WO2015146171A1 - 液体中の水分測定装置および水分測定方法 - Google Patents

液体中の水分測定装置および水分測定方法 Download PDF

Info

Publication number
WO2015146171A1
WO2015146171A1 PCT/JP2015/001707 JP2015001707W WO2015146171A1 WO 2015146171 A1 WO2015146171 A1 WO 2015146171A1 JP 2015001707 W JP2015001707 W JP 2015001707W WO 2015146171 A1 WO2015146171 A1 WO 2015146171A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
liquid
waveguide
moisture
measuring
Prior art date
Application number
PCT/JP2015/001707
Other languages
English (en)
French (fr)
Inventor
紳一 永田
紀江 酒巻
英忠 澤本
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2016510043A priority Critical patent/JP6376214B2/ja
Publication of WO2015146171A1 publication Critical patent/WO2015146171A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/04Investigating moisture content

Definitions

  • the present invention relates to a moisture measuring device and a moisture measuring method in a liquid, and more particularly, to a moisture measuring device and a moisture measuring method for measuring the amount of moisture (water content) contained in a liquid such as an organic solvent by microwave resonance.
  • the Karl Fischer method is the only method that can directly measure the amount of water and is widely used because it can measure with high accuracy.
  • the Karl Fischer method is a kind of oxidation-reduction titration, it is mainly used at the laboratory level in principle, and real-time measurement cannot be performed. In addition, this method takes time and labor to prepare and measure reagents and the like.
  • the infrared method has been widely used since it can be measured in real time and can be used for on-line measurement in the process.
  • it is difficult in principle to measure a colored liquid, and there is undeniable anxiety in terms of measurement accuracy, such as being easily affected by disturbances such as surrounding heat sources and light sources.
  • the conventional method using the microwave cavity resonator has a problem that moisture in the liquid sample cannot be measured.
  • the present invention provides an apparatus and method for measuring moisture in a liquid.
  • the inventor uses a microwave cavity resonator, puts a liquid sample in an elongated tube-like member, installs it in an appropriate position of the opening of the microwave cavity resonator, and shifts the resonance frequency shift amount (simply “ ⁇ f”). Or the amount of change in the resonance peak level (sometimes simply referred to as “ ⁇ P”. The same applies hereinafter) is contained in the liquid. It has been found that the water content can be measured easily, quickly and with high accuracy.
  • putting the liquid sample into the tube-shaped member includes flowing the liquid sample in the tube-shaped member. The same applies hereinafter.
  • the term “opening” is a term that encompasses all open structures provided in a waveguide that allow the above tubular member to be installed in a microwave cavity resonator.
  • An example of such an open structure can include at least one slit and / or hole.
  • the present invention is not limited to these, and for example, as shown in FIG. 57, the hole includes a long hole elongated along the periphery of the cross section of the waveguide. Further, the long hole includes a partial slit portion extending in the circumferential direction of the waveguide and partially surrounding the periphery of the waveguide.
  • the measuring device in liquid according to the present invention includes a microwave cavity resonator including a waveguide provided with an opening, a tube-shaped member provided in the opening and capable of holding liquid tightly, and resonance. Measurement means for measuring a frequency or resonance peak level, and calculation means for calculating moisture contained in the liquid from the measured resonance frequency or resonance peak level.
  • the area where the tubular member crosses the cross section of the waveguide may be smaller than the cross section of the waveguide.
  • tubular member may be installed substantially parallel to the direction in which the electric field formed in the waveguide vibrates.
  • tubular member can be installed substantially parallel to the direction of gravity.
  • tubular member can be installed at a predetermined angle with respect to the direction of gravity.
  • the tubular member may have a branch passage that does not pass through the inside of the waveguide, and may further include a switching unit that switches the liquid flow path to the tubular member or the branch passage.
  • the microwave cavity resonator may have a rectangular cross section.
  • a plurality of the tubular members are inserted into the opening, and further include a control unit that controls the measurement sensitivity of the resonance frequency or the resonance peak level by switching the tube-shaped member that allows the liquid to pass therethrough. Can do.
  • the opening may be provided at a substantially central portion in the longitudinal direction of the waveguide.
  • the opening can be a slit.
  • the opening may be at least one hole.
  • a moisture measuring method in which liquid is liquid-tight at least inside the waveguide in an opening provided in a waveguide type microwave cavity resonator. Installing a holdable tubular member; measuring a resonance frequency or resonance peak level; and calculating moisture contained in the liquid from the measured resonance frequency or resonance peak level.
  • the water content contained in the liquid can be easily, rapidly, and increased. It can be measured accurately.
  • FIG. 1 is an external perspective view of a pair of waveguides according to a first embodiment of the present invention. It is a figure which shows the installation position of the tube which concerns on 1st Embodiment of this invention.
  • FIG. 1 shows an example of the configuration of a moisture measuring device in liquid according to the first embodiment of the present invention.
  • a moisture measuring device 100 in a liquid includes a microwave cavity resonator 102 provided inside a measurement unit, a network analyzer 104, a computer 105, a control unit 1610, and a drive unit 1608 provided outside the measurement unit. Is done.
  • the microwave cavity resonator 102 is composed of a pair of waveguides A and B.
  • the network analyzer 104 performs microwave oscillation and detection.
  • the computer 105 processes a signal sent from the network analyzer 104.
  • the control unit 1610 is for controlling the installation position of the tube 106 that can pass the liquid.
  • the driving unit 1608 drives the tube 106.
  • the tube 106 is configured to be able to hold a liquid tightly.
  • the material of the tube 106 is less microwave absorption and reflection.
  • a fluororesin is desirable.
  • Teflon registered trademark
  • Teflon PFA tube code no. F-8011-02 can be used.
  • Teflon (registered trademark) material can be used.
  • PFA has a molecular weight of several hundred thousand to several million, a viscosity of 10 4 to 10 5 poise (380 ° C.), a melting point of 300 ° C. to 310 ° C., and a maximum continuous use temperature of 260 ° C.
  • PFA has properties comparable to PTFE and is excellent in surface smoothness and permeation resistance. Moreover, melt molding is possible and it is often used in the semiconductor field.
  • FEP has a molecular weight of several hundred thousand to several million, a viscosity of 10 4 to 10 5 poise (380 ° C.), a melting point of 250 ° C. to 270 ° C., and a maximum continuous use temperature of 200 ° C.
  • FEP is slightly inferior in heat resistance to PTFE, but other properties are almost the same as PTFE. Moreover, it can be melt-molded and is often used as a wire covering material.
  • Teflon registered trademark
  • examples of materials following Teflon include polyethylene, polypropylene, polystyrene, and polyphenylene oxide.
  • a tube having an outer diameter of 3 mm ⁇ , an inner diameter of 2 mm ⁇ , and a length of 12 cm can be used.
  • a slit portion 110 is provided between the pair of waveguides A and B.
  • a 4 GHz band microwave oscillated from the network analyzer is input to the waveguide A, resonates with the waveguide B, and the resonance energy is detected by the network analyzer 104.
  • FIG. 2 is a block diagram schematically showing an example of the functional configuration of the present embodiment.
  • the network analyzer 104 is a state in which no liquid exists in the tube 106 based on the oscillating unit 202 that oscillates microwaves in the 4 GHz band, the receiving unit 204 that receives resonance energy, and the swept microwaves sent from the network analyzer 104.
  • the resonance peak level detection unit 206 that detects the resonance peak level in the existing state, and the resonance frequency in the state in which no liquid exists in the tube 106 and the state in which the liquid exists in the tube 106 based on the swept microwaves similarly sent from the network analyzer 104
  • a resonance frequency detection unit 208 is detected.
  • the computer 105 converts the calibration curve, which will be described later, into data from the data holding unit 212 and the measurement sensitivity in the resonance peak level detecting unit 206 or the resonance frequency detecting unit 208 and the data held in the data holding unit 212.
  • a calculation unit 210 for calculating the contained moisture is included.
  • the control unit 1610 controls the installation position of the tube 106 based on the measurement sensitivity at the resonance peak level detection unit 206 or the resonance frequency detection unit 208.
  • the drive unit 1608 drives the tube 106 based on a control signal from the control unit 1610 and determines the installation position of the tube 106.
  • the apparatus 100 for measuring moisture in a liquid uses a microwave cavity resonator 102, puts a liquid sample into an elongated tube 106, and installs it at an appropriate position of the slit 110 of the microwave cavity resonator 102.
  • the moisture content contained in the liquid is measured from the shift amount ( ⁇ f) of the resonance frequency or the change amount ( ⁇ P) of the resonance peak level.
  • the correlation between the ratio (%) of water contained in the mixed liquid and the measured value ⁇ f or ⁇ P is obtained in advance as a calibration curve, so that the liquid is obtained from the measured value ⁇ f or ⁇ P. Measure the moisture content in it.
  • FIG. 3 shows an example of the value of the transmitted microwave intensity with respect to the resonance frequency (Hz).
  • a calibration curve is prepared in advance and the moisture content is measured in the same manner as almost all moisture meters except the Karl Fischer method. A method for creating this calibration curve will be described later.
  • ⁇ P Various liquids such as those with large or small microwave absorption are envisaged in the liquid sample.
  • the microwave absorption amount is expressed as ⁇ P.
  • ⁇ P is a polar molecule because ⁇ P is proportional to the product of the dielectric loss rate of the liquid and the measurement volume.
  • Water, alcohol, and the like have a large dielectric loss factor, and thus a large amount of microwave absorption.
  • nonpolar molecular liquids such as benzene, toluene, and xylene have a very low dielectric loss factor and therefore have little microwave absorption.
  • the inventor is based on the electromagnetic field distribution in the microwave cavity resonator composed of a waveguide having a rectangular cross section so that it can correspond with high accuracy to measurement of all liquids having different amounts of absorption of microwaves.
  • An appropriate installation position in the slit portion of the tube containing the liquid sample, that is, where and in which direction is appropriate is examined.
  • FIG. 4 shows an electromagnetic field distribution in a microwave cavity resonator composed of a waveguide having a rectangular cross section.
  • 4A shows the structure of the waveguide
  • FIG. 4B shows the electromagnetic field distribution in each cross section of the waveguide.
  • the electromagnetic field distribution of the microwave cavity resonator according to the present embodiment is formed as shown in FIG. 4B, and the electric field strength is not uniform inside.
  • the y component E y of the electric field strength changes in a sine curve toward the x direction, and is maximum at the center of the cross section.
  • the electric field strength in the y direction is constant.
  • the y component E y of the electric field strength changes with a sine curve also in the z direction, and the electric field strength is maximum at the central portion of the waveguide.
  • the pair of waveguides A and B has a rectangular parallelepiped (microwave cavity resonator) divided into two at the center in the z direction, and a slit 110 having a gap of about 4 to 10 mm is formed.
  • the liquid sample is inserted and set in such a manner that the tube passes through the slit portion 110.
  • the narrower the gap distance the better. That is, in at least a rectangular cavity resonator, generally, if a gap is provided, microwaves leak from the gap, which is not preferable for obtaining a sharp resonance curve (high Q value). When the Q value decreases, peak detection becomes difficult. On the other hand, when measuring a substance having a large absorption of microwaves such as water, peak detection becomes more difficult. Actually, when the relationship between the gap and the Q value was actually measured, the Q value decreased as the gap increased.
  • the y component E y of the electric field intensity changes in a sine curve toward the x direction and becomes maximum at the center of the cross section.
  • the electric field strength in the y direction is constant.
  • the y component E y of the electric field strength changes with a sine curve also in the z direction, and the electric field strength becomes maximum at the central portion of the microwave cavity resonator 102, that is, the slit portion 110.
  • the shape of the tube into which the liquid sample is placed it can be measured not only in a cylindrical shape but also in an elongated container such as a prism, and there is no problem with a pentagonal or octagonal prism. It goes without saying that there is no problem even if the cross section cut by a plane perpendicular to the longitudinal direction of the tube becomes an ellipse, and various shapes can be used. Further, the shape of the tube may be a flat, substantially rectangular parallelepiped member having a thickness that fits into the gap of the slit without being caught by the word tube.
  • the electric field distribution in the microwave cavity resonator changes depending on the cross-sectional shape of the waveguide constituting the microwave cavity resonator. If the cross section of the waveguide is other than rectangular, a uniform parallel electric field is not formed. For example, when the cross-sectional shape is circular, a radial or loop electric field distribution is obtained. In contrast, a rectangular parallel-shaped electric field is formed in the case of a rectangle, and the relative position between the tube in which the liquid sample to be measured and the measuring device are adjusted according to the electric field distribution. Adjustment is possible. Accordingly, when the measurement sensitivity of the resonance peak level or the resonance frequency is controlled by changing the tube position, the cross-sectional shape of the waveguide constituting the microwave cavity resonator is preferably rectangular.
  • the dimensions of the tube are such that the area across the cross section of the microwave cavity resonator is smaller than the cross section of the microwave cavity resonator.
  • the natural mode in the microwave cavity resonator when no liquid sample is inserted is the a mode
  • the natural angular frequency is ⁇ a
  • the electric field and the magnetic field are E a and H a , respectively.
  • the following perturbation theory formula is established.
  • the resonance frequency shift amount ( ⁇ f) or resonance peak level change amount ( ⁇ P) is proportional to the volume integral of the inner product of the electric field E inside the resonator and the dielectric constant ⁇ ′ or the dielectric loss factor ⁇ ′′. This is derived from the equation (1) of the perturbation theory.
  • the measurement sensitivity changes depending on the position (direction) of the waveguide constituting the microwave cavity resonator. This is because ⁇ f and ⁇ P depend on the electric field strength if the sample has the same dielectric constant, dielectric loss factor, and volume.
  • the electric field strength can be adjusted by the electric field distribution at the measurement position (that is, the position and direction in which the tube is installed), and the volume integral can be adjusted by the volume of the liquid to be measured. It is possible to set the measurement sensitivity.
  • the method according to this embodiment uses a microwave cavity resonator having a slit, a liquid sample can be placed in various directions and positions, and the amount of microwave absorption can be adjusted by adjusting the measurement sensitivity. It is possible to measure the moisture content of various samples from large samples to small samples. It is needless to say that the measurement sensitivity can be changed by changing the cross-sectional area of the tube, that is, changing the volume (volume flow rate) of the liquid sample in the same way.
  • the broken line in FIG. 6A shows the electric field strength distribution in the waveguide. If the tube is installed in a place where the electric field is strong, the sensitivity of the measurement (interaction between the electric field and the liquid) increases. If the measurement positions (1) to (5) are arranged in descending order of measurement sensitivity, the order is (1), (2), (3), (4), (5). Moreover, although the installation positions of (6), (7), and (8) are also conceivable, the measurement sensitivity is estimated to be about the same because the electric field strength does not change in the y direction. In addition, measurement positions such as (9) and (10) in FIG. 6B are also conceivable.
  • Measured at the position (1) in the figure has the highest measurement sensitivity. However, if the amount of water in the liquid sample is large, the amount of absorption of microwaves is too large, the resonance peak level becomes low, and the resonance peak may not be detected. In this case, an installation position with a weaker electric field than (1) such as (2), (3), (4), (5), (6), (9), and (10) may be used. For example, at positions such as (2), (3) or (9), (10), the resonance peak level does not decrease too much, and a margin can be provided for a large change in measured value.
  • the amount of microwave absorption of the liquid sample is also small, so if you measure it in a place with a strong electric field as in (1), the measurement sensitivity will increase, and it will be compatible with the measurement of minute amounts of water. It will be possible.
  • a graph as shown in FIG. 7 was obtained for the measured value of ⁇ P in the tube installed at the position (1) in FIG. 6A, and a high correlation was obtained.
  • a calibration curve can be created from this graph to measure the moisture content.
  • FIG. 9 is an external perspective view of the measuring unit according to the present embodiment.
  • the operation panel of the pump controller 1304 is provided on the front panel 1306 of the housing 1302.
  • the front panel 1306 is provided with a suction joint 1308 and a discharge joint 1310.
  • a liquid sample suction tube 1312 extends from the suction joint 1308, and a liquid sample discharge tube 1314 extends from the discharge joint 1310.
  • the suction tube 1312 and the discharge tube 1314 are made of a flexible material, and these can be lifted by hand and placed inside the container 1316.
  • the pump controller 1304 is configured to be operable to control a micro pump for sucking a liquid sample from the container 1316 through the suction tube 1312.
  • the pump controller 1304 and the micro pump are turned on / off by a power switch 1318.
  • FIG. 10 is a diagram showing a configuration example inside the measurement unit.
  • a housing 1302 in the figure has a height of 200 mm, a width of 250 mm, and a depth of 200 mm from the front panel 1306.
  • the suction tube 1312 is connected to the suction tube 1414 via a suction joint 1308.
  • the suction tube 1414 is connected to the micropump 1322.
  • the micropump 1322 is connected to one end of the liquid sample introduction tube 1320.
  • the other end of the liquid sample introduction tube 1320 is connected to one end of a fluororesin tube 1416 installed in the microwave cavity resonator 102 made of a waveguide.
  • the fluororesin tube 1416 for example, one having an inner diameter of 2 mm and an outer diameter of 3 mm can be used.
  • the liquid sample introduction tube 1320 and the fluororesin tube 1416 are connected via an L-shaped joint 1402 to prevent backflow.
  • the fluororesin tube 1416 is arranged in the horizontal direction in the drawing, since the microwave is polarized, the fluororesin tube vibrates the electric field formed in the waveguide in order to efficiently apply the electric field to the liquid sample. It is installed approximately parallel to the direction to be. According to the example shown in FIG. 10, the fluororesin tube is installed such that the longitudinal direction is the y direction.
  • the fluororesin tube may be installed such that the longitudinal direction is substantially parallel to the x direction, that is, the gravity direction, or may be installed at a predetermined angle in the gravity direction (for example, substantially perpendicular to the gravity direction). When installed so as to be substantially parallel to the direction of gravity, it is efficient to discharge the liquid present in the fluororesin tube.
  • the other end (not shown) of the fluororesin tube 1416 is connected to the discharge tube 1412.
  • the discharge tube 1412 is connected to the discharge tube 1314 via a discharge joint 1310.
  • the suction tube 1312 and the discharge tube 1314 can be attached to and detached from the suction joint 1308 and the discharge joint 1310, respectively, and can be replaced.
  • each of the tubes such as a suction tube other than the fluororesin tube, the fitting, and the liquid contact part such as the diaphragm of the pump are made of fluororesin.
  • the above PFA is preferably used.
  • the microwave cavity resonator is fixed to a U-shaped member 1404 installed at the bottom of the housing 1302.
  • the microwave cavity resonator 102 is connected to a network analyzer provided outside through coaxial cables 1408 and 1410 connected to the end of the waveguide, and signals are transmitted through the coaxial cable.
  • the power switch 1318 is configured to switch on / off of power to the AC adapter 1406 that supplies power to the pump controller 1304 and the micropump 1322.
  • the operation of the measurement unit 1300 will be described.
  • the flow rate of the liquid sample in the micropump 1322 is adjusted, the liquid sample in the container 1316 is sucked through the suction tube 1312 and the suction tube 1414, and the liquid sample introduction tube A liquid sample is introduced from 1320 to the fluororesin tube 1416 and passed through the waveguide.
  • the liquid sample that has passed through the fluororesin tube 1416 is discharged to the container 1316 through the discharge tube 1412 and the discharge tube 1314, and the liquid sample circulates.
  • the liquid sample when flowing the liquid sample, the liquid sample is sucked from the container containing the liquid through the suction tube and introduced into one end of the fluororesin tube, and the other end of the fluororesin tube is The liquid sample can be discharged from the end portion to the container through the discharge tube.
  • the piping other than the detection unit is made of an antistatic material.
  • a tube having a conductive PFA part on the outer surface is more preferably used as a tube that suppresses charging of the tube surface.
  • a tube T / # 9003-NE made of Naflon (registered trademark) PFA (perfluoroalkoxy fluororesin) manufactured by NICHIAS Corporation is preferably used.
  • the container containing the liquid sample is preferably sealed.
  • a straight pipe container with a screw-type stopper made of Teflon (registered trademark) resin can be used as the sealed container.
  • the flammable range is determined by the concentration of the volatile component of the organic solvent in the air. For this reason, it is preferable to prevent the volatile matter from entering the range where the ignition occurs in case the liquid sample leaks from the piping system and stays inside the measurement unit. Specifically, it is conceivable that a volatile component of the leaked liquid sample is discharged outside the measurement unit by attaching a positive pressure fan to the measurement unit and keeping the measurement unit inside at a positive pressure. Moreover, it is preferable to use an explosion-proof electrical component such as a switch of an electrical system that is likely to cause ignition.
  • the measurement unit is configured with priority given to preventing leakage of the liquid sample.
  • a leak detector that detects the leak state in consideration of a case where a liquid sample leaks.
  • the liquid leakage detector for example, a method of detecting a liquid leakage with conductivity, a method called an interelectrode resistance detection method, or an optical method can be used.
  • this part is covered with a joint cover equipped with a litmus reaction type pH display patch, etc., and leakage can be detected. If a leak detector is attached to the lower side of the covered portion, the leakage of the liquid sample can be detected efficiently.
  • ⁇ f or ⁇ P with respect to the moisture content.
  • the measured value in the new blank state reaches a predetermined ratio with respect to the fixed value A, it is determined that the flushing has been sufficiently performed.
  • the measured value at this time is stored in the computer 105 as a new fixed value A.
  • the processes from (3) are performed again. Further, if the measured value does not reach a predetermined ratio with respect to the fixed value A even after performing the step (3) a predetermined number of times, the computer 105 may notify the occurrence of an error. In this way, the operator of the moisture measuring device can determine the handling method based on the information notified from the computer 105.
  • the calibration curve may be created semi-automatically. For example, several types of liquid samples having a known moisture concentration are prepared in advance by hand, and a container containing each liquid sample is prepared. Then, in the automatic calibration curve creation mode, the containers 1316 in FIG. 10 are sequentially replaced with containers having different concentrations, and ⁇ f or ⁇ P is measured.
  • the measured values of ⁇ f and ⁇ P are stored in the data holding unit 212 of the computer 105 in association with the moisture content, and a calibration curve can be obtained from this correspondence.
  • This calculation process is performed by the calculation unit 210 of the computer 105 reading and executing a calibration curve creation program stored in the data holding unit 212.
  • the temperature of the calculated moisture content based on the measured temperature by measuring the waveguide temperature (blank value), the liquid temperature (measured value), or the temperature of the measurement environment. It is preferable when performing measurement with high accuracy.
  • thermocouple As a temperature measurement unit for measuring temperature, for example, when measuring the waveguide temperature, a thermocouple can be used. Further, when measuring the liquid temperature, a resistance temperature detector or the like can be used.
  • the dielectric constant of water is about 80 at 4 GHz and 25 ° C., and the dielectric constant tends to decrease as the temperature rises at the same frequency.
  • the dielectric loss factor is about 13 at 4 GHz and 25 ° C., but tends to decrease as the temperature rises at the same frequency.
  • there is no solvent whose reliability is guaranteed as values of dielectric constant and dielectric loss factor at a plurality of temperatures.
  • the true value of the dielectric constant and dielectric loss factor of the solvent at 4 GHz is hardly disclosed.
  • the dielectric constant is about 2 and the dielectric loss factor is about 6 at 4 GHz and 25 ° C. It tends to increase. Therefore, when measuring the moisture content in a solvent, it cannot be said that the influence of the dielectric constant and dielectric loss rate of the solvent on the temperature and that of water are in the same tendency, and there is no fixed rule. For this reason, it is more preferable to prepare a calibration curve by measuring the sample (solvent + water) to be measured in advance by actually changing the temperature using this apparatus (moisture measuring apparatus).
