WO2015146184A1 - Method for producing fish gametes for farmed fish production using surrogate parent fish, applicable to surrogate parent fish of different species - Google Patents

Method for producing fish gametes for farmed fish production using surrogate parent fish, applicable to surrogate parent fish of different species Download PDF

Info

Publication number
WO2015146184A1
WO2015146184A1 PCT/JP2015/001747 JP2015001747W WO2015146184A1 WO 2015146184 A1 WO2015146184 A1 WO 2015146184A1 JP 2015001747 W JP2015001747 W JP 2015001747W WO 2015146184 A1 WO2015146184 A1 WO 2015146184A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
species
donor
surrogate parent
hybrid
Prior art date
Application number
PCT/JP2015/001747
Other languages
French (fr)
Japanese (ja)
Inventor
吉崎 悟朗
承起 李
幸典 嶋田
良輔 矢澤
竹内 裕
森田 哲朗
輝 森島
Original Assignee
国立大学法人東京海洋大学
日本水産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京海洋大学, 日本水産株式会社 filed Critical 国立大学法人東京海洋大学
Priority to JP2016510049A priority Critical patent/JP6536961B2/en
Publication of WO2015146184A1 publication Critical patent/WO2015146184A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/02Breeding vertebrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to a method for producing fish gametes (sperm and eggs) for producing cultured fish using surrogate parent fish, which can be applied to surrogate parent fish of other genus species.
  • a donor fish species that cannot be a surrogate parent of the donor fish species is supplied to a donor fish species that supplies isolated germ cells for production of the target fish gamete.
  • a hybrid with a fish species that can be a surrogate parent it can be applied as a surrogate parent fish to other species that cannot originally be a surrogate parent of a donor fish species.
  • By expanding the application range of the species it is possible to select surrogate parent fish having practically advantageous characteristics suitable for breeding, etc., and fish that can be put to practical use as a fish gamete production method for farmed fish production Provide gamet production methods It on.
  • Complete aquaculture means artificially producing seeds and seeds from fertilized eggs of the target fish species, distributing the obtained artificial seeds as products, and cultivating some individuals of the obtained artificial seeds to parent fish, It refers to a culture style that is completed without depending on natural resources, producing gametes (sperms and eggs) and using the resulting gametes for aquaculture.
  • gametes sperms and eggs
  • a breeding facility sufficient for the maintenance of parent fish, breeding with appropriate feed and spawning induction are essential, and a lot of space and labor are required. Therefore, it can be said that there are few fish species that have been established for seed production so that at least many farmers can easily introduce them.
  • surrogate parent fish techniques As a technique that can solve this problem, fish gamete production techniques necessary for seedling production using surrogate parent fish, that is, surrogate parent fish techniques, are attracting attention.
  • This technique is exemplified for donor primordial germ cells, spermatogonia, or ovary cells, with the target fish species to be gameted as the donor and the fish species that are to produce gametes as the recipient.
  • undifferentiated germ cells are transplanted into a recipient, and the recipient is used as a surrogate parent fish.
  • the surrogate parent fish technique is a technique for producing donor gametes and producing a next generation individual population of donors by growing or differentiating donor germ cells in the recipient gonad.
  • the surrogate parent fish technique has previously been performed by the present inventors to transfer a donor isolated germ cell, which is a germ cell derived from a different strain or a different species of fish from the host (recipient) fish, into the peritoneal cavity of the host fish before and after hatching.
  • a donor isolated germ cell which is a germ cell derived from a different strain or a different species of fish from the host (recipient) fish
  • the host recipient fish
  • a method has been reported in which a rainbow trout (rainbouw traut, Oncorhynchus mykiss) is transplanted to obtain a yamame trout egg and sperm and a next-generation yama trout is used as a surrogate parent fish.
  • the host (recipient) fish produces a gamete (sperm and / or egg) from the donor and also a gamete (sperm and / or egg) from the host (recipient).
  • a gamete sperm and / or egg
  • sperm and / or egg a gamete from the host (recipient).
  • an operation for sorting them was necessary, which was a problem in practice. For example, if you want to induce differentiation into the germline, using a rainbow trout spermatogonia or oocyte as a donor fish species and a rainbow trout as a recipient, select a yamame sperm from among many rainbow trout sperm. In addition, it is difficult to select a yamame trout egg from among many rainbow trout eggs, and there remains a problem as an industrial application technique that requires mass production of only donor fish species.
  • the present inventors produce a triploid fish species of a host fish species, sterilize the fish species, and use the triploid fish species as a substitute parent fish technique.
  • a method of suppressing the formation of germ cells of the host (recipient) itself by constructing it as a host (recipient) has been constructed and disclosed (Japanese Patent No. 4581083).
  • Non-patent document Science Vol.317 (2007) p1517 produces a triploid rainbow trout to obtain an infertile surrogate parent fish that does not produce rainbow trout-derived sperm and eggs.
  • a method has been reported for efficiently obtaining spermatozoa and eggs of yamame trout by transplanting and producing the next generation of yamame trout.
  • the fish species that can be used as the surrogate parent fish are limited to those that are closely related to the donor, and the fish species to which the surrogate parent fish technology can be applied are limited.
  • the non-patent document Fishories Science Vol.317 (2011) p.60-77 when a yellowtail spermatogonia was transplanted into a nibe, it was taken into the nibe gonad but did not produce gametes. It is described.
  • Non-patent literature Biology of Reproduction Vol. 82 (2010) p.896-904 shows that when the spermatogonial cells of nibe are transplanted into the chub mackerel, the gonad germ cells are taken up and proliferated. However, it was described that it did not lead to gamete production.
  • An object of the present invention is to enable application to surrogate parent fish such as other species of fish in the technology of fish gamete (sperm and egg) production method for production of cultured fish using surrogate parent fish. It is possible to use a fish species that cannot be a surrogate parent of a species as a surrogate parent of a donor fish species, expand the range of fish species that can be a surrogate parent, and for the practical application of this technology, Therefore, it is intended to provide a method for producing fish gametes (sperm and eggs) for producing cultured fish using surrogate parent fish, which can select and apply surrogate parents with good applicability.
  • the present invention provides an isolated germ cell donor for a fish species used as a surrogate parent fish in a fish gamete (sperm and egg) production method for producing cultured fish using the surrogate parent fish.
  • fish species that cannot be the surrogate parent of the donor fish species and the fish species that can be the surrogate parent of the donor fish species
  • the ability to be a surrogate parent fish can be imparted to other genus fish species that cannot be a surrogate parent of a donor fish species.
  • the range of selection of the surrogate parent fish can be expanded to other species of fish that cannot originally be a surrogate parent fish of the donor fish species, and the surrogate parent fish of the other genera of species that are easy to rear. It has been found that it can be used, and the present invention has been made. According to the method of the present invention, for example, it is possible to select a small species of other genera that is easy to breed as a surrogate parent of a donor species of a large fish such as tuna, for the production of cultured fish using the surrogate parent fish. It came to provide the practical use method as a production method of the fish gamete (sperm and egg).
  • the present invention uses a surrogate parent fish that uses a recipient fish and transplants a separated germ cell of a fish of a different or different species from the recipient fish into the recipient fish to induce differentiation into a germ line.
  • A selecting a donor fish species that supplies isolated germ cells;
  • B selecting a fish of a first species that can be a surrogate parent for the donor species;
  • C selecting a fish of a second species that cannot be a surrogate parent for the donor species;
  • D The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species.
  • the surrogate parent fish of the present invention it is possible to use, as a surrogate parent of a donor fish species, a fish species that cannot originally be a surrogate parent of a donor fish species, such as other species.
  • a surrogate parent of a donor fish species a fish species that cannot originally be a surrogate parent of a donor fish species, such as other species.
  • the selection range of easy substitute parent fish such as breeding can be expanded as a substitute parent fish, and it is suitable for practical use as a fish gamete production method for farmed fish production It becomes possible to provide a method for producing fish gametes.
  • examples of the fish gametes include sperm or eggs of donor fish species.
  • the first fish species that can be the surrogate parent fish for the donor fish species is the gonad of the isolated germ cell of the transplanted donor fish species.
  • the second species that cannot be a surrogate parent for the donor species is the gonad of the isolated germ cell of the transplanted donor species.
  • the fish of the kind which does not have the engraftment ability can be mentioned.
  • the first fish species that can be the surrogate parent fish for the donor fish species is a fish of the same species as the donor fish species.
  • the fish of the second fish species that can be mentioned and cannot be a substitute parent fish for the donor fish species include fish of a fish species that is different from the donor fish species.
  • examples of the genus of the donor fish species include the genus Ivana, the yellowtail or the tuna genus.
  • a hybrid fish species capable of becoming a surrogate parent fish for a donor fish species is a first that can be a surrogate parent fish for a donor fish species. It is preferable to have the genome of the fish species at half or less per cell, and more preferably, it has the genome of the first fish species that can be a surrogate parent fish for the donor fish species at 1/3 or less per cell.
  • the surrogate parent fish for the donor fish species By making the genome of the first fish species that can be a surrogate parent for the donor fish species within the above range per cell, the surrogate parent fish for the donor fish species while preserving the breeding characteristics of the fish of the second fish species.
  • the ability to become a surrogate parent of the first fish species that can become a surrogate can be introduced to give the donor fish species the ability to become a surrogate parent.
  • a hybrid fish species capable of becoming a surrogate parent fish with respect to the donor fish species is produced as a heteroploid and a gamete derived from the hybrid fish species is produced. It can be produced as an infertile hybrid fish species.
  • an allopolyploid of a hybrid fish species capable of becoming a surrogate parent fish for the donor fish species an infertile hybrid fish species in which sperm and eggs derived from the hybrid fish species are not produced is a triploid hybrid fish species. Can be mentioned.
  • the present invention relates to a method for producing a hybrid fish as a recipient, (A) selecting a donor fish species that supplies isolated germ cells; (B) selecting a fish of a first species that can be a surrogate parent for the donor species; (C) selecting a fish of a second species that cannot be a surrogate parent for the donor species; (D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain, The production method of the hybrid fish containing is included.
  • the present invention also uses a recipient fish, transplants a separated germ cell of a donor fish species of a different lineage or heterogeneous fish from the recipient fish, and induces differentiation into a germline.
  • a recipient fish transplants a separated germ cell of a donor fish species of a different lineage or heterogeneous fish from the recipient fish, and induces differentiation into a germline.
  • the invention includes an invention of a method for inducing differentiation of a separated germ cell into a germ line using the characteristic surrogate parent fish.
  • the present invention is as follows.
  • [1] Fish using surrogate parent fish using recipient fish and transplanting isolated germ cells of a fish of a different or different species from recipient fish to recipient fish to induce differentiation into germline
  • A selecting a donor fish species that supplies isolated germ cells
  • B selecting a fish of a first species that can be a surrogate parent for the donor species
  • C selecting a fish of a second species that cannot be a surrogate parent for the donor species
  • D The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species.
  • the fish of the first fish species that can be a surrogate parent for the donor fish species is a fish of the species that has the ability to engraft the isolated germ cells of the transplanted donor fish species, and the donor fish
  • the fish of the second species that cannot be a surrogate parent for the species is a fish of a species that does not have the ability to engraft the isolated germ cells of the transplanted donor species
  • a method for producing a fish gamete using the surrogate parent fish according to [1] or [2].
  • a hybrid fish species capable of being a surrogate parent for a donor fish species has a genome of a first fish species that can be a surrogate parent for a donor fish species in less than half of the cells.
  • the hybrid fish species capable of becoming a surrogate parent fish for the donor fish species has the genome of the first fish species that can be the surrogate parent fish for the donor fish species at 1/3 or less per cell.
  • the hybrid fish species having the ability to be a surrogate parent fish for the donor fish species are heteroploid, and are infertile hybrid fish species that do not produce gametes derived from the hybrid fish species.
  • a hybrid fish species capable of becoming a surrogate parent for a donor fish species is an allopolyploid, and an infertile hybrid fish species in which sperm and eggs derived from the hybrid fish species are not produced is a triploid.
  • [11] In a method for producing hybrid fish as a recipient (A) selecting a donor fish species that supplies isolated germ cells; (B) selecting a fish of a first species that can be a surrogate parent for the donor species; (C) selecting a fish of a second species that cannot be a surrogate parent for the donor species; (D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species.
  • the fish of the first fish species that can be a surrogate parent for the donor fish species is a fish of the fish species that has the ability to engraft the isolated germ cells of the transplanted donor fish species, and the donor fish
  • the fish of the second species that cannot be a surrogate parent for the species is a fish of a species that does not have the ability to engraft the isolated germ cells of the transplanted donor species
  • the hybrid fish according to [11] or [12] above, wherein the fish of the first fish species that can be a surrogate parent for the donor fish species is the same genera as the donor fish species Production method.
  • a hybrid fish species capable of becoming a surrogate parent fish for a donor fish species has a genome of a first fish species that can be a surrogate parent fish for a donor fish species at 1/3 or less per cell.
  • the hybrid fish species capable of becoming a surrogate parent for the donor species is an allogeneic polyploid and is an infertile hybrid species that does not produce gametes derived from the hybrid species.
  • a hybrid fish species capable of becoming a surrogate parent for a donor fish species is an allopolyploid, and an infertile hybrid fish species that does not produce sperm and eggs derived from a hybrid fish species is a triploid.
  • the method for producing a hybrid fish according to any one of the above [11] to [18], characterized in that it exists.
  • the hybrid fish species produced in any one of [11] to [19] above are used as recipient fish, and the isolated germ cells of the donor fish species
  • [25] Fish using a surrogate parent fish that includes using a recipient fish and transplanting isolated germ cells of a fish of a different or different species from the recipient fish into the recipient fish to induce differentiation into a germ line
  • A selecting a donor fish species that supplies isolated germ cells;
  • B selecting a fish of a first species that can be a surrogate parent for the donor species;
  • C selecting a fish of a second species that cannot be a surrogate parent for the donor species;
  • D The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species.
  • the fish of the first fish species that can be a surrogate parent for the donor fish species is a fish of the fish species that has the ability to engraft the isolated germ cells of the transplanted donor fish species, and the donor fish
  • the fish of the second species that cannot be a surrogate parent for the species is a fish of a species that does not have the ability to engraft the isolated germ cells of the transplanted donor species
  • the hybrid fish species capable of becoming a surrogate parent fish for the donor fish species has the genome of the first fish species that can be the surrogate parent fish for the donor fish species in less than half of the cells.
  • a hybrid fish species capable of becoming a surrogate parent fish for a donor fish species has a genome of the first fish species that can be a surrogate parent fish for a donor fish species at 1/3 or less per cell.
  • the hybrid fish species capable of becoming a surrogate parent fish for the donor fish species are heteroploid, and are infertile hybrid fish species that do not produce gametes derived from the hybrid fish species.
  • a hybrid fish species capable of becoming a surrogate parent for a donor fish species is an allopolyploid, and an infertile hybrid fish species that does not produce sperm and eggs derived from a hybrid fish species is a triploid.
  • the fish species that can be used as the surrogate parent fish are limited to those that are closely related to the donor, and the fish species to which the surrogate parent fish technology can be applied are limited.
  • surrogate parent fish such as other genus fish species that are easy to breed
  • the present invention enables use for surrogate parent fish such as other genus fish species, and allows easy use of fish species such as other genus breeding as recipients in surrogate parent fish technology. It is possible to select a fish species that is suitable as an ent, and it is possible to provide technology for practical use as a production method of fish gametes (sperm and eggs) for the production of cultured fish using surrogate parent fish did.
  • the present invention uses a recipient fish that uses a recipient fish and includes transplanting germ cells of a different lineage or a heterogeneous fish from the recipient fish into the recipient fish to induce differentiation into a germline.
  • A selecting a donor fish species that supplies isolated germ cells;
  • B selecting a fish of a first species that can be a surrogate parent for the donor species;
  • C selecting a fish of a second species that cannot be a surrogate parent for the donor species;
  • D The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species.
  • the surrogate parent fish technique in the present invention uses a fish species intended to obtain gametes (sperm and eggs) as a donor, and a fish species intended to produce gametes as a recipient.
  • Transplant undifferentiated germ cells exemplified by protoblasts or oocyte cells to a recipient to produce a transplanted fish transplanted with the undifferentiated germ cells, and within the gonad of the transplanted fish (recipient)
  • sperm or eggs are produced as gametes.
  • a male germ cell is transplanted with a donor germ cell
  • a female germ cell is transplanted with a donor germ cell.
  • the testis can be used to obtain sperm
  • the ovary can be used to obtain eggs.
  • Donor germ cells transplanted into a male recipient can grow and differentiate within the recipient's testis to produce donor sperm.
  • Donor germ cells transplanted into a female recipient can grow and differentiate in the recipient's ovaries to produce donor eggs.
  • the sperm or egg thus obtained can be fertilized eggs by crossing each other or by multiplying separately obtained eggs and sperm. By generating the obtained fertilized eggs, seedlings of the target fish species can be obtained.
  • fish for the purpose of aquaculture can be selected as appropriate.
  • the donor can select various fish species for aquaculture, such as edible fish species, material collecting fish species, ornamental fish species, and the like.
  • edible fish species for aquaculture include salmonids such as char, genera such as yellowtail, mackerel such as tuna, etc. Or the food fish of the genus Tuna can be mentioned.
  • the undifferentiated germ cells of the donor used in the surrogate parent fish technology include primordial germ cells obtained from the gonad before sex differentiation, and sperm obtained from the testis. Progenitor cells, oocytes obtained from ovaries and the like are included. These undifferentiated germ cells can be used in combination with cells at different stages of differentiation, or cells at the same stage of differentiation alone.
  • undifferentiated germ cells from a donor it can be collected from the donor tissue according to the differentiation stage of the target undifferentiated germ cells by a usual method. For example, by removing gonads before sex differentiation from a donor, or tissues after sex differentiation, such as testis or ovaries, and dispersing them from the tissues to individual cells by physical detachment or treatment with proteolytic enzymes, etc. Undifferentiated germ cells can be obtained. The dispersed individual cells can be isolated using, for example, an antibody that serves as a marker, or using a cell sorter.
  • Undifferentiated germ cells can be obtained from frozen bodies or living individuals. In order to increase the success rate of surrogate parent fish technology, it is preferable to obtain undifferentiated germ cells from live individuals.
  • the frozen body those obtained by freezing any unit of an individual, an organ, and a cell can be used.
  • freezing cells it is preferable to use an appropriate cryoprotectant. Suitable cryoprotectants include 0.1 wt% to 10 wt% glucose or trehalose, or 0.1 mol / liter to 20 mol / liter dimethyl sulfoxide (DMSO), ethylene glycol or propylene glycol. These cryoprotectants can be used alone or in combination of two or more.
  • DMSO dimethyl sulfoxide
  • the step of collecting primordial germ cells preferably includes confirming that the obtained cells are primordial germ cells using a marker of primordial germ cells.
  • Markers applicable to confirming that they are primordial germ cells include Vasa gene, CD205 gene and the like. Confirmation can be performed by confirming the expression, modification, localization, or a combination of two or more of the genes or gene products.
  • the donor cells When the donor cells are introduced into the recipient, it is preferably introduced into an individual at the embryo or larva stage before the recipient's immune system works sufficiently.
  • the introduction can be performed using a manipulator such as a micromanipulator, an electric knife, or a laser knife.
  • the introduction may be performed in any tissue or site of the recipient, and examples of the tissue or site to be introduced include the epidermis or the abdominal cavity.
  • solid of an embryo or a larva stage For example, 100,000 cells can be introduce
  • Confirmation of engraftment of donor germ cells in the recipient gonad can be performed using an index that can distinguish donor cells from recipient cells.
  • usable indicators include genes, antibodies, fluorescent dyes and the like, and these indicators can be used alone or in combination of two or more.
  • the gene serving as an index include genes that are expressed in undifferentiated germ cells, such as vasa gene and dead-end gene.
  • the fluorescent dye serving as an index include PKH26 and CFSE.
  • PCR is performed by designing a primer using a site where the sequence is different between the donor and the recipient, or a site where the sequence is different between the donor and the recipient. It is easy to confirm using In situ hybridization.
  • engraftment can be confirmed under a fluorescence microscope. Confirmation of engraftment can be carried out immediately after introduction, and preferably, it is carried out 7 days or more after introduction in order to confirm whether or not the recipient has engrafted and functions as a cell. it can. It is expected that donor sperm or eggs will be obtained from individuals whose engraftment was observed in the recipient's gonads 7 days after introduction.
  • a hybrid means an individual having genomes derived from different varieties, strains, or biological species in a cell, and the hybrid is produced by crossing, cell fusion or gene transfer, or a combination of two or more thereof. Including individuals In fish, different reproductive populations biologically isolated by habitats, etc. are recognized as different varieties, strains, or species. May occur. However, it is not well understood when the hybridization occurs in the natural environment and the hybrid is obtained, and the hybrid is exclusively produced artificially. Similarly, when artificially producing and maintaining varieties and lines, hybrids can be artificially produced.
  • hybrids When producing individuals as hybrids by crossing, hybrids can be obtained by crossing individuals of different varieties, strains or species.
  • a fertilized egg is produced by contacting the sperm of the other species with the egg of one species obtained by artificial breeding or natural collection
  • a heterogeneous hybrid can be produced by hatching the obtained fertilized egg.
  • the egg to be fertilized is artificially doubled and brought into contact with the sperm of the other species, the heterogeneous hybrid obtained becomes a heteroploid.
  • Heterogeneous polyploid individuals are particularly preferred for use as recipients because they are less likely to produce their own eggs or sperm. Examples of polyploids include diploids, triploids, tetraploids, and the like. Any of these polyploids can be used.
  • polar body release is suppressed by using a cell division inhibitor, electrical stimulation, light stimulation or temperature stimulation, pressure stimulation, or a combination of two or more thereof at the time of fertilization.
  • the method can be used.
  • colchicine can be used as the cell division inhibitor.
  • a tetraploid can be created as a polyploid, and a triploid can be created by multiplying this with a diploid individual.
  • hybrids by cell fusion When producing hybrids by cell fusion, a method of fusing different types of eggs or isolated embryo cells can be used.
  • cell fusion a method of directly fusing cells using a cell membrane fusion agent, electrical stimulation, light stimulation or thermal stimulation, or a combination thereof can be used.
  • polyethylene glycol can be used as the cell membrane fusion agent.
  • Hybrid cells obtained by cell fusion may retain all chromosomes or only some chromosomes. When used in the present invention, it is sufficient that the genome necessary for functioning the germ cells after transplantation as an egg or sperm when the undifferentiated germ cells of the donor are transplanted.
  • an individual as a hybrid When an individual as a hybrid is produced by gene introduction, it can be produced by introducing the chromosome or gene of the other species into the egg of one species.
  • the amount of chromosomes to be introduced can be any amount necessary for the transplanted germ cells to function as eggs or sperm when the donor undifferentiated germ cells are transplanted into the recipient hybrid. May be.
  • one or more chromosomes or a partial fragment thereof may be used as the chromosome to be introduced.
  • Different chromosome combinations can also be introduced to find appropriate chromosomes that function after transplantation.
  • the gene to be introduced can be any gene as long as it is necessary for the recipient germ cell to function as an egg or sperm when the donor's primordial germ cell is transplanted into the recipient hybrid.
  • one or more genes may be introduced.
  • An example of such a gene is the gsdf gene.
  • the hybrid used for the recipient is preferably a cultivar, strain or organism having properties suitable for the recipient.
  • Properties suitable for recipients include high survival rates in artificial breeding environments, small breeding equipment required, cost of equipment for temperature control needed, food cost, eggs or This is exemplified by the ease of collecting sperm.
  • the recipient to be used preferably has inherited properties suitable for the recipient. In order for the created hybrid to inherit properties suitable for recipients, it must be obtained by including more of the genomes of varieties, strains or species with properties suitable for recipients in the genome of the hybrid. Can do. In order to include more genomes of varieties, strains or species that have properties suitable as recipients, artificially double eggs obtained from varieties, strains or species that have properties suitable as recipients. By doing so, you can have more genomes.
  • the hybrid preferably has a genome of a fish species that can be a surrogate parent fish for the donor (first) at less than half per cell in that it has less disadvantageous properties as a surrogate parent fish. More preferably, the genome of the (first) fish species that can be a surrogate parent fish for the donor is preferably 1/3 or less per cell.
  • the amount of genome in the hybrid can be an amount calculated by DNA flow cytometry using somatic cells or blood cells selected as cells and using cells collected by a conventional method.
  • hybrid cells having one set of genomes of fish species that can be surrogate parent fish (1) and one species of fish species that can be surrogate parent fish (1) fish species.
  • the amount of genomes of fish species that can be surrogate parent fish in (1) is halved.
  • the chromosome of the species of the fish species that can be a surrogate parent fish first
  • the amount is less than half the amount of the donor genome.
  • the donor-derived chromosome is missing or if the donor-derived DNA is missing or can be a surrogate parental fish (first) a part of the chromosome or DNA of the fish species genome can be a surrogate parental fish (first 1)
  • a surrogate parental fish first 1
  • it can be confirmed that it is 1/3 or less of the amount of the genome of the fish species that can be a surrogate parent fish (first).
  • the first fish selected for obtaining the hybrid is a fish species that can be a surrogate parent fish for the donor.
  • a fish species that can serve as a surrogate parent for a donor means that when a donor's germ cells are transplanted using a fish belonging to the fish species as a recipient, the donor's germ cells are engrafted and a donor gamete is obtained.
  • a fish species that can The fish species that can be a surrogate parent fish for the first donor is preferably a donor or a fish species closely related to the donor. When a donor or a fish species closely related to the donor is transplanted with a donor germ cell, the donor germ cell is likely to be established and a donor gamete is easily obtained.
  • one or more genes of a donor or a fish species closely related to the donor help the donor's germ cells transplanted to the recipient to obtain donor-derived eggs or sperm It is considered possible.
  • One or more genes that assist the donor's germ cells in the recipient transplant are considered to be on one or more chromosomes in the genome of the fish species closely related to the donor or donor. ing.
  • the fish species closely related to the donor are preferably selected from the same genera of the donor, and more preferably selected from the same genera of the donor.
  • the first fish species includes the same or a different species of fish as the donor, for example, a trout of the genus char, ashokokoma, Miyabeiwana, Brook trout, char, etc. Can be mentioned.
  • examples of the first fish species include the same or different species of fish as the donor, and examples include the yellowtail yellowtail, kingfish, amberjack, and the like.
  • examples of the first fish species include the same or different species of fish as the donor, such as yellowfin tuna, albacore, southern bluefin tuna, Atlantic bluefin tuna, coshinaga and the like.
  • a (second) fish species that cannot be a surrogate parent fish for a donor means that the donor's germ cells are generated when the donor's germ cells are transplanted using the fish belonging to the fish species as a recipient.
  • the second fish species that cannot be a surrogate parent fish for the donor can include donor and heterogenous fish species. Recipients in surrogate parenting techniques are generally selected as closely related fish species that have suitable properties, but should be raised in the case of donors such as large fish.
  • a hybrid of the second fish species and the first fish species is produced to produce the second fish species.
  • the method for producing a donor gamete using the surrogate parent fish of the present invention is particularly effective as a method for artificially producing a hybrid in marine fish that does not often form a hybrid in nature. In particular, in the field of cultured fish, it has economic utility value in securing the supply of necessary seeds for fish.
  • the second fish species can include salmon salmon genus salmon, rainbow trout, chinook salmon, etc. If the donor is a genus Buri, the second species of fish is the genus Maji of the genus Majiaceae, the maji of the genus Majiae, the Shimaji of the genus Ajiida, And the like, and the species of the family of the family H.
  • the second fish species include mackerel of the family Sabaaceae Suma, yam, etc., mackerel Saba genus mackerel, sesame mackerel, etc., mackerel Ganoderma spp. , Species of the same genera with the donor, and fish species of the same family with the donor.
  • the survival rate is low due to poor feeding of the feed under artificial breeding, and a method for collecting eggs or sperm is well established. Because it is not, it is not suitable as a surrogate parent fish.
  • Oshorokoma which belongs to the same genus as char, has not been bred.
  • the brook trout belonging to the same genera is an alien species, although its breeding method has been found, it is difficult to obtain it quickly.
  • the same salmonid as char like rainbow trout and yamame trout, is easy to collect eggs and spermatozoa, and there are fish species that have been well studied for surrogate parent fish technology. Are known.
  • a hybrid that combines charcoal and horcoma genomes or genes of rainbow trout and yamame trout with either charcoal or charcoal genomes or genes closely related to char or char.
  • the hybrid is used as a recipient.
  • a gamelet of a yellowtail using a surrogate parent fish either a yellowtail or a genome or gene of amberjack and whitefish closely related to the yellowtail, and a small size exemplified by horse mackerel, blue horse mackerel, and sea mackerel It is preferable to prepare a hybrid having both genomes or genes of a family of phlogopaceae and use the hybrid as a recipient.
  • the hybrid obtained in this way can also be used as a surrogate parent fish of other fish species of the genus Buri, such as amberjack and kingfish.
  • the bluefin tuna genus Tuna is not suitable as a surrogate parent fish because it requires extensive equipment for breeding and requires at least 3 years of breeding to collect eggs or sperm.
  • the tuna species that are closely related to bluefin tuna, SBT, bigeye, albacore, cocinaga, yellowfin, etc. require extensive facilities for breeding, and no method for collecting eggs or sperm has been established.
  • any of the bluefin tuna or bluefin bluefin tuna, bigeye, albacore, cocinaga, and yellowfin genomes or genes is preferable to prepare a hybrid having both the genome or gene of the mouse and the smartphone and use the hybrid as a recipient.
  • the hybrid thus obtained can be used as a recipient of other fish species of the genus Tuna, such as southern bluefin tuna, bigeye, albacore, cocinaga and yellowfin.
  • a hybrid is produced, and the produced hybrid is used as a recipient to transplant a primordial germ cell of a donor and produce a transplanted fish.
  • the transplanted donor primordial germ cells enter the recipient's gonads and produce donor-derived eggs or sperm.
  • the production of a transplanted fish transplanted with a donor's primordial germ cells includes obtaining a donor-derived egg or sperm by the transplanted fish.
  • an egg or sperm derived from a donor from a transplanted fish it can be obtained by inducing maturation and collecting by a conventional method according to the fish species (Japanese Patent No. 4300287).
  • a hybrid recipient that is a heteroploid can be used.
  • a recipient-derived egg or sperm is produced. Therefore, donor-derived eggs or sperm in the transplanted fish can be easily obtained.
  • the seedlings of fish used for aquaculture are produced from the transplanted fish obtained by breeding the produced hybrid and transplanting the donor's primordial germ cells using the hybrid as a recipient.
  • a fertilized egg is obtained by crossing with a sperm or egg obtained from an individual, and the fertilized egg can be grown.
  • Fish seeds and seedlings used for aquaculture can also be obtained by breeding the produced hybrid and crossing the donor's egg or sperm with the donor's egg or sperm obtained by transplanting the donor's primordial germ cells using the hybrid as a recipient. Obtainable. It can also be obtained by breeding the produced hybrid and crossing with eggs or sperm obtained by transplanting the donor's primordial germ cells using the hybrid as a recipient. The seedlings can be further grown by aquaculture to obtain adult fish.
  • the method for producing fish gametes (sperm and eggs) for the production of cultured fish using the surrogate parent fish of the present invention makes it possible to secure seedlings for aquaculture of donor fish species for which seedling production has been difficult until now. As a result, it becomes easy to cultivate the target donor fish species.
  • the obtained adult fish can be widely used as cultured fish.
  • the present invention can be applied to artificial culture of various fishes, and can contribute to the construction of practical techniques for artificial culture of the fishes.
  • Example 1 ⁇ (1) Transplantation of char spermatogonia into allotriploid host and creation of next generation> A 13-month-old immature male char (weight approximately 43 g, body length approximately 15 cm) was used as a donor.
  • the testis was removed from the char as donor, and cryoprotective solution (132 mM sodium chloride, 2.56 mM potassium chloride, 8.13 mM potassium dihydrogen phosphate, 1.34 mM disodium hydrogen phosphate, 0.9 mM calcium chloride, magnesium chloride) 0.5 mM, sodium pyruvate 1.28 mM, Hepes 19.5 mM, dimethyl sulfoxide 1.3 M, chicken egg yolk 10%, trehalose 0.1 M) and frozen in liquid nitrogen. Freezing was slowly frozen to -80 ° C at a rate of -1 ° C / min. One week after frozen storage, thawing was performed.
  • the thawed char testis was dispersed by reacting in PBS containing trypsin (0.9 U / ml), fetal calf serum (5%), DNase (100 U / ml) to obtain a cell suspension.
  • the obtained cell suspension was transplanted into the peritoneal cavity of the host by 5000 cells using an injector.
  • the recipients used were triploid brook trout embryos that had passed 43 days after fertilization, allotriploid rainbow trout-river hybrid embryos 38 days after fertilization, and triploid rainbow trout embryos 30 days after fertilization. Transplantation was performed on 58 triploid brook trout embryos, 60 allogeneous triploid rainbow trout-river hybrid embryos and 61 triploid rainbow trout embryos.
  • the rainbow trout and brook trout hybrid embryos were obtained by artificial insemination of unfertilized eggs and brook trout semen extracted from ovulated female rainbow trout.
  • the brook trout, rainbow trout-river trout hybrid, and rainbow trout eggs were doubled by treating each egg for 5 minutes at 38 ° C. 5 minutes after fertilization.
  • the function of the gametes obtained from each recipient was confirmed.
  • the function of the gametes obtained by fertilizing the eggs and sperm obtained above by the dry induction method was confirmed by the eye rate and hatching rate.
  • the eye development rate was evaluated by counting the number of eggs with black pigment deposited on the retina 3 weeks after fertilization.
  • the hatching rate was evaluated by counting individuals that had completed hatching 35 days after fertilization. The results are shown in Table 4. * Indicates that all triploid female individuals were infertile.
  • Example 2 ⁇ Transplantation of yellow spermatogonia into heterologous triploid hosts> A 10-month-old immature male yellowtail (weight: about 1 kg, body length: about 40 cm) was used as a donor. The testis was extracted from the donor yellowtail, and the cell suspension obtained by dispersing by the enzyme treatment was transplanted into the peritoneal cavity of the host 20,000 cells. As a host, 92 alien haploid Blima maji hybrid larvae 10 days after hatching were used.
  • Heterotriploid yellowtail horse mackerel hybrid larvae were obtained by artificially inseminating a horse mackerel unfertilized egg and a yellowtail sperm and pressurizing to 650 kg / cm 2 with a French press for 5 minutes after fertilization.
  • One month after transplantation 18 fish (19.5% of the number of transplanted fish) survived.
  • the resulting allotriploid burma-maji hybrid is suitable as a recipient for the germ cell of the genus Buri.
  • Example 3 ⁇ Creation of allotriploid fish for tuna germ cell transplant host> Suma eggs and bluefin tuna spermatozoa, which are relatively small fishes from the mackerel family, were artificially crossed (population cross) to produce a Suma-Tuna hybrid. By applying the bluefin tuna sperm to the egg of the suma, a fertilized egg of the suma-bluefin tuna hybrid was obtained. The fertilized egg of the Suma-bluefin tuna hybrid hatched, but the larvae died without feeding. Therefore, the fertilized egg of the Suma-bluefin tuna hybrid was subjected to a triploidization treatment.
  • the triploidization treatment was performed by immersing a fertilized egg of a Suma-bluefin tuna hybrid in seawater cooled to 4 ° C. for 5 minutes after fertilization.
  • the hybrid triploid fertilized egg thus obtained possesses two sets of suma chromosomes and one set of bluefin tuna chromosomes.
  • the hatched suma-bluefin tuna hybrid larvae are composed of primer sets (TGC ⁇ ⁇ ⁇ AGA ACG AAC AGG ATG AG and CCC ATT GAG GAG ATT GGA GA) and primers that are amplified only in suma and bluefin tuna, each species.
  • the PCR method using the sets (ACA-TGG-TCC-ATC-CAT-CCA-TT and TGG-CTT-AGC-TCT-ACC-CCA-AA) was shown to possess each genetic information.
  • a hetero-triploid of a suma-bluefin tuna hybrid could be produced. This allotriploid survived until 5 days after hatching, and feeding was also observed.
  • the obtained Suma-Tuna hybrid allotriploid is suitable as a recipient of a germ cell of a Tuna donor.
  • the present invention enables use for surrogate parent fish such as other genus fish species, and allows easy use of fish species such as other genus breeding as recipients in surrogate parent fish technology. It is possible to select a fish species that is suitable as an ent, and it is possible to provide technology for practical use as a production method of fish gametes (sperm and eggs) for the production of cultured fish using surrogate parent fish did.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Behavior & Ethology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of providing a method for producing fish gametes in techniques of farmed fish production using a surrogate parent fish, said method being applicable to a surrogate parent fish of a different species and thus broadening the scope of fish species usable as the surrogate parent fish. To solve this problem, provided is a method for producing fish gametes using a surrogate parent fish, said method comprising: hybridizing a first fish, which can serve as a surrogate parent fish for a donor fish, with a second fish, which cannot serve as a surrogate parent fish for the donor fish, to construct a hybrid fish capable of serving as a surrogate parent fish for the donor fish; and, using the hybrid fish thus constructed as a recipient, transplanting separated germ cells of the donor fish thereinto and thus inducing differentiation to a germ cell line.

