WO2015145662A1 - Air intake device for internal combustion engine - Google Patents

Air intake device for internal combustion engine Download PDF

Info

Publication number
WO2015145662A1
WO2015145662A1 PCT/JP2014/058864 JP2014058864W WO2015145662A1 WO 2015145662 A1 WO2015145662 A1 WO 2015145662A1 JP 2014058864 W JP2014058864 W JP 2014058864W WO 2015145662 A1 WO2015145662 A1 WO 2015145662A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
internal combustion
combustion engine
intake air
collector tank
Prior art date
Application number
PCT/JP2014/058864
Other languages
French (fr)
Japanese (ja)
Inventor
露木 毅
尚純 加藤
松田 健
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/058864 priority Critical patent/WO2015145662A1/en
Priority to JP2016509749A priority patent/JP6090530B2/en
Publication of WO2015145662A1 publication Critical patent/WO2015145662A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10052Plenum chambers special shapes or arrangements of plenum chambers; Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0468Water separation or drainage means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0475Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly the intake air cooler being combined with another device, e.g. heater, valve, compressor, filter or EGR cooler, or being assembled on a special engine location
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0425Air cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an intake device for an internal combustion engine.
  • EGR device exhaust gas recirculation device that recirculates a part of exhaust gas to an intake passage as EGR gas in order to prevent knocking of an internal combustion engine, reduce NOx emissions, or the like is known.
  • the exhaust gas contains a large amount of moisture, and when the temperature is lowered, the moisture is condensed and condensed water is generated. If such condensed water stays in the intake passage or EGR passage, corrosion tends to occur in the intake passage and the like. Further, when a large amount of condensed water flows into the cylinder of the internal combustion engine at once, the durability of the internal combustion engine decreases due to a so-called water hammer phenomenon.
  • JP2006-336563A provides a water droplet holding means for retaining condensed water between the EGR gas outlet to the collector tank and the EGR valve.
  • the condensed water is stored in the water droplet holding means to prevent the condensed water from collecting in the EGR passage.
  • the condensed water is also generated when the temperature decreases due to the merge of EGR gas and fresh air, or when the intake air containing the EGR gas is cooled by the intake air cooling device of the internal combustion engine with a supercharger.
  • the water droplet holding means described in the above document cannot store the condensed water generated in this way, and the generated condensed water may accumulate in the intake passage or the collector tank and cause a water hammer phenomenon.
  • an object of the present invention is to provide an intake device that can prevent a collective amount of condensed water from flowing into a cylinder at a time.
  • FIG. 1 is a configuration diagram of an engine system according to the first embodiment.
  • FIG. 2 is a configuration diagram of the collector tank and the intake manifold.
  • FIG. 3 is an end view of the collector tank and the intake manifold according to the first embodiment.
  • FIG. 4 is a configuration diagram of an engine system according to the second embodiment.
  • FIG. 5 is an end view of the collector tank and the intake manifold according to the second embodiment.
  • FIG. 6 is an end view of the collector tank and the intake manifold according to the third embodiment.
  • FIG. 7 is an end view of the collector tank and the intake manifold according to the fourth embodiment.
  • the up-down direction in the following description means the up-down direction with the internal combustion engine 1 mounted on a vehicle.
  • FIG. 1 is a schematic configuration diagram of an engine system including an intake device according to the present embodiment.
  • This engine system includes an internal combustion engine 1, an intake passage 2, an exhaust passage 3, and an EGR passage 5.
  • the internal combustion engine 1 is a reciprocating multi-cylinder internal combustion engine, FIG. 1 shows only one cylinder for convenience.
  • the internal combustion engine 1 may be a spark ignition engine or a diesel engine.
  • an air flow meter 9 In the intake passage 2, an air flow meter 9, a compressor 10 ⁇ / b> A of the turbocharger 10, an intake air cooling device 8, a throttle chamber 11, and a collector tank 12 are arranged in order from the upstream side of the intake air flow.
  • the collector tank 12 and the intake port 14 of each cylinder communicate with each other via an intake manifold 13.
  • the intake air cooling device 8 cools intake air that has been compressed by the compressor 10A and has risen in temperature.
  • the intake air cooling device 8 of the present embodiment may be either an air-cooled type that cools the intake air by exchanging heat with the traveling wind, or a water-cooled type that cools the intake air by exchanging heat with the coolant.
  • the throttle chamber 11 is provided at the inlet of the collector tank 12 and adjusts the intake air amount of the internal combustion engine 1 by opening and closing a butterfly valve.
  • a variable valve mechanism that can variably control the lift amount and operating angle of the intake valve is provided, the intake air amount can be adjusted by the variable valve mechanism.
  • the throttle chamber 11 is not an essential configuration.
  • the intake manifold 13 will be described later.
  • a turbine 10B of the turbocharger 10 and an exhaust purification catalyst 4 are arranged in this order from the upstream side of the exhaust flow.
  • the EGR passage 5 is branched from the exhaust passage 3 on the downstream side of the catalyst 4 and merges downstream of the air flow meter 9 in the intake passage 2 and upstream of the compressor 10A.
  • an EGR cooler 7 for cooling the EGR gas and an EGR valve 6 for adjusting the recirculation amount of the EGR gas are arranged.
