WO2015145380A2 - Floating photocatalytic device for eradicating larvae, and uses thereof - Google Patents

Floating photocatalytic device for eradicating larvae, and uses thereof Download PDF

Info

Publication number
WO2015145380A2
WO2015145380A2 PCT/IB2015/052213 IB2015052213W WO2015145380A2 WO 2015145380 A2 WO2015145380 A2 WO 2015145380A2 IB 2015052213 W IB2015052213 W IB 2015052213W WO 2015145380 A2 WO2015145380 A2 WO 2015145380A2
Authority
WO
WIPO (PCT)
Prior art keywords
larvae
floating device
catalyst
photocatalytic
oxide
Prior art date
Application number
PCT/IB2015/052213
Other languages
French (fr)
Portuguese (pt)
Other versions
WO2015145380A3 (en
Inventor
Henrique DOS SANTOS OLIVEIRA
Luiz Carlos ALVES DE OLIVEIRA
Jadson Claudio Belchior
Geison Voga Pereira
Victor AUGUSTO ARAUJO DE FREITAS
Geraldo Magela De Lima
Rodinei AUGUSTI
Marcio GUIMARÃES COELHO
Fabricio Vieira De Andrade
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BR132014007098-1A external-priority patent/BR132014007098E2/en
Priority claimed from BR132014011499A external-priority patent/BR132014011499E2/en
Application filed by Universidade Federal De Minas Gerais - Ufmg filed Critical Universidade Federal De Minas Gerais - Ufmg
Priority claimed from BR132015006676A external-priority patent/BR132015006676E2/en
Publication of WO2015145380A2 publication Critical patent/WO2015145380A2/en
Publication of WO2015145380A3 publication Critical patent/WO2015145380A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to photocatalyst floating devices consisting of autoclaved cellular concrete or microreticulated polymeric microfiber, such as non-limiting example, TNT (nonwoven fabric), containing separate or combined Fe, Nb, Zn and Ti oxides. among themselves and uses.
  • Applications include photocatalysis, so with the in situ generation of radicals, the hydroxyl radical ( ⁇ ⁇ ), as well as the radicals ⁇ 2 ⁇ " and ⁇ 2 ⁇ . Therefore, the formed radical acts as a strong oxidant, directly attacking the larva, and thus allowing their eradication.
  • This process and method can be used where water may accumulate such as water tanks, house slabs and aquatic systems that allow larvae to develop.
  • This material can be used to degrade microorganisms such as bacteria, fungi, plankton that serve as a food base for insect vector larvae such as dengue, yellow fever, malaria, leishmaniasis, among others.
  • the catalyst when in contact with the aqueous environment under sunlight or artificial illumination in the ultraviolet range produces the hydroxyl radical (OH *) with a standard oxidation potential of 2.8 eV. This radical degrades organic compounds to the level of total mineralization.
  • the present invention has efficiency where there may be water accumulation such as water tanks, house slabs and / or aquatic systems that allow the development of larvae.
  • the density, porosity and mechanical strength of the substrates containing the oxide (s) make them very suitable for use in the process of degradation of dissolved organic material in aquatic environments with strong application potential to prevent the proliferation of disease-transmitting vectors that have as their initial stage of development the aquatic environment.
  • the activity of catalysts determines the operationalization of chemical reactions important for various industrial sectors in the production of substrates, removal of impurities, decontamination of industrial waste, decontamination of environments that accumulate water, among others.
  • addition of the catalyst to the reaction medium should take into consideration physical and chemical aspects, such as the area of contact of the catalyst with the substrates, and the catalyst recovery or disposal process.
  • Photocatalysis is an alternative and / or complement to many known processes for the treatment and decontamination of aquifers and wastewater.
  • an innovative technology is one that meets the principles of green chemistry and presents low cost, particularly, if possible, is able to contemplate the use of solar radiation (D. Robert, S Malato, Sci., Total Environ., 2002, 291, 85-97; D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev., 2009, 38, 1999-2011 1).
  • T1O2 is a 3.2 V band-spaced semiconductor (for the anatase polymorph), which is incompatible for visible radiation absorption and is active only for near ultraviolet radiation, specifically at wavelengths. smaller than 385 nm as described by Zhang et al., 1994 (Y. Zhang, JC Crittenden, DW Hand, DL Perram, Environ. Sci. Technol., 1994, 28, 435-442). Iron oxides are promising candidates for the development of photocatalysts sensitive to visible light.
  • Iron (III) oxides are n-type semiconductors with a band spacing of 2.1 V, have high stability under ambient conditions and in aqueous solution with pH 4.3, low toxicity, visible light absorbance, collect up to 45% of the widely available solar radiation spectrum and an affordable source of semiconductor materials.