  • (Calibration method 2) (1) Prepare a mixed solution of solvent and water in 5 levels with a moisture content in the range of 0 to 40%, and change the temperature of this mixed solution to 4 steps of 10 ° C, 20 ° C, 30 ° C, and 40 ° C. Then, ⁇ f is measured each time. A graph as shown in FIG. 15 is created from the data, and an approximate curve is also obtained. This approximate curve can be a quadratic curve as shown in FIG. (2) Next, ⁇ f of a mixed solution whose moisture content is unknown (for example, water + ethanol) is measured, and the temperature T of the mixed solution is also measured at that time.
  • a mixed solution whose moisture content is unknown (for example, water + ethanol) is measured, and the temperature T of the mixed solution is also measured at that time.
  • the moisture content can be calculated by substituting ⁇ f of the measured sample into this equation. If the sample temperature changes, the position of the vertical line (broken line) in FIG. 15 is moved to the sample temperature, and the intersection with each approximate curve is obtained again. Then, if the graph as shown in FIG. 16 is created again, the moisture content at that temperature can be obtained.
  • temperature management inside the apparatus (for example, constant at 25 ° C.) may be performed. This is because the temperature inside the measurement unit affects the measurement value. For example, if the inside of the measurement unit is set lower than the ambient temperature, condensation occurs in the waveguide and affects the measurement accuracy.Therefore, temperature control is performed so that condensation does not occur, or water vapor is generated from the measurement unit. It is desirable to provide a mechanism for discharging.
  • acetone or water may be allowed to flow through the tube, and then air may be allowed to flow for drying.
  • an automatic tube cleaning system may be installed in the measurement unit.
  • a cleaning liquid tank containing a cleaning liquid such as acetone or pure water is separately provided. Then, before the liquid to be measured is replaced, in the cleaning mode, the cleaning liquid in the cleaning liquid tank is passed through the tube for cleaning. This operation is the same as the operation in the step (3) in the calibration described above. Then, after the cleaning is completed, the cleaning liquid tank is replaced with a container to be measured.
  • a tube 106 through which a liquid can pass is inserted into a slit portion 110 provided in a waveguide constituting the microwave cavity resonator 102.
  • bubbles that may occur in the liquid sample interfere with high-precision measurement.
  • the tube 106 is installed, it is preferable to employ a system in which the tube 106 is arranged in the vertical direction as shown in FIG. 17 and the liquid sample is pumped up from below. This is because bubbles can easily escape upward by pumping up the liquid from below.
  • bubbles are better removed from the liquid sample when the operation of the pump is stopped.
  • a valve 708 for adjusting the flow rate of the liquid sample is attached to one end of the tube 106.
  • a valve 710 provided at the end of the tube 712 of the circulation pump 706 is attached to the other end of the tube 106. This valve 710 is also for adjusting the flow rate of the liquid sample.
  • the circulation pump 706 is configured to aspirate the liquid sample in the container 702 and provide it to the tube 106 through the tube 712 and return the liquid sample from the valve 708 to the container 702.
  • the resonance frequency or the resonance peak level in the state where the liquid exists in the tube 106 and the state where the liquid does not exist is measured.
  • ⁇ f or ⁇ P is calculated from the measured resonance frequency or resonance peak level, and the moisture contained in the liquid is calculated.
  • a Teflon (registered trademark) tube containing no liquid was prepared as a blank, and this tube was placed in the slit portion of the microwave cavity resonator, and the resonant frequency and resonant peak level at that time were measured.
  • the tube installation position was measured at positions (1) to (10) in FIG. 6 in consideration of the electric field distribution. 3.
  • a Teflon (registered trademark) tube containing various liquids was measured at positions (1) to (10), and a shift amount ⁇ f of resonance frequency and a change amount ⁇ P of resonance peak level were obtained from the difference.
  • the measurement was performed at room temperature, and the frequency of the microwave was 4 GHz.
  • Table 2 shows the results of summarizing ⁇ P values of nine types of liquids at the measurement positions (1) to (10). The unit is expressed in decibels.
  • FIG. 18 shows a graph of the results of Table 2 with respect to the positions (1), (6), (9), and (10).
  • the vertical axis represents ⁇ P.
  • FIG. 19 shows a graph of the results of Table 3 with respect to the positions (1) and (6).
  • the vertical axis represents ⁇ f.
  • Example 1 In the Teflon (registered trademark) tube used in Example 1, a mixed solution is prepared by mixing water and another liquid. Six levels of samples were prepared for five types of liquids with the ratio of water to the total liquid mixture from 0% to 50% in almost 10% increments. Specifically, ethanol, methanol, isopropyl alcohol (IPA), acetone, and ethylene glycol were used. 2. For each liquid, ⁇ f and ⁇ P were measured in the same manner as in Example 1 for five types of samples having different water contents. Here, (1), (9), and (10) were selected as the installation positions of the tubes. Moreover, the average value was taken about installation position (9) and (10).
  • FIG. 20 to FIG. 24 show graphs of the measurement results with the moisture content on the horizontal axis and ⁇ P on the vertical axis.
  • the moisture content can be measured almost in real time. For this reason, it is good also as measuring by flowing the liquid with which the tube was filled. That is, this embodiment can be applied to on-line measurement in which a liquid is measured while flowing in a tube in principle.
  • the method according to this example uses the fact that the dielectric constant and dielectric loss factor of water are larger than those of other liquids. However, if the dielectric constant and dielectric loss factor of the liquid are significantly different from those of water, Needless to say, the higher the moisture sensitivity, the higher the sensitivity (resolution). Therefore, the resolution of the moisture content is calculated by taking, as an example, the result of measuring ⁇ P at the positions (9) and (10) for a mixed liquid of ethanol and water from the results of this experiment.
  • FIG. 30A shows a graph in which ⁇ P is plotted on the vertical axis and volumetric moisture content (%) is plotted on the horizontal axis, and an approximate curve is added to the calculation result.
  • FIG. 30B shows a graph in which the horizontal axis and vertical axis in FIG. 30A are interchanged so that the slope (differential value at a volumetric moisture content of 0%) is% / dB.
  • the measurement sensitivity or resolution of the moisture content is far from the dielectric loss rate of water, that is, the dielectric loss rate of the liquid mixed with water is much smaller than that of water. Will improve.
  • the ethanol shown in the above example has a relatively large value of about 5.9 (see Non-Patent Document 1) for the dielectric loss rate of water of 13.1 (microwave 4 GHz, 25 ° C.). As shown, it cannot be said to be much smaller than the dielectric loss rate of water. Nevertheless, a high resolution of 0.0183% was shown. Needless to say, in the case of a liquid having a dielectric loss factor smaller than that of ethanol, the resolution is higher than that.
  • the resolution is obtained from the relationship between ⁇ f and moisture content.
  • the slope when the moisture content is 0% is 0.796 (% / MHz). This means that there is a change of 0.796% per 1 MHz for moisture content. If the resolution of ⁇ f is 1 KHz, the slope, that is, the resolution is 0.000796 (% / KHz), and there is a resolution of about 8 ppm.
  • a dedicated air compressor is introduced into the measurement unit for calibration.
  • FIG. 32 is a diagram schematically showing an internal configuration of the measurement unit according to the second embodiment of the present invention.
  • the suction tube 1312 is connected to the suction tube 1414 via a three-way valve A 2004.
  • the three-way valve A 2004 has an air inlet / outlet 2006.
  • the suction tube 1414 is connected to the micropump 1322.
  • the micropump 1322 is connected to one end of the liquid sample introduction tube 2208.
  • the other end of the liquid sample introduction tube 2208 is connected to one end of the liquid sample introduction tube 1320 via a three-way valve 2210.
  • the other end of the liquid sample introduction tube 1320 is connected to one end of a fluororesin tube 1416 inserted through the microwave cavity resonator 102 made of a waveguide via an L-shaped joint 1402.
  • the three-way valve B 2210 is further connected to a compressed air supply tube 2212.
  • the compressed air supply tube 2212 is connected to an air compressor 2218 via a two-way valve 2214 and a compressed air supply tube 2216.
  • the air compressor 2218 generates compressed air for cleaning the inside of the tube.
  • ML250 manufactured by Daiichi Kogyo Co., Ltd. can be used.
  • the other end (not shown) of the fluororesin tube 1416 is connected to one end of the discharge tube 1412.
  • the other end of the discharge tube 1412 is disposed in the sample collection container 2002.
  • the three-way valve A 2004 and the three-way valve B 2210 are used to switch between tube cleaning air and a liquid sample.
  • F-2388 manufactured by Freon Industries, Ltd. can be used. This switching control may be automatically performed according to a command from the computer 105.
  • the microwave cavity resonator is fixed to a U-shaped member 1404.
  • the microwave cavity resonator 102 is connected to a network analyzer provided outside through coaxial cables 1408 and 1410 connected to the end of the waveguide, and signals are transmitted through the coaxial cable.
  • the three-way valve A 2004 is switched to send air to the suction tube 1414 (step S2102).
  • the operation of the micropump 1322 is stopped after a predetermined time has elapsed (step S2104).
  • the three-way valve B 2210 is switched to the compressed air side (step S2106).
  • the two-way valve 2214 is turned on / off, compressed air is sent to the liquid sample introduction tube 1320 for a predetermined time, and the three-way valve B 2210 is returned to the micropump 1322 side (step S2108).
  • the resonance peak level is measured for the tube in the blank state, and it is determined whether or not the measured value has risen to a predetermined blank value range (step S2110).
  • the calibration is terminated and the next measurement is performed. If the measured value does not rise to the predetermined blank value range, pure water is put into the liquid sample container 1316, the micropump 1322 is turned on, and pure water is allowed to flow through the tube for a certain period (step S2112). In this operation, the three-way valve A 2004 and the three-way valve B 2210 can be automatically controlled. Thereafter, the processing from step S2102 is repeated.
  • the liquid sample used for measurement is used as a solvent.
  • the liquid sample may be flowed into the tube, and then pure water may be flowed.
  • a pair of tubes may be used at the same time to measure moisture for different types of liquid samples.
  • a pair of tubes may be used simultaneously as a blank tube and a measurement tube.
  • each position of a pair of tube is comprised so that adjustment is possible independently.
  • the pair of tubes are inserted into the slit portion 110 so as to be symmetrical with respect to the center portion of the microwave cavity resonator, and the positions are adjusted so that the measurement sensitivities in the pair of tubes are the same.
  • This position adjustment may be performed manually. In a state where the measurement sensitivity is the same, either one is used as a measurement tube and the other is used as a blank tube.
  • a plurality of measurement tubes are prepared, and any one of them is moved into the slit 110 by the control unit 1610 and the drive unit 1608 and used for measurement.
  • the control unit 1610 and the drive unit 1608 are moved into the slit 110 by the control unit 1610 and the drive unit 1608 and used for measurement.
  • two measurement tubes are prepared, and as shown in FIG. 34, the following operation can be performed in the measurement unit.
  • One tube is disposed at the same measurement position of the microwave cavity resonator 102, and the other tube is moved out of the microwave cavity resonator 102 (FIG. 34A).
  • the position where the measurement sensitivity is maximized is selected as the measurement position.
  • the two tubes may be individually movable, or may be arranged in parallel at regular intervals so that they can be simultaneously moved in the direction of the arrow.
  • the same measurement position employed in the step (1) is not limited to the position where the measurement sensitivity is maximized.
  • the measurement position may be changed by adjusting the position so that the measurement sensitivity is lowered.
  • the piping system may be movable, or the measurement system may be movable. Although this is a design problem, it is preferable to make the piping system movable in order to stabilize the measurement.
  • a sampling pipe may be branched and connected to the main pipe through which the liquid passes in the production line, and the moisture may be measured for the liquid passing through the sampling pipe.
  • FIG. 35 shows the configuration of the measurement unit of the moisture measuring device according to this embodiment.
  • a sampling pipe 2504 is connected to the main pipe 2506 of the production line via switching valves 2502 and 2508. The liquid that flows from the main pipe 2506 to the sampling pipe 2504 returns to the main pipe 2506.
  • the switching valves 2502 and 2508 can be configured to receive an instruction signal from a switching unit 2510 constituted by an electronic control unit or the like and perform valve opening / closing control online.
  • the value of V2 is determined by the pump capacity and sampling pipe diameter.
  • a sub pipe can be further provided in the sampling pipe to adjust the value of V2. In this way, by adjusting the flow rate of the liquid in the sampling pipe, it is possible to measure water in real time in a true sense.
  • a tube is disposed in the slit portion 110.
  • the openings of the waveguide A and the waveguide B are arranged to face each other in the slit portion 110.
  • a thin film such as polyvinylidene chloride (for example, Saran Wrap (trade name)), a fluorine-based sheet, for example, Naflon (registered trademark) tape manufactured by Nichias (model: TOMBO (registered trademark))
  • Saran Wrap trade name
  • a fluorine-based sheet for example, Naflon (registered trademark) tape manufactured by Nichias (model: TOMBO (registered trademark))
  • 9001 official name: ethylene tetrafluoride resin tape
  • a bubble detector in the measurement unit.
  • a bubble detector described in Patent Document 2 can be employed.
  • an alarm is transmitted from the device.
  • the alarm signal from the bubble detector may be recorded together as a signal.
  • a bubble removing unit may be provided in the measurement unit.
  • the pressure degassing device may be connected to a micro pump, and a pressure pump may be used instead of the micro pump.
  • the sampling piping system may be completely sealed.
  • the sampling pipe 2504 may be hermetically sealed by switching control of the switching valves 2502 and 2508 in a state where the sampling pipe 2504 is filled with a liquid sample.
  • a signal such as an alarm signal output from a network analyzer, a leak detector, or a bubble detector may be recorded.
  • an abnormality notification signal is transmitted from the computer 105 to a mobile terminal such as a smartphone or a tablet as a wireless signal. You may also send it on.
  • FIG. 36 schematically shows a configuration of a system according to the ninth embodiment of the present invention.
  • the system according to this embodiment includes a network analyzer 104, a leak detector 2714, a bubble detector 2716, a computer 105, and a mobile terminal 2702.
  • the network analyzer 104 performs microwave oscillation and detection.
  • the liquid leakage detector 2716 detects the state of liquid leakage, and for example, a method of detecting leakage by conductivity, a method called an interelectrode resistance detection method, or an optical method can be used.
  • the bubble detector 2716 detects bubbles, and for example, a bubble detection device described in Japanese Patent No. 4561336 can be adopted.
  • the network analyzer 104, the leak detector 2714, and the bubble detector 2716 are connected to the computer 105.
  • the computer 105 processes signals sent from the network analyzer 104, the leak detector 2714, and the bubble detector 2716, and includes a calculation unit 210, a data holding unit 212, and a communication unit 2712.
  • the calculation unit 210 processes data such as signals output from the network analyzer 104, the leak detector 2714, and the bubble detector 2716.
  • the data holding unit 212 stores data in accordance with an instruction from the calculation unit 2708.
  • the communication unit 2712 communicates with the network analyzer 104, the leak detector 2714, the bubble detector 2716, and the mobile terminal 2702. Here, the communication unit 2712 exchanges signals with the mobile terminal 2702 by wireless communication.
  • Wireless communication includes communication performed via radio waves such as electromagnetic waves, light, infrared rays, and microwaves.
  • various communication technologies such as IEEE 802.11 and Bluetooth (Bluetooth (registered trademark)) can be used.
  • the mobile terminal 2702 includes a wireless reception unit 2704 and a notification unit 2706.
  • the wireless reception unit 2704 performs wireless communication with the communication unit 2712 of the computer 105.
  • the notification unit 2706 notifies the user of an abnormality when the wireless reception unit 2704 receives the abnormality notification signal from the computer 105.
  • various means such as displaying a text message on a display, displaying an image such as an icon, turning on a light, outputting sound by a speaker, and vibrating by a motor can be used.
  • the computer 105 stores a signal output from any of the network analyzer 104, the leak detector 2714, and the bubble detector 2716 in the storage unit 2710. If it is determined by this signal that an abnormality has occurred in the measurement unit, an abnormality notification signal is transmitted to the mobile terminal 2702 via the notification unit 2712. For example, when the measurement value output from the network analyzer 104 is an abnormal value, it is determined that an abnormality has occurred in the moisture measuring device when a detection signal is received from the liquid leakage detector 2714 or the bubble detector 2716.
  • the abnormality notification signal transmitted from the computer 105 may include a code indicating the type of abnormality that has occurred, or may include a text message. Further, the abnormality notification signal may be transmitted in the form of an e-mail including a text message.
  • Such a configuration makes it possible for the user of the mobile terminal to monitor the operation of the moisture measuring device.
  • FIG. 37 shows an example of the configuration of a moisture measuring device in liquid according to the tenth embodiment of the present invention.
  • the moisture measuring device 3700 in the liquid includes a microwave cavity resonator 3702 provided inside the measurement unit, and a network analyzer 104 and a computer 105 provided outside the measurement unit.
  • the microwave cavity resonator 102 is composed of a waveguide 3710.
  • the network analyzer 104 performs microwave oscillation and detection.
  • the computer 105 processes a signal sent from the network analyzer 104.
  • the waveguide 3710 that constitutes the microwave cavity resonator 3702 is provided with through holes 107, 108, and 109 so as to cross the central portion, and among these, the through hole 108 can hold the liquid in a liquid-tight state.
  • a tube 106 is inserted.
  • a “through hole” is an example of a hole formed in a waveguide.
  • the through hole is formed in only one surface of the waveguide, and is formed in a plurality of surfaces of the waveguide. This includes both meanings of a through hole (for example, a through hole formed in one surface and a surface facing the surface).
  • 4 GHz band microwaves oscillated from the network analyzer 104 are input to the waveguide 3710 to resonate, and the resonance energy is detected by the network analyzer 104.
  • FIG. 38 is a block diagram schematically showing an example of the functional configuration of the network analyzer according to the present embodiment.
  • the network analyzer 104 is a state in which no liquid exists in the tube 106 based on the oscillating unit 202 that oscillates microwaves in the 4 GHz band, the receiving unit 204 that receives resonance energy, and the swept microwaves sent from the network analyzer 104.
  • the resonance peak level detection unit 206 that detects the resonance peak level in the existing state, and the resonance frequency in the state in which no liquid exists in the tube 106 and the state in which the liquid exists in the tube 106 based on the swept microwaves similarly sent from the network analyzer 104
  • a resonance frequency detection unit 208 is detected.
  • the computer 105 has a data holding unit 212 that holds a calibration curve, which will be described later, and detection intensity (also referred to as measurement sensitivity) in the resonance peak level detection unit 206 or the resonance frequency detection unit 208. The same applies in this specification. ) And data held in the data holding unit 212, the calculation unit 210 calculates the moisture contained in the liquid.
  • the moisture measurement apparatus 3700 in the liquid uses a microwave cavity resonator 3702, puts the liquid sample into the elongated tube 106, and inserts the liquid sample into the through-hole of the waveguide 3710 constituting the microwave cavity resonator 3702. Inserted in any of 107 to 109, the moisture content contained in the liquid is measured from the amount of shift of the resonance frequency ( ⁇ f) or the amount of change of the resonance peak level ( ⁇ P). Specifically, the correlation between the ratio (%) of water contained in the mixed liquid and the measured value ⁇ f or ⁇ P is obtained in advance as a calibration curve, so that the liquid is obtained from the measured value ⁇ f or ⁇ P. Measure the moisture content in it.
  • the waveguide 3710 is provided with through holes 107 to 109 at the center in the z-axis direction of the rectangular parallelepiped (waveguide constituting the microwave cavity resonator).
  • the tube 106 is inserted and set so that the liquid sample passes through 109.
  • the inner diameter of the through hole is preferably as narrow as possible for the following reason. That is, in at least a rectangular cavity resonator, generally, if an opening is provided, microwaves leak from the opening, which is not preferable for obtaining a sharp resonance curve (high Q value). When the Q value is lowered, peak detection becomes difficult. On the other hand, when a substance having a large absorption of microwaves such as water is measured, peak detection tends to be difficult. In addition, it is desirable to close the through hole into which the tube 106 is not inserted with a cap (not shown) so that the microwave does not leak.
  • the material of such a cap is preferably the same material as the tube wall of the waveguide of the microwave cavity resonator or a conductive material. Further, if a potential difference is generated between the cap and the waveguide, the microwave leaks. Therefore, the cap needs to be electrically connected to the tube wall of the waveguide. For example, a cap in which brass is plated with silver can be used.
  • the shape of the through-hole there is no problem even if it is a circle, a long hole, an ellipse, or a polygon such as a triangle or a rectangle.
  • the through hole does not need to be perpendicular to the y axis, and may be provided obliquely or perpendicular to the y axis.
  • the method according to this embodiment uses a microwave cavity resonator composed of a waveguide with a through hole, by providing a plurality of through holes 107, 108, and 109 as shown in FIG. A tube can be inserted by selecting a desired through hole, and by adjusting the measurement sensitivity, it becomes possible to measure the moisture content of various samples from samples having a large amount of microwave absorption to samples having a small amount of absorption.
  • the insertion position of the tube various positions are conceivable including the positions of the through holes 107, 108 and 109 shown in FIG.
  • ten positions (1) to (10) shown in FIG. 6 can be set as the insertion positions.
  • the dimensions of the tube are preferably designed so that the area across the cross section of the waveguide is smaller than the cross section of the waveguide.
  • the resonance frequency shift amount ( ⁇ f) or resonance peak level change amount ( ⁇ P) is proportional to the volume integral of the inner product of the electric field E inside the resonator and the dielectric constant ⁇ ′ or the dielectric loss factor ⁇ ′′. This is derived from the equation (1) of the perturbation theory.
  • the measurement sensitivity changes depending on the through hole in which position (direction) of the waveguide constituting the microwave cavity resonator is inserted. Led. This is because ⁇ f and ⁇ P depend on the electric field strength if the sample has the same dielectric constant, dielectric loss factor, and volume.
  • the electric field strength can be adjusted by the electric field distribution at the measurement position (that is, the position and direction in which the tube is inserted), and the volume integral can be adjusted by the volume of the liquid to be measured.
  • Measurement sensitivity can be set over a wide range.
  • An example of adjusting the volume of the liquid is to change the cross-sectional area of the tube that crosses the cross-section of the waveguide.
  • FIG. 40 is a diagram showing a configuration example inside the measurement unit.
  • a housing 1302 in the figure has a height of 200 mm, a width of 250 mm, and a depth of 200 mm from the front panel 1306.
  • the suction tube 1312 is connected to the suction tube 1414 via a suction joint 1308.
  • the suction tube 1414 is connected to the micropump 1322.
  • the micropump 1322 is connected to one end of the liquid sample introduction tube 1320.
  • the other end of the liquid sample introduction tube 1320 is connected to one end of a fluororesin tube 1416 inserted through a microwave cavity resonator composed of a waveguide 1418.
  • the fluororesin tube 1416 for example, one having an inner diameter of 2 mm and an outer diameter of 3 mm can be used.
  • the liquid sample introduction tube 1320 and the fluororesin tube 1416 are connected via an L-shaped joint 1402 to prevent backflow.
  • the fluororesin tube 1416 is arranged in the horizontal direction in the drawing, since the microwave is polarized, the fluororesin tube vibrates the electric field formed in the waveguide in order to efficiently apply the electric field to the liquid sample. It is installed approximately parallel to the direction to be. According to the example shown in FIG. 40, the fluororesin tube is installed such that the longitudinal direction is the y direction.
  • the fluororesin tube may be installed such that the longitudinal direction is substantially parallel to the x direction, that is, the gravity direction, or may be installed at a predetermined angle in the gravity direction (for example, substantially perpendicular to the gravity direction). When installed so as to be substantially parallel to the direction of gravity, it is efficient to discharge the liquid present in the fluororesin tube.
  • the other end (not shown) of the fluororesin tube 1416 is connected to the discharge tube 1412.
  • the discharge tube 1412 is connected to the discharge tube 1314 via a discharge joint 1310.
  • the suction tube 1312 and the discharge tube 1314 can be attached to and detached from the suction joint 1308 and the discharge joint 1310, respectively, and can be replaced.
  • each of the tubes such as a suction tube other than the fluororesin tube, the fitting, and the liquid contact part such as the diaphragm of the pump are made of fluororesin.
