WO2015146082A1 - Leak-detecting device, leak detection method, and program-containing recording medium - Google Patents

Leak-detecting device, leak detection method, and program-containing recording medium Download PDF

Info

Publication number
WO2015146082A1
WO2015146082A1 PCT/JP2015/001519 JP2015001519W WO2015146082A1 WO 2015146082 A1 WO2015146082 A1 WO 2015146082A1 JP 2015001519 W JP2015001519 W JP 2015001519W WO 2015146082 A1 WO2015146082 A1 WO 2015146082A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
leak
leakage
cross
correlation function
Prior art date
Application number
PCT/JP2015/001519
Other languages
French (fr)
Japanese (ja)
Inventor
友督 小野
宝珠山 治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016509997A priority Critical patent/JPWO2015146082A1/en
Publication of WO2015146082A1 publication Critical patent/WO2015146082A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Definitions

  • the present invention relates to a technique for detecting that a delivery target such as liquid or gas leaks from a delivery structure such as a pipe.
  • Patent Document 1 An example of a method for automating the specification of a leakage position is described in Patent Document 1.
  • sensors are installed at two points on both ends of a survey target section on a pipeline to measure the leak sound, and the leak point is determined based on the propagation time difference of the leak sound to the two sensors. Identify the location. Specifically, first, a cross-correlation function is calculated from leaked sound signals acquired by two sensors, and a propagation time difference of the leaked sound is calculated based on the calculated cross-correlation function value. Based on the calculated propagation time difference, the distance from the leakage point to the sensor installation position is obtained.
  • the pipe leakage detection method (correlation method) described in Patent Literature 1 is based on the point (peak) where the value of the cross-correlation function ⁇ ( ⁇ ) is the maximum value.
  • a propagation time difference Tm is calculated.
  • the accuracy of specifying the leakage position depends on how accurately the propagation time difference Tm is calculated.
  • Patent Document 1 There are many noisy environments, such as roads near busy roads and busy streets.
  • the piping leak detection method described in Patent Document 1 has a problem that it is difficult to accurately specify the leak position in an environment where such noise is generated.
  • the main object of the present invention is to provide a technique for solving the above-described problems.
  • a leak detection device that achieves the above-described object, Using signals representing the detection results of a plurality of sensors, the value of the cross-correlation function of these signals is calculated, the calculated value is equal to or greater than the first threshold value, and the time change of the calculated value at different measurement times is the first.
  • a leakage presence / absence determination means for determining that there is a leakage when the threshold is equal to or less than 2
  • a difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold.
  • leakage position calculation means for specifying the leakage position based on the propagation time difference.
  • a leakage detection method that achieves the above object is as follows. Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals, It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold; A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. , A leak position is specified based on the propagation time difference.
  • a program that achieves the above object is as follows: On the computer, Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals, It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold; A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. , The leakage position is specified based on the propagation time difference.
  • a further aspect of the present invention for achieving the above object is a computer-readable storage medium storing such a program.
  • FIG. It is a block diagram showing the structure of the leak detection apparatus which concerns on 4th embodiment of this invention. It is a block diagram showing the structure of the leak detection apparatus which concerns on 5th embodiment of this invention. It is a block diagram showing the structure of the leak detection apparatus which concerns on 7th embodiment of this invention. It is a figure explaining the structural example regarding embodiment of this invention. It is explanatory drawing which shows the example of the time change of the cross-correlation function (phi) ((tau)) calculated using the piping leak detection method of patent document 1.
  • FIG. It is a block diagram showing the structure of the leak detection apparatus which concerns on 6th embodiment of this invention. It is the figure which represented typically the time change of the cross correlation function (phi) ((tau)).
  • FIG. 6 is a diagram illustrating an identification boundary learned by an identification boundary learning unit 84. It is a block diagram showing the structure of the leak detection apparatus which concerns on 8th embodiment of this invention. And FIG. 11 is a block diagram illustrating an example of elements constituting a computer.
  • FIG. 10 is a diagram illustrating a configuration example relating to the embodiment of the present invention.
  • sensors 100 ⁇ / b> A and 100 ⁇ / b> B for measuring leakage sound are installed at two points on both ends of the survey target section L on the pipeline.
  • the position of the leak point (leakage location) 110 is specified based on the propagation time difference of the leaked sound to the sensor 100A and the sensor 100B.
  • the medium flowing through the pipe is gas, powder, liquid, or the like, and the present invention is not limited to a specific medium.
  • the leakage position is specified by utilizing the feature that leakage sound is generated steadily or substantially steadily and the correlation between a plurality of sensors installed in the pipe is large.
  • a leak detection device (not shown in FIG. 10) according to each of the following embodiments has a time ⁇ based on leaked sound signals measured by a plurality of sensors installed on a pipeline.
  • a cross-correlation function ⁇ ( ⁇ ), which is a function, is calculated from Equation 1.
  • x A (t) represents an input signal input from the sensor 100A at time t
  • x B (t) represents an input signal input from the sensor 100B at time t.
  • T represents the total measurement time.
  • FIG. 13 is a diagram schematically showing a time change of the cross-correlation function ⁇ ( ⁇ ).
  • FIG. 13 (a), 13 (b), and 13 (c) represent cross-correlation functions calculated from input signals at measurement times t1 to t2, t2 to t3, and t3 to t4, respectively.
  • a peak that always appears at the same time ⁇ and has a large value becomes a leaky sound.
  • FIGS. 13A, 13B, and 13C the value of “leakage sound” in FIGS. 13A, 13B, and 13C is large, and the amount that the value fluctuates at different measurement times is small. It is.
  • other sudden peaks are regarded as peaks caused by noise.
  • FIG. 1 is a block diagram showing a configuration of a leak detection apparatus according to the first embodiment of the present invention.
  • the leak detection apparatus A1 according to the first embodiment of the present invention includes a signal input unit 10, a time division unit 11, a cross-correlation function calculation unit 12, an average / variance calculation unit 13, and a leak presence / absence determination unit 15. , A propagation time difference calculation unit 16 and a leakage position calculation unit 17 are provided.
  • the signal input unit 10 inputs time-synchronized signals obtained by sensors installed at two points across the inspection target section. The longer the input signal measurement time, the higher the accuracy.
  • the measurement time of the input signal may be 24 hours, for example.
  • the time division unit 11 outputs a signal obtained by dividing the total measurement time of the two input signals into fixed time intervals (periods) T, respectively.
  • the cross-correlation function calculating unit 12 calculates a cross-correlation function for each signal obtained by the time dividing unit 11 from two input signals at each divided measurement time.
  • the cross-correlation function in a certain divided measurement time (t n to (t n + T)) ⁇ n ( ⁇ ) is given as a function of time ⁇ as shown in Equation 2.
  • the number 2-2 normalized by may be used as the cross-correlation function ⁇ n ( ⁇ ). [Equation 2-2]
  • the average / dispersion calculation unit 13 calculates a function M ( ⁇ ) that gives an average value of ⁇ n ( ⁇ ) for each ⁇ and a function V ( ⁇ ) that gives a dispersion value by Equations 3 and 4, respectively.
  • the function M ( ⁇ ) is an average value divided through each of the different measurement times.
  • the function V ( ⁇ ) is a dispersion value divided through different measurement times.
  • the variance value refers to a value that represents the degree to which the sample values are scattered from the average value. The variance value is obtained by, for example, averaging the square of the difference between the value of each sample and the average value. [Equation 3]
  • N is the number of measurement signals divided by the time division unit 11.
  • the thresholds M th and V th are determined based on the actually acquired leakage sound. If there is no ⁇ ′ that satisfies both of the two conditions of Equation 5, the leakage presence / absence determination unit 15 determines that there is no leakage, and the process ends.
  • FIG. 2 is a conceptual diagram for explaining the determination method in the leakage presence / absence determination unit 15 in the case of leakage sound and noise.
  • 2A, 2B, and 2C show the cross-correlation function ⁇ n ( ⁇ ) in the case of leakage sound and noise.
  • 2 (A), FIG. 2 (B), and FIG. 2 (C) are plots of the average value and dispersion value of ⁇ n ( ⁇ ) for each ⁇ in FIG. D), (E) in FIG. 2, and (F) in FIG. In the case of (A) in FIG. 2 and (D) in FIG.
  • the leakage presence / absence determining unit 15 Is regarded as a peak of ⁇ n ( ⁇ ) due to leaked sound, and it is determined that there is a leak.
  • the leakage presence / absence determination unit 15 determines noise (not leakage).
  • the leakage presence / absence determination unit 15 determines noise (not leakage).
  • Propagation time difference calculating portion 16 calculates the 2 satisfies ⁇ 'number 5 as the propagation time difference T m of a leakage sound. When there are a plurality of ⁇ satisfying the two conditions of Equation 5, it is considered that there are a plurality of leakage points, and the propagation time difference Tm is calculated for each.
  • L a (L ⁇ T m C) / 2
  • L b L ⁇ L a
  • C represents the leakage sound propagation speed.
  • FIG. 14 is a flowchart for explaining the operation of the leak detection apparatus A1 in the first embodiment.
  • operation movement of the leak detection apparatus A1 in 1st embodiment is demonstrated.
  • the signal input unit 10 inputs a signal representing a detection result obtained from two sensors synchronized in time (step S1).
  • the time division unit 11 outputs a signal obtained by dividing the total measurement time of the two obtained input signals into fixed time intervals (step S2).
  • the cross-correlation function calculation unit 12 calculates a cross-correlation function of two input signals at each time ⁇ for each of the divided signals (step S3).
  • the average / variance calculation unit 13 calculates the average value and the variance value of the cross-correlation function for each time ⁇ (step S4).
  • the leakage presence / absence determination unit 15 compares the average value and the variance value of the cross-correlation function with a predetermined threshold value (step S5). Then, the leakage presence / absence determination unit 15 determines that there is leakage when there is one or more time ⁇ in which the average value is greater than or equal to the threshold value and the variance value is less than or equal to the threshold value (YES in step S5) (step S6). In other cases (NO in step S5), it is determined that there is no leakage (step S7). If it is determined that the leakage is present, the propagation time difference calculating portion 16, by regarding the propagation time difference of the leakage sounds time tau, calculates the propagation time difference T m (step S8). The leakage position calculation unit 17 calculates the distance from the leakage point to each sensor based on Tm (step S9).
  • the leak detection device A1 uses the continuity of leaked sound and the correlation between multiple sensors to increase the value of the cross-correlation function and change with time. If it is small, the position is identified as a peak due to leaked sound. Specifically, the leakage detection apparatus A1 determines whether the cross-correlation function value is large and the time change is small by determining whether the average value of the cross-correlation function is equal to or greater than the threshold value and the variance value is equal to or less than the threshold value. Determine. For this reason, the leak detection apparatus A1 has an effect that the presence / absence of the leak and the leak position can be specified even in an environment where noise is generated. In particular, even when there is noise that overlaps the leaked sound and the frequency band, such as a running sound of an automobile, the leak detection device A1 can accurately identify the presence / absence of the leak and the leak position.
  • FIG. 3 is a block diagram showing the configuration of the leak detection apparatus according to the second embodiment of the present invention.
  • the leak detection device A2 according to the second embodiment of the present invention is replaced with the average / dispersion calculation unit 13, the leak presence / absence determination unit 15, and the propagation time difference calculation unit 16 in the leak detection device A1 of the first embodiment.
  • the mode value calculation unit 23, the leakage presence / absence determination unit 25, and the propagation time difference calculation unit 26 are included.
  • the mode value calculation unit 23 is a cross-correlation function ⁇ n ( ⁇ ) (0 ⁇ n ⁇ N) in the divided measurement times (t n to (t n + T)) obtained by the cross-correlation function calculation unit 12.
  • Equation 7 The number of times (frequency) C ( ⁇ , i) where ⁇ n ( ⁇ ) satisfies the inequality of Equation 7 is counted for each ⁇ and each i. That is, the mode value calculation unit 23 converts the value of ⁇ n ( ⁇ ) to the section values (b 0 to b 1 ,..., B i to b i + 1 ,..., B M ⁇ 1 to b for each predetermined section width S. M ). Then, the mode value calculation unit 23 counts the number of times (appearance frequency) corresponding to the value of ⁇ n ( ⁇ ) for each section value. Thereafter, as shown in Equation 8, the mode value calculation unit 23 calculates the maximum value (mode) C m ( ⁇ ) of C ( ⁇ , i) and the cross-correlation function ⁇ ( ⁇ ) is calculated. [Equation 7]
  • the minimum value b 0 of b i is the minimum value of ⁇ n ( ⁇ )
  • the maximum value b M is the maximum value of ⁇ n ( ⁇ ).
  • An example of the frequency distribution (histogram) of the cross-correlation function obtained by the mode value calculation unit 23 is shown in FIG.
  • the vertical axis is a value obtained by normalizing the frequency C ( ⁇ , i) by the section width S.
  • FIG. [Equation 9] C m ( ⁇ ′) / S> C th ⁇ ( ⁇ ′)> ⁇ th
  • the threshold values C th and ⁇ th indicated by dotted lines in FIG. 4 are determined from the actually acquired leaked sound. As shown in (B) of FIG. 4 and (C) of FIG.
  • the propagation time difference calculation unit 26 calculates ⁇ ′ when the condition of Equation 9 is satisfied as the propagation time difference T m caused by the leaked sound.
  • FIG. 15 is a flowchart for explaining the operation of the leak detection apparatus A2 in the second embodiment.
  • the operation of the leakage detection apparatus A2 including the mode value calculation unit 23, the leakage presence / absence determination unit 25, the propagation time difference calculation unit 26, and the leakage position calculation unit 17 will be described with reference to the flowchart of FIG. .
  • the same number is provided and description is abbreviate
  • the cross-correlation function calculation unit 12 calculates a cross-correlation function between two input signals at each time for the divided signals (step S3).
  • the mode value calculation unit 23 calculates the frequency of the cross-correlation function at each time ⁇ (step S14), and calculates the maximum value (mode value) of the frequency and the cross-correlation function when the mode value is taken ( Step S15).
  • the leakage presence / absence determination unit 25 compares the mode value and the cross-correlation function when taking the mode value with a threshold value (step S16). Then, the leakage presence / absence determination unit 25 determines that there is leakage when there is a time ⁇ in which both exceed the threshold (YES in step S16), and outputs a determination result (step S17), otherwise (step S17). If NO in S16, it is determined that there is no leakage, and the process ends (step S18).
  • the propagation time difference calculation unit 26 calculates the time ⁇ when the cross-correlation function when taking the mode value and the mode value exceeds the threshold as the propagation time difference T m (step S19).
  • the leakage position calculating section 17 calculates the leakage position from the propagation time difference T m (step S20).
  • the leak detection device A2 constantly leaks sound but does not temporarily generate noise while measuring a long-time input signal.
  • the feature that there is a time zone is used. Therefore, the leak detection device A2 can determine whether there is a leak and specify the leak position even in an environment where noise frequently occurs, such as a road with a lot of traffic.
  • the sensor input signal is divided into fixed time intervals as in the first embodiment or the second embodiment.
  • a time interval in which the levels of the input signals of a plurality of sensors are low is extracted, and each interval is divided into fixed time intervals.
  • the leak detection devices A3 and A3 ′ according to the third embodiment of the present invention have leak detection devices A1 and A1 of the first embodiment and the second embodiment, respectively, as shown in FIGS. 6A and 6B.
  • a signal level calculation unit 30 and an evaluation interval calculation unit 31 are provided after the signal input unit 10 in A2.
  • the leak detection devices A3 and A3 ′ according to the third embodiment of the present invention determine whether there is a leak in a noise environment and specify the leak position. This has the effect of increasing the accuracy.
  • the leak detection device A4 according to the fourth embodiment of the present invention has a signal input unit 40 instead of the signal input unit 10 in the leak detection device A2 of the second embodiment.
  • the signal input unit 40 does not input a signal continuously for 24 hours, but measures one hour every three hours, for example, to measure for a certain period at a certain time interval. To do.
  • the leak detection device A4 according to the fourth embodiment of the present invention can efficiently acquire various data of day and night even when the amount of data and power that can be processed are limited.
  • the leak detection apparatus A4 which concerns on 4th embodiment of this invention has the effect that a leak presence determination and leak position specification can be performed without reducing accuracy.
  • the value of the cross-correlation function is particularly high.
  • the average value is calculated from only the remaining value without using the value at that time as the abnormal value.
  • N 100 and the cross correlation function values are arranged in descending order, the remaining 80 other than the values of the top 10 and the bottom 10
  • the average value M ( ⁇ ) is given by Equation 10.
  • Equation 11 median ⁇ ( ⁇ ) may be calculated from Equation 11 instead of the average value.
  • the leak detection device A5 uses an average / variance instead of the average / variance calculation unit 13 in the leak detection device A1 of the first embodiment.
  • a calculation unit 53 is included.
  • the leakage presence / absence determination unit 15 of the first embodiment determines the presence / absence of leakage by comparing the average value and the variance value of the cross-correlation function with a threshold value.
  • an identification boundary on the average / dispersion graph is set. Learning is performed, and the presence or absence of leakage is determined depending on which side the evaluation target signal is located with respect to the identification boundary.
  • the identification boundary is a boundary line that defines each region when there is leakage and when there is no leakage. That is, the identification boundary is a set of combinations of average values and variance values (points on the average / variance graph) that serve as a boundary for determining whether there is leakage.
  • the leak detection device A6 is a leak sound / noise signal input unit instead of the leak presence / absence determination unit 15 in the leak detection device A1 of the first embodiment.
  • 80 a time division unit 81, a cross-correlation function calculation unit 82, an average / variance calculation unit 83, an identification boundary learning unit 84, and a leakage presence / absence determination unit 95.
  • the leaked sound / noise signal input unit 80 inputs a plurality of leaked sounds and noises different from the evaluation target signal input by the signal input unit 10. Leakage sound is measured by installing sensors at two points on the pipeline across the leak point. Noise is measured by sensors installed at two points on the pipeline where there is no leakage in the vicinity.
  • the time division unit 81 and the cross-correlation function calculation unit 82 are respectively connected to the time division unit 11 and the cross-correlation function calculation unit 12 of the first embodiment with respect to the signal input from the leaked sound / noise signal input unit 80. A similar operation is performed.
  • the average / dispersion calculation unit 83 calculates a function M ( ⁇ ) that gives an average value of a cross-correlation function and a function V ( ⁇ ) that gives a dispersion value from Equations 3 and 4, respectively, for each leaked sound and noise.
  • the discrimination boundary learning unit 84 calculates a support vector machine (SVM), a neural network, and a k-neighbor discriminator from values of M ( ⁇ ) and V ( ⁇ ) of the leaked sound and noise obtained by the average / variance calculation unit 83.
  • SVM support vector machine
  • a discriminating boundary on a two-dimensional space is learned using a discriminator such as.
  • the leakage presence / absence determination unit 95 determines that there is leakage when the average value and the variance value of the evaluation target signal calculated by the average / variance calculation unit 13 are on the leakage sound side with respect to the identification boundary, and the noise side It is determined that there is no leakage.
  • FIG. 16 is a conceptual diagram showing the identification boundary learned by the identification boundary learning unit 84.
  • the horizontal axis in FIG. 16 is the average value, and the vertical axis is the variance value.
  • the leaked sound and noise prepared in advance are indicated by black circles and white circles, respectively.
  • the dotted line is the identification boundary learned from leaked sound and noise. If the evaluation signal is in the shaded area, it is determined that there is a leak, and if it is in any other area, it is determined that there is no leak.
  • the leak detection device A6 according to the sixth embodiment of the present invention can perform determination with higher accuracy in addition to the effects of the first embodiment.
  • the leakage presence / absence determination unit 25 of the second embodiment determines the presence / absence of leakage by comparing the mode value and the cross-correlation function with a threshold value.
  • an identification boundary on the histogram of the cross-correlation function based on a plurality of leaked sound signals (leakage sound information) and noise signals (noise information) acquired in advance. And determining whether or not there is a leak depending on which side the mode value of the signal to be evaluated is located with respect to the identification boundary.
  • the identification boundary is a boundary line that defines each region when there is leakage and when there is no leakage. That is, the identification boundary is a set of combinations of the interval value and the appearance frequency (points on the histogram of the cross-correlation function) that serve as a determination boundary for the presence or absence of leakage.
  • the leak detection device A7 is a leak sound / noise signal input unit instead of the leak presence / absence determination unit 25 in the leak detection device A2 of the second embodiment.
  • 80 a time division unit 81, a cross-correlation function calculation unit 82, a mode value calculation unit 63, an identification boundary learning unit 64, and a leakage presence / absence determination unit 85.
  • the leaked sound / noise signal input unit 80, the time division unit 81, and the cross-correlation function calculation unit 82 respectively calculate a cross-correlation function for a plurality of leaked sounds and noises. calculate.
  • the mode value calculation unit 63 counts the number of times (frequency) C ( ⁇ , i) that the cross-correlation function ⁇ n ( ⁇ ) satisfies the inequality of Equation 7 for each ⁇ and each i, and then, as shown in Equation 12. , C ( ⁇ , i) maximum value (mode) C m ′ is calculated. [Equation 12]
  • the discriminating boundary learning unit 64 uses the mode C m ′ of the noise and leaked sound obtained by the mode calculation unit 63 and the value of the cross-correlation function ⁇ n ( ⁇ ′, i ′) at that time. Using a classifier such as a support vector machine, a neural network, or a k-neighbor classifier, a classification boundary on a two-dimensional space (cross correlation function histogram) is learned.
  • the leakage presence / absence determination unit 85 determines that there is leakage when the mode value of the evaluation target signal calculated by the mode value calculation unit 23 is on the leakage sound side with respect to the identification boundary, and is on the noise side. It is determined that there is no leakage.
  • FIG. 5 is a conceptual diagram showing the histogram of the cross-correlation function calculated from the evaluation target signal and the identification boundary learned in advance.
  • the horizontal axis in FIG. 5 is the value of the cross-correlation function ⁇ ( ⁇ ), and the vertical axis is the value obtained by normalizing the frequency C ( ⁇ , i) by the section width S.
  • the histogram of the signal to be evaluated since the histogram of the signal to be evaluated enters the hatched area surrounded by the identification boundary, it is determined that there is a leak.
  • the leak detection device A7 according to the seventh embodiment of the present invention can perform the determination with higher accuracy in addition to the effects of the second embodiment.
  • FIG. 17 is a block diagram showing the configuration of the leak detection apparatus according to the eighth embodiment of the present invention.
  • the leak detection device A8 according to the eighth embodiment of the present invention includes a leak presence / absence determination unit 15 and a leak position calculation unit 17.
  • the leakage presence / absence determination unit 15 determines that there is leakage when the value of the cross-correlation function between input signals input from a plurality of sensors is equal to or greater than a threshold value and the time change is equal to or less than the threshold value.
  • the leakage position calculation unit 17 calculates the propagation time difference of the leaked sound based on the location where the value of the cross-correlation function is equal to or greater than the threshold value and the time change is equal to or less than the threshold value, and specifies the leakage position based on the propagation time difference.
  • the leak detection device A8 has a large value of the cross-correlation function and a change over time by utilizing the steadiness of the leaked sound and the correlation between the plurality of sensors. If small, it is determined that there is a leak. Then, the leak detection device A8 calculates the propagation time difference of the leaked sound based on the location where the value of the cross-correlation function is large and the time change is small, and specifies the leak position based on the propagation time difference. For this reason, the leak detection apparatus A8 has an effect that the presence / absence of the leak and the leak position can be specified even in an environment where noise is generated.
  • FIG. 18 is a block diagram showing an example of elements constituting the computer.
  • a computer 900 in FIG. 18 includes a CPU (Central Processing Unit) 910, a RAM (Random Access Memory) 920, a ROM (Read Only Memory) 930, a hard disk drive 940, and a communication interface 950.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the components of the leak detection devices A1, A2, A3, A3 ′, A4, A5, A6, A7, and A8 described above are realized by executing a program (software program, computer program) in the CPU 910 of the computer 900. Also good. Specifically, the time division units 11 and 81 that are the components described in FIGS.
  • the mode value calculation units 23 and 63, the signal level calculation unit 30, the evaluation section extraction unit 31, and the identification boundary learning units 64 and 84 read the program read by the CPU 910 from the ROM 930 or the hard disk drive 940. For example, it may be realized by execution by the CPU 910 as in the procedures of the flowcharts shown in FIGS.
  • the present invention described by using the above-described embodiment as an example can be applied to a computer-readable storage medium (for example, hard disk drive 940 or the like) that stores a code representing the computer program or a code representing the computer program. It can be understood that it is constituted by a removable magnetic disk medium, optical disk medium, memory card, etc. (not shown).
  • the time division units 11, 81, the cross-correlation function calculation units 12, 82, the average / variance calculation units 13, 53, 83, the leakage presence / absence determination units 15, 25, 85, 95, and the propagation time difference calculation unit 16 , 26, leakage position calculation unit 17, mode value calculation units 23 and 63, signal level calculation unit 30, evaluation interval extraction unit 31, and identification boundary learning units 64 and 84 are realized by dedicated hardware. May be. Further, the leakage detection devices A1, A2, A3, A3 ′, A4, A5, A6, A7, and A8 may be dedicated hardware including these components.
  • a leakage presence / absence determination means for determining that there is a leakage when the threshold is equal to or less than 2
  • a difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold.
  • a leak detection device comprising: a leak position calculation means for specifying a leak position based on the propagation time difference.
  • the leak presence / absence determining means has a leak when a section value of the cross-correlation function assigned for each predetermined section width is equal to or greater than a fifth threshold and the frequency of appearance of the section value is equal to or greater than a sixth threshold.
  • an identification boundary learning means for learning an identification boundary that is a set of combinations of the average value and the variance value, which is a boundary for determining whether there is leakage
  • the leakage detection apparatus according to appendix 2 or 4, wherein the leakage presence / absence determination means determines whether there is leakage based on the identification boundary.
  • An identification boundary learning unit that learns an identification boundary that is a set of combinations of the section value and the appearance frequency, which is a boundary for determining whether there is leakage, based on a plurality of leaked sound information and noise information acquired in advance.
  • the leakage detection device according to supplementary note 3, wherein the leakage presence / absence determination means determines whether there is leakage based on the identification boundary.
  • the discrimination boundary learning means learns the discrimination boundary using a discriminator that is one of a support vector machine, a neural network, and a k-neighbor discriminator,
  • the leakage presence / absence determining means determines that there is leakage when the mode value of the input signal to be evaluated is on the leakage sound side with respect to the identification boundary, and determines that there is no leakage when on the noise side. 5.
  • the leak detection device according to 5 or 6.
  • a cross-correlation function calculating unit that extracts a section whose level is equal to or less than a threshold value from the input signal, divides the extracted section into fixed time intervals, and calculates a cross-correlation function between the divided input signals;
  • the leak detection device according to any one of appendices 1 to 7.
  • Appendix 11 The leak detection method according to appendix 10, wherein it is determined that there is a leak when an average value over different measurement times of the cross-correlation function value is equal to or greater than a third threshold value and a variance value is equal to or less than a fourth threshold value.
  • Appendix 14 Based on a plurality of leaked sound information and noise information acquired in advance, learn an identification boundary that is a set of a combination of the average value and the variance value, which is a boundary for determining whether there is leakage, 14.
  • appendix 20 On the computer, The program according to appendix 19, which executes a process of determining that there is a leak when an average value of the cross-correlation function values during a predetermined period is equal to or greater than a third threshold value and a variance value is equal to or less than a fourth threshold value.
  • Appendix 22 On the computer, 21.
  • Appendix 23 On the computer, Based on a plurality of leaked sound information and noise information acquired in advance, a process for learning an identification boundary that is a set of combinations of the average value and the variance value, which is a boundary for determining whether there is leakage, The program according to appendix 20 or 22, which executes a process of determining the presence or absence of leakage based on the identification boundary.
  • Appendix 25 On the computer, Learning the discrimination boundary using a discriminator that is one of a support vector machine, a neural network, and a k-neighbor discriminator; Appendix 23 or 23 for executing a process of determining that there is a leak when the mode value of the input signal to be evaluated is on the leaky sound side with respect to the identification boundary and determining that there is no leak when on the noise side 24.
  • the program according to 24 The program according to 24.
  • Appendix 26 On the computer, A process of extracting a section whose level is equal to or lower than a threshold value from the input signal; A process of dividing the extracted section into a certain time interval; The program according to any one of appendices 19 to 25, wherein the program executes a process of calculating a cross-correlation function between the divided input signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