  • the EGR device of the present embodiment is a so-called low pressure EGR device that recirculates a part of the exhaust gas as EGR gas to the intake passage 2 upstream of the compressor 10A. Since the EGR gas contains a large amount of moisture, when the temperature decreases after passing through the intake air cooling device 8, the moisture may condense and condensed water may be generated. When the condensed water does not flow into the cylinder of the internal combustion engine 1 as it is and stays in the intake passage 2 or the collector tank 12, the staying amount increases as the operation time elapses.
  • an intake path from the collector tank 12 through the intake manifold 13 to the inlet of the intake port 14 is configured so that a water hammer phenomenon does not occur even when the amount of condensed water stored increases.
  • FIG. 2 is a perspective view showing an example of the configuration of the collector tank 12 and the intake manifold 13.
  • FIG. 3 is a simplified view of the end surface taken along the line III-III in FIG. 2, that is, the end surface at the position where the branch 13A of the collector tank 12 is connected.
  • a portion surrounded by a broken line in FIG. 3 indicates a position in the height direction of a connecting portion 12B described later in order to facilitate understanding of the flow of intake air.
  • the collector tank 12 includes a main tank portion 12A and a connection portion 12B to which the throttle chamber 11 is connected.
  • the connecting portion 12B is provided at the lower end of the main tank portion 12A or in the vicinity thereof.
  • the lower end position of the collector tank 12 (broken line X 3 in the drawing) is lower than the lower end position of the inlet of the intake port 14 (broken line Y 3 in the drawing).
  • the intake manifold 13 includes a branch 13A that communicates the main tank portion 12A and each intake port 14, and each branch 13A is connected to the upper end of the main tank portion 12A or in the vicinity thereof.
  • the intake manifold 13 and the collector tank 12 may be integrated.
  • the intake air including EGR gas passes through the intake air cooling device 8 and then passes through the throttle chamber 11 and flows into the collector tank 12 from the lower side of the main tank portion 12A.
  • the main tank portion 12A moves from the lower side to the upper side. And flows into the intake port 14 via the intake manifold 13.
  • Each branch 13A has an upwardly curved shape. That is, a part of the intake path from the connection part 12B which is the inlet part of the collector tank 12 to the inlet of the intake port 14 through the intake manifold 13 is upward.
  • the generated condensed water is collected and flows into the cylinder together with the intake air. Can be prevented.
  • the collector tank 12 since the lower end of the collector tank 12 is lower than the lower end portion of the inlet of the intake port 14, the collector tank 12 also functions as a trap for collecting condensed water in the intake air. To do. That is, among the condensed water generated before passing through the intake air cooling device 8 and the condensed water generated while passing through the intake air cooling device 8, those that could not pass through the top of the branch 13A are stored in the collector tank 12. Accumulate at the bottom. Thereby, it is possible to prevent a collective amount of condensed water from flowing into the cylinder at a time. Even if condensed water accumulates in the collector tank 12, water droplets scattered by the flow of intake air during engine operation flow into the cylinder and do not cause a water hammer phenomenon.
  • FIG. 4 is a schematic configuration diagram of an engine system including the intake device of the second embodiment.
  • the difference from FIG. 1 is that the intake air cooling device 8 is integrated with the collector tank 12.
  • the intake passage volume from the compressor 10A to the throttle chamber 11 can be reduced. As a result, it is possible to improve the transient response during acceleration and the layout.
  • the intake air cooling device 8 is a so-called water-cooling type in which the coolant flows through the inside of the core composed of a plurality of tubes arranged at predetermined intervals, and heat exchange is performed between the intake air passing through the gap between the core and the coolant. is there.
  • a corrugated fin is provided on the surface of the tube in order to increase the efficiency of heat exchange.
  • the intake air cooling device 8 is installed in the main tank portion 12A so that the entire amount of intake air that has flowed into the main tank portion 12A through the throttle chamber 11 passes.
  • the intake air cooling device 8 includes a sub-radiator for cooling the coolant whose temperature has increased due to heat exchange with the intake air.
  • the sub-radiator is configured to cool the coolant by exchanging heat with the traveling wind, in the same manner as a general engine coolant radiator.
  • FIG. 5 is a simplified view of the end face of the collector tank 12 to which the branch 13A is connected, as in FIG. A point where the lower end of the collector tank 12 is located below the intake port 14 and at least a part of the intake path from the connecting portion 12B to the inlet of the intake port 14 through the intake manifold 13 are upward. This is the same as in the first embodiment.
  • the intake air cooling device 8 partitions the inside of the main tank portion 12A up and down, and is arranged so that the intake air flows from the lower side to the upper side.
  • the intake path has a portion from the lower side to the upper side after passing through the intake air cooling device 8.
  • the intake air cooling device 8 since the end of the intake air cooling device 8 on the intake channel outlet side is located lower than the lower end of the intake port 14, the intake air cooling device 8 is integrated with the collector tank 12. However, it is possible to prevent the generated condensed water from flowing into the cylinder together with the intake air. Moreover, the point which the collector tank 12 can exhibit the function as a trap which collects condensed water is the same as that of 1st Embodiment.
  • FIG. 6 is a simplified view of the end face of the portion of the collector tank 12 to which the branch 13A is connected, as in FIG. A point where the lower end of the collector tank 12 is located below the intake port 14 and at least a part of the intake path from the connecting portion 12B to the inlet of the intake port 14 through the intake manifold 13 are upward. This is the same as in the first embodiment.
  • the intake air cooling device 8 is arranged so that the inside of the main tank portion 12A is vertically partitioned and the intake air flows in the lateral direction.