Description

他属魚種代理親魚への適用が可能な、代理親魚を用いた養殖魚生産のための魚類配偶子の生産方法Method for producing fish gametes for production of cultured fish using surrogate parent fish that can be applied to surrogate parent fish of other species
 本発明は、他属魚種の代理親魚への適用が可能な、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法に関し、特に、該養殖魚生産のための魚類配偶子の生産方法において、目的とする魚類配偶子の生産のための分離生殖細胞を供給するドナー魚種に対して、該ドナー魚種の代理親になり得ない魚種をドナー魚種の代理親になり得る魚種とのハイブリッドとすることにより、本来ドナー魚種の代理親になり得ない他属魚種に対しても代理親魚として適用することを可能とし、代理親魚として用いる魚種の適用範囲を拡大することによって、飼育等に適合した実用上有利な特性を有する代理親魚の選択を可能として、養殖魚生産のための魚類配偶子の生産方法として実用化を可能とする魚類配偶子の生産方法を提供することに関する。 The present invention relates to a method for producing fish gametes (sperm and eggs) for producing cultured fish using surrogate parent fish, which can be applied to surrogate parent fish of other genus species. In the fish gamete production method, a donor fish species that cannot be a surrogate parent of the donor fish species is supplied to a donor fish species that supplies isolated germ cells for production of the target fish gamete. By using a hybrid with a fish species that can be a surrogate parent, it can be applied as a surrogate parent fish to other species that cannot originally be a surrogate parent of a donor fish species. By expanding the application range of the species, it is possible to select surrogate parent fish having practically advantageous characteristics suitable for breeding, etc., and fish that can be put to practical use as a fish gamete production method for farmed fish production Provide gamet production methods It on.
 近年、天然漁業資源の漁獲量が漸減傾向を続け、これに伴い総漁獲量に占める養殖生産量の割合が大きく増加してきている。一方、海産魚類の養殖においては、いまだに天然の種苗を商品サイズまで養成する場合も多い。このため、資源管理の重要性の高まりとともに、完全養殖の導入がより強く求められている。 In recent years, the catch of natural fishery resources has been on a gradual decreasing trend, and the proportion of aquaculture production in the total catch has greatly increased. On the other hand, in the cultivation of marine fish, natural seedlings are still often cultivated to the product size. For this reason, with the increasing importance of resource management, the introduction of complete aquaculture is strongly demanded.
 完全養殖とは、対象魚種の受精卵から人工的に種苗を生産し、得られた人工種苗を、商品として流通させ、また、得られた人工種苗の一部の個体を親魚まで養成し、配偶子(精子及び卵)を生産し、得られた配偶子を養殖に利用するという、天然資源に依存せずに完結される養殖スタイルを指す。完全養殖を実現するためにはまず、目的の魚類の親魚から、質及び量ともに種苗生産に十分な配偶子を得なくてはならない。種苗生産に十分な配偶子を得るには、親魚の維持に十分な飼育施設と、適切な飼料による育成及び産卵誘導とが不可欠であり、多くのスペース及び労力を必要とする。そのため、少なくとも多くの養殖業者が容易に導入しうるほど、種苗生産への利用が確立している魚種は少ないと言える。 Complete aquaculture means artificially producing seeds and seeds from fertilized eggs of the target fish species, distributing the obtained artificial seeds as products, and cultivating some individuals of the obtained artificial seeds to parent fish, It refers to a culture style that is completed without depending on natural resources, producing gametes (sperms and eggs) and using the resulting gametes for aquaculture. In order to realize complete aquaculture, first of all, it is necessary to obtain gametes that are sufficient for seed production in terms of quality and quantity from the parent fish of the target fish. In order to obtain gametes sufficient for seedling production, a breeding facility sufficient for the maintenance of parent fish, breeding with appropriate feed and spawning induction are essential, and a lot of space and labor are required. Therefore, it can be said that there are few fish species that have been established for seed production so that at least many farmers can easily introduce them.
 この問題点を解決しうる技術として、代理親魚を用いた種苗生産に必要な魚類配偶子の生産技法、すなわち、代理親魚技法が注目されている。本技法は、配偶子を得ようとする目的の魚種をドナーとし、配偶子を生産させようとする魚種をレシピエントとし、ドナーの始原生殖細胞、精原細胞又は卵原細胞に例示される未分化な生殖細胞をレシピエントに移植して、レシピエントを代理親魚として利用する方法である。本代理親魚技法は、言い換えれば、ドナーの生殖細胞をレシピエントの生殖腺内で増殖又は分化させることによって、ドナーの配偶子を生産し、ドナーの次世代個体集団を作出する技法である。魚類の場合、雄の配偶子には運動性があり、精子と呼ばれるのに対し、雌の配偶子には運動性がなく、卵と呼ばれる。代理親魚技法において、精子を得ようとする場合には、雄のレシピエントにドナーの生殖細胞を移植し、一方、卵を得ようとする場合には、雌のレシピエントにドナーの生殖細胞を移植する。 As a technique that can solve this problem, fish gamete production techniques necessary for seedling production using surrogate parent fish, that is, surrogate parent fish techniques, are attracting attention. This technique is exemplified for donor primordial germ cells, spermatogonia, or ovary cells, with the target fish species to be gameted as the donor and the fish species that are to produce gametes as the recipient. In this method, undifferentiated germ cells are transplanted into a recipient, and the recipient is used as a surrogate parent fish. In other words, the surrogate parent fish technique is a technique for producing donor gametes and producing a next generation individual population of donors by growing or differentiating donor germ cells in the recipient gonad. In the case of fish, male gametes have motility and are called sperm, whereas female gametes have no motility and are called eggs. In surrogate parenting techniques, if one wants to obtain sperm, transplant the donor germ cells into a male recipient, while if one wants to obtain an egg, give the donor germ cells to a female recipient. Transplant.
 代理親魚技法は、先に、本発明者らによって、宿主(レシピエント)魚類とは異系統又は異種の魚類由来の生殖細胞である、ドナー分離生殖細胞を、孵化前後の宿主魚類の腹腔内への移植によって、宿主魚類個体に移植することにより、生殖細胞を、生殖細胞系列へ分化誘導することができること、即ち、魚類のような脊椎動物由来の分離生殖細胞を、宿主脊椎動物の孵化前後の魚類個体へ移植することにより、該生殖細胞を生殖細胞系列へ分化誘導することが可能であることが見出され、異系統又は異種の宿主魚類による分離生殖細胞の生殖細胞系列への分化誘導方法として構築され、開示されている(特許第4300287号公報)。また、非特許文献Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008 (2008) p209-219、には、ドナーであるヤマメ(masu salmon, Oncorhynchus masaou)の精原細胞を、レシピエントである雌雄のニジマス(rainbouw traut, Oncorhynchus mykiss)に移植することでヤマメの卵と精子を得て、ニジマスを代理親魚とするヤマメの次世代個体の作出を行う方法が報告されている。 The surrogate parent fish technique has previously been performed by the present inventors to transfer a donor isolated germ cell, which is a germ cell derived from a different strain or a different species of fish from the host (recipient) fish, into the peritoneal cavity of the host fish before and after hatching. By transplanting into an individual host fish, it is possible to induce differentiation of germ cells into the germline, that is, isolated germ cells derived from vertebrates such as fish before and after hatching of the host vertebrates. It has been found that it is possible to induce differentiation of the germ cells into a germ line by transplanting to a fish individual, and a method for inducing differentiation of a separated germ cell into a germ line by a different lineage or a heterogeneous host fish It is constructed and disclosed as (Japanese Patent No. 4300287). The non-patent literature Fisheries for Global Welfare and Environment, 5th World Fisheries Congress 2008 (2008) p209-219 includes the spermatogonia of the donor yamame trout (masu salmon, Oncorhynchus masaou) A method has been reported in which a rainbow trout (rainbouw traut, Oncorhynchus mykiss) is transplanted to obtain a yamame trout egg and sperm and a next-generation yama trout is used as a surrogate parent fish.
 上記開示の方法では、宿主(レシピエント)魚類は、ドナー由来の配偶子(精子及び/又は卵)を作るとともに、宿主(レシピエント)由来の自らの配偶子(精子及び/又は卵)も作ることから、ドナー由来の配偶子(精子及び/又は卵)を特異的に形成、分離するには、両者を選別する操作が必要になり、実用上問題であった。例えば、ドナー魚種として、ヤマメの精原細胞或いは卵原細胞を,ニジマスをレシピエントとして、生殖細胞系列へ分化誘導を行う場合に、数多くのニジマスの精子の中からヤマメの精子を選び取ること、及び数多くのニジマスの卵の中からヤマメの卵を選び取ることが困難であり、ドナー魚種のみを大量生産する必要がある産業上の利用技術としては、課題を残していた。 In the method disclosed above, the host (recipient) fish produces a gamete (sperm and / or egg) from the donor and also a gamete (sperm and / or egg) from the host (recipient). For this reason, in order to specifically form and separate donor-derived gametes (sperm and / or eggs), an operation for sorting them was necessary, which was a problem in practice. For example, if you want to induce differentiation into the germline, using a rainbow trout spermatogonia or oocyte as a donor fish species and a rainbow trout as a recipient, select a yamame sperm from among many rainbow trout sperm. In addition, it is difficult to select a yamame trout egg from among many rainbow trout eggs, and there remains a problem as an industrial application technique that requires mass production of only donor fish species.
 そこで、この課題を解決するために、本発明者らは、宿主となる魚種の3倍体の魚種を作製し、該魚種を不妊化し、該3倍体魚種を代理親魚技法の宿主(レシピエント)とすることにより、宿主(レシピエント)自体の生殖細胞の形成を抑える方法を構築し、開示した(特許第4581083号公報)。非特許文献Science Vol.317 (2007) p1517には、3倍体のニジマスを作出してニジマス由来の精子及び卵が生産されない不妊の代理親魚を得て、この不妊の代理親魚にヤマメの生殖細胞を移植することで効率的にヤマメの精子と卵を得て、ヤマメの次世代個体を生産する方法が報告されている。 Therefore, in order to solve this problem, the present inventors produce a triploid fish species of a host fish species, sterilize the fish species, and use the triploid fish species as a substitute parent fish technique. A method of suppressing the formation of germ cells of the host (recipient) itself by constructing it as a host (recipient) has been constructed and disclosed (Japanese Patent No. 4581083). Non-patent document Science Vol.317 (2007) p1517 produces a triploid rainbow trout to obtain an infertile surrogate parent fish that does not produce rainbow trout-derived sperm and eggs. A method has been reported for efficiently obtaining spermatozoa and eggs of yamame trout by transplanting and producing the next generation of yamame trout.
 しかし、これまでの代理親魚技術では、代理親魚として利用可能な魚種は、ドナーに近縁な魚種に限られており、代理親魚技術を適用可能な魚種が制限されていた。例えば、非特許文献Fishories Science Vol.317(2011)p.60-77には、ブリの精原細胞をニベに移植した場合、ニベ生殖腺には取り込まれるものの、配偶子の生産には至らなかったことが記載されている。また、非特許文献Biology of Reproduction Vol. 82(2010)p.896-904には、ニベの精原細胞をマサバに移植した場合に、マサバ生殖腺にニベ生殖細胞を取り込まれ、増殖していることも確認されたが、配偶子の生産には至らなかったことが記載されている。 However, with the surrogate parent fish technology so far, the fish species that can be used as the surrogate parent fish are limited to those that are closely related to the donor, and the fish species to which the surrogate parent fish technology can be applied are limited. For example, in the non-patent document Fishories Science Vol.317 (2011) p.60-77, when a yellowtail spermatogonia was transplanted into a nibe, it was taken into the nibe gonad but did not produce gametes. It is described. Non-patent literature Biology of Reproduction Vol. 82 (2010) p.896-904 shows that when the spermatogonial cells of nibe are transplanted into the chub mackerel, the gonad germ cells are taken up and proliferated. However, it was described that it did not lead to gamete production.
 代理親魚技術によるドナー由来の配偶子(精子及び/又は卵)の形成においては、例えば、実用的観点からは、大型魚類の配偶子(精子及び/又は卵)を、飼育の容易な小型魚類等を代理親魚として形成させるような必要性が生じ、そのような場合の多くは、魚種の属する属を超えての代理親魚の選択が要求される。しかしながら、多くの場合に、ドナー魚種に対して、属を超えての代理親魚は、ドナー魚種の分離生殖細胞が、代理親魚の生殖線に生着しない等の理由で、代理親魚になりえないという問題がある。したがって、代理親魚技術の利用の実用上の要請に答えるためには、ドナー魚種に対して、属等の範囲を超えての代理親魚の利用を可能とする代理親魚技術の開発が課題となる。 In the formation of donor-derived gametes (sperm and / or eggs) by surrogate parent fish technology, for example, from a practical point of view, large fish gametes (sperm and / or eggs), small fish that are easy to breed, etc. Need to be formed as surrogate parent fish, and in many cases, selection of surrogate parent fish beyond the genus to which the fish species belongs is required. However, in many cases, surrogate parental fish for a donor fish species become surrogate parent fish because, for example, the isolated germ cells of the donor fish species do not survive the germline of the surrogate parent fish. There is a problem that it is not possible. Therefore, the development of surrogate parent fish technology that enables the use of surrogate parent fish beyond the scope of the genus, etc. is a challenge for donor fish species in order to respond to practical demands for the use of surrogate parent fish technology. .
特許第4300287号公報Japanese Patent No. 4300287 特許第4581083号公報Japanese Patent No. 4581083
 本発明の課題は、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法の技術において、他属魚種等の代理親魚への適用を可能とし、本来ドナー魚種の代理親になり得ない魚種をドナー魚種の代理親として用いることを可能として、代理親になり得る魚種の範囲を拡大し、この技術の実用化のために、飼育等の観点から、適用性の良い代理親を選択し、適用できる、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法を提供することにある。 An object of the present invention is to enable application to surrogate parent fish such as other species of fish in the technology of fish gamete (sperm and egg) production method for production of cultured fish using surrogate parent fish. It is possible to use a fish species that cannot be a surrogate parent of a species as a surrogate parent of a donor fish species, expand the range of fish species that can be a surrogate parent, and for the practical application of this technology, Therefore, it is intended to provide a method for producing fish gametes (sperm and eggs) for producing cultured fish using surrogate parent fish, which can select and apply surrogate parents with good applicability.
 本発明らは、上記課題を解決すべく、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法において、該代理親魚として用いる魚種について、分離生殖細胞のドナー魚種に対して、代理親になり得る能力(未分化生殖細胞の生着が可能な魚種)と、代理親魚として、飼育等の容易な魚種であることの両方の性質を兼ね備えた代理親の選択について鋭意検討する中で、他属魚種等のドナー魚種に対して、該ドナー魚種の代理親になり得ない魚種をドナー魚種の代理親になり得る魚種とのハイブリッドとすることにより、ドナー魚種の代理親になり得ない他属魚種に対しても代理親魚としてなり得る能力を付与することができることを見出した。該ハイブリッドの形成により、代理親魚の選択の範囲を、本来ドナー魚種の代理親魚になり得ない他属の魚種にも広げることができ、飼育のし易い他属の魚種の代理親魚の利用を可能とすることができることを見出し、本発明をなすに至った。本発明の方法により、例えば、マグロのような大型魚類のドナー魚種の代理親として、飼育のし易い他属小型魚種を選択することが可能となり、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法としての実用化方法を提供するに至った。 In order to solve the above-mentioned problems, the present invention provides an isolated germ cell donor for a fish species used as a surrogate parent fish in a fish gamete (sperm and egg) production method for producing cultured fish using the surrogate parent fish. A surrogate that has both the ability to be a surrogate parent for fish species (fish species that can engraft undifferentiated germ cells) and the ability to be a breeding species that is easy to breed as a surrogate parent fish In the intensive study on the selection of the parent, with respect to the donor fish species such as other species, the fish species that cannot be the surrogate parent of the donor fish species and the fish species that can be the surrogate parent of the donor fish species It has been found that by using a hybrid, the ability to be a surrogate parent fish can be imparted to other genus fish species that cannot be a surrogate parent of a donor fish species. By forming the hybrid, the range of selection of the surrogate parent fish can be expanded to other species of fish that cannot originally be a surrogate parent fish of the donor fish species, and the surrogate parent fish of the other genera of species that are easy to rear. It has been found that it can be used, and the present invention has been made. According to the method of the present invention, for example, it is possible to select a small species of other genera that is easy to breed as a surrogate parent of a donor species of a large fish such as tuna, for the production of cultured fish using the surrogate parent fish. It came to provide the practical use method as a production method of the fish gamete (sperm and egg).
 すなわち本発明は、レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行うことを含む代理親魚を用いた魚類の配偶子の生産方法において、
(A)分離生殖細胞を供給するドナー魚種を選択すること、
(B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
(C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
(D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
(E)(D)で作出されたハイブリッド魚種をレシピエントとして、ドナー魚種の分離生殖細胞を移植して生殖細胞系列への分化誘導を行うこと、
を含む代理親魚を用いた魚類の配偶子の生産方法を包含する。
That is, the present invention uses a surrogate parent fish that uses a recipient fish and transplants a separated germ cell of a fish of a different or different species from the recipient fish into the recipient fish to induce differentiation into a germ line. In the production method of fish gametes
(A) selecting a donor fish species that supplies isolated germ cells;
(B) selecting a fish of a first species that can be a surrogate parent for the donor species;
(C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
(D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
(E) Using the hybrid fish species produced in (D) as a recipient, transplanting the isolated germ cells of the donor fish species to induce differentiation into the germ line,
A method for producing fish gametes using surrogate parent fish containing
 本発明の代理親魚を用いた魚類の配偶子の生産方法において、他属魚種等の、本来ドナー魚種の代理親になり得ない魚種をドナー魚種の代理親として用いることを可能とし、魚種の適用範囲を拡大することによって、代理親魚として飼育等の容易な代理親魚の選択範囲を拡大することができ、養殖魚生産のための魚類配偶子の生産方法として、実用に適合した魚類配偶子の生産方法を提供することが可能となる。 In the method for producing fish gametes using the surrogate parent fish of the present invention, it is possible to use, as a surrogate parent of a donor fish species, a fish species that cannot originally be a surrogate parent of a donor fish species, such as other species. By expanding the application range of fish species, the selection range of easy substitute parent fish such as breeding can be expanded as a substitute parent fish, and it is suitable for practical use as a fish gamete production method for farmed fish production It becomes possible to provide a method for producing fish gametes.
 本発明の代理親魚を用いた魚類の配偶子の生産方法において、魚類の配偶子としては、ドナー魚種の精子又は卵を挙げることができる。本発明の代理親魚を用いた魚類の配偶子の生産方法において、ドナー魚種に対して代理親魚になり得る第一の魚種の魚としては、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有する魚種の魚を挙げることができ、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚としては、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有さない魚種の魚を挙げることができる。 In the method for producing fish gametes using the surrogate parent fish of the present invention, examples of the fish gametes include sperm or eggs of donor fish species. In the method for producing fish gametes using the surrogate parent fish of the present invention, the first fish species that can be the surrogate parent fish for the donor fish species is the gonad of the isolated germ cell of the transplanted donor fish species. The second species that cannot be a surrogate parent for the donor species is the gonad of the isolated germ cell of the transplanted donor species. The fish of the kind which does not have the engraftment ability can be mentioned.
