより、微小な核を提供して、形成される粒子の粒径を制御することができる。これにより金属ナノ繊維の線径が制御可能になる。例えば、液中における核形成剤の濃度を高くすることにより、金属ナノ繊維の線径が小さく、アスペクト比が大きい値となるように制御することができる。液中における核形成剤の濃度を低くすることにより、金属ナノ繊維の線径が大きく、アスペクト比が小さい値となるように制御することができる。 It is preferable that a noble metal salt is further added to the reaction solution described above as a nucleating agent that provides nuclei for forming ferromagnetic metal nanoparticles. In general, noble metal salts are easy to reduce and are liable to be liquid phase reduced as fine particles. For this reason, by adding a noble metal salt to the reaction solution, it is possible to provide fine nuclei and control the particle size of the formed particles. Thereby, the wire diameter of the metal nanofiber can be controlled. For example, by increasing the concentration of the nucleating agent in the liquid, the wire diameter of the metal nanofiber can be controlled to be small and the aspect ratio to be large. By reducing the concentration of the nucleating agent in the liquid, it is possible to control the metal nanofiber to have a large wire diameter and a small aspect ratio.
 例えば、反応溶液中における核形成剤の濃度が高いときには、この核形成剤により形成した1つのナノ粒子核に接触する強磁性金属の量が相対的に減り、形成される金属ナノ粒子の粒径が小さくなると考えられる。前記濃度が低いときには、この核形成剤により形成させた1つのナノ粒子核に接触する強磁性金属の量が相対的に増え、形成される金属ナノ粒子の粒径が大きくなると考えられる。 For example, when the concentration of the nucleating agent in the reaction solution is high, the amount of ferromagnetic metal in contact with one nanoparticle nucleus formed by this nucleating agent is relatively reduced, and the particle size of the formed metal nanoparticles Is considered to be smaller. When the said density | concentration is low, it is thought that the quantity of the ferromagnetic metal which contacts one nanoparticle nucleus formed with this nucleating agent increases relatively, and the particle size of the metal nanoparticle formed becomes large.
 核形成剤としては、 鉄族金属イオンより貴な酸化還元電位を有する塩が好ましい。核形成剤として、具体的には、塩化白金酸、塩化金酸、塩化パラジウム、塩化ルテニウム、硝酸銀などの貴金属塩を例示できる。 As the nucleating agent, a salt having a redox potential more noble than a pig iron group metal ion is preferable. Specific examples of the nucleating agent include noble metal salts such as chloroplatinic acid, chloroauric acid, palladium chloride, ruthenium chloride, and silver nitrate.
 反応溶液中における核形成剤の濃度は、特に限定的ではなく、通常0.01~10mmol/dm、好ましくは0.1~1mol/dmとすることができる。なお、この濃度は金属イオン換算での濃度である。 The concentration of the nucleating agent in the reaction solution is not particularly limited, and can be usually 0.01 to 10 mmol / dm 3 , preferably 0.1 to 1 mol / dm 3 . This concentration is a concentration in terms of metal ions.
 反応溶液に用いる溶媒としては、水、極性有機溶媒などを用いることができる。極性有機溶媒としては、特に限定されず、例えば、炭素数1~6のアルコール、炭素数2~4のアルキレングリコール、炭素数3~6のケトン、炭素数3~6のアルキレングリコールアルキルエーテルなどを用いることができる。 As a solvent used in the reaction solution, water, a polar organic solvent, or the like can be used. The polar organic solvent is not particularly limited, and examples thereof include alcohols having 1 to 6 carbon atoms, alkylene glycols having 2 to 4 carbon atoms, ketones having 3 to 6 carbon atoms, and alkylene glycol alkyl ethers having 3 to 6 carbon atoms. Can be used.
 より具体的に示すと、アルコールとしては、例えば、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール、ブタノール、ペンタノール、ヘキサノールなどが挙げられる。アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコールなどが挙げられる。ケトンとしては、例えば、アセトン、メチルエチルケトン、エチルイソブチルケトン、メチルイソブチルケトンなどが挙げられる。アルキレングリコールアルキルエーテルとしては、例えば、エチレングリコールメチルエーテル、エチレングリコールモノ-n-プロピルエーテル、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル、プロピレングリコールブチルエーテル、プロピレングリコールプロピルエーテルなどが挙げられる。これらの極性有機溶媒の内で、入手容易性、又は液相中における金属粒子の分散性に優れる観点から、エチレングリコール、プロピレングリコールなどの炭素数2~4のアルキレングリコールが好ましい。 More specifically, examples of the alcohol include methanol, ethanol, isopropyl alcohol, propyl alcohol, butanol, pentanol, and hexanol. Examples of the alkylene glycol include ethylene glycol and propylene glycol. Examples of the ketone include acetone, methyl ethyl ketone, ethyl isobutyl ketone, and methyl isobutyl ketone. Examples of the alkylene glycol alkyl ether include ethylene glycol methyl ether, ethylene glycol mono-n-propyl ether, propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol butyl ether, propylene glycol propyl ether and the like. Among these polar organic solvents, alkylene glycols having 2 to 4 carbon atoms such as ethylene glycol and propylene glycol are preferred from the viewpoint of availability and excellent dispersibility of metal particles in the liquid phase.
 反応溶液のpHは、反応溶液中における強磁性金属イオンの種類及び還元剤の種類に応じて、金属イオンを還元できるpHとすればよい。一般的に、pHが高い程還元剤の還元力が高くなるので、pHを高い値とすることによって、金属粒子の生成を促進して、形成される金属ナノ繊維の線径を小さくすることができる。 The pH of the reaction solution may be a pH at which metal ions can be reduced according to the type of ferromagnetic metal ions and the type of reducing agent in the reaction solution. In general, the higher the pH, the higher the reducing power of the reducing agent. Therefore, by increasing the pH, it is possible to promote the generation of metal particles and reduce the diameter of the formed metal nanofibers. it can.
 通常は、還元反応を良好に進行させる点からpHを12程度以上とすることが好ましく、12.5以上とすることがより好ましい。pHの上限については、例えば、14程度とすることができる。 Usually, the pH is preferably about 12 or more, more preferably 12.5 or more, from the viewpoint of favoring the reduction reaction. About the upper limit of pH, it can be set as about 14, for example.
 反応溶液の液温については、特に限定はなく、強磁性金属イオン、還元剤などの種類及び濃度、印加する磁場の強さなどに応じて、適度な速度で金属ナノ繊維が形成される液温とすればよい。例えば、通常25~90℃程度、好ましくは55~85℃程度の液温とすることができる。 The liquid temperature of the reaction solution is not particularly limited, and the liquid temperature at which the metal nanofibers are formed at an appropriate rate according to the type and concentration of the ferromagnetic metal ion, the reducing agent, and the strength of the magnetic field applied. And it is sufficient. For example, the liquid temperature can usually be about 25 to 90 ° C., preferably about 55 to 85 ° C.
 反応時間については、反応溶液中における強磁性金属イオン濃度、目的とする金属ナノ繊維シート状物の厚さなどに応じて適宜決めればよく、通常、1時間~10時間程度の範囲である。 The reaction time may be appropriately determined according to the ferromagnetic metal ion concentration in the reaction solution, the thickness of the target metal nanofiber sheet, and is usually in the range of about 1 to 10 hours.
 (ii)高配向金属ナノ繊維シート状物の製造方法
 上記した条件を満足する強磁性金属のイオンと還元剤とを含有する溶液を調製することによって、強磁性金属のイオンの還元反応が進行して、強磁性金属のナノ粒子が形成される。
(Ii) Method for producing highly oriented metal nanofiber sheet By preparing a solution containing a ferromagnetic metal ion and a reducing agent that satisfies the above conditions, the reduction reaction of the ferromagnetic metal ion proceeds. Thus, ferromagnetic metal nanoparticles are formed.