  • the above PFA is preferably used.
  • the microwave cavity resonator is fixed to a U-shaped member 1404 installed at the bottom of the housing 1302.
  • the microwave cavity resonator is connected to a network analyzer provided outside through coaxial cables 1408 and 1410 connected to the end of the waveguide 1418, and signals are transmitted through the coaxial cable.
  • the power switch 1318 is configured to switch on / off of power to the AC adapter 1406 that supplies power to the pump controller 1304 and the micropump 1322.
  • the operation of the measurement unit 1300 will be described.
  • the flow rate of the liquid sample in the micropump 1322 is adjusted, the liquid sample in the container 1316 is sucked through the suction tube 1312 and the suction tube 1414, and the liquid sample introduction tube A liquid sample is introduced from 1320 to the fluororesin tube 1416 and passed through the waveguide 1418.
  • the liquid sample that has passed through the fluororesin tube 1416 is discharged to the container 1316 through the discharge tube 1412 and the discharge tube 1314, and the liquid sample circulates.
  • the liquid sample when flowing the liquid sample, the liquid sample is sucked from the container containing the liquid through the suction tube and introduced into one end of the fluororesin tube, and the other end of the fluororesin tube is The liquid sample can be discharged from the end portion to the container through the discharge tube.
  • acetone or water is put into the container 1316 and this is passed through the fluororesin tube 1416, and then air is allowed to flow to dry. It is also possible to make it.
  • an automatic tube cleaning system may be installed in the measurement unit. For example, a cleaning liquid tank containing a cleaning liquid such as acetone or pure water is separately provided. Then, before replacing the liquid to be measured, in the cleaning mode, the container 1316 is replaced with a cleaning liquid tank and cleaning is performed. This operation is the same as the operation in the step (3) in the calibration described above. Then, after the cleaning is completed, the cleaning liquid tank is replaced with a container to be measured.
  • the tube 106 through which the liquid can pass is inserted into any of the through holes 107, 108, and 109 provided in the waveguide 3710 constituting the microwave cavity resonator 3702. In the example shown in the figure, the tube 106 is inserted into the through hole 108.
  • bubbles that may occur in the liquid sample interfere with high-precision measurement.
  • the tube 106 it is preferable to employ a method in which the tube is arranged in the vertical direction as shown in FIG. 41 and the liquid sample is pumped up from below. This is because bubbles can easily escape upward by pumping up the liquid from below.
  • bubbles are better removed from the liquid sample when the operation of the pump is stopped.
  • a valve 708 for adjusting the flow rate of the liquid sample is attached to one end of the tube 106.
  • a valve 710 provided at the end of the tube 712 of the circulation pump 706 is attached to the other end of the tube 106. This valve 710 is also for adjusting the flow rate of the liquid sample.
  • the circulation pump 706 is configured to aspirate the liquid sample in the container 702 and provide it to the tube 106 through the tube 712 and return the liquid sample from the valve 708 to the container 702.
  • the resonance frequency or the resonance peak level in the state where the liquid exists in the tube 106 and the state where the liquid does not exist is measured.
  • ⁇ f or ⁇ P is calculated from the measured resonance frequency or resonance peak level, and the moisture contained in the liquid is calculated.
  • a Teflon (registered trademark) tube containing no liquid was prepared as a blank, and this tube was placed in a hole of a microwave cavity resonator, and the resonance frequency and resonance peak level at that time were measured.
  • the tube installation position was measured at positions (1) to (3) in FIG. 6A in consideration of the electric field distribution. 3.
  • a Teflon (registered trademark) tube containing various liquids was measured at positions (1) to (3), and a resonance frequency shift amount ⁇ f and a resonance peak level change amount ⁇ P were obtained from the difference.
  • the measurement was performed at room temperature, and the frequency of the microwave was 4 GHz.
  • Table 4 shows the results of summarizing ⁇ P values of the five types of liquids at the measurement positions (1) to (3). The unit is expressed in decibels.
  • Example 3 In order to confirm that the moisture content in the liquid can be measured based on the above-described concept, an experiment was performed according to the following procedure. 1. In the Teflon (registered trademark) tube used in Example 3, a mixed solution is prepared by mixing water and another liquid. Six levels of samples were prepared for five types of liquids with the ratio of water to the total liquid mixture from 0% to 30% in almost 5% increments. Specifically, ethanol, methanol, isopropyl alcohol (IPA), acetone, and ethylene glycol were used. 2. For each liquid, ⁇ f and ⁇ P were measured in the same manner as in Example 1 for five types of samples having different water contents. Here, (1), (2), and (3) were selected as the installation positions of the tubes.
  • IPA isopropyl alcohol
  • a dedicated air compressor is introduced into the measurement unit for calibration.
  • FIG. 52 is a diagram schematically showing an internal configuration of the measurement unit according to the eleventh embodiment of the present invention.
  • the suction tube 1312 is connected to the suction tube 1414 via a three-way valve A 2004.
  • the three-way valve A 2004 has an air inlet / outlet 2006.
  • the suction tube 1414 is connected to the micropump 1322.
  • the micropump 1322 is connected to one end of the liquid sample introduction tube 2208.
  • the other end of the liquid sample introduction tube 2208 is connected to one end of the liquid sample introduction tube 1320 via a three-way valve 2210.
  • the other end of the liquid sample introduction tube 1320 is connected to one end of a fluororesin tube 1416 inserted through a microwave cavity resonator composed of a waveguide 1418 via an L-shaped joint 1402.
  • the three-way valve B 2210 is further connected to a compressed air supply tube 2212.
  • the compressed air supply tube 2212 is connected to an air compressor 2218 via a two-way valve 2214 and a compressed air supply tube 2216.
  • the air compressor 2218 generates compressed air for cleaning the inside of the tube.
  • ML250 manufactured by Daiichi Kogyo Co., Ltd. can be used.
  • the other end (not shown) of the fluororesin tube 1416 is connected to one end of the discharge tube 1412.
  • the other end of the discharge tube 1412 is disposed in the sample collection container 2002.
  • the three-way valve A 2004 and the three-way valve B 2210 are used to switch between tube cleaning air and a liquid sample.
  • F-2388 manufactured by Freon Industries, Ltd. can be used. This switching control may be automatically performed according to a command from the computer 105.
  • the microwave cavity resonator is fixed to a U-shaped member 1404.
  • the microwave cavity resonator is connected to a network analyzer provided outside through coaxial cables 1408 and 1410 connected to the end of the waveguide 1418, and signals are transmitted through the coaxial cable.
  • the calibration operation executed by the measurement unit 2000 can be the operation described above with reference to FIG.
  • FIG. 53 shows the configuration of the microwave cavity resonator according to the twelfth embodiment of the present invention.
  • the waveguide 1002 constituting the microwave cavity resonator through holes 1008 and 1010 having different inner diameters are provided on the upper surface, and corresponding through holes 1012 and 1014 are provided on the lower surface.
  • a tube 1004 that matches the inner diameter of the through holes 1008 and 1012 and a tube 1006 that matches the inner diameter of the through holes 1010 and 1014 are prepared.
  • the tube 1004 is inserted into the through holes 1008 and 1012, and the tube 1006 is inserted into the through holes 1010 and 1014.
  • the liquid sample is supplied to at least one of the tubes 1004 or 1006, and the resonance frequency or the resonance peak level in the state where the liquid exists in the tube and the state where the liquid does not exist is measured.
  • ⁇ f or ⁇ P is calculated from the measured resonance frequency or resonance peak level, and the moisture contained in the liquid is calculated.
  • This embodiment has an advantage that sensitivity can be adjusted by properly using tubes having different inner diameters.
  • FIG. 54 shows the configuration of the microwave cavity resonator according to the thirteenth embodiment of the present invention.
  • the waveguide 1018 constituting the microwave cavity resonator is provided with a through hole 1022 having a large inner diameter on the upper surface and a through hole 1024 having a small inner diameter on the lower surface.
  • a tube 1020 having a tapered shape that matches the inner diameter of the through hole 1022 is prepared.
  • the tube 1020 is inserted into the through holes 1022 and 1024.
  • a liquid sample is supplied to the tube 1020, and a resonance frequency or a resonance peak level in a state where the liquid exists in the tube 1020 and a state where the liquid does not exist is measured.
  • ⁇ f or ⁇ P is calculated from the measured resonance frequency or resonance peak level, and moisture contained in the liquid is calculated.
  • the tube 1020 is connected to the control unit 1610 via the drive unit 1608.
  • the drive unit 1608 performs drive control for moving the tube 1020 in the direction indicated by the arrow while being inserted into the through holes 1022 and 1024.
  • the control unit 1610 transmits a control signal to the driving unit 1608 and changes the insertion position of the tube 1020 to control the measurement sensitivity of the resonance frequency or the resonance peak level.
  • FIG. 54B is a cross-sectional view of the waveguide 1018 inserted so that the tube 1020 is fitted into the through holes 1022 and 1024, and FIG. Cross-sectional views are shown respectively.
  • the drive unit 1608 moves the tube 1020 in the vertical direction (a direction substantially parallel to the insertion direction of the tube 1020) according to an instruction from the control unit 1610, thereby The amount of liquid sample across the cross section can be adjusted, thereby controlling the measurement sensitivity.
  • the tube according to this embodiment is formed by branching, and each of the branched tubes is inserted into a different through hole. Then, when controlling the measurement sensitivity, the resonance frequency or the resonance peak level in a state where the liquid exists in at least one of the branched tubes is measured.
  • Tubes 1112, 1114, and 1116 through which liquid can pass are inserted into the through holes 107, 108, and 109 provided in the waveguide 3710 constituting the microwave cavity resonator 3702, respectively.
  • a switching valve 1108 for adjusting the flow rate of the liquid sample is attached to one end of the tubes 1112, 1114, 1116.
  • the switching valve 1108 can be constituted by a four-way valve, for example.
  • a switching valve 1110 provided at the end of the tube 712 of the circulation pump 706 is attached to the other end of the tubes 1112, 1114, 1116.
  • This switching valve 1110 is also for adjusting the flow rate of the liquid sample, and can be constituted by a four-way valve, for example.
  • the switching valves 1108 and 1110 can be configured to receive an instruction signal from the switching unit 1118 configured by an electronic control unit or the like and perform control of valve opening / closing on-line.
  • Circulation pump 706 is configured to aspirate liquid sample 704 in container 702 and provide it to at least one of tubes 1112, 1114, 1116 through tube 712 and return liquid sample 704 from switching valve 1108 to container 702. .
  • the resonance frequency or resonance peak level in the state where the liquid is present in the tube and in the state where the liquid is not present is measured.
  • ⁇ f or ⁇ P is calculated from the measured resonance frequency or resonance peak level, and the moisture contained in the liquid is calculated.
  • the tube through which the liquid sample passes can be switched by the switching valves 1110 and 1108 as described below, for example, to control the measurement sensitivity.
  • the tube inserted in the through hole provided in the waveguide has a branch path that does not pass through the inside of the waveguide, and the flow path of the liquid sample is the tube or the branch path. It is comprised so that it can switch to.
  • a tube 1504 is inserted into the through hole 108 provided in the waveguide 3710 that constitutes the microwave cavity resonator 3702.
  • a switching valve 1502 for adjusting the flow rate of the liquid sample is attached to one end of the tube 1504.
  • the switching valve 1502 can be constituted by a three-way valve, for example.
  • a switching valve 1508 provided at the end of the tube 712 extending from the circulation pump 706 is attached to the other end of the tube 1504.
  • the switching valve 1508 is also for adjusting the flow rate of the liquid sample, and can be constituted by a three-way valve, for example.
  • a branch path 1506 is formed between the switching valves 1502 and 1508.
  • the branch path 1506 may be formed of the same material as that of the tube 1504, for example.
  • the switching valves 1502 and 1508 can be configured to receive an instruction signal from a switching unit 1510 configured by an electronic control unit or the like and perform control of valve opening / closing on-line.
  • the circulation pump 706 is configured to aspirate the liquid sample 704 in the container 702 and provide it to the tube 1504 or the branch path 1506 through the tube 712 and return the liquid sample 704 from the switching valve 1502 to the container 702.
  • FIG. 57 shows a configuration of the microwave cavity resonator according to the sixteenth embodiment of the present invention.
  • elongated holes 1606 and 1607 are provided on the upper surface and the lower surface, respectively, and a tube 1604 is inserted into the through holes 1606 and 1607. Then, the liquid sample is supplied to the tube 1604, and the resonance frequency or the resonance peak level in the state where the liquid exists in the tube 1604 and the state where the liquid does not exist can be measured.
  • the tube 1604 is connected to the control unit 1610 via the drive unit 1608.
  • the drive unit 1608 performs drive control for moving the tube 1604 in the direction indicated by the arrow in a state where the tube 1604 is inserted into the through hole 1606.
  • the control unit 1610 transmits a control signal to the drive unit 1608 and controls the measurement sensitivity of the resonance frequency or the resonance peak level by changing the insertion position in the through hole 1606 of the tube 1604.
  • the tube 1604 moves substantially perpendicular to the traveling direction of the microwave, but the measurement sensitivity is controlled by moving the position of the tube 1604 in another direction substantially perpendicular to the insertion direction. You can also.
  • the measurement sensitivity may be controlled by moving the position of the tube 1604 in the microwave traveling direction with the long axis direction of the long hole-shaped through-hole being substantially parallel to the microwave traveling direction.
  • a sampling pipe may be branched and connected to the main pipe through which the liquid passes in the production line, and the moisture may be measured for the liquid passing through the sampling pipe.
  • FIG. 58 shows the configuration of the measurement unit of the moisture measuring apparatus according to this embodiment.
  • a sampling pipe 2504 is connected to the main pipe 2506 of the production line via switching valves 2502 and 2508. The liquid that flows from the main pipe 2506 to the sampling pipe 2504 returns to the main pipe 2506.
  • the switching valves 2502 and 2508 can be configured to receive an instruction signal from a switching unit 2510 constituted by an electronic control unit or the like and perform valve opening / closing control online.
  • the value of V2 is determined by the pump capacity and sampling pipe diameter.
  • a sub pipe can be further provided in the sampling pipe to adjust the value of V2. In this way, by adjusting the flow rate of the liquid in the sampling pipe, it is possible to measure water in real time in a true sense.
  • FIG. 59 shows a cross section of a waveguide and a tube according to the eighteenth embodiment of the present invention.
  • the tube 2602 inserted into the through hole 108 provided on the upper surface of the waveguide 3710 is configured as a double tube, and the liquid sample passing through the left side of the tube 2602 from above is an arrow. Go in the direction and return the right side of the tube 2602 upward.
  • FIG. 59B shows another example of the present embodiment.
  • the tube 2604 includes a tube provided on the inner side and an outer tube, and the liquid sample flowing through the tube on the inner side of the tube 2604 advances in the direction of the arrow and returns along the outer tube.
  • the number of through-holes can be reduced, and the airtightness of the waveguide 3710 can be further increased, so that microwave leakage can be effectively prevented.
  • a sleeve may be provided in the through holes 107, 108, and 109 provided in the waveguide 3710.
  • the sleeve material has little absorption and reflection of microwaves.
  • a fluororesin that absorbs and reflects less microwaves is desirable.
  • the tube can be inserted and removed more easily, and the workability is improved. Further, by fitting the sleeve and the tube, it is possible to prevent the liquid from flowing into the waveguide 3710 even when liquid sag occurs from the end of the tube. In addition, it can be expected to prevent dust, dust, moisture and the like from entering the inside of the waveguide, and the effect is also obtained by applying to other embodiments.
  • a bubble removing unit may be provided in the measurement unit.
  • the pressure degassing device may be connected to a micro pump, and a pressure pump may be used instead of the micro pump.
  • the sampling piping system may be completely sealed.
  • the sampling pipe 2504 may be hermetically sealed by switching control of the switching valves 2502 and 2508 in a state where the sampling pipe 2504 is filled with a liquid sample.
  • the measurement sensitivity can be controlled in the measurement of moisture in the liquid using the microwave cavity resonator.
  • a tubular member having a shape covering at least the entire cross section of the microwave cavity resonator is used, high measurement sensitivity can be obtained.
  • a flat tubular member having a thickness substantially the same as the gap between the slits can be applied.
  • high measurement sensitivity can be obtained if the entire cross section of the microwave cavity resonator is covered.
  • the flat tubular member is preferably bag-shaped so that the liquid can be held inside.
  • the tube-shaped member may be a spherical shape crushed flat, that is, a rice cracker shape.
  • a member having these structures is referred to as a flat simple bag-like tube-shaped member made of a resin tube.
  • An example of a flat simple bag-like tube-shaped member made of a resin tube is denoted by reference numeral 6002 in FIG.
  • one fluororesin tube used in the first embodiment is preferably spirally wound on the same plane (mosquito coils) and preferably covers all the cross section of the microwave cavity resonator, it is high. Measurement sensitivity can be obtained.
  • a member having such a structure is called a spiral tubular member made of a resin tube.
  • An example of a helical tube-shaped member made of a resin tube is indicated by reference numeral 6102 in FIG.
  • a single fluororesin tube can be folded back and formed into a substantially flat plate-like tube-shaped member on the same plane. This is called a tube-shaped member having a folded structure made of a resin tube.
  • An example of a tube-shaped member having a folded structure made of a resin tube is denoted by reference numeral 6202 in FIG.
  • the fluororesin tube forms a substantially bag-shaped tubular member as a whole.
  • the liquid inflow port is disposed on the lower side in the figure and the outflow port is disposed on the upper side in the figure. This is because the direction in which the liquid flow direction is basically opposite to the direction of gravity is more reliable in that the liquid is exchanged in the interior, the bubble is less mixed, or the bubble outflow is easier. This is because it is considered advantageous.
  • any of the three types of flat tube-like members as described above may be used inside the microwave cavity resonator, preferably the microwave cavity resonator.
  • FIG. 63 shows an example in which a flat simple bag-like tubular member 6002 made of a resin tube is installed in a waveguide 6302 having a through hole.
  • the bag-like tube-shaped member can be manufactured in a flat bag shape with a fluororesin-based resin sheet.
  • a large groove can be dug into the space by cutting a fluorine-based resin plate.
  • the openings of all the grooves are closed and liquid-tight.
  • FIG. 64 shows an example of a method for producing a flat simple bag-like tubular member using a resin plate. As shown in FIG.
  • a bag-like groove is dug in a resin plate 6402 made of fluororesin, and a thin resin plate 6404 made of fluororesin similar to the resin plate 6402 is bonded to the resin plate 6402.
  • a tubular member can be produced as shown in FIG.
  • a spiral tube-shaped member as shown in FIG. 61 can be three-dimensionally produced using a 3D printer technology.
  • FIG. 65 shows an example in which a tube-shaped member having one long groove is produced using a resin plate.
  • long grooves 6506, 6508, 6510, 6512, and 6514 are dug in the resin plate 6502 as in FIG.
  • these grooves are communicated by communication grooves 6516, 6518, 6520, 6522.
  • a tubular member can be manufactured as shown in FIG. 65B.
  • the resin plate and the mekura plate can be bonded together with the adhesive as the word says.
  • the two plates may be brought into close contact by tightening with a plurality of screws or the like through a sealing member such as packing or O-ring. Is also possible.
  • the through-hole may be extended in the circumferential direction of the waveguide to form a partial slit portion that partially surrounds the periphery of the waveguide.
  • An example of a waveguide including this partial slit portion is shown in FIG.
  • the measurement sensitivity can be controlled by moving the tube 106 in the arrow direction, for example.
  • the present invention further includes the following embodiments.
  • a microwave cavity resonator including a waveguide provided with a slit portion; A tubular member installed in the slit portion and capable of holding liquid tightly at least inside the waveguide; and Measuring means for measuring the resonant frequency or resonant peak level; A moisture measuring device in a liquid, comprising: calculating means for calculating moisture contained in the liquid from the measured resonance frequency or resonance peak level.
  • the calculation means calculates a moisture content or a moisture content of moisture contained in the liquid.
  • the flow means is An introduction part for sucking the liquid from a container containing the liquid through a suction tube and introducing the liquid into one end of the tubular member;
  • the apparatus for measuring moisture in a liquid according to item 10 further comprising: a discharge unit that discharges the liquid from the other end of the tubular member to the container through a discharge tube. 12
  • the apparatus for measuring moisture in a liquid according to item 11 further comprising a cleaning means for cleaning the tubular member.
  • the device for measuring moisture in a liquid according to item 11 or 12 wherein the introduction unit introduces the liquid contained in a sealed container into the tubular member.
  • 14 14.
  • Means for determining occurrence of abnormality in the measuring means The apparatus for measuring moisture in liquid according to any one of items 1 to 17, further comprising: means for transmitting an abnormality notification signal to the mobile terminal when it is determined that an abnormality has occurred in the measurement means.
  • 20. Installing a tubular member capable of holding liquid tightly in at least the inside of the waveguide in a slit provided in a waveguide type microwave cavity resonator; Measuring the resonant frequency or resonant peak level; Calculating the moisture contained in the liquid from the measured resonance frequency or resonance peak level. 21.
  • a microwave cavity resonator comprising a waveguide provided with at least one hole; A tube-shaped member inserted in the hole and capable of holding liquid tightly at least inside the waveguide; and Measuring means for measuring the resonant frequency or resonant peak level;
  • a moisture measuring device in a liquid comprising: calculating means for calculating moisture contained in the liquid from the measured resonance frequency or resonance peak level. 22.
  • Item 22. The device for measuring moisture in a liquid according to Item 21, wherein the hole includes a through hole. 23. 23.
  • the tubular member has a tapered shape whose cross section expands from one end to the other end, and by changing the insertion position of the tubular member in the hole in a direction substantially parallel to the insertion direction, 28.
  • the item 29 further including a control unit that controls the measurement sensitivity of the resonance frequency or the resonance peak level by changing the insertion position of the tubular member in the hole in a direction substantially perpendicular to the insertion direction.
  • a plurality of the holes are provided on at least one surface of the waveguide, and further includes a control unit that controls the measurement sensitivity of the resonance frequency or the resonance peak level by changing the hole into which the tubular member is inserted.
  • Item 29 The apparatus for measuring moisture in a liquid according to Item 29. 32.
  • a plurality of the tube-shaped members are inserted on at least one surface of the waveguide, and a control unit that controls the measurement sensitivity of the resonance frequency or the resonance peak level by switching the tube-shaped member that allows the liquid to pass therethrough.
  • the moisture measuring apparatus in the liquid of item 29 containing. 33.
  • 33. A device for measuring moisture in a liquid according to any one of items 21 to 32, wherein the calculating means calculates a moisture content or a moisture content of moisture contained in the liquid. 34.
  • the flow means is An introduction part for sucking the liquid from a container containing the liquid through a suction tube and introducing the liquid into one end of the tubular member; 35.
  • a device for measuring moisture in a liquid according to item 34 further comprising: a discharge section that discharges the liquid from the other end of the tubular member to the container through a discharge tube.
  • 36. The apparatus for measuring moisture in a liquid according to item 35, further comprising a cleaning means for cleaning the tubular member.
  • the moisture measuring device in liquid according to any one of items 21 to 43, wherein the calculating means calibrates the calculated moisture value based on the temperature measured by the temperature measuring unit. 45. 45.
  • the tubular member has a substantially bag shape that is flat in the axial direction of the waveguide, and is any one of items 1, 3, 6, 7, 10, 11, or 12 disposed substantially parallel to the cross section.
  • 51. A waveguide-type microwave cavity resonator in which at least one hole provided in the waveguide is inserted with a tube-shaped member capable of holding liquid tightly at least inside the waveguide.
  • a method for measuring moisture in a liquid Measuring the resonant frequency or resonant peak level; Calculating the moisture contained in the liquid from the measured resonance frequency or resonance peak level.
  • the present invention can be used for measuring moisture contained in organic solvents, inorganic pesticides, synthetic detergents, oils and the like.
  • DMF dimethylformamide
  • cleaning liquid trace moisture measurement in cleaning liquid
  • synthetic rubber liquid raw material trace moisture measurement in synthetic rubber liquid raw material
  • moisture measurement in methyl ethyl ketone peroxide ammonium persulfate