  • the upper end position (dashed line X 6 in the figure) of the intake air cooling device 8 on the outlet side of the intake passage is lower than the lower end position of the inlet of the intake port 14 (dashed line Y 6 in the figure). That is, the intake air that has flowed into the collector tank 12 from the connection portion 12B passes through the intake air cooling device 8 from the left side to the right side in the drawing, and flows into the intake port 14A through the branch 13A.
  • the basic configuration of the engine system is the same as that of the second embodiment.
  • the intake air cooling device 8 is integrated with the collector tank 12, and the intake air cooling device 8 is arranged so that the intake air passes from the lower side to the upper side, as in the second embodiment.
  • the end of the intake air cooling device 8 on the intake channel outlet side is located higher than the lower end of the intake port 14.
  • the intake air must pass through the core of the intake air cooling device 8 from the lower side to the upper side, and the intake flow path of the core is a gap between a plurality of tubes provided with corrugated fins. For this reason, the condensed water generated before or during passage through the intake air cooling device 8 is easily separated from the flow of intake air by colliding with the wall surface of the intake passage of the core. Therefore, it is possible to suppress the condensed water from flowing directly into the intake port 14.
  • the separated condensed water is collected at the bottom of the collector tank 12, but, as in each of the embodiments described above, the water splashed as water droplets by the intake air flows into the cylinder, and the water hammer. The phenomenon never happens.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

This air intake device for an internal combustion engine is provided with a turbo-supercharger and an exhaust recirculation system that recirculates a portion of the exhaust gas in the internal combustion engine to an air intake passage that is upstream of a compressor of the turbo-supercharger in the air intake flow. Furthermore, the air intake device has, in at least a portion of an air intake channel reaching from an entrance of a collector tank via an air intake manifold to an air intake port entrance, a portion that faces upward when mounted to a vehicle.

Description

内燃機関の吸気装置Intake device for internal combustion engine
 本発明は、内燃機関の吸気装置に関する。 The present invention relates to an intake device for an internal combustion engine.
 内燃機関のノッキング防止やNOx排出量低減等のために、排気ガスの一部をEGRガスとして吸気通路に再循環させる排気再循環装置(EGR装置)が知られている。 2. Description of the Related Art An exhaust gas recirculation device (EGR device) that recirculates a part of exhaust gas to an intake passage as EGR gas in order to prevent knocking of an internal combustion engine, reduce NOx emissions, or the like is known.
 ところで、排気ガスには多量の水分が含まれており、温度が低下すると水分が結露して凝縮水が生成される。このような凝縮水が吸気通路やEGR通路内に滞留した状態が続くと、吸気通路等に腐食が発生し易くなる。また、一度にまとまった量の凝縮水が内燃機関のシリンダに流入すると、いわゆるウォーターハンマ現象により内燃機関の耐久性が低下する。 By the way, the exhaust gas contains a large amount of moisture, and when the temperature is lowered, the moisture is condensed and condensed water is generated. If such condensed water stays in the intake passage or EGR passage, corrosion tends to occur in the intake passage and the like. Further, when a large amount of condensed water flows into the cylinder of the internal combustion engine at once, the durability of the internal combustion engine decreases due to a so-called water hammer phenomenon.
 凝縮水の滞留への対応策として、JP2006-336563Aでは、凝縮水を留める水滴保持手段をコレクタタンクへのEGRガス吹き出し口とEGRバルブとの間に設けている。そして、水滴保持手段に凝縮水を溜めることでEGR通路内に凝縮水が溜まることを防止している。 As a countermeasure against condensate water retention, JP2006-336563A provides a water droplet holding means for retaining condensed water between the EGR gas outlet to the collector tank and the EGR valve. The condensed water is stored in the water droplet holding means to prevent the condensed water from collecting in the EGR passage.
 しかしながら、凝縮水は、EGRガスと新気とが合流することで温度低下する場合や、過給機付き内燃機関の吸気冷却装置でEGRガスを含む吸気が冷却される場合にも生成される。 However, the condensed water is also generated when the temperature decreases due to the merge of EGR gas and fresh air, or when the intake air containing the EGR gas is cooled by the intake air cooling device of the internal combustion engine with a supercharger.
 上記文献に記載の水滴保持手段では、このようにして生成された凝縮水を溜めることはできず、生成された凝縮水が吸気通路やコレクタタンクに溜まってウォーターハンマ現象を引き起こす可能性がある。 The water droplet holding means described in the above document cannot store the condensed water generated in this way, and the generated condensed water may accumulate in the intake passage or the collector tank and cause a water hammer phenomenon.
 そこで本発明では、まとまった量の凝縮水が一度にシリンダに流入することを防止し得る吸気装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an intake device that can prevent a collective amount of condensed water from flowing into a cylinder at a time.
図1は、第1実施形態にかかるエンジンシステムの構成図である。FIG. 1 is a configuration diagram of an engine system according to the first embodiment. 図2は、コレクタタンク及び吸気マニホールドの構成図である。FIG. 2 is a configuration diagram of the collector tank and the intake manifold. 図3は、第1実施形態にかかるコレクタタンク及び吸気マニホールドの端面図である。FIG. 3 is an end view of the collector tank and the intake manifold according to the first embodiment. 図4は、第2実施形態にかかるエンジンシステムの構成図である。FIG. 4 is a configuration diagram of an engine system according to the second embodiment. 図5は、第2実施形態にかかるコレクタタンク及び吸気マニホールドの端面図である。FIG. 5 is an end view of the collector tank and the intake manifold according to the second embodiment. 図6は、第3実施形態にかかるコレクタタンク及び吸気マニホールドの端面図である。FIG. 6 is an end view of the collector tank and the intake manifold according to the third embodiment. 図7は、第4実施形態にかかるコレクタタンク及び吸気マニホールドの端面図である。FIG. 7 is an end view of the collector tank and the intake manifold according to the fourth embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 なお、以下の説明における上下方向は、内燃機関1を車両に搭載した状態での上下方向を意味する。 In addition, the up-down direction in the following description means the up-down direction with the internal combustion engine 1 mounted on a vehicle.
