WO2015145681A1 - Laser machining apparatus - Google Patents

Laser machining apparatus Download PDF

Info

Publication number
WO2015145681A1
WO2015145681A1 PCT/JP2014/058945 JP2014058945W WO2015145681A1 WO 2015145681 A1 WO2015145681 A1 WO 2015145681A1 JP 2014058945 W JP2014058945 W JP 2014058945W WO 2015145681 A1 WO2015145681 A1 WO 2015145681A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
galvano scanner
galvanometer mirror
galvano
Prior art date
Application number
PCT/JP2014/058945
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 鉾館
健太郎 坂
純也 加藤
尚弘 高橋
研吾 内山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/058945 priority Critical patent/WO2015145681A1/en
Publication of WO2015145681A1 publication Critical patent/WO2015145681A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/034Observing the temperature of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses

Definitions

  • the present invention relates to a laser processing apparatus.
  • Laser processing devices equipped with galvano scanners are used for, for example, drilling printed circuit boards and precision electronic components. As the electronic circuits and electronic parts that are products are being refined, the laser processing apparatus is required to control the processing position with high accuracy.
  • the galvanometer mirror that deflects the laser beam may be deformed when a part of the energy of the incident laser beam is absorbed and the temperature rises. As the deformation of the galvanometer mirror becomes significant, the laser processing apparatus may deteriorate the accuracy of the processing position.
  • the relationship between the temperature of the galvanometer mirror and the amount of deviation of the processing position has been obtained in advance, and the relationship between the temperature of the galvanometer mirror during laser processing and A technique for correcting the machining position based on the measurement result has been proposed (see, for example, Patent Document 1).
  • the processing object may radiate reflected light of the laser beam from the processing position and radiation light derived from the processing phenomenon from the processing position.
  • a part of such secondary light beam radiated from the object to be processed in laser processing may travel in the opposite direction to the laser light for processing and reach a temperature detector that detects the temperature of the galvanometer mirror. is there.
  • the secondary light beam reaches the temperature detector, it may be difficult for the temperature detector to accurately detect the temperature. In this case, the laser processing apparatus does not correct the processing position accurately, and it is difficult to control the processing position with high accuracy.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing apparatus that enables highly accurate control of a processing position.
  • the present invention includes a laser light source, a first galvanometer mirror that reflects the laser light from the laser light source, and the laser light from the first galvanometer mirror.
  • the second galvanometer mirror, the first galvanometer scanner that drives the first galvanometer mirror, the second galvanometer scanner that drives the second galvanometer mirror, and the temperature detection that is the first galvanometer mirror or the second galvanometer mirror A temperature detector for detecting the temperature of the object, and a control unit for adjusting the incident position of the laser beam on the object to be processed by controlling the drive of the temperature detection object according to the detection result of the temperature detector;
  • a light absorber that absorbs light at a position other than the optical path of the laser light from the laser light source to the workpiece, and the light absorber Characterized in that provided on at least one surface of the first optical scanner and the second galvano scanner.
  • the laser processing apparatus absorbs a secondary light beam incident on the first galvano scanner or the second galvano scanner following the direction opposite to the laser beam for processing by the light absorber. By suppressing the reflection and scattering of light at the position where the light absorber is provided, the light component traveling toward the temperature detector is reduced. By reducing the light component that travels to the temperature detector and enabling accurate temperature measurement with the temperature detector, the laser processing apparatus can accurately correct the processing position. Thereby, the laser processing apparatus has an effect that the processing position can be controlled with high accuracy.
  • FIG. 1 is a diagram showing a laser processing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining the progress of secondary light from the processing position.
  • FIG. 3 is a diagram showing a laser processing apparatus according to the second embodiment of the present invention.
  • FIG. FIG. 1 is a diagram showing a laser processing apparatus according to Embodiment 1 of the present invention.
  • the laser processing apparatus is an apparatus that forms a fine hole in a processing object by irradiation with laser light (pulse laser light). For example, the laser processing apparatus sequentially scans a plurality of processing positions set on a processing object, and performs processing (cycle pulse mode) in which laser irradiation is performed on each processing position in a plurality of cycles.
  • the laser processing apparatus includes a laser oscillator 1, a bend mirror 2, a Y-axis galvano scanner 3, an X-axis galvano scanner 4, a galvano mirror 5, 6, an f ⁇ lens 7, a temperature detector 10, a light absorber 11, a galvano driver 12, and a control. It has a device 13.
  • the workpiece 8 that is the object to be processed is, for example, a printed board.
  • the workpiece 8 is placed on an XY table (not shown).
  • the XY table moves the workpiece 8 in a two-dimensional direction including the X-axis direction and the Y-axis direction.
  • the laser oscillator 1 which is a laser light source emits a laser beam 14.
  • the laser beam 14 is a laser beam output in a pulse shape.
  • any one of infrared light having a wavelength of 9 to 10 ⁇ m, ultraviolet light having a wavelength of 0.5 ⁇ m, and the like is used as a laser beam.
  • the bend mirror 2 reflects the laser beam 14 from the laser oscillator 1 and advances it to the galvanometer mirror 5.
  • the galvanometer mirror 5 as the first galvanometer mirror reflects the laser beam 14 from the laser oscillator 1.
  • a Y-axis galvano scanner 3 as a first galvano scanner drives a galvanometer mirror 5.
  • the galvanometer mirror 6 that is the second galvanometer mirror reflects the laser beam 14 from the galvanometer mirror 5.
  • the X-axis galvano scanner 4 as the second galvano scanner drives the galvano mirror 6.
  • the Y-axis galvano scanner 3 reciprocates the rotation shaft that supports the galvanometer mirror 5.
  • the Y-axis galvano scanner 3 scans the irradiation position of the laser beam 14 on the workpiece 8 in the Y-axis direction.
  • the X-axis galvano scanner 4 reciprocally rotates a rotation shaft that supports the galvanometer mirror 6.
  • the X-axis galvano scanner 4 scans the irradiation position of the laser beam 14 on the workpiece 8 in the X-axis direction.
  • the f ⁇ lens 7 changes the laser light 14 from the galvanometer mirror 6 into a laser light 15 perpendicular to the processed surface of the workpiece 8.
  • the f ⁇ lens 7 condenses the laser light 15 at the processing position 9 in the work 8.
  • the galvano driver 12 drives the Y-axis galvano scanner 3 and the X-axis galvano scanner 4.
  • the control device 13 as a control unit controls the overall operation of the laser processing apparatus.
  • the control device 13 controls the oscillation of the laser beam 14 of the laser oscillator 1 and the driving of the Y-axis galvano scanner 3 and the X-axis galvano scanner 4 by the galvano driver 12.
  • the control device 13 controls a motor (not shown) that drives the XY table.
  • the temperature detector 10 detects the temperature of the galvanometer mirror 6 that is a temperature detection target.
  • the temperature detector 10 is a non-contact temperature detector that detects the temperature of the galvanometer mirror 6 in a non-contact state with the galvanometer mirror 6.
  • the temperature detector 10 is, for example, a radiation thermometer.
  • the temperature detector 10 is disposed at a position facing the back surface of the galvanometer mirror 6.
  • the back surface is the surface of the galvanometer mirror 6 opposite to the reflecting surface that reflects the laser beam 14.
  • the control device 13 controls the driving of the galvanometer mirror 6 that is a temperature detection target according to the detection result of the temperature detector 10.
  • the control device 13 adjusts the machining position 9 that is the incident position of the laser beam 15 on the workpiece 8 by controlling the driving of the galvanometer mirror 6.
  • the control device 13 holds in advance the relationship between the temperature of the galvano mirror 6 and the amount of processing position deviation.
  • the control device 13 corrects the machining position 9 based on the relationship and the detection result of the temperature detector 10.
  • the laser processing apparatus includes a light absorber 11 that absorbs light at a position other than the optical path of the laser light 14 from the laser oscillator 1 to the workpiece 8.
  • the light absorber 11 is provided on at least one surface of the Y-axis galvano scanner 3 and the X-axis galvano scanner 4.