In this invention, leaks in pipes can be detected with a high degree of precision, even in noisy environments. This leak-detecting device comprises the following: a leak-presence determination unit that uses signals representing detection results from a plurality of sensors to compute the value of a cross-correlation function for said signals, and if the computed value is greater than or equal to a first threshold and the change over time exhibited by a value computed from measurements at a different point in time is less than or equal to a second threshold, determines that a leak is present; and a leak-location computation unit that computes leak-sound propagation-time differences on the basis of areas for which the value of the aforementioned cross-correlation function is greater than or equal to the aforementioned first threshold and the change over time exhibited by the value of said cross-correlation function from measurements at a different point in time is less than or equal to the aforementioned second threshold and identifies the location of the leak on the basis of said propagation-time differences.

Description

漏洩検知装置、漏洩検知方法、およびプログラムを格納する記録媒体Leak detection device, leak detection method, and recording medium for storing program
 本発明は、液体や気体等の配送対象が管などの配送構造から漏洩することを検知する技術に関する。 The present invention relates to a technique for detecting that a delivery target such as liquid or gas leaks from a delivery structure such as a pipe.
 地中に埋設された水道管や下水管、ガス管などの配管からの、配送対象である液体や気体の漏洩を調査する作業においては、配管修理の際のコストを抑えるためにも、漏洩位置を精度よく特定することが重要である。漏洩位置の特定を行う方法として、漏洩に起因して発生する音を検査員が聞き取り、最も漏洩音が大きな箇所を漏洩位置とする方法がある。しかしこの方法は熟練を要し、また神経を研ぎ澄ませて行われるため時間がかかる。 In the work of investigating the leakage of liquids and gases to be delivered from pipes such as water pipes, sewage pipes and gas pipes buried in the ground, in order to reduce the cost of pipe repair, It is important to accurately identify As a method for specifying the leak position, there is a method in which an inspector listens to a sound generated due to the leak, and a position having the largest leak sound is set as the leak position. However, this method requires skill and takes time because it is performed by sharpening the nerve.
 漏洩位置の特定を自動化する方法の一例が、特許文献1に記載されている。特許文献1記載の配管漏洩検知方法は、管路上の調査対象区間の両端2地点にセンサを設置して漏洩音を測定し、上記2つのセンサへの漏洩音の伝搬時間差を基に漏洩点の位置を特定する。具体的には、まず、2つのセンサにより取得した漏洩音の信号から相互相関関数を算出し、算出した相互相関関数の値に基づいて漏洩音の伝搬時間差を算出する。そして、算出した伝搬時間差に基づいて、漏洩地点からセンサ設置位置までの距離を求める。 An example of a method for automating the specification of a leakage position is described in Patent Document 1. In the pipe leak detection method described in Patent Document 1, sensors are installed at two points on both ends of a survey target section on a pipeline to measure the leak sound, and the leak point is determined based on the propagation time difference of the leak sound to the two sensors. Identify the location. Specifically, first, a cross-correlation function is calculated from leaked sound signals acquired by two sensors, and a propagation time difference of the leaked sound is calculated based on the calculated cross-correlation function value. Based on the calculated propagation time difference, the distance from the leakage point to the sensor installation position is obtained.
特開平11-201859号公報Japanese Patent Laid-Open No. 11-201859
 特許文献1記載の配管漏洩検知方法(相関法)は、図11の(a)に示すように、相互相関関数φ(τ)の値が最大値となる箇所(ピーク)に基づいて漏洩音の伝搬時間差Tを算出する。当該方法においては、伝搬時間差Tをいかに精度よく算出するかによって、漏洩位置特定の精度が左右される。 As shown in FIG. 11A, the pipe leakage detection method (correlation method) described in Patent Literature 1 is based on the point (peak) where the value of the cross-correlation function φ (τ) is the maximum value. A propagation time difference Tm is calculated. In this method, the accuracy of specifying the leakage position depends on how accurately the propagation time difference Tm is calculated.
 特許文献1記載の配管漏洩検知方法は、漏洩音に対して周囲雑音の影響が小さい場合には、図11の(a)に示すように相互相関関数に明確なピークが現れるので、精度よく伝搬時間差Tを算出できる。しかし例えば、2つのセンサ設置地点のうち一方に大きな雑音が入った場合には、図11の(b)に示すように明確なピークが現れず、伝搬時間差Tの精度が落ちる。また、2地点の両方に雑音が入った場合には、図11の(c)に示すように雑音の音源の数だけピークが現れ、雑音に起因するピークを漏洩音のピークと誤認識することにより、伝搬速度差Tの精度が大きく低下する。 In the pipe leak detection method described in Patent Document 1, when the influence of ambient noise on the leaked sound is small, a clear peak appears in the cross-correlation function as shown in FIG. We calculate the time difference T m. However For example, when containing a large noise in one of the two sensor installation point may not appear distinct peak as shown in (b) of FIG. 11, the accuracy of the transit time T m is reduced. Further, when noise enters both of the two points, peaks appear as many as the number of noise sources as shown in FIG. 11C, and the peak caused by the noise is erroneously recognized as the peak of the leaked sound. Accordingly, the accuracy of the propagation velocity difference T m is reduced significantly.
 雑音の大きな環境は、交通量の多い道路付近や繁華街など数多く存在する。特許文献1記載の配管漏洩検知方法は、このような雑音の発生している環境においては、精度よく漏洩位置を特定することが困難であるという問題点がある。 環境 There are many noisy environments, such as roads near busy roads and busy streets. The piping leak detection method described in Patent Document 1 has a problem that it is difficult to accurately specify the leak position in an environment where such noise is generated.
 本発明は、上述した課題を解決するための技術を提供することを主たる目的とする。 The main object of the present invention is to provide a technique for solving the above-described problems.
 上記目的を達成する本発明の一態様に係る漏洩検知装置は、
複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、算出した値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定する漏洩有無判定手段と、
前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、前記伝搬時間差に基づいて漏洩位置を特定する漏洩位置算出手段とを備える。
A leak detection device according to an aspect of the present invention that achieves the above-described object,
Using signals representing the detection results of a plurality of sensors, the value of the cross-correlation function of these signals is calculated, the calculated value is equal to or greater than the first threshold value, and the time change of the calculated value at different measurement times is the first. A leakage presence / absence determination means for determining that there is a leakage when the threshold is equal to or less than 2,
A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. And leakage position calculation means for specifying the leakage position based on the propagation time difference.
 上記目的を達成する本発明の一態様に係る漏洩検知方法は、
複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、
前記相互相関関数の値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定し、
前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、
前記伝搬時間差に基づいて漏洩位置を特定する。
A leakage detection method according to an aspect of the present invention that achieves the above object is as follows.
Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals,
It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold;
A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. ,
A leak position is specified based on the propagation time difference.
 上記目的を達成する本発明の一態様に係るプログラムは、
コンピュータに、
複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、
前記相互相関関数の値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定し、
前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、
前記伝搬時間差に基づいて漏洩位置を特定する、ことを実行させる。
A program according to an aspect of the present invention that achieves the above object is as follows:
On the computer,
Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals,
It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold;
A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. ,
The leakage position is specified based on the propagation time difference.
 さらに、上記目的を達成する本発明のさらなる一態様は、係るプログラムを記憶しているコンピュータ読み取り可能な記憶媒体である。 Furthermore, a further aspect of the present invention for achieving the above object is a computer-readable storage medium storing such a program.
 本発明によれば、雑音が発生している環境においても精度よく管からの漏洩を検知することができる。 According to the present invention, it is possible to accurately detect leakage from a pipe even in an environment where noise is generated.
本発明の第一の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 1st embodiment of this invention. 漏洩有無判定部における漏洩音と雑音との判定法を説明するための図である。It is a figure for demonstrating the determination method of the leak sound and noise in a leak presence-and-absence determination part. 本発明の第二の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 2nd embodiment of this invention. 相互相関関数の頻度分布(ヒストグラム)の例を説明する図である。It is a figure explaining the example of the frequency distribution (histogram) of a cross correlation function. 相互相関関数のヒストグラムと、識別境界を表す図である。It is a figure showing the histogram of a cross correlation function, and an identification boundary. 本発明の第三の実施形態係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 3rd embodiment of this invention. 本発明の第三の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 3rd embodiment of this invention. 本発明の第四の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 4th embodiment of this invention. 本発明の第五の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 5th embodiment of this invention. 本発明の第七の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 7th embodiment of this invention. 本発明の実施の形態に関する構成例を説明する図である。It is a figure explaining the structural example regarding embodiment of this invention. 特許文献1の配管漏洩検知方法を用いて算出された相互相関関数φ(τ)の時間変化の例を示す説明図である。It is explanatory drawing which shows the example of the time change of the cross-correlation function (phi) ((tau)) calculated using the piping leak detection method of patent document 1. FIG. 本発明の第六の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 6th embodiment of this invention. 相互相関関数φ(τ)の時間変化を模式的に表した図である。It is the figure which represented typically the time change of the cross correlation function (phi) ((tau)). 第一の実施形態における漏洩検知装置A1の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the leak detection apparatus A1 in 1st embodiment. 第二の実施形態における漏洩検知装置A2の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the leak detection apparatus A2 in 2nd embodiment. 識別境界学習部84で学習された識別境界を表す図である。FIG. 6 is a diagram illustrating an identification boundary learned by an identification boundary learning unit 84. 本発明の第八の実施形態に係る漏洩検知装置の構成を表すブロック図である。It is a block diagram showing the structure of the leak detection apparatus which concerns on 8th embodiment of this invention. コンピュータを構成する要素の例を表すブロック構成図である。And FIG. 11 is a block diagram illustrating an example of elements constituting a computer.
 以下、本発明を、配管に離間配置された2つのセンサに適用した実施形態により、図面を参照して詳細に説明する。 Hereinafter, an embodiment in which the present invention is applied to two sensors spaced apart from a pipe will be described in detail with reference to the drawings.
 図10は、本発明の実施の形態に関する構成例を説明する図である。図10に示すように、本発明の実施の形態においては、管路上の調査対象区間Lの両端2地点に、漏洩音を測定するセンサ100Aおよびセンサ100Bが設置される。そして、センサ100Aおよびセンサ100Bへの漏洩音の伝搬時間差に基づいて、漏洩点(漏洩箇所)110の位置が特定される。以下の実施の形態において、管路を流れる媒体は、気体,紛体,液体等であり、特定の媒体に本発明は限定されない。 FIG. 10 is a diagram illustrating a configuration example relating to the embodiment of the present invention. As shown in FIG. 10, in the embodiment of the present invention, sensors 100 </ b> A and 100 </ b> B for measuring leakage sound are installed at two points on both ends of the survey target section L on the pipeline. And the position of the leak point (leakage location) 110 is specified based on the propagation time difference of the leaked sound to the sensor 100A and the sensor 100B. In the following embodiments, the medium flowing through the pipe is gas, powder, liquid, or the like, and the present invention is not limited to a specific medium.
 本発明の実施の形態は、漏洩音が定常的に、あるいは略定常的に発生する、かつ、管に設置した複数センサ間の相関が大きいという特徴を利用して漏洩位置の特定を行う。具体的には、まず、以下の各実施形態に係る漏洩検知装置(図10には不図示)は、管路上に設置された複数のセンサにより測定された漏洩音の信号を基に時間τの関数である相互相関関数φ(τ)を数1から算出する。ここで、x(t)は、時間tにおけるセンサ100Aから入力された入力信号を、x(t)は時間tにおけるセンサ100Bから入力された入力信号を、それぞれ表す。また、Tは全測定時間を表す。
[数1]
Figure JPOXMLDOC01-appb-I000001
In the embodiment of the present invention, the leakage position is specified by utilizing the feature that leakage sound is generated steadily or substantially steadily and the correlation between a plurality of sensors installed in the pipe is large. Specifically, first, a leak detection device (not shown in FIG. 10) according to each of the following embodiments has a time τ based on leaked sound signals measured by a plurality of sensors installed on a pipeline. A cross-correlation function φ (τ), which is a function, is calculated from Equation 1. Here, x A (t) represents an input signal input from the sensor 100A at time t, and x B (t) represents an input signal input from the sensor 100B at time t. T represents the total measurement time.
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
そして、係る漏洩検知装置は、算出した相互相関関数φ(τ)の値が大きく、かつ時間変化が小さい場合に、それを漏洩音に起因する相互相関関数のピーク(極大値)とみなし、そのピークに基づいて相関法によって漏洩位置を特定する。なお、相互相関関数φ(τ)の時間変化(が小さい)とは、あるτの値におけるφ(τ)の値が、異なる測定時間(測定期間)において変動する量(が小さいこと)を表す。図13は、相互相関関数φ(τ)の時間変化を模式的に表した図である。図13の(a),図13の(b),図13の(c)は、それぞれ、測定時間t1~t2,t2~t3,t3~t4における入力信号から算出された相互相関関数を表す。本発明の実施の形態においては、図13の(a),図13の(b),図13の(c)に示すように、同じ時間τに常時現れており値の大きなピークを漏洩音に起因するピークとみなす。なぜならば、図13の(a),図13の(b),図13の(c)の「漏洩音」の箇所は、値が大きく、かつ、異なる測定時間において値が変動する量が小さいからである。そして、本発明の実施の形態においては、それ以外の突発的なピークを雑音に起因するピークとみなす。なぜならば、図13の(a),図13の(b),図13の(c)の「雑音」の箇所は、ある測定時間における値は大きいが、異なる測定時間における値が小さい、すなわち値が変動する量が大きいからである。なお、値が大きいか否か、値の時間変化が小さいか否かは、あらかじめ定められた閾値とそれぞれ比較して判定してもよい。 Then, when the value of the calculated cross-correlation function φ (τ) is large and the time change is small, the leak detection device regards it as the peak (maximum value) of the cross-correlation function caused by the leaked sound, Based on the peak, the leak position is specified by the correlation method. The time change (small) of the cross-correlation function φ (τ) represents the amount (small) that the value of φ (τ) in a certain value of τ fluctuates in different measurement times (measurement periods). . FIG. 13 is a diagram schematically showing a time change of the cross-correlation function φ (τ). 13 (a), 13 (b), and 13 (c) represent cross-correlation functions calculated from input signals at measurement times t1 to t2, t2 to t3, and t3 to t4, respectively. In the embodiment of the present invention, as shown in FIG. 13 (a), FIG. 13 (b), and FIG. 13 (c), a peak that always appears at the same time τ and has a large value becomes a leaky sound. Considered as a peak due. This is because the value of “leakage sound” in FIGS. 13A, 13B, and 13C is large, and the amount that the value fluctuates at different measurement times is small. It is. In the embodiment of the present invention, other sudden peaks are regarded as peaks caused by noise. This is because the “noise” portion in FIGS. 13A, 13B, and 13C has a large value at a certain measurement time, but a small value at a different measurement time. This is because the amount of fluctuation is large. Note that whether or not the value is large and whether or not the time change of the value is small may be determined by comparing with a predetermined threshold value.