(第1実施形態)
 図1は、本実施形態の吸気装置を備えるエンジンシステムの概略構成図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of an engine system including an intake device according to the present embodiment.
 このエンジンシステムは、内燃機関1、吸気通路2、排気通路3、及びEGR通路5を備える。内燃機関1はレシプロ型の多気筒内燃機関であるが、図1では便宜上一つの気筒のみを示している。また、内燃機関1は火花点火式機関またはディーゼル機関のいずれであっても構わない。 This engine system includes an internal combustion engine 1, an intake passage 2, an exhaust passage 3, and an EGR passage 5. Although the internal combustion engine 1 is a reciprocating multi-cylinder internal combustion engine, FIG. 1 shows only one cylinder for convenience. The internal combustion engine 1 may be a spark ignition engine or a diesel engine.
 吸気通路2には、吸気流れの上流側から順に、エアフローメータ9、ターボ過給機10のコンプレッサ10A、吸気冷却装置8、スロットルチャンバ11、及びコレクタタンク12が配置されている。コレクタタンク12と各気筒の吸気ポート14とは吸気マニホールド13を介して連通している。 In the intake passage 2, an air flow meter 9, a compressor 10 </ b> A of the turbocharger 10, an intake air cooling device 8, a throttle chamber 11, and a collector tank 12 are arranged in order from the upstream side of the intake air flow. The collector tank 12 and the intake port 14 of each cylinder communicate with each other via an intake manifold 13.
 吸気冷却装置8は、コンプレッサ10Aで圧縮され温度上昇した吸気を冷却するものである。本実施形態の吸気冷却装置8は、走行風との熱交換により吸気を冷却する空冷式、または冷却液との熱交換により吸気を冷却する水冷式のいずれであってもよい。 The intake air cooling device 8 cools intake air that has been compressed by the compressor 10A and has risen in temperature. The intake air cooling device 8 of the present embodiment may be either an air-cooled type that cools the intake air by exchanging heat with the traveling wind, or a water-cooled type that cools the intake air by exchanging heat with the coolant.
 スロットルチャンバ11は、コレクタタンク12の入口部分に設けられ、バタフライバルブの開閉により内燃機関1の吸気量を調節するものである。なお、吸気弁のリフト量及び作用角を可変制御し得る可変動弁機構を備える場合には、可変動弁機構により吸気量を調節することが出来る。この場合には、スロットルチャンバ11は必須の構成ではない。 The throttle chamber 11 is provided at the inlet of the collector tank 12 and adjusts the intake air amount of the internal combustion engine 1 by opening and closing a butterfly valve. When a variable valve mechanism that can variably control the lift amount and operating angle of the intake valve is provided, the intake air amount can be adjusted by the variable valve mechanism. In this case, the throttle chamber 11 is not an essential configuration.
 吸気マニホールド13については後述する。 The intake manifold 13 will be described later.
 一方、排気通路3には、排気流れの上流側から順に、ターボ過給機10のタービン10Bと、排気浄化用の触媒4と、が配置されている。 On the other hand, in the exhaust passage 3, a turbine 10B of the turbocharger 10 and an exhaust purification catalyst 4 are arranged in this order from the upstream side of the exhaust flow.
 EGR通路5は、触媒4の下流側で排気通路3から分岐して、吸気通路2のエアフローメータ9より下流側かつコンプレッサ10Aより上流側に合流している。EGR通路5には、EGRガスを冷却するためのEGRクーラ7と、EGRガスの再循環量を調節するためのEGRバルブ6と、が配置されている。 The EGR passage 5 is branched from the exhaust passage 3 on the downstream side of the catalyst 4 and merges downstream of the air flow meter 9 in the intake passage 2 and upstream of the compressor 10A. In the EGR passage 5, an EGR cooler 7 for cooling the EGR gas and an EGR valve 6 for adjusting the recirculation amount of the EGR gas are arranged.
 上記のように、本実施形態のEGR装置は、排気ガスの一部をEGRガスとしてコンプレッサ10Aの上流側の吸気通路2に再循環させる、いわゆる低圧EGR装置である。EGRガスには水分が多く含まれているため、吸気冷却装置8を通過して温度低下すると、水分が結露して凝縮水が生成されることがある。凝縮水がそのまま内燃機関1のシリンダに流入せずに吸気通路2やコレクタタンク12に滞留する場合には、運転時間の経過に伴って滞留量が増加する。そして、滞留量が増加した状態で、車両が坂道を走行したり、旋回したり、加減速したりすることで、一度にまとまった量の凝縮水がシリンダに流入すると、いわゆるウォーターハンマ現象により、内燃機関1を著しく劣化させるおそれがある。 As described above, the EGR device of the present embodiment is a so-called low pressure EGR device that recirculates a part of the exhaust gas as EGR gas to the intake passage 2 upstream of the compressor 10A. Since the EGR gas contains a large amount of moisture, when the temperature decreases after passing through the intake air cooling device 8, the moisture may condense and condensed water may be generated. When the condensed water does not flow into the cylinder of the internal combustion engine 1 as it is and stays in the intake passage 2 or the collector tank 12, the staying amount increases as the operation time elapses. And when the amount of staying is increased, the vehicle travels on a slope, turns, accelerates or decelerates, and when a condensed amount of condensed water flows into the cylinder at a time, the so-called water hammer phenomenon, There is a possibility that the internal combustion engine 1 is significantly deteriorated.