  • the light absorber 11 is a black body seal.
  • the black body seal which is the light absorber 11 is affixed to a part of the end surface of the Y-axis galvano scanner 3 facing the galvanometer mirror 5 side.
  • the end surface is the end surface of the frame case of the Y-axis galvano scanner 3.
  • FIG. 2 is a diagram for explaining the progress of the secondary light beam from the processing position.
  • the processing object of the laser processing apparatus may generate reflected light of the laser beam 15 from the processing position 9 depending on the state of the processing position 9 or processing conditions. For example, when the laser beam 15 is irradiated on the surface of the copper layer of the printed board, the reflected light of the laser beam 15 is easily generated. Further, the workpiece may radiate radiation light derived from the machining phenomenon from the machining position 9. The reflected light and radiant light from these processing positions 9 are referred to as secondary light 16.
  • the secondary light beam 16 radiated from the workpiece 8 in the laser machining is radiated from the machining position 9 in various directions depending on the surface state and the machining state of the machining position 9.
  • a part of the secondary light beam 16 generated at the processing position 9 traces in the direction opposite to the laser beam 15 and may reach the galvanometer mirror 6 through the f ⁇ lens 7.
  • the secondary light beam 16 reflected from the surface of the galvanometer mirror 6 may further travel to the back side of the galvanometer mirror 6 and reach the temperature detector 10.
  • the temperature detector 10 may detect a temperature significantly higher than the temperature detected from the galvanometer mirror 6. It becomes difficult for the temperature detector 10 to detect the accurate temperature of the galvanometer mirror 6 by the incidence of the secondary light beam 16.
  • the laser processing apparatus makes it difficult to accurately detect the temperature with the temperature detector 10, thereby causing an error in the correction of the processing position 9.
  • the temperature detector 10 which is a radiation thermometer using Stefan-Boltzmann's law, may cause an error in temperature measurement when infrared light or visible light other than the radiation light from the temperature detection target is mixed.
  • the temperature detector 10 incorporates a sensor unit in the tube in order to avoid mixing light rays from other than the temperature detection target.
  • the temperature detector 10 has a space of about several millimeters between the tip of the tube and the back surface of the galvanometer mirror 6 in order to prevent interference with the galvanometer mirror 6 that is rotationally driven with respect to the galvanometer mirror 6 that is a temperature detection target. Is arranged. When the scattered light or reflected light of the secondary light beam 16 is mixed from the space, the temperature detector 10 may cause an error in temperature measurement.
  • the light absorber 11 is provided in a portion of the end face of the galvano scanner 3 that reflects the secondary light beam 16 from the processing position 9 toward the temperature detector 10.
  • the light absorber 11 cuts the secondary light beam 16 from the end face of the galvano scanner 3 toward the temperature detector 10. Since the secondary light beam 16 traveling to the temperature detector 10 is reduced, the temperature detector 10 can accurately detect the temperature.
  • the laser machining apparatus can accurately correct the machining position 9 by enabling accurate temperature detection by the temperature detector 10. Thereby, the laser processing apparatus has an effect that the processing position 9 can be controlled with high accuracy.
  • the laser processing apparatus can easily realize a configuration capable of reducing the secondary light beam 16 by adding the light absorber 11 to the conventional configuration.
  • the light absorber 11 may be retrofitted to the laser processing apparatus.
  • the light absorber 11 is not limited to being provided on a part of the end face of the Y-axis galvano scanner 3.
  • the light absorber 11 may be provided on the entire end surface of the Y-axis galvano scanner 3.
  • the light absorber 11 may be provided on a part or the whole of the surface other than the end surface of the Y-axis galvano scanner 3.
  • the light absorber 11 may be attached to the surface of the other X-axis galvano scanner 4.
  • the light absorber 11 may be provided at any position on the surface of the galvano scanners 3 and 4 according to the arrangement of the temperature detector 10 and the galvanometer mirrors 5 and 6.
  • the light absorber 11 may be provided in both the Y-axis galvano scanner 3 and the X-axis galvano scanner 4.
  • the range in which the light absorber 11 is provided on the surface of the galvano scanners 3 and 4 is arbitrary.
  • the temperature detection target of the temperature detector 10 may be the other galvanometer mirror 5.
  • the temperature detector 10 is disposed at a position facing the back surface of the galvanometer mirror 5.
  • the laser processing apparatus may appropriately change the position and range in which the light absorber 11 is provided depending on whether the temperature detection target is the galvano mirror 5 or the galvano mirror 6.
  • the galvano scanners 3 and 4 are required to have an increased torque constant and an increased driving current in response to a request for high-speed driving.
  • the coil wire diameter increases to ensure resistance to an increase in current
  • the area of the end faces of the galvano scanners 3 and 4 tends to increase as the frame case becomes larger.
  • the influence of the reflection and scattering of the secondary light beam 16 on the end faces becomes larger.
  • the light absorber 11 can effectively reduce the reflected light from the processing position 9 and the radiation light in a wavelength region different from the reflected light, the light absorber 11 has an absorption characteristic for light in a wider wavelength region than the wavelength region of the laser light 14. Shall be provided.
  • a black member as the light absorber 11
  • light in a wide wavelength range including infrared light, ultraviolet light, and visible light can be reduced.
  • the light absorber 11 may be any black member other than the black body seal.
  • the light absorber 11 may be a galvano scanner 3 or 4 having a black pigment coated on the surface thereof.
  • FIG. FIG. 3 is a diagram showing a laser processing apparatus according to the second embodiment of the present invention.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.
  • the laser processing apparatus includes a light absorber 20 that absorbs light at a position other than the optical path of the laser light 14 from the laser oscillator 1 to the workpiece 8.
  • the light absorber 20 is, for example, a belt-like member with a black body sticker.
  • One end side portion of the light absorber 20 covers a part of the end surface of the Y-axis galvano scanner 3 directed toward the galvano mirror 5 side.
  • the light absorber 20 covers a portion of the end face of the Y-axis galvano scanner 3 that reflects the secondary light beam 16 from the processing position 9 toward the temperature detector 10.
  • the light absorber 20 is not in contact with the end surface of the Y-axis galvano scanner 3.
  • a gap is formed between the light absorber 20 and the end surface of the Y-axis galvano scanner 3.
  • the end of the light absorber 20 opposite to the Y-axis galvano scanner 3 side is fixed to the end surface of the X-axis galvano scanner 4.
  • the light absorber 20 has a shape that extends from a portion fixed to the X-axis galvano scanner 4 to the surface of the Y-axis galvano scanner 3.
  • the light absorber 20 is appropriately bent according to the arrangement of the galvano scanners 3 and 4.
  • the light absorber 20 absorbs the secondary light beam 16 to increase the temperature.
  • the light absorber 20 is arranged so as to float from the surface of the Y-axis galvano scanner 3, thereby suppressing heat transfer from the light absorber 20 to the Y-axis galvano scanner 3. Thereby, the laser processing apparatus can reduce the malfunction caused by the temperature rise of the Y-axis galvano scanner 3.
  • the light absorber 20 uses natural convection to dissipate heat to the surroundings, thereby suppressing heat propagation to the fixed part with the X-axis galvano scanner 4. Thereby, the laser processing apparatus can reduce problems caused by the temperature rise of the X-axis galvano scanner 4.
  • the laser processing apparatus can accurately detect the processing position 9 by enabling accurate temperature detection by the temperature detector 10. Thereby, the laser processing apparatus has an effect that the processing position 9 can be controlled with high accuracy.
  • the laser processing apparatus can easily realize a configuration capable of reducing the secondary light beam 16 by adding the light absorber 20 to the conventional configuration.
  • the light absorber 20 may be retrofitted to the laser processing apparatus.
  • the light absorber 20 may be fixed to any configuration other than the X-axis galvano scanner 4.
  • the light absorber 20 may be fixed to a configuration other than the Y-axis galvano scanner 3 and extended from the portion fixed to the configuration to the surface of the Y-axis galvano scanner 3. Thereby, the laser processing apparatus can reduce the malfunction caused by the temperature rise of the Y-axis galvano scanner 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