 本発明の代理親魚を用いた魚類の配偶子の生産方法において、ドナー魚種に対して代理親魚になり得る第一の魚種の魚としては、ドナー魚種と同属である魚種の魚を挙げることができ、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚としては、ドナー魚種と異属である魚種の魚を挙げることができる。本発明の代理親魚を用いた魚類の配偶子の生産方法において、ドナー魚種の属としては、イワナ属、ブリ属又はマグロ属を挙げることができる。 In the fish gamete production method using the surrogate parent fish of the present invention, the first fish species that can be the surrogate parent fish for the donor fish species is a fish of the same species as the donor fish species. The fish of the second fish species that can be mentioned and cannot be a substitute parent fish for the donor fish species include fish of a fish species that is different from the donor fish species. In the method for producing gametes of fish using the surrogate parent fish of the present invention, examples of the genus of the donor fish species include the genus Ivana, the yellowtail or the tuna genus.
 本発明の代理親魚を用いた魚類の配偶子の生産方法において、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり半分以下で有することが好ましく、より好ましくは、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり1/3以下で有することが好ましい。ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり上記範囲とすることにより、第二の魚種の魚の飼育特性を保存したまま、ドナー魚種に対して代理親魚になり得る第一の魚種の代理親魚になり得る能力を導入して、ドナー魚種に対して代理親魚になり得る能力を付与することができる。 In the method for producing fish gametes using the surrogate parent fish of the present invention, a hybrid fish species capable of becoming a surrogate parent fish for a donor fish species is a first that can be a surrogate parent fish for a donor fish species. It is preferable to have the genome of the fish species at half or less per cell, and more preferably, it has the genome of the first fish species that can be a surrogate parent fish for the donor fish species at 1/3 or less per cell. By making the genome of the first fish species that can be a surrogate parent for the donor fish species within the above range per cell, the surrogate parent fish for the donor fish species while preserving the breeding characteristics of the fish of the second fish species The ability to become a surrogate parent of the first fish species that can become a surrogate can be introduced to give the donor fish species the ability to become a surrogate parent.
 本発明の代理親魚を用いた魚類の配偶子の生産方法において、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種は、異質倍数体として、ハイブリッド魚種由来の配偶子が生産されない不妊のハイブリッド魚種として作出することができる。該ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種の異質倍数体としては、ハイブリッド魚種由来の精子及び卵が生産されない不妊のハイブリッド魚種が、3倍体のハイブリッド魚種を挙げることができる。 In the method for producing fish gametes using the surrogate parent fish of the present invention, a hybrid fish species capable of becoming a surrogate parent fish with respect to the donor fish species is produced as a heteroploid and a gamete derived from the hybrid fish species is produced. It can be produced as an infertile hybrid fish species. As an allopolyploid of a hybrid fish species capable of becoming a surrogate parent fish for the donor fish species, an infertile hybrid fish species in which sperm and eggs derived from the hybrid fish species are not produced is a triploid hybrid fish species. Can be mentioned.
 本発明は、レシピエントとしてのハイブリッド魚類の作出方法において、
(A)分離生殖細胞を供給するドナー魚種を選択すること、
(B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
(C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
(D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
を含むハイブリッド魚類の作出方法を包含する。
The present invention relates to a method for producing a hybrid fish as a recipient,
(A) selecting a donor fish species that supplies isolated germ cells;
(B) selecting a fish of a first species that can be a surrogate parent for the donor species;
(C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
(D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
The production method of the hybrid fish containing is included.
 また、本発明は、レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類のドナー魚種の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行う、代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法において、上記作出されたハイブリッド魚種をレシピエント魚類として用いて、ドナー魚種の分離生殖細胞を移植、分化誘導することを特徴とする代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法の発明を包含する。 The present invention also uses a recipient fish, transplants a separated germ cell of a donor fish species of a different lineage or heterogeneous fish from the recipient fish, and induces differentiation into a germline. In the method of inducing differentiation of a separated germ cell of a fish using a parent fish into a germ line, using the hybrid fish produced above as a recipient fish, transplanting the isolated germ cell of a donor fish species and inducing differentiation. The invention includes an invention of a method for inducing differentiation of a separated germ cell into a germ line using the characteristic surrogate parent fish.
 すなわち、本発明は以下のとおりである。
[1]レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行うことを含む代理親魚を用いた魚類の配偶子の生産方法において、
(A)分離生殖細胞を供給するドナー魚種を選択すること、
(B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
(C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
(D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
(E)(D)で作出されたハイブリッド魚種をレシピエントとして、ドナー魚種の分離生殖細胞を移植して生殖細胞系列への分化誘導を行うこと、
を含む代理親魚を用いた魚類の配偶子の生産方法。
[2]魚類の配偶子がドナー魚種の精子又は卵であることを特徴とする上記[1]に記載の代理親魚を用いた魚類の配偶子の生産方法。
[3]ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有する魚種の魚であり、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有さない魚種の魚であることを特徴とする上記[1]又は[2]に記載の代理親魚を用いた魚類の配偶子の生産方法。
[4]ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、ドナー魚種と同属であることを特徴とする、上記[1]~[3]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[5]ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、ドナー魚種と異属であることを特徴とする、上記[1]~[4]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[6]ドナー魚種が、イワナ属、ブリ属又はマグロ属であることを特徴とする上記[1]~[5]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[7]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり半分以下で有することを特徴とする上記[1]~[6]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[8]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり1/3以下で有することを特徴とする上記[1]~[7]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[9]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の配偶子が生産されない不妊のハイブリッド魚種であることを特徴とする上記[1]~[8]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[10]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の精子及び卵が生産されない不妊のハイブリッド魚種が、3倍体であることを特徴とする上記[1]~[9]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。
[11]レシピエントとしてのハイブリッド魚類の作出方法において、
(A)分離生殖細胞を供給するドナー魚種を選択すること、
(B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
(C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
(D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
を含むハイブリッド魚類の作出方法。
[12]ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有する魚種の魚であり、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有さない魚種の魚であることを特徴とする上記[11]に記載のハイブリッド魚類の作出方法。
[13]ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、ドナー魚種と同属であることを特徴とする、上記[11]又は[12]に記載のハイブリッド魚類の作出方法。
[14]ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、ドナー魚種と異属であることを特徴とする、上記[11]~[13]のいずれかに記載のハイブリッド魚類の作出方法。
[15]ドナー魚種が、イワナ属、ブリ属又はマグロ属であることを特徴とする上記[11]~[14]のいずれかに記載のハイブリッド魚類の作出方法。
[16]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり半分以下で有することを特徴とする上記[11]~[15]のいずれかに記載のハイブリッド魚類の作出方法。
[17]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり1/3以下で有することを特徴とする上記[11]~[16]のいずれかに記載のハイブリッド魚類の作出方法。
[18]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の配偶子が生産されない不妊のハイブリッド魚種であることを特徴とする上記[11]~[17]のいずれかに記載の代理親魚を用いたハイブリッド魚類の作出方法。
[19]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の精子及び卵が生産されない不妊のハイブリッド魚種が、3倍体であることを特徴とする上記[11]~[18]のいずれかに記載のハイブリッド魚類の作出方法。
[20]レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類のドナー魚種の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行う、代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法において、上記[11]~[19]のいずれかで作出されたハイブリッド魚種をレシピエント魚類として用いて、ドナー魚種の分離生殖細胞を移植、分化誘導することを特徴とする代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法。
[21]上記[11]~[19]のいずれかに記載の方法により作出されるハイブリッド魚類。
[22]上記[1]~[10]のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法によって生産されるドナー魚種の卵又は精子。
[23]上記[22]に記載のドナー魚種の卵又は精子から生産されるドナー魚種の養殖用種苗。
[24]上記[23]に記載のドナー魚種の養殖用種苗を養殖して得られるドナー魚種の成魚。
[25]レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行うことを含む代理親魚を用いた魚類の移植魚の生産方法において、
(A)分離生殖細胞を供給するドナー魚種を選択すること、
(B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
(C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
(D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
(E)(D)で作出されたハイブリッド魚種をレシピエントとして、ドナー魚種の分離生殖細胞を移植すること、
を含む代理親魚を用いた移植魚の生産方法。
[26]ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有する魚種の魚であり、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有さない魚種の魚であることを特徴とする上記[25]に記載の代理親魚を用いた移植魚の生産方法。
[27]ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、ドナー魚種と同属であることを特徴とする、上記[25]又は[26]に記載の代理親魚を用いた移植魚の生産方法。
[28]ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、ドナー魚種と異属であることを特徴とする、上記[25]~[27]のいずれかに記載の代理親魚を用いた移植魚の生産方法。
[29]ドナー魚種が、イワナ属、ブリ属又はマグロ属であることを特徴とする上記[25]~[28]のいずれかに記載の代理親魚を用いた移植魚の生産方法。
[30]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり半分以下で有することを特徴とする上記[25]~[29]のいずれかに記載の代理親魚を用いた移植魚の生産方法。
[31]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり1/3以下で有することを特徴とする上記[25]~[30]のいずれかに記載の代理親魚を用いた移植魚の生産方法。
[32]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の配偶子が生産されない不妊のハイブリッド魚種であることを特徴とする上記[25]~[31]のいずれかに記載の代理親魚を用いた移植魚の生産方法。
[33]ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の精子及び卵が生産されない不妊のハイブリッド魚種が、3倍体であることを特徴とする上記[25]~[32]のいずれかに記載の代理親魚を用いた移植魚の生産方法。
[34]上記[25]~[33]のいずれかに記載の方法により得られる、移植魚。
[35]上記[25]~[33]のいずれかに記載の方法により得られる移植魚から得られる、配偶子。
[36]上記[35]に記載の配偶子から生産される、養殖用種苗。
[37]上記[36]に記載の養殖用種苗を養殖して得られる、ドナー魚種の成魚。
That is, the present invention is as follows.
[1] Fish using surrogate parent fish using recipient fish and transplanting isolated germ cells of a fish of a different or different species from recipient fish to recipient fish to induce differentiation into germline In the gamete production method of
(A) selecting a donor fish species that supplies isolated germ cells;
(B) selecting a fish of a first species that can be a surrogate parent for the donor species;
(C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
(D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
(E) Using the hybrid fish species produced in (D) as a recipient, transplanting the isolated germ cells of the donor fish species to induce differentiation into the germ line,
Method for producing fish gametes using surrogate parent fish including
[2] The fish gamete production method using the surrogate parent fish according to [1] above, wherein the fish gamete is a sperm or egg of a donor fish species.
[3] The fish of the first fish species that can be a surrogate parent for the donor fish species is a fish of the species that has the ability to engraft the isolated germ cells of the transplanted donor fish species, and the donor fish The fish of the second species that cannot be a surrogate parent for the species is a fish of a species that does not have the ability to engraft the isolated germ cells of the transplanted donor species A method for producing a fish gamete using the surrogate parent fish according to [1] or [2].
[4] The fish according to any one of [1] to [3] above, wherein the fish of the first fish species that can be a surrogate parent fish for the donor fish species is the same genera as the donor fish species Production of fish gametes using surrogate parent fish.
[5] Any one of the above [1] to [4], wherein the fish of the second fish species that cannot be a surrogate parent fish for the donor fish species is different from the donor fish species Production method of fish gametes using the surrogate parent fish described.
[6] The method for producing fish gametes using the surrogate parent fish according to any one of [1] to [5] above, wherein the donor fish species is genus Ivana, Yellowtail or Tuna.
[7] A hybrid fish species capable of being a surrogate parent for a donor fish species has a genome of a first fish species that can be a surrogate parent for a donor fish species in less than half of the cells. A method for producing fish gametes using the surrogate parent fish according to any one of [1] to [6] above.
[8] The hybrid fish species capable of becoming a surrogate parent fish for the donor fish species has the genome of the first fish species that can be the surrogate parent fish for the donor fish species at 1/3 or less per cell. A method for producing a fish gamete using the surrogate parent fish according to any one of [1] to [7] above.
[9] The hybrid fish species having the ability to be a surrogate parent fish for the donor fish species are heteroploid, and are infertile hybrid fish species that do not produce gametes derived from the hybrid fish species. A method for producing fish gametes using the surrogate parent fish according to any one of [1] to [8] above.
[10] A hybrid fish species capable of becoming a surrogate parent for a donor fish species is an allopolyploid, and an infertile hybrid fish species in which sperm and eggs derived from the hybrid fish species are not produced is a triploid. A method for producing a gamete of a fish using the surrogate parent fish according to any one of [1] to [9] above.
[11] In a method for producing hybrid fish as a recipient,
(A) selecting a donor fish species that supplies isolated germ cells;
(B) selecting a fish of a first species that can be a surrogate parent for the donor species;
(C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
(D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
Of hybrid fish including
[12] The fish of the first fish species that can be a surrogate parent for the donor fish species is a fish of the fish species that has the ability to engraft the isolated germ cells of the transplanted donor fish species, and the donor fish The fish of the second species that cannot be a surrogate parent for the species is a fish of a species that does not have the ability to engraft the isolated germ cells of the transplanted donor species The method for producing hybrid fish according to [11] above.
[13] The hybrid fish according to [11] or [12] above, wherein the fish of the first fish species that can be a surrogate parent for the donor fish species is the same genera as the donor fish species Production method.
[14] Any one of the above [11] to [13], wherein the fish of the second fish species that cannot be a surrogate parent for the donor fish species is different from the donor fish species A method for producing the described hybrid fish.
[15] The method for producing a hybrid fish according to any one of the above [11] to [14], wherein the donor fish species is the genus Ivana, Yellowtail or Tuna.
[16] The hybrid fish species capable of becoming a surrogate parent for a donor fish species has a genome of a first fish species that can be a surrogate parent for a donor fish species in less than half of the cells. The method for producing hybrid fish according to any one of [11] to [15] above.
[17] A hybrid fish species capable of becoming a surrogate parent fish for a donor fish species has a genome of a first fish species that can be a surrogate parent fish for a donor fish species at 1/3 or less per cell. The method for producing hybrid fish according to any one of [11] to [16] above, wherein
[18] The hybrid fish species capable of becoming a surrogate parent for the donor species is an allogeneic polyploid and is an infertile hybrid species that does not produce gametes derived from the hybrid species. A method for producing hybrid fish using the surrogate parent fish according to any one of [11] to [17] above.
[19] A hybrid fish species capable of becoming a surrogate parent for a donor fish species is an allopolyploid, and an infertile hybrid fish species that does not produce sperm and eggs derived from a hybrid fish species is a triploid. The method for producing a hybrid fish according to any one of the above [11] to [18], characterized in that it exists.
[20] Using a surrogate parent fish that uses a recipient fish and transplants a separated germ cell of a donor fish species of a different or different species from the recipient fish into the recipient fish to induce differentiation into a germ cell line. In the method for inducing differentiation of isolated fish germ cells into germ line, the hybrid fish species produced in any one of [11] to [19] above are used as recipient fish, and the isolated germ cells of the donor fish species A method for inducing differentiation of a separated germ cell of a fish into a germ line using a surrogate parent fish, characterized by transplanting and differentiation.
[21] A hybrid fish produced by the method according to any one of [11] to [19] above.
[22] An egg or sperm of a donor fish species produced by the fish gamete production method using the surrogate parent fish according to any one of [1] to [10] above.
[23] A seedling for aquaculture of a donor fish species produced from an egg or sperm of the donor fish species according to [22] above.
[24] An adult donor fish species obtained by culturing the seedling for aquaculture of the donor fish species according to [23].
[25] Fish using a surrogate parent fish that includes using a recipient fish and transplanting isolated germ cells of a fish of a different or different species from the recipient fish into the recipient fish to induce differentiation into a germ line In the method for producing transplanted fish of
(A) selecting a donor fish species that supplies isolated germ cells;
(B) selecting a fish of a first species that can be a surrogate parent for the donor species;
(C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
(D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
(E) transplanting the isolated germ cells of the donor fish species with the hybrid fish species produced in (D) as recipients;
Of transplanted fish using surrogate parent fish including
[26] The fish of the first fish species that can be a surrogate parent for the donor fish species is a fish of the fish species that has the ability to engraft the isolated germ cells of the transplanted donor fish species, and the donor fish The fish of the second species that cannot be a surrogate parent for the species is a fish of a species that does not have the ability to engraft the isolated germ cells of the transplanted donor species A method for producing transplanted fish using the surrogate parent fish according to [25] above.