 そこで本実施形態では、凝縮水の貯留量が増加した場合でもウォーターハンマ現象が発生しないように、コレクタタンク12から吸気マニホールド13を経て吸気ポート14の入口に到達するまでの吸気経路を構成する。 Therefore, in this embodiment, an intake path from the collector tank 12 through the intake manifold 13 to the inlet of the intake port 14 is configured so that a water hammer phenomenon does not occur even when the amount of condensed water stored increases.
 図2は、コレクタタンク12及び吸気マニホールド13の構成の一例を示す斜視図である。 FIG. 2 is a perspective view showing an example of the configuration of the collector tank 12 and the intake manifold 13.
 図3は、図2のIII-III線における端面、つまりコレクタタンク12のブランチ13Aが接続される位置での端面を簡略化した図である。図3中の破線で囲んだ部分は、吸気の流れを理解し易くするために、後述する接続部12Bの高さ方向の位置を示したものである。 FIG. 3 is a simplified view of the end surface taken along the line III-III in FIG. 2, that is, the end surface at the position where the branch 13A of the collector tank 12 is connected. A portion surrounded by a broken line in FIG. 3 indicates a position in the height direction of a connecting portion 12B described later in order to facilitate understanding of the flow of intake air.
 コレクタタンク12は、メインタンク部12Aと、スロットルチャンバ11が接続される接続部12Bとを含んで構成される。接続部12Bは、メインタンク部12Aの下端またはその近傍に設けられている。また、コレクタタンク12の下端位置(図中の破線X)は、吸気ポート14の入口の下端位置(図中の破線Y)よりも下方となっている。 The collector tank 12 includes a main tank portion 12A and a connection portion 12B to which the throttle chamber 11 is connected. The connecting portion 12B is provided at the lower end of the main tank portion 12A or in the vicinity thereof. The lower end position of the collector tank 12 (broken line X 3 in the drawing) is lower than the lower end position of the inlet of the intake port 14 (broken line Y 3 in the drawing).
 吸気マニホールド13は、メインタンク部12Aと各吸気ポート14とを連通するブランチ13Aを備えており、各ブランチ13Aはメインタンク部12Aの上端またはその近傍に接続されている。なお、吸気マニホールド13とコレクタタンク12とを一体構造としてもよい。 The intake manifold 13 includes a branch 13A that communicates the main tank portion 12A and each intake port 14, and each branch 13A is connected to the upper end of the main tank portion 12A or in the vicinity thereof. The intake manifold 13 and the collector tank 12 may be integrated.
 EGRガスを含む吸気は、吸気冷却装置8を通過した後、スロットルチャンバ11を通過してメインタンク部12Aの下方側からコレクタタンク12に流入し、メインタンク部12Aを下方側から上方側へ向かって進み、吸気マニホールド13を介して吸気ポート14へ流入する。また、各ブランチ13Aは上に凸な湾曲形状となっている。すなわち、コレクタタンク12の入口部分である接続部12Bから吸気マニホールド13を経て吸気ポート14の入口に到達するまでの吸気経路の一部が上向きとなっている。 The intake air including EGR gas passes through the intake air cooling device 8 and then passes through the throttle chamber 11 and flows into the collector tank 12 from the lower side of the main tank portion 12A. The main tank portion 12A moves from the lower side to the upper side. And flows into the intake port 14 via the intake manifold 13. Each branch 13A has an upwardly curved shape. That is, a part of the intake path from the connection part 12B which is the inlet part of the collector tank 12 to the inlet of the intake port 14 through the intake manifold 13 is upward.
 本実施形態によれば、コレクタタンク12の入口から吸気ポート14の入口までの吸気経路の一部が上向きに構成されているので、生成された凝縮水がまとまって吸気と共にシリンダに流入することを防止できる。 According to the present embodiment, since a part of the intake path from the inlet of the collector tank 12 to the inlet of the intake port 14 is configured upward, the generated condensed water is collected and flows into the cylinder together with the intake air. Can be prevented.
 また、本実施形態によれば、コレクタタンク12の下端が吸気ポート14の入口の下端部よりも低い位置にあるので、コレクタタンク12が吸気中の凝縮水を捕集するトラップとしての機能も発揮する。すなわち、吸気冷却装置8を通過する前に生成された凝縮水や、吸気冷却装置8の通過中に生成された凝縮水のうち、ブランチ13Aの頂上部を通過できなかったものはコレクタタンク12の底部に溜まる。これにより、まとまった量の凝縮水が一度にシリンダに流入することを防止できる。また、コレクタタンク12に凝縮水が溜まったとしても、機関運転中に吸気の流れによって飛散した水滴がシリンダに流入する程度であり、ウォーターハンマ現象を引き起こすことはない。 Further, according to the present embodiment, since the lower end of the collector tank 12 is lower than the lower end portion of the inlet of the intake port 14, the collector tank 12 also functions as a trap for collecting condensed water in the intake air. To do. That is, among the condensed water generated before passing through the intake air cooling device 8 and the condensed water generated while passing through the intake air cooling device 8, those that could not pass through the top of the branch 13A are stored in the collector tank 12. Accumulate at the bottom. Thereby, it is possible to prevent a collective amount of condensed water from flowing into the cylinder at a time. Even if condensed water accumulates in the collector tank 12, water droplets scattered by the flow of intake air during engine operation flow into the cylinder and do not cause a water hammer phenomenon.