This laser machining apparatus has: a laser light source (1); a first galvano-mirror (5) that reflects laser light (14) transmitted from the laser light source; a second galvano-mirror (6) that reflects laser light transmitted from the first galvano-mirror; a first galvano-scanner (3) that drives the first galvano-mirror; a second galvano-scanner (4) that drives the second galvano-mirror; a temperature detector (10) that detects the temperature of a subject the temperature of which is to be detected, said subject being the first galvano-mirror or the second galvano-mirror; a control unit (13) that controls drive of the subject corresponding to detection results obtained from the temperature detector, thereby adjusting laser light input position of a subject to be machined; and a light-absorbing body (11) that absorbs light at positions outside of the optical path of the laser light, said optical path extending from the laser light source to the subject to be machined (8). The light-absorbing body is provided on a first galvano-scanner surface and/or a second galvano-scanner surface.

Description

レーザ加工装置Laser processing equipment
 本発明は、レーザ加工装置に関する。 The present invention relates to a laser processing apparatus.
 ガルバノスキャナを備えるレーザ加工装置は、例えば、プリント配線基板、精密電子部品の穴開け加工に利用されている。製品となる電子回路、電子部品の精細化が進められるにしたがい、レーザ加工装置は、加工位置の高精度な制御が要求されている。 Laser processing devices equipped with galvano scanners are used for, for example, drilling printed circuit boards and precision electronic components. As the electronic circuits and electronic parts that are products are being refined, the laser processing apparatus is required to control the processing position with high accuracy.
 レーザ光を偏向させるガルバノミラーは、入射するレーザ光のエネルギーの一部が吸収され温度が上昇することで、変形する場合がある。ガルバノミラーの変形が顕著となることで、レーザ加工装置は、加工位置の精度が劣化する場合がある。ガルバノミラーの温度変化による加工位置のずれを補正するために、従来、ガルバノミラーの温度と加工位置のずれ量との関係をあらかじめ求めておき、その関係と、レーザ加工時におけるガルバノミラーの温度の測定結果とを基に、加工位置を補正する技術が提案されている(例えば、特許文献1参照)。 The galvanometer mirror that deflects the laser beam may be deformed when a part of the energy of the incident laser beam is absorbed and the temperature rises. As the deformation of the galvanometer mirror becomes significant, the laser processing apparatus may deteriorate the accuracy of the processing position. Conventionally, in order to correct the deviation of the processing position due to the temperature change of the galvanometer mirror, the relationship between the temperature of the galvanometer mirror and the amount of deviation of the processing position has been obtained in advance, and the relationship between the temperature of the galvanometer mirror during laser processing and A technique for correcting the machining position based on the measurement result has been proposed (see, for example, Patent Document 1).
特許第4320524号公報Japanese Patent No. 4320524
 加工中において、加工対象物は、加工位置の状態、あるいは加工条件によっては、加工位置からのレーザ光の反射光、および加工現象に由来する輻射光を、加工位置から放射させることがある。レーザ加工において加工対象物から放射されるこのような2次光線の一部は、加工のためのレーザ光とは逆の向きへ辿り、ガルバノミラーの温度を検出する温度検出器に到達することがある。温度検出器に2次光線が到達することで、温度検出器は、正確な温度検出が困難となる場合がある。この場合、レーザ加工装置は、加工位置の正確な補正がなされず、加工位置の高精度な制御が困難となる。 During processing, depending on the state of the processing position or processing conditions, the processing object may radiate reflected light of the laser beam from the processing position and radiation light derived from the processing phenomenon from the processing position. A part of such secondary light beam radiated from the object to be processed in laser processing may travel in the opposite direction to the laser light for processing and reach a temperature detector that detects the temperature of the galvanometer mirror. is there. When the secondary light beam reaches the temperature detector, it may be difficult for the temperature detector to accurately detect the temperature. In this case, the laser processing apparatus does not correct the processing position accurately, and it is difficult to control the processing position with high accuracy.
 本発明は、上記に鑑みてなされたものであって、加工位置の高精度な制御を可能とするレーザ加工装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a laser processing apparatus that enables highly accurate control of a processing position.
 上述した課題を解決し、目的を達成するために、本発明は、レーザ光源と、前記レーザ光源からのレーザ光を反射する第1ガルバノミラーと、前記第1ガルバノミラーからの前記レーザ光を反射する第2ガルバノミラーと、前記第1ガルバノミラーを駆動する第1ガルバノスキャナと、前記第2ガルバノミラーを駆動する第2ガルバノスキャナと、前記第1ガルバノミラーまたは前記第2ガルバノミラーである温度検出対象の温度を検出する温度検出器と、前記温度検出器での検出結果に応じて前記温度検出対象の駆動を制御することで、加工対象物における前記レーザ光の入射位置を調整する制御部と、前記レーザ光源から前記加工対象物までの前記レーザ光の光路以外の位置にて光を吸収する光吸収体と、を有し、前記光吸収体は、前記第1ガルバノスキャナおよび前記第2ガルバノスキャナの少なくとも一方の表面に設けられていることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention includes a laser light source, a first galvanometer mirror that reflects the laser light from the laser light source, and the laser light from the first galvanometer mirror. The second galvanometer mirror, the first galvanometer scanner that drives the first galvanometer mirror, the second galvanometer scanner that drives the second galvanometer mirror, and the temperature detection that is the first galvanometer mirror or the second galvanometer mirror A temperature detector for detecting the temperature of the object, and a control unit for adjusting the incident position of the laser beam on the object to be processed by controlling the drive of the temperature detection object according to the detection result of the temperature detector; A light absorber that absorbs light at a position other than the optical path of the laser light from the laser light source to the workpiece, and the light absorber Characterized in that provided on at least one surface of the first optical scanner and the second galvano scanner.
 本発明にかかるレーザ加工装置は、加工のためのレーザ光とは逆の向きへ辿って第1ガルバノスキャナまたは第2ガルバノスキャナへ入射する2次光線を、光吸収体にて吸収する。光吸収体が設けられた位置にて光の反射および散乱を抑制させることで、温度検出器の方向へ進行する光成分を低減させる。温度検出器へ進行する光成分を低減させて、温度検出器での正確な温度測定が可能となることで、レーザ加工装置は、加工位置の正確な補正が可能となる。これにより、レーザ加工装置は、加工位置の高精度な制御ができるという効果を奏する。 The laser processing apparatus according to the present invention absorbs a secondary light beam incident on the first galvano scanner or the second galvano scanner following the direction opposite to the laser beam for processing by the light absorber. By suppressing the reflection and scattering of light at the position where the light absorber is provided, the light component traveling toward the temperature detector is reduced. By reducing the light component that travels to the temperature detector and enabling accurate temperature measurement with the temperature detector, the laser processing apparatus can accurately correct the processing position. Thereby, the laser processing apparatus has an effect that the processing position can be controlled with high accuracy.
図1は、本発明の実施の形態1にかかるレーザ加工装置を示す図である。FIG. 1 is a diagram showing a laser processing apparatus according to Embodiment 1 of the present invention. 図2は、加工位置からの2次光線の進行について説明する図である。FIG. 2 is a diagram for explaining the progress of secondary light from the processing position. 図3は、本発明の実施の形態2にかかるレーザ加工装置を示す図である。FIG. 3 is a diagram showing a laser processing apparatus according to the second embodiment of the present invention.