[27] The surrogate parent fish according to [25] or [26] above, wherein the fish of the first fish species that can be a surrogate parent fish for the donor fish species is the same genera as the donor fish species The transplanted fish production method used.
[28] The fish according to any one of [25] to [27] above, wherein the fish of the second fish species that cannot be a surrogate parent fish for the donor fish species is different from the donor fish species A method for producing transplanted fish using the surrogate parent fish described.
[29] The method for producing transplanted fish using the surrogate parent fish according to any one of the above [25] to [28], wherein the donor fish species is Ivana, Yellowtail or Tuna.
[30] The hybrid fish species capable of becoming a surrogate parent fish for the donor fish species has the genome of the first fish species that can be the surrogate parent fish for the donor fish species in less than half of the cells. A method for producing transplanted fish using the surrogate parent fish according to any one of [25] to [29] above.
[31] A hybrid fish species capable of becoming a surrogate parent fish for a donor fish species has a genome of the first fish species that can be a surrogate parent fish for a donor fish species at 1/3 or less per cell. A method for producing a transplanted fish using the surrogate parent fish according to any one of [25] to [30] above.
[32] The hybrid fish species capable of becoming a surrogate parent fish for the donor fish species are heteroploid, and are infertile hybrid fish species that do not produce gametes derived from the hybrid fish species. A method for producing transplanted fish using the surrogate parent fish according to any one of [25] to [31] above.
[33] A hybrid fish species capable of becoming a surrogate parent for a donor fish species is an allopolyploid, and an infertile hybrid fish species that does not produce sperm and eggs derived from a hybrid fish species is a triploid. A method for producing transplanted fish using the surrogate parent fish according to any one of the above [25] to [32], wherein
[34] A transplanted fish obtained by the method according to any one of [25] to [33] above.
[35] A gamete obtained from a transplanted fish obtained by the method according to any one of [25] to [33] above.
[36] A seedling for aquaculture produced from the gamete described in [35] above.
[37] An adult donor fish species obtained by culturing the aquaculture seedling according to [36].
 これまでの代理親魚技術では、代理親魚として利用可能な魚種は、ドナーに近縁な魚種に限られており、代理親魚技術を適用可能な魚種が制限されていたため、実用的には飼育等の容易な他属魚種等の代理親魚の利用が必要とされるものの他属魚種等の代理親魚への利用が困難であった。本発明は、他属魚種等の代理親魚への利用を可能とし、他属の飼育等の容易な魚種を代理親魚技術におけるレシピエントとして用いることを可能としたことから、広い範囲からレシピエントとして適合する魚種を選択することが可能となり、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法として、実用化に向けての技術の提供を可能とした。 Until now, in the surrogate parent fish technology, the fish species that can be used as the surrogate parent fish are limited to those that are closely related to the donor, and the fish species to which the surrogate parent fish technology can be applied are limited. Although it is necessary to use surrogate parent fish such as other genus fish species that are easy to breed, it has been difficult to use surrogate parent fish such as other genus fish species. The present invention enables use for surrogate parent fish such as other genus fish species, and allows easy use of fish species such as other genus breeding as recipients in surrogate parent fish technology. It is possible to select a fish species that is suitable as an ent, and it is possible to provide technology for practical use as a production method of fish gametes (sperm and eggs) for the production of cultured fish using surrogate parent fish did.
 本発明は、レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行うことを含む代理親魚を用いた魚類の配偶子の生産方法において、
(A)分離生殖細胞を供給するドナー魚種を選択すること、
(B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
(C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
(D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
(E)(D)で作出されたハイブリッド魚種をレシピエントとして、ドナー魚種の分離生殖細胞を移植して生殖細胞系列への分化誘導を行うこと、を含む代理親魚を用いた魚類の配偶子の生産方法を包含する。
The present invention uses a recipient fish that uses a recipient fish and includes transplanting germ cells of a different lineage or a heterogeneous fish from the recipient fish into the recipient fish to induce differentiation into a germline. In the production of fish gametes,
(A) selecting a donor fish species that supplies isolated germ cells;
(B) selecting a fish of a first species that can be a surrogate parent for the donor species;
(C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
(D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
(E) The mating of the fish using the surrogate parent fish including transplanting the isolated germ cells of the donor fish species and inducing differentiation into the germ line using the hybrid fish species produced in (D) as the recipient Includes child production methods.
 本発明における代理親魚技法は、配偶子(精子及び卵)を得ようとする目的の魚種をドナーとし、配偶子を生産させようとする魚種をレシピエントとし、ドナーの始原生殖細胞、精原細胞又は卵原細胞に例示される未分化な生殖細胞をレシピエントに移植して、該未分化な生殖細胞が移植された移植魚を作出し、該移植魚(レシピエント)の生殖腺内で、ドナーの未分化生殖細胞を生着、増殖及び分化させることにより、移植魚(レシピエント)の体内でドナーに由来する配偶子を得て、ドナーの子孫となる種苗を得ることを含む。 The surrogate parent fish technique in the present invention uses a fish species intended to obtain gametes (sperm and eggs) as a donor, and a fish species intended to produce gametes as a recipient. Transplant undifferentiated germ cells exemplified by protoblasts or oocyte cells to a recipient to produce a transplanted fish transplanted with the undifferentiated germ cells, and within the gonad of the transplanted fish (recipient) This includes engrafting, proliferating and differentiating the undifferentiated germ cells of the donor to obtain gametes derived from the donor in the body of the transplanted fish (recipient), and obtaining seedlings that become the offspring of the donor.
 本発明の代理親魚を用いた魚類の配偶子の生産方法においては、配偶子として、精子或いは卵を生産する。精子を得ようとする場合には、雄のレシピエントにドナーの生殖細胞を移植し、卵を得ようとする場合には、雌のレシピエントにドナーの生殖細胞を移植する。生殖腺として、精子を得たいときには精巣を用いることができ、卵を得たいときには卵巣を用いることができる。雄のレシピエントに移植されたドナーの生殖細胞は、レシピエントの精巣内で増殖及び分化することで、ドナーの精子を産み出すことができる。雌のレシピエントに移植されたドナーの生殖細胞は、レシピエントの卵巣内で増殖及び分化することで、ドナーの卵を産み出すことができる。このようにして得られた精子又は卵は、互いに掛け合わせることによって、又は別途得られた卵と精子とを掛け合わせることによって、受精卵を得ることができる。得られた受精卵を発生させることで、目的の魚種の種苗を得ることができる。 In the method for producing fish gametes using the surrogate parent fish of the present invention, sperm or eggs are produced as gametes. When trying to obtain sperm, a male germ cell is transplanted with a donor germ cell, and when trying to obtain an egg, a female germ cell is transplanted with a donor germ cell. As the gonad, the testis can be used to obtain sperm, and the ovary can be used to obtain eggs. Donor germ cells transplanted into a male recipient can grow and differentiate within the recipient's testis to produce donor sperm. Donor germ cells transplanted into a female recipient can grow and differentiate in the recipient's ovaries to produce donor eggs. The sperm or egg thus obtained can be fertilized eggs by crossing each other or by multiplying separately obtained eggs and sperm. By generating the obtained fertilized eggs, seedlings of the target fish species can be obtained.
 ドナーとしては、養殖を目的とする魚を適宜選択することができる。養殖する目的であれば、ドナーには、食用魚種、材料採取用魚種、観賞用の魚種等、種々の養殖目的の魚種を選択することができる。養殖目的の食用魚種としては、イワナ属等のサケ科、ブリ属等のアジ科、マグロ属等のサバ科などを挙げることができ、なかでも、ドナー魚種としては、イワナ属、ブリ属又はマグロ属の食用魚を挙げることができる。 As a donor, fish for the purpose of aquaculture can be selected as appropriate. For the purpose of aquaculture, the donor can select various fish species for aquaculture, such as edible fish species, material collecting fish species, ornamental fish species, and the like. Examples of edible fish species for aquaculture include salmonids such as char, genera such as yellowtail, mackerel such as tuna, etc. Or the food fish of the genus Tuna can be mentioned.
 本発明の代理親魚を用いた魚類の配偶子の生産方法において、代理親魚技術に用いられるドナーの未分化な生殖細胞には、性分化前の生殖腺から得られる始原生殖細胞、精巣から得られる精原細胞、卵巣から得られる卵原細胞等が含まれる。これらの未分化な生殖細胞は、異なる分化段階の細胞と組み合わせて、又は同一の分化段階の細胞を単独で使用することができる。 In the method of producing fish gametes using the surrogate parent fish of the present invention, the undifferentiated germ cells of the donor used in the surrogate parent fish technology include primordial germ cells obtained from the gonad before sex differentiation, and sperm obtained from the testis. Progenitor cells, oocytes obtained from ovaries and the like are included. These undifferentiated germ cells can be used in combination with cells at different stages of differentiation, or cells at the same stage of differentiation alone.
 ドナーから未分化な生殖細胞を得るには、目的とする未分化な生殖細胞の分化段階に応じたドナーの組織から、通常の方法で採取することができる。例えば、ドナーから性分化前の生殖腺、又は性分化後の組織、例えば精巣若しくは卵巣を摘出し、物理的な剥離又はタンパク質分解酵素での処理等により、組織から個々の細胞へ分散させることによって、未分化な生殖細胞を得ることができる。分散された個々の細胞は、例えば、マーカーとなる抗体を用いて、又はセルソーターを用いて単離することができる。 In order to obtain undifferentiated germ cells from a donor, it can be collected from the donor tissue according to the differentiation stage of the target undifferentiated germ cells by a usual method. For example, by removing gonads before sex differentiation from a donor, or tissues after sex differentiation, such as testis or ovaries, and dispersing them from the tissues to individual cells by physical detachment or treatment with proteolytic enzymes, etc. Undifferentiated germ cells can be obtained. The dispersed individual cells can be isolated using, for example, an antibody that serves as a marker, or using a cell sorter.
 未分化な生殖細胞は、冷凍体又は生きた個体から得ることができる。代理親魚技術の成功率を高めるには、未分化な生殖細胞は生きた個体から得る方が好ましい。冷凍体としては、個体、臓器、及び細胞のいずれの単位を冷凍して得られたものも使用し得る。細胞を冷凍する場合は、適切な凍結保護剤を用いて行うことが好ましい。適切な凍結保護剤としては、0.1重量%から10重量%のグルコース若しくはトレハロース、又は0.1モル/リットルから20モル/リットルのジメチルスルフォキシド(DMSO)、エチレングリコール若しくはプロピレングリコールが挙げられ、これらの凍結保護剤は、単独で、又は2種以上を組み合わせて使用することもできる。 Undifferentiated germ cells can be obtained from frozen bodies or living individuals. In order to increase the success rate of surrogate parent fish technology, it is preferable to obtain undifferentiated germ cells from live individuals. As the frozen body, those obtained by freezing any unit of an individual, an organ, and a cell can be used. When freezing cells, it is preferable to use an appropriate cryoprotectant. Suitable cryoprotectants include 0.1 wt% to 10 wt% glucose or trehalose, or 0.1 mol / liter to 20 mol / liter dimethyl sulfoxide (DMSO), ethylene glycol or propylene glycol. These cryoprotectants can be used alone or in combination of two or more.
 始原生殖細胞の採取工程は、好ましくは、始原生殖細胞のマーカーを用いて、得られた細胞が始原生殖細胞であることを確認することを含む。始原生殖細胞であることを確認することに適用可能なマーカーには、Vasa遺伝子、CD205遺伝子等が含まれる。確認は、遺伝子又は遺伝子産物の発現、修飾、局在又はこれらの2つ以上の組み合わせを確認することで行うことができる。 The step of collecting primordial germ cells preferably includes confirming that the obtained cells are primordial germ cells using a marker of primordial germ cells. Markers applicable to confirming that they are primordial germ cells include Vasa gene, CD205 gene and the like. Confirmation can be performed by confirming the expression, modification, localization, or a combination of two or more of the genes or gene products.
 遺伝子の発現を確認するには、特定の遺伝子から転写されたmRNAをPCR(ポリメラーゼ連鎖反応)にて確認するのが簡便である。遺伝子の発現及び局在は、特定の遺伝子から転写されたRNAを In situ hybridization を用いて確認するのが簡便である。遺伝子産物の発現、修飾及び発現は、特定の遺伝子から発現され、翻訳されて得られた遺伝子産物を、その遺伝子産物に特異的な抗体を用いることで確認するのが簡便である。 In order to confirm gene expression, it is convenient to confirm mRNA transcribed from a specific gene by PCR (polymerase chain reaction). It is easy to confirm the expression and localization of a gene using RNA transcribed from a specific gene using “in situ hybridization”. Expression, modification and expression of a gene product can be easily confirmed by using an antibody specific for the gene product expressed from a specific gene and translated.
 ドナーの細胞をレシピエントに導入する場合は、レシピエントの免疫系が十分に働く前の胚又は仔魚期の個体に導入することが好ましい。導入は、マイクロマニュピュレータ、電気メス、レーザーメス等のマニュピュレータを用いて行うことができる。導入は、レシピエントのいずれの組織又は部位に行ってもよく、導入対象となる組織又は部位としては、例えば、表皮又は腹腔が挙げられる。胚又は仔魚期の個体に導入する際の細胞数としては、特に制限はなく、例えば、1細胞から100,000細胞を導入することができる。 When the donor cells are introduced into the recipient, it is preferably introduced into an individual at the embryo or larva stage before the recipient's immune system works sufficiently. The introduction can be performed using a manipulator such as a micromanipulator, an electric knife, or a laser knife. The introduction may be performed in any tissue or site of the recipient, and examples of the tissue or site to be introduced include the epidermis or the abdominal cavity. There is no restriction | limiting in particular as a cell number at the time of introduce | transducing into the individual | organism | solid of an embryo or a larva stage, For example, 100,000 cells can be introduce | transduced from 1 cell.
 ドナー生殖細胞のレシピエント生殖腺における生着の確認は、ドナーの細胞とレシピエントの細胞を区別し得る指標を用いて行うことができる。使用可能な指標としては、遺伝子、抗体、蛍光色素等を挙げることができ、これらの指標は単独で、又は2種以上を組み合わせて用いることができる。指標となる遺伝子としては、未分化な生殖細胞で発現している遺伝子を挙げることができ、例えば、vasa遺伝子、dead-end遺伝子等を挙げることができる。指標となる蛍光色素としては、PKH26、CFSE等を挙げることができる。 Confirmation of engraftment of donor germ cells in the recipient gonad can be performed using an index that can distinguish donor cells from recipient cells. Examples of usable indicators include genes, antibodies, fluorescent dyes and the like, and these indicators can be used alone or in combination of two or more. Examples of the gene serving as an index include genes that are expressed in undifferentiated germ cells, such as vasa gene and dead-end gene. Examples of the fluorescent dye serving as an index include PKH26 and CFSE.
 遺伝子を用いる場合は、指標となる遺伝子の配列のうち、ドナーとレシピエントとで配列が異なる部位を用いてプライマーを設計してPCRを行う、又は、ドナーとレシピエントで配列が異なる部位を用いて In situ hybridization を用いて確認するのが簡便である。導入前にドナーの生殖細胞を蛍光色素で標識することによって、蛍光顕微鏡下で生着を確認することができる。生着の確認は、導入の直後から行うことができ、好ましくは、レシピエントに生着し、細胞として機能しているかどうかを確認するためには、導入から7日以上経ってから行うことができる。導入から7日後にレシピエントの生殖腺に生着が観察された個体からは、ドナーの精子又は卵が得られることが期待される。 When using a gene, PCR is performed by designing a primer using a site where the sequence is different between the donor and the recipient, or a site where the sequence is different between the donor and the recipient. It is easy to confirm using In situ hybridization. By labeling donor germ cells with a fluorescent dye prior to introduction, engraftment can be confirmed under a fluorescence microscope. Confirmation of engraftment can be carried out immediately after introduction, and preferably, it is carried out 7 days or more after introduction in order to confirm whether or not the recipient has engrafted and functions as a cell. it can. It is expected that donor sperm or eggs will be obtained from individuals whose engraftment was observed in the recipient's gonads 7 days after introduction.
 本発明においてハイブリッドとは、細胞内に異なる品種、系統又は生物種に由来するゲノムを併せ持つ個体を意味し、該ハイブリッドは、交雑、細胞融合若しくは遺伝子導入、又はこれらの2つ以上の組み合わせにより作製された個体を含む。魚類では、生息地等により生物学的に隔離された異なる生殖集団が異なる品種、系統、又は生物種として認識されるが、異なる生殖集団の分布の近接地域では生殖集団間の交雑が生じ、ハイブリッドが生じる場合がある。しかし、自然環境で、どのような場合に交雑が生じ、ハイブリッドが得られるかは、よく分かっておらず、ハイブリッドはもっぱら人工的に作製される。人為的に品種、系統を作出し、維持している場合も、同様に、人工的にハイブリッドを作製することができる。 In the present invention, a hybrid means an individual having genomes derived from different varieties, strains, or biological species in a cell, and the hybrid is produced by crossing, cell fusion or gene transfer, or a combination of two or more thereof. Including individuals In fish, different reproductive populations biologically isolated by habitats, etc. are recognized as different varieties, strains, or species. May occur. However, it is not well understood when the hybridization occurs in the natural environment and the hybrid is obtained, and the hybrid is exclusively produced artificially. Similarly, when artificially producing and maintaining varieties and lines, hybrids can be artificially produced.
 交雑によってハイブリッドとしての個体を作製する場合は、異なる品種、系統又は生物種の個体を掛け合わせて雑種を得ることができる。 When producing individuals as hybrids by crossing, hybrids can be obtained by crossing individuals of different varieties, strains or species.
 特に、異種間雑種を異種間の交雑によってハイブリッドを作製する場合、人工飼育下又は天然採取で得られた一方の種の卵に、他方の種の精子を接触させることで受精卵を作製し、得られた受精卵を孵化させることで、異種間雑種を作製することができる。このとき、受精する卵を人工的に倍数化しておき、他方の種の精子と接触させると、得られた異種間雑種は異質倍数体となる。異質倍数体の個体は、自らの卵又は精子を作りにくく、レシピエントとして用いるのに特に好ましい。倍数体としては、2倍体、3倍体、4倍体等を挙げることができ、これらの倍数体は、いずれも使用することができる。 In particular, when a hybrid is produced by cross-breeding between different species, a fertilized egg is produced by contacting the sperm of the other species with the egg of one species obtained by artificial breeding or natural collection, A heterogeneous hybrid can be produced by hatching the obtained fertilized egg. At this time, if the egg to be fertilized is artificially doubled and brought into contact with the sperm of the other species, the heterogeneous hybrid obtained becomes a heteroploid. Heterogeneous polyploid individuals are particularly preferred for use as recipients because they are less likely to produce their own eggs or sperm. Examples of polyploids include diploids, triploids, tetraploids, and the like. Any of these polyploids can be used.
 受精する卵を人工的に倍数化する方法としては、受精時に細胞分裂阻害剤、電気刺激、光刺激若しくは温度刺激、圧力刺激、又はこれらの2つ以上の組み合わせを用いて、極体放出を抑える方法を用いることができる。細胞分裂阻害剤には、例えば、コルヒチンを用いることができる。また、倍数体として4倍体を作出し、これを2倍体の個体と掛け合わせることで3倍体の作出をすることもできる。 As a method of artificially doubling fertilized eggs, polar body release is suppressed by using a cell division inhibitor, electrical stimulation, light stimulation or temperature stimulation, pressure stimulation, or a combination of two or more thereof at the time of fertilization. The method can be used. For example, colchicine can be used as the cell division inhibitor. Also, a tetraploid can be created as a polyploid, and a triploid can be created by multiplying this with a diploid individual.