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 液体中の水分を測定する方法及び装置を提供する。2つの導波管型(A、B)からなるマイクロ波空洞共振器(102)に設けられた開口部に、液体が通過可能なチューブ(106)を設置する。チューブ(106)の中に液体が存在しない状態および存在する状態における共振周波数または共振ピークの変化量を測定する。測定された共振周波数または共振ピークの変化量から、液体に含まれる水分を計算する。一実施形態では、マイクロ波空洞共振器(3702)を構成する導波管(3710)に設けられた貫通孔(107、108、109)のいずれかに、液体を液密に保持可能なチューブ(106)を挿設する。

Description

液体中の水分測定装置および水分測定方法
 本発明は液体中の水分測定装置および水分測定方法に関し、特に、有機溶媒などの液体中に含まれる水分量(水分率)を、マイクロ波の共振により測定する水分測定装置および水分測定方法に関する。
 液体中の微量な水分の測定に関し、各産業分野において多種多様なニーズがある。水分の測定手段としては、従来からカールフィッシャー法や赤外線方式の水分計がよく用いられている。
 カールフィッシャー法は水分量を直接測ることができる唯一の方法であり、また高精度に測定できるため、広く利用されている。但し、カールフィッシャー法は一種の酸化還元滴定であるため、原理上実験室レベルでの使用が主であり、リアルタイムでの測定を行うことはできない。また、この方法は試薬等の準備と測定に時間と労力がかかる。
 赤外線方式はリアルタイムでの測定が可能で、工程中のオンライン測定にも対応できることから、従来から広く利用されている。しかし、色のついた液体の測定は原理上難しく、また周囲の熱源や光源など外乱の影響を受け易いなど、測定精度の点で不安があることは否めない。
 なお、発明者は、以前、赤外線方式の水分計を製造工程中に導入してオンラインでのシート状製品の水分管理を試みたが、上述したように、周囲の熱源等の外乱の影響を受けて測定値の再現性に難があることが分かり、実用化には至らなかった。そして、マイクロ波空洞共振器を用いてシート状サンプルに含まれる微量な水分量を測定する方法および装置の発明をなした(特許文献1参照)。
特許第4321525号明細書 特許第4561336号明細書 国際公開番号第WO2013/022104号公開パンフレット
佐藤 里奈「液体1-アルコールの誘電緩和過程の研究」北海道大学 固体物性研究室データ,2012
 上述したマイクロ波空洞共振器を用いた従来の水分測定方法では、シート状サンプルを用いていた。ラボ用途の場合には、サンプルホルダーに紙やフィルム等のシート状試料を載せ、あるいは挟み、サンプルホルダーごとマイクロ波空洞共振器の中央部にある幅4~10mm程度のスリットに挿入する方式をとっていた。また、オンライン用途の場合には、シートの製造ラインに設置し、ラボ用途と同様にマイクロ波空洞共振器のスリット部の中央をシートが通過するという形態をとっていた。このため、液体が測定部にセットできなかった。
 このため、マイクロ波空洞共振器を用いた従来の方法では、液体試料中の水分を測定できないという課題があった。
 本発明は、液体中の水分を測定する装置および方法を提供する。
 発明者は、マイクロ波空洞共振器を用い、液体試料を細長いチューブ状部材に入れ、それをマイクロ波空洞共振器の有する開口部の適切な位置に設置し、共振周波数のシフト量(単に「Δf」と記載することもある。以下、本明細書において同じ。)または共振ピークレベルの変化量(単に「ΔP」と記載することもある。以下、本明細書において同じ。)から液体中に含まれる水分率が簡便、迅速、高精度に測定できることを見出した。
 ここで、液体試料をチューブ状部材に入れることは、液体試料をチューブ状部材中で流動させることも含む。これは以下本明細書中において同様である。
 また、開口部とは、上記のチューブ状部材をマイクロ波空洞共振器に設置可能とする、導波管に設けられた開放構造を全て包含する用語である。そのような開放構造の例として、少なくとも一つのスリット部および/または孔を挙げることができる。当然、これらに限定されず、例えば図57に示すように、孔が導波管の断面の周囲に沿って細長くなった長孔を含む。さらに、この長孔は、導波管の周囲方向に延伸して導波管の周囲を一部囲む部分的なスリット部を含む。
 本発明に係る液体中の測定装置は、開口部が設けられた導波管を備えるマイクロ波空洞共振器と、前記開口部に設けられ、液体を液密に保持可能なチューブ状部材と、共振周波数または共振ピークレベルを測定する測定手段と、前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算する計算手段とを含む。
 ここで、前記チューブ状部材が前記導波管の断面を横切る面積は前記導波管の断面より小さいものとすることができる。
 また、前記チューブ状部材は前記導波管内に形成される電界の振動する方向に略平行に設置されるものとすることができる。
 また、前記チューブ状部材は重力の方向と略平行に設置されるものとすることができる。
 また、前記チューブ状部材は重力の方向に対して所定の角度で設置されるものとすることができる。
 また、前記チューブ状部材は前記導波管内部を通らない分岐路を有し、前記液体の流路を該チューブ状部材または該分岐路に切り替える切替部をさらに含むものとすることができる。
 また、前記マイクロ波空洞共振器の断面は矩形とすることができる。
 また、前記チューブ状部材の前記開口部における設置位置を、前記チューブ状部材の中心軸方向と略垂直な方向に変化させることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含むものとすることができる。
 また、前記チューブ状部材は前記開口部内に複数本挿設され、前記液体を通過させる該チューブ状部材を切り替えることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含むものとすることができる。
 また、前記開口部が前記導波管の長手方向の略中央部に設けられたものとすることができる。
 また、前記開口部はスリット部とすることができる。
 また、前記開口部は少なくとも1つの孔とすることができる。
 本発明の別の態様によれば、本発明に係る水分測定方法は、導波管型のマイクロ波空洞共振器に設けられた開口部に、少なくとも前記導波管の内部において液体を液密に保持可能なチューブ状部材を設置するステップと、共振周波数または共振ピークレベルを測定するステップと、前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算するステップとを含む。
 本発明によれば、水が混合液体に含まれる割合と、測定値である共振周波数のシフト量または共振ピークの変化量との相関関係から、液体中に含まれる水分率を簡便、迅速かつ高精度に測定できる。
本発明の第1実施形態に係る液体中の水分測定装置の構成を示す図である。 本発明の第1実施形態に係るネットワークアナライザの機能構成を示すブロック図である。 共振周波数に対する透過マイクロ波強度の値の例を示す図である。 導波管の構造を示す図である。 導波管の各断面における電磁界分布を示す図である。 本発明の第1実施形態に係る一対の導波管の外観斜視図である。 本発明の第1実施形態に係るチューブの設置位置を示す図である。 本発明の第1実施形態に係るチューブの設置位置を示す図である。 本発明の第1実施形態に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の第1実施形態に係る共振周波数の変化量Δfを示す図である。 本発明の第1実施形態に係る測定部の外観斜視図である。 本発明の第1実施形態に係る測定部内部の構成例を示す図である。 本発明の第1実施形態に係る水分率に対するΔfの関係を示す図である。 本発明の第1実施形態に係る温度に対するΔfの関係を示す図である。 本発明の第1実施形態に係る温度に対するΔfの比を示す図である。 本発明の第1実施形態に係るΔfに対する水分率の関係を示す図である。 本発明の第1実施形態に係る試料の温度とΔfの関係を示す図である。 本発明の第1実施形態に係る水分率とΔfとの関係を示す図である。 本発明の第1実施形態に係る液体中の水分測定方法を説明するための図である。 表2の結果を(1)、(6)、(9)、(10)の位置についてグラフ化した図である。 表3の結果を(1)および(6)の位置についてグラフ化した図である。 本発明の実施例2に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例2に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例2に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例2に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例2に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例2に係る共振周波数の変化量Δfを示す図である。 本発明の実施例2に係る共振周波数の変化量Δfを示す図である。 本発明の実施例2に係る共振周波数の変化量Δfを示す図である。 本発明の実施例2に係る共振周波数の変化量Δfを示す図である。 本発明の実施例2に係る共振周波数の変化量Δfを示す図である。 本発明の実施例2に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例2に係る水分率を示す図である。 本発明の実施例2に係る共振周波数の変化量Δfを示す図である。 本発明の実施例2に係る共振周波数の水分率を示す図である。 本発明の第2実施形態に係る測定部の構成を示す図である。 本発明の第2実施形態に係るキャリブレーションの手順を示すフローチャートである。 本発明の第4実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第4実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第4実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第4実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第5実施形態に係る水分測定装置の測定部の構成を示す図である。 本発明の第9実施形態に係るシステムの構成を概略的に示す図である。 本発明の第10実施形態に係る液体中の水分測定装置の構成を示す図である。 本発明の第10実施形態に係るネットワークアナライザの機能構成を示すブロック図である。 本発明の第10実施形態に係る導波管の外観斜視図である。 本発明の第10実施形態に係る測定部内部の構成例を示す図である。 本発明の第10実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の実施例3に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例3に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例3に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例3に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例3に係る共振ピークレベルの変化量ΔPを示す図である。 本発明の実施例3に係る共振周波数の変化量Δfを示す図である。 本発明の実施例3に係る共振周波数の変化量Δfを示す図である。 本発明の実施例3に係る共振周波数の変化量Δfを示す図である。 本発明の実施例3に係る共振周波数の変化量Δfを示す図である。 本発明の実施例3に係る共振周波数の変化量Δfを示す図である。 本発明の第11実施形態に係る測定部の構成を示す図である。 本発明の第12実施形態に係るマイクロ波空洞共振器の構成を示す図である。 本発明の第13実施形態に係るマイクロ波空洞共振器の構成を示す図である。 本発明の第13実施形態に係るマイクロ波空洞共振器の構成を示す図である。 本発明の第13実施形態に係るマイクロ波空洞共振器の構成を示す図である。 本発明の第14実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第15実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第16実施形態に係る液体中の水分測定方法を説明するための図である。 本発明の第17実施形態に係る水分測定装置の測定部の構成を示す図である。 本発明の第18実施形態に係る導波管およびチューブの断面を示す図である。 本発明の第18実施形態に係る導波管およびチューブの断面を示す図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す側面図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す平面図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す斜視図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す側面図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す平面図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す斜視図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す側面図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す平面図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す斜視図である。 本発明の第21実施形態に係るマイクロ波空洞共振器の構成を示す図である。 本発明の第21実施形態に係るチューブ状部材を作製する方法を説明する図である。 本発明の第21実施形態に係るチューブ状部材を作製する方法を説明する図である。 本発明の第21実施形態に係るチューブ状部材を作製する方法を説明する図である。 本発明の第21実施形態に係るチューブ状部材を作製する方法を説明する図である。 本発明の第22実施形態に係るマイクロ波空洞共振器の構成を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る液体中の水分測定装置の構成の一例を示す。液体中の水分測定装置100は、測定部の内部に設けられたマイクロ波空洞共振器102と、測定部の外部に設けられたネットワークアナライザ104、コンピュータ105、制御部1610および駆動部1608とから構成される。マイクロ波空洞共振器102は一対の導波管AおよびBから構成されるものである。ネットワークアナライザ104はマイクロ波の発振と検出を行うものである。コンピュータ105はネットワークアナライザ104から送られる信号を処理するものである。制御部1610は液体を通過可能なチューブ106の設置位置を制御するためのものである。駆動部1608はチューブ106を駆動するものである。
 チューブ106は液体を液密に保持可能に構成される。ここで、チューブ106の材質は、マイクロ波の吸収および反射が少ないことが望ましい。そのような要件を満足する材質としては、例えばフッ素樹脂が望ましい。フッ素樹脂としては、テフロン(登録商標)が最も望ましく、例えばフロン工業株式会社のテフロンPFAチューブ、コードNo.F-8011-02を使用することができる。その他、例えば以下のようなテフロン(登録商標)素材を用いることができる。
・完全フッ素化樹脂
 ポリテトラフルオロエチレン(四フッ素化樹脂、略号:PTFE)
・部分フッ素化樹脂
 ポリクロロトリフルオロエチレン(三フッ素化樹脂、略号:PCTFE, CTFE)、ポリフッ化ビニリデン(略号:PVDF)、ポリフッ化ビニル(略号:PVF)
・フッ素化樹脂共重合体
 PFA、四フッ化エチレン・六フッ化プロピレン共重合体(略号:FEP)、エチレン・四フッ化エチレン共重合体(略号:ETFE)、エチレン・クロロトリフルオロエチレン共重合体(略号:ECTFE)
 ここで、PFAは、分子量が数10万~数100万、粘度10~10poise(380℃)、融点300℃~310℃、最高連続使用温度は260℃である。PFAは、PTFEに匹敵する特性を有し、表面平滑性・耐透過浸透性において優れている。また、溶融成形が可能で、半導体分野においてよく用いられる。
 また、FEPは、分子量が数10万~数100万、粘度10~10poise(380℃)、融点は250℃~270℃、最高連続使用温度は200℃である。FEPは、PTFEと比較して耐熱性は若干劣るが、他の特性はPTFEとほぼ同等である。また、溶融成形が可能で、電線被覆材によく用いられる。
 テフロン(登録商標)に次ぐ材質としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンオキシドが挙げられる。また、チューブは例えば外径3mmφ、内径2mmφ、長さ12cmのものを用いることができる。
 一対の導波管AおよびBの間には、スリット部110が設けられている。導波管Aにはネットワークアナライザから発振した4GHz帯のマイクロ波が入力され、導波管Bとの間で共振し、共振エネルギーがネットワークアナライザ104で検出される。
 図2は、本実施形態の機能構成の一例を概略的に示すブロック図である。ネットワークアナライザ104は、4GHz帯のマイクロ波を発振する発振部202、共振エネルギーを受信する受信部204、ネットワークアナライザ104から送られる掃引されたマイクロ波に基づいてチューブ106の中に液体が存在しない状態および存在する状態における共振ピークレベルを検出する共振ピークレベル検出部206、同じくネットワークアナライザ104から送られる掃引されたマイクロ波に基づいてチューブ106の中に液体が存在しない状態および存在する状態における共振周波数を検出する共振周波数検出部208を含んでいる。コンピュータ105は、後述する検量線がデータとして保持されるデータ保持部212、および共振ピークレベル検出部206または共振周波数検出部208での測定感度とデータ保持部212に保持されるデータとから液体に含まれる水分を計算する演算部210を含んでいる。
 制御部1610は、共振ピークレベル検出部206または共振周波数検出部208での測定感度に基づいて、チューブ106の設置位置を制御する。駆動部1608は、制御部1610からの制御信号に基づいて、チューブ106を駆動し、チューブ106の設置位置を定める。
 本実施形態に係る液体中の水分測定装置100は、マイクロ波空洞共振器102を用い、液体試料を細長いチューブ106に入れ、それをマイクロ波空洞共振器102のスリット部110の適切な位置に設置し、共振周波数のシフト量(Δf)または共振ピークレベルの変化量(ΔP)から液体中に含まれる水分率を測定するものである。具体的には、水が混合液体に含まれる割合(%)と測定値であるΔfまたはΔPとの間の相関関係を検量線として予め求めておくことにより、測定値であるΔfまたはΔPから液体中に含まれる水分率を測定する。
 次に、具体的なΔfまたはΔPの測定方法について説明する。
 基本的には、予め液体試料のないブランク状態(チューブのみ)での共振周波数(=f0)および共振ピークレベル(=P0)を測定しておく。次いで、液体試料の入ったチューブについて、同じ位置で同様に共振周波数(=fs)および共振ピークレベル(=Ps)を測定する。その結果、ピーク周波数のシフト量Δf(=f0-fs)およびピークレベルの変化量ΔP(=P0-Ps)を得る。
 図3に、共振周波数(Hz)に対する透過マイクロ波強度の値の例を示す。導波管のスリット部に設置されたチューブ内に液体試料が存在すると、共振カーブが図面左側に向かってシフトする。縦軸は透過マイクロ波強度(W)を示しており、そのシフト量は液体試料の誘電損失率×体積に比例する。横軸は共振周波数(Hz)を示しており、そのシフト量は液体試料の(誘電率-1)×体積に比例する。
 液体試料中の水分率を求めるためには、カールフィッシャー法を除くほとんどすべての水分計と同様に、検量線を予め作成してから水分率を測定する方法をとる。この検量線の作成方法については後述する。
 液体試料の中にはマイクロ波の吸収量の大きいものや小さいものなど様々な液体が想定される。マイクロ波の吸収量はこの場合ΔPとして表れるが、マイクロ波の周波数と電界強度が一定であれば、ΔPはその液体の誘電損失率と測定体積との積に比例するため、有極性分子である水やアルコールなどは誘電損失率が大きく、従ってマイクロ波吸収量も大きい。逆に、ベンゼン、トルエン、キシレンのような無極性分子の液体は誘電損失率が非常に小さく、従ってマイクロ波の吸収はほとんどない。
 発明者は、マイクロ波の吸収量の異なるあらゆる液体の測定に高精度に対応できるように、断面が矩形である導波管から構成されるマイクロ波空洞共振器内の電磁界分布を基に、液体試料の入ったチューブのスリット部における適切な設置位置、すなわち、どこに、どの方向に設置するのが適切であるかについて調べた。
 図4は、断面が矩形である導波管から構成されるマイクロ波空洞共振器内の電磁界分布を示す。図4Aは導波管の構造を示し、図4Bは導波管の各断面における電磁界分布を示している。本実施形態に係るマイクロ波空洞共振器の電磁界分布は図4Bに示すように形成されており、電界強度は内部で一様ではない。
 図4Bに示すとおり、電界強度のy成分Eはx方向に向かってサインカーブで変化し、断面中央部で最大となっている。y方向の電界強度は一定となっている。電界強度のy成分Eは、z方向に対してもサインカーブで変化し、導波管の中央部で電界強度が最大となっている。
 一対の導波管AおよびBは、図5に示すように、z方向での中央部に、図の直方体(マイクロ波空洞共振器)を2分割してギャップ4~10mm程度のスリット部110を設け、スリット部110にチューブが通る形態で液体試料を挿入し、セットするように構成されている。
 ここで、ギャップの距離は、以下のような理由から狭いほど良い。即ち、少なくとも矩形の空洞共振器においては、一般にギャップを設けるとそこからマイクロ波が漏れてしまい、鋭い共振カーブ(高いQ値)を得る上で好ましくない。Q値が下がると、ピーク検出が難しくなる一方、水のようにマイクロ波の吸収の大きなものを測定した場合、ますますピーク検出が困難になる。実際に、ギャップとQ値との関係を実測してみたところ、ギャップが大きくなるにつれ、Q値が下がるという結果が得られた。
 液体試料が入ったチューブ106が挿入されるスリット部110において、電界強度のy成分Eはx方向に向かってサインカーブで変化し、断面中央部で最大となる。y方向の電界強度は一定である。電界強度のy成分Eは、z方向に対してもサインカーブで変化し、マイクロ波空洞共振器102の中央部、つまりスリット部110では電界強度が最大となる。
 液体試料を入れるチューブの形状については、円柱状の他、角柱のような細長い容器でも測定可能であるし、5角柱や8角柱でも問題はない。チューブの長手方向に垂直な面で切った断面が楕円となるような形状でも問題なく、種々の形が対応できることはいうまでもない。また、チューブの形状は、チューブという言葉にとらわれることなくスリットの隙間に入る厚みを持つ扁平状の略直方体の部材であっても良い。
 ここで、マイクロ波空洞共振器を構成する導波管の断面形状によって、マイクロ波空洞共振器内における電界分布が変化することに留意する必要がある。導波管の断面が矩形以外の場合は、整った平行電界が形成されない。例えば断面形状が円形の場合は、放射状やループ状の電界分布となる。これに対し、矩形の場合は綺麗に整った平行電界が形成されるため、その電界分布によって、測定対象である液体試料が存在するチューブと測定装置との相対位置を調節し、測定感度を効果的に調整することが可能となる。従って、チューブの位置を変化させて共振ピークレベルまたは共振周波数の測定感度を制御する場合、マイクロ波空洞共振器を構成する導波管の断面形状は矩形であることが望ましい。
 また、チューブと測定装置との相対位置を調整して測定感度を調整するため、チューブの寸法は、マイクロ波空洞共振器の断面を横切る面積が、マイクロ波空洞共振器の断面より小さくなるように設計される。
 次に、共振周波数のシフト量(Δf)あるいは共振ピークレベルの変化量(ΔP)を制御する原理について説明する。
 マイクロ波空洞共振器において、液体試料が挿入されていないときのマイクロ波空洞共振器内の固有モードがaモードであるとし、その固有角周波数をωa、電界、磁界をそれぞれEa、Haとする。今、体積ΔVの試料がスリット部(空洞部分)に挿入されて、マイクロ波空洞共振器の複素固有角周波数がωになったとすると、次の摂動理論の式が成立する。
Figure JPOXMLDOC01-appb-M000001
 ただし、
Figure JPOXMLDOC01-appb-M000002
 また、
     P+J/jωa=ε0(χer-jχei)E     (3)
     ε’=1+χer                (4)
     ε”=χei                  (5)
 ここで、ω=2πfs、ωa=2πf0、Vはマイクロ波空洞共振器の体積、ΔVは試料の体積、Pは試料の電気分極、Jは導電電流密度、μ0は真空の透磁率、Mは磁化、Hは磁界の強さ、εは空気の誘電率、ε0は真空の誘電率、χは分極密度と電束密度との比例定数、ε’は試料の誘電率、χerはχの実部、ε”は試料の誘電損失率、χeiはχの虚部、*は複素数であることを表す。
 共振周波数のシフト量(Δf)または共振ピークレベルの変化量(ΔP)は、共振器内部の電界Eと誘電率ε’または誘電損失率ε”との内積の体積積分に比例することは、上記の摂動理論の(1)式から導かれる。
 また、マイクロ波空洞共振器を構成する導波管のどの位置(方向)にチューブを設置するかによって測定感度が変化するということも、(1)式で表される摂動理論から導かれる。なぜならば、ΔfおよびΔPは、試料の誘電率、誘電損失率および体積が同じであれば、電界強度に依存するからである。
 従って、電界の強さは測定位置(すなわち、チューブを設置する位置や方向)の電界分布で調整し、体積積分は測定する液体の体積で調整できるので、この2つの因子によって、自由にかつ広範囲に測定感度を設定することが可能となる。
 電界強度の大きい場所に液体試料の入ったチューブを設置すると、電界と液体との相互作用が大きくなるため、測定感度が大きくなる。一方、電界強度の小さい場所に液体試料の入ったチューブを設置すると、測定感度が小さくなるが、逆にマイクロ波の吸収量が大きい液体試料にも対応できる。
 本実施形態に係る方法は、スリット部のあるマイクロ波空洞共振器を用いているため、種々の方向や位置に液体試料を設置することができ、測定感度を調整することでマイクロ波の吸収量の大きい試料から小さい試料まで種々の試料の水分を測定することが可能となる。同様の考え方で、チューブの断面積を変化させること、すなわち、液体試料の体積(体積流量)を変化させることによっても測定感度を変化させることができることは言うまでもない。
 液体試料が充填されたチューブの設置位置については種々の位置が考えられる。例えば図6に示す(1)から(10)の10種類の設置位置については、以下のことが言える。
 図6Aの破線は導波管内の電界強度分布を示す。電界が強い場所にチューブを設置すれば測定の感度(電界と液体との相互作用)が大きくなる。測定位置(1)~(5)について、測定感度の大きい順に並べると、(1)、(2)、(3)、(4)、(5)の順になる。また、(6)、(7)、(8)の設置位置も考えられるが、電界強度がy方向では変わらないため、測定感度は同程度と推定される。また、図6Bの(9)、(10)のような測定位置も考えられる。
 図中の(1)の位置で測定すれば最も測定感度が高い。しかし、液体試料中の水が多いとマイクロ波の吸収量が大きすぎて、共振ピークレベルが低くなり、共振ピークが検知できない場合がある。この場合は、(2)、(3)、(4)、(5)、(6)、(9)、(10)など、(1)よりも電界の弱い設置位置を使えば良い。例えば、(2)、(3)または(9)、(10)のような位置の方が、共振ピークレベルが下がり過ぎず、大きな測定値の変化に対して余裕をもたせることができる。