 以下に、本発明にかかるレーザ加工装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an embodiment of a laser processing apparatus according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかるレーザ加工装置を示す図である。レーザ加工装置は、レーザ光(パルスレーザ光)の照射によって加工対象物に微細穴を穴開け加工する装置である。レーザ加工装置は、例えば、加工対象物に設定された複数の加工位置を順次走査し、各加工位置に対するレーザ照射を複数サイクルで行なう加工処理(サイクルパルスモード)を実施する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a laser processing apparatus according to Embodiment 1 of the present invention. The laser processing apparatus is an apparatus that forms a fine hole in a processing object by irradiation with laser light (pulse laser light). For example, the laser processing apparatus sequentially scans a plurality of processing positions set on a processing object, and performs processing (cycle pulse mode) in which laser irradiation is performed on each processing position in a plurality of cycles.
 レーザ加工装置は、レーザ発振器1、ベンドミラー2、Y軸ガルバノスキャナ3、X軸ガルバノスキャナ4、ガルバノミラー5,6、fθレンズ7、温度検出器10、光吸収体11、ガルバノドライバ12および制御装置13を有する。 The laser processing apparatus includes a laser oscillator 1, a bend mirror 2, a Y-axis galvano scanner 3, an X-axis galvano scanner 4, a galvano mirror 5, 6, an fθ lens 7, a temperature detector 10, a light absorber 11, a galvano driver 12, and a control. It has a device 13.
 加工対象物であるワーク8は、例えばプリント基板である。ワーク8は、XYテーブル(図示省略)に載置されている。XYテーブルは、X軸方向およびY軸方向を含む二次元方向へワーク8を移動させる。 The workpiece 8 that is the object to be processed is, for example, a printed board. The workpiece 8 is placed on an XY table (not shown). The XY table moves the workpiece 8 in a two-dimensional direction including the X-axis direction and the Y-axis direction.
 レーザ光源であるレーザ発振器1は、レーザ光14を射出する。レーザ光14は、パルス状に出力されるレーザビームである。プリント基板の加工には、レーザビームとして、例えば、9~10μmの波長の赤外光、0.5μmの波長の紫外光などのいずれかが用いられる。ベンドミラー2は、レーザ発振器1からのレーザ光14を反射して、ガルバノミラー5へ進行させる。 The laser oscillator 1 which is a laser light source emits a laser beam 14. The laser beam 14 is a laser beam output in a pulse shape. For processing the printed circuit board, for example, any one of infrared light having a wavelength of 9 to 10 μm, ultraviolet light having a wavelength of 0.5 μm, and the like is used as a laser beam. The bend mirror 2 reflects the laser beam 14 from the laser oscillator 1 and advances it to the galvanometer mirror 5.
 第1ガルバノミラーであるガルバノミラー5は、レーザ発振器1からのレーザ光14を反射する。第1ガルバノスキャナであるY軸ガルバノスキャナ3は、ガルバノミラー5を駆動する。第2ガルバノミラーであるガルバノミラー6は、ガルバノミラー5からのレーザ光14を反射する。第2ガルバノスキャナであるX軸ガルバノスキャナ4は、ガルバノミラー6を駆動する。 The galvanometer mirror 5 as the first galvanometer mirror reflects the laser beam 14 from the laser oscillator 1. A Y-axis galvano scanner 3 as a first galvano scanner drives a galvanometer mirror 5. The galvanometer mirror 6 that is the second galvanometer mirror reflects the laser beam 14 from the galvanometer mirror 5. The X-axis galvano scanner 4 as the second galvano scanner drives the galvano mirror 6.
 Y軸ガルバノスキャナ3は、ガルバノミラー5を支持する回転軸を往復回転させる。Y軸ガルバノスキャナ3は、ワーク8におけるレーザ光14の照射位置をY軸方向において走査させる。X軸ガルバノスキャナ4は、ガルバノミラー6を支持する回転軸を往復回転させる。X軸ガルバノスキャナ4は、ワーク8におけるレーザ光14の照射位置をX軸方向において走査させる。 The Y-axis galvano scanner 3 reciprocates the rotation shaft that supports the galvanometer mirror 5. The Y-axis galvano scanner 3 scans the irradiation position of the laser beam 14 on the workpiece 8 in the Y-axis direction. The X-axis galvano scanner 4 reciprocally rotates a rotation shaft that supports the galvanometer mirror 6. The X-axis galvano scanner 4 scans the irradiation position of the laser beam 14 on the workpiece 8 in the X-axis direction.
 fθレンズ7は、ガルバノミラー6からのレーザ光14を、ワーク8の加工表面に対して垂直なレーザ光15とする。fθレンズ7は、ワーク8内の加工位置9にレーザ光15を集光させる。ガルバノドライバ12は、Y軸ガルバノスキャナ3およびX軸ガルバノスキャナ4を駆動する。 The fθ lens 7 changes the laser light 14 from the galvanometer mirror 6 into a laser light 15 perpendicular to the processed surface of the workpiece 8. The fθ lens 7 condenses the laser light 15 at the processing position 9 in the work 8. The galvano driver 12 drives the Y-axis galvano scanner 3 and the X-axis galvano scanner 4.
 制御部である制御装置13は、レーザ加工装置の全体の動作を制御する。制御装置13は、レーザ発振器1のレーザ光14の発振、ガルバノドライバ12によるY軸ガルバノスキャナ3およびX軸ガルバノスキャナ4の駆動を制御する。また、制御装置13は、XYテーブルを駆動するモータ(図示省略)を制御する。 The control device 13 as a control unit controls the overall operation of the laser processing apparatus. The control device 13 controls the oscillation of the laser beam 14 of the laser oscillator 1 and the driving of the Y-axis galvano scanner 3 and the X-axis galvano scanner 4 by the galvano driver 12. The control device 13 controls a motor (not shown) that drives the XY table.
 温度検出器10は、温度検出対象であるガルバノミラー6の温度を検出する。温度検出器10は、ガルバノミラー6とは非接触とされた状態で、ガルバノミラー6の温度を検出する非接触温度検出器である。温度検出器10は、例えば、放射温度計である。温度検出器10は、ガルバノミラー6の裏面に対向する位置に配置されている。裏面は、ガルバノミラー6のうちレーザ光14を反射する反射面とは反対側の面とする。 The temperature detector 10 detects the temperature of the galvanometer mirror 6 that is a temperature detection target. The temperature detector 10 is a non-contact temperature detector that detects the temperature of the galvanometer mirror 6 in a non-contact state with the galvanometer mirror 6. The temperature detector 10 is, for example, a radiation thermometer. The temperature detector 10 is disposed at a position facing the back surface of the galvanometer mirror 6. The back surface is the surface of the galvanometer mirror 6 opposite to the reflecting surface that reflects the laser beam 14.
 制御装置13は、温度検出器10での検出結果に応じて、温度検出対象であるガルバノミラー6の駆動を制御する。制御装置13は、ガルバノミラー6の駆動を制御することで、ワーク8におけるレーザ光15の入射位置である加工位置9を調整する。制御装置13は、ガルバノミラー6の温度と加工位置のずれ量との関係をあらかじめ保持する。制御装置13は、その関係と、温度検出器10での検出結果とを基に、加工位置9を補正する。 The control device 13 controls the driving of the galvanometer mirror 6 that is a temperature detection target according to the detection result of the temperature detector 10. The control device 13 adjusts the machining position 9 that is the incident position of the laser beam 15 on the workpiece 8 by controlling the driving of the galvanometer mirror 6. The control device 13 holds in advance the relationship between the temperature of the galvano mirror 6 and the amount of processing position deviation. The control device 13 corrects the machining position 9 based on the relationship and the detection result of the temperature detector 10.
 レーザ加工装置は、レーザ発振器1からワーク8までのレーザ光14の光路以外の位置にて光を吸収する光吸収体11を備える。光吸収体11は、Y軸ガルバノスキャナ3およびX軸ガルバノスキャナ4の少なくとも一方の表面に設けられている。実施の形態1では、光吸収体11は、黒体シールとする。光吸収体11である黒体シールは、Y軸ガルバノスキャナ3のうち、ガルバノミラー5の側に向けられた端面の一部に貼り付けられている。端面は、Y軸ガルバノスキャナ3のフレームケースの端面とする。 The laser processing apparatus includes a light absorber 11 that absorbs light at a position other than the optical path of the laser light 14 from the laser oscillator 1 to the workpiece 8. The light absorber 11 is provided on at least one surface of the Y-axis galvano scanner 3 and the X-axis galvano scanner 4. In the first embodiment, the light absorber 11 is a black body seal. The black body seal which is the light absorber 11 is affixed to a part of the end surface of the Y-axis galvano scanner 3 facing the galvanometer mirror 5 side. The end surface is the end surface of the frame case of the Y-axis galvano scanner 3.