 細胞融合によってハイブリッドを作製する場合は、異なる種の卵又は分離胚細胞を融合する方法を用いることができる。細胞融合には、細胞膜融合剤、電気刺激、光刺激若しくは熱刺激、又はこれらの組み合わせを用いて細胞同士を直接融合する方法を用いることができる。細胞膜融合剤には、例えばポリエチレングリコールを用いることができる。細胞融合によって得られたハイブリッドの細胞は、全ての染色体を保持する場合もあれば、一部の染色体のみを保持する場合もある。本発明に用いるにあたっては、ドナーの未分化な生殖細胞を移植した際に、移植後の生殖細胞が卵又は精子として機能するために必要なゲノムが揃っていればよい。 When producing hybrids by cell fusion, a method of fusing different types of eggs or isolated embryo cells can be used. For cell fusion, a method of directly fusing cells using a cell membrane fusion agent, electrical stimulation, light stimulation or thermal stimulation, or a combination thereof can be used. For example, polyethylene glycol can be used as the cell membrane fusion agent. Hybrid cells obtained by cell fusion may retain all chromosomes or only some chromosomes. When used in the present invention, it is sufficient that the genome necessary for functioning the germ cells after transplantation as an egg or sperm when the undifferentiated germ cells of the donor are transplanted.
 遺伝子導入によってハイブリッドとしての個体を作製する場合は、一方の種の卵に、他方の種の染色体又は遺伝子を導入することによって作製することができる。導入する染色体は、レシピエントとなるハイブリッドにドナーの未分化な生殖細胞を移植した際に、移植後の生殖細胞が卵又は精子として機能するために必要な量であればどのような量を入れてもよい。例えば、導入する染色体として、1本若しくは複数本、又は、これらの一部の断片を用いてもよい。また、異なる染色体の組み合わせを導入して、移植後に機能する適切な染色体を見出すことができる。 When an individual as a hybrid is produced by gene introduction, it can be produced by introducing the chromosome or gene of the other species into the egg of one species. The amount of chromosomes to be introduced can be any amount necessary for the transplanted germ cells to function as eggs or sperm when the donor undifferentiated germ cells are transplanted into the recipient hybrid. May be. For example, one or more chromosomes or a partial fragment thereof may be used as the chromosome to be introduced. Different chromosome combinations can also be introduced to find appropriate chromosomes that function after transplantation.
 導入する遺伝子は、レシピエントとなるハイブリッドにドナーの始原生殖細胞を移植した際に、移植後の生殖細胞が卵又は精子として機能するために必要な遺伝子であればどのような遺伝子を入れても構わず、1又は2以上の遺伝子を導入してもよい。このような遺伝子として、gsdf遺伝子を例示できる。 The gene to be introduced can be any gene as long as it is necessary for the recipient germ cell to function as an egg or sperm when the donor's primordial germ cell is transplanted into the recipient hybrid. Of course, one or more genes may be introduced. An example of such a gene is the gsdf gene.
 本発明において、レシピエントに用いるハイブリッドは、レシピエントとして適した性質を持つ品種、系統又は生物種を用いることが好ましい。レシピエントとして適した性質とは、人工飼育環境下における生残率の高さ、必要とされる飼育設備の小ささ、必要とされる温度調節のための設備のコスト、餌のコスト、卵又は精子の採取の容易さ、などに例示される。本発明において、用いるレシピエントは、作製されたハイブリッドが、レシピエントとして適した性質を受け継いでいることが好ましい。作製されたハイブリッドが、レシピエントとして適した性質を受け継ぐためには、ハイブリッドのゲノムの中に、レシピエントとして適した性質を持つ品種、系統又は生物種のゲノムをより多く含ませることで得ることができる。レシピエントとして適した性質を持つ品種、系統又は生物種のゲノムをより多く含ませるためには、レシピテントとして適した性質を持つ品種、系統又は生物種から得られた卵を人工的に倍数化することで、より多くのゲノムを持たせることができる。 In the present invention, the hybrid used for the recipient is preferably a cultivar, strain or organism having properties suitable for the recipient. Properties suitable for recipients include high survival rates in artificial breeding environments, small breeding equipment required, cost of equipment for temperature control needed, food cost, eggs or This is exemplified by the ease of collecting sperm. In the present invention, the recipient to be used preferably has inherited properties suitable for the recipient. In order for the created hybrid to inherit properties suitable for recipients, it must be obtained by including more of the genomes of varieties, strains or species with properties suitable for recipients in the genome of the hybrid. Can do. In order to include more genomes of varieties, strains or species that have properties suitable as recipients, artificially double eggs obtained from varieties, strains or species that have properties suitable as recipients. By doing so, you can have more genomes.
 ハイブリッドは、代理親魚として不利な性質をより少なくする点で、ドナーに対して代理親魚になり得る(第一)魚種のゲノムを、細胞あたり半分以下で有することが好ましい。より好ましくは、ドナーに対して代理親魚になり得る(第一)魚種のゲノムを細胞あたり1/3以下で有することが好ましい。ハイブリッドにおけるゲノムの量は、細胞として体細胞又は血球を選択し、定法により採取された細胞を用いて、DNAフローサイトメトリーにより算出した量とすることができる。例えば、代理親魚になり得る(第一)魚種のゲノムと、代理親魚になり得る(第一)魚種以外の魚種のゲノムを1セットずつ持ったハイブリッド細胞の場合には、ハイブリッドの細胞における代理親魚になり得る(第一)魚種のゲノムの量は、半分となる。このとき代理親魚になり得る(第一)魚種の染色体が欠落する又は該DNAが欠損していた場合又は代理親魚になり得る(第一)魚種のゲノムの一部の染色体又はDNAを、代理親魚になり得る(第一)魚種以外の魚種のゲノムに導入して作製したハイブリッド細胞の場合には、ドナーのゲノムの量の半分以下となる。代理親魚になり得る(第一)魚種のゲノムと、代理親魚になり得る(第一)魚種以外の魚種の倍数化したゲノムを1セットずつ持ったハイブリッドの細胞の場合には、ハイブリッドの細胞における代理親魚になり得る(第一)魚種のゲノムの量は1/3となる。このときドナー由来の染色体が欠落する又はドナー由来のDNAが欠損していた場合又は代理親魚になり得る(第一)魚種のゲノムの一部の染色体又はDNAを、代理親魚になり得る(第一)魚種以外の魚種のゲノムに導入して作製したハイブリッド細胞の場合には、代理親魚になり得る(第一)魚種のゲノムの量の1/3以下であると確認できる。 The hybrid preferably has a genome of a fish species that can be a surrogate parent fish for the donor (first) at less than half per cell in that it has less disadvantageous properties as a surrogate parent fish. More preferably, the genome of the (first) fish species that can be a surrogate parent fish for the donor is preferably 1/3 or less per cell. The amount of genome in the hybrid can be an amount calculated by DNA flow cytometry using somatic cells or blood cells selected as cells and using cells collected by a conventional method. For example, in the case of a hybrid cell having one set of genomes of fish species that can be surrogate parent fish (1) and one species of fish species that can be surrogate parent fish (1) fish species, hybrid cells The amount of genomes of fish species that can be surrogate parent fish in (1) is halved. At this time, the chromosome of the species of the fish species that can be a surrogate parent fish (first) if the chromosome of the fish species is missing or the DNA is deficient or can be the surrogate parent fish (first) In the case of a hybrid cell prepared by introducing into the genome of a fish species other than the fish species that can be a surrogate parent fish (first), the amount is less than half the amount of the donor genome. In the case of a hybrid cell with one set each of the genome of a fish species that can be a surrogate parent fish (1) and a doubled genome of a fish species other than the fish species that can be a surrogate parent fish (1) The amount of the genome of the fish species that can be a surrogate parent in this cell is 1/3. At this time, if the donor-derived chromosome is missing or if the donor-derived DNA is missing or can be a surrogate parental fish (first) a part of the chromosome or DNA of the fish species genome can be a surrogate parental fish (first 1) In the case of a hybrid cell prepared by introducing into the genome of a fish species other than the fish species, it can be confirmed that it is 1/3 or less of the amount of the genome of the fish species that can be a surrogate parent fish (first).
 本発明において、ハイブリッドを得るために選択される第一の魚類は、ドナーに対して代理親魚となり得る魚種である。ドナーに対して代理親魚となり得る魚種とは、該魚種に属する魚をレシピエントとしてドナーの生殖細胞を移植した場合に、該ドナーの生殖細胞を生着させ、ドナーの配偶子を得ることができる魚種のことをいう。第一のドナーに対して代理親魚となり得る魚種は、ドナー又はドナーと近縁な魚種であることが好ましい。ドナー又はドナーと近縁な魚種は、ドナーの生殖細胞を移植された場合に、ドナーの生殖細胞を定着しやすく、ドナーの配偶子が得られやすい。ハイブリッドの中で、ドナー又はドナーと近縁な魚種が持つ1つ又は複数の遺伝子が、レシピエントに移植されたドナーの生殖細胞の働きを補助することで、ドナー由来の卵又は精子を得ることができると考えられている。レシピエントに移植されたドナーの生殖細胞の働きを補助する1つ又は複数の遺伝子は、ドナー又はドナーと近縁な魚種のゲノムの中の1本又は複数本の染色体上にあると考えられている。 In the present invention, the first fish selected for obtaining the hybrid is a fish species that can be a surrogate parent fish for the donor. A fish species that can serve as a surrogate parent for a donor means that when a donor's germ cells are transplanted using a fish belonging to the fish species as a recipient, the donor's germ cells are engrafted and a donor gamete is obtained. A fish species that can The fish species that can be a surrogate parent fish for the first donor is preferably a donor or a fish species closely related to the donor. When a donor or a fish species closely related to the donor is transplanted with a donor germ cell, the donor germ cell is likely to be established and a donor gamete is easily obtained. In a hybrid, one or more genes of a donor or a fish species closely related to the donor help the donor's germ cells transplanted to the recipient to obtain donor-derived eggs or sperm It is considered possible. One or more genes that assist the donor's germ cells in the recipient transplant are considered to be on one or more chromosomes in the genome of the fish species closely related to the donor or donor. ing.
 ドナーと近縁な魚種とは、ドナーの同属から選ばれるものであれば好ましく、ドナーと同属同種から選ばれるものであればより好ましい。具体的には、ドナーがイワナ属である場合、第一の魚種としては、ドナーと同種又は異種の魚種が挙げられ、例えば、イワナ属のアメマス、オショロコマ、ミヤベイワナ、ブルックトラウト、イワナ等が挙げられる。ドナーがブリ属である場合、第一の魚種としては、ドナーと同種又は異種の魚種が挙げられ、例えば、ブリ属のブリ、ヒラマサ、カンパチ等が挙げられる。ドナーがマグロ属である場合には、第一の魚種としては、ドナーと同種又は異種の魚種が挙げられ、マグロ属のキハダ、ビンナガ、ミナミマグロ、タイセイヨウマグロ、コシナガ等が挙げられる。 The fish species closely related to the donor are preferably selected from the same genera of the donor, and more preferably selected from the same genera of the donor. Specifically, when the donor is a genus char, the first fish species includes the same or a different species of fish as the donor, for example, a trout of the genus char, ashokokoma, Miyabeiwana, Brook trout, char, etc. Can be mentioned. When the donor is a species of yellowtail, examples of the first fish species include the same or different species of fish as the donor, and examples include the yellowtail yellowtail, kingfish, amberjack, and the like. When the donor is a genus Tuna, examples of the first fish species include the same or different species of fish as the donor, such as yellowfin tuna, albacore, southern bluefin tuna, Atlantic bluefin tuna, coshinaga and the like.
 本発明において、ドナーに対して代理親魚となり得ない(第二の)魚種とは、該魚種に属する魚をレシピエントとしてドナーの生殖細胞を移植した場合に、該ドナーの生殖細胞を生着させ、ドナーの配偶子を得ることが困難な魚種をいう。ドナーに対して代理親魚となり得ない第二の魚種は、ドナーと異属の魚種を挙げることができる。代理親魚技術におけるレシピエントとしては、一般的には、近縁な魚種が適した性質を持つ魚種として選択されるが、しかし、例えば、大型魚類のようなドナーの場合に、飼育のし易さ等から、レシピエントとして適した性質を持つ品種、系統又は生物種を、ドナー又はドナーと同属の魚種から選ぶことができない場合がある。すなわち、人工飼育環境下における生残率の低さ、必要とされる飼育設備の大きさ、必要とされる温度調節のための設備のコスト、餌のコスト、卵又は精子の採取の難しさ、などの理由から、レシピエントとして適した性質を持つ品種、系統又は生物種を選ぶことができない場合がある。そのような場合に、ドナーと異属の魚種をレシピエントとして選択する必要性が生じる。しかし、ドナーと異属の魚種は、一般に、ドナーの生殖細胞を移植された場合に、ドナーの生殖細胞を定着しにくく、ドナーの配偶子が得られにくい。 In the present invention, a (second) fish species that cannot be a surrogate parent fish for a donor means that the donor's germ cells are generated when the donor's germ cells are transplanted using the fish belonging to the fish species as a recipient. A fish species that is difficult to dress and obtain a donor gamete. The second fish species that cannot be a surrogate parent fish for the donor can include donor and heterogenous fish species. Recipients in surrogate parenting techniques are generally selected as closely related fish species that have suitable properties, but should be raised in the case of donors such as large fish. Due to easiness and the like, there are cases where it is not possible to select a breed, a line or a biological species having properties suitable as a recipient from a donor or a fish species belonging to the donor. That is, low survival rate in the artificial breeding environment, the size of the necessary breeding equipment, the cost of the equipment for the required temperature control, the cost of food, the difficulty of collecting eggs or sperm, For these reasons, it may not be possible to select varieties, strains or species having properties suitable as recipients. In such cases, a need arises to select donor and heterogenous fish species as recipients. However, when a donor's germ cells are transplanted, donor fish and heterogenous fish species are difficult to establish donor germ cells and to obtain donor gametes.
 本発明においては、このような第二の魚種を選択して、レシピエントとして利用する場合に際し、該第二の魚種と第一の魚種とのハイブリッドを作製することにより、第二の魚種にドナーに対して代理親魚となり得る能力を付与して、レシピエントとして用いることを可能とし、第二の魚種の飼育特性等を利用して、ドナーの配偶子を効率よく得ることができる。本発明の代理親魚を用いたドナーの配偶子の生産方法は、天然においてハイブリッドの形成があまり見られない海産魚において、人工的にハイブリッドを作出可能とするための方法として特に効果的であり、特に養殖魚の分野において、必要な魚類の種苗の供給を確保する上で、経済的な利用価値を有する。 In the present invention, when such a second fish species is selected and used as a recipient, a hybrid of the second fish species and the first fish species is produced to produce the second fish species. Giving the fish species the ability to be a surrogate parent fish for the donor, allowing it to be used as a recipient, and using the breeding characteristics of the second fish species, etc., to efficiently obtain the gametes of the donor it can. The method for producing a donor gamete using the surrogate parent fish of the present invention is particularly effective as a method for artificially producing a hybrid in marine fish that does not often form a hybrid in nature. In particular, in the field of cultured fish, it has economic utility value in securing the supply of necessary seeds for fish.
 属の範囲を越えての場合を、例示すれば、ドナーがイワナ属である場合、第二の魚種としては、サケ科サケ属のサクラマス(ヤマメ)、ニジマス、マスノスケ等を挙げることができ、ドナーがブリ属である場合には、第二の魚種としては、アジ科メアジ属のメアジ等、アジ科マアジ属のマアジ等、アジ科シマアジ属のシマアジ等、アジ科ムロアジ属のムロアジ、アオアジ等の、アジ科又はアジ亜科のドナーと同科異属の魚種、ドナーと異科の魚種などを挙げることができる。ドナーがマグロ属である場合には、第二の魚種としては、サバ科スマ属のスマ、タイセイヨウヤイト等、サバ科サバ属のマサバ、ゴマサバ等、サバ科ソウダガツオ属のヒラソウダ、マルソウダ等の、ドナーと同科異属の魚種、及び、ドナーと異科の魚種などが挙げられる。 In the case of exceeding the genus range, for example, if the donor is the genus Iwana, the second fish species can include salmon salmon genus salmon, rainbow trout, chinook salmon, etc. If the donor is a genus Buri, the second species of fish is the genus Maji of the genus Majiaceae, the maji of the genus Majiae, the Shimaji of the genus Ajiida, And the like, and the species of the family of the family H. When the donor is a tuna genus, the second fish species include mackerel of the family Sabaaceae Suma, yam, etc., mackerel Saba genus mackerel, sesame mackerel, etc., mackerel Ganoderma spp. , Species of the same genera with the donor, and fish species of the same family with the donor.
 更に、具体的に例示すれば、サケ科イワナ属イワナの場合は、人工飼育下で飼料の摂餌が悪いので生残率が低く、卵又は精子を採取するための方法も十分に確立されていないので、代理親魚としては適していない。イワナと同属のオショロコマも飼育方法が確立されていない。イワナと同属のカワマスは、飼育方法は見出されているものの、外来種であり、急な入手が難しい。しかし、イワナと同じサケ科には、ニジマス、ヤマメのように飼育が簡単で、卵及び精子を採取しやすく、代理親魚技術をよく研究されている魚種が存在し、代理親魚として適した性質を有するものが知られている。従って、イワナの卵又は精子を、代理親魚技術を用いて生産するには、イワナ又はイワナと近縁なカワマス、オショロコマのいずれかのゲノム又は遺伝子と、ニジマス、ヤマメのゲノム又は遺伝子を併せ持つハイブリッドを作製して、当該ハイブリッドをレシピエントとして用いることが好ましい。 Furthermore, as a specific example, in the case of the salmonid genus Ivana, the survival rate is low due to poor feeding of the feed under artificial breeding, and a method for collecting eggs or sperm is well established. Because it is not, it is not suitable as a surrogate parent fish. Oshorokoma, which belongs to the same genus as char, has not been bred. The brook trout belonging to the same genera is an alien species, although its breeding method has been found, it is difficult to obtain it quickly. However, the same salmonid as char, like rainbow trout and yamame trout, is easy to collect eggs and spermatozoa, and there are fish species that have been well studied for surrogate parent fish technology. Are known. Therefore, in order to produce charcoal eggs or spermatozoa using surrogate parental fish technology, a hybrid that combines charcoal and horcoma genomes or genes of rainbow trout and yamame trout with either charcoal or charcoal genomes or genes closely related to char or char. Preferably, the hybrid is used as a recipient.
 また、例えば、アジ科ブリ属ブリの場合は、飼育に広大な設備が必要で、卵又は精子を採取するための温度調節には多大なコストが発生することが多いので、代理親魚としては適していない。ブリと同属のカンパチ及びヒラマサも同様の理由により代理親魚としては適していない。しかし、ブリと同じアジ科には、マアジ、アオアジ、メアジ等のブリと比較すれば飼育施設が著しく小さく済み、かつ配偶子が採取しやすい魚種が存在し、代理親魚として適した性質を有する。従って、ブリの配偶子を、代理親魚を用いて得るためには、ブリ、又は、ブリと近縁なカンパチ及びヒラマサのいずれかのゲノム又は遺伝子と、マアジ、アオアジ、メアジに例示される小型のアジ科魚類のいずれかのゲノム又は遺伝子を併せ持つハイブリッドを作製して、当該ハイブリッドをレシピエントとして用いることが好ましい。このようにして得られるハイブリッドは、ブリ属の他の魚種、例えばカンパチ及びヒラマサの代理親魚としても利用できる。 In addition, for example, in the case of the genus Yellowtail, a large facility is required for breeding, and the temperature control for collecting eggs or sperm is often expensive, so it is suitable as a surrogate parent fish. Not. For the same reason, amberjack and hiramasa that belong to the same genus are not suitable as surrogate parent fish. However, in the same family as the yellowtail, there are some fish species that are remarkably small in breeding facilities compared to yellowtails such as maji, blue mackerel, and yellowtail, and are suitable for use as surrogate parent fish. . Therefore, in order to obtain a gamelet of a yellowtail using a surrogate parent fish, either a yellowtail or a genome or gene of amberjack and whitefish closely related to the yellowtail, and a small size exemplified by horse mackerel, blue horse mackerel, and sea mackerel It is preferable to prepare a hybrid having both genomes or genes of a family of phlogopaceae and use the hybrid as a recipient. The hybrid obtained in this way can also be used as a surrogate parent fish of other fish species of the genus Buri, such as amberjack and kingfish.
 例えば、サバ科マグロ属クロマグロの場合は、飼育に広大な設備が必要で、卵又は精子を採取するためには少なくとも3年以上の飼育が必要なことから、代理親魚としては適していない。また、クロマグロと近縁な魚種であるマグロ属の魚種である、ミナミマグロ、メバチ、ビンナガ、コシナガ、キハダも飼育に広大な設備が必要で、卵又は精子を採取する方法は確立されていない。しかし、クロマグロと同じサバ科には、マサバ、ゴマサバ、スマ、ヒラソウダ、マルソウダに例示される、飼育施設が小さく、卵及び精子を採取しやすい魚種が存在し、代理親魚として適した性質を有する。従って、クロマグロの卵又は精子を、代理親魚技術を用いて得るためには、クロマグロ又はクロマグロと近縁なミナミマグロ、メバチ、ビンナガ、コシナガ、及びキハダのいずれかのゲノム又は遺伝子と、マサバ、ゴマサバ、及びスマのいずれかのゲノム又は遺伝子を併せ持つハイブリッドを作製して、当該ハイブリッドをレシピエントとして用いることが好ましい。このようにして得られるハイブリッドはマグロ属の他の魚種、例えばミナミマグロ、メバチ、ビンナガ、コシナガ及びキハダのレシピエントとして利用できる。 For example, the bluefin tuna genus Tuna is not suitable as a surrogate parent fish because it requires extensive equipment for breeding and requires at least 3 years of breeding to collect eggs or sperm. In addition, the tuna species that are closely related to bluefin tuna, SBT, bigeye, albacore, cocinaga, yellowfin, etc. require extensive facilities for breeding, and no method for collecting eggs or sperm has been established. . However, in the same mackerel family as bluefin tuna, there are fish species that are small in breeding facilities and easy to collect eggs and sperm, such as cassava, sesame mackerel, suma, hirasoda and marsoda, and have characteristics suitable as surrogate parent fish. . Therefore, in order to obtain bluefin tuna eggs or sperm using surrogate parent fish technology, any of the bluefin tuna or bluefin bluefin tuna, bigeye, albacore, cocinaga, and yellowfin genomes or genes; It is preferable to prepare a hybrid having both the genome or gene of the mouse and the smartphone and use the hybrid as a recipient. The hybrid thus obtained can be used as a recipient of other fish species of the genus Tuna, such as southern bluefin tuna, bigeye, albacore, cocinaga and yellowfin.