(第2実施形態)
 図4は、第2実施形態の吸気装置を備えるエンジンシステムの概略構成図である。図1との相違点は、吸気冷却装置8がコレクタタンク12と一体化されている点である。吸気冷却装置8とコレクタタンク12とを一体化することで、コンプレッサ10Aからスロットルチャンバ11までの吸気通路容積を低減することができる。その結果、加速時等の過渡応答性やレイアウト性等の向上を図ることができる。
(Second Embodiment)
FIG. 4 is a schematic configuration diagram of an engine system including the intake device of the second embodiment. The difference from FIG. 1 is that the intake air cooling device 8 is integrated with the collector tank 12. By integrating the intake air cooling device 8 and the collector tank 12, the intake passage volume from the compressor 10A to the throttle chamber 11 can be reduced. As a result, it is possible to improve the transient response during acceleration and the layout.
 本実施形態の吸気冷却装置8は、所定間隔で並ぶ複数のチューブからなるコアの内部を冷却液が流れ、コアの隙間を通過する吸気と冷却液との間で熱交換する、いわゆる水冷式である。なお、チューブの表面には、熱交換の効率を高めるためにコルゲートフィンが設けられている。上記の吸気冷却装置8は、スロットルチャンバ11を通過してメインタンク部12Aに流入した吸気の全量が通過するように、メインタンク部12Aに設置されている。 The intake air cooling device 8 according to the present embodiment is a so-called water-cooling type in which the coolant flows through the inside of the core composed of a plurality of tubes arranged at predetermined intervals, and heat exchange is performed between the intake air passing through the gap between the core and the coolant. is there. A corrugated fin is provided on the surface of the tube in order to increase the efficiency of heat exchange. The intake air cooling device 8 is installed in the main tank portion 12A so that the entire amount of intake air that has flowed into the main tank portion 12A through the throttle chamber 11 passes.
 なお、図4には示さないが、吸気冷却装置8は、吸気との熱交換により温度上昇した冷却液を冷却するためのサブラジエータを備える。サブラジエータは、一般的なエンジン冷却水用のラジエータと同様に、走行風との間で熱交換することで冷却液を冷却する構成となっている。 Although not shown in FIG. 4, the intake air cooling device 8 includes a sub-radiator for cooling the coolant whose temperature has increased due to heat exchange with the intake air. The sub-radiator is configured to cool the coolant by exchanging heat with the traveling wind, in the same manner as a general engine coolant radiator.
 図5は、図3と同様に、コレクタタンク12のブランチ13Aが接続された部分の端面を簡略化した図である。コレクタタンク12の下端が、吸気ポート14よりも下方に位置する点、及び、接続部12Bから吸気マニホールド13を経て吸気ポート14の入口に到達するまでの吸気経路の少なくとも一部が上向きとなっている点は、第1実施形態と同様である。 FIG. 5 is a simplified view of the end face of the collector tank 12 to which the branch 13A is connected, as in FIG. A point where the lower end of the collector tank 12 is located below the intake port 14 and at least a part of the intake path from the connecting portion 12B to the inlet of the intake port 14 through the intake manifold 13 are upward. This is the same as in the first embodiment.
 吸気冷却装置8は、メインタンク部12Aの内部を上下に仕切り、かつ、吸気が下方側から上方側に流れるように配置されている。そして、吸気冷却装置8の上端部、つまり吸気冷却装置8の吸気流路出口側の端部位置(図中の破線X)は、吸気ポート14の入口の下端位置(図中の破線Y)よりも低い位置にある。すなわち、吸気経路には吸気冷却装置8を通過後に下方側から上方側へ向かう部分がある。 The intake air cooling device 8 partitions the inside of the main tank portion 12A up and down, and is arranged so that the intake air flows from the lower side to the upper side. The upper end, i.e. the end position of the intake flow path outlet side of the intake air cooling device 8 (dashed X 5 in the drawing) of the intake-air cooling device 8, a broken line Y 5 in the lower end position of the inlet of the intake port 14 (FIG. ). In other words, the intake path has a portion from the lower side to the upper side after passing through the intake air cooling device 8.
 本実施形態によれば、吸気冷却装置8の吸気流路出口側の端部が吸気ポート14の入口の下端部よりも低い位置にあるので、吸気冷却装置8をコレクタタンク12と一体化した場合でも、生成された凝縮水がまとまって吸気と共にシリンダに流入することを防止できる。また、コレクタタンク12が凝縮水を捕集するトラップとしての機能を発揮し得る点は、第1実施形態と同様である。 According to the present embodiment, since the end of the intake air cooling device 8 on the intake channel outlet side is located lower than the lower end of the intake port 14, the intake air cooling device 8 is integrated with the collector tank 12. However, it is possible to prevent the generated condensed water from flowing into the cylinder together with the intake air. Moreover, the point which the collector tank 12 can exhibit the function as a trap which collects condensed water is the same as that of 1st Embodiment.