 この際、反応溶液に磁場を印加することによって、還元析出した金属ナノ粒子が磁場方向に沿って配列し、自己組織化が進行して、金属ナノ繊維が形成される。図1は、金属ナノ繊維が形成される過程を模式的に示す図面である。 At this time, by applying a magnetic field to the reaction solution, the reduced and precipitated metal nanoparticles are arranged along the magnetic field direction, and self-organization proceeds to form metal nanofibers. FIG. 1 is a drawing schematically showing a process of forming metal nanofibers.
 本発明の製造方法では、上記した磁場の存在下で強磁性金属イオンの還元反応を進行させる方法において、反応容器の底部における磁束密度が最大になるように、反応溶液に対して磁場を印加する。 In the production method of the present invention, a magnetic field is applied to the reaction solution so that the magnetic flux density at the bottom of the reaction vessel is maximized in the above-described method of proceeding the reduction reaction of the ferromagnetic metal ions in the presence of the magnetic field. .
 具体的な磁場の印加方法については特に限定はなく、例えば、磁性を有するシートの上に反応溶液を入れた反応容器を配置する方法によって、反応容器の底部における磁束密度を最大にすることができる。 The specific magnetic field application method is not particularly limited. For example, the magnetic flux density at the bottom of the reaction vessel can be maximized by arranging the reaction vessel with the reaction solution on a magnetic sheet. .
 その他、例えば、永久磁石、超伝導磁石などの磁力源を反応容器の両側に配置して、反応溶液中に磁場を形成してもよい。例えば、2個の磁力源を用いて磁場を形成し、この磁場中に反応溶液を収容した反応容器を配置すればよい。この際、磁力源を反応容器の底面より下、又は反応容器の底面近傍に配置することによって、反応容器の底部における磁束密度を最大にすることができる。図2は、この方法における磁力源の配置方法の一例を示す図面である。 In addition, for example, a magnetic field such as a permanent magnet or a superconducting magnet may be arranged on both sides of the reaction vessel to form a magnetic field in the reaction solution. For example, a magnetic field may be formed using two magnetic sources, and a reaction vessel containing a reaction solution may be disposed in the magnetic field. At this time, the magnetic flux density at the bottom of the reaction vessel can be maximized by arranging the magnetic force source below the bottom surface of the reaction vessel or near the bottom surface of the reaction vessel. FIG. 2 is a drawing showing an example of a method of arranging magnetic sources in this method.
 その他、例えば、上述した平行に配置した磁力源の下に、例えば、鉄板などの軟磁性材料の板を敷いて組み合わせることで、板の表面近傍に形成される磁力線を用いて、その板の上、またはその近傍に反応容器を配置することによって、反応容器の底部における磁束密度を最大にすることができる。 In addition, for example, by placing a soft magnetic material plate such as an iron plate under a magnetic force source arranged in parallel as described above and combining the magnetic force lines formed near the surface of the plate, By arranging the reaction vessel in the vicinity thereof, the magnetic flux density at the bottom of the reaction vessel can be maximized.
 反応溶液に印加する磁場の強さについては、形成される金属ナノ粒子の磁性の強さ、目的とする金属ナノ繊維の粒径などによって異なるので、一概には規定できない。通常、強磁性金属の種類、その析出速度などに応じて、強磁性金属が金属ナノ粒子として析出することなく、磁気的相互作用による金属ナノ粒子の配列、及び還元析出反応の進行による金属粒子同士の結合が生じるために必要な強さの磁場を印加する。例えば、溶液の底面部分における磁束密度が0.01~1テスラ程度、好ましくは0.05~1テスラ程度となるように磁場を印加する。 The strength of the magnetic field applied to the reaction solution varies depending on the magnetic strength of the metal nanoparticles to be formed, the particle size of the target metal nanofibers, etc., and thus cannot be specified unconditionally. Usually, depending on the type of ferromagnetic metal, the deposition rate, etc., the ferromagnetic metal does not precipitate as metal nanoparticles, the metal nanoparticles are arranged by magnetic interaction, and the metal particles are produced by the progress of the reduction precipitation reaction. A magnetic field having a strength necessary to cause the coupling is applied. For example, the magnetic field is applied so that the magnetic flux density at the bottom of the solution is about 0.01 to 1 Tesla, preferably about 0.05 to 1 Tesla.
 反応容器の底面の形状については特に限定はない。例えば、底面が平面状の反応容器を用いる場合には、上記した磁性を有するシートを用いて、この上に反応容器を配置する方法、反応容器の両側に磁力源を配置する方法などによって反応容器の底部における磁束密度が最大となるように磁場を印加することができる。 The shape of the bottom surface of the reaction vessel is not particularly limited. For example, when a reaction vessel having a flat bottom surface is used, the reaction vessel may be formed by using the above-described magnetic sheet and arranging the reaction vessel thereon, or arranging magnetic force sources on both sides of the reaction vessel. The magnetic field can be applied so that the magnetic flux density at the bottom of the substrate is maximized.
 反応容器の底面は、傾斜を有していてもよい。この場合、傾斜に沿って磁性シートを配置することによって、反応容器の底面の磁束密度を最大にすることができる。 The bottom surface of the reaction vessel may have an inclination. In this case, the magnetic flux density on the bottom surface of the reaction vessel can be maximized by arranging the magnetic sheet along the inclination.
 また、反応容器の底面の形状を細長い形状とすれば、リボン状の金属ナノ繊維構造体を得ることができる。この際、磁場を印加する方向を調整することによって、リボン状金属ナノ繊維構造体の長さ方向に金属ナノ繊維が整列したリボン状構造体、又は長さ方向と垂直方向に金属ナノ繊維が整列したリボン状構造体を得ることができる。 In addition, if the shape of the bottom surface of the reaction vessel is elongated, a ribbon-like metal nanofiber structure can be obtained. At this time, by adjusting the direction in which the magnetic field is applied, the ribbon-like structure in which the metal nanofibers are aligned in the length direction of the ribbon-like metal nanofiber structure, or the metal nanofibers are aligned in the direction perpendicular to the length direction. The obtained ribbon-like structure can be obtained.
 また、反応容器の底面の全面に磁場を印加することなく、底面の一部にのみ磁場を印加してもよい。例えば、両端がそれぞれN極及びS極である棒磁石を2本以上用い、この上に反応容器を配置すれば、両極間において磁力線が形成され、反応容器の底面部分において、棒磁石を配置した位置に沿って、磁束密度が最大の部分が形成される。 Alternatively, the magnetic field may be applied only to a part of the bottom surface without applying the magnetic field to the entire bottom surface of the reaction vessel. For example, if two or more bar magnets each having N and S poles at both ends are used, and a reaction vessel is arranged thereon, magnetic lines of force are formed between both poles, and a bar magnet is arranged at the bottom portion of the reaction vessel. A portion having the maximum magnetic flux density is formed along the position.
 図3は、後述する実施例1で用いた磁性を有するシートの上に反応容器を配置した状態を示す写真である。使用した磁性シートは、一方の面がN極、反対面がS極である棒磁石を複数本含み、各棒磁石のN極面とS極面とが交互に隣接するように、該棒磁石を平行に配置し、これを合成ゴムによって被覆したシート状物である。図4は、この磁性シートを模式的に示す図面であり、図中に示す矢印を付した曲線は、磁力線の方向を示す。この磁性シートでは、隣接する各棒磁石間において、長さ方向に対して垂直方向にN極面側からS曲面側に磁力線が形成され、該磁性シートの表面部分の磁束密度が最大となる。従って、この磁性シート上に反応容器を配置することによって、該反応容器の底部において、磁性シートの磁力線と同一方向に反応溶液中に磁場が形成され、反応容器の底部における磁束密度が最大となる。 FIG. 3 is a photograph showing a state in which the reaction vessel is arranged on the magnetic sheet used in Example 1 described later. The magnetic sheet used includes a plurality of bar magnets, one side of which has N poles and the other side has S poles, so that the N pole surfaces and S pole surfaces of each bar magnet are alternately adjacent to each other. Are arranged in parallel, and this is a sheet-like material covered with synthetic rubber. FIG. 4 is a drawing schematically showing this magnetic sheet, and a curve with an arrow shown in the drawing indicates the direction of the lines of magnetic force. In this magnetic sheet, magnetic field lines are formed from the N pole surface side to the S curved surface side in the direction perpendicular to the length direction between adjacent bar magnets, and the magnetic flux density of the surface portion of the magnetic sheet is maximized. Therefore, by arranging the reaction vessel on the magnetic sheet, a magnetic field is formed in the reaction solution in the same direction as the magnetic force lines of the magnetic sheet at the bottom of the reaction vessel, and the magnetic flux density at the bottom of the reaction vessel is maximized. .