 本発明の代理親魚技術を用いて、卵又は精子を生産するには、ハイブリッドを作出し、作出されたハイブリッドをレシピエントとして、ドナーの始原生殖細胞を移植し、移植魚を作出することで得ることができる。移植されたドナーの始原生殖細胞は、レシピエントの生殖腺に入り、ドナー由来の卵又は精子を産み出す。したがって、本発明において、ドナーの始原生殖細胞を移植した移植魚の作出は、該移植魚によって、ドナー由来の卵又は精子を得ることを包含するものである。 In order to produce eggs or sperm using the surrogate parent fish technology of the present invention, a hybrid is produced, and the produced hybrid is used as a recipient to transplant a primordial germ cell of a donor and produce a transplanted fish. be able to. The transplanted donor primordial germ cells enter the recipient's gonads and produce donor-derived eggs or sperm. Accordingly, in the present invention, the production of a transplanted fish transplanted with a donor's primordial germ cells includes obtaining a donor-derived egg or sperm by the transplanted fish.
 移植魚から、ドナーの由来の卵又は精子を得るには、魚種に応じた従来の方法(特許第4300287号公報)により、成熟を誘導し、採取することで得ることができる。特に、ハイブリッドを異質倍数体として調製することにより(特許第4581083号公報)、異質倍数体であるハイブリッドのレシピエントを用いることができ、かかる場合には、レシピエント由来の卵又は精子が生成されていないため、移植魚におけるドナー由来の卵又は精子を容易に得ることができる。 In order to obtain an egg or sperm derived from a donor from a transplanted fish, it can be obtained by inducing maturation and collecting by a conventional method according to the fish species (Japanese Patent No. 4300287). In particular, by preparing the hybrid as a heteroploid (Japanese Patent No. 4581083), a hybrid recipient that is a heteroploid can be used. In such a case, a recipient-derived egg or sperm is produced. Therefore, donor-derived eggs or sperm in the transplanted fish can be easily obtained.
 本発明において、養殖に用いられる魚類の種苗は、作出されたハイブリッドを育成し、当該ハイブリッドをレシピエントとしてドナーの始原生殖細胞を移植することで得た移植魚からの卵又は精子を、他の個体から得た精子又は卵と掛け合わせて受精卵を得て、該受精卵を育成することにより得ることができる。養殖に用いられる魚類の種苗は、作出されたハイブリッドを育成し、当該ハイブリッドをレシピエントとしてドナーの始原生殖細胞を移植することで得た卵又は精子を、ドナーの卵又は精子と掛け合わせることでも得ることができる。また、作出されたハイブリッドを育成し、当該ハイブリッドをレシピエントとしてドナーの始原生殖細胞を移植することで得た卵又は精子どうしとを掛け合わせることでも得ることもできる。当該種苗を養殖により更に育成して成魚を得ることができる。 In the present invention, the seedlings of fish used for aquaculture are produced from the transplanted fish obtained by breeding the produced hybrid and transplanting the donor's primordial germ cells using the hybrid as a recipient. A fertilized egg is obtained by crossing with a sperm or egg obtained from an individual, and the fertilized egg can be grown. Fish seeds and seedlings used for aquaculture can also be obtained by breeding the produced hybrid and crossing the donor's egg or sperm with the donor's egg or sperm obtained by transplanting the donor's primordial germ cells using the hybrid as a recipient. Obtainable. It can also be obtained by breeding the produced hybrid and crossing with eggs or sperm obtained by transplanting the donor's primordial germ cells using the hybrid as a recipient. The seedlings can be further grown by aquaculture to obtain adult fish.
 本発明の代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法により、種苗生産がこれまで難しかったドナー魚種の養殖のための種苗の確保が可能となり、この結果、目的とするドナー魚種の養殖等が容易となる。得られた成魚は、養殖魚として広く利用することが可能である。このように、上述した本発明における移植魚及び代理親魚技法用ハイブリッド、移植魚から得られた精子又は卵、移植魚から得られる種苗、移植魚から得られる種苗を成育して得られる成魚は、各種魚類の人工養殖に適用することができ、該魚類の人工養殖の実用化技術の構築に寄与することができる。 The method for producing fish gametes (sperm and eggs) for the production of cultured fish using the surrogate parent fish of the present invention makes it possible to secure seedlings for aquaculture of donor fish species for which seedling production has been difficult until now. As a result, it becomes easy to cultivate the target donor fish species. The obtained adult fish can be widely used as cultured fish. Thus, the hybrid fish and surrogate parent fish technique hybrid in the present invention described above, sperm or egg obtained from the transplanted fish, seedlings obtained from the transplanted fish, adult fish obtained by growing the seedlings obtained from the transplanted fish, The present invention can be applied to artificial culture of various fishes, and can contribute to the construction of practical techniques for artificial culture of the fishes.
 以下、本発明を実施例にて詳細に説明する。しかしながら、本発明はそれらに何ら限定されるものではない。なお下記実施例において、特記しない場合、「%」は「重量%」を意味する。 Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to them. In the following examples, “%” means “% by weight” unless otherwise specified.
 [実施例1]
<(1)イワナ精原細胞の異質3倍体宿主への移植と次世代の作出>
ドナーとしては13か月齢の未熟なオスのイワナ(体重約43g、体長約15cm)を用いた。ドナーとなるイワナより精巣を摘出し、凍結保護液(塩化ナトリウム132mM、塩化カリウム2.56mM、リン酸二水素カリウム8.13mM、リン酸水素二ナトリウム1.34mM、塩化カルシウム0.9mM、塩化マグネシウム0.5mM、ピルビン酸ナトリウム1.28mM、Hepes 19.5mM、ジメチルスルフォキシド1.3M、鶏卵卵黄10%、トレハロース0.1M)に浸漬し、液体窒素中で凍結した。凍結は、-1℃/分の速度で-80℃まで緩慢に凍結した。凍結保存から1週間後、解凍を行った。解凍したイワナの精巣をトリプシン(0.9U/ml)、ウシ胎児血清(5%)、DNase(100U/ml)を含むPBS中で反応させることによって分散し、細胞懸濁液を得た。得られた細胞懸濁液を、5000細胞ずつ宿主の腹腔内にインジェクターを用いて移植した。
[Example 1]
<(1) Transplantation of char spermatogonia into allotriploid host and creation of next generation>
A 13-month-old immature male char (weight approximately 43 g, body length approximately 15 cm) was used as a donor. The testis was removed from the char as donor, and cryoprotective solution (132 mM sodium chloride, 2.56 mM potassium chloride, 8.13 mM potassium dihydrogen phosphate, 1.34 mM disodium hydrogen phosphate, 0.9 mM calcium chloride, magnesium chloride) 0.5 mM, sodium pyruvate 1.28 mM, Hepes 19.5 mM, dimethyl sulfoxide 1.3 M, chicken egg yolk 10%, trehalose 0.1 M) and frozen in liquid nitrogen. Freezing was slowly frozen to -80 ° C at a rate of -1 ° C / min. One week after frozen storage, thawing was performed. The thawed char testis was dispersed by reacting in PBS containing trypsin (0.9 U / ml), fetal calf serum (5%), DNase (100 U / ml) to obtain a cell suspension. The obtained cell suspension was transplanted into the peritoneal cavity of the host by 5000 cells using an injector.
 レシピエントとしては、受精後43日が経過した3倍体カワマス胚、受精後38日の異質3倍体ニジマス-カワマスハイブリッド胚、受精後30日の3倍体ニジマス胚を用いた。移植は、3倍体カワマス胚58個、異質3倍体ニジマス-カワマスハイブリッド胚60個、3倍体ニジマス胚61個に対し実施した。なお、ニジマス-カワマスハイブリッド胚は、排卵したメスのニジマスより搾出した未授精卵とカワマスの精子を人工授精することで得た。またカワマス、ニジマス-カワマスハイブリッド、ニジマスの各卵は、それぞれの卵を受精5分後に38℃で3分間処理することによって倍加処理を行った。 The recipients used were triploid brook trout embryos that had passed 43 days after fertilization, allotriploid rainbow trout-river hybrid embryos 38 days after fertilization, and triploid rainbow trout embryos 30 days after fertilization. Transplantation was performed on 58 triploid brook trout embryos, 60 allogeneous triploid rainbow trout-river hybrid embryos and 61 triploid rainbow trout embryos. The rainbow trout and brook trout hybrid embryos were obtained by artificial insemination of unfertilized eggs and brook trout semen extracted from ovulated female rainbow trout. The brook trout, rainbow trout-river trout hybrid, and rainbow trout eggs were doubled by treating each egg for 5 minutes at 38 ° C. 5 minutes after fertilization.
 移植1年後には、ドナーイワナの精巣細胞を移植された3倍体カワマス、異質3倍体ニジマス-カワマスハイブリッド、3倍体ニジマスの各宿主はそれぞれ、52尾(移植尾数中89.7%)、53尾(同80.0%)、55尾(同90.2%)が生残し、それぞれ5尾(生残尾数中19.2%)、4尾(同16.0%)、2尾(同6.5%)が成熟し、配偶子を生産した。成熟個体はいずれもオスであり、得られた精子を野生型イワナ卵と受精した結果、ドナー由来のイワナ次世代個体が得られた。得られた次世代は、鰭の模様、体の模様、脊椎骨数、及び制限酵素断片長多型を検出するPCR法によって、イワナであることが確認された。結果を表1に示す。 One year after transplantation, 52 hosts (89.7% of the total number of transplants) were obtained for each host of triploid brook trout, allotriploid rainbow trout-river trout hybrid, and triploid rainbow trout transplanted with testicular cells of donor char. 53 (80.0%) and 55 (90.2%) survived, 5 (19.2% of the number of surviving), 4 (16.0%), 2 ( 6.5%) matured and produced gametes. All of the mature individuals were male, and as a result of fertilizing the obtained sperm with wild-type char char eggs, the char char next generation individual was obtained. The obtained next generation was confirmed to be char by the PCR method for detecting wrinkle patterns, body patterns, vertebral number, and restriction fragment length polymorphism. The results are shown in Table 1.
 移植2年後には、3倍体カワマス、異質3倍体ニジマス-カワマスハイブリッド、3倍体ニジマスの各宿主はそれぞれ、48尾(移植尾数中82.7%)、45尾(同75.0%)、48尾(同78.7%)が生残し、それぞれ14尾(生残尾数中29.2%)、9尾(同20.0%)、3尾(同6.3%)が成熟した。成熟した雌雄の内訳(メス個体数:オス個体数)は、3倍体カワマス宿主が5:9、異質3倍体ニジマス-カワマスハイブリッド宿主が3:6であった。3倍体ニジマスの成熟個体はいずれオスであった。各宿主より得られた精子及び卵を用いた人工授精を行った結果、ドナーイワナに由来するイワナ次世代個体が得られた。結果を表1に示す。 Two years after transplantation, the host of triploid brook trout, allogeneic triploid rainbow trout-river trout hybrid, triploid rainbow trout hosts were 48 (82.7% in the number of transplants) and 45 (75.0%), respectively. ), 48 (78.7%) survived, 14 (29.2% of surviving), 9 (20.0%), and 3 (6.3%) mature did. The breakdown of mature males and females (number of females: males) was 5: 9 for triploid brook trout hosts and 3: 6 for allotriploid rainbow trout-river hybrids. Adults of triploid rainbow trout were males. As a result of artificial insemination using sperm and eggs obtained from each host, the next generation individual of char was derived from donor char. The results are shown in Table 1.
 移植3年後には、3倍体カワマス、異質3倍体ニジマス-カワマスハイブリッド、3倍体ニジマスの各宿主はそれぞれ、45尾(移植尾数中77.6%)、39尾(同65.0%)、41尾(同67.2%)が生残し、それぞれ19尾(生残尾数中42.2%)、9尾(同23.1%)、4尾(同9.8%)が成熟した。成熟した雌雄の内訳(メス個体数:オス個体数)は、3倍体カワマス宿主が7:12、異質3倍体ニジマス-カワマスハイブリッド宿主が3:6であった。3倍体ニジマスの成熟個体はいずれオスであった。各宿主より得られた精子及び卵を用いた人工授精を行った結果、移植魚は3年以上生残することができ、ドナーイワナに由来するイワナ次世代個体が得られることがわかった。結果を表1に示す。 Three years after transplantation, each host of triploid brook trout, allotriploid rainbow trout-river trout hybrid, triploid rainbow trout was 45 (77.6% in the number of transplants) and 39 (65.0%), respectively. ), 41 (67.2%) survived, 19 (42.2% of surviving), 9 (23.1%), 4 (9.8%) mature did. The breakdown of mature males and females (number of females: males) was 7:12 for the triploid brook trout host and 3: 6 for the allotriploid rainbow trout-river hybrid host. Adults of triploid rainbow trout were males. As a result of artificial insemination using sperm and eggs obtained from each host, it was found that the transplanted fish can survive for more than 3 years, and the next generation individual of char char derived from donor char is obtained. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、イワナをドナーとした場合、3倍体カワマスを宿主に用いた場合に、最も効率よくドナー由来の配偶子が生産された。また、宿主が遠縁のニジマスの場合はイワナの精子は生産するものの、イワナの卵は生産されず、ドナー由来の卵を生産するためには、より近縁の宿主を利用することが有利であることが示された。一方で、遠縁のニジマスに近縁のカワマスをかけたハイブリッドを宿主とすることで、ドナー由来の卵が生産されるようになった。このことから、一部でも近縁の遺伝子を有するレシピエントを用いることで、ドナー由来配偶子の生産効率を著しく高めることができると考えられた。 From the above results, when char was used as a donor, gametes derived from the donor were most efficiently produced when triploid brook trout was used as a host. In addition, if the host is a distantly related rainbow trout, it will produce char spermatozoa, but will not produce char, so it would be advantageous to use a more closely related host to produce donor-derived eggs. It was shown that. On the other hand, donor-derived eggs have been produced by using a hybrid of a distantly related rainbow trout and a closely related brook trout as a host. From this, it was considered that the production efficiency of donor-derived gametes can be remarkably increased by using a recipient having a closely related gene.
 <(2)3倍体レシピエントの配偶子の性状>
 上記で得られた3倍体カワマス、3倍体ニジマス、異質3倍体ニジマス-カワマスハイブリッドのうち、それぞれのメス(2年齢及び3年齢)での卵を、搾出法により採取して、個数を数えた。結果を表2に示す。
<(2) Properties of gametes of triploid recipients>
Of the triploid brook trout, triploid rainbow trout, and heterogeneous triploid rainbow trout-river trout hybrids obtained above, eggs from each female (2 and 3 years old) were collected by squeezing and I counted. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記で得られた3倍体カワマス、3倍体ニジマス、異質3倍体ニジマス-カワマスハイブリッドのうち、それぞれのオス(2年齢及び3年齢)での精子を、搾出法により採取して、血球算定盤を用いて個数を確認した。結果を表3に示す。比較対象として、3倍体化処理を行っていない2倍体ニジマス、2倍体カワマス、2倍体イワナの2年齢及び3年齢のメスにおける卵の個数と、オスにおける精子の個数を、同様に確認し、それぞれ表3に示す。 Of the triploid brook trout, triploid rainbow trout, and heterogeneous triploid rainbow trout-river trout hybrids obtained above, sperm at each male (2 and 3 years of age) was collected by the extraction method to obtain blood cells. The number was confirmed using a calculation panel. The results are shown in Table 3. For comparison, the number of eggs in diploid rainbow trout, diploid brook trout, diploid char, 2 and 3 year old females, and the number of spermatozoa in males, which were not subjected to triploidization treatment, were similarly determined. Confirmed and shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 各レシピエントから得られた配偶子の機能を確認した。上記で得られた卵と精子を乾導法により受精した配偶子の機能は、発眼率と孵化率で確認した。発眼率は、受精後3週間で網膜に黒色素が沈着している卵数を数えることで評価した。孵化率は、受精後35日に孵化を完了している個体を数えることで評価した。結果を表4に示す。なお、*は、3倍体メス個体のすべてが不妊であったことを示す。 The function of the gametes obtained from each recipient was confirmed. The function of the gametes obtained by fertilizing the eggs and sperm obtained above by the dry induction method was confirmed by the eye rate and hatching rate. The eye development rate was evaluated by counting the number of eggs with black pigment deposited on the retina 3 weeks after fertilization. The hatching rate was evaluated by counting individuals that had completed hatching 35 days after fertilization. The results are shown in Table 4. * Indicates that all triploid female individuals were infertile.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示されるように、凍結精巣細胞を移植した3倍体宿主の配偶子はいずれも、ドナー由来の機能的な配偶子を作出できることがわかった。また、ドナーイワシと、カワマスとは同属の関係にある。3倍体カワマス及び3倍体ニジ-カワマスハイブリッドでは、卵と精子の双方を生産できることから、ドナーと近縁種のゲノムを1セット宿主に導入することは、不妊宿主の配偶子生産効率が高くなることが示された。 As shown in Table 3, it was found that any triploid host gametes transplanted with frozen testis cells can produce donor-derived functional gametes. Donor sardines and brook trout have the same genus. Since triploid brook trout and triploid rainbow trout-river trout hybrids can produce both eggs and sperm, introducing a single set of donor and closely related genomes into a host will increase the gametogenic efficiency of infertile hosts. It was shown to be.
 [実施例2]
<ブリ精原細胞の異質3倍体宿主への移植>
ドナーとしては10か月齢の未熟なオスのブリ(体重約1kg、体長約40cm)を用いた。ドナーブリより精巣を摘出し、酵素処理によって分散して得られた細胞懸濁液を、20,000細胞ずつ宿主の腹腔内に移植した。宿主としては、孵化後10日が経過した異質3倍体ブリ-マアジハイブリッド仔魚92尾を用いた。なお、異質3倍体ブリ-マアジハイブリッド仔魚は、マアジの未授精卵とブリの精子を人工授精し、受精5分後に1分間、フレンチプレスで650kg/cmまで加圧することで得た。移植1か月後には、18尾(移植尾数中19.5%)が生残した。得られた異質3倍体ブリ-マアジハイブリッドは、ブリ属ドナーの生殖細胞のレシピエントとして好適である。
[Example 2]
<Transplantation of yellow spermatogonia into heterologous triploid hosts>
A 10-month-old immature male yellowtail (weight: about 1 kg, body length: about 40 cm) was used as a donor. The testis was extracted from the donor yellowtail, and the cell suspension obtained by dispersing by the enzyme treatment was transplanted into the peritoneal cavity of the host 20,000 cells. As a host, 92 alien haploid Blima maji hybrid larvae 10 days after hatching were used. Heterotriploid yellowtail horse mackerel hybrid larvae were obtained by artificially inseminating a horse mackerel unfertilized egg and a yellowtail sperm and pressurizing to 650 kg / cm 2 with a French press for 5 minutes after fertilization. One month after transplantation, 18 fish (19.5% of the number of transplanted fish) survived. The resulting allotriploid burma-maji hybrid is suitable as a recipient for the germ cell of the genus Buri.
 [実施例3]
<マグロ生殖細胞移植用宿主用の異質3倍体魚作出>
サバ科の比較的小型な魚類であるスマ卵とクロマグロ精子を人工交配(人口交雑)させ、スマ-マグロハイブリッドの作出を行った。スマの卵にクロマグロの精子を掛けることで、スマ-クロマグロハイブリッドの受精卵を得た。スマ-クロマグロハイブリッドの受精卵は、孵化をしたが、仔魚は餌を摂餌せずに斃死した。そこで、スマ-クロマグロハイブリッドの受精卵に3倍体化の処理を施した。3倍体化処理は、スマ-クロマグロハイブリッドの受精卵を、受精3分後に5分間、4℃に冷却した海水に浸漬することで行った。こうして得られたハイブリッド3倍体の受精卵は、スマの染色体を2セット、クロマグロの染色体を1セット保有する。
[Example 3]
<Creation of allotriploid fish for tuna germ cell transplant host>
Suma eggs and bluefin tuna spermatozoa, which are relatively small fishes from the mackerel family, were artificially crossed (population cross) to produce a Suma-Tuna hybrid. By applying the bluefin tuna sperm to the egg of the suma, a fertilized egg of the suma-bluefin tuna hybrid was obtained. The fertilized egg of the Suma-bluefin tuna hybrid hatched, but the larvae died without feeding. Therefore, the fertilized egg of the Suma-bluefin tuna hybrid was subjected to a triploidization treatment. The triploidization treatment was performed by immersing a fertilized egg of a Suma-bluefin tuna hybrid in seawater cooled to 4 ° C. for 5 minutes after fertilization. The hybrid triploid fertilized egg thus obtained possesses two sets of suma chromosomes and one set of bluefin tuna chromosomes.
 孵化したスマ-クロマグロハイブリッド仔魚は、スマ及びクロマグロ、それぞれの種で増幅サイズの異なるプライマーセット(TGC AGA ACG AAC AGG ATG AG及びCCC ATT GAG GAG ATT GGA GA)及びクロマグロのみで増幅が確認されるプライマーセット(ACA TGG TCC ATC CAT CCA TT及びTGG CTT AGC TCT ACC CCA AA)を用いたPCR法により、それぞれの遺伝情報を保有することが示された。また、体細胞を用いたDNAフローサイトメトリーにより、染色体を3セット保持する3倍体であることが確認された。これにより、スマ-クロマグロハイブリッド異質3倍体が作出できたことが示された。この異質3倍体は孵化後5日まで生残し、摂餌も観察された。得られたスマ-クロマグロハイブリッド異質3倍体は、マグロ属ドナーの生殖細胞のレシピエントとして好適である。 The hatched suma-bluefin tuna hybrid larvae are composed of primer sets (TGC サ イ ズ AGA ACG AAC AGG ATG AG and CCC ATT GAG GAG ATT GGA GA) and primers that are amplified only in suma and bluefin tuna, each species. The PCR method using the sets (ACA-TGG-TCC-ATC-CAT-CCA-TT and TGG-CTT-AGC-TCT-ACC-CCA-AA) was shown to possess each genetic information. Moreover, it was confirmed by DNA flow cytometry using somatic cells that the triploid has 3 sets of chromosomes. Thus, it was shown that a hetero-triploid of a suma-bluefin tuna hybrid could be produced. This allotriploid survived until 5 days after hatching, and feeding was also observed. The obtained Suma-Tuna hybrid allotriploid is suitable as a recipient of a germ cell of a Tuna donor.
 2014年3月26日に出願された日本国特許出願第2014-064639号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 The entire disclosure of Japanese Patent Application No. 2014-064639 filed on March 26, 2014 is incorporated herein by reference. All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
 本発明は、他属魚種等の代理親魚への利用を可能とし、他属の飼育等の容易な魚種を代理親魚技術におけるレシピエントとして用いることを可能としたことから、広い範囲からレシピエントとして適合する魚種を選択することが可能となり、代理親魚を用いた養殖魚生産のための魚類配偶子(精子及び卵)の生産方法として、実用化に向けての技術の提供を可能とした。 The present invention enables use for surrogate parent fish such as other genus fish species, and allows easy use of fish species such as other genus breeding as recipients in surrogate parent fish technology. It is possible to select a fish species that is suitable as an ent, and it is possible to provide technology for practical use as a production method of fish gametes (sperm and eggs) for the production of cultured fish using surrogate parent fish did.