 以下に本発明の実施の形態について、図面を参照して詳細に説明する。なお以下では説明を簡略化するため、図10に示すようにセンサを2つ利用した場合について説明するが、複数であれば3つ以上でもよい。また、用いるセンサの種類は問わない。用いるセンサは、例えば、振動センサであってもよいし、マイクロフォンであってもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following, in order to simplify the description, a case where two sensors are used as shown in FIG. 10 will be described. However, if there are a plurality of sensors, three or more sensors may be used. Moreover, the kind of sensor to be used is not ask | required. The sensor used may be, for example, a vibration sensor or a microphone.
 [第一の実施形態]
 図1は、本発明の第一の実施形態に係る漏洩検知装置の構成を表すブロック図である。本発明の第一の実施形態に係る漏洩検知装置A1は、信号入力部10と、時間分割部11と、相互相関関数算出部12と、平均・分散算出部13と、漏洩有無判定部15と、伝搬時間差算出部16と、漏洩位置算出部17とを備える。信号入力部10は、検査対象区間を挟む2点に設置したセンサによって得られた、時刻同期された信号を入力する。入力信号の測定時間は、長いほど精度が高くなる。入力信号の測定時間は、例えば、24時間であってもよい。時間分割部11は、2つの入力信号の全測定時間をそれぞれ一定の時間間隔(期間)Tに分割した信号を出力する。相互相関関数算出部12は、時間分割部11で得られた信号それぞれについて、分割された各測定時間における2つの入力信号から相互相関関数を算出する。2つのセンサ100A,100Bによって検出した漏洩音の信号をそれぞれx(t),x(t)とした場合、ある分割された測定時間(t~(t+T))における相互相関関数φ(τ)は、数2のように時間τの関数として与えられる。
[数2]
Figure JPOXMLDOC01-appb-I000002
または、
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
[First embodiment]
FIG. 1 is a block diagram showing a configuration of a leak detection apparatus according to the first embodiment of the present invention. The leak detection apparatus A1 according to the first embodiment of the present invention includes a signal input unit 10, a time division unit 11, a cross-correlation function calculation unit 12, an average / variance calculation unit 13, and a leak presence / absence determination unit 15. , A propagation time difference calculation unit 16 and a leakage position calculation unit 17 are provided. The signal input unit 10 inputs time-synchronized signals obtained by sensors installed at two points across the inspection target section. The longer the input signal measurement time, the higher the accuracy. The measurement time of the input signal may be 24 hours, for example. The time division unit 11 outputs a signal obtained by dividing the total measurement time of the two input signals into fixed time intervals (periods) T, respectively. The cross-correlation function calculating unit 12 calculates a cross-correlation function for each signal obtained by the time dividing unit 11 from two input signals at each divided measurement time. When the leaked sound signals detected by the two sensors 100A and 100B are x A (t) and x B (t), respectively, the cross-correlation function in a certain divided measurement time (t n to (t n + T)) φ n (τ) is given as a function of time τ as shown in Equation 2.
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
Or
Figure JPOXMLDOC01-appb-I000003
When
Figure JPOXMLDOC01-appb-I000004
で正規化した数2-2を相互相関関数φ(τ)として用いてもよい。
[数2-2]
Figure JPOXMLDOC01-appb-I000005
The number 2-2 normalized by may be used as the cross-correlation function φ n (τ).
[Equation 2-2]
Figure JPOXMLDOC01-appb-I000005
 平均・分散算出部13は、各τに対してφ(τ)の平均値を与える関数M(τ)と、分散値を与える関数V(τ)を、それぞれ数3と数4によって算出する。数3にあるように、関数M(τ)は、分割された、異なる測定時間それぞれを通しての平均値である。また、数4にあるように、関数V(τ)は、分割された、異なる測定時間それぞれを通しての分散値である。なお、分散値とは、標本の値が平均値からどれだけ散らばっているかの程度を表す値を指す。分散値は、例えば、各標本の値と平均値との差分の二乗の平均によって求められる。
[数3]
Figure JPOXMLDOC01-appb-I000006
The average / dispersion calculation unit 13 calculates a function M (τ) that gives an average value of φ n (τ) for each τ and a function V (τ) that gives a dispersion value by Equations 3 and 4, respectively. . As in Equation 3, the function M (τ) is an average value divided through each of the different measurement times. Further, as shown in Equation 4, the function V (τ) is a dispersion value divided through different measurement times. The variance value refers to a value that represents the degree to which the sample values are scattered from the average value. The variance value is obtained by, for example, averaging the square of the difference between the value of each sample and the average value.
[Equation 3]
Figure JPOXMLDOC01-appb-I000006
[数4]
Figure JPOXMLDOC01-appb-I000007
[Equation 4]
Figure JPOXMLDOC01-appb-I000007
 ただしNは、時間分割部11にて分割した測定信号の個数である。漏洩有無判定部15は、M(τ)とV(τ)をそれぞれ、あらかじめ設定した閾値MthおよびVthと比較し、数5の2つの条件の両方を満たすτ=τ´が一つ以上存在した場合に漏洩が有ると判定する。そして、判定結果を出力した後、伝搬時間差算出部16による処理に進む。
[数5]
             M(τ´)>Mth
             V(τ´)<Vth
なお、閾値MthおよびVthは、実際に取得した漏洩音を基に定められる。また、数5の2つの条件の両方を満たすτ´が存在しなかった場合、漏洩有無判定部15は、漏洩では無いと判定し、処理は終了する。
N is the number of measurement signals divided by the time division unit 11. The leakage presence / absence determination unit 15 compares M (τ) and V (τ) with preset threshold values M th and V th , respectively, and at least one τ = τ ′ satisfying both of the two conditions of Formula 5 If it exists, it is determined that there is a leak. And after outputting a determination result, it progresses to the process by the propagation time difference calculation part 16. FIG.
[Equation 5]
M (τ ′)> M th
V (τ ′) <V th
Note that the thresholds M th and V th are determined based on the actually acquired leakage sound. If there is no τ ′ that satisfies both of the two conditions of Equation 5, the leakage presence / absence determination unit 15 determines that there is no leakage, and the process ends.
 図2は、漏洩有無判定部15での判定方法を、漏洩音と雑音それぞれの場合において説明するための概念図である。図2の(A),図2の(B),図2の(C)は、漏洩音および雑音の場合の相互相関関数φ(τ)を示している。そして、図2の(A),図2の(B),図2の(C)それぞれの場合において、各τについてφ(τ)の平均値と分散値をプロットした図を図2の(D),図2の(E),図2の(F)に示す。図2の(A),図2の(D)の場合、φ(τ)の平均値が閾値Mthより大きく、分散値が閾値Vthより小さなτが存在するので、漏洩有無判定部15は、漏洩音に起因するφ(τ)のピークとみなして漏洩が有ると判定する。一方で図2の(B),図2の(E)の場合は、平均値は大きいものの分散値が大きいため、漏洩有無判定部15は、雑音(漏洩では無い)と判定する。また図2の(C),図2の(F)の場合も、分散値は小さいものの平均値が小さいため、漏洩有無判定部15は、雑音(漏洩では無い)と判定する。漏洩の有無の判定結果を調査員に見える形で提示することにより、管補修の必要性の判断に利用することができる。 FIG. 2 is a conceptual diagram for explaining the determination method in the leakage presence / absence determination unit 15 in the case of leakage sound and noise. 2A, 2B, and 2C show the cross-correlation function φ n (τ) in the case of leakage sound and noise. 2 (A), FIG. 2 (B), and FIG. 2 (C) are plots of the average value and dispersion value of φ n (τ) for each τ in FIG. D), (E) in FIG. 2, and (F) in FIG. In the case of (A) in FIG. 2 and (D) in FIG. 2, since there exists τ in which the average value of φ n (τ) is larger than the threshold value M th and the variance value is smaller than the threshold value V th , the leakage presence / absence determining unit 15 Is regarded as a peak of φ n (τ) due to leaked sound, and it is determined that there is a leak. On the other hand, in the case of FIGS. 2B and 2E, the average value is large, but the variance value is large, so the leakage presence / absence determination unit 15 determines noise (not leakage). 2C and 2F, since the average value is small although the variance value is small, the leakage presence / absence determination unit 15 determines noise (not leakage). By presenting the result of judgment on the presence or absence of leakage in a form that can be seen by the investigator, it can be used to determine the necessity of pipe repair.
 伝搬時間差算出部16は、数5の2条件を満たすτ´を漏洩音の伝搬時間差Tとして算出する。数5の2つの条件を満たすτが複数存在した場合は、漏洩地点が複数あるとみなし、それぞれについて伝搬時間差Tを算出する。漏洩位置算出部17は、数6によって、漏洩地点からセンサ100Aまでの距離Lと、漏洩地点からセンサ100Bまでの距離Lとを算出する。
[数6]
             L=(L-TC)/2
             L=L-L
ただし、Cは漏洩音伝搬速度を表す。
Propagation time difference calculating portion 16 calculates the 2 satisfies τ'number 5 as the propagation time difference T m of a leakage sound. When there are a plurality of τ satisfying the two conditions of Equation 5, it is considered that there are a plurality of leakage points, and the propagation time difference Tm is calculated for each. Leakage position calculating unit 17, the number 6, and calculates a distance L a from leaking point to the sensor 100A, a distance L b from the leakage point to the sensor 100B.
[Equation 6]
L a = (L−T m C) / 2
L b = L−L a
However, C represents the leakage sound propagation speed.
 図14は、第一の実施形態における漏洩検知装置A1の動作を説明するフローチャートである。次に、図14を参照して、第一の実施形態における漏洩検知装置A1の動作を説明する。まず、時刻同期された2つのセンサから得られた検出結果を表す信号を信号入力部10が入力する(ステップS1)。時間分割部11は、得られた2つの入力信号の全測定時間をそれぞれ一定の時間間隔に分割した信号を出力する(ステップS2)。相互相関関数算出部12は、分割された信号それぞれについて、各時間τで2つの入力信号の相互相関関数を算出する(ステップS3)。平均・分散算出部13は、各時間τに対して、相互相関関数の平均値と分散値を算出する(ステップS4)。漏洩有無判定部15は、相互相関関数の平均値と分散値をあらかじめ定めた閾値と比較する(ステップS5)。そして、漏洩有無判定部15は、平均値が閾値以上かつ分散値が閾値以下を満たす時間τが1つ以上存在した場合(ステップS5においてYES)に漏洩が有ると判定し(ステップS6)、それ以外の場合(ステップS5においてNO)に漏洩では無いと判定する(ステップS7)。漏洩が有ると判定された場合は、伝搬時間差算出部16が、時間τを漏洩音の伝搬時間差とみなすことにより、伝搬時間差Tを算出する(ステップS8)。漏洩位置算出部17は、漏洩地点から各センサまでの距離をTに基づいて算出する(ステップS9)。 FIG. 14 is a flowchart for explaining the operation of the leak detection apparatus A1 in the first embodiment. Next, with reference to FIG. 14, operation | movement of the leak detection apparatus A1 in 1st embodiment is demonstrated. First, the signal input unit 10 inputs a signal representing a detection result obtained from two sensors synchronized in time (step S1). The time division unit 11 outputs a signal obtained by dividing the total measurement time of the two obtained input signals into fixed time intervals (step S2). The cross-correlation function calculation unit 12 calculates a cross-correlation function of two input signals at each time τ for each of the divided signals (step S3). The average / variance calculation unit 13 calculates the average value and the variance value of the cross-correlation function for each time τ (step S4). The leakage presence / absence determination unit 15 compares the average value and the variance value of the cross-correlation function with a predetermined threshold value (step S5). Then, the leakage presence / absence determination unit 15 determines that there is leakage when there is one or more time τ in which the average value is greater than or equal to the threshold value and the variance value is less than or equal to the threshold value (YES in step S5) (step S6). In other cases (NO in step S5), it is determined that there is no leakage (step S7). If it is determined that the leakage is present, the propagation time difference calculating portion 16, by regarding the propagation time difference of the leakage sounds time tau, calculates the propagation time difference T m (step S8). The leakage position calculation unit 17 calculates the distance from the leakage point to each sensor based on Tm (step S9).
 以上の様に、本発明の第一の実施形態に係る漏洩検知装置A1は、漏洩音の定常性および複数センサ間の相関性を利用して、相互相関関数の値が大きく、かつ時間変化が小さい場合に、漏洩音に起因のピークと見なして位置を特定する。具体的には、当該漏洩検知装置A1は、相互相関関数の平均値が閾値以上かつ分散値が閾値以下かどうかを判定することにより、相互相関関数の値が大きく、かつ時間変化が小さいかどうかを判定する。このため、当該漏洩検知装置A1は、雑音の発生する環境でも漏洩の有無および漏洩位置を特定できるという効果を有する。特に自動車の走行音など、漏洩音と周波数帯域が重なっている雑音が存在する場合においても、当該漏洩検知装置A1は、精度よく漏洩の有無および漏洩位置を特定することができる。 As described above, the leak detection device A1 according to the first embodiment of the present invention uses the continuity of leaked sound and the correlation between multiple sensors to increase the value of the cross-correlation function and change with time. If it is small, the position is identified as a peak due to leaked sound. Specifically, the leakage detection apparatus A1 determines whether the cross-correlation function value is large and the time change is small by determining whether the average value of the cross-correlation function is equal to or greater than the threshold value and the variance value is equal to or less than the threshold value. Determine. For this reason, the leak detection apparatus A1 has an effect that the presence / absence of the leak and the leak position can be specified even in an environment where noise is generated. In particular, even when there is noise that overlaps the leaked sound and the frequency band, such as a running sound of an automobile, the leak detection device A1 can accurately identify the presence / absence of the leak and the leak position.
 [第二の実施形態]
 次に、上述した第一の実施形態に係る漏洩検知装置を基本とする第二の実施形態について説明する。以下の説明においては、第二の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第一の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment based on the leak detection device according to the first embodiment described above will be described. In the following description, the characteristic part according to the second embodiment will be mainly described. At this time, the same reference numerals are assigned to the same configurations as those in the first embodiment described above, and redundant description is omitted.
 図3は、本発明の第二の実施形態に係る漏洩検知装置の構成を表すブロック図である。本発明の第二の実施形態に係る漏洩検知装置A2は、第一の実施形態の漏洩検知装置A1における平均・分散算出部13と、漏洩有無判定部15と、伝搬時間差算出部16に代えて、最頻値算出部23と、漏洩有無判定部25と、伝搬時間差算出部26とを有する。最頻値算出部23は、上記の相互相関関数算出部12で得られた分割された測定時間(t~(t+T))における相互相関関数φ(τ)(0≦n≦N)のうち、φ(τ)が数7の不等式を満たす回数(頻度)C(τ,i)を各τ,各iについてカウントする。すなわち、最頻値算出部23は、φ(τ)の値を所定の区間幅S毎の区間値(b~b,…,b~bi+1,…,bM-1~b)に割り当てる。そして、最頻値算出部23は、各区間値毎に、φ(τ)の値が該当する回数(出現頻度)をカウントする。その後、最頻値算出部23は、数8に示すように、C(τ,i)の最大値(最頻値)C(τ)と、最頻値をとるときの相互相関関数φ(τ)を算出する。
[数7]
Figure JPOXMLDOC01-appb-I000008
FIG. 3 is a block diagram showing the configuration of the leak detection apparatus according to the second embodiment of the present invention. The leak detection device A2 according to the second embodiment of the present invention is replaced with the average / dispersion calculation unit 13, the leak presence / absence determination unit 15, and the propagation time difference calculation unit 16 in the leak detection device A1 of the first embodiment. The mode value calculation unit 23, the leakage presence / absence determination unit 25, and the propagation time difference calculation unit 26 are included. The mode value calculation unit 23 is a cross-correlation function φ n (τ) (0 ≦ n ≦ N) in the divided measurement times (t n to (t n + T)) obtained by the cross-correlation function calculation unit 12. ), The number of times (frequency) C (τ, i) where φ n (τ) satisfies the inequality of Equation 7 is counted for each τ and each i. That is, the mode value calculation unit 23 converts the value of φ n (τ) to the section values (b 0 to b 1 ,..., B i to b i + 1 ,..., B M−1 to b for each predetermined section width S. M ). Then, the mode value calculation unit 23 counts the number of times (appearance frequency) corresponding to the value of φ n (τ) for each section value. Thereafter, as shown in Equation 8, the mode value calculation unit 23 calculates the maximum value (mode) C m (τ) of C (τ, i) and the cross-correlation function φ ( τ) is calculated.
[Equation 7]
Figure JPOXMLDOC01-appb-I000008
[数8]
Figure JPOXMLDOC01-appb-I000009
[Equation 8]
Figure JPOXMLDOC01-appb-I000009
 ただし数7に示すように、bの最小値bはφ(τ)の最小値とし、最大値bはφ(τ)の最大値とする。区間幅S=bi+1-bは、C(τ,i)が一定以上のばらつきをもつ範囲で、十分小さくなるように定める。最頻値算出部23で得られた、相互相関関数の頻度分布(ヒストグラム)の例を図4に示す。ただし、縦軸は頻度C(τ,i)を区間幅Sで正規化した値である。 However, as shown in Equation 7, the minimum value b 0 of b i is the minimum value of φ n (τ), and the maximum value b M is the maximum value of φ n (τ). The section width S = b i + 1 −b i is determined to be sufficiently small in a range where C (τ, i) has a certain variation or more. An example of the frequency distribution (histogram) of the cross-correlation function obtained by the mode value calculation unit 23 is shown in FIG. However, the vertical axis is a value obtained by normalizing the frequency C (τ, i) by the section width S.
 漏洩有無判定部25は、図4の(A)に示すように、最頻値C(τ)を区間幅Sで正規化した値と、最頻値をとるときの相互相関関数φ(τ)がそれぞれ、数9の2つの条件の両方を満たすようなτ=τ´が一つ以上存在した場合に漏洩が有ると判定する。そして、判定結果を出力した後、伝搬時間差算出部26による処理に進む。