 図2は、加工位置からの2次光線の進行について説明する図である。レーザ加工装置の加工対象物は、加工位置9の状態、あるいは加工条件によっては、加工位置9からのレーザ光15の反射光を生じさせることがある。例えば、プリント基板の銅層表面にレーザ光15が照射しているとき、レーザ光15の反射光が生じ易くなる。また、加工対象物は、加工現象に由来する輻射光を加工位置9から放射させることがある。これらの加工位置9からの反射光および輻射光を、2次光線16とする。 FIG. 2 is a diagram for explaining the progress of the secondary light beam from the processing position. The processing object of the laser processing apparatus may generate reflected light of the laser beam 15 from the processing position 9 depending on the state of the processing position 9 or processing conditions. For example, when the laser beam 15 is irradiated on the surface of the copper layer of the printed board, the reflected light of the laser beam 15 is easily generated. Further, the workpiece may radiate radiation light derived from the machining phenomenon from the machining position 9. The reflected light and radiant light from these processing positions 9 are referred to as secondary light 16.
 レーザ加工においてワーク8から放射する2次光線16は、加工位置9の表面の状態および加工状態などにもよるが、加工位置9からさまざまな方角に放射する。加工位置9にて生じた2次光線16の一部は、レーザ光15とは逆の向きへ辿り、fθレンズ7を経てガルバノミラー6へ到達することがある。ガルバノミラー6の表面で反射した2次光線16は、さらに、ガルバノミラー6の裏面側へ進行して、温度検出器10に到達することがある。 The secondary light beam 16 radiated from the workpiece 8 in the laser machining is radiated from the machining position 9 in various directions depending on the surface state and the machining state of the machining position 9. A part of the secondary light beam 16 generated at the processing position 9 traces in the direction opposite to the laser beam 15 and may reach the galvanometer mirror 6 through the fθ lens 7. The secondary light beam 16 reflected from the surface of the galvanometer mirror 6 may further travel to the back side of the galvanometer mirror 6 and reach the temperature detector 10.
 2次光線16が入射したときに、温度検出器10は、ガルバノミラー6から検出される温度に比べて著しく高い温度を検出することがある。温度検出器10は、2次光線16が入射することで、ガルバノミラー6の正確な温度を検出することが困難となる。レーザ加工装置は、温度検出器10での正確な温度検出が困難となることで、加工位置9の補正に誤りを生じさせることになる。 When the secondary light beam 16 is incident, the temperature detector 10 may detect a temperature significantly higher than the temperature detected from the galvanometer mirror 6. It becomes difficult for the temperature detector 10 to detect the accurate temperature of the galvanometer mirror 6 by the incidence of the secondary light beam 16. The laser processing apparatus makes it difficult to accurately detect the temperature with the temperature detector 10, thereby causing an error in the correction of the processing position 9.
 例えば、シュテファンボルツマンの法則を利用した放射温度計である温度検出器10は、温度検出対象からの輻射光以外の赤外光あるいは可視光が混入することで、温度測定に誤差が生じることがある。温度検出器10は、温度検出対象以外からの光線の混入を避けるために、管内にセンサ部を内蔵している。温度検出対象であるガルバノミラー6に対し、温度検出器10は、回転駆動するガルバノミラー6との干渉を防止するために、管の先端とガルバノミラー6の裏面との間に数mm程度の空間を設けて配置されている。かかる空間から2次光線16の散乱光あるいは反射光が混入することで、温度検出器10は、温度測定に誤差が生じることがある。 For example, the temperature detector 10, which is a radiation thermometer using Stefan-Boltzmann's law, may cause an error in temperature measurement when infrared light or visible light other than the radiation light from the temperature detection target is mixed. . The temperature detector 10 incorporates a sensor unit in the tube in order to avoid mixing light rays from other than the temperature detection target. The temperature detector 10 has a space of about several millimeters between the tip of the tube and the back surface of the galvanometer mirror 6 in order to prevent interference with the galvanometer mirror 6 that is rotationally driven with respect to the galvanometer mirror 6 that is a temperature detection target. Is arranged. When the scattered light or reflected light of the secondary light beam 16 is mixed from the space, the temperature detector 10 may cause an error in temperature measurement.
 光吸収体11は、ガルバノスキャナ3の端面のうち、加工位置9からの2次光線16を温度検出器10に向けて反射させるような部分に設けられている。光吸収体11は、ガルバノスキャナ3の端面から温度検出器10へ向かう2次光線16をカットする。温度検出器10へ進行する2次光線16が低減することで、温度検出器10は、正確な温度検出が可能となる。 The light absorber 11 is provided in a portion of the end face of the galvano scanner 3 that reflects the secondary light beam 16 from the processing position 9 toward the temperature detector 10. The light absorber 11 cuts the secondary light beam 16 from the end face of the galvano scanner 3 toward the temperature detector 10. Since the secondary light beam 16 traveling to the temperature detector 10 is reduced, the temperature detector 10 can accurately detect the temperature.
 レーザ加工装置は、温度検出器10での正確な温度検出が可能となることで、加工位置9の正確な補正が可能となる。これにより、レーザ加工装置は、加工位置9の高精度な制御ができるという効果を奏する。 The laser machining apparatus can accurately correct the machining position 9 by enabling accurate temperature detection by the temperature detector 10. Thereby, the laser processing apparatus has an effect that the processing position 9 can be controlled with high accuracy.
 レーザ加工装置は、従来の構成に光吸収体11を追加することで、2次光線16を低減可能な構成を容易に実現できる。光吸収体11は、レーザ加工装置に対し後付けされるものとしても良い。 The laser processing apparatus can easily realize a configuration capable of reducing the secondary light beam 16 by adding the light absorber 11 to the conventional configuration. The light absorber 11 may be retrofitted to the laser processing apparatus.
 光吸収体11は、Y軸ガルバノスキャナ3の端面の一部に設けられたものである場合に限られない。光吸収体11は、Y軸ガルバノスキャナ3の端面の全体に設けられていても良い。光吸収体11は、Y軸ガルバノスキャナ3の端面以外の面の一部あるいは全体に設けられていても良い。 The light absorber 11 is not limited to being provided on a part of the end face of the Y-axis galvano scanner 3. The light absorber 11 may be provided on the entire end surface of the Y-axis galvano scanner 3. The light absorber 11 may be provided on a part or the whole of the surface other than the end surface of the Y-axis galvano scanner 3.
 光吸収体11は、他方のX軸ガルバノスキャナ4の表面に貼り付けられていても良い。レーザ加工装置は、温度検出器10、ガルバノミラー5,6の配置の態様に応じて、ガルバノスキャナ3,4の表面のうちいずれの位置に光吸収体11を設けることとしても良い。光吸収体11は、Y軸ガルバノスキャナ3およびX軸ガルバノスキャナ4の双方に設けられていても良い。ガルバノスキャナ3,4の表面のうち光吸収体11が設けられる範囲は、任意であるものとする。 The light absorber 11 may be attached to the surface of the other X-axis galvano scanner 4. In the laser processing apparatus, the light absorber 11 may be provided at any position on the surface of the galvano scanners 3 and 4 according to the arrangement of the temperature detector 10 and the galvanometer mirrors 5 and 6. The light absorber 11 may be provided in both the Y-axis galvano scanner 3 and the X-axis galvano scanner 4. The range in which the light absorber 11 is provided on the surface of the galvano scanners 3 and 4 is arbitrary.
 温度検出器10の温度検出対象は、他方のガルバノミラー5であっても良い。この場合、温度検出器10は、ガルバノミラー5の裏面に対向する位置に配置される。レーザ加工装置は、温度検出対象がガルバノミラー5およびガルバノミラー6のいずれであるかに応じて、光吸収体11を設ける位置および範囲を適宜変更しても良い。 The temperature detection target of the temperature detector 10 may be the other galvanometer mirror 5. In this case, the temperature detector 10 is disposed at a position facing the back surface of the galvanometer mirror 5. The laser processing apparatus may appropriately change the position and range in which the light absorber 11 is provided depending on whether the temperature detection target is the galvano mirror 5 or the galvano mirror 6.