 逆に、微量な水分しか含まれていない場合、液体試料のマイクロ波吸収量も小さいので、(1)のような電界の強い場所で測定すれば測定感度が上がり、微量な水分測定にも対応できることになる。
 実際の液体試料は、水がほとんど含まれていないものから水が多く含まれているものまで、その分布が広範囲になることが想定される。このため、液体試料の吸収量に応じてチューブの測定位置を変更することが望ましく、かかる測定位置の変更によって最適な測定感度が得られることになる。
 次に、検量線の作成方法について簡単に説明する。
 まず、測定したい液体と水との混合液を、予め水の割合を変えて作成する。次いで、ΔfおよびΔPを各混合液について測定し、水分率に対するΔfまたはΔPの関係を求めておく。
 例えば、エチルアルコールと水の混合液の場合、図6Aの(1)の位置に設置したチューブにおけるΔPの測定値について図7のようなグラフが得られ、高い相関関係が得られた。このグラフから検量線を作成し、水分率を測定できる。
 また、同混合液において、図6Aの(1)の位置に設置したチューブにおけるΔfと水分率との関係は図8のようになり、高い相関関係が得られた。図8の場合も図7と同様に検量線を作成し、水分率を測定できる。
 図9は本実施形態に係る測定部の外観斜視図である。測定部1300において、筐体1302の前面パネル1306にはポンプコントローラ1304の操作面が設けられる。また、前面パネル1306には吸引用継手1308および吐出用継手1310が設けられる。吸引用継手1308からは液体試料の吸引用チューブ1312が、吐出用継手1310からは液体試料の吐出用チューブ1314がそれぞれ伸びている。吸引用チューブ1312および吐出用チューブ1314は可撓性の材料で構成されており、これらを手で持ち上げて容器1316の内側に配置させることができる。ポンプコントローラ1304は、吸引用チューブ1312を通じて容器1316から液体試料を吸引するためのマイクロポンプを制御するために操作可能に構成されている。ポンプコントローラ1304およびマイクロポンプは、電源スイッチ1318により電源の投入/切断が行われる。
 図10は測定部内部の構成例を示す図である。同図における筐体1302は高さ200mm、幅250mm、前面パネル1306からの奥行き200mmの大きさを有する。筐体1302の内部において、吸引用チューブ1312は吸引用チューブ1414に吸引用継手1308を介して接続される。吸引用チューブ1414はマイクロポンプ1322に接続される。マイクロポンプ1322は液体試料導入用チューブ1320の一方の端部に接続される。液体試料導入用チューブ1320の他方の端部は、導波管からなるマイクロ波空洞共振器102に設置されたフッ素樹脂チューブ1416の一方の端部に接続される。
 フッ素樹脂チューブ1416は、例えば内径2mm、外径3mmのものを用いることができる。液体試料導入用チューブ1320とフッ素樹脂チューブ1416とは、逆流防止のためにL型継手1402を介して接続される。
 フッ素樹脂チューブ1416は図面水平方向に配置されているが、マイクロ波は偏波であるため、電界を効率的に液体試料に作用させるためにフッ素樹脂チューブは導波管内に形成される電界が振動する方向に略平行に設置される。図10に示す例によれば、フッ素樹脂チューブは長手方向がy方向となるように設置される。なお、フッ素樹脂チューブは長手方向がx方向、すなわち重力方向に略平行となるように設置してもよく、重力方向に所定の角度で(例えば重力方向に略垂直に)設置しても良い。重力方向に略平行となるように設置した場合、フッ素樹脂チューブ内に存在する液体を排出する上で効率的である。
 フッ素樹脂チューブ1416の他方の端部(不図示)は吐出用チューブ1412に接続される。吐出用チューブ1412は吐出用チューブ1314と吐出用継手1310を介して接続される。
 吸引用チューブ1312および吐出用チューブ1314はそれぞれ吸引用継手1308および吐出用継手1310から着脱可能とし、取り替えることができるように構成される。
 なお、フッ素樹脂チューブ以外の吸引用チューブなどの各チューブや継手、ポンプのダイアフラム等の接液部はフッ素樹脂製であることが耐溶剤性を高めるために好ましい。特に上記のPFAが好ましく用いられる。
 マイクロ波空洞共振器は、筐体1302の底部に設置されたコの字型部材1404に固定されている。また、マイクロ波空洞共振器102は、導波管の端部に接続された同軸ケーブル1408および1410を通じて外部に設けられたネットワークアナライザと接続されており、当該同軸ケーブルにより信号の伝送が行われる。
 電源スイッチ1318は、ポンプコントローラ1304およびマイクロポンプ1322に電源を供給するACアダプタ1406に対して電源の投入/切断の切換えを行うように構成される。
 次に、測定部1300の動作について説明する。ポンプコントローラ1304を操作することにより、マイクロポンプ1322における液体試料の流量を調整して、容器1316内の液体試料を吸引用チューブ1312および吸引用チューブ1414を通じて液体試料を吸引し、液体試料導入用チューブ1320からフッ素樹脂チューブ1416へ液体試料を導入して導波管内を通過させる。フッ素樹脂チューブ1416を通過した液体試料は、吐出用チューブ1412および吐出用チューブ1314を通じて容器1316に吐出され、液体試料が循環する。
 このようにして、液体試料を流動させる際に、液体を入れた容器から吸引用チューブを介して液体試料を吸引してフッ素樹脂チューブの一方の端部に導入し、このフッ素樹脂チューブの他方の端部から吐出用チューブを通じて液体試料を容器に吐出することが可能となる。
 以上説明した、液体試料を扱う測定部において、液体試料として引火性の有機溶剤等の可燃性液体を扱う場合には、静電気の発生に留意することが必要になる。このような液体試料が通液する際には、スイッチ等の電気系統から発生する静電気や、1m/s以上の流速で試料が配管内を流れる場合に発生する静電気が引火の要因になる。この静電気の発生や帯電を防止するために、検出部以外の配管は静電気防止タイプの素材で構成することが好ましい。中でも、チューブ表面が帯電することを抑えるチューブとして外表面に導電性PFA部を備えたチューブがより好ましく使用される。例えば、ニチアス株式会社のナフロン(登録商標)PFA(パーフルオロアルコキシフッ素樹脂)製のチューブT/#9003-NEなどが好ましく使用される。
 また、液体試料が引火性の有機溶剤等である場合は、液体試料の揮発性が大きいことが多い。そこで、このような揮発性の有機溶剤を測定対象とする場合は、液体試料を収容した容器を密閉型にすると良い。密閉型の容器として、テフロン(登録商標)樹脂製のねじ型栓付きの直管型の容器を用いることができる。
 また、液体試料が引火性の有機溶剤である場合、引火の生じる範囲は空気中における有機溶剤の揮発分の濃度によって決まる。このため、配管系から液体試料が漏れ出て測定部内部に滞留することが万一生じた場合に備えて、引火の生じる範囲に揮発分が入らないようにすることが好ましい。具体的には、測定部に陽圧ファンを取り付けて、測定部内部を陽圧に保つことにより、漏れ出た液体試料の揮発分を測定部外に放出することが考えられる。また、引火の原因になりやすい電気系統のスイッチ等の電気部品を防爆タイプにすることが好ましい。
 測定部は液体試料の漏洩を防止することを優先して構成される。しかしながら、万一液体試料が漏洩した場合を考慮して、漏洩の状態を検出する漏液検出器を使用することが好ましい。漏液検出器には、例えば導電率で漏液を検知する方式や、電極間抵抗検知方式等と呼ばれる方式、光学的方式のものを用いることができる。また、測定部においては継手部分が漏液の起こりやすい箇所であることから、例えばこの箇所をリトマス反応タイプのpH表示パッチを備えた継手カバー等で覆って漏洩を検出可能とし、さらに継手カバーで覆った部分の下側に漏液検出器を装着すると、効率的に液体試料の漏洩を検出することができる。
 また、水分率に対するΔfまたはΔPの関係のキャリブレーションを自動化して行うことが好ましい。このキャリブレーションは、以下の手順を繰り返して行う。
(1)液体試料のないブランク状態(チューブのみ)での共振周波数(=f0)および共振ピークレベル(=P0)を測定しておく。
 この測定時の値を固定値Aとして、コンピュータ105に記憶しておく。
(2)実際の試料測定を行う。
(3)チューブのフラッシングを行う。
 フラッシングは、エアーにより行っても良く、液体により行っても良い。エアーによるフラッシングは、工場内などに供給されている計装用エアーを利用して行うこととしても良い。また、液体によるフラッシングは、純水、アセトンなどの有機溶剤を使用して行うこととしても良い。
(4)(1)と同様にブランク状態(チューブのみ)での共振周波数(=f0)および共振ピークレベル(=P0)を測定する。この際に、新たなブランク状態での測定値が固定値Aに対して所定の割合まで到達していた場合は、フラッシングが十分なされたと判断する。このときの測定値を新固定値Aとしてコンピュータ105に記憶しておく。
 なお、新たなブランク状態での測定値が固定値Aに対して所定の割合に達していない場合は、(3)からの工程を再度行う。さらに、(3)の工程を所定回数行っても測定値が固定値Aに対して所定の割合に達しない場合は、コンピュータ105よりエラーの発生を通知することとしても良い。このようにして、水分測定装置のオペレーターは、コンピュータ105より通知された情報に基づいて対応方法を判断することができる。
 検量線は、半自動的に作成することとしても良い。例えば、人手により、数種類の既知水分濃度の液体試料を予め作成し、各液体試料を収容した容器を用意しておく。そして、自動検量線作成モードにおいて、図10の容器1316を、それぞれ濃度の異なる容器と順次取り替えて、ΔfまたはΔPを測定していく。
 この場合、コンピュータ105のデータ保持部212に、ΔfおよびΔPの測定値を水分率と対応付けて記憶しておき、この対応関係から検量線を求めることができる。この演算処理は、コンピュータ105の演算部210が、データ保持部212に記憶された検量線作成プログラムを読み出して実行することにより行われる。
 また、導波管温度(ブランク値)、液体温度(測定値)、または測定環境の温度を測定して、測定された温度に基づいて、計算される水分率の温度校正を行うことが、より精度の良い測定を行う上で好ましい。
 温度を測定するための温度測定部として、例えば導波管温度を測定する際には熱電対を用いることができる。また、液体温度を測定する際には測温抵抗体等を用いることができる。
 一般的に、水の誘電率は4GHz、25℃において約80であり、同周波数で温度が上がると誘電率は減少する傾向にある。誘電損失率も、4GHz、25℃において約13であるが、同周波数で温度が上がると減少する傾向にある。一方、溶媒に関し、複数の温度における誘電率、誘電損失率の値として信頼性が保証されているものはない。また、4GHzにおける溶媒の誘電率、誘電損失率の真値もほとんど公表されていない。
 溶媒は種類によって特性が異なるため一概には言えないが、例えばエタノールの場合、4GHz、25℃で、誘電率は2程度、誘電損失率は約6であり、同周波数で温度が上がるとどちらも増加する傾向にある。従って、溶媒中の水分率を測定する場合、溶媒の誘電率および誘電損失率の温度による影響と、水のそれとは必ずしも同じ傾向にあるとは言えず、決まった法則もない。このため、測定する試料(溶媒+水)について、予め本装置(水分測定装置)を使用して実際に温度を変えて測定し、校正カーブを作成しておくことがより好ましい。
 なお、水分率は、基準温度に換算せずに、測定時の試料の温度における水分率を出すことが望ましい。測定時の温度での水分率を求めた方が実用的だからである。
 例として、Δfから水分率を出す場合の温度校正の手順を以下に2種類(校正方法1および2)示す。
 (校正方法1)
(1)ある溶媒と水との混合液体試料を、水分率を変えて5~10水準作成し、その試料を例えば15℃から35℃まで5段階に温度を変えて測定し、図11に示すように、各温度における水分率とΔfとの関係を求める。
(2)(1)で求めたデータ(グラフ)を基に、各水分率における温度とΔfの関係を、図12に示すように求める。
(3)図12のグラフにおいて、温度25℃におけるΔfを1.0として、その比を縦軸にとり、グラフを描き直す。図13に示すように、ほぼ1つの曲線に集まるとすると、これらのデータを基に1本の近似曲線(例えば、3次近似式で近似)を求める。
 Δf/ΔfT=25℃=aT+bT+cT+d  (6)
    ただし、Tは試料温度
        a、b、c、dは係数
(4)以上の準備が整った段階で、未知の液体試料の水分率を測定する。まず、液体試料の温度Tを測定し、(6)式から温度TでのΔfと25℃のときのΔfとの比(Δf/ΔfT=25℃)を求め、その比をPとする。続いて、未知の液体試料のΔfを測定する。PとΔfを(7)式に代入して、基準温度25℃でのΔfを求める。
     ΔfT=25℃=Δf×(1/P)     (7)
(5)25℃におけるΔfが決まれば、図14のΔfに対する水分率の関係(近似曲線)を使って、求める水分率を計算する。図14の近似式は、図11の25℃の関係式を縦軸と横軸を入れ替えたグラフであり、近似曲線を取り直すことによって求められる。
 (校正方法2)
(1)溶媒と水との混合溶液を、水分率を0~40%の範囲で5水準作成し、この混合溶液の温度を10℃、20℃、30℃、および40℃の4段階に変えて、その都度Δfを測定する。そのデータから、図15のようなグラフを作成し、近似曲線も得る。この近似曲線は、例えば同図に示すように2次曲線とすることができる。
(2)次に、水分率が未知の混合溶液(たとえば、水+エタノール)のΔfを測定し、その時に混合溶液の温度Tも測定する。
 例えば、T=25℃の場合、図15でT=25℃の縦線(破線)と各近似曲線との交点を求め、25℃における水分率とΔfの関係を求める。
 その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(3)表1に示すデータをプロットすると、図16に示すグラフが得られる。図16のグラフから、近似直線または近似曲線を求める。
 T=25℃における水分率とΔfの関係式が求められれば、測定した試料のΔfをこの式に代入し、水分率を計算することができる。また、試料温度が変われば、図15の縦線(破線)の位置を試料温度まで移動させ、各近似曲線との交点を求め直す。そして、図16のようなグラフを再度作成すれば、その温度での水分率が求められる。
 なお、ここではΔfについて記述したが、ΔPを測定する場合も考え方は同じである。
 また、異なる温度環境で測定を行う代わりに、装置内部の温度管理(例えば、25℃一定)を行うこととしても良い。これは、測定部内部の温度が測定値に影響するからである。例えば、測定部内部を周囲温度より低く設定した場合には導波管内で結露が発生し、測定精度に影響を及ぼすので、結露が発生しないように温度制御すること、または測定部内部から水蒸気を排出する機構を設けることが望ましい。
 また、本発明の具体的な実装において、チューブを洗浄する際には、アセトンまたは水をチューブに流し、その後空気を流して乾燥させることとしても良い。この場合、測定部にチューブの自動洗浄システムを設置することとしても良い。例えば、アセトン、純水などの洗浄液を収容した洗浄液タンクを別途設けておく。そして、測定対象の液体を取り替える前に、洗浄モードにおいて、洗浄液タンク中の洗浄液をチューブに流して洗浄を行う。この操作は、上述したキャリブレーションにおける(3)の工程の操作と同様である。そして、洗浄の終了後、洗浄液タンクを測定対象の容器に取り替えるようにする。
 次に、図17を参照し、本実施形態に係る液体中の水分測定方法について説明する。
 マイクロ波空洞共振器102を構成する導波管に設けられたスリット部110に、液体が通過可能なチューブ106を挿入する。
 ここで、液体試料中に生じ得る泡が、高精度な測定の妨害になる。この泡を除去するため、チューブ106を設置する際には、図17に示すように鉛直方向に配置し、液体試料を下側からポンプアップする方式を採用することが好ましい。これは、液体を下側からポンプアップすることにより、泡が上方に抜けやすくなるためである。特に、液体試料を充填保持して測定する場合において、ポンプの動作を停止したときに、液体試料から泡の抜けが良くなる。
 次いで、チューブ106の一方の端部に液体試料の流量を調節するためのバルブ708を取り付ける。チューブ106の他方の端部には、循環ポンプ706のチューブ712の端部に設けられたバルブ710を取り付ける。このバルブ710もまた、液体試料の流量を調節するためものである。このようにして、循環ポンプ706は、容器702内の液体試料を吸引してチューブ712を通じてチューブ106に提供し、バルブ708から容器702に液体試料を戻すように構成される。
 次いで、チューブ106内に液体が存在する状態および存在しない状態における共振周波数または共振ピークレベルを測定する。
 そして、測定された共振周波数または共振ピークレベルから、ΔfまたはΔPを算出し、液体に含まれる水分を計算する。
 以下、本発明の具体的な実施例について説明する。
 水を含む9種類の液体について、各液体がどの程度のΔPおよびΔfになるのか、また測定位置によってどの程度変わるのかを知るために、以下のような手順で実験を行った。
1.マイクロ波の吸収が小さいテフロン(登録商標)製のチューブを用意し、この中に9種類の液体を充填した。チューブの寸法は外径3mmφ、内径2mmφ、長さ12cmのものを用いた。液体の種類としては、水、エチレングリコール、メタノール、エタノール、アセトン、クロロベンゼン、トルエン、ヘキサン、ベンゼンを用いた。
2.液体の入っていないテフロン(登録商標)チューブをブランクとして用意し、このチューブをマイクロ波空洞共振器のスリット部に設置し、そのときの共振周波数および共振ピークレベルを測定した。ただし、チューブの設置位置については、電界分布を考慮し、図6の(1)から(10)の位置で測定を行った。
3.同様に、各種液体が入ったテフロン(登録商標)チューブを(1)から(10)の位置で測定し、その差から共振周波数のシフト量Δfおよび共振ピークレベルの変化量ΔPを得た。ここで、測定は室温で行い、マイクロ波の周波数を4GHzとした。
 9種類の液体のΔPの値を測定位置(1)~(10)についてまとめた結果を表2に示す。単位はデシベルで表記した。
Figure JPOXMLDOC01-appb-T000002
     表2
 また、同様にΔfについてまとめた結果を表3に示す。単位はMHzで表記した。
Figure JPOXMLDOC01-appb-T000003
     表3
 また、表2の結果を(1)、(6)、(9)、(10)の位置についてグラフ化したものを図18に示す。縦軸はΔPを表している。
 同様に、表3の結果を(1)および(6)の位置についてグラフ化したものを図19に示す。縦軸はΔfを表している。
 以上の結果より、液体によってΔf、ΔPの値に大きな差があることが分かった。その特徴として、一つは有極性分子と無極性分子の違いがそのままΔf、ΔPに顕著に表れていることが挙げられる。トルエン、ヘキサン、ベンゼンは無極性分子であるため、双極子モーメントが非常に小さく、そのために誘電率および誘電損失率が非常に小さい値を示す。従って、ΔP、Δfも小さい値となっている。逆に他の6種類の液体は有極性分子であるため、双極子モーメントが大きく、したがって誘電率および誘電損失率は大きい値を示す。その結果、Δf、ΔPが大きくなっており、(1)式で示した摂動理論通りになっていることが確認された。特に、水は特異な誘電物性を示し、例えば自由水では、マイクロ波の周波数4GHz、温度25℃の場合、誘電率は80、誘電損失率は13.1と他の液体に比べても大きな値を示すことが知られており、本実験のΔf、ΔPの測定結果からもそれが裏づけられた。
 従って、誘電率および誘電損失率について、特異的に大きな値を示す水とそれ以外の液体とを混ぜた場合、含まれる水の割合が多くなるにつれて、混合液体の誘電率、誘電損失率も増加することは容易に推定される。本実施形態に係る水分率測定方法の理論的根拠はここにある。
 上記の考え方で液体中の水分率を測定できることを確認するために、以下の手順で実験を行った。
1.実施例1で用いたテフロン(登録商標)チューブに、水と他の液体とを混ぜた混合液を作る。混合液全体に対する水の割合を体積で0%から50%までほぼ10%刻みで6水準のサンプルを5種類の液体について作成した。具体的には、エタノール、メタノール、イソプロピルアルコール(IPA)、アセトン、エチレングリコールを使用した。
2.各液体について、水の含有量が異なる5種類のサンプルについて、実施例1と同様にΔfおよびΔPを測定した。ここで、チューブの設置位置は(1)、(9)、(10)を選択した。また、設置位置(9)および(10)については平均値をとった。
 その測定結果について、横軸に水分率、縦軸にΔPをとってグラフ化したものを図20~図24に示す。
 次いで、Δfと水分率の関係を表したグラフを図25~図29に示す。
 以上のグラフから、水分率と測定値(Δf、ΔP)との間には強い相関関係があることが確認された。これらの結果から、各液体について予めこのような相関関係を検量線として作成しておけば、同種の混合液体で水分率が未知のサンプルであっても、同様の手順でΔfまたはΔPを測定すれば、即座に水分率が求められることが分かった。
 本実施例に係る方法によれば、ほぼリアルタイムで水分率が測定できる。このため、チューブ中に充填された液体を流動させて測定を行うこととしても良い。すなわち、本実施例は、原理的には液体をチューブに流しながら測定するオンライン測定にも適用することができる。
 本実施例に係る方法は、水の誘電率、誘電損失率が他の液体に比べて大きいことを利用しているが、液体の誘電率、誘電損失率が水のそれらと大きくかけ離れていればいるほど、水分率の測定感度(分解能)が高くなることはいうまでもない。そこで、本実験結果の中から一例としてエタノールと水の混合液体を、(9)、(10)の位置でΔPを測定した結果を例にとり、水分率の分解能を計算する。
 図30Aは、この計算結果について、縦軸にΔP、横軸に体積水分率(%)をとり、近似曲線を追加したグラフを示す。図30Bは、図30Aの横軸と縦軸を入れ替えて、傾き(体積水分率0%での微分値)が%/dBとなるようにしたグラフを示す。
 図30において、微量水分率での分解能が最も重要となるので、水分率0%での傾きを2次近似式の微分値から計算すると、1.83%/dBとなる。ΔPの分解能を0.01dBとすると、エタノールと水の混合液の水分率の分解能は0.0183%となる。この結果から、かなりの高分解能で水分率が測定できることがわかる。
 上述したように、水分率の測定感度即ち分解能は、ΔPから測定する場合、水の誘電損失率と大きくかけ離れるほど、即ち水と混合される液体の誘電損失率が水よりもはるかに小さいほど向上することになる。その意味では、上記の例で示したエタノールは、水の誘電損失率が13.1(マイクロ波4GHz、25℃)に対して5.9程度(非特許文献1参照)と比較的大きな値を示しているから、水の誘電損失率と比較してはるかに小さいとは言えない。それにもかかわらず、0.0183%という高い分解能があることが示された。エタノールより誘電損失率が小さい液体の場合は、これ以上の分解能になることは言うまでもない。
 同様にして、エタノールと水との混合液体について、Δfと水分率との関係から分解能を求める。
 前述の図から、測定位置が(1)の場合のデータを再度抜き出すと図31Aに示すようになる。
 ΔPの場合と同様に、図31Aのグラフの横軸と縦軸を入れ替えると、図31Bに示すようになる。
 このグラフにおいて、水分率が0%のときの傾きを求めると、0.796(%/MHz)となる。これは、水分率について1MHz当たり0.796%の変化があることを意味する。Δfの分解能を1KHzとすると、傾き、即ち分解能は、0.000796(%/KHz)となり、約8ppmの分解能があることになる。
 なお、本実施形態では体積水分率を測定する例について説明したが、本発明において、測定される水分率として重量水分率及び体積水分率のいずれも対象とすることができることは、本発明の趣旨から理解されよう。
 (第2実施形態)
 上述した実施形態では、検量線を作成する際に計装エアーを用いてキャリブレーションを行う例について説明したが、この場合、減圧弁を入れる等、エアー圧を適正に保つ必要がある。
 本実施形態では、専用のエアーコンプレッサーを測定部に導入し、キャリブレーションを行う。
 図32は、本発明の第2実施形態に係る測定部内部の構成を概略的に示す図である。測定部2000において、吸引用チューブ1312は吸引用チューブ1414に三方弁A 2004を介して接続される。この三方弁A 2004は、エアーの出入口2006を有する。
 吸引用チューブ1414はマイクロポンプ1322に接続される。マイクロポンプ1322は液体試料導入用チューブ2208の一方の端部に接続される。液体試料導入用チューブ2208の他方の端部は液体試料導入用チューブ1320の一方の端部に三方弁2210を介して接続される。液体試料導入用チューブ1320の他方の端部は、導波管からなるマイクロ波空洞共振器102に挿通されたフッ素樹脂チューブ1416の一方の端部にL型継手1402を介して接続される。
 三方弁B 2210は、さらに圧縮エアー供給用チューブ2212に接続されている。圧縮エアー供給用チューブ2212は、二方弁2214および圧縮エアー供給用チューブ2216を介してエアーコンプレッサー2218に接続されている。エアーコンプレッサー2218は、チューブ内掃除用の圧縮エアーを発生させるものであり、例えば、大自工業社製のML250を用いることができる。
 フッ素樹脂チューブ1416の他方の端部(不図示)は吐出用チューブ1412の一方の端部に接続される。吐出用チューブ1412の他方の端部は試料回収容器2002内に配置される。
 三方弁A 2004および三方弁B 2210は、チューブ掃除用エアーと液体試料とを切り替えるものであり、例えばフロン工業社製のF-2388を用いることができる。この切り替え制御は、コンピュータ105からの指令によって自動的に行うものとしても良い。
 マイクロ波空洞共振器は、コの字型部材1404に固定されている。また、マイクロ波空洞共振器102は、導波管の端部に接続された同軸ケーブル1408および1410を通じて外部に設けられたネットワークアナライザと接続されており、当該同軸ケーブルにより信号の伝送が行われる。
 次に、図33を参照し、測定部2000により実行されるキャリブレーションの動作について説明する。測定が終了すると、三方弁A 2004を切り替えて、吸引用チューブ1414に空気を送る(ステップS2102)。チューブ内に残留している液体試料が全て排出されたら、一定時間経過後にマイクロポンプ1322の動作を停止する(ステップS2104)。次いで、三方弁B 2210を圧縮空気側に切り替える(ステップS2106)。次いで、二方弁2214をオン・オフし、圧縮エアーを液体試料導入用チューブ1320に一定時間送り、三方弁B 2210をマイクロポンプ1322側に戻す(ステップS2108)。次いで、ブランク状態となったチューブについて共振ピークレベルを測定し、測定値が所定のブランク値の範囲まで上昇したか判定する(ステップS2110)。測定値が所定のブランク値の範囲まで上昇した場合には、キャリブレーションを終了し、次の測定を行う。測定値が所定のブランク値の範囲まで上昇しなければ、液体試料容器1316に純水を入れてマイクロポンプ1322をオンし、チューブに純水を一定期間流す(ステップS2112)。この操作において三方弁A 2004および三方弁B 2210を自動制御することができる。その後、ステップS2102からの処理を繰り返す。
 なお、本実施形態は純水のみでチューブ内を洗浄することができることを前提にした例を説明したが、純水を用いた洗浄が難しい場合は、測定に用いた液体試料を溶剤として使用し、この液体試料をチューブ内に流してから次に純水を流すようにしても良い。
 (第3実施形態)