[数9]
             C(τ´)/S>Cth
             φ(τ´)>Φth
 図4に点線で示した閾値CthおよびΦthは、実際に取得した漏洩音から定められる。図4の(B)や図4の(C)のように、数9を満たすτが存在しない場合は漏洩では無いと出力し、処理は終了する。伝搬時間差算出部26は、数9の条件を満たした時のτ´を漏洩音に起因する伝搬時間差Tとして算出する。
As shown in FIG. 4A, the leakage presence / absence determination unit 25 normalizes the mode value C m (τ) by the section width S and the cross-correlation function φ (τ ) Each determine that there is a leak when there is one or more τ = τ ′ satisfying both of the two conditions of Equation 9. And after outputting a determination result, it progresses to the process by the propagation time difference calculation part 26. FIG.
[Equation 9]
C m (τ ′) / S> C th
φ (τ ′)> Φ th
The threshold values C th and Φ th indicated by dotted lines in FIG. 4 are determined from the actually acquired leaked sound. As shown in (B) of FIG. 4 and (C) of FIG. 4, if there is no τ satisfying Equation 9, it is output that there is no leakage, and the process ends. The propagation time difference calculation unit 26 calculates τ ′ when the condition of Equation 9 is satisfied as the propagation time difference T m caused by the leaked sound.
 図15は、第二の実施形態における漏洩検知装置A2の動作を説明するフローチャートである。次に、最頻値算出部23と、漏洩有無判定部25と、伝搬時間差算出部26と、漏洩位置算出部17とを含む漏洩検知装置A2の動作を、図15のフローチャートを用いて説明する。なお、図14のフローチャートと同様の処理については同一の番号を付与することにより、説明を省略する。相互相関関数算出部12は、分割された信号について、各時間で2つの入力信号の相互相関関数を算出する(ステップS3)。最頻値算出部23は、時間τごとに相互相関関数の頻度を算出し(ステップS14)、頻度の最大値(最頻値)と、最頻値をとる時の相互相関関数を算出する(ステップS15)。漏洩有無判定部25は、最頻値と最頻値をとる時の相互相関関数それぞれを閾値と比較する(ステップS16)。そして、漏洩有無判定部25は、両方が閾値を超える時間τが存在した場合(ステップS16においてYES)に漏洩が有ると判定して判定結果を出力し(ステップS17)、それ以外の場合(ステップS16においてNO)は漏洩では無いと判定して処理は終了する(ステップS18)。漏洩が有ると判定された場合は、伝搬時間差算出部26が、最頻値と最頻値をとる時の相互相関関数それぞれが閾値を超える時間τを伝搬時間差Tとして算出する(ステップS19)。最後に、漏洩位置算出部17が、伝搬時間差Tから漏洩位置を算出する(ステップS20)。 FIG. 15 is a flowchart for explaining the operation of the leak detection apparatus A2 in the second embodiment. Next, the operation of the leakage detection apparatus A2 including the mode value calculation unit 23, the leakage presence / absence determination unit 25, the propagation time difference calculation unit 26, and the leakage position calculation unit 17 will be described with reference to the flowchart of FIG. . In addition, about the process similar to the flowchart of FIG. 14, the same number is provided and description is abbreviate | omitted. The cross-correlation function calculation unit 12 calculates a cross-correlation function between two input signals at each time for the divided signals (step S3). The mode value calculation unit 23 calculates the frequency of the cross-correlation function at each time τ (step S14), and calculates the maximum value (mode value) of the frequency and the cross-correlation function when the mode value is taken ( Step S15). The leakage presence / absence determination unit 25 compares the mode value and the cross-correlation function when taking the mode value with a threshold value (step S16). Then, the leakage presence / absence determination unit 25 determines that there is leakage when there is a time τ in which both exceed the threshold (YES in step S16), and outputs a determination result (step S17), otherwise (step S17). If NO in S16, it is determined that there is no leakage, and the process ends (step S18). When it is determined that there is leakage, the propagation time difference calculation unit 26 calculates the time τ when the cross-correlation function when taking the mode value and the mode value exceeds the threshold as the propagation time difference T m (step S19). . Finally, the leakage position calculating section 17 calculates the leakage position from the propagation time difference T m (step S20).
 以上の様に、本発明の第二の実施形態に係る漏洩検知装置A2は、長時間の入力信号を測定する中で、漏洩音は常に発生しているが雑音は一時的に発生していない時間帯があるという特徴を利用している。このため、当該漏洩検知装置A2は、交通量の多い道路など雑音が頻繁に発生する環境でも、漏洩の有無の判定および漏洩位置の特定を行うことができる。 As described above, the leak detection device A2 according to the second embodiment of the present invention constantly leaks sound but does not temporarily generate noise while measuring a long-time input signal. The feature that there is a time zone is used. Therefore, the leak detection device A2 can determine whether there is a leak and specify the leak position even in an environment where noise frequently occurs, such as a road with a lot of traffic.
 [第三の実施形態]
 次に、上述した第一の実施形態および第二の実施形態に係る漏洩検知装置を基本とする第三の実施形態について説明する。以下の説明においては、第三の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第一の実施形態および第二の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Third embodiment]
Next, a third embodiment based on the leakage detection device according to the first embodiment and the second embodiment described above will be described. In the following description, the characteristic part according to the third embodiment will be mainly described. In this case, the same reference numerals are assigned to the same configurations as those in the first embodiment and the second embodiment described above, and redundant description is omitted.
 本発明の第三の実施形態においては、雑音がなるべく発生していない区間を抽出するため、第一の実施形態または第二の実施形態のようにセンサの入力信号を一定の時間間隔に分割する前に、複数センサの入力信号のレベルが小さい時間区間を抽出し、各区間について一定の時間間隔に分割する。このため、本発明の第三の実施形態に係る漏洩検知装置A3およびA3´は、図6Aおよび図6Bに示すように、それぞれ第一の実施形態と第二の実施形態の漏洩検知装置A1およびA2における信号入力部10の後に、信号レベル算出部30と評価区間算出部31を有する。このように入力信号レベルが特に大きな区間を取り除くことによって、常時発生している漏洩音とは対照的に、一時的に発生している雑音の影響を取り除くことができる。このため、本発明の第三の実施形態に係る漏洩検知装置A3およびA3´は、第一の実施形態および第二の実施形態における効果に加えて、雑音環境下における漏洩有無判定および漏洩位置特定の精度が高くなるという効果を有する。 In the third embodiment of the present invention, in order to extract a section in which noise is not generated as much as possible, the sensor input signal is divided into fixed time intervals as in the first embodiment or the second embodiment. Before, a time interval in which the levels of the input signals of a plurality of sensors are low is extracted, and each interval is divided into fixed time intervals. For this reason, the leak detection devices A3 and A3 ′ according to the third embodiment of the present invention have leak detection devices A1 and A1 of the first embodiment and the second embodiment, respectively, as shown in FIGS. 6A and 6B. A signal level calculation unit 30 and an evaluation interval calculation unit 31 are provided after the signal input unit 10 in A2. In this way, by removing a section in which the input signal level is particularly large, it is possible to remove the influence of the temporarily generated noise, as opposed to the leaked sound that is always generated. For this reason, in addition to the effects in the first embodiment and the second embodiment, the leak detection devices A3 and A3 ′ according to the third embodiment of the present invention determine whether there is a leak in a noise environment and specify the leak position. This has the effect of increasing the accuracy.
 [第四の実施形態]
 次に、上述した第二の実施形態に係る漏洩検知装置を基本とする第四の実施形態について説明する。以下の説明においては、第四の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第二の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Fourth embodiment]
Next, a fourth embodiment based on the leakage detection device according to the second embodiment described above will be described. In the following description, the characteristic part according to the fourth embodiment will be mainly described. In that case, about the structure similar to 2nd embodiment mentioned above, the overlapping description is abbreviate | omitted by attaching | subjecting the same reference number.
 本発明の第四の実施形態に係る漏洩検知装置A4は、図7に示すように、第二の実施形態の漏洩検知装置A2における信号入力部10の代わりに、信号入力部40を有する。信号入力部40は、例えば24時間連続して信号を入力するのではなく、3時間ごとに1時間ずつ測定するなどして、一定の時間間隔ごとに一定の期間の間測定することを特徴とする。これによって、本発明の第四の実施形態に係る漏洩検知装置A4は、処理できるデータ量や電力が限られている場合でも昼夜のさまざまなデータが効率よく取得できる。このため、本発明の第四の実施形態に係る漏洩検知装置A4は、第二の実施形態における効果に加えて、精度を落とすことなく漏洩有無判定および漏洩位置特定ができるという効果を有する。 As shown in FIG. 7, the leak detection device A4 according to the fourth embodiment of the present invention has a signal input unit 40 instead of the signal input unit 10 in the leak detection device A2 of the second embodiment. For example, the signal input unit 40 does not input a signal continuously for 24 hours, but measures one hour every three hours, for example, to measure for a certain period at a certain time interval. To do. Thereby, the leak detection device A4 according to the fourth embodiment of the present invention can efficiently acquire various data of day and night even when the amount of data and power that can be processed are limited. For this reason, in addition to the effect in 2nd embodiment, the leak detection apparatus A4 which concerns on 4th embodiment of this invention has the effect that a leak presence determination and leak position specification can be performed without reducing accuracy.
 [第五の実施形態]
 次に、上述した第一の実施形態に係る漏洩検知装置を基本とする第五の実施形態について説明する。以下の説明においては、第五の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第一の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Fifth embodiment]
Next, a fifth embodiment based on the leakage detection apparatus according to the first embodiment described above will be described. In the following description, the characteristic part according to the fifth embodiment will be mainly described. At this time, the same reference numerals are assigned to the same configurations as those in the first embodiment described above, and redundant description is omitted.
 本発明の第五の実施形態においては、第一の実施形態と同様に相互相関関数φ(τ)の平均値M(τ)を算出する際に、相互相関関数の値が特に高い場合と低い場合に、その時の値を異常値として利用せず、残りの値のみから平均値を算出することを特徴とする。例えば、時間分割部11にて分割した測定信号の個数N=100で、相互相関関数の値を大きい順に並べた時の上位10位以上と下位10位以下の値以外である、残り80個の値のみで平均値を算出した場合、平均値M(τ)は数10で与えられる。
[数10]
Figure JPOXMLDOC01-appb-I000010
In the fifth embodiment of the present invention, when the average value M (τ) of the cross-correlation function φ n (τ) is calculated as in the first embodiment, the value of the cross-correlation function is particularly high. When the value is low, the average value is calculated from only the remaining value without using the value at that time as the abnormal value. For example, when the number of measurement signals divided by the time division unit 11 is N = 100 and the cross correlation function values are arranged in descending order, the remaining 80 other than the values of the top 10 and the bottom 10 When the average value is calculated using only the value, the average value M (τ) is given by Equation 10.
[Equation 10]
Figure JPOXMLDOC01-appb-I000010
または、平均値の代わりに中央値μ(τ)を、数11から算出してもよい。
[数11]
Figure JPOXMLDOC01-appb-I000011
Alternatively, median μ (τ) may be calculated from Equation 11 instead of the average value.
[Equation 11]
Figure JPOXMLDOC01-appb-I000011
このため、本発明の第五の実施形態に係る漏洩検知装置A5は、図8に示すように、第一の実施形態の漏洩検知装置A1における平均・分散算出部13の代わりに、平均・分散算出部53を有する。これによって、当該漏洩検知装置A5は、第一の実施形態の効果に加えて、異常値による漏洩有無判定および漏洩位置特定の精度低下を抑えることができる。 For this reason, as shown in FIG. 8, the leak detection device A5 according to the fifth embodiment of the present invention uses an average / variance instead of the average / variance calculation unit 13 in the leak detection device A1 of the first embodiment. A calculation unit 53 is included. Thereby, in addition to the effect of 1st embodiment, the said leak detection apparatus A5 can suppress the precision fall of leak presence determination and leak position specification by an abnormal value.
 [第六の実施形態]
 次に、上述した第一の実施形態に係る漏洩検知装置を基本とする第六の実施形態について説明する。以下の説明においては、第六の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第一の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Sixth embodiment]
Next, a sixth embodiment based on the leakage detection apparatus according to the first embodiment described above will be described. In the following description, the characteristic part according to the sixth embodiment will be mainly described. At this time, the same reference numerals are assigned to the same configurations as those in the first embodiment described above, and redundant description is omitted.
 第一の実施形態の漏洩有無判定部15は、相互相関関数の平均値および分散値を閾値比較することで漏洩の有無の判定を行う。本発明の第六の実施形態においては、これに代えて、事前に用意した複数の漏洩音信号(漏洩音情報)および雑音信号(雑音情報)を基に、平均・分散グラフ上の識別境界を学習し、評価対象信号が識別境界に対してどちら側に位置するかで漏洩の有無の判定を行うことを特徴とする。ここで識別境界とは、漏洩が有る場合と漏洩では無い場合それぞれの領域を定義する境界線である。すなわち、識別境界とは、漏洩の有無の判定の境界となる、平均値と分散値との組み合わせ(平均・分散グラフ上の点)の集合である。 The leakage presence / absence determination unit 15 of the first embodiment determines the presence / absence of leakage by comparing the average value and the variance value of the cross-correlation function with a threshold value. In the sixth embodiment of the present invention, instead of this, based on a plurality of leaked sound signals (leakage sound information) and noise signals (noise information) prepared in advance, an identification boundary on the average / dispersion graph is set. Learning is performed, and the presence or absence of leakage is determined depending on which side the evaluation target signal is located with respect to the identification boundary. Here, the identification boundary is a boundary line that defines each region when there is leakage and when there is no leakage. That is, the identification boundary is a set of combinations of average values and variance values (points on the average / variance graph) that serve as a boundary for determining whether there is leakage.
 本発明の第六の実施形態に係る漏洩検知装置A6は、図12に示すように、第一の実施形態の漏洩検知装置A1における漏洩有無判定部15の代わりに、漏洩音・雑音信号入力部80と、時間分割部81と、相互相関関数算出部82と、平均・分散算出部83と、識別境界学習部84と、漏洩有無判定部95とを有する。漏洩音・雑音信号入力部80は、信号入力部10で入力した評価対象信号とは異なる、複数の漏洩音と雑音を入力する。漏洩音は、漏洩点を挟む管路上の2点にセンサを設置することにより測定される。雑音は、付近に漏洩のない管路上の2点に設置したセンサにより測定される。時間分割部81と相互相関関数算出部82は、上記の漏洩音・雑音信号入力部80で入力した信号に対して、それぞれ第一の実施形態の時間分割部11および相互相関関数算出部12と同様の動作を実施する。 As shown in FIG. 12, the leak detection device A6 according to the sixth embodiment of the present invention is a leak sound / noise signal input unit instead of the leak presence / absence determination unit 15 in the leak detection device A1 of the first embodiment. 80, a time division unit 81, a cross-correlation function calculation unit 82, an average / variance calculation unit 83, an identification boundary learning unit 84, and a leakage presence / absence determination unit 95. The leaked sound / noise signal input unit 80 inputs a plurality of leaked sounds and noises different from the evaluation target signal input by the signal input unit 10. Leakage sound is measured by installing sensors at two points on the pipeline across the leak point. Noise is measured by sensors installed at two points on the pipeline where there is no leakage in the vicinity. The time division unit 81 and the cross-correlation function calculation unit 82 are respectively connected to the time division unit 11 and the cross-correlation function calculation unit 12 of the first embodiment with respect to the signal input from the leaked sound / noise signal input unit 80. A similar operation is performed.