 図5は、図4に示す磁性シート上に反応容器を配置した状態で、強磁性金属イオンの還元反応を進行させる状態を模式的に示す図面である。この図面では、反応溶液中において、還元反応によって強磁性金属ナノ粒子が形成され、これが、反応容器の底部に引き寄せられ、磁力性の方向に沿って繊維状に成長し、配向性の高い、金属ナノ繊維シート状物が得られる状態が示されている。 FIG. 5 is a drawing schematically showing a state in which the reduction reaction of the ferromagnetic metal ions proceeds while the reaction vessel is arranged on the magnetic sheet shown in FIG. In this drawing, in a reaction solution, ferromagnetic metal nanoparticles are formed by a reduction reaction, which is attracted to the bottom of the reaction vessel, grows in a fiber shape along the direction of magnetic force, and has a highly oriented metal. The state where a nanofiber sheet is obtained is shown.
 図6は、この方法で得られる金属ナノ繊維シート状物の一例として、後述する実施例1で得られた金属ナノ繊維シート状物を示す写真である。図6における左図は、形成された金属ナノ繊維シート状物の反応容器の底面に接する面(下面)の写真であり、右図は、左図に示す金属ナノ繊維シート状物の反対面、即ち、該金属ナノ繊維シート状物の反応溶液側の面(上面)の写真である。左図では、形成された金属ナノ繊維シート状物の表面は、光沢を有する部分と無光沢部分が交互に存在して縞状となっている。この内で、光沢部分は、反応容器の下に配置した磁性シートにおいて、平行に配列した棒磁石同士の間隙部に対応する部分であり、隣接する棒磁石間において、シート面内棒磁石垂直方向の磁束密度が高い磁力線が形成されている部分である。図7は、この光沢部分の走査型電子顕微鏡(SEM)写真である。図7から、金属ナノ繊維シート状物の反応容器の底面に接する面の光沢部分では、金属ナノ繊維が一定方向に揃って成長した配向性の高い金属ナノ繊維シート状物が形成されていることが判る。 FIG. 6 is a photograph showing the metal nanofiber sheet obtained in Example 1 described later as an example of the metal nanofiber sheet obtained by this method. The left figure in FIG. 6 is a photograph of the surface (lower surface) in contact with the bottom surface of the reaction vessel of the formed metal nanofiber sheet, the right figure is the opposite surface of the metal nanofiber sheet shown in the left figure, That is, it is a photograph of the surface (upper surface) on the reaction solution side of the metal nanofiber sheet. In the left figure, the surface of the formed metal nanofiber sheet is striped with alternating glossy and matte parts. Among these, the glossy portion is a portion corresponding to the gap portion between the bar magnets arranged in parallel in the magnetic sheet arranged under the reaction vessel, and the bar magnet in the sheet surface is perpendicular to the adjacent bar magnets. This is a portion where magnetic field lines having a high magnetic flux density are formed. FIG. 7 is a scanning electron microscope (SEM) photograph of this glossy portion. From FIG. 7, in the glossy part of the surface of the metal nanofiber sheet that is in contact with the bottom surface of the reaction vessel, a highly oriented metal nanofiber sheet is formed in which the metal nanofibers are grown in a certain direction. I understand.
 図6の左図における無光沢部分は、反応容器の下に配置した磁性シート中の棒磁石の直上部分であり、シート面内棒磁石垂直方向の磁束密度が微弱な部分である。図8は、この部分に形成された金属ナノ繊維シート状物(無光沢部分)のSEM写真であり、金属ナノ粒子が無秩序に結合している状態であることが判る。 The matte part in the left figure of FIG. 6 is a part directly above the bar magnet in the magnetic sheet placed under the reaction vessel, and is a part where the magnetic flux density in the vertical direction of the bar magnet in the sheet is weak. FIG. 8 is an SEM photograph of the metal nanofiber sheet (matte portion) formed in this portion, and it can be seen that the metal nanoparticles are in a disordered state.
 一方、図6の右図、即ち、形成された金属ナノ繊維シート状物の反応溶液側の面は、金属ナノ繊維シート状物の反応容器の底面に接する面の光沢面と比較すると光沢が劣る面である。図9は、この面のSEM写真である。金属ナノ粒子の形状を残した繊維が確認できるが、配向性は光沢部分と比較すると大きく劣る状態である。これは、金属ナノ繊維シート状物の膜厚の増加により、反応溶液側の面において磁場の影響が低下したことによるものと考えられる。 On the other hand, the right side of FIG. 6, that is, the surface on the reaction solution side of the formed metal nanofiber sheet is less glossy than the glossy surface of the surface in contact with the bottom surface of the reaction vessel of the metal nanofiber sheet. Surface. FIG. 9 is an SEM photograph of this surface. Although the fiber which remained the shape of the metal nanoparticle can be confirmed, the orientation is largely inferior to the glossy part. This is thought to be due to the fact that the influence of the magnetic field was reduced on the reaction solution side surface due to the increase in the film thickness of the metal nanofiber sheet.
 以上の通り、本発明の方法では、反応容器の底部における磁束密度を最大にすることによって、最も強い磁場が印加された反応容器の底面近傍において、配向性の高い金属ナノ繊維シート状物が形成される。この場合、得られるシート状物の全体の配向性をより向上させるためには、金属ナノ粒子の還元析出量を減少させてシート状物の膜厚を薄くして、磁場の影響が強い反応容器の底面近傍のみにシート状の金属ナノ繊維の構造体を形成する。例えば、反応溶液中の強磁性金属イオン濃度を低下させる方法、反応時間を短縮する方法などによって、金属ナノ粒子の析出量を低減することができる。 As described above, in the method of the present invention, by maximizing the magnetic flux density at the bottom of the reaction vessel, a highly oriented metal nanofiber sheet is formed near the bottom of the reaction vessel to which the strongest magnetic field is applied. Is done. In this case, in order to further improve the overall orientation of the obtained sheet-like material, the reaction vessel is strongly influenced by a magnetic field by reducing the reduction precipitation amount of the metal nanoparticles to reduce the thickness of the sheet-like material. A sheet-like structure of metal nanofibers is formed only in the vicinity of the bottom surface. For example, the amount of deposited metal nanoparticles can be reduced by a method of reducing the ferromagnetic metal ion concentration in the reaction solution, a method of shortening the reaction time, or the like.