 ガルバノスキャナ3,4は、高速駆動が要請されるにしたがい、トルク定数の上昇、駆動電流の増加が必要とされている。電流の増加に対する耐性の確保のためにコイル線径が増大するにしたがい、フレームケースが大型となることで、ガルバノスキャナ3,4の端面の面積は増大する傾向にある。ガルバノスキャナ3,4の端面が大きくなるほど、端面での2次光線16の反射および散乱の影響も大きくなる。ガルバノスキャナ3,4の端面に光吸収体11を設けることで、2次光線16の反射および散乱による温度検出器10への影響を効果的に抑制できる。 The galvano scanners 3 and 4 are required to have an increased torque constant and an increased driving current in response to a request for high-speed driving. As the coil wire diameter increases to ensure resistance to an increase in current, the area of the end faces of the galvano scanners 3 and 4 tends to increase as the frame case becomes larger. As the end faces of the galvano scanners 3 and 4 become larger, the influence of the reflection and scattering of the secondary light beam 16 on the end faces becomes larger. By providing the light absorber 11 on the end faces of the galvano scanners 3 and 4, the influence on the temperature detector 10 due to the reflection and scattering of the secondary light beam 16 can be effectively suppressed.
 光吸収体11は、加工位置9からの反射光と、それとは異なる波長域の輻射光を効果的に低減可能とするため、レーザ光14の波長域に対し広い波長域の光に対する吸収特性を備えるものとする。光吸収体11として黒色部材を使用することで、赤外光、紫外光および可視光を含む広い波長域の光を低減できる。光吸収体11は、黒体シール以外の、いずれの黒色部材としても良い。光吸収体11は、例えば、ガルバノスキャナ3,4の表面に黒色顔料を塗装したものであっても良い。 Since the light absorber 11 can effectively reduce the reflected light from the processing position 9 and the radiation light in a wavelength region different from the reflected light, the light absorber 11 has an absorption characteristic for light in a wider wavelength region than the wavelength region of the laser light 14. Shall be provided. By using a black member as the light absorber 11, light in a wide wavelength range including infrared light, ultraviolet light, and visible light can be reduced. The light absorber 11 may be any black member other than the black body seal. For example, the light absorber 11 may be a galvano scanner 3 or 4 having a black pigment coated on the surface thereof.
実施の形態2.
 図3は、本発明の実施の形態2にかかるレーザ加工装置を示す図である。実施の形態1と同一の部分には同一の符号を付し、重複する説明を適宜省略する。
Embodiment 2. FIG.
FIG. 3 is a diagram showing a laser processing apparatus according to the second embodiment of the present invention. The same parts as those in the first embodiment are denoted by the same reference numerals, and repeated description will be omitted as appropriate.
 レーザ加工装置は、レーザ発振器1からワーク8までのレーザ光14の光路以外の位置にて光を吸収する光吸収体20を備える。光吸収体20は、例えば、黒体シールが貼られた帯状部材とする。光吸収体20の一方の端部側部分は、Y軸ガルバノスキャナ3のうち、ガルバノミラー5の側に向けられた端面の一部を覆う。 The laser processing apparatus includes a light absorber 20 that absorbs light at a position other than the optical path of the laser light 14 from the laser oscillator 1 to the workpiece 8. The light absorber 20 is, for example, a belt-like member with a black body sticker. One end side portion of the light absorber 20 covers a part of the end surface of the Y-axis galvano scanner 3 directed toward the galvano mirror 5 side.
 光吸収体20は、Y軸ガルバノスキャナ3の端面のうち、加工位置9からの2次光線16を温度検出器10に向けて反射させるような部分を覆う。光吸収体20は、Y軸ガルバノスキャナ3の端面とは接触していない。光吸収体20とY軸ガルバノスキャナ3の端面との間に、隙間が形成されている。 The light absorber 20 covers a portion of the end face of the Y-axis galvano scanner 3 that reflects the secondary light beam 16 from the processing position 9 toward the temperature detector 10. The light absorber 20 is not in contact with the end surface of the Y-axis galvano scanner 3. A gap is formed between the light absorber 20 and the end surface of the Y-axis galvano scanner 3.
 光吸収体20のうちY軸ガルバノスキャナ3側とは反対の端部側部分は、X軸ガルバノスキャナ4の端面に固定されている。光吸収体20は、X軸ガルバノスキャナ4に固定された部分から、Y軸ガルバノスキャナ3の表面にまで延伸させた形状を備える。光吸収体20は、ガルバノスキャナ3,4の配置の態様に応じて、適宜折り曲げられている。 The end of the light absorber 20 opposite to the Y-axis galvano scanner 3 side is fixed to the end surface of the X-axis galvano scanner 4. The light absorber 20 has a shape that extends from a portion fixed to the X-axis galvano scanner 4 to the surface of the Y-axis galvano scanner 3. The light absorber 20 is appropriately bent according to the arrangement of the galvano scanners 3 and 4.
 光吸収体20は、2次光線16を吸収することで、温度が上昇することとなる。光吸収体20は、Y軸ガルバノスキャナ3の表面から浮かせた配置とすることで、光吸収体20からY軸ガルバノスキャナ3への伝熱を抑制させる。これにより、レーザ加工装置は、Y軸ガルバノスキャナ3の温度上昇による不具合を低減できる。 The light absorber 20 absorbs the secondary light beam 16 to increase the temperature. The light absorber 20 is arranged so as to float from the surface of the Y-axis galvano scanner 3, thereby suppressing heat transfer from the light absorber 20 to the Y-axis galvano scanner 3. Thereby, the laser processing apparatus can reduce the malfunction caused by the temperature rise of the Y-axis galvano scanner 3.
 光吸収体20は、自然対流を利用して熱を周囲へ放散させることで、X軸ガルバノスキャナ4との固定部分への熱の伝播を抑制させる。これにより、レーザ加工装置は、X軸ガルバノスキャナ4の温度上昇による不具合を低減できる。 The light absorber 20 uses natural convection to dissipate heat to the surroundings, thereby suppressing heat propagation to the fixed part with the X-axis galvano scanner 4. Thereby, the laser processing apparatus can reduce problems caused by the temperature rise of the X-axis galvano scanner 4.
 実施の形態2においても、レーザ加工装置は、温度検出器10での正確な温度検出が可能となることで、加工位置9の正確な補正が可能となる。これにより、レーザ加工装置は、加工位置9の高精度な制御ができるという効果を奏する。 Also in the second embodiment, the laser processing apparatus can accurately detect the processing position 9 by enabling accurate temperature detection by the temperature detector 10. Thereby, the laser processing apparatus has an effect that the processing position 9 can be controlled with high accuracy.
 レーザ加工装置は、従来の構成に光吸収体20を追加することで、2次光線16を低減可能な構成を容易に実現できる。光吸収体20は、レーザ加工装置に対し後付けされるものとしても良い。 The laser processing apparatus can easily realize a configuration capable of reducing the secondary light beam 16 by adding the light absorber 20 to the conventional configuration. The light absorber 20 may be retrofitted to the laser processing apparatus.
 光吸収体20は、X軸ガルバノスキャナ4以外のいずれの構成に固定されたものであっても良い。光吸収体20は、Y軸ガルバノスキャナ3以外の構成に固定され、当該構成に固定された部分からY軸ガルバノスキャナ3の表面にまで延伸させたものであれば良い。これにより、レーザ加工装置は、Y軸ガルバノスキャナ3の温度上昇による不具合を低減できる。 The light absorber 20 may be fixed to any configuration other than the X-axis galvano scanner 4. The light absorber 20 may be fixed to a configuration other than the Y-axis galvano scanner 3 and extended from the portion fixed to the configuration to the surface of the Y-axis galvano scanner 3. Thereby, the laser processing apparatus can reduce the malfunction caused by the temperature rise of the Y-axis galvano scanner 3.
 1 レーザ発振器、2 ベンドミラー、3 Y軸ガルバノスキャナ、4 X軸ガルバノスキャナ、5 ガルバノミラー、6 ガルバノミラー、7 fθレンズ、8 ワーク、9 加工位置、10 温度検出器、11 光吸収体、12 ガルバノドライバ、13 制御装置、14,15 レーザ光、16 2次光線、20 光吸収体。 1 laser oscillator, 2 bend mirror, 3 Y-axis galvano scanner, 4 X-axis galvano scanner, 5 galvano mirror, 6 galvano mirror, 7 fθ lens, 8 work, 9 processing position, 10 temperature detector, 11 light absorber, 12 Galvano driver, 13 control device, 14, 15 laser light, 16 secondary light, 20 light absorber.