 平均・分散算出部83は、漏洩音と雑音それぞれについて、相互相関関数の平均値を与える関数M(τ)と分散値を与える関数V(τ)を、それぞれ数3と数4より算出する。識別境界学習部84は、平均・分散算出部83で得られた漏洩音と雑音それぞれのM(τ)とV(τ)の値から、サポートベクターマシン(SVM)やニューラルネットワーク、k近傍識別器等の識別器を用いて、2次元空間(平均・分散グラフ)上の識別境界を学習する。漏洩有無判定部95は、平均・分散算出部13で算出した評価対象信号の平均値と分散値が、上記の識別境界に対して漏洩音側にある場合に漏洩が有ると判定し、雑音側にある場合に漏洩では無いと判定する。 The average / dispersion calculation unit 83 calculates a function M (τ) that gives an average value of a cross-correlation function and a function V (τ) that gives a dispersion value from Equations 3 and 4, respectively, for each leaked sound and noise. The discrimination boundary learning unit 84 calculates a support vector machine (SVM), a neural network, and a k-neighbor discriminator from values of M (τ) and V (τ) of the leaked sound and noise obtained by the average / variance calculation unit 83. A discriminating boundary on a two-dimensional space (average / dispersion graph) is learned using a discriminator such as. The leakage presence / absence determination unit 95 determines that there is leakage when the average value and the variance value of the evaluation target signal calculated by the average / variance calculation unit 13 are on the leakage sound side with respect to the identification boundary, and the noise side It is determined that there is no leakage.
 図16は、識別境界学習部84で学習された識別境界を表す概念図である。図16の横軸は平均値であり、縦軸は分散値である。事前に用意した漏洩音および雑音はそれぞれ、黒丸と白丸で示されている。点線は漏洩音および雑音から学習された識別境界である。評価信号が斜線の領域にある場合に漏洩が有ると判定され、それ以外の領域にある場合に漏洩では無いと判定される。 FIG. 16 is a conceptual diagram showing the identification boundary learned by the identification boundary learning unit 84. The horizontal axis in FIG. 16 is the average value, and the vertical axis is the variance value. The leaked sound and noise prepared in advance are indicated by black circles and white circles, respectively. The dotted line is the identification boundary learned from leaked sound and noise. If the evaluation signal is in the shaded area, it is determined that there is a leak, and if it is in any other area, it is determined that there is no leak.
 以上の様に、本発明の第六の実施形態に係る漏洩検知装置A6は、第一の実施形態の効果を有することに加えて、より精度の高い判定を行うことができる。 As described above, the leak detection device A6 according to the sixth embodiment of the present invention can perform determination with higher accuracy in addition to the effects of the first embodiment.
 [第七の実施形態]
 次に、上述した第二の実施形態に係る漏洩検知装置を基本とする第七の実施形態について説明する。以下の説明においては、第七の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第二の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Seventh embodiment]
Next, a seventh embodiment based on the leakage detection device according to the second embodiment described above will be described. In the following description, the characteristic part according to the seventh embodiment will be mainly described. In that case, about the structure similar to 2nd embodiment mentioned above, the overlapping description is abbreviate | omitted by attaching | subjecting the same reference number.
 第二の実施形態の漏洩有無判定部25は、最頻値および相互相関関数を閾値と比較することによって漏洩の有無の判定を行う。本発明の第七の実施形態においては、これに代えて、事前に取得した複数の漏洩音信号(漏洩音情報)および雑音信号(雑音情報)を基に、相互相関関数のヒストグラム上の識別境界を学習し、評価対象信号の最頻値が識別境界に対してどちら側に位置するかで漏洩の有無の判定を行うことを特徴とする。ここで識別境界とは、漏洩が有る場合と漏洩では無い場合それぞれの領域を定義する境界線である。すなわち、識別境界とは、漏洩の有無の判定境界となる、区間値と出現頻度との組み合わせ(相互相関関数のヒストグラム上の点)の集合である。 The leakage presence / absence determination unit 25 of the second embodiment determines the presence / absence of leakage by comparing the mode value and the cross-correlation function with a threshold value. In the seventh embodiment of the present invention, instead of this, an identification boundary on the histogram of the cross-correlation function based on a plurality of leaked sound signals (leakage sound information) and noise signals (noise information) acquired in advance. And determining whether or not there is a leak depending on which side the mode value of the signal to be evaluated is located with respect to the identification boundary. Here, the identification boundary is a boundary line that defines each region when there is leakage and when there is no leakage. That is, the identification boundary is a set of combinations of the interval value and the appearance frequency (points on the histogram of the cross-correlation function) that serve as a determination boundary for the presence or absence of leakage.
 本発明の第七の実施形態に係る漏洩検知装置A7は、図9に示すように、第二の実施形態の漏洩検知装置A2における漏洩有無判定部25の代わりに、漏洩音・雑音信号入力部80と、時間分割部81と、相互相関関数算出部82と、最頻値算出部63と、識別境界学習部64と、漏洩有無判定部85とを有する。 As shown in FIG. 9, the leak detection device A7 according to the seventh embodiment of the present invention is a leak sound / noise signal input unit instead of the leak presence / absence determination unit 25 in the leak detection device A2 of the second embodiment. 80, a time division unit 81, a cross-correlation function calculation unit 82, a mode value calculation unit 63, an identification boundary learning unit 64, and a leakage presence / absence determination unit 85.
 漏洩音・雑音信号入力部80と、時間分割部81と、相互相関関数算出部82は、第六の実施形態で説明したように、複数の漏洩音と雑音に対して、それぞれ相互相関関数を算出する。 As described in the sixth embodiment, the leaked sound / noise signal input unit 80, the time division unit 81, and the cross-correlation function calculation unit 82 respectively calculate a cross-correlation function for a plurality of leaked sounds and noises. calculate.
 最頻値算出部63は、相互相関関数φ(τ)が数7の不等式を満たす回数(頻度)C(τ,i)を各τ,各iについてカウントした後、数12に示すように、C(τ,i)の最大値(最頻値)C´を算出する。
[数12]
Figure JPOXMLDOC01-appb-I000012
The mode value calculation unit 63 counts the number of times (frequency) C (τ, i) that the cross-correlation function φ n (τ) satisfies the inequality of Equation 7 for each τ and each i, and then, as shown in Equation 12. , C (τ, i) maximum value (mode) C m ′ is calculated.
[Equation 12]
Figure JPOXMLDOC01-appb-I000012
同時に、最頻値算出部63は、最頻値C´をとる場合のτ=τ´,i=i´から、相互相関関数φ(τ´,i´)も算出する。 At the same time, the mode value calculation unit 63 also calculates the cross-correlation function φ n (τ ′, i ′) from τ = τ ′, i = i ′ when the mode value C m ′ is taken.
 識別境界学習部64は、上記の最頻値算出部63で得られた雑音と漏洩音それぞれの最頻値C´とそのときの相互相関関数φ(τ´,i´)の値から、サポートベクターマシンやニューラルネットワーク、k近傍識別器等の識別器を用いて、2次元空間(相互相関関数のヒストグラム)上の識別境界を学習する。漏洩有無判定部85は、最頻値算出部23で算出した評価対象信号の最頻値が、上記の識別境界に対して漏洩音側にある場合に漏洩が有ると判定し、雑音側にある場合に漏洩では無いと判定する。 The discriminating boundary learning unit 64 uses the mode C m ′ of the noise and leaked sound obtained by the mode calculation unit 63 and the value of the cross-correlation function φ n (τ ′, i ′) at that time. Using a classifier such as a support vector machine, a neural network, or a k-neighbor classifier, a classification boundary on a two-dimensional space (cross correlation function histogram) is learned. The leakage presence / absence determination unit 85 determines that there is leakage when the mode value of the evaluation target signal calculated by the mode value calculation unit 23 is on the leakage sound side with respect to the identification boundary, and is on the noise side. It is determined that there is no leakage.
 図5は、評価対象信号から算出された相互相関関数のヒストグラムと、事前に学習した識別境界を表す概念図である。図5の横軸は相互相関関数φ(τ)の値であり、縦軸は頻度C(τ,i)を区間幅Sで正規化した値である。図5に示す例においては、評価対象信号のヒストグラムが、識別境界で囲まれた斜線の領域に入るため、漏洩が有ると判定される。 FIG. 5 is a conceptual diagram showing the histogram of the cross-correlation function calculated from the evaluation target signal and the identification boundary learned in advance. The horizontal axis in FIG. 5 is the value of the cross-correlation function φ (τ), and the vertical axis is the value obtained by normalizing the frequency C (τ, i) by the section width S. In the example shown in FIG. 5, since the histogram of the signal to be evaluated enters the hatched area surrounded by the identification boundary, it is determined that there is a leak.
 以上の様に、本発明の第七の実施形態に係る漏洩検知装置A7は、第二の実施形態の効果を有することに加えて、より精度の高い判定を行うことができる。 As described above, the leak detection device A7 according to the seventh embodiment of the present invention can perform the determination with higher accuracy in addition to the effects of the second embodiment.
 [第八の実施形態]
 次に、上述した第一の実施形態に係る漏洩検知装置を基本とする第八の実施形態について説明する。以下の説明においては、第八の実施形態に係る特徴的な部分を中心に説明する。その際、上述した第一の実施形態と同様な構成については、同一の参照番号を付すことにより、重複する説明は省略する。
[Eighth embodiment]
Next, an eighth embodiment based on the leakage detection apparatus according to the first embodiment described above will be described. In the following description, the characteristic part according to the eighth embodiment will be mainly described. At this time, the same reference numerals are assigned to the same configurations as those in the first embodiment described above, and redundant description is omitted.
 図17は、本発明の第八の実施形態に係る漏洩検知装置の構成を表すブロック図である。本発明の第八の実施形態に係る漏洩検知装置A8は、漏洩有無判定部15と、漏洩位置算出部17とを備える。 FIG. 17 is a block diagram showing the configuration of the leak detection apparatus according to the eighth embodiment of the present invention. The leak detection device A8 according to the eighth embodiment of the present invention includes a leak presence / absence determination unit 15 and a leak position calculation unit 17.
 漏洩有無判定部15は、複数のセンサから入力された入力信号同士の相互相関関数の値が、閾値以上かつ時間変化が閾値以下である場合に漏洩が有ると判定する。 The leakage presence / absence determination unit 15 determines that there is leakage when the value of the cross-correlation function between input signals input from a plurality of sensors is equal to or greater than a threshold value and the time change is equal to or less than the threshold value.
 漏洩位置算出部17は、相互相関関数の値が閾値以上かつ時間変化が閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、この伝搬時間差に基づいて漏洩位置を特定する。 The leakage position calculation unit 17 calculates the propagation time difference of the leaked sound based on the location where the value of the cross-correlation function is equal to or greater than the threshold value and the time change is equal to or less than the threshold value, and specifies the leakage position based on the propagation time difference.
 以上の様に、本発明の第八の実施形態に係る漏洩検知装置A8は、漏洩音の定常性および複数センサ間の相関性を利用して、相互相関関数の値が大きく、かつ時間変化が小さい場合に漏洩が有ると判定する。そして、当該漏洩検知装置A8は、相互相関関数の値が大きく、かつ時間変化が小さい箇所に基づいて漏洩音の伝播時間差を算出し、この伝搬時間差に基づいて漏洩位置を特定する。このため、当該漏洩検知装置A8は、雑音の発生する環境でも漏洩の有無および漏洩位置を特定できるという効果を有する。 As described above, the leak detection device A8 according to the eighth embodiment of the present invention has a large value of the cross-correlation function and a change over time by utilizing the steadiness of the leaked sound and the correlation between the plurality of sensors. If small, it is determined that there is a leak. Then, the leak detection device A8 calculates the propagation time difference of the leaked sound based on the location where the value of the cross-correlation function is large and the time change is small, and specifies the leak position based on the propagation time difference. For this reason, the leak detection apparatus A8 has an effect that the presence / absence of the leak and the leak position can be specified even in an environment where noise is generated.
 [漏洩検知装置のハードウェア構成]
 以下、上述した各実施形態に係る漏洩検知装置を実現可能なハードウェア構成例について説明する。
[Hardware configuration of leak detection device]
Hereinafter, a hardware configuration example capable of realizing the leakage detection device according to each embodiment described above will be described.
 図18は、コンピュータを構成する要素の例を表すブロック構成図である。図18のコンピュータ900は、CPU(Central Processing Unit)910と、RAM(Random Access Memory)920と、ROM(Read Only Memory)930と、ハードディスクドライブ940と、通信インタフェース950とを備えている。 FIG. 18 is a block diagram showing an example of elements constituting the computer. A computer 900 in FIG. 18 includes a CPU (Central Processing Unit) 910, a RAM (Random Access Memory) 920, a ROM (Read Only Memory) 930, a hard disk drive 940, and a communication interface 950.
 前述した漏洩検知装置A1,A2,A3,A3´,A4,A5,A6,A7,A8の構成要素は、プログラム(ソフトウェアプログラム,コンピュータプログラム)がコンピュータ900のCPU910において実行されることにより実現されてもよい。具体的には、前述した図1,図3,図6A,図6B,図7,図8,図9,図12,図17に記載の構成要素である、時間分割部11,81と、相互相関関数算出部12,82と、平均・分散算出部13,53,83と、漏洩有無判定部15,25,85,95と、伝搬時間差算出部16,26と、漏洩位置算出部17と、最頻値算出部23,63と、信号レベル算出部30と、評価区間抽出部31と、識別境界学習部64,84は、CPU910がROM930あるいはハードディスクドライブ940からプログラムを読み込み、読み込んだプログラムを、例えば図14,15に示したフローチャートの手順の如くCPU910が実行することにより実現されてもよい。そして、このような場合において、上述した実施形態を例に説明した本発明は、係るコンピュータプログラムを表すコードあるいはそのコンピュータプログラムを表すコードが格納されたコンピュータ読み取り可能な記憶媒体(例えばハードディスクドライブ940や、不図示の着脱可能な磁気ディスク媒体,光学ディスク媒体やメモリカードなど)によって構成されると捉えることができる。 The components of the leak detection devices A1, A2, A3, A3 ′, A4, A5, A6, A7, and A8 described above are realized by executing a program (software program, computer program) in the CPU 910 of the computer 900. Also good. Specifically, the time division units 11 and 81 that are the components described in FIGS. 1, 3, 6A, 6B, 7, 8, 9, 12, and 17 described above, Correlation function calculation units 12, 82, average / variance calculation units 13, 53, 83, leakage presence / absence determination units 15, 25, 85, 95, propagation time difference calculation units 16, 26, leakage position calculation unit 17, The mode value calculation units 23 and 63, the signal level calculation unit 30, the evaluation section extraction unit 31, and the identification boundary learning units 64 and 84 read the program read by the CPU 910 from the ROM 930 or the hard disk drive 940. For example, it may be realized by execution by the CPU 910 as in the procedures of the flowcharts shown in FIGS. In such a case, the present invention described by using the above-described embodiment as an example can be applied to a computer-readable storage medium (for example, hard disk drive 940 or the like) that stores a code representing the computer program or a code representing the computer program. It can be understood that it is constituted by a removable magnetic disk medium, optical disk medium, memory card, etc. (not shown).
 あるいは、時間分割部11,81と、相互相関関数算出部12,82と、平均・分散算出部13,53,83と、漏洩有無判定部15,25,85,95と、伝搬時間差算出部16,26と、漏洩位置算出部17と、最頻値算出部23,63と、信号レベル算出部30と、評価区間抽出部31と、識別境界学習部64,84は、専用のハードウェアで実現されてもよい。また、漏洩検知装置A1,A2,A3,A3´,A4,A5,A6,A7,A8は、これら構成要素を備える専用のハードウェアであってもよい。 Alternatively, the time division units 11, 81, the cross-correlation function calculation units 12, 82, the average / variance calculation units 13, 53, 83, the leakage presence / absence determination units 15, 25, 85, 95, and the propagation time difference calculation unit 16 , 26, leakage position calculation unit 17, mode value calculation units 23 and 63, signal level calculation unit 30, evaluation interval extraction unit 31, and identification boundary learning units 64 and 84 are realized by dedicated hardware. May be. Further, the leakage detection devices A1, A2, A3, A3 ′, A4, A5, A6, A7, and A8 may be dedicated hardware including these components.
 上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments may be described as in the following supplementary notes, but are not limited to the following.
 (付記1)
 複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、算出した値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定する漏洩有無判定手段と、
 前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、前記伝搬時間差に基づいて漏洩位置を特定する漏洩位置算出手段とを備える漏洩検知装置。
(Appendix 1)
Using signals representing the detection results of a plurality of sensors, the value of the cross-correlation function of these signals is calculated, the calculated value is equal to or greater than the first threshold value, and the time change of the calculated value at different measurement times is the first. A leakage presence / absence determination means for determining that there is a leakage when the threshold is equal to or less than 2,