 1本のチューブを用いて検量線の作成および測定を行う場合は、水分測定→洗浄および乾燥→水分測定という工程を経なければならない。そこで、本発明の第3実施形態では、2本のチューブを異なる役割で使用する。
 例えば、一対のチューブをそれぞれ異なる種類の液体試料について水分測定を行うために同時に用いても良い。
 また、一対のチューブをブランク用チューブおよび測定用チューブとして同時に使用することとしても良い。この場合、一対のチューブの各々の位置を独立に調節可能に構成する。そして、マイクロ波空洞共振器の中心部に対して対称位置になるように一対のチューブをスリット部110内に挿入し、一対のチューブにおける測定感度が同一になるように位置を調節する。なお、この位置の調整は手動で行うこととしても良い。そして、測定感度が同一になった状態において、何れか一方を測定用チューブ、他方をブランク用チューブとして使い分ける。
 このように、2本のチューブのうちの一方をブランク用、他方を測定用とすることにより、早く効率的に測定を行うことが可能となる。
 (第4実施形態)
 本発明の第4実施形態では、複数本の測定用チューブを準備し、制御部1610および駆動部1608により、そのうちの任意の1本をスリット部110内に移動させて測定に使用する。例えば、測定用チューブを2本準備し、図34で示すように、測定部において以下のような操作を行うことができる。
 (1)マイクロ波空洞共振器102の同一測定位置に一方のチューブを配置し、他方のチューブはマイクロ波空洞共振器102外に移動させる(図34A)。ここで、測定位置は通常測定感度が最大になる位置を選択する。
 (2)マイクロ波空洞共振器102内に移動させたチューブについて、その位置を微調整し、同一測定位置における測定感度が移動前のチューブと同一になるようにする(図34B)。
 (3)測定感度が同一になれば、いずれか一方を測定用、他方をブランクとして逐時使い分ける(図34C)。
 (4)一方のチューブで測定を行っている間に、他方のチューブにおいて洗浄・乾燥工程を行い、一方のチューブでの測定終了後、速やかに位置を移動して、他方のチューブが測定位置に入りブランク測定および測定を行う(図34D)。
 このようにして、測定を効率化および迅速化することができる。
 なお、図34において2本のチューブは個別に移動可能としても良いし、一定間隔で平行に配置しておき、これらを矢印の方向に同時に移動可能としても良い。
 また、(1)の工程において採用する同一測定位置は、測定感度が最大になる位置に制限されるものではない。例えば、測定感度が高すぎてQ値が下がる場合は測定感度を低くなるように位置調整して測定位置を変更することとしても良い。
 また、チューブをマイクロ波空洞共振器の内外に移動させるために、配管系を移動可能にしてもよく、測定系を移動可能にしても良い。これは設計上の問題ではあるが、測定安定化の上では配管系を移動可能にするほうが好ましい。
 (第5実施形態)
 次に、図35を参照し、本発明の第5実施形態について説明する。
 水分測定装置をオンライン用途で使用する場合は、製造ラインにおいて液体が通るメイン配管にサンプリング配管を分岐接続し、このサンプリング配管を通る液体について水分測定を行うこととしても良い。
 図35は、本実施形態に係る水分測定装置の測定部の構成を示す。製造ラインのメイン配管2506には、切替バルブ2502および2508を介してサンプリング配管2504が接続されている。そして、メイン配管2506からサンプリング配管2504に流れる液体が、メイン配管2506に戻るように構成されている。
 切替バルブ2502および2508は、電子制御ユニット等により構成される切替部2510からの指示信号を受信して開弁/閉弁の制御をオンラインで行うように構成することができる。
 ここで、メイン配管2506における流速V1とサンプリング配管2504における流速V2とが、V1=V2となるように構成することが望ましい。V2の値はポンプ容量とサンプリング配管径とによって決まる。また、サンプリング配管にサブ配管をさらに設けてV2の値を調整することもできる。このようにサンプリング配管における液体の流速を調整することで、真の意味におけるリアルタイムでの水分測定が可能となる。
 (第6実施形態)
 上述した第1実施形態では、スリット部110にチューブを配置する。この場合、スリット部110において導波管Aおよび導波管Bの開口部が対向して配置されるが、この開口部を薄い膜等で被覆することにより、チューブの端部からの液ダレやゴミによる汚染を防止することができる。
 導波管の開口部を被覆する膜として、ポリ塩化ビニリデン(例えばサランラップ(商品名))のような薄いもの、フッ素系シート、例えばニチアス社製ナフロン(登録商標)テープ(型式:TOMBO(登録商標) 9001、正式名:四ふっ化エチレン樹脂テープ)等を用いると、マイクロ波の伝播ロスがほとんど無い。
 (第7実施形態)
 次に、測定部における気泡を検知する本発明の第7実施形態について説明する。
 水分測定装置の測定部において、マイクロポンプ等の液体を流動させるための機構がエアーを噛んだ場合、共振周波数および共振ピークレベルが変化してしまう。このため、測定部に気泡検知器を設けておくことが好ましい。このような気泡検知器として、例えば特許文献2に記載されている気泡検出装置を採用することができる。具体的な実装においては、気泡検出器により気泡を検出した場合に、当該装置からアラームを発信する。この場合、ネットワークアナライザからの出力をコンピュータ105において記録する際に、気泡検知器からのアラーム信号も合わせて信号として記録することとしても良い。
 (第8実施形態)
 次に、測定部における気泡の発生を防止する本発明の第8実施形態について説明する。
 液体の種類によっては、その液体から気泡が発生しやすいものがある。そこで、このような液体を測定するため、気泡の発生を防止する構成を採用することが好ましい。この場合の構成として、測定部に気泡除去手段を設けることとしても良い。具体的には、加圧脱泡装置をマイクロポンプに接続することとしても良く、またマイクロポンプの代わりに加圧ポンプを使用することも良い。また、サンプリング配管系を完全に密閉化することとしても良い。例えば、図35に示す例において、サンプリング配管2504に液体試料が充填されている状態で、切替バルブ2502および2508の切替制御によりサンプリング配管2504を密閉し、測定を行うこととしても良い。
 (第9実施形態)
 コンピュータ105において、ネットワークアナライザ、漏液検出器、気泡検出器から出力されたアラーム信号等の信号を記録することとしても良い。
 また、ネットワークアナライザ、漏液検出器、気泡検出器から出力された信号が異常を示すものであるとコンピュータ105が判断した場合、コンピュータ105からスマートフォン、タブレット等の移動端末へ異常通知信号を無線信号で発信しても良い。
 図36は、本発明の第9実施形態に係るシステムの構成を概略的に示す。本実施形態に係るシステムは、ネットワークアナライザ104、漏液検出器2714、気泡検出器2716、コンピュータ105、および移動端末2702を含んで構成される。ネットワークアナライザ104はマイクロ波の発振と検出を行うものである。漏液検出器2716は、漏液の状態を検出するものであり、例えば導電率で漏れを検知する方式や、電極間抵抗検知方式等と呼ばれる方式、光学的方式のものを用いることができる。気泡検出器2716は、気泡を検出するものであり、例えば日本国特許第4561336号に記載されている気泡検出装置を採用することができる。ネットワークアナライザ104、漏液検出器2714、気泡検出器2716はコンピュータ105に接続されている。
 コンピュータ105は、ネットワークアナライザ104、漏液検出器2714、気泡検出器2716から送られる信号を処理するものであり、演算部210、データ保持部212、および通信部2712を含んでいる。
 演算部210は、ネットワークアナライザ104、漏液検出器2714、気泡検出器2716から出力された信号等のデータを処理する。データ保持部212は演算部2708の指示に応じてデータを記憶する。通信部2712は、ネットワークアナライザ104、漏液検出器2714、気泡検出器2716、および移動端末2702との通信を行う。ここで、通信部2712は移動端末2702との信号のやり取りを無線通信で行う。無線通信は、電磁波、光、赤外線、マイクロ波等の電波を介して行う通信を含む。具体的には、IEEE802.11、ブルートゥース(Bluetooth(登録商標))等の種々の通信技術を使用することができる。
 移動端末2702は、無線受信部2704および通知部2706を含んでいる。無線受信部2704はコンピュータ105の通信部2712と無線通信を行う。通知部2706は、無線受信部2704がコンピュータ105からの異常通知信号を受信した場合に、ユーザに異常を通知するものである。異常の通知は、ディスプレイによるテキストメッセージの表示、アイコン等の画像の表示、ライトの点灯、スピーカによる音声の出力、モーターによる振動等の種々の手段を使用することができる。
 次に、本実施形態に係るシステムの動作について説明する。
 コンピュータ105はネットワークアナライザ104、漏液検出器2714、気泡検出器2716のいずれかから出力された信号を記憶部2710に記憶する。この信号により測定部において異常が発生したと判断した場合、通知部2712を介して異常通知信号を移動端末2702に発信する。例えば、ネットワークアナライザ104から出力された測定値が異常値である場合、漏液検出器2714または気泡検出器2716から検出信号を受信した場合に、水分測定装置に異常が発生したと判断する。
 コンピュータ105から発信される異常通知信号は、発生した異常の種類を示すコードを含んでも良く、テキストメッセージを含んでも良い。また、テキストメッセージを含む電子メールの形式で異常通知信号を発信することとしても良い。
 移動端末2702の無線受信部2704により異常通知信号を受信すると、通知部2706を介してユーザに異常の旨を通知する。
 このような構成により、移動端末のユーザにより水分測定装置の動作を監視することが可能となる。
 (第10実施形態)
 図37は、本発明の第10実施形態に係る液体中の水分測定装置の構成の一例を示す。液体中の水分測定装置3700は、測定部の内部に設けられたマイクロ波空洞共振器3702と、測定部の外部に設けられたネットワークアナライザ104およびコンピュータ105とから構成される。マイクロ波空洞共振器102は導波管3710から構成されるものである。ネットワークアナライザ104はマイクロ波の発振と検出を行うものである。コンピュータ105はネットワークアナライザ104から送られる信号を処理するものである。
 マイクロ波空洞共振器3702を構成する導波管3710には中央部を横切るように貫通孔107、108、109が設けられており、これらのうち貫通孔108に、液体を液密に保持可能なチューブ106が挿設されている。
 本明細書において、「貫通孔」とは導波管に形成される孔の一例であり、導波管の一の面のみに形成される貫通孔と、導波管の複数の面に形成される貫通孔(例えば、一の面と当該面に対向する面とに形成される貫通孔)との、両方の意味を包含する。
 導波管3710にはネットワークアナライザ104から発振した4GHz帯のマイクロ波が入力されて共振し、共振エネルギーがネットワークアナライザ104で検出される。
 図38は、本実施形態に係るネットワークアナライザの機能構成の一例を概略的に示すブロック図である。ネットワークアナライザ104は、4GHz帯のマイクロ波を発振する発振部202、共振エネルギーを受信する受信部204、ネットワークアナライザ104から送られる掃引されたマイクロ波に基づいてチューブ106の中に液体が存在しない状態および存在する状態における共振ピークレベルを検出する共振ピークレベル検出部206、同じくネットワークアナライザ104から送られる掃引されたマイクロ波に基づいてチューブ106の中に液体が存在しない状態および存在する状態における共振周波数を検出する共振周波数検出部208を含んでいる。コンピュータ105は、後述する検量線がデータとして保持されるデータ保持部212、および共振ピークレベル検出部206または共振周波数検出部208での検出強度(測定感度とも呼ぶ。以下、本明細書において同じ。)とデータ保持部212に保持されるデータとから液体に含まれる水分を計算する演算部210を含んでいる。
 本実施形態に係る液体中の水分測定装置3700は、マイクロ波空洞共振器3702を用い、液体試料を細長いチューブ106に入れ、それをマイクロ波空洞共振器3702を構成する導波管3710の貫通孔107~109のいずれかに挿設し、共振周波数のシフト量(Δf)または共振ピークレベルの変化量(ΔP)から液体中に含まれる水分率を測定するものである。具体的には、水が混合液体に含まれる割合(%)と測定値であるΔfまたはΔPとの間の相関関係を検量線として予め求めておくことにより、測定値であるΔfまたはΔPから液体中に含まれる水分率を測定する。
 導波管3710は、図39に示すように、図の直方体(マイクロ波空洞共振器を構成する導波管)におけるz軸方向での中央部に貫通孔107~109を設け、貫通孔107~109に液体試料が通る形態でチューブ106を挿入し、セットするように構成されている。
 ここで、貫通孔は少なくとも1つ設けられていれば良い。また、貫通孔の内径は、次のような理由から狭いほど良い。即ち、少なくとも矩形の空洞共振器においては、一般に開口部を設けるとそこからマイクロ波が漏れてしまい、鋭い共振カーブ(高いQ値)を得る上で好ましくない。Q値が下がると、ピーク検出が難しくなる一方、水のようにマイクロ波の吸収の大きなものを測定した場合、ピーク検出が困難になり易い。なお、チューブ106を挿入しない貫通孔は、マイクロ波が漏れないようにキャップ(不図示)で塞いでおくことが望ましい。そのようなキャップの素材としては、マイクロ波空洞共振器の導波管の管壁の材質と同じ材質や、導電性の材質が好ましい。さらに、キャップと導波管との間に電位差が生じるとマイクロ波が漏れる原因となるため、キャップが導波管の管壁と電気的に接続されることが必要である。例えば、キャップとして真鍮に銀メッキを施したものを用いることができる。
 また、貫通孔の形状については、円の他、長孔、楕円であっても、三角形や四角形のような多角形であっても問題はない。
 なお、貫通孔はy軸に垂直である必要はなく、y軸に対して斜めに、または垂直に設けることとしても良い。
 本実施形態に係る方法は、貫通孔のある導波管から構成されるマイクロ波空洞共振器を用いているため、図39に示すように複数の貫通孔107、108、109を設けることで、所望の貫通孔を選択してチューブを挿設することができ、測定感度を調整することでマイクロ波の吸収量の大きい試料から小さい試料まで種々の試料の水分を測定することが可能となる。
 チューブの挿設位置については、図39に示した貫通孔107、108、109の位置を含め、種々の位置が考えられる。例えば、図6に示す(1)から(10)の10種類の位置を挿設位置とすることもできる。
 チューブと測定装置との相対位置を調整して測定感度を調整するため、チューブの寸法は、導波管の断面を横切る面積が、導波管の断面より小さくなるように設計されることが好ましい。
 共振周波数のシフト量(Δf)または共振ピークレベルの変化量(ΔP)は、共振器内部の電界Eと誘電率ε’または誘電損失率ε”との内積の体積積分に比例することは、上記の摂動理論の(1)式から導かれる。
 また、マイクロ波空洞共振器を構成する導波管のどの位置(方向)の貫通孔にチューブを挿設するかによって測定感度が変化するということも、(1)式で表される摂動理論から導かれる。なぜならば、ΔfおよびΔPは、試料の誘電率、誘電損失率および体積が同じであれば、電界強度に依存するからである。
 従って、電界の強さは測定位置(すなわち、チューブを挿設する位置や方向)の電界分布で調整し、体積積分は測定する液体の体積で調整できるので、この2つの因子によって、自由にかつ広範囲に測定感度を設定することが可能となる。
 なお、液体の体積を調整する一例としては、導波管の断面を横切るチューブの断面積を変化させることが挙げられる。
 図40は測定部内部の構成例を示す図である。同図における筐体1302は高さ200mm、幅250mm、前面パネル1306からの奥行き200mmの大きさを有する。筐体1302の内部において、吸引用チューブ1312は吸引用チューブ1414に吸引用継手1308を介して接続される。吸引用チューブ1414はマイクロポンプ1322に接続される。マイクロポンプ1322は液体試料導入用チューブ1320の一方の端部に接続される。液体試料導入用チューブ1320の他方の端部は、導波管1418からなるマイクロ波空洞共振器に挿通されたフッ素樹脂チューブ1416の一方の端部に接続される。
 フッ素樹脂チューブ1416は、例えば内径2mm、外径3mmのものを用いることができる。液体試料導入用チューブ1320とフッ素樹脂チューブ1416とは、逆流防止のためにL型継手1402を介して接続される。
 フッ素樹脂チューブ1416は図面水平方向に配置されているが、マイクロ波は偏波であるため、電界を効率的に液体試料に作用させるためにフッ素樹脂チューブは導波管内に形成される電界が振動する方向に略平行に設置される。図40に示す例によれば、フッ素樹脂チューブは長手方向がy方向となるように設置される。なお、フッ素樹脂チューブは長手方向がx方向、すなわち重力方向に略平行となるように設置してもよく、重力方向に所定の角度で(例えば重力方向に略垂直に)設置しても良い。重力方向に略平行となるように設置した場合、フッ素樹脂チューブ内に存在する液体を排出する上で効率的である。
 フッ素樹脂チューブ1416の他方の端部(不図示)は吐出用チューブ1412に接続される。吐出用チューブ1412は吐出用チューブ1314と吐出用継手1310を介して接続される。
 吸引用チューブ1312および吐出用チューブ1314はそれぞれ吸引用継手1308および吐出用継手1310から着脱可能とし、取り替えることができるように構成される。
 なお、フッ素樹脂チューブ以外の吸引用チューブなどの各チューブや継手、ポンプのダイアフラム等の接液部はフッ素樹脂製であることが耐溶剤性を高めるために好ましい。特に上記のPFAが好ましく用いられる。
 マイクロ波空洞共振器は、筐体1302の底部に設置されたコの字型部材1404に固定されている。また、マイクロ波空洞共振器は、導波管1418の端部に接続された同軸ケーブル1408および1410を通じて外部に設けられたネットワークアナライザと接続されており、当該同軸ケーブルにより信号の伝送が行われる。
 電源スイッチ1318は、ポンプコントローラ1304およびマイクロポンプ1322に電源を供給するACアダプタ1406に対して電源の投入/切断の切換えを行うように構成される。
 次に、測定部1300の動作について説明する。ポンプコントローラ1304を操作することにより、マイクロポンプ1322における液体試料の流量を調整して、容器1316内の液体試料を吸引用チューブ1312および吸引用チューブ1414を通じて液体試料を吸引し、液体試料導入用チューブ1320からフッ素樹脂チューブ1416へ液体試料を導入して導波管1418内を通過させる。フッ素樹脂チューブ1416を通過した液体試料は、吐出用チューブ1412および吐出用チューブ1314を通じて容器1316に吐出され、液体試料が循環する。
 このようにして、液体試料を流動させる際に、液体を入れた容器から吸引用チューブを介して液体試料を吸引してフッ素樹脂チューブの一方の端部に導入し、このフッ素樹脂チューブの他方の端部から吐出用チューブを通じて液体試料を容器に吐出することが可能となる。
 本発明の具体的な実装において、液体試料が吐出されたフッ素樹脂チューブ1416を洗浄する際には、容器1316にアセトンまたは水を入れてこれをフッ素樹脂チューブ1416に流し、その後空気を流して乾燥させることとしても良い。この場合、測定部にチューブの自動洗浄システムを設置することとしても良い。例えば、アセトン、純水などの洗浄液を収容した洗浄液タンクを別途設けておく。そして、測定対象の液体を取り替える前に、洗浄モードにおいて、容器1316を洗浄液タンクに取替え、洗浄を行う。この操作は、上述したキャリブレーションにおける(3)の工程の操作と同様である。そして、洗浄の終了後、洗浄液タンクを測定対象の容器に取り替えるようにする。
 次に、図41を参照し、本実施形態に係る液体中の水分測定方法について説明する。
 マイクロ波空洞共振器3702を構成する導波管3710に設けられた貫通孔107、108、109のいずれかに、液体が通過可能なチューブ106を挿設する。同図に示す例では、チューブ106を貫通孔108に挿設している。
 ここで、液体試料中に生じ得る泡が、高精度な測定の妨害になる。この泡を除去するため、チューブ106を挿設する際には、図41に示すように鉛直方向に配置し、液体試料を下側からポンプアップする方式を採用することが好ましい。これは、液体を下側からポンプアップすることにより、泡が上方に抜けやすくなるためである。特に、液体試料を充填保持して測定する場合において、ポンプの動作を停止したときに、液体試料から泡の抜けが良くなる。
 次いで、チューブ106の一方の端部に液体試料の流量を調節するためのバルブ708を取り付ける。チューブ106の他方の端部には、循環ポンプ706のチューブ712の端部に設けられたバルブ710を取り付ける。このバルブ710もまた、液体試料の流量を調節するためものである。このようにして、循環ポンプ706は、容器702内の液体試料を吸引してチューブ712を通じてチューブ106に提供し、バルブ708から容器702に液体試料を戻すように構成される。
 次いで、チューブ106内に液体が存在する状態および存在しない状態における共振周波数または共振ピークレベルを測定する。
 そして、測定された共振周波数または共振ピークレベルから、ΔfまたはΔPを算出し、液体に含まれる水分を計算する。
 以下、本発明の具体的な実施例について説明する。
 5種類の液体について、各液体がどの程度のΔPおよびΔfになるのか、また測定位置によってどの程度変わるのかを知るために、以下のような手順で実験を行った。
1.マイクロ波の吸収が小さいテフロン(登録商標)製のチューブ(フロン工業社製PFAチューブ(F-8011))を用意し、この中に5種類の液体を充填した。チューブの寸法は外径3mmφ、内径2mmφ、長さ12cmのものを用いた。液体の種類としては、エチレングリコール、メタノール、エタノール、アセトン、IPAを用いた。
2.液体の入っていないテフロン(登録商標)チューブをブランクとして用意し、このチューブをマイクロ波空洞共振器の穴部に設置し、そのときの共振周波数および共振ピークレベルを測定した。ただし、チューブの設置位置については、電界分布を考慮し、図6Aの(1)から(3)の位置で測定を行った。
3.同様に、各種液体が入ったテフロン(登録商標)チューブを(1)から(3)の位置で測定し、その差から共振周波数のシフト量Δfおよび共振ピークレベルの変化量ΔPを得た。ここで、測定は室温で行い、マイクロ波の周波数を4GHzとした。
 5種類の液体のΔPの値を測定位置(1)~(3)についてまとめた結果を表4に示す。単位はデシベルで表記した。
Figure JPOXMLDOC01-appb-T000004
     表4
 また、同様にΔfについてまとめた結果を表5に示す。単位はMHzで表記した。
Figure JPOXMLDOC01-appb-T000005
     表5
 上記の考え方で液体中の水分率を測定できることを確認するために、以下の手順で実験を行った。
1.実施例3で用いたテフロン(登録商標)チューブに、水と他の液体とを混ぜた混合液を作る。混合液全体に対する水の割合を体積で0%から30%までほぼ5%刻みで6水準のサンプルを5種類の液体について作成した。具体的には、エタノール、メタノール、イソプロピルアルコール(IPA)、アセトン、エチレングリコールを使用した。
2.各液体について、水の含有量が異なる5種類のサンプルについて、実施例1と同様にΔfおよびΔPを測定した。ここで、チューブの設置位置は(1)、(2)、(3)を選択した。
 その測定結果について、横軸に水分率、縦軸にΔPをとってグラフ化したものを図42~図46に示す。
 次いで、Δfと水分率の関係を表したグラフを図47~図51に示す。
 以上のグラフから、水分率と測定値(Δf、ΔP)との間には強い相関関係があることが確認された。これらの結果から、各液体について予めこのような相関関係を検量線として作成しておけば、同種の混合液体で水分率が未知のサンプルであっても、同様の手順でΔfまたはΔPを測定すれば、即座に水分率が求められることが分かった。
 (第11実施形態)
 上述した実施形態では、検量線を作成する際に計装エアーを用いてキャリブレーションを行う例について説明したが、この場合、減圧弁を入れる等、エアー圧を適正に保つ必要がある。
 本実施形態では、専用のエアーコンプレッサーを測定部に導入し、キャリブレーションを行う。
 図52は、本発明の第11実施形態に係る測定部内部の構成を概略的に示す図である。測定部2000において、吸引用チューブ1312は吸引用チューブ1414に三方弁A 2004を介して接続される。この三方弁A 2004は、エアーの出入口2006を有する。
 吸引用チューブ1414はマイクロポンプ1322に接続される。マイクロポンプ1322は液体試料導入用チューブ2208の一方の端部に接続される。液体試料導入用チューブ2208の他方の端部は液体試料導入用チューブ1320の一方の端部に三方弁2210を介して接続される。液体試料導入用チューブ1320の他方の端部は、導波管1418からなるマイクロ波空洞共振器に挿通されたフッ素樹脂チューブ1416の一方の端部にL型継手1402を介して接続される。
 三方弁B 2210は、さらに圧縮エアー供給用チューブ2212に接続されている。圧縮エアー供給用チューブ2212は、二方弁2214および圧縮エアー供給用チューブ2216を介してエアーコンプレッサー2218に接続されている。エアーコンプレッサー2218は、チューブ内掃除用の圧縮エアーを発生させるものであり、例えば、大自工業社製のML250を用いることができる。
 フッ素樹脂チューブ1416の他方の端部(不図示)は吐出用チューブ1412の一方の端部に接続される。吐出用チューブ1412の他方の端部は試料回収容器2002内に配置される。
 三方弁A 2004および三方弁B 2210は、チューブ掃除用エアーと液体試料とを切り替えるものであり、例えばフロン工業社製のF-2388を用いることができる。この切り替え制御は、コンピュータ105からの指令によって自動的に行うものとしても良い。
 マイクロ波空洞共振器は、コの字型部材1404に固定されている。また、マイクロ波空洞共振器は、導波管1418の端部に接続された同軸ケーブル1408および1410を通じて外部に設けられたネットワークアナライザと接続されており、当該同軸ケーブルにより信号の伝送が行われる。
 測定部2000により実行されるキャリブレーションの動作は、図33を参照して上述した動作とすることができる。
 (第12実施形態)
 図53は、本発明の第12実施形態に係るマイクロ波空洞共振器の構成を示す。
 マイクロ波空洞共振器を構成する導波管1002には、上面に内径の異なる貫通孔1008、1010が設けられ、下面には対応する貫通孔1012、1014がそれぞれ設けられる。次いで、貫通孔1008および1012の内径と整合するチューブ1004、ならびに貫通孔1010および1014の内径と整合するチューブ1006を用意する。そして、チューブ1004は貫通孔1008および1012に挿設され、チューブ1006は貫通孔1010および1014に挿設される。このようにして、チューブ1004または1006の少なくとも一方に液体試料を供給し、チューブ内に液体が存在する状態および存在しない状態における共振周波数または共振ピークレベルを測定する。
 そして、測定された共振周波数または共振ピークレベルから、ΔfまたはΔPを算出し、液体に含まれる水分を計算する。
 本実施形態は、このように内径の異なるチューブを使い分けることにより、感度の調整を行える利点を有する。
 (第13実施形態)
 図54は、本発明の第13実施形態に係るマイクロ波空洞共振器の構成を示す。