Claims (7)

  1.  レーザ光源と、
     前記レーザ光源からのレーザ光を反射する第1ガルバノミラーと、
     前記第1ガルバノミラーからの前記レーザ光を反射する第2ガルバノミラーと、
     前記第1ガルバノミラーを駆動する第1ガルバノスキャナと、
     前記第2ガルバノミラーを駆動する第2ガルバノスキャナと、
     前記第1ガルバノミラーまたは前記第2ガルバノミラーである温度検出対象の温度を検出する温度検出器と、
     前記温度検出器での検出結果に応じて前記温度検出対象の駆動を制御することで、加工対象物における前記レーザ光の入射位置を調整する制御部と、
     前記レーザ光源から前記加工対象物までの前記レーザ光の光路以外の位置にて光を吸収する光吸収体と、を有し、
     前記光吸収体は、前記第1ガルバノスキャナおよび前記第2ガルバノスキャナの少なくとも一方の表面に設けられていることを特徴とするレーザ加工装置。
    A laser light source;
    A first galvanometer mirror that reflects laser light from the laser light source;
    A second galvanometer mirror that reflects the laser light from the first galvanometer mirror;
    A first galvano scanner for driving the first galvanometer mirror;
    A second galvano scanner for driving the second galvanometer mirror;
    A temperature detector for detecting a temperature of a temperature detection target that is the first galvanometer mirror or the second galvanometer mirror;
    A control unit that adjusts the incident position of the laser beam on the workpiece by controlling the driving of the temperature detection target according to the detection result of the temperature detector;
    A light absorber that absorbs light at a position other than the optical path of the laser light from the laser light source to the workpiece,
    The laser processing apparatus, wherein the light absorber is provided on at least one surface of the first galvano scanner and the second galvano scanner.
  2.  前記温度検出対象は前記第2ガルバノミラーであって、
     前記温度検出器は、前記第2ガルバノミラーのうち前記レーザ光を反射する反射面とは反対側の面に対向する位置に配置され、
     前記光吸収体は、前記第1ガルバノスキャナの表面に設けられていることを特徴とする請求項1に記載のレーザ加工装置。
    The temperature detection target is the second galvanometer mirror,
    The temperature detector is disposed at a position facing a surface of the second galvanometer mirror opposite to a reflection surface that reflects the laser light,
    The laser processing apparatus according to claim 1, wherein the light absorber is provided on a surface of the first galvano scanner.
  3.  前記光吸収体は、前記第1ガルバノスキャナのうち、前記第1ガルバノミラーの側に向けられた端面の少なくとも一部を覆うことを特徴とする請求項2に記載のレーザ加工装置。 3. The laser processing apparatus according to claim 2, wherein the light absorber covers at least a part of an end surface of the first galvano scanner facing the first galvanometer mirror.
  4.  前記光吸収体は、前記第1ガルバノスキャナおよび前記第2ガルバノスキャナの少なくとも一方の表面に貼り付けられていることを特徴とする請求項1に記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the light absorber is affixed to at least one surface of the first galvano scanner and the second galvano scanner.
  5.  前記光吸収体は、前記第1ガルバノスキャナ以外の構成に固定され、前記構成に固定された部分から前記第1ガルバノスキャナの表面にまで延伸させた形状を備えることを特徴とする請求項2または3に記載のレーザ加工装置。 The said light absorber is equipped with the shape extended to the surface of the said 1st galvano scanner from the part fixed to the structure other than the said 1st galvano scanner, and being fixed to the said structure. 3. The laser processing apparatus according to 3.
  6.  前記光吸収体は、前記第2ガルバノスキャナに固定されていることを特徴とする請求項5に記載のレーザ加工装置。 The laser processing apparatus according to claim 5, wherein the light absorber is fixed to the second galvano scanner.
  7.  前記光吸収体は、黒体シールであることを特徴とする請求項4に記載のレーザ加工装置。 The laser processing apparatus according to claim 4, wherein the light absorber is a black body seal.
PCT/JP2014/058945 2014-03-27 2014-03-27 Laser machining apparatus WO2015145681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058945 WO2015145681A1 (en) 2014-03-27 2014-03-27 Laser machining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058945 WO2015145681A1 (en) 2014-03-27 2014-03-27 Laser machining apparatus