A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. A leak detection device comprising: a leak position calculation means for specifying a leak position based on the propagation time difference.
 (付記2)
 前記漏洩有無判定手段は、前記相互相関関数の値の異なる測定時間を通しての平均値が第3の閾値以上、かつ、分散値が第4の閾値以下の場合に漏洩が有ると判定する付記1記載の漏洩検知装置。
(Appendix 2)
Supplementary note 1 wherein the leakage presence / absence determining means determines that there is leakage when an average value of the cross-correlation function values over different measurement times is equal to or greater than a third threshold value and a variance value is equal to or less than a fourth threshold value. Leak detection device.
 (付記3)
 前記漏洩有無判定手段は、所定の区間幅毎に割り当てられた前記相互相関関数の区間値が第5の閾値以上、かつ、当該区間値の出現頻度が第6の閾値以上の場合に漏洩が有ると判定する付記1記載の漏洩検知装置。
(Appendix 3)
The leak presence / absence determining means has a leak when a section value of the cross-correlation function assigned for each predetermined section width is equal to or greater than a fifth threshold and the frequency of appearance of the section value is equal to or greater than a sixth threshold. The leakage detection device according to supplementary note 1, wherein
 (付記4)
 前記漏洩有無判定手段は、前記相互相関関数の最大値から順に所定個数の値および最小値から順に所定個数の値を除いた、残りの値から平均値を算出する付記2記載の漏洩検知装置。
(Appendix 4)
The leakage detection device according to supplementary note 2, wherein the leakage presence / absence determination means calculates an average value from remaining values obtained by removing a predetermined number of values in order from the maximum value of the cross-correlation function and a predetermined number of values in order from the minimum value.
 (付記5)
 事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記平均値と前記分散値との組み合わせの集合である識別境界を学習する識別境界学習手段をさらに備え、
 前記漏洩有無判定手段は、前記識別境界に基づいて漏洩の有無を判定する付記2または4記載の漏洩検知装置。
(Appendix 5)
Based on a plurality of leaked sound information and noise information acquired in advance, an identification boundary learning means for learning an identification boundary that is a set of combinations of the average value and the variance value, which is a boundary for determining whether there is leakage In addition,
The leakage detection apparatus according to appendix 2 or 4, wherein the leakage presence / absence determination means determines whether there is leakage based on the identification boundary.
 (付記6)
 事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記区間値と前記出現頻度との組み合わせの集合である識別境界を学習する識別境界学習手段をさらに備え、
 前記漏洩有無判定手段は、前記識別境界に基づいて漏洩の有無を判定する付記3記載の漏洩検知装置。
(Appendix 6)
An identification boundary learning unit that learns an identification boundary that is a set of combinations of the section value and the appearance frequency, which is a boundary for determining whether there is leakage, based on a plurality of leaked sound information and noise information acquired in advance. In addition,
The leakage detection device according to supplementary note 3, wherein the leakage presence / absence determination means determines whether there is leakage based on the identification boundary.
 (付記7)
 前記識別境界学習手段は、サポートベクターマシン、ニューラルネットワーク、k近傍識別器のいずれかである識別器を用いて前記識別境界を学習し、
 前記漏洩有無判定手段は、評価対象の入力信号の最頻値が前記識別境界に対して漏洩音側にある場合に漏洩が有ると判定し、雑音側にある場合に漏洩では無いと判定する付記5または6記載の漏洩検知装置。
(Appendix 7)
The discrimination boundary learning means learns the discrimination boundary using a discriminator that is one of a support vector machine, a neural network, and a k-neighbor discriminator,
The leakage presence / absence determining means determines that there is leakage when the mode value of the input signal to be evaluated is on the leakage sound side with respect to the identification boundary, and determines that there is no leakage when on the noise side. 5. The leak detection device according to 5 or 6.
 (付記8)
 前記入力信号からレベルが閾値以下である区間を抽出し、抽出された区間を一定の時間間隔に分割し、分割された前記入力信号同士の相互相関関数を算出する相互相関関数算出手段をさらに備える付記1乃至7のいずれかに記載の漏洩検知装置。
(Appendix 8)
A cross-correlation function calculating unit that extracts a section whose level is equal to or less than a threshold value from the input signal, divides the extracted section into fixed time intervals, and calculates a cross-correlation function between the divided input signals; The leak detection device according to any one of appendices 1 to 7.
 (付記9)
 時間間隔Mごとに期間Nの間(ただし、時間間隔M>期間N)前記入力信号を入力する信号入力手段をさらに備える付記8記載の漏洩検知装置。
(Appendix 9)
9. The leak detection device according to appendix 8, further comprising signal input means for inputting the input signal for each time interval M during the period N (where time interval M> period N).
 (付記10)
 複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、
 前記相互相関関数の値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定し、
 前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、
 前記伝搬時間差に基づいて漏洩位置を特定する漏洩検知方法。
(Appendix 10)
Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals,
It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold;
A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. ,
A leak detection method for specifying a leak position based on the propagation time difference.
 (付記11)
 前記相互相関関数の値の異なる測定時間を通しての平均値が第3の閾値以上、かつ、分散値が第4の閾値以下の場合に漏洩が有ると判定する付記10記載の漏洩検知方法。
(Appendix 11)
The leak detection method according to appendix 10, wherein it is determined that there is a leak when an average value over different measurement times of the cross-correlation function value is equal to or greater than a third threshold value and a variance value is equal to or less than a fourth threshold value.
 (付記12)
 所定の区間幅毎に割り当てられた前記相互相関関数の区間値が第5の閾値以上、かつ、当該区間値の出現頻度が第6の閾値以上の場合に漏洩が有ると判定する付記10記載の漏洩検知方法。
(Appendix 12)
Item 11. The supplementary note 10, wherein it is determined that there is a leak when the interval value of the cross-correlation function assigned for each predetermined interval width is equal to or greater than a fifth threshold value and the frequency of occurrence of the interval value is equal to or greater than the sixth threshold value. Leak detection method.
 (付記13)
 前記相互相関関数の最大値から順に所定個数の値および最小値から順に所定個数の値を除いた残りの値から平均値を算出する付記11記載の漏洩検知方法。
(Appendix 13)
12. The leakage detection method according to claim 11, wherein an average value is calculated from a remaining value obtained by excluding a predetermined number of values in order from the maximum value of the cross-correlation function and from a minimum value.
 (付記14)
 事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記平均値と前記分散値との組み合わせの集合である識別境界を学習し、
 前記識別境界に基づいて漏洩の有無を判定する付記11または13記載の漏洩検知方法。
(Appendix 14)
Based on a plurality of leaked sound information and noise information acquired in advance, learn an identification boundary that is a set of a combination of the average value and the variance value, which is a boundary for determining whether there is leakage,
14. The leak detection method according to appendix 11 or 13, wherein the presence / absence of a leak is determined based on the identification boundary.
 (付記15)
 事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記区間値と前記出現頻度との組み合わせの集合である識別境界を学習し、
 前記識別境界に基づいて漏洩の有無を判定する付記12記載の漏洩検知方法。
(Appendix 15)
Based on a plurality of leaked sound information and noise information acquired in advance, learning an identification boundary that is a set of combinations of the section value and the appearance frequency, which is a boundary for the presence or absence of leakage,
The leakage detection method according to appendix 12, wherein the presence or absence of leakage is determined based on the identification boundary.
 (付記16)
 サポートベクターマシン、ニューラルネットワーク、k近傍識別器のいずれかである識別器を用いて前記識別境界を学習し、
 評価対象の入力信号の最頻値が前記識別境界に対して漏洩音側にある場合に漏洩が有ると判定し、雑音側にある場合に漏洩では無いと判定する付記14または15記載の漏洩検知方法。
(Appendix 16)
Learning the discrimination boundary using a discriminator that is one of a support vector machine, a neural network, or a k-neighbor discriminator;
The leak detection according to appendix 14 or 15, wherein when the mode value of the input signal to be evaluated is on the leaky sound side with respect to the identification boundary, it is determined that there is a leak, and when it is on the noise side, it is determined that there is no leak Method.
 (付記17)
 前記入力信号からレベルが閾値以下である区間を抽出し、
 抽出された区間を一定の時間間隔に分割し、
 分割された前記入力信号同士の相互相関関数を算出する付記10乃至16のいずれかに記載の漏洩検知方法。
(Appendix 17)
Extracting a section whose level is below a threshold from the input signal;
Divide the extracted interval into fixed time intervals,
The leakage detection method according to any one of supplementary notes 10 to 16, wherein a cross-correlation function between the divided input signals is calculated.
 (付記18)
 時間間隔Mごとに期間Nの間(ただし、時間間隔M>期間N)前記入力信号を入力する付記17記載の漏洩検知方法。
(Appendix 18)
18. The leakage detection method according to appendix 17, wherein the input signal is input for each time interval M during a period N (where time interval M> period N).
 (付記19)
 コンピュータに、
 複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出する処理と、
 前記相互相関関数の値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有いと判定する処理と、
 前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出する処理と、
 前記伝搬時間差に基づいて漏洩位置を特定する処理とを実行させるプログラム。
(Appendix 19)
On the computer,
Using a signal representing the detection results of a plurality of sensors, calculating a value of a cross-correlation function of these signals,
A process of determining that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at a different measurement time is equal to or less than a second threshold;
A leakage sound propagation time difference is calculated based on a location where the cross-correlation function value is equal to or greater than the first threshold value and the time change of the cross-correlation function value at different measurement times is equal to or less than the second threshold value. Processing,
The program which performs the process which specifies a leak position based on the said propagation time difference.
 (付記20)
 コンピュータに、
 前記相互相関関数の値の所定期間中の平均値が第3の閾値以上、かつ分散値が第4の閾値以下の場合に漏洩が有ると判定する処理を実行させる付記19記載のプログラム。
(Appendix 20)
On the computer,
The program according to appendix 19, which executes a process of determining that there is a leak when an average value of the cross-correlation function values during a predetermined period is equal to or greater than a third threshold value and a variance value is equal to or less than a fourth threshold value.
 (付記21)
 コンピュータに、
 所定の区間幅毎に割り当てられた前記相互相関関数の区間値が第5の閾値以上、かつ、当該区間値の出現頻度が第6の閾値以上の場合に漏洩が有ると判定する処理を実行させる付記19記載のプログラム。
(Appendix 21)
On the computer,
A process of determining that there is a leak when the section value of the cross-correlation function assigned for each predetermined section width is equal to or greater than a fifth threshold and the frequency of appearance of the section value is equal to or greater than a sixth threshold is executed. The program according to appendix 19.
 (付記22)
 コンピュータに、
 前記相互相関関数の最大値から順に所定個数の値および最小値から順に所定個数の値を除いた残りの値から平均値を算出する処理を実行させる付記20記載のプログラム。
(Appendix 22)
On the computer,
21. The program according to appendix 20, which executes a process of calculating an average value from a remaining value obtained by excluding a predetermined number of values in order from a maximum value of the cross-correlation function in order from a minimum value.
 (付記23)
 コンピュータに、
 事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記平均値と前記分散値との組み合わせの集合である識別境界を学習する処理と、
 前記識別境界に基づいて漏洩の有無を判定する処理とを実行させる付記20または22記載のプログラム。
(Appendix 23)
On the computer,
Based on a plurality of leaked sound information and noise information acquired in advance, a process for learning an identification boundary that is a set of combinations of the average value and the variance value, which is a boundary for determining whether there is leakage,
The program according to appendix 20 or 22, which executes a process of determining the presence or absence of leakage based on the identification boundary.
 (付記24)
 コンピュータに、
 事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記区間値と前記出現頻度との組み合わせの集合である識別境界を学習する処理と、
 前記識別境界に基づいて漏洩の有無を判定する処理とを実行させる付記21記載のプログラム。
(Appendix 24)
On the computer,
Based on a plurality of leaked sound information and noise information acquired in advance, a process for learning an identification boundary that is a set of combinations of the section value and the appearance frequency, which is a boundary for determining whether there is leakage,
The program according to appendix 21, which executes a process of determining the presence or absence of leakage based on the identification boundary.
 (付記25)
 コンピュータに、
 サポートベクターマシン、ニューラルネットワーク、k近傍識別器のいずれかである識別器を用いて前記識別境界を学習する処理と、
 評価対象の入力信号の最頻値が前記識別境界に対して漏洩音側にある場合に漏洩が有ると判定し、雑音側にある場合に漏洩では無いと判定する処理とを実行させる付記23または24記載のプログラム。
(Appendix 25)
On the computer,
Learning the discrimination boundary using a discriminator that is one of a support vector machine, a neural network, and a k-neighbor discriminator;
Appendix 23 or 23 for executing a process of determining that there is a leak when the mode value of the input signal to be evaluated is on the leaky sound side with respect to the identification boundary and determining that there is no leak when on the noise side 24. The program according to 24.
 (付記26)
 コンピュータに、
 前記入力信号からレベルが閾値以下である区間を抽出する処理と、
 抽出された区間を一定の時間間隔に分割する処理と、
 分割された前記入力信号同士の相互相関関数を算出する処理とを実行させる付記19乃至25のいずれかに記載のプログラム。
(Appendix 26)
On the computer,
A process of extracting a section whose level is equal to or lower than a threshold value from the input signal;
A process of dividing the extracted section into a certain time interval;
The program according to any one of appendices 19 to 25, wherein the program executes a process of calculating a cross-correlation function between the divided input signals.
 (付記27)
 コンピュータに、
 時間間隔Mごとに期間Nの間(ただし、時間間隔M>期間N)前記入力信号を入力する処理を実行させる付記26記載のプログラム。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2014年3月26日に出願された日本出願特願2014-063543号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(Appendix 27)
On the computer,
27. The program according to appendix 26, wherein a process for inputting the input signal is executed for each time interval M during a period N (where time interval M> period N).
While the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2014-063543 for which it applied on March 26, 2014, and takes in those the indications of all here.
 A1,A2,A3,A3´,A4,A5,A6,A7,A8  漏洩検知装置
 10,40  信号入力部
 11,81  時間分割部
 12,82  相互相関関数算出部
 13,53,83  平均・分散算出部
 15,25,85,95  漏洩有無判定部
 16,26  伝搬時間差算出部
 17  漏洩位置算出部
 23,63  最頻値算出部
 30  信号レベル算出部
 31  評価区間抽出部
 64,84  識別境界学習部
 80  漏洩音・雑音信号入力部
 100A,100B  センサ
 110  漏洩点
 900  コンピュータ
 910  CPU
 920  RAM
 930  ROM
 940  ハードディスクドライブ
 950  通信インタフェース
A1, A2, A3, A3 ', A4, A5, A6, A7, A8 Leakage detection device 10, 40 Signal input unit 11, 81 Time division unit 12, 82 Cross correlation function calculation unit 13, 53, 83 Average / variance calculation 15, 25, 85, 95 Leakage presence / absence determination unit 16, 26 Propagation time difference calculation unit 17 Leakage position calculation unit 23, 63 Mode value calculation unit 30 Signal level calculation unit 31 Evaluation interval extraction unit 64, 84 Discrimination boundary learning unit 80 Leaked sound / noise signal input unit 100A, 100B Sensor 110 Leakage point 900 Computer 910 CPU
920 RAM
930 ROM
940 Hard disk drive 950 Communication interface