(第3実施形態)
 本実施形態は、エンジンシステムの基本的な構成は第2実施形態と同様であるが、コレクタタンク12及び吸気冷却装置8が第2実施形態と異なる。以下、第2実施形態と異なる点を中心に説明する。
(Third embodiment)
In this embodiment, the basic configuration of the engine system is the same as that of the second embodiment, but the collector tank 12 and the intake air cooling device 8 are different from those of the second embodiment. Hereinafter, a description will be given focusing on differences from the second embodiment.
 図6は、図3と同様に、コレクタタンク12のブランチ13Aが接続された部分の端面を簡略化した図である。コレクタタンク12の下端が、吸気ポート14よりも下方に位置する点、及び、接続部12Bから吸気マニホールド13を経て吸気ポート14の入口に到達するまでの吸気経路の少なくとも一部が上向きとなっている点は、第1実施形態と同様である。 FIG. 6 is a simplified view of the end face of the portion of the collector tank 12 to which the branch 13A is connected, as in FIG. A point where the lower end of the collector tank 12 is located below the intake port 14 and at least a part of the intake path from the connecting portion 12B to the inlet of the intake port 14 through the intake manifold 13 are upward. This is the same as in the first embodiment.
 本実施形態では、吸気冷却装置8がメインタンク部12Aの内部を縦に仕切り、かつ吸気が横方向に流れるように配置されている。そして、吸気冷却装置8の吸気流路出口側の上端位置(図中の破線X)は、吸気ポート14の入口の下端位置(図中の破線Y)よりも低い位置にある。すなわち、接続部12Bからコレクタタンク12に流入した吸気は、吸気冷却装置8を図中の左側から右側へ通過し、ブランチ13Aを通って吸気ポート14Aへ流入する。 In the present embodiment, the intake air cooling device 8 is arranged so that the inside of the main tank portion 12A is vertically partitioned and the intake air flows in the lateral direction. The upper end position (dashed line X 6 in the figure) of the intake air cooling device 8 on the outlet side of the intake passage is lower than the lower end position of the inlet of the intake port 14 (dashed line Y 6 in the figure). That is, the intake air that has flowed into the collector tank 12 from the connection portion 12B passes through the intake air cooling device 8 from the left side to the right side in the drawing, and flows into the intake port 14A through the branch 13A.
 本実施形態の構成によれば、第2実施形態と同様の作用効果を奏する。 According to the configuration of the present embodiment, the same operational effects as those of the second embodiment are achieved.
(第4実施形態)
 本実施形態は、エンジンシステムの基本的な構成は第2実施形態と同様である。また、吸気冷却装置8がコレクタタンク12に一体化されており、吸気が下方側から上方側へ通過するように吸気冷却装置8が配置されている点も第2実施形態と同様である。ただし本実施形態では、吸気冷却装置8の吸気流路出口側の端部が、吸気ポート14の入口の下端部よりも高い位置にある。
(Fourth embodiment)
In this embodiment, the basic configuration of the engine system is the same as that of the second embodiment. Also, the intake air cooling device 8 is integrated with the collector tank 12, and the intake air cooling device 8 is arranged so that the intake air passes from the lower side to the upper side, as in the second embodiment. However, in the present embodiment, the end of the intake air cooling device 8 on the intake channel outlet side is located higher than the lower end of the intake port 14.
 本実施形態では、吸気は吸気冷却装置8のコアを下方側から上方側へと通過しなければならず、さらに、コアの吸気流路はコルゲートフィンを備える複数のチューブの隙間である。このため、吸気冷却装置8を通過前又は通過中に生成された凝縮水は、コアの吸気流路の壁面との衝突することで吸気の流れから分離されやすい。したがって、凝縮水が直接吸気ポート14に流入することを抑制できる。 In the present embodiment, the intake air must pass through the core of the intake air cooling device 8 from the lower side to the upper side, and the intake flow path of the core is a gap between a plurality of tubes provided with corrugated fins. For this reason, the condensed water generated before or during passage through the intake air cooling device 8 is easily separated from the flow of intake air by colliding with the wall surface of the intake passage of the core. Therefore, it is possible to suppress the condensed water from flowing directly into the intake port 14.
 また、分離された凝縮水はコレクタタンク12の底部に溜まることになるが、上述した各実施形態と同様に、吸気流れによって水滴となって飛散したものがシリンダに流入する程度であってウォーターハンマ現象が発生することはない。 Further, the separated condensed water is collected at the bottom of the collector tank 12, but, as in each of the embodiments described above, the water splashed as water droplets by the intake air flows into the cylinder, and the water hammer. The phenomenon never happens.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

Claims (4)

  1.  ターボ過給機と、
     内燃機関の排気ガスの一部を、前記ターボ過給機のコンプレッサよりも吸気流れ上流側の吸気通路に再循環させる排気再循環通路と、
     前記吸気通路に再循環させる排気ガスの量を調整する排気ガス流量制御弁と、
    を備える内燃機関の吸気装置において、
     コレクタタンクの入口から吸気マニホールドを経て吸気ポート入口に到達するまでの吸気経路が、少なくともその一部に車両搭載状態で上向きとなる部分を有する内燃機関の吸気装置。
    A turbocharger,
    An exhaust gas recirculation passage for recirculating a part of the exhaust gas of the internal combustion engine to the intake passage upstream of the intake air flow from the compressor of the turbocharger;
    An exhaust gas flow control valve for adjusting the amount of exhaust gas recirculated to the intake passage;
    An intake device for an internal combustion engine comprising:
    An intake system for an internal combustion engine, wherein an intake path from an inlet of a collector tank to an intake port inlet via an intake manifold reaches at least a part thereof upward in a vehicle-mounted state.