 本発明の金属ナノ繊維シート状物の製造方法では、上記した方法によって配向性の高い金属ナノ繊維シート状物を得た後、更に、必要に応じて、得られたシート状物のシート面に対して圧力を加えることによって、金属ナノ繊維の配向度をより向上させると共に、シート厚さのバラツキを低減して、金属ナノ繊維シート状物を平滑化することができる。該シート状物のシート面に対して圧力を加える方法については、特に限定はなく、シート面に対して、ほぼ垂直方向から均一に圧力を加えることができる方法が挙げられる。例えば、該シート状物を圧延する方法、該シート状物をプレスする方法などを適用できる。圧力の強さについては、該シート状物の厚さ、該シート状物を構成する繊維の種類、直径などによって異なるので一概には規定できない。圧力として、例えば、該シート状物が崩壊することがない範囲内の圧力であって、全体を均一に平滑化できる圧力が挙げられる。例えば、ニッケルナノ繊維からなるシートの場合には、2MPa~20MPa程度の圧力範囲において、ニッケル金属の降伏応力の4%~40%程度の圧力で加圧することが好ましく、4MPa~10MPaの圧力の範囲内であって、ニッケル金属の降伏応力の7%~20%の圧力で加圧することがより好ましい。 In the method for producing a metal nanofiber sheet according to the present invention, after obtaining a highly oriented metal nanofiber sheet by the above-described method, further, if necessary, on the sheet surface of the obtained sheet. By applying pressure to the metal nanofiber sheet, it is possible to further improve the degree of orientation of the metal nanofibers and reduce variations in sheet thickness, thereby smoothing the metal nanofiber sheet. The method for applying pressure to the sheet surface of the sheet-like material is not particularly limited, and examples thereof include a method that can apply pressure uniformly to the sheet surface from a substantially vertical direction. For example, a method of rolling the sheet material, a method of pressing the sheet material, and the like can be applied. Since the strength of the pressure varies depending on the thickness of the sheet-like material, the type of fiber constituting the sheet-like material, the diameter, and the like, it cannot be defined unconditionally. Examples of the pressure include a pressure within a range in which the sheet-like material does not collapse, and a pressure that can uniformly smooth the whole. For example, in the case of a sheet made of nickel nanofibers, it is preferable to press at a pressure of about 4% to 40% of the yield stress of nickel metal in a pressure range of about 2 MPa to 20 MPa, and a pressure range of 4 MPa to 10 MPa. It is more preferable to pressurize at a pressure of 7% to 20% of the yield stress of nickel metal.
 高配向金属ナノ繊維シート状物
 本発明の製造方法によって得られる金属ナノ繊維シート状物は、線径がナノサイズの金属繊維、例えば50nm~500nm程度の線径の金属ナノ繊維が方向性よく一定方向に揃って整列したシート状の構造体であり、従来から公知の金属ナノ繊維からなるシートと比較して、高い配向性を有するシート状物である。
Highly Oriented Metal Nanofiber Sheet Material The metal nanofiber sheet material obtained by the production method of the present invention has a nano-sized metal fiber, for example, a metal nano-fiber having a wire diameter of about 50 nm to 500 nm, having a constant directivity. It is a sheet-like structure that is aligned in the direction, and is a sheet-like material having a higher orientation as compared with a sheet made of conventionally known metal nanofibers.
 本発明の金属ナノ繊維シート状物は、高い配向性を示すシート状の構造体であり、後述するフーリエ変換画像解析を用いた方法で求めた配向度が1.65以上という高い値を有するものである。 The metal nanofiber sheet material of the present invention is a sheet-like structure exhibiting high orientation, and has a high degree of orientation of 1.65 or more determined by a method using Fourier transform image analysis described later. It is.
 以下、本発明の金属ナノ繊維シート状物の配向度の測定方法について説明する。 Hereinafter, a method for measuring the degree of orientation of the metal nanofiber sheet according to the present invention will be described.
 まず、本発明の金属ナノ繊維シート状物の配向度を求める部分について、倍率500倍の顕微鏡写真を撮影し、照明むら等の影響を補正するために、この画像を2値化し、0.2ミリメートル角以上の領域を取り出す。 First, for a portion for obtaining the degree of orientation of the metal nanofiber sheet of the present invention, a microphotograph at a magnification of 500 times is taken, and this image is binarized in order to correct the influence of uneven illumination, 0.2 Take out the area of millimeter square or more.
 次いで、2値化した画像をフーリエ変換処理してパワースペクトルを求める。得られたパワースペクトルの各角度θについて振幅の平均値を算出し、平均振幅を角度θについて極座標で表示した繊維配向分布図を作成する。図10は、この方法で得られた繊維配向分布図の一例を示す図面である。この図では、長軸はその方向に濃淡の起伏が大きいことを示しており、繊維を多く横切る方向となる。一方、短軸方向は濃淡の起伏が最も少ない方向であり、短軸方向が繊維の主配向の方向であることを示している。本発明では、この繊維配向分布図を楕円近似し、近似した楕円の長軸/短軸比を配向度として規定する。 Next, the binarized image is subjected to Fourier transform processing to obtain a power spectrum. An average value of the amplitude is calculated for each angle θ of the obtained power spectrum, and a fiber orientation distribution diagram in which the average amplitude is displayed in polar coordinates with respect to the angle θ is created. FIG. 10 is a drawing showing an example of a fiber orientation distribution diagram obtained by this method. In this figure, the long axis indicates that the undulations of the shading are large in that direction, and is in the direction crossing many fibers. On the other hand, the minor axis direction is the direction with the least shading, indicating that the minor axis direction is the direction of the main orientation of the fiber. In the present invention, this fiber orientation distribution diagram is approximated to an ellipse, and the major / short axis ratio of the approximated ellipse is defined as the degree of orientation.
 この方法によれば、繊維の配向方向が完全に無秩序の場合に、長軸と短軸の長さが同一となって配向度は1となり、配向度が高い程、金属ナノ繊維が同一方向に揃って整列した配向性の高いシート状構造体となる。この方法は、例えば、「画像処理を用いた紙の物性解析手法(紙パルプ技術タイムス、48(11)1-5(2005))」に記載されている繊維配向を求める手法に基づくものであり、例えば、非破壊による紙の表面繊維配向解析プログラム(http://www.enomae.com/FiberOri/index.htm)を用いて解析することができる。 According to this method, when the orientation direction of the fiber is completely disordered, the lengths of the major axis and the minor axis are the same, the degree of orientation is 1, and the higher the degree of orientation, the more the metal nanofibers are in the same direction. It becomes a highly oriented sheet-like structure that is aligned and aligned. This method is based on, for example, a method for obtaining fiber orientation described in “Method for analyzing physical properties of paper using image processing (Paper Pulp Technology Times, 48 (11) 1-5 (2005))”. For example, it can be analyzed using a non-destructive paper surface fiber orientation analysis program (http://www.enomae.com/FiberOri/index.htm).
 本発明方法で得られる金属ナノ繊維シート状物は、上記した方法で求められる配向度が1.55以上という高い配向性を示すものであり、1.70以上という高い配向度を有する金属ナノ繊維シート状物を得ることができる。さらに、シート面に垂直な方向からの力を加えて強く押して平滑化することで、特に1.8以上という非常に高い配向度を有する金属ナノ繊維シート状物を得ることもできる。 The metal nanofiber sheet obtained by the method of the present invention exhibits a high degree of orientation of 1.55 or more, and the metal nanofibers having a high degree of orientation of 1.70 or more. A sheet-like material can be obtained. Furthermore, a metal nanofiber sheet having a very high degree of orientation of 1.8 or more can be obtained by applying a force from a direction perpendicular to the sheet surface and pressing it for smoothing.
 本発明の金属ナノ繊維シート状物は、上記した反応溶液を用いた還元反応によって形成することが可能であり、反応溶液における含有成分の種類又は添加量、反応条件などを前述した条件に従って調整することによって、金属ナノ繊維の線径、配向度、膜厚などを制御することが可能である。 The metal nanofiber sheet-like material of the present invention can be formed by a reduction reaction using the above-described reaction solution, and the kind or addition amount of components contained in the reaction solution, reaction conditions, etc. are adjusted according to the aforementioned conditions. Thus, it is possible to control the wire diameter, orientation degree, film thickness, and the like of the metal nanofibers.