Claims (14)

  1.  複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、算出した値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定する漏洩有無判定手段と、
     前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、前記伝搬時間差に基づいて漏洩位置を特定する漏洩位置算出手段とを備える漏洩検知装置。
    Using signals representing the detection results of a plurality of sensors, the value of the cross-correlation function of these signals is calculated, the calculated value is equal to or greater than the first threshold value, and the time change of the calculated value at different measurement times is the first. A leakage presence / absence determination means for determining that there is a leakage when the threshold is equal to or less than 2,
    A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. A leak detection device comprising: a leak position calculation means for specifying a leak position based on the propagation time difference.
  2.  前記漏洩有無判定手段は、前記相互相関関数の値の異なる測定時間を通しての平均値が第3の閾値以上、かつ、分散値が第4の閾値以下の場合に漏洩が有ると判定する請求項1記載の漏洩検知装置。 The leak presence / absence determining means determines that there is a leak when an average value over a different measurement time of the cross-correlation function value is not less than a third threshold value and a variance value is not more than a fourth threshold value. The leakage detection device described.
  3.  前記漏洩有無判定手段は、所定の区間幅毎に割り当てられた前記相互相関関数の区間値が第5の閾値以上、かつ、当該区間値の出現頻度が第6の閾値以上の場合に漏洩が有ると判定する請求項1記載の漏洩検知装置。 The leak presence / absence determining means has a leak when a section value of the cross-correlation function assigned for each predetermined section width is equal to or greater than a fifth threshold and the frequency of appearance of the section value is equal to or greater than a sixth threshold. The leak detection device according to claim 1, which is determined as follows.
  4.  前記漏洩有無判定手段は、前記相互相関関数の最大値から順に所定個数の値および最小値から順に所定個数の値を除いた、残りの値から平均値を算出する請求項2記載の漏洩検知装置。 3. The leak detection apparatus according to claim 2, wherein the leak presence / absence determining means calculates an average value from the remaining values obtained by removing a predetermined number of values in order from the maximum value of the cross-correlation function and a predetermined number of values in order from the minimum value. .
  5.  事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記平均値と前記分散値との組み合わせの集合である識別境界を学習する識別境界学習手段をさらに備え、
     前記漏洩有無判定手段は、前記識別境界に基づいて漏洩の有無を判定する請求項2記載の漏洩検知装置。
    Based on a plurality of leaked sound information and noise information acquired in advance, an identification boundary learning means for learning an identification boundary that is a set of combinations of the average value and the variance value, which is a boundary for determining whether there is leakage In addition,
    The leak detection device according to claim 2, wherein the leak presence / absence determination unit determines whether there is a leak based on the identification boundary.
  6.  事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記区間値と前記出現頻度との組み合わせの集合である識別境界を学習する識別境界学習手段をさらに備え、
     前記漏洩有無判定手段は、前記識別境界に基づいて漏洩の有無を判定する請求項3記載の漏洩検知装置。
    An identification boundary learning unit that learns an identification boundary that is a set of combinations of the section value and the appearance frequency, which is a boundary for determining whether there is leakage, based on a plurality of leaked sound information and noise information acquired in advance. In addition,
    The leakage detection device according to claim 3, wherein the leakage presence / absence determination unit determines whether there is leakage based on the identification boundary.
  7.  前記識別境界学習手段は、サポートベクターマシン、ニューラルネットワーク、k近傍識別器のいずれかである識別器を用いて前記識別境界を学習し、
     前記漏洩有無判定手段は、評価対象の入力信号の最頻値が前記識別境界に対して漏洩音側にある場合に漏洩が有ると判定し、雑音側にある場合に漏洩では無いと判定する請求項5または6記載の漏洩検知装置。
    The discrimination boundary learning means learns the discrimination boundary using a discriminator that is one of a support vector machine, a neural network, and a k-neighbor discriminator,
    The leakage presence / absence determination means determines that there is leakage when the mode value of the input signal to be evaluated is on the leakage sound side with respect to the identification boundary, and determines that there is no leakage when on the noise side. Item 7. The leakage detection device according to Item 5 or 6.
  8.  前記入力信号からレベルが閾値以下である区間を抽出し、抽出された区間を一定の時間間隔に分割し、分割された前記入力信号同士の相互相関関数を算出する相互相関関数算出手段をさらに備える請求項1乃至7のいずれかに記載の漏洩検知装置。 A cross-correlation function calculating unit that extracts a section whose level is equal to or less than a threshold value from the input signal, divides the extracted section into fixed time intervals, and calculates a cross-correlation function between the divided input signals; The leak detection apparatus according to any one of claims 1 to 7.
  9.  時間間隔Mごとに期間Nの間(ただし、時間間隔M>期間N)前記入力信号を入力する信号入力手段をさらに備える請求項8記載の漏洩検知装置。 9. The leak detection apparatus according to claim 8, further comprising a signal input means for inputting the input signal for each time interval M during a period N (however, time interval M> period N).
  10.  複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、
     前記相互相関関数の値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定し、
     前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、
     前記伝搬時間差に基づいて漏洩位置を特定する漏洩検知方法。
    Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals,
    It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold;
    A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. ,
    A leak detection method for specifying a leak position based on the propagation time difference.
  11.  前記相互相関関数の値の異なる測定時間を通しての平均値が第3の閾値以上、かつ、分散値が第4の閾値以下の場合に漏洩が有ると判定する請求項10記載の漏洩検知方法。 11. The leak detection method according to claim 10, wherein it is determined that there is a leak when an average value through measurement times having different values of the cross-correlation function is not less than a third threshold value and a variance value is not more than a fourth threshold value.
  12.  所定の区間幅毎に割り当てられた前記相互相関関数の区間値が第5の閾値以上、かつ、当該区間値の出現頻度が第6の閾値以上の場合に漏洩が有ると判定する請求項10記載の漏洩検知方法。 The determination is made that there is a leak when an interval value of the cross-correlation function allocated for each predetermined interval width is equal to or greater than a fifth threshold value and an appearance frequency of the interval value is equal to or greater than a sixth threshold value. Leak detection method.
  13.  事前に取得した複数の漏洩音情報および雑音情報を基に、漏洩の有無の判定の境界となる、前記平均値と前記分散値との組み合わせの集合である識別境界を学習し、
     前記識別境界に基づいて漏洩の有無を判定する請求項11記載の漏洩検知方法。
    Based on a plurality of leaked sound information and noise information acquired in advance, learn an identification boundary that is a set of a combination of the average value and the variance value, which is a boundary for determining whether there is leakage,
    The leakage detection method according to claim 11, wherein presence / absence of leakage is determined based on the identification boundary.
  14.  コンピュータに、
     複数のセンサの検出結果を表す信号を用いて、それら信号の相互相関関数の値を算出し、
     前記相互相関関数の値が第1の閾値以上、かつ、異なる測定時間における前記算出した値の時間変化が第2の閾値以下である場合に漏洩が有ると判定し、
     前記相互相関関数の値が前記第1の閾値以上、かつ、異なる測定時間における前記相互相関関数の値の時間変化が前記第2の閾値以下である箇所に基づいて漏洩音の伝播時間差を算出し、
     前記伝搬時間差に基づいて漏洩位置を特定する、
    ことを実行させるプログラムを格納する記録媒体。
    On the computer,
    Using signals representing the detection results of multiple sensors, calculate the value of the cross-correlation function of those signals,
    It is determined that there is a leak when the value of the cross-correlation function is equal to or greater than a first threshold and the time change of the calculated value at different measurement times is equal to or less than a second threshold;
    A difference in propagation time of leaked sound is calculated based on a location where the value of the cross-correlation function is not less than the first threshold and the time change of the value of the cross-correlation function at different measurement times is not more than the second threshold. ,
    Identifying a leak location based on the propagation time difference;
    A recording medium for storing a program for executing the above.
PCT/JP2015/001519 2014-03-26 2015-03-18 Leak-detecting device, leak detection method, and program-containing recording medium WO2015146082A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509997A JPWO2015146082A1 (en) 2014-03-26 2015-03-18 Leak detection device, leak detection method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014063543 2014-03-26
JP2014-063543 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015146082A1 true WO2015146082A1 (en) 2015-10-01