Claims (25)

  1.  レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行うことを含む代理親魚を用いた魚類の配偶子の生産方法において、
    (A)分離生殖細胞を供給するドナー魚種を選択すること、
    (B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
    (C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
    (D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
    (E)(D)で作出されたハイブリッド魚種をレシピエントとして、ドナー魚種の分離生殖細胞を移植して生殖細胞系列への分化誘導を行うこと、
    を含む代理親魚を用いた魚類の配偶子の生産方法。
    Gametes of fish using surrogate parent fish, including transplanting germ cells derived from recipient fish and transplanting germ cells of a different or different lineage from recipient fish into recipient fish In the production method of
    (A) selecting a donor fish species that supplies isolated germ cells;
    (B) selecting a fish of a first species that can be a surrogate parent for the donor species;
    (C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
    (D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
    (E) Using the hybrid fish species produced in (D) as a recipient, transplanting the isolated germ cells of the donor fish species to induce differentiation into the germ line,
    Method for producing fish gametes using surrogate parent fish including
  2.  魚類の配偶子が、ドナー魚種の精子又は卵であることを特徴とする請求項1に記載の代理親魚を用いた魚類の配偶子の生産方法。 The fish gamete production method using the surrogate parent fish according to claim 1, wherein the fish gamete is a sperm or egg of a donor fish species.
  3.  ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有する魚種の魚であり、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有さない魚種の魚であることを特徴とする請求項1又は2に記載の代理親魚を用いた魚類の配偶子の生産方法。 The fish of the first species that can be a surrogate parent for the donor species is a fish that has the ability to engraft the isolated germ cells of the transplanted donor species, and The fish of the second fish species that cannot be a surrogate parent fish is a fish of a fish species that does not have the ability to engraft the isolated germ cells of the transplanted donor fish species. Or the production method of the fish gametes using the surrogate parent fish of 2 description.
  4.  ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、ドナー魚種と同属であることを特徴とする、請求項1~3のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。 The fish using the surrogate parent fish according to any one of claims 1 to 3, wherein the fish of the first fish species that can be a surrogate parent fish for the donor fish species belongs to the same genus as the donor fish species How to produce gametes.
  5.  ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、ドナー魚種と異属であることを特徴とする、請求項1~4のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。 The surrogate parent fish according to any one of claims 1 to 4, wherein the fish of the second fish species that cannot be a surrogate parent fish for the donor fish species is different from the donor fish species. Production method of fish gametes.
  6.  ドナー魚種が、イワナ属、ブリ属又はマグロ属であることを特徴とする請求項1~5のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。 The method for producing fish gametes using the surrogate parent fish according to any one of claims 1 to 5, wherein the donor fish species is genus Ivana, Yellowtail or Tuna.
  7.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり半分以下で有することを特徴とする請求項1~6のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。 A hybrid fish species capable of being a surrogate parent for a donor fish species has less than half the genome per cell of a first fish species that can be a surrogate parent for a donor fish species Item 7. A fish gamete production method using the surrogate parent fish according to any one of Items 1 to 6.
  8.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり1/3以下で有することを特徴とする請求項7に記載の代理親魚を用いた魚類の配偶子の生産方法。 A hybrid fish species capable of becoming a surrogate parent fish for a donor fish species has a genome of a first fish species that can be a surrogate parent fish for a donor fish species at 1/3 or less per cell. A method for producing fish gametes using the surrogate parent fish according to claim 7.
  9.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の配偶子が生産されない不妊のハイブリッド魚種であることを特徴とする請求項1~8のいずれかに記載の代理親魚を用いた魚類の配偶子の生産方法。 The hybrid fish species capable of becoming a surrogate parent fish for the donor fish species are heteroploid, and are infertile hybrid fish species that do not produce gametes derived from the hybrid fish species. A method for producing fish gametes using the surrogate parent fish according to any one of 1 to 8.
  10.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の精子及び卵が生産されない不妊のハイブリッド魚種が、3倍体であることを特徴とする請求項9に記載の代理親魚を用いた魚類の配偶子の生産方法。 A hybrid fish species that has the ability to be a surrogate parent to a donor species is an allopolyploid, and an infertile hybrid species that does not produce sperm and eggs from the hybrid fish species is triploid. A method for producing fish gametes using the surrogate parent fish according to claim 9.
  11.  レシピエントとしてのハイブリッド魚類の作出方法において、
    (A)分離生殖細胞を供給するドナー魚種を選択すること、
    (B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
    (C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
    (D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
    を含むハイブリッド魚類の作出方法。
    In the method of producing hybrid fish as a recipient,
    (A) selecting a donor fish species that supplies isolated germ cells;
    (B) selecting a fish of a first species that can be a surrogate parent for the donor species;
    (C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
    (D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
    Of hybrid fish including
  12.  レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類のドナー魚種の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行う、代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法において、請求項11で作出されたハイブリッド魚種をレシピエント魚類として用いて、ドナー魚種の分離生殖細胞を移植、分化誘導することを特徴とする代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法。 Using recipient fish, transplanting the isolated germ cells of a donor fish species of a different or different species from the recipient fish to the recipient fish to induce differentiation into germ line In the method for inducing differentiation of a separated germ cell into a germ line, the hybrid fish species produced in claim 11 is used as a recipient fish to transplant and induce differentiation of a separated germ cell of a donor fish species. A method for inducing differentiation of a separated germ cell into a germ line using a surrogate parent fish.
  13.  請求項11に記載の方法により作出されるハイブリッド魚類。 Hybrid fish produced by the method according to claim 11.
  14.  請求項1~10のいずれかに記載の代理親魚を用いた魚類の分離生殖細胞の生殖細胞系列への分化誘導方法によって生産されるドナー魚種の卵又は精子。 An egg or sperm of a donor fish species produced by the method for inducing differentiation of a separated germ cell into a germ line using the surrogate parent fish according to any one of claims 1 to 10.
  15.  請求項14に記載のドナー魚種の卵又は精子から生産されるドナー魚種の養殖用種苗。 A seedling for aquaculture of a donor fish species produced from an egg or sperm of the donor fish species according to claim 14.
  16.  請求項15に記載のドナー魚種の養殖用種苗を養殖して得られるドナー魚種の成魚。 An adult donor fish species obtained by cultivating the seedling for breeding a donor fish species according to claim 15.
  17.  レシピエント魚類を用い、レシピエント魚類とは異系統又は異種の魚類の分離生殖細胞をレシピエント魚類に移植して生殖細胞系列への分化誘導を行うことを含む代理親魚を用いた魚類の移植魚の生産方法において、
    (A)分離生殖細胞を供給するドナー魚種を選択すること、
    (B)該ドナー魚種に対して代理親魚になり得る第一の魚種の魚を選択すること、
    (C)該ドナー魚種に対して代理親魚になり得ない第二の魚種の魚を選択すること、
    (D)(B)で選択された第一の魚種の魚と、(C)で選択された第二の魚種の魚とをハイブリダイズして、ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種を作出すること、
    (E)(D)で作出されたハイブリッド魚種をレシピエントとして、ドナー魚種の分離生殖細胞を移植すること、を含む代理親魚を用いた移植魚の生産方法。
    Recipient fish, and transplantation of fish using surrogate parent fish including transplanting germ cells of a different or different lineage from recipient fish into recipient fish and inducing differentiation into germline. In the production method,
    (A) selecting a donor fish species that supplies isolated germ cells;
    (B) selecting a fish of a first species that can be a surrogate parent for the donor species;
    (C) selecting a fish of a second species that cannot be a surrogate parent for the donor species;
    (D) The fish of the first species selected in (B) and the fish of the second species selected in (C) are hybridized to become a surrogate parent for the donor species. Creating hybrid fish species with the ability to gain,
    (E) A method for producing transplanted fish using a surrogate parent fish, comprising transplanting the isolated germ cells of a donor fish species using the hybrid fish species produced in (D) as a recipient.
  18.  ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有する魚種の魚であり、ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、移植したドナー魚種の分離生殖細胞の生殖腺への生着能を有さない魚種の魚であることを特徴とする請求項17に記載の代理親魚を用いた移植魚の生産方法。 The fish of the first species that can be a surrogate parent for the donor species is a fish that has the ability to engraft the isolated germ cells of the transplanted donor species, and The second fish species that cannot be a surrogate parent fish is a fish of a fish species that does not have the ability to engraft the isolated germ cells of the transplanted donor fish species into the gonads. A method for producing transplanted fish using the surrogate parent fish described in 1.
  19.  ドナー魚種に対して代理親魚になり得る第一の魚種の魚が、ドナー魚種と同属であることを特徴とする、請求項17又は18に記載の代理親魚を用いた移植魚の生産方法。 The method for producing a transplanted fish using a surrogate parent fish according to claim 17 or 18, wherein the fish of the first fish species that can be a surrogate parent fish for the donor fish species belongs to the same genus as the donor fish species. .
  20.  ドナー魚種に対して代理親魚になり得ない第二の魚種の魚が、ドナー魚種と異属であることを特徴とする、請求項17~19のいずれかに記載の代理親魚を用いた移植魚の生産方法。 The surrogate parent fish according to any one of claims 17 to 19, wherein the fish of the second fish species that cannot be a surrogate parent fish for the donor fish species is different from the donor fish species. There was a production method of transplanted fish.
  21.  ドナー魚種が、イワナ属、ブリ属又はマグロ属であることを特徴とする請求項17~20のいずれかに記載の代理親魚を用いた移植魚の生産方法。 The method for producing transplanted fish using the surrogate parent fish according to any one of claims 17 to 20, wherein the donor fish species is genus Ivana, Yellowtail or Tuna.
  22.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり半分以下で有することを特徴とする請求項17~21のいずれかに記載の代理親魚を用いた移植魚の生産方法。 A hybrid fish species capable of being a surrogate parent for a donor fish species has less than half the genome per cell of a first fish species that can be a surrogate parent for a donor fish species Item 22. A method for producing transplanted fish using the surrogate parent fish according to any one of Items 17 to 21.
  23.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、ドナー魚種に対して代理親魚になり得る第一の魚種のゲノムを細胞あたり1/3以下で有することを特徴とする請求項22に記載の代理親魚を用いた魚類の配偶子の生産方法。 A hybrid fish species capable of becoming a surrogate parent fish for a donor fish species has a genome of a first fish species that can be a surrogate parent fish for a donor fish species at 1/3 or less per cell. A method for producing fish gametes using the surrogate parent fish according to claim 22.
  24.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の配偶子が生産されない不妊のハイブリッド魚種であることを特徴とする請求項17~23のいずれかに記載の代理親魚を用いた移植魚の生産方法。 The hybrid fish species capable of becoming a surrogate parent fish for the donor fish species are heteroploid, and are infertile hybrid fish species that do not produce gametes derived from the hybrid fish species. 24. A method for producing transplanted fish using the surrogate parent fish according to any one of items 1 to 23.
  25.  ドナー魚種に対して代理親魚になり得る能力をもつハイブリッド魚種が、異質倍数体であり、ハイブリッド魚種由来の精子及び卵が生産されない不妊のハイブリッド魚種が、3倍体であることを特徴とする請求項24に記載の代理親魚を用いた魚類の配偶子の生産方法。
     