 本発明の方法では、形成される金属ナノ繊維が一定方向に揃って配列しているために、金属ナノ繊維の厚さ分布が均質となり、厚さのバラツキを10%程度以下とすることができる。更に、金属ナノ繊維の配向性が高いために、金属ナノ粒子の析出量を低減させることによって膜厚のより薄いシート状の構造体とすることが可能であり、例えば、膜厚が10μm程度のシート状物とすることができる。 In the method of the present invention, since the formed metal nanofibers are aligned in a certain direction, the thickness distribution of the metal nanofibers is uniform, and the thickness variation can be about 10% or less. . Furthermore, since the orientation of the metal nanofibers is high, it is possible to obtain a sheet-like structure with a thinner film thickness by reducing the amount of deposited metal nanoparticles. For example, the film thickness is about 10 μm. It can be a sheet.
 また、該シート状物を加圧することによって、該シート状物の厚さのバラツキを5%程度以下とすることもできる。 Further, by pressing the sheet-like material, the thickness variation of the sheet-like material can be reduced to about 5% or less.
 本発明の金属ナノ繊維シート状物は、ナノ物質特有の大きな比表面積又は曲率を示す一次元ナノ繊維の特性を包含した二次元金属シート材料という、これまでの金属材料にない特徴を有する混合次元物質である。 The metal nanofiber sheet of the present invention is a two-dimensional metal sheet material that includes the characteristics of a one-dimensional nanofiber exhibiting a large specific surface area or curvature peculiar to nanomaterials. It is a substance.
 この様な特徴を有する本発明の金属ナノ繊維シート状物は、一定方向にナノ繊維を整列させることで、シート厚さをほぼナノ繊維の直径に相当するサブミクロンオーダーで制御できる。また、積層による集積化にも対応可能であり、ミクロンオーダーの厚さの均質な高集積化の可能な金属ナノシートとして、例えば、電極製造に用いることで、小型及び軽量化、高速充放電などに適用可能な電極を得ることができる。更に、ナノ繊維本来の大比表面積の特徴を生かして、触媒担体として各種の触媒を担持させることによって、高比表面積の反応性に優れた担持触媒とすることができる。また、微細で高密度な電極材料となるという点からは、次世代積層コンデンサー、微細高容量オンボード蓄電池、キャパシターなどの分野又は用途に展開することも可能である。 The metal nanofiber sheet-like material of the present invention having such characteristics can control the sheet thickness on the order of submicrons, which corresponds to the diameter of the nanofiber, by aligning the nanofibers in a certain direction. It can also be integrated by stacking, and as a metal nanosheet with a uniform thickness of micron order and capable of high integration, for example, it can be used for electrode manufacturing, making it compact and lightweight, and fast charge and discharge etc. Applicable electrodes can be obtained. Furthermore, by making use of the characteristics of the large specific surface area inherent to nanofibers, a supported catalyst having a high specific surface area and excellent reactivity can be obtained by supporting various catalysts as a catalyst carrier. In addition, from the point that it becomes a fine and high-density electrode material, it can be developed in fields or applications such as a next-generation multilayer capacitor, a fine high-capacity on-board storage battery, and a capacitor.
 本発明の金属ナノ繊維シート状物は、具体的には、例えば、該シート状物の表面に電極活物質層を形成することによって、二次電池の電極として有効に利用することができる。 Specifically, the metal nanofiber sheet material of the present invention can be effectively used as an electrode of a secondary battery, for example, by forming an electrode active material layer on the surface of the sheet material.
 本発明の金属ナノ繊維シート状物の表面に電極活物質層を形成する方法については、特に限定はなく、各種の基材に対して電極活物質を付与する手段として公知の方法を適用できる。 The method for forming the electrode active material layer on the surface of the metal nanofiber sheet of the present invention is not particularly limited, and known methods can be applied as means for applying the electrode active material to various substrates.
 例えば、金属ナノ繊維シート状物の表面を酸化して金属酸化物皮膜を形成することによって、簡便な方法で金属酸化物からなる活物質層を形成することができる。酸化法によって活物質層を形成する場合には、通常は、酸化性雰囲気中において、該金属ナノ繊維シート状物を加熱する。これによって、該金属ナノ繊維シート状物を構成する金属ナノ繊維の表面が酸化されて酸化物皮膜が形成される。 For example, an active material layer made of a metal oxide can be formed by a simple method by oxidizing the surface of the metal nanofiber sheet to form a metal oxide film. When the active material layer is formed by an oxidation method, the metal nanofiber sheet is usually heated in an oxidizing atmosphere. As a result, the surface of the metal nanofibers constituting the metal nanofiber sheet is oxidized to form an oxide film.
 その他、電析法によって該金属ナノ繊維シート状物の表面に金属皮膜を形成できる。例えば、電析法でSn-Ni合金めっき皮膜を形成することによって、Sn-Ni合金層を有する金属ナノ繊維シート状物を得ることができる。電析法の条件については特に限定はなく、Sn-Niめっき皮膜を形成するための公知の方法を適用できる。Sn-Ni皮膜の厚さについては特に限定はなく、金属ナノ繊維の表面をできるだけ均一に被覆できる条件を適宜採用することができる。この様にしてSn-Ni合金めっき皮膜を形成した金属ナノ繊維シート状物は、例えば、リチウムイオン二次電池用負極として有効に利用し得るものであり、Liの挿入脱離に伴う体積変化が緩和され、サイクル特性に優れた負極となる。 In addition, a metal film can be formed on the surface of the metal nanofiber sheet by an electrodeposition method. For example, a metal nanofiber sheet having a Sn—Ni alloy layer can be obtained by forming a Sn—Ni alloy plating film by an electrodeposition method. The conditions for the electrodeposition method are not particularly limited, and a known method for forming a Sn—Ni plating film can be applied. The thickness of the Sn—Ni film is not particularly limited, and conditions that can coat the surface of the metal nanofibers as uniformly as possible can be appropriately employed. The metal nanofiber sheet-like material on which the Sn—Ni alloy plating film is formed in this way can be effectively used, for example, as a negative electrode for a lithium ion secondary battery, and there is a volume change accompanying the insertion and removal of Li. The negative electrode is relaxed and has excellent cycle characteristics.
 その他、乾式法によって該金属ナノ繊維シート状物の表面に半金属又は酸化物の被覆を形成できる。例えば、スパッタ法でシリコン被覆を形成することによって、シリコンで被覆された金属ナノ繊維シート状物を得ることができる。スパッタ法の条件については特に限定はなく、シリコン被覆を形成するための公知の方法を適用できる。シリコン被覆の厚さについては特に限定はなく、金属ナノ繊維の表面をできるだけ均一に被覆できる条件を適宜採用すればよい。この様にしてシリコン被覆を形成した金属ナノ繊維シート状物は、例えば、リチウムイオン二次電池用負極として有効に利用しうるものであり、Liの挿入脱離に伴う体積変化が緩和され、サイクル特性に優れた負極となる。 In addition, a semi-metal or oxide coating can be formed on the surface of the metal nanofiber sheet by a dry method. For example, a metal nanofiber sheet-like material coated with silicon can be obtained by forming a silicon coating by sputtering. There is no particular limitation on the conditions of the sputtering method, and a known method for forming a silicon coating can be applied. The thickness of the silicon coating is not particularly limited, and a condition that allows the surface of the metal nanofibers to be coated as uniformly as possible may be adopted as appropriate. In this way, the metal nanofiber sheet with the silicon coating formed can be effectively used as, for example, a negative electrode for a lithium ion secondary battery. The negative electrode has excellent characteristics.
 更に、公知のゾルゲル法を適用して、本発明の金属ナノ繊維シート状物に各種の酸化物被膜を形成することによって各種の用途に用いることができる。例えば、金属ナノ繊維シート状物にTiOを被覆することによって光応答電極として使用可能である。更に、金属ナノ繊維シート状物に触媒物質を被覆することによって触媒電極としても使用可能である。 Furthermore, it can use for various uses by applying a well-known sol-gel method and forming various oxide films in the metal nanofiber sheet-like material of this invention. For example, it can be used as a photoresponsive electrode by coating TiO 2 on a metal nanofiber sheet. Furthermore, it can be used as a catalyst electrode by coating a metal nanofiber sheet with a catalyst substance.