  2.  請求項1に記載の内燃機関の吸気装置において、
     前記内燃機関を車両に搭載した状態で、前記コレクタタンクの下端部が前記吸気ポート入口の下端部よりも低い位置にある内燃機関の吸気装置。
    The intake device for an internal combustion engine according to claim 1,
    An intake device for an internal combustion engine, wherein a lower end portion of the collector tank is lower than a lower end portion of the intake port inlet in a state where the internal combustion engine is mounted on a vehicle.
  3.  請求項1または2に記載の内燃機関の吸気装置において、
     前記コレクタタンクと一体化された水冷式吸気冷却装置をさらに備え、
     前記内燃機関を車両に搭載した状態で、前記水冷式吸気冷却装置の吸気流路の出口側の上端部が、前記吸気ポート入口の下端部よりも低い位置にある内燃機関の吸気装置。
    The intake device for an internal combustion engine according to claim 1 or 2,
    A water-cooled intake air cooling device integrated with the collector tank;
    An intake device for an internal combustion engine, wherein an upper end portion on an outlet side of an intake passage of the water-cooled intake air cooling device is located lower than a lower end portion of the intake port inlet in a state where the internal combustion engine is mounted on a vehicle.
  4.  請求項1または2に記載の内燃機関の吸気装置において、
     前記コレクタタンクと一体化された水冷式吸気冷却装置をさらに備え、
     前記内燃機関を車両に搭載した状態で、前記水冷式吸気冷却装置の空気流路が上向きになっている内燃機関の吸気装置。
    The intake device for an internal combustion engine according to claim 1 or 2,
    A water-cooled intake air cooling device integrated with the collector tank;
    An intake device for an internal combustion engine, wherein an air flow path of the water-cooled intake air cooling device faces upward in a state where the internal combustion engine is mounted on a vehicle.
PCT/JP2014/058864 2014-03-27 2014-03-27 Air intake device for internal combustion engine WO2015145662A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/058864 WO2015145662A1 (en) 2014-03-27 2014-03-27 Air intake device for internal combustion engine
JP2016509749A JP6090530B2 (en) 2014-03-27 2014-03-27 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/058864 WO2015145662A1 (en) 2014-03-27 2014-03-27 Air intake device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2015145662A1 true WO2015145662A1 (en) 2015-10-01

Family

ID=54194255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058864 WO2015145662A1 (en) 2014-03-27 2014-03-27 Air intake device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP6090530B2 (en)
WO (1) WO2015145662A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256679A (en) * 2004-03-10 2005-09-22 Isuzu Motors Ltd Suction passage of engine equipped with egr device
JP2007040142A (en) * 2005-08-02 2007-02-15 Toyota Motor Corp Intake manifold
JP2011127564A (en) * 2009-12-21 2011-06-30 Daihatsu Motor Co Ltd Intake device in internal combustion engine
JP2013096353A (en) * 2011-11-04 2013-05-20 Denso Corp Engine intake device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915195B2 (en) * 2012-01-17 2016-05-11 マツダ株式会社 Engine intake system
JP5803719B2 (en) * 2012-02-10 2015-11-04 株式会社デンソー Intake device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256679A (en) * 2004-03-10 2005-09-22 Isuzu Motors Ltd Suction passage of engine equipped with egr device
JP2007040142A (en) * 2005-08-02 2007-02-15 Toyota Motor Corp Intake manifold
JP2011127564A (en) * 2009-12-21 2011-06-30 Daihatsu Motor Co Ltd Intake device in internal combustion engine
JP2013096353A (en) * 2011-11-04 2013-05-20 Denso Corp Engine intake device

Also Published As

Publication number Publication date
JPWO2015145662A1 (en) 2017-04-13
JP6090530B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
US9145858B2 (en) Intake system with an integrated charge air cooler
US9546590B2 (en) Charge air cooler condensate reservoir
US7757678B2 (en) Locomotive exhaust gas recirculation cooling
WO2016178302A1 (en) Low-water heating/cooling device for internal-combustion engine
JP5862620B2 (en) Intake device for internal combustion engine
US20090260605A1 (en) Staged arrangement of egr coolers to optimize performance
US20130327499A1 (en) Egr cooler and method
JP5112805B2 (en) EGR device
JP2015209782A (en) Internal combustion engine
JP6011315B2 (en) Heat exchanger
JP6372343B2 (en) Intercooler control device
US9470187B2 (en) EGR heat exchanger with continuous deaeration
JP6641941B2 (en) Air intake cooling system for internal combustion engine
JP6090530B2 (en) Intake device for internal combustion engine
JP5800607B2 (en) EGR gas passage structure
US20190226422A1 (en) Multi-cylinder engine
JP6915517B2 (en) Internal combustion engine
JP2019203421A (en) Ventilation device
JP5477484B2 (en) EGR diffusion unit
JP7356083B2 (en) engine intake system
EP4095366B1 (en) Cooling system for vehicle
JP5321732B2 (en) EGR device for internal combustion engine
JP2011058437A (en) Internal combustion engine equipped with egr system and method for controlling the same
US20150292451A1 (en) Engine intake with sump having a heat source
JP6428242B2 (en) Intercooler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887372

Country of ref document: EP

Kind code of ref document: A1