 図54Aに示すように、マイクロ波空洞共振器を構成する導波管1018には、上面に内径の大きな貫通孔1022が設けられ、下面に内径の小さな貫通孔1024が設けられる。次いで、この貫通孔1022の内径と整合するテーパ形状を有するチューブ1020を用意する。次いで、チューブ1020は貫通孔1022および1024に挿設される。そして、チューブ1020に液体試料を供給し、チューブ1020内に液体が存在する状態および存在しない状態における共振周波数または共振ピークレベルを測定する。その後、測定された共振周波数または共振ピークレベルから、ΔfまたはΔPを算出し、液体に含まれる水分を計算する。
 チューブ1020は駆動部1608を介して制御部1610に接続される。駆動部1608は、チューブ1020を貫通孔1022および1024内に挿設された状態で、矢印で示す方向に移動させるための駆動制御を行う。制御部1610は、駆動部1608に制御信号を送信し、チューブ1020の挿設位置を変化させることで、共振周波数または共振ピークレベルの測定感度を制御するものである。
 図54Bはチューブ1020が貫通孔1022および1024に嵌め込まれるように挿設された導波管1018の断面図を、図54Cは図54Bの状態からチューブ1020を上(矢印方向)に移動したときの断面図をそれぞれ示す。このような構成によれば、制御部1610からの指示に応じて駆動部1608によりチューブ1020を上下方向(チューブ1020の挿設方向と略平行な方向)に移動させることにより、導波管1018の断面を横切る液体試料の量を調節し、これにより測定感度を制御することができる。
 (第14実施形態)
 次に、図55を参照し、本発明の第14実施形態に係る液体中の水分測定方法について説明する。
 本実施形態に係るチューブは分岐して形成されており、分岐したチューブの各々は異なる貫通孔に挿設される。そして、測定感度を制御する際に、分岐したチューブの少なくとも1つに液体が存在する状態における共振周波数または共振ピークレベルを測定する。
 マイクロ波空洞共振器3702を構成する導波管3710に設けられた貫通孔107、108、109に、それぞれ液体が通過可能なチューブ1112、1114、1116を挿設する。
 次いで、チューブ1112、1114、1116の一方の端部に液体試料の流量を調節するための切替バルブ1108を取り付ける。切替バルブ1108は、例えば四方弁により構成することができる。チューブ1112、1114、1116の他方の端部には、循環ポンプ706のチューブ712の端部に設けられた切替バルブ1110を取り付ける。この切替バルブ1110もまた、液体試料の流量を調節するためものであり、例えば四方弁により構成することができる。切替バルブ1108および1110は、電子制御ユニット等により構成される切替部1118からの指示信号を受信して開弁/閉弁の制御をオンラインで行うように構成することができる。
 循環ポンプ706は、容器702内の液体試料704を吸引してチューブ712を通じてチューブ1112、1114、1116の少なくとも1つに提供し、切替バルブ1108から容器702に液体試料704を戻すように構成される。
 次いで、チューブ内に液体が存在する状態および存在しない状態における共振周波数または共振ピークレベルを測定する。
 そして、測定された共振周波数または共振ピークレベルから、ΔfまたはΔPを算出し、液体に含まれる水分を計算する。
 このように構成することで、以下のように液体試料が通過するチューブを切替バルブ1110、1108により切り替えて、例えば測定感度の制御を行うことができる。
 (1)測定感度を上げる場合には、チューブ1112、1114、1116の2本または3本に液体試料を通過させ、測定感度を下げる場合には、これらチューブのうちの1本に液体試料を通過させる。
 (2)測定感度を上げる場合には、チューブ1114に液体試料を通過させ、測定感度を下げる場合にはチューブ1112または1116に液体試料を通過させる。
 (3)チューブ1112に液体試料を通過させる場合と、チューブ1112、1114に液体試料を通過させる場合と、チューブ1112、1114、1116に通過させる場合の3段階の切り替え制御を行う。
 従って、切替バルブ1108、1110により液体試料を通過させるチューブの切り替え制御を行うことで、多様な測定感度の調節が可能となる。
 (第15実施形態)
 次に、図56を参照し、本発明の第15実施形態に係る液体中の水分測定方法について説明する。
 本実施形態に係る水分測定装置において、導波管に設けられた貫通孔に挿設されたチューブは、導波管内部を通らない分岐路を有し、液体試料の流路をチューブまたは分岐路に切り替えることができるように構成される。
 図56に示す例では、マイクロ波空洞共振器3702を構成する導波管3710に設けられた貫通孔108にチューブ1504が挿設される。チューブ1504の一方の端部には液体試料の流量を調節するための切替バルブ1502が取り付けられる。切替バルブ1502は、例えば三方弁により構成することができる。チューブ1504の他方の端部には、循環ポンプ706から伸びるチューブ712の端部に設けられた切替バルブ1508が取り付けられている。この切替バルブ1508もまた、液体試料の流量を調節するためものであり、例えば三方弁により構成することができる。
 切替バルブ1502および1508の間には分岐路1506が形成される。この分岐路1506は、例えばチューブ1504と同様の材料により構成することとしても良い。切替バルブ1502および1508は、電子制御ユニット等により構成される切替部1510からの指示信号を受信して開弁/閉弁の制御をオンラインで行うように構成することができる。
 循環ポンプ706は、容器702内の液体試料704を吸引し、チューブ712を通じてチューブ1504または分岐路1506に提供し、切替バルブ1502から容器702に液体試料704を戻すように構成される。
 このように本実施形態によれば、分岐路を設けることで、チューブ内に液体が存在する状態と、チューブ内に液体が存在しない状態をオンラインで容易に作り出すことができる。
 (第16実施形態)
 図57は、本発明の第16実施形態に係るマイクロ波空洞共振器の構成を示す。
 マイクロ波空洞共振器を構成する導波管1602には、上面および下面にそれぞれ長孔形状の貫通孔1606および1607が設けられ、この貫通孔1606および1607にチューブ1604が挿設される。そして、チューブ1604に液体試料を供給し、チューブ1604内に液体が存在する状態および存在しない状態における共振周波数または共振ピークレベルを測定することができるように構成される。
 チューブ1604は駆動部1608を介して制御部1610に接続される。駆動部1608は、チューブ1604を貫通孔1606内に挿設された状態で、矢印で示す方向に移動させるための駆動制御を行う。制御部1610は、駆動部1608に制御信号を送信し、チューブ1604の貫通孔1606内における挿設位置を変化させることで、共振周波数または共振ピークレベルの測定感度を制御するものである。
 なお、図57において、チューブ1604はマイクロ波の進行方向に略垂直に移動するが、チューブ1604の位置を、挿設方向と略垂直な他の方向に移動させることで、測定感度を制御することもできる。例えば、長孔形状の貫通孔における長軸の方向をマイクロ波の進行方向に略平行にして、チューブ1604の位置を、マイクロ波の進行方向に移動させることによって測定感度を制御しても良い。
 (第17実施形態)
 次に、図58を参照し、本発明の第17実施形態について説明する。
 水分測定装置をオンライン用途で使用する場合は、製造ラインにおいて液体が通るメイン配管にサンプリング配管を分岐接続し、このサンプリング配管を通る液体について水分測定を行うこととしても良い。
 図58は、本実施形態に係る水分測定装置の測定部の構成を示す。製造ラインのメイン配管2506には、切替バルブ2502および2508を介してサンプリング配管2504が接続されている。そして、メイン配管2506からサンプリング配管2504に流れる液体が、メイン配管2506に戻るように構成されている。
 切替バルブ2502および2508は、電子制御ユニット等により構成される切替部2510からの指示信号を受信して開弁/閉弁の制御をオンラインで行うように構成することができる。
 ここで、メイン配管2506における流速V1とサンプリング配管2504における流速V2とが、V1=V2となるように構成することが望ましい。V2の値はポンプ容量とサンプリング配管径とによって決まる。また、サンプリング配管にサブ配管をさらに設けてV2の値を調整することもできる。このようにサンプリング配管における液体の流速を調整することで、真の意味におけるリアルタイムでの水分測定が可能となる。
 (第18実施形態)
 上述した実施形態では導波管3710の上面および底面の両方に貫通孔を設けた例について説明したが、チューブとして二重管を採用することにより、導波管3710の一方の面にのみ設けられた貫通孔にチューブを挿通させて測定を行うことができる。
 図59は、本発明の第18実施形態に係る導波管およびチューブの断面を示す。
 図59Aに示す例において、導波管3710の上面に設けられた貫通孔108に挿通されたチューブ2602は二重管として構成されており、図面上方からチューブ2602の左側を通過する液体試料は矢印方向に進みチューブ2602の右側を上方へ向かって戻る。
 図59Bは本実施形態の他の例を示す。チューブ2604は内側に設けられた管と外側の管とから構成されており、チューブ2604の内側の管を流れる液体試料は矢印方向へ進み、外側の管に沿って戻る。
 このように構成すると、貫通孔の数を少なくすることができ、導波管3710の密閉性がより高まることから、マイクロ波の漏れを効果的に防止することが可能となる。
 また、チューブの継手を少なくすることができるため、液体の漏れをより効果的に防止することが可能となる。
 (第19実施形態)
 次に、導波管の貫通孔にスリーブを設ける本発明の第19実施形態について説明する。
 導波管3710に設けられた貫通孔107、108および109に、スリーブを設けることとしても良い。この場合、スリーブの素材は、マイクロ波の吸収および反射が少ないことが望ましい。そのような要件を満足する材質としては、例えばマイクロ波の吸収および反射の少ないフッ素樹脂が望ましい。
 このように、貫通孔にスリーブを設けることで、チューブの挿入,抜き出しをより簡便に行うことができ、作業性が向上する。また、スリーブとチューブとを嵌合させることにより、チューブの端部から液ダレが発生した場合においても導波管3710内へ液体が流れ込むことを防止することができる。また導波管の内部にほこり、ゴミ、湿気等の侵入を防ぐ効果も期待でき、他の実施形態にも適用して効果を奏する。
 (第20実施形態)
 次に、測定部における気泡の発生を防止する本発明の第20実施形態について説明する。
 液体の種類によっては、その液体から気泡が発生しやすいものがある。そこで、このような液体を測定するため、気泡の発生を防止する構成を採用することが好ましい。この場合の構成として、測定部に気泡除去手段を設けることとしても良い。具体的には、加圧脱泡装置をマイクロポンプに接続することとしても良く、またマイクロポンプの代わりに加圧ポンプを使用することも良い。また、サンプリング配管系を完全に密閉化することとしても良い。例えば、図58に示す例において、サンプリング配管2504に液体試料が充填されている状態で、切替バルブ2502および2508の切替制御によりサンプリング配管2504を密閉し、測定を行うこととしても良い。
 また、本発明によれば、マイクロ波空洞共振器を用いた液体中の水分の測定において、その測定感度を制御することができる。
 (第21実施形態)
 以上の実施形態では測定感度を制御、調整可能な例を多く示した。一方、できるだけ高い感度を提供する目的で以下の実施形態がある。
 すなわち、マイクロ波空洞共振器の断面を少なくとも全て覆う形状のチューブ状部材を使用すれば、高い測定感度を得られる。
(1)開口部がスリット部である場合は、スリットの隙間と略同じ厚みの扁平状のチューブ状部材を適用することができる。好ましくは、マイクロ波空洞共振器の断面が全て覆われていれば、高い測定感度を得ることができる。この扁平状のチューブ状部材は、内部に液体を保持することができるように袋状であることが好ましい。また、チューブ状部材は、扁平に押しつぶされた球状、いわば煎餅状であっても良い。これらの構造を有する部材を樹脂チューブによる扁平単純袋状のチューブ状部材と呼ぶ。樹脂チューブによる扁平単純袋状のチューブ状部材の一例を図60に符号6002で示す。
 また、第1実施形態で使用された1本のフッ素樹脂チューブを、好ましくは同一平面上に螺旋状(蚊取り線香状)に巻き、マイクロ波空洞共振器の断面を好ましくは全て覆っていれば、高い測定感度を得られる。このような構造を有する部材を樹脂チューブによる螺旋状のチューブ状部材と呼ぶ。樹脂チューブによる螺旋状のチューブ状部材の一例を図61に符号6102で示した。
 また、このような螺旋状のチューブ状部材の代わりに、1本のフッ素樹脂チューブを折り返して同一平面状に略平板状にチューブ状部材として形成することもできる。これを樹脂チューブによる折返し構造のチューブ状部材と呼ぶ。樹脂チューブによる折返し構造のチューブ状部材の一例を図62に符号6202で示す。
 これらの3種の扁平状のチューブ状部材の例では、フッ素樹脂チューブが全体として、実質的に袋状のチューブ状部材を形成していると考える。また上記のような3種の扁平状のチューブ状部材の例では、液体の流入口は図中下部側に配置され、流出口は図中上部側に配置されることがより好ましい。これは、液体の流れ方向が基本的に重力方向に逆らう方向のほうが、内部での液体の入れ替わりがより確実になる点、気泡混入がより少なくなる点または気泡流出がより容易になる点でより有利と考えられるからである。
(2)開口部が孔である場合は、上記のような3種の扁平状のチューブ状部材のいずれの例であっても、マイクロ波空洞共振器の内部で、好ましくはマイクロ波空洞共振器の中央部に、液体の流入口と流出口がマイクロ波空洞共振器の外部に出る形態で設置することができる。図63は、貫通孔を有する導波管6302に樹脂チューブによる扁平単純袋状のチューブ状部材6002を設置した例を示す。
 以下の形態は開口部がスリット部であるか孔であるかにかかわらず適用可能である。上記の袋状のチューブ状部材はフッ素樹脂系の樹脂シートにより扁平な袋状に製作することができる。また、フッ素系の樹脂板に切削加工により、大きな溝を掘り空間を作製することもできる。このように板に溝を加工した場合は、全ての溝の開口部を塞いで液密にする。例えば、フッ素系樹脂製の薄い肉厚のメクラ板で全ての溝を塞げば、溝全体の内部に液体を保持するように実質的な袋状のチューブ状部材とすることができる。図64は、樹脂板により扁平単純袋状のチューブ状部材を作製する方法の例を示す。図64Aに示すように、フッ素系樹脂製の樹脂板6402に袋状の溝を掘り、樹脂板6402と同様のフッ素系樹脂製の薄い肉厚のメクラ板6404とを貼り合わせることにより、図64Bに示すようにチューブ状部材を作製することができる。
 また、3Dプリンターの技術を使用して、図61に示したような螺旋状のチューブ状部材を立体的に作製することもできる。
 また、直線的な溝を複数堀り、端部を適宜連通させて1本の長い溝になるように作製することもできる。図65は、樹脂板により1本の長い溝のチューブ状部材を作製する例を示す。図65Aに示すように、図64と同様に樹脂板6502に長い溝6506、6508、6510、6512、6514を掘る。次いで、これらの溝を、連通溝6516、6518、6520、6522により連通させる。そして、樹脂板6502と図64と同様にメクラ板6504とを貼り合わせることにより、図65Bに示すようにチューブ状部材を作製することができる。以上のように樹脂板とメクラ板を言葉通り接着剤などにより貼り合せることもできるが、場合によって、パッキング、Oリング等のシール部材を介して複数のねじなどで締めて両板を密着させることも可能である。
 (第22実施形態)
 以上の実施形態では貫通孔が導波管の1つの面または向かい合う2つの面に形成される例を示した。貫通孔は、導波管の周囲方向に延伸して導波管の周囲を一部囲む部分的なスリット部を形成することとしてもよい。この部分的なスリット部を含む導波管の例を図66に示す。同図に示すように導波管6602にスリット部6604を形成することにより、例えばチューブ106を矢印方向に移動させて、測定感度を制御することができる。
 (他の実施形態)
 なお、上述の実施形態では水分率を計算する例について説明したが、同様の方法で水分量を計算することとしても良い。
 本発明はさらに以下の実施形態を含む。
1.スリット部を設けた導波管を備えるマイクロ波空洞共振器と、
 前記スリット部に設置され、少なくとも前記導波管の内部において液体を液密に保持可能なチューブ状部材と、
 共振周波数または共振ピークレベルを測定する測定手段と、
 前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算する計算手段と
 を含む液体中の水分測定装置。
2.前記チューブ状部材が前記導波管の断面を横切る面積は前記導波管の断面より小さい項目1に記載の液体中の水分測定装置。
3.前記チューブ状部材は前記導波管内に形成される電界の振動する方向に略平行に設置される項目1または2に記載の液体中の水分測定装置。
4.前記チューブ状部材は重力の方向と略平行に設置される項目1ないし3のいずれかに記載の液体中の水分測定装置。
5.前記チューブ状部材は重力の方向に対して所定の角度で設置される項目1ないし3のいずれかに記載の液体中の水分測定装置。
6.前記チューブ状部材は前記液体が通る配管に分岐接続されている項目1ないし5のいずれかに記載の液体中の水分測定装置。
7.前記マイクロ波空洞共振器の断面は矩形である項目1ないし6のいずれかに記載の液体中の水分測定装置。
8.前記少なくとも1つのチューブ状部材は、一対のチューブ状部材を含む項目7に記載の液体中の水分測定装置。
9.前記計算手段は、前記液体中に含まれる水分の水分量または水分率を計算する項目1ないし8のいずれかに記載の液体中の水分測定装置。
10.前記チューブ状部材中の液体を流動させる流動手段をさらに含む項目1ないし9のいずれかに記載の液体中の水分測定装置。
11.前記流動手段は、
 前記液体を入れた容器から吸引用チューブを介して前記液体を吸引して前記チューブ状部材の一方の端部に導入する導入部と、
 前記チューブ状部材の他方の端部から吐出用チューブを通じて前記液体を前記容器に吐出する吐出部と
 を含む項目10に記載の液体中の水分測定装置。
12.前記チューブ状部材を洗浄する洗浄手段をさらに含む項目11に記載の液体中の水分測定装置。
13.前記導入部は、密閉された容器に収容された前記液体を前記チューブ状部材に導入する項目11または12に記載の液体中の水分測定装置。
14.前記流動手段は、静電気防止タイプの素材で構成された部分を含む項目10ないし13のいずれかに記載の液体中の水分測定装置。
15.前記流動手段により発生した気泡を検出する気泡検出手段をさらに含む項目10ないし14のいずれかに記載の液体中の水分測定装置。
16.前記チューブ状部材はマイクロ波の吸収および反射の少ない材質からなる項目1ないし15のいずれかに記載の液体中の水分測定装置。
17.前記導波管、前記液体、または測定環境の温度を測定する温度測定部をさらに含み、
18.前記計算手段は前記温度測定部により測定された温度に基づいて、計算される水分の値を校正する項目1ないし16のいずれかに記載の液体中の水分測定装置。
19.前記測定手段における異常の発生を判断する手段と、
 前記測定手段における異常が発生したと判断した場合、移動端末に異常通知信号を発信する手段と
 をさらに含む項目1ないし17のいずれかに記載の液体中の水分測定装置。
20.導波管型のマイクロ波空洞共振器に設けられたスリット部に、少なくとも前記導波管の内部において液体を液密に保持可能なチューブ状部材を設置するステップと、
 共振周波数または共振ピークレベルを測定するステップと、
 前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算するステップと
 を含む液体中の水分測定方法。
21.少なくとも1つの孔を設けた導波管を備えるマイクロ波空洞共振器と、
 前記孔に挿設され、少なくとも前記導波管の内部において液体を液密に保持可能なチューブ状部材と、
 共振周波数または共振ピークレベルを測定する測定手段と、
 前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算する計算手段と
 を含む液体中の水分測定装置。
22.前記孔は貫通孔を含む項目21に記載の液体中の水分測定装置。
23.前記チューブ状部材が前記導波管の断面を横切る面積は前記導波管の断面より小さい項目21または22に記載の液体中の水分測定装置。
24.前記チューブ状部材は前記導波管内に形成される電界の振動する方向に略平行に設置される項目21ないし23のいずれかに記載の液体中の水分測定装置。
25.前記チューブ状部材は重力の方向と略平行に設置される項目21ないし24のいずれかに記載の液体中の水分測定装置。
26.前記チューブ状部材は重力の方向に対して所定の角度で設置される項目21ないし24のいずれかに記載の液体中の水分測定装置。
27.前記チューブ状部材は前記導波管内部を通らない分岐路を有し、前記液体の流路を該チューブ状部材または該分岐路に切り替える切替部をさらに含む項目21ないし26のいずれかに記載の液体中の水分測定装置。
28.前記チューブ状部材は一端から他端に向かって断面が拡大するテーパ形状を有し、該チューブ状部材の前記孔内における挿設位置を、挿設方向と略平行な方向に変化させることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含む項目21ないし27のいずれかに記載の液体中の水分測定装置。
29.前記マイクロ波空洞共振器の断面は矩形である項目21ないし28のいずれかに記載の液体中の水分測定装置。
30.前記チューブ状部材の前記孔内における挿設位置を、挿設方向と略垂直な方向に変化させることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含む項目29に記載の液体中の水分測定装置。
31.前記孔は前記導波管の少なくとも一の面に複数設けられ、前記チューブ状部材を挿設する該孔を変更することで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含む項目29に記載の液体中の水分測定装置。
32.前記チューブ状部材は前記導波管の少なくとも一の面に複数本挿設され、前記液体を通過させる該チューブ状部材を切り替えることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含む項目29に記載の液体中の水分測定装置。
33.前記計算手段は、前記液体中に含まれる水分の水分量または水分率を計算する項目21ないし32のいずれかに記載の液体中の水分測定装置。
34.前記チューブ状部材中の液体を流動させる流動手段をさらに含む項目21ないし33のいずれかに記載の液体中の水分測定装置。
35.前記流動手段は、
 前記液体を入れた容器から吸引用チューブを介して前記液体を吸引して前記チューブ状部材の一方の端部に導入する導入部と、
 前記チューブ状部材の他方の端部から吐出用チューブを通じて前記液体を前記容器に吐出する吐出部と
 を含む項目34に記載の液体中の水分測定装置。
36.前記チューブ状部材を洗浄する洗浄手段をさらに含む項目35に記載の液体中の水分測定装置。
37.前記導入部は、密閉された容器に収容された前記液体を前記チューブ状部材に導入する項目35または36に記載の液体中の水分測定装置。
38.前記流動手段は、静電気防止タイプの素材で構成された部分を含む項目34ないし37のいずれかに記載の液体中の水分測定装置。
39.前記流動手段により発生した気泡を検出する気泡検出手段をさらに含む項目34ないし38のいずれかに記載の液体中の水分測定装置。
40.前記孔は前記導波管の中央部に設けられる項目21ないし39のいずれかに記載の液体中の水分測定装置。
41.前記チューブ状部材はマイクロ波の吸収および反射の少ない材質からなる項目21ないし40のいずれかに記載の液体中の水分測定装置。
42.前記少なくとも1つの孔のうち、前記チューブ状部材が挿設されていない孔を塞ぐキャップ部材をさらに含む項目21ないし41のいずれかに記載の液体中の水分測定装置。
43.前記キャップ部材は前記導波管と電気的に接続される項目42に記載の液体中の水分測定装置。
44.前記導波管、前記液体、または測定環境の温度を測定する温度測定部をさらに含み、
 前記計算手段は前記温度測定部により測定された温度に基づいて、計算される水分の値を校正する項目21ないし43のいずれかに記載の液体中の水分測定装置。
45.前記チューブ状部材は前記液体が通る配管に分岐接続されている項目21ないし44のいずれかに記載の液体中の水分測定装置。
46.前記チューブ状部材は二重管からなる項目21ないし45のいずれかに記載の液体中の水分測定装置。
47.前記孔にスリーブが設けられている項目21ないし46のいずれかに記載の液体中の水分測定装置。
48.前記測定手段における異常の発生を判断する手段と、
 前記測定手段における異常が発生したと判断した場合、移動端末に異常通知信号を発信する手段と
 をさらに含む項目21ないし47のいずれかに記載の液体中の水分測定装置。
49.前記チューブ状部材は、前記導波管の軸方向に扁平な実質的な袋状であり、断面と略平行に配置される項目1,3,6,7,10,11または12のいずれか一項に記載の液体中の水分測定装置。
50.前記チューブ状部材は、扁平単純袋状のチューブ状部材、樹脂チューブによる螺旋状のチューブ状部材または樹脂チューブによる折返し構造のチューブ状部材である項目49に記載の液体中の水分測定装置。
51.導波管に設けられた少なくとも1つの孔に、少なくとも前記導波管の内部において液体を液密に保持可能なチューブ状部材が挿設された、導波管型のマイクロ波空洞共振器を用いた液体中の水分測定方法であって、
 共振周波数または共振ピークレベルを測定するステップと、
 前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算するステップと
 を含む液体中の水分測定方法。
 以上説明した複数の実施形態は、適宜それぞれの形態を二つ以上組み合わせて使用することが可能であることはいうまでもない。
 化学工業等の分野において、アルコールをはじめ種々の有機溶媒や樹脂の原料などの中に含まれる水分量を測定し、管理することは、途中のプロセスや最終製品の品質等に影響を与えるため、重要な測定因子となっている。本発明は、有機溶剤、無機農薬、合成洗剤、油類等に含まれる水分を測定する場合に利用ができる。具体的には、アクリル樹脂やアクリル繊維の原料であるジメチルホルムアミド(DMF)中の微量水分測定、洗浄液中の水分測定、合成ゴム液体原料中の微量水分測定、メチルエチルケトンペルオキシド中の水分測定、過硫酸アンモニウム中の水分測定、インク中の水分測定、タービンオイル中の水分測定、ディーゼルオイルやガソリン中の水分測定、殺虫剤(シクロヘキサノン)中の水分測定などへ応用の可能性が考えられる。
 100 水分測定装置
 102 マイクロ波空洞共振器
 104 ネットワークアナライザ
 105 コンピュータ
 106、712、1004、1006、1020、1112、1114、1116、1504、1604、2602、2604 チューブ
 107、108、109、1008、1010、1022、1606 貫通孔
 110 スリット部
 202 発振部
 204 受信部
 206 共振ピークレベル検出部
 208 共振周波数検出部
 210 演算部
 212 データ保持部
 702 容器
 704 液体試料
 706 循環ポンプ
 708、710 バルブ
 1002、1018、1602、3710 導波管
 1108、1110、1502、1508、2502、2508 切替バルブ
 1118、1510、2510 切替部
 1506 分岐路
 1608 駆動部
 1610 制御部
 2504 サンプリング配管
 2506 メイン配管
 2702 移動端末
 2704 無線受信部
 2706 通知部
 2712 通信部
 2714 漏液検出器
 2716 気泡検出器