 更に、電析法、ナノ粒子分散液に浸漬する方法などで表面被膜を形成することも可能である。例えば、電析法でNi-Moめっき皮膜を形成することによって、高効率水素発生電極として使用可能である。 Furthermore, it is possible to form a surface film by an electrodeposition method, a method of immersing in a nanoparticle dispersion liquid, or the like. For example, it can be used as a high-efficiency hydrogen generating electrode by forming a Ni-Mo plating film by electrodeposition.
 以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
 実施例1
 塩化ニッケル(II)六水和物(NiCl2・6H2O)0.10モル/L、及びクエン酸三ナトリウム二水和物(Na3C6H5O7・2H2O)37.5ミリモル/Lをイオン交換水に溶解し、室温でNaOH 水溶液によりpH 12.5 に調整した。この溶液にヘキサクロロ白金酸六水和物(H2PtCl6・6H2O)0.2ミリモル/Lを加えて、強磁性金属のイオンとしてNi(II)イオンを含む溶液40cm3を調製した。
Example 1
Nickel (II) chloride hexahydrate (NiCl 2 · 6H 2 O) 0.10 mol / L, and trisodium citrate dihydrate (Na 3 C 6 H 5 O 7 · 2H 2 O) 37.5 mmol / L It melt | dissolved in ion-exchange water and it adjusted to pH 12.5 with NaOH aqueous solution at room temperature. Hexachloroplatinic acid hexahydrate (H 2 PtCl 6 .6H 2 O) 0.2 mmol / L was added to this solution to prepare 40 cm 3 of a solution containing Ni (II) ions as ferromagnetic metal ions.
 一方、ヒドラジン(N2H4・H2O)1.00モル/Lを イオン交換水に溶解し、室温でNaOH 水溶液によりpH 12.5 に調整して、還元剤を含む溶液40cm3を調製した。 On the other hand, 1.00 mol / L of hydrazine (N 2 H 4 · H 2 O) was dissolved in ion-exchanged water and adjusted to pH 12.5 with an aqueous NaOH solution at room temperature to prepare a 40 cm 3 solution containing a reducing agent.
 上記したNi(II)イオンを含む溶液と還元剤とを含む溶液をそれぞれ60℃に加熱し、これらの溶液を容量100mLのビーカー中で混合して反応溶液80cm3を得た。 The solution containing Ni (II) ions and the solution containing a reducing agent were each heated to 60 ° C., and these solutions were mixed in a beaker having a capacity of 100 mL to obtain 80 cm 3 of a reaction solution.
 その後、直ちに、図3に示すように、平面状に広げたシート状磁石の上に、反応溶液を入れたビーカーを配置し、ビーカーの底部の磁束密度が最も高くなる状態で磁場を印加してニッケルイオンの還元反応を開始した。この状態のまま60℃で240分間放置して、反応を終了した。 Immediately thereafter, as shown in FIG. 3, a beaker containing the reaction solution is placed on a planar sheet-like magnet, and a magnetic field is applied in a state where the magnetic flux density at the bottom of the beaker is highest. The reduction reaction of nickel ions was started. The reaction was terminated by leaving it in this state at 60 ° C. for 240 minutes.
 この方法で用いたシート磁石の概略図は、図4に示す通りである。シート磁石の大きさは約10cm角、棒磁石は長手方向95mm×幅5mm×厚さ1mm、棒磁石の数18本、磁束密度の強さは磁石直上の棒磁石中央で約80mT、棒磁石間で約20mTであった。 Schematic diagram of the sheet magnet used in this method is as shown in FIG. The size of the sheet magnet is about 10cm square, the bar magnet is 95mm in the longitudinal direction × 5mm in width × 1mm in thickness, the number of the bar magnets is 18, and the strength of the magnetic flux density is about 80mT at the center of the bar magnet just above the magnet. It was about 20mT.
 この方法により、ビーカーの底面の形状に沿って厚さ約100μmのNiナノ繊維のシート状物が得られた。得られたNiナノ繊維シートの下面、即ち、ビーカーの底面に接する面の表面写真を図6の左図に示し、該Niナノ繊維シートの上面、即ち反応溶液に接する面の表面写真を図6の右図に示す。Niナノ繊維シートの底面側の面における光沢部分が、ビーカーの底面の下に設置したシート磁石中に平行に配列した棒磁石の間隙部の上部、即ち、磁束密度の高い磁力線が形成されている部分に対応する部分である。図7は、光沢部分の走査型電子顕微鏡(SEM)写真であり、金属ナノ繊維が一定方向に揃って成長した配向性の高い金属ナノ繊維シート状物が形成されていることが確認された。 By this method, a sheet of Ni nanofiber having a thickness of about 100 μm was obtained along the shape of the bottom surface of the beaker. A surface photograph of the lower surface of the obtained Ni nanofiber sheet, that is, the surface in contact with the bottom surface of the beaker is shown in the left figure of FIG. 6, and a surface photograph of the upper surface of the Ni nanofiber sheet, that is, the surface in contact with the reaction solution is shown in FIG. The right figure shows. The glossy part on the bottom surface of the Ni nanofiber sheet is formed in the upper part of the gap between the bar magnets arranged in parallel in the sheet magnet installed under the bottom of the beaker, that is, the magnetic field lines with high magnetic flux density are formed. It is a part corresponding to the part. FIG. 7 is a scanning electron microscope (SEM) photograph of the glossy part, and it was confirmed that a highly oriented metal nanofiber sheet was formed in which the metal nanofibers grew in a certain direction.
 上記方法で得られた光沢部分のSEM像について、非破壊による紙の表面繊維配向解析プログラム(http://www.enomae.com/FiberOri/index.htm)を使用して、該SEM像を2値化し、フーリエ変換処理によってパワースペクトルを得た後、パワースペクトルの平均振幅の角度分布を求め、平均振幅を角度θについて極座標で表示した繊維配向分布図を作成し、平均振幅のプロットを楕円近似し、得られた楕円の長軸/短軸比から、Niナノ繊維の配向度を求めた。その結果、上記方法で得られたNiナノ繊維シートの内で、ビーカーの底面に接する面の光沢部分の配向度は1.78であり、極めて配向性が高いことが確認できた。 Using the non-destructive paper surface fiber orientation analysis program (http://www.enomae.com/FiberOri/index.htm), the SEM image of the glossy part obtained by the above method is converted into 2 After obtaining the power spectrum by Fourier transform processing, obtain the angle distribution of the average amplitude of the power spectrum, create a fiber orientation distribution diagram displaying the average amplitude in polar coordinates with respect to the angle θ, and elliptically approximate the plot of the average amplitude The degree of orientation of the Ni nanofibers was determined from the long axis / short axis ratio of the obtained ellipse. As a result, among the Ni nanofiber sheets obtained by the above method, the degree of orientation of the glossy portion of the surface in contact with the bottom surface of the beaker was 1.78, confirming that the orientation was extremely high.
 図11は、上記したNiナノ繊維シートを作製する方法において、反応時間と析出したNi質量との関係を示すグラフである。Ni質量については、水晶発振子マイクロバランス(QCM)法によって求めた値である。上記した条件でNiナノ繊維シートを作製した場合には、約240分の反応時間で約60μgのNiが析出し、反応終点を迎えたことが確認できた。 FIG. 11 is a graph showing the relationship between the reaction time and the deposited Ni mass in the above-described method for producing the Ni nanofiber sheet. The Ni mass is a value obtained by the quartz crystal microbalance (QCM) method. When the Ni nanofiber sheet was produced under the above-described conditions, it was confirmed that about 60 μg of Ni was precipitated in the reaction time of about 240 minutes and the reaction end point was reached.
 実施例2
 実施例1と同様にして、Ni(II)イオンを含む溶液と還元剤とを含む溶液を調製した。これらの各溶液をそれぞれ20cm3用いて、60℃に加熱し、容量100mLのビーカー中で混合して反応溶液40cm3を得た。
Example 2
In the same manner as in Example 1, a solution containing Ni (II) ions and a reducing agent were prepared. 20 cm 3 of each of these solutions was heated to 60 ° C. and mixed in a beaker having a capacity of 100 mL to obtain 40 cm 3 of a reaction solution.