Publications (1)

Publication Number Publication Date
WO2015145681A1 true WO2015145681A1 (en) 2015-10-01

Family

ID=54194272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058945 WO2015145681A1 (en) 2014-03-27 2014-03-27 Laser machining apparatus

Country Status (1)

Country Link
WO (1) WO2015145681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487180A (en) * 2019-08-12 2019-11-22 上海理工大学 A kind of thermal drift measurement method for scanning galvanometer formula laser-processing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138314A (en) * 2001-10-30 2003-05-14 Yamazaki Mazak Corp Laser hardening device
JP2003245789A (en) * 2002-02-26 2003-09-02 Hamamatsu Photonics Kk Laser machining head
JP2007021507A (en) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp Laser beam machining apparatus
JP2010058162A (en) * 2008-09-05 2010-03-18 Hitachi Via Mechanics Ltd Laser beam machining apparatus
WO2011013666A1 (en) * 2009-07-28 2011-02-03 新日本製鐵株式会社 Laser treatment device and container-producing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138314A (en) * 2001-10-30 2003-05-14 Yamazaki Mazak Corp Laser hardening device
JP2003245789A (en) * 2002-02-26 2003-09-02 Hamamatsu Photonics Kk Laser machining head
JP2007021507A (en) * 2005-07-12 2007-02-01 Mitsubishi Electric Corp Laser beam machining apparatus
JP2010058162A (en) * 2008-09-05 2010-03-18 Hitachi Via Mechanics Ltd Laser beam machining apparatus
WO2011013666A1 (en) * 2009-07-28 2011-02-03 新日本製鐵株式会社 Laser treatment device and container-producing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487180A (en) * 2019-08-12 2019-11-22 上海理工大学 A kind of thermal drift measurement method for scanning galvanometer formula laser-processing system
CN110487180B (en) * 2019-08-12 2020-12-25 上海理工大学 Thermal drift measurement method for scanning galvanometer type laser processing system

Similar Documents

Publication Publication Date Title
US10502555B2 (en) Laser processing system having measurement function
JP5727518B2 (en) Beam processing equipment
JP6678705B2 (en) Distance measuring device
JP6309754B2 (en) Laser radar equipment
JP2013130856A (en) Lens unit and laser processing device
US9500474B2 (en) Illumination apparatus, illumination method, measuring apparatus, and measuring method
KR101420565B1 (en) Laser processing apparatus and laser processing method
WO2015145681A1 (en) Laser machining apparatus
US20180074312A1 (en) Galvanoscanner
TWI645928B (en) Laser processing apparatus and laser processing method using the laser processing apparatus
JP6331805B2 (en) Image reading device
US11355344B2 (en) Chuck plate, annealing device, and annealing method
Mur et al. Precision and resolution in laser direct microstructuring with bursts of picosecond pulses
JP6861918B1 (en) Laser processing equipment
JP2006224142A (en) Laser scanner and laser marking apparatus, and laser marking method
JP2008254029A (en) Laser beam machining apparatus and method
JP2014504249A (en) Cutting device integrated at right angle
WO2013054445A1 (en) Laser processing control device and laser processing control method
KR20190122515A (en) Apparatus for automatically correcting the position of laser scanning system
JP5714196B1 (en) Galvano scanner and laser processing equipment
WO2019065533A1 (en) Cutting device for glass substrate, cutting method, program, and storage medium
WO2016013171A1 (en) Laser machining system and laser machining method
JP2005262260A (en) Laser beam machining apparatus and laser beam machining control program
JP2005085708A (en) Local heating device and method
US20180178323A1 (en) Laser processing head and laser processing system including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14887074

Country of ref document: EP

Kind code of ref document: A1