Claims (13)

  1.  開口部が設けられた導波管を備えるマイクロ波空洞共振器と、
     前記開口部に設けられ、液体を液密に保持可能なチューブ状部材と、
     共振周波数または共振ピークレベルを測定する測定手段と、
     前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算する計算手段と
     を含むことを特徴とする液体中の水分測定装置。
  2.  前記チューブ状部材が前記導波管の断面を横切る面積は前記導波管の断面より小さいことを特徴とする請求項1に記載の液体中の水分測定装置。
  3.  前記チューブ状部材は前記導波管内に形成される電界の振動する方向に略平行に設置されることを特徴とする請求項1に記載の液体中の水分測定装置。
  4.  前記チューブ状部材は重力の方向と略平行に設置されることを特徴とする請求項1に記載の液体中の水分測定装置。
  5.  前記チューブ状部材は重力の方向に対して所定の角度で設置されることを特徴とする請求項1に記載の液体中の水分測定装置。
  6.  前記チューブ状部材は前記導波管内部を通らない分岐路を有し、前記液体の流路を該チューブ状部材または該分岐路に切り替える切替部をさらに含むことを特徴とする請求項1に記載の液体中の水分測定装置。
  7.  前記マイクロ波空洞共振器の断面は矩形であることを特徴とする請求項1に記載の液体中の水分測定装置。
  8.  前記チューブ状部材の前記開口部における設置位置を、前記チューブ状部材の中心軸方向と略垂直な方向に変化させることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含むことを特徴とする請求項1に記載の液体中の水分測定装置。
  9.  前記チューブ状部材は前記開口部内に複数本挿設され、前記液体を通過させる該チューブ状部材を切り替えることで、共振周波数または共振ピークレベルの測定感度を制御する制御部をさらに含むことを特徴とする請求項1に記載の液体中の水分測定装置。
  10.  前記開口部が前記導波管の長手方向の略中央部に設けられたことを特徴とする請求項1に記載の液体中の水分測定装置。
  11.  前記開口部はスリット部であることを特徴とする請求項1に記載の液体中の水分測定装置。
  12.  前記開口部は少なくとも1つの孔であることを特徴とする請求項1に記載の液体中の水分測定装置。
  13.  導波管型のマイクロ波空洞共振器に設けられた開口部に、少なくとも前記導波管の内部において液体を液密に保持可能なチューブ状部材を設置するステップと、
     共振周波数または共振ピークレベルを測定するステップと、
     前記測定された共振周波数または共振ピークレベルから、前記液体に含まれる水分を計算するステップと
     を含むことを特徴とする液体中の水分測定方法。
PCT/JP2015/001707 2014-03-26 2015-03-25 液体中の水分測定装置および水分測定方法 WO2015146171A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510043A JP6376214B2 (ja) 2014-03-26 2015-03-25 液体中の水分測定装置および水分測定方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014064785 2014-03-26
JP2014-064785 2014-03-26
JP2014-113317 2014-05-30
JP2014113317 2014-05-30
JP2014183539 2014-09-09
JP2014183542 2014-09-09
JP2014-183542 2014-09-09
JP2014-183539 2014-09-09

Publications (1)

Publication Number Publication Date
WO2015146171A1 true WO2015146171A1 (ja) 2015-10-01

Family

ID=54194715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001707 WO2015146171A1 (ja) 2014-03-26 2015-03-25 液体中の水分測定装置および水分測定方法

Country Status (2)

Country Link
JP (1) JP6376214B2 (ja)
WO (1) WO2015146171A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195852A (zh) * 2017-12-23 2018-06-22 内蒙古自治区产品质量检验研究院 基于可调微波谐振腔技术的纸张含水量检测方法
EP3978920A1 (de) * 2020-10-01 2022-04-06 Siemens Aktiengesellschaft Automatisierte bestimmung von veränderungen in flüssigen stoffen mit einem mikrowellen hohlraumresonator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110455831A (zh) * 2019-09-06 2019-11-15 程元涛 一种多维立体式快速原油含水测定仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567642A (en) * 1978-11-11 1980-05-21 Bayer Ag Microwave water meter having changeover measuring zone
JP2000162158A (ja) * 1998-09-25 2000-06-16 Oji Paper Co Ltd 誘電率測定方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4211362C2 (de) * 1992-04-04 1995-04-20 Berthold Lab Prof Dr Vorrichtung zur Bestimmung von Materialparametern durch Mikrowellenmessungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567642A (en) * 1978-11-11 1980-05-21 Bayer Ag Microwave water meter having changeover measuring zone
JP2000162158A (ja) * 1998-09-25 2000-06-16 Oji Paper Co Ltd 誘電率測定方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN'ICHI KITAGAWA: "Moisture Measuring System by Dielectric Property", JAPAN TAPPI JOURNAL, vol. 67, no. 9, 1 September 2013 (2013-09-01), pages 991 - 994 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108195852A (zh) * 2017-12-23 2018-06-22 内蒙古自治区产品质量检验研究院 基于可调微波谐振腔技术的纸张含水量检测方法
EP3978920A1 (de) * 2020-10-01 2022-04-06 Siemens Aktiengesellschaft Automatisierte bestimmung von veränderungen in flüssigen stoffen mit einem mikrowellen hohlraumresonator

Also Published As

Publication number Publication date
JP6376214B2 (ja) 2018-08-22
JPWO2015146171A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
JP6376214B2 (ja) 液体中の水分測定装置および水分測定方法
ES2556783T3 (es) Método y aparato para medir las propiedades físicas de fluidos bifásicos
Abdolrazzaghi et al. Sensitivity enhancement of split ring resonator based liquid sensors
US11633735B2 (en) Hybrid modular thin film microfluidic microwave sensing apparatus, systems, and methods
Khanna et al. Dual-band microwave sensor for investigation of liquid impurity concentration using a metamaterial complementary split-ring resonator
Mondal et al. Microwave assisted non-invasive microfluidic biosensor for monitoring glucose concentration
JP6199128B2 (ja) Qcmセンサ
KR20140020226A (ko) 음향 상분리기 및 다상 유체의 조성 모니터링이 일체화된 장치 및 방법
US20230194321A1 (en) Polymer-based coriolis mass flow sensor fabricated through casting
JP2006275614A (ja) 空洞共振器を用いて複素誘電率を測定する装置
US8408045B2 (en) Measurement instrument for density determination
Gillis et al. Perturbations from ducts on the modes of acoustic thermometers
US9784704B2 (en) Non-invasive measurement of dielectric properties of a substance
Wiltshire et al. Integrating 3D printed microfluidic channels with planar resonator sensors for low cost and sensitive liquid detection
Belardinelli et al. Second flexural and torsional modes of vibration in suspended microfluidic resonator for liquid density measurements
EP2260574B1 (en) Microwave cavity sensor
JP6551052B2 (ja) 粉体中の水分率測定装置および方法
US9804124B2 (en) Universal sample holder for measuring the electromagnetic properties of a dielectric and/or magnetic material
Goodwin et al. Phase border and density determinations in the critical region of (carbon dioxide+ ethane) determined from dielectric permittivity measurements
US8307711B2 (en) Apparatus for inspection of a fluid and method
EP2667164A1 (en) Method of, and apparatus for, measuring the physical properties of cryogenic fluids
JP6117929B2 (ja) ガス校正液をリアルタイムで供給するためのガス平衡化コイル
De La Bernardie et al. Low (10–800 MHz) and high (40 GHz) frequency probes applied to petroleum multiphase flow characterization
JP5593261B2 (ja) 共振器を備える計測装置
Cole et al. Chipless RF liquid sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768161

Country of ref document: EP

Kind code of ref document: A1