 反応溶液量を40cm3とすること以外は、実施例1と同様にして、Niナノ繊維シートを作製した。この方法により、ビーカーの底面の形状に沿って厚さ約100μmのNiナノ繊維のシート状物が得られた。 A Ni nanofiber sheet was produced in the same manner as in Example 1 except that the amount of the reaction solution was 40 cm 3 . By this method, a sheet of Ni nanofibers having a thickness of about 100 μm was obtained along the shape of the bottom surface of the beaker.
 得られたNiナノ繊維シートの下面、即ち、ビーカーの底面に接する面の表面写真を図12の左図に示し、該Niナノ繊維シートの上面、即ち反応溶液に接する面の表面写真を図12の右図に示す。Niナノ繊維シートの底面側の面における光沢部分が、ビーカーの底面の下に設置したシート磁石中に平行に配列した棒磁石の間隙部の上部、即ち、磁束密度の高い磁力線が形成されている部分に対応する部分である。 The surface photograph of the lower surface of the obtained Ni nanofiber sheet, that is, the surface in contact with the bottom surface of the beaker is shown in the left figure of FIG. 12, and the upper surface of the Ni nanofiber sheet, that is, the surface photograph in contact with the reaction solution is shown in FIG. The right figure shows. The glossy part on the bottom surface of the Ni nanofiber sheet is formed in the upper part of the gap between the bar magnets arranged in parallel in the sheet magnet installed under the bottom of the beaker, that is, the magnetic field lines with high magnetic flux density are formed. It is a part corresponding to the part.
 図13は、この光沢部分の走査型電子顕微鏡(SEM)写真である。実施例1で得られたNiナノ繊維シートと同様、Niナノ繊維シートの下面では、良好な配向性を示していることが確認された。 FIG. 13 is a scanning electron microscope (SEM) photograph of this glossy portion. Similar to the Ni nanofiber sheet obtained in Example 1, it was confirmed that the lower surface of the Ni nanofiber sheet showed good orientation.
 図14は、該Niナノ繊維シートの上面、即ち反応溶液に接する面のSEM写真である。実施例1と比較すると、該Niナノ繊維シートの上面でのNiナノ繊維の配向性が向上していることが判った。これは、反応溶液量を低減したことにより、形成されるシートが薄くなり、該Niナノ繊維シートの上面での磁場が強くなったことによるものと考えられる。この場合の該Niナノ繊維シートの配向度は、下面で1.72、上面で1.59であった。 FIG. 14 is an SEM photograph of the upper surface of the Ni nanofiber sheet, that is, the surface in contact with the reaction solution. Compared to Example 1, it was found that the orientation of the Ni nanofibers on the upper surface of the Ni nanofiber sheet was improved. This is considered to be because the formed sheet became thinner and the magnetic field on the upper surface of the Ni nanofiber sheet became stronger by reducing the amount of the reaction solution. In this case, the degree of orientation of the Ni nanofiber sheet was 1.72 on the lower surface and 1.59 on the upper surface.
 実施例3
 実施例2で作製したNiナノ繊維シートを、プレス機で5MPaの圧力をかけ、1分間プレスし、厚さが約5μmで厚さのバラツキが10%のNiナノ繊維シートを得た。図15は、該Niナノ繊維シートの下面(シート磁石に対向していた面)の走査電子顕微鏡(SEM)写真である。図16は、該Niナノ繊維シートの上面(シート磁石に対向していた面の反対側)の走査電子顕微鏡(SEM)写真である。
Example 3
The Ni nanofiber sheet produced in Example 2 was pressed with a press at a pressure of 5 MPa for 1 minute to obtain a Ni nanofiber sheet having a thickness of about 5 μm and a thickness variation of 10%. FIG. 15 is a scanning electron microscope (SEM) photograph of the lower surface (the surface facing the sheet magnet) of the Ni nanofiber sheet. FIG. 16 is a scanning electron microscope (SEM) photograph of the upper surface of the Ni nanofiber sheet (the side opposite to the surface facing the sheet magnet).
 該Niナノシート下面、上面での配向度は、プレス処理を施す前に比べて、さらに改善しており、シート面に圧力をかけることでNiナノ繊維の整列が促進され、配向度が改善したものと考えられる。この場合の該Niナノ繊維シートの配向度は、下面で1.81、上面で1.69であった。 The degree of orientation on the lower and upper surfaces of the Ni nanosheet is further improved compared to before the press treatment. By applying pressure to the sheet surface, the alignment of the Ni nanofibers is promoted and the degree of orientation is improved. it is conceivable that. In this case, the degree of orientation of the Ni nanofiber sheet was 1.81 on the lower surface and 1.69 on the upper surface.

Claims (12)

  1. 強磁性金属のイオン及び還元剤を含む反応溶液から強磁性金属を還元析出させて、シート状の金属ナノ繊維構造体を製造する方法であって、
    該反応溶液を収容した反応容器の底部の磁束密度が最大となるように磁場を印加した状態で還元反応を進行させることを特徴とする、高配向金属ナノ繊維シート状物の製造方法。
    A method of producing a sheet-like metal nanofiber structure by reducing and precipitating a ferromagnetic metal from a reaction solution containing a ferromagnetic metal ion and a reducing agent,
    A method for producing a highly oriented metal nanofiber sheet, wherein the reduction reaction is allowed to proceed in a state where a magnetic field is applied so that the magnetic flux density at the bottom of the reaction vessel containing the reaction solution is maximized.
  2. 磁場を印加する方法が、シート状磁石の上に反応溶液を収容した反応容器を配置する方法、又は磁力源を反応容器の底面より下若しくは反応容器の底面近傍に配置して磁場を形成する方法である、請求項1に記載の金属ナノ繊維シート状物の製造方法。 The method of applying a magnetic field is a method of arranging a reaction vessel containing a reaction solution on a sheet-like magnet, or a method of forming a magnetic field by arranging a magnetic source below or near the bottom of the reaction vessel. The method for producing a metal nanofiber sheet according to claim 1, wherein
  3. 前記強磁性金属イオン及び還元剤を含む反応溶液が、更に、錯化剤を含有するものである、請求項1又は2に記載の金属ナノ繊維シート状物の製造方法。 The method for producing a metal nanofiber sheet according to claim 1 or 2, wherein the reaction solution containing the ferromagnetic metal ion and the reducing agent further contains a complexing agent.
  4. 前記強磁性金属イオン及び還元剤を含む反応溶液が、更に、核形成剤を含有するものである、請求項1~3のいずれかに記載の金属ナノ繊維シート状物の製造方法。 The method for producing a metal nanofiber sheet according to any one of claims 1 to 3, wherein the reaction solution containing the ferromagnetic metal ion and the reducing agent further contains a nucleating agent.
  5. 前記反応溶液のpHが12以上であって、液温が55~85℃である、請求項1~4のいずれかに記載の金属ナノ繊維シート状物の製造方法。 The method for producing a metal nanofiber sheet according to any one of claims 1 to 4, wherein the reaction solution has a pH of 12 or more and a liquid temperature of 55 to 85 ° C.
  6. 前記強磁性金属がFe、Co、Ni又はこれらの合金である、請求項1~5のいずれかに記載の金属ナノ繊維シート状物の製造方法。 The method for producing a metal nanofiber sheet according to any one of claims 1 to 5, wherein the ferromagnetic metal is Fe, Co, Ni, or an alloy thereof.