     
    A hybrid fish species that has the ability to be a surrogate parent to a donor species is an allopolyploid, and an infertile hybrid species that does not produce sperm and eggs from the hybrid fish species is triploid. 25. A method for producing fish gametes using the surrogate parent fish according to claim 24.

PCT/JP2015/001747 2014-03-26 2015-03-26 Method for producing fish gametes for farmed fish production using surrogate parent fish, applicable to surrogate parent fish of different species WO2015146184A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510049A JP6536961B2 (en) 2014-03-26 2015-03-26 Method for producing fish gametes for cultured fish production using surrogate parent fish, which is applicable to parent species of another genus fish species

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064639 2014-03-26
JP2014064639 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146184A1 true WO2015146184A1 (en) 2015-10-01

Family

ID=54194728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001747 WO2015146184A1 (en) 2014-03-26 2015-03-26 Method for producing fish gametes for farmed fish production using surrogate parent fish, applicable to surrogate parent fish of different species

Country Status (2)

Country Link
JP (1) JP6536961B2 (en)
WO (1) WO2015146184A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153019A1 (en) * 2015-03-26 2016-09-29 国立大学法人東京海洋大学 Transplant fish production method, transplant fish, hybrid fish species production method, and hybrid fish species
CN107646759A (en) * 2017-11-01 2018-02-02 湖南师范大学 Grass carp and the method for erythroculter ilishaeformis inter-subfamily distant hybridization
CN108377939A (en) * 2018-03-13 2018-08-10 广西壮族自治区水产科学研究院 A kind of producing method for seed of lucky Hybrid tilapia difficult to understand
CN108925472A (en) * 2018-07-02 2018-12-04 华中农业大学 A kind of Bambusa and megalobrama amblycephala cross breeding method
CN109548708A (en) * 2018-10-11 2019-04-02 中国水产科学研究院南海水产研究所 A kind of point wing Spanish mackerel batch production offspring seed cultivation method
CN110214748A (en) * 2019-06-24 2019-09-10 闫伊文 A kind of health environment-friendly cultural method of beef cattle
WO2021215356A1 (en) * 2020-04-20 2021-10-28 大学共同利用機関法人情報・システム研究機構 Method for producing xenogeneic egg and xenogeneic gamete in fish

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040926A1 (en) * 2004-10-08 2006-04-20 National University Corporation Tokyo University Of Marine Science And Technology Method of growing fish by transplanting genital cell with the use of triploid recipient
US20100037330A1 (en) * 2008-06-11 2010-02-11 Kannika Siripattarapravat Efficient Somatic Cell Nuclear Transfer In Fish

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006040926A1 (en) * 2004-10-08 2006-04-20 National University Corporation Tokyo University Of Marine Science And Technology Method of growing fish by transplanting genital cell with the use of triploid recipient
US20100037330A1 (en) * 2008-06-11 2010-02-11 Kannika Siripattarapravat Efficient Somatic Cell Nuclear Transfer In Fish

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GORO YOSHIZAKI ET AL.: "Seishoku Saibo no Ishukan Ishoku ni yoru Dairi Shingyo Yoshoku Gijutsu no Jitsuyoka", TECHNO INNOVATION, vol. 18, no. 4, 2009, pages 42 - 46 *
HE W. ET AL.: "Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp x topmouth culter.", PLOS ONE, vol. 7, no. 6, 2012, pages e38976, XP055225441 *
HIROYUKI YOSHIKAWA ET AL.: "Jin'i Kozatsu ni yoru Nibe-ka Funensei Zasshu no Tansaku to Zasshu Shukushu no Dairi Shingyo Gijutsu eno Riyo", THE JAPANESE SOCIETY OF FISHERIES SCIENCE SHUNKI TAIKAI KOEN YOSHISHU, 2013, pages 150 *
HIROYUKI YOSHIKAWA ET AL.: "Kaisangyo ni Okeru Dairi Shingyo Gijutsu no Kaihatsu: Nibe-ka Funensei Zasshu o Shukushu to shita Donor Yurai Jisedai no Seisan", THE JAPANESE SOCIETY OF FISHERIES SCIENCE SHUNKI TAIKAI KOEN YOSHISHU, 27 March 2014 (2014-03-27), pages 71 *
YAMAHA E. ET AL.: "Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes.", J. SEA RES., vol. 58, no. 1, 2007, pages 8 - 22, XP022138086 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153019A1 (en) * 2015-03-26 2016-09-29 国立大学法人東京海洋大学 Transplant fish production method, transplant fish, hybrid fish species production method, and hybrid fish species
CN107646759A (en) * 2017-11-01 2018-02-02 湖南师范大学 Grass carp and the method for erythroculter ilishaeformis inter-subfamily distant hybridization
CN108377939A (en) * 2018-03-13 2018-08-10 广西壮族自治区水产科学研究院 A kind of producing method for seed of lucky Hybrid tilapia difficult to understand
CN108925472A (en) * 2018-07-02 2018-12-04 华中农业大学 A kind of Bambusa and megalobrama amblycephala cross breeding method
CN109548708A (en) * 2018-10-11 2019-04-02 中国水产科学研究院南海水产研究所 A kind of point wing Spanish mackerel batch production offspring seed cultivation method
CN110214748A (en) * 2019-06-24 2019-09-10 闫伊文 A kind of health environment-friendly cultural method of beef cattle
WO2021215356A1 (en) * 2020-04-20 2021-10-28 大学共同利用機関法人情報・システム研究機構 Method for producing xenogeneic egg and xenogeneic gamete in fish

Also Published As

Publication number Publication date
JPWO2015146184A1 (en) 2017-04-13
JP6536961B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6536961B2 (en) Method for producing fish gametes for cultured fish production using surrogate parent fish, which is applicable to parent species of another genus fish species
Yoshizaki et al. Spermatogonial transplantation in fish: a novel method for the preservation of genetic resources
JP6999072B2 (en) How to make transplanted fish, transplanted fish, how to make hybrid fish species and hybrid fish species
US9485970B2 (en) Selective breeding method of a new strain of Crassostrea gigas with orange left and right shells
Liu et al. Interspecific hybridization and genetic characterization of Larimichthys polyactis (♀) and L. crocea (♂)
Nam et al. Ploidy status of progeny from the crosses between tetraploid males and diploid females in mud loach (Misgurnus mizolepis)
CN108925472B (en) Cross breeding method for elopichthys bambusa and megalobrama amblycephala
Pandian et al. Androgenesis and conservation of fishes
CN100387120C (en) A fish androgenesis method
Do Nascimento et al. Heat-induced triploids in Brycon amazonicus: A strategic fish species for aquaculture and conservation
JP4581083B2 (en) Method for breeding fish by germ cell transplantation using triploid recipients
JP5750808B2 (en) Germ cell engraftment method
Ekici et al. Genetic breeding studies of marine fish farming species
CN100420375C (en) Production of pectinid with thelykaryon development characteristic and construction of pectinid pure system
Huang et al. Production of tetraploid gynogenetic loach using diploid eggs of natural tetraploid loach, Misgurnus anguillicaudatus, fertilized with UV-irradiated sperm of Megalobrama amblycephala without treatments for chromosome doubling
Yu et al. Fertility investigation in F1 hybrid and karyotype analysis of backcross progeny from Misgurnus anguillicaudatus and Paramisgurnus dabryanus
Paschos et al. Comparison of morphology, growth and survival between Silurus glanis, S. aristotelis and their hybrid during larval and juvenile stages
Rikimaru et al. Production of pure hinai-dori with normal reproductive capability from transferred primordial germ cells
Martins et al. Return temperature after heat shock affects the production of tetraploids in the yellowtail tetra Astyanax altiparanae
CN1838880B (en) Methods for maintaining genetic stability of inbred animal strains
CN103229742B (en) Preparation method of oncorhynchus mykiss walbaum and oncorhynchus mykiss hybrid triploid offspring seed
Naya et al. Developmental potential of somatic and germ cells of hybrids between Carassius auratus females and Hemigrammocypris rasborella males
Campos et al. Establishing a model fish for the Neotropical region: The case of the yellowtail tetra Astyanax altiparanae in advanced biotechnology
Goupil et al. Germ stem cell transplantation procedure for the regeneration of isogenic trout lines
Okon et al. Transgenesis techniques and its application in poultry production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769726

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016510049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769726

Country of ref document: EP

Kind code of ref document: A1