Family

ID=54194632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001519 WO2015146082A1 (en) 2014-03-26 2015-03-18 Leak-detecting device, leak detection method, and program-containing recording medium

Country Status (2)

Country Link
JP (1) JPWO2015146082A1 (en)
WO (1) WO2015146082A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546358A (en) * 2016-01-06 2016-05-04 清华大学 Gas pipe network leakage online monitoring system and device and mobile monitoring device
JP2016148617A (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Analysis data creation method, water leakage position detection device, and method for specifying water leakage position
JP2017083292A (en) * 2015-10-28 2017-05-18 積水化学工業株式会社 Method for determining abnormality of pipe line
JP2017198576A (en) * 2016-04-28 2017-11-02 株式会社工技研究所 Leak testing device and testing method, for underground tanks
CN107701927A (en) * 2017-09-15 2018-02-16 淼淼众安(武汉)科技有限公司 Leakage point detecting system and method inside water pipe are realized using sound source generator
JP2018077120A (en) * 2016-11-09 2018-05-17 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Determination device, determination method, and learning device
WO2018159744A1 (en) * 2017-03-02 2018-09-07 日本電気株式会社 Measurement time specification device, sensing device, measurement time specification method, and computer-readable recording medium
JP2018151343A (en) * 2017-03-15 2018-09-27 日本電気株式会社 Analyzer, analysis system, analysis method and program
WO2019021991A1 (en) * 2017-07-26 2019-01-31 日本電気株式会社 Analyzing device, analysis method, and storage medium
KR20190068061A (en) * 2017-12-08 2019-06-18 주식회사대한송유관공사 Detecting apparatus and method for oil leak
JP2019095292A (en) * 2017-11-22 2019-06-20 株式会社日立製作所 Water leakage detection system and water leakage detection method
WO2019240231A1 (en) * 2018-06-15 2019-12-19 日本電気株式会社 Leakage inspection device, leakage inspection method, and recording medium
WO2020059693A1 (en) 2018-09-19 2020-03-26 日本電気株式会社 Fluid leakage diagnosis device, fluid leakage diagnosis system, fluid leakage diagnosis method, and recording medium storing fluid leakage diagnosis program
CN113686513A (en) * 2021-07-12 2021-11-23 厦门科灿信息技术有限公司 Liquid leakage positioning method and device and electronic equipment
KR102454925B1 (en) * 2022-03-28 2022-10-17 주식회사 위플랫 Apparatus for detecting water leakage and estimating water leakage point using artificial intelligence and method thereof
US11727279B2 (en) 2019-06-11 2023-08-15 Samsung Electronics Co., Ltd. Method and apparatus for performing anomaly detection using neural network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185744A (en) * 1996-12-20 1998-07-14 Tokyo Gas Co Ltd Judgment method for external noise in specification method for leak position in pipe
JPH10281921A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Method and device for monitoring leakage of gas piping
JPH1164152A (en) * 1997-08-26 1999-03-05 Hitachi Ltd Method for spotting leakage position in gas piping and device therefor
JP2000221098A (en) * 1999-02-01 2000-08-11 Mitsubishi Electric Corp Abnormal place detecting device
JP2006003311A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Abnormality part detecting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185744A (en) * 1996-12-20 1998-07-14 Tokyo Gas Co Ltd Judgment method for external noise in specification method for leak position in pipe
JPH10281921A (en) * 1997-04-07 1998-10-23 Hitachi Ltd Method and device for monitoring leakage of gas piping
JPH1164152A (en) * 1997-08-26 1999-03-05 Hitachi Ltd Method for spotting leakage position in gas piping and device therefor
JP2000221098A (en) * 1999-02-01 2000-08-11 Mitsubishi Electric Corp Abnormal place detecting device
JP2006003311A (en) * 2004-06-21 2006-01-05 Mitsubishi Electric Corp Abnormality part detecting device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148617A (en) * 2015-02-13 2016-08-18 積水化学工業株式会社 Analysis data creation method, water leakage position detection device, and method for specifying water leakage position
JP2017083292A (en) * 2015-10-28 2017-05-18 積水化学工業株式会社 Method for determining abnormality of pipe line
CN105546358A (en) * 2016-01-06 2016-05-04 清华大学 Gas pipe network leakage online monitoring system and device and mobile monitoring device
JP2017198576A (en) * 2016-04-28 2017-11-02 株式会社工技研究所 Leak testing device and testing method, for underground tanks
JP2018077120A (en) * 2016-11-09 2018-05-17 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Determination device, determination method, and learning device
JPWO2018159744A1 (en) * 2017-03-02 2020-01-09 日本電気株式会社 Measurement time identification device, detection device, measurement time identification method and program
US11448565B2 (en) 2017-03-02 2022-09-20 Nec Corporation Measurement time determination device, measurement time determination method, and computer-readable recording medium
WO2018159744A1 (en) * 2017-03-02 2018-09-07 日本電気株式会社 Measurement time specification device, sensing device, measurement time specification method, and computer-readable recording medium
JP7070540B2 (en) 2017-03-02 2022-05-18 日本電気株式会社 Measurement time identification device, detection device, measurement time identification method and program
EP3591364A4 (en) * 2017-03-02 2020-04-01 Nec Corporation Measurement time specification device, sensing device, measurement time specification method, and computer-readable recording medium
JP2018151343A (en) * 2017-03-15 2018-09-27 日本電気株式会社 Analyzer, analysis system, analysis method and program
JP7131887B2 (en) 2017-03-15 2022-09-06 日本電気株式会社 Analysis device, analysis system, analysis method and program
JPWO2019021991A1 (en) * 2017-07-26 2020-04-16 日本電気株式会社 Analysis device, analysis method, and storage medium
WO2019021991A1 (en) * 2017-07-26 2019-01-31 日本電気株式会社 Analyzing device, analysis method, and storage medium
GB2580227B (en) * 2017-07-26 2022-02-16 Nec Corp Analyzing device, analysis method, and computer program
GB2580227A (en) * 2017-07-26 2020-07-15 Nec Corp Analyzing device, analysis method, and storage medium
CN107701927B (en) * 2017-09-15 2019-05-31 淼淼众安(武汉)科技有限公司 Leakage point detection system and method inside water pipe are realized using sound source generator
CN107701927A (en) * 2017-09-15 2018-02-16 淼淼众安(武汉)科技有限公司 Leakage point detecting system and method inside water pipe are realized using sound source generator
JP2019095292A (en) * 2017-11-22 2019-06-20 株式会社日立製作所 Water leakage detection system and water leakage detection method
KR20190068061A (en) * 2017-12-08 2019-06-18 주식회사대한송유관공사 Detecting apparatus and method for oil leak
KR101993058B1 (en) * 2017-12-08 2019-06-25 주식회사대한송유관공사 Detecting apparatus and method for oil leak
EP3809107A4 (en) * 2018-06-15 2021-08-04 NEC Corporation Leakage inspection device, leakage inspection method, and recording medium
JP7052869B2 (en) 2018-06-15 2022-04-12 日本電気株式会社 Leakage investigation equipment, leak investigation methods, and programs
WO2019240231A1 (en) * 2018-06-15 2019-12-19 日本電気株式会社 Leakage inspection device, leakage inspection method, and recording medium
US11402290B2 (en) 2018-06-15 2022-08-02 Nec Corporation Leakage inspection device, leakage inspection method, and storage medium
JPWO2019240231A1 (en) * 2018-06-15 2021-06-03 日本電気株式会社 Leakage investigation equipment, leakage investigation methods, and programs
WO2020059693A1 (en) 2018-09-19 2020-03-26 日本電気株式会社 Fluid leakage diagnosis device, fluid leakage diagnosis system, fluid leakage diagnosis method, and recording medium storing fluid leakage diagnosis program
US11727279B2 (en) 2019-06-11 2023-08-15 Samsung Electronics Co., Ltd. Method and apparatus for performing anomaly detection using neural network
CN113686513A (en) * 2021-07-12 2021-11-23 厦门科灿信息技术有限公司 Liquid leakage positioning method and device and electronic equipment
CN113686513B (en) * 2021-07-12 2024-02-13 厦门科灿信息技术有限公司 Liquid leakage positioning method and device and electronic equipment
KR102454925B1 (en) * 2022-03-28 2022-10-17 주식회사 위플랫 Apparatus for detecting water leakage and estimating water leakage point using artificial intelligence and method thereof

Also Published As

Publication number Publication date
JPWO2015146082A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015146082A1 (en) Leak-detecting device, leak detection method, and program-containing recording medium
Dervilis et al. On robust regression analysis as a means of exploring environmental and operational conditions for SHM data
US10641681B2 (en) Structure abnormality detection system, structure abnormality detection method, and storage medium
AU2016344513A1 (en) Monitoring traffic flow
EP2510320B1 (en) Monitoring fluid flow in a conduit
JP6874858B2 (en) Damage diagnostic equipment, damage diagnostic methods, and damage diagnostic programs
US10697861B2 (en) Structure abnormality detection device, structure abnormality detection method, storage medium, and structure abnormality detection system
JP7052869B2 (en) Leakage investigation equipment, leak investigation methods, and programs
EP3594653B1 (en) Diagnosis cost output device, diagnosis cost output method, and diagnosis cost output
CN106706109B (en) Vibration source identification method and system based on time domain two-dimensional characteristics
JP2019100729A (en) Information presentation system, information presentation method, and program
Srirangarajan et al. Water main burst event detection and localization
CN103543761A (en) Method and system of controlling towing speed of a sensor streamer
JP2014521073A (en) Apparatus and method for detecting at least one periodically occurring defect in a subject
CN111765958A (en) Vibration type identification method and system based on distributed optical fiber vibration radial distance measurement
CN103669183B (en) The time series models of surface evenness
US11402403B2 (en) Vehicle detection method
JP6275512B2 (en) Leakage detection method for buried pipelines
US20210262886A1 (en) Fluid leakage diagnosis device, fluid leakage diagnosis system, fluid leakage diagnosis method, and recording medium storing fluid leakage diagnosis program
EP3848689A1 (en) Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium having fluid leakage diagnosing program stored thereon
KR20160039078A (en) Method for analyzing signal of power plant pipe
EP3591364A1 (en) Measurement time specification device, sensing device, measurement time specification method, and computer-readable recording medium
US20210164859A1 (en) Analyzing device, analysis method, and storage medium
US10677619B2 (en) Method of monitoring a vector-based position sensor
Hsieh et al. A Machine Learning Approach to Beam Structural Variation Detection Via Output-only Acceleration Measurements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770230

Country of ref document: EP

Kind code of ref document: A1