  7. 線径がナノサイズの強磁性金属繊維からなるシート状の構造体であって、
    下記(1)~(5)の方法で求められる配向度が1.65以上である、高配向金属ナノ繊維シート状物:
    (1)該シート状物の顕微鏡写真を2値化し、
    (2)2値化した像をフーリエ変換処理してパワースペクトルを得、
    (3)パワースペクトルの平均振幅の角度分布を求め、
    (4)平均振幅を角度θについて極座標で表示した繊維配向分布図を作成し、
    (5)繊維配向分布図の平均振幅のプロットを楕円近似し、得られた楕円の長軸/短軸比を配向度とする。
    A sheet-like structure made of a ferromagnetic metal fiber having a nanowire diameter,
    A highly oriented metal nanofiber sheet-like material having an orientation degree of 1.65 or more determined by the following methods (1) to (5):
    (1) Binarize the micrograph of the sheet,
    (2) The binarized image is Fourier transformed to obtain a power spectrum,
    (3) Obtain the angular distribution of the average amplitude of the power spectrum,
    (4) Create a fiber orientation distribution diagram with the average amplitude displayed in polar coordinates for the angle θ,
    (5) Ellipse approximation of the plot of average amplitude in the fiber orientation distribution diagram is taken, and the major axis / minor axis ratio of the obtained ellipse is taken as the degree of orientation.
  8. 前記配向度が1.8以上である、請求項7に記載の高配向金属ナノ繊維シート状物。 The highly oriented metal nanofiber sheet-like material according to claim 7, wherein the degree of orientation is 1.8 or more.
  9. 請求項1~6のいずれかの方法によって高配向ナノ繊維シート状物を得た後、更に、該シート状物のシート面に対して圧力を加える工程を含む、金属ナノ繊維シート状物の製造方法。 A process for producing a metal nanofiber sheet comprising the step of applying a pressure to the sheet surface of the sheet-like material after the highly oriented nanofiber sheet-like material is obtained by the method according to any one of claims 1 to 6. Method.
  10. シート面に圧力を加える方法が、圧延によるものである、請求項9に記載の金属ナノ繊維シート状物の製造方法。 The method for producing a metal nanofiber sheet according to claim 9, wherein the method of applying pressure to the sheet surface is by rolling.
  11. シート面に圧力を加える方法が、プレスによるものである、請求項9に記載の金属ナノ繊維シート状物の製造方法。 The method for producing a metal nanofiber sheet according to claim 9, wherein the method of applying pressure to the sheet surface is by pressing.
  12. 請求項9~11のいずれかの方法で得られる、配向性の向上した金属ナノ繊維シート状物。 A metal nanofiber sheet material with improved orientation obtained by the method according to any one of claims 9 to 11.
PCT/JP2015/057619 2014-03-28 2015-03-16 Highly oriented metal nanofiber sheet material and method for manufacturing same WO2015146657A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069490 2014-03-28
JP2014069490 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015146657A1 true WO2015146657A1 (en) 2015-10-01

Family

ID=54195180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057619 WO2015146657A1 (en) 2014-03-28 2015-03-16 Highly oriented metal nanofiber sheet material and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2015146657A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126137A1 (en) * 2016-01-19 2017-07-27 国立大学法人信州大学 Core-shell structure type nanosheet
CN107309439A (en) * 2017-07-19 2017-11-03 清华大学深圳研究生院 A kind of 3-dimensional metal nano wire and preparation method thereof
JP2020060438A (en) * 2018-10-10 2020-04-16 国立研究開発法人物質・材料研究機構 Method for measuring stress of carbon fiber
CN114959924A (en) * 2022-06-28 2022-08-30 衢州学院 High-intensity magnetic field system for orientation arrangement of nano chitin fibers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130864A (en) * 1973-04-24 1974-12-14
JPS50112800A (en) * 1974-02-15 1975-09-04
JPS644407A (en) * 1987-06-12 1989-01-09 Minnesota Mining & Mfg Manufacture of metal fiber
JP2013014805A (en) * 2011-07-04 2013-01-24 Denso Corp Method for producing magnetic alloy powder
WO2014147885A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Metal nanowire nonwoven fabric and electrode for secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130864A (en) * 1973-04-24 1974-12-14
JPS50112800A (en) * 1974-02-15 1975-09-04
JPS644407A (en) * 1987-06-12 1989-01-09 Minnesota Mining & Mfg Manufacture of metal fiber
JP2013014805A (en) * 2011-07-04 2013-01-24 Denso Corp Method for producing magnetic alloy powder
WO2014147885A1 (en) * 2013-03-21 2014-09-25 国立大学法人京都大学 Metal nanowire nonwoven fabric and electrode for secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126137A1 (en) * 2016-01-19 2017-07-27 国立大学法人信州大学 Core-shell structure type nanosheet
JP2017127799A (en) * 2016-01-19 2017-07-27 国立大学法人信州大学 Core-shell structured nanosheet
US10985382B2 (en) 2016-01-19 2021-04-20 Shinshu University Core-shell structure type nanosheet
US11682773B2 (en) 2016-01-19 2023-06-20 Shinshu University Electrocatalyst
CN107309439A (en) * 2017-07-19 2017-11-03 清华大学深圳研究生院 A kind of 3-dimensional metal nano wire and preparation method thereof
CN107309439B (en) * 2017-07-19 2019-07-26 清华大学深圳研究生院 A kind of 3-dimensional metal nano wire and preparation method thereof
JP2020060438A (en) * 2018-10-10 2020-04-16 国立研究開発法人物質・材料研究機構 Method for measuring stress of carbon fiber
JP7097067B2 (en) 2018-10-10 2022-07-07 国立研究開発法人物質・材料研究機構 Carbon fiber stress measurement method
CN114959924A (en) * 2022-06-28 2022-08-30 衢州学院 High-intensity magnetic field system for orientation arrangement of nano chitin fibers

Similar Documents

Publication Publication Date Title
Wu et al. NiCo2 alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol
Zhu et al. Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route
Liu et al. Facile synthesis and growth mechanism of flowerlike Ni− Fe alloy nanostructures
Zou et al. Fe3O4 nanocrystals with novel fractal
Suber et al. Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes
Li et al. Coating of carbon nanotube with nickel by electroless plating method
Hu et al. Fabrication of monodisperse magnetite hollow spheres
Liu et al. Shape-controlled iron oxide nanocrystals: synthesis, magnetic properties and energy conversion applications
Zhan et al. One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe 3+ & Cl− co-mediated polyol method and their application as transparent conductive films
Nielsch et al. Magnetic properties of template-synthesized cobalt∕ polymer composite nanotubes
WO2013137018A1 (en) Metal nanonetwork and method for producing same, and conductive film and conductive substrate using metal nanonetwork
Tufa et al. Magnetic-field-induced electrochemical performance of a porous magnetoplasmonic Ag@ Fe3O4 nanoassembly
Ali et al. Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition
Zhang et al. Porous Fe2O3 nanoparticles as lithium-ion battery anode materials
WO2015146657A1 (en) Highly oriented metal nanofiber sheet material and method for manufacturing same
Geng et al. Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets
WO2014147885A1 (en) Metal nanowire nonwoven fabric and electrode for secondary battery
Zhou et al. Single crystalline FeNi3 dendrites: large scale synthesis, formation mechanism, and magnetic properties
JP6518307B2 (en) Metal nanospring and method of manufacturing the same
Wang et al. Preparation and growth mechanism of nickel nanowires under applied magnetic field
Liu et al. Strong magnetic-field-engineered porous template for fabricating hierarchical porous Ni–Co–Zn–P nanoplate arrays as battery-type electrodes of advanced all-solid-state supercapacitors
Zhang et al. Fe3O4 nanowire arrays on flexible polypropylene substrates for UV and magnetic sensing
Long et al. Controlled synthesis and characterization of iron oxide micro-particles for Fe-air battery electrode material
Wang et al. Large-scale fabrication and application of magnetite coated Ag NW-core water-dispersible hybrid nanomaterials
Proenca et al. Cylindrical magnetic nanotubes: Synthesis, magnetism and applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15768702

Country of ref document: EP

Kind code of ref document: A1