  • hematite nanoparticles for example with high Specific area value and porous structure were obtained and showed good photocatalytic activity as proposed by Li and Koshizaki, 2010 (L. Li; N. Koshizaki, J. Mater. Chem., 2010, 20, 2972-2978). Therefore, the development of more efficient photocatalysts requires the combination of features such as high radiation absorption capacity, high catalytic efficiency and low cost.
  • photocatalysts Because it has better absorption and photocatalytic activity the most common configuration for photocatalysts is based on the use of solid materials, usually in nanometer scale, dispersed or supported in matrices with high specific area. However, obtaining an efficient photocatalyst presents challenges. The greatest difficulty is associated with the possibility of material reuse cycles. One desirable feature that commonly imposes practical limitations is the tendency of photocatalysts to be easily deactivated after some subsequent reactions. Also, any harmful consequences of the material to the environment must be strictly avoided.
  • Patent application BR0504197-0 "Process of treating aqueous effluents with organic contaminants using catalysts from Iron Ore and Hydrogen Peroxide”
  • Patent application BR0504197-0 "Process of treating aqueous effluents with organic contaminants using catalysts from Iron Ore and Hydrogen Peroxide”
  • Patent application PI0601465-8 "Process for the Preparation of a Physical Impregnated Supported Iron Oxide Catalyst", filed April 27, 2006, describes an iron oxide catalyst material ( III) supported on alumina, ⁇ -zeolite or silica that can be used in catalytic degradation of organic compounds with high resistance to biological degradation.
  • the present invention precisely fills this gap to contribute to the reduction or even elimination of disease vectors whose vector originates from its development in one of its phases in the aquatic phase.
  • the present invention is to utilize the advantages of low density commercially available floating water polymeric material, for example non-limiting polystyrene and / or polyurethane, to support semiconductor materials such as iron oxides, niobium and titanium.
  • the material is activated by the use of electromagnetic radiation in the UV range and visible to generate hydroxyl radicals, which are efficient in the oxidation of organic matter such as those found in the larvae of the mosquito Aedes aegypti or Anopheles in their early phase of development in water.
  • the devices and their uses, objects of the present invention exhibit efficiency, ease and practicality in their manufacturing process, as part of the raw material can be found in commerce.
  • the innovation consists in making use of the fluctuating property of the support that allows a higher incidence of solar radiation, important for light efficiency for photocatalyst activation, as well as its easy recovery at the end of the process and having a high degree of efficiency in attacking the larvae, for example. , not limiting, of Anopheles and Aedes aegypti.
  • Figure 1 presents the images before and after impregnation with iron, niobium and titanium and respective scanning electron microscopy images with the material prepared using the TNT matrix.
  • FIG. 2 shows removal of AM by photocatalysis using TNT-Fe (a) and removal of AM by photocatalysis using TNT-Nb (b).
  • Figure 3 shows the weekly evolution of the average live larvae count of Aedes aegypti in different aquatic environments containing sucrose solution for feeding larvae to TNT-Fe material.
  • Figure 4A shows a schematic representation of the generation of the hydroxyl radical (* OH) by the catalyst.
  • Figure 4B presents optical images indicating the result of the hydroxyl radical attack experiment. (catalyst) to the cell membrane of dengue mosquito larvae before and after the reaction process.
  • Figure 5 shows the 57 Fe Febauer spectroscopy.
  • Figure 6 shows the iron (III) phase distribution, where a) autoclaved cellular concrete and b) Fe2O3 catalyst / autoclaved cellular concrete.
  • Figure 7 shows the weekly evolution of the average live larvae count of Aedes aegypti in different aquatic media containing sucrose feed solution for the catalyst material Fe2O3 / autoclaved cellular concrete.
  • the present invention comprises photocatalyst floating devices consisting of transition metal oxides such as iron (III) oxide (Fe2O3), titanium (T1O2) oxide or niobium (V) (Nb2O6) oxide combined or not that they are attached to the microreticulated polymeric microfiber matrix, for example non-limiting, TNT (nonwoven fabric) or autoclaved cellular concrete.
  • the devices oxidize all organic matter in water, thus consuming food sources for larvae such as suspended organic material and microorganisms, eradicating insect larvae from diseases such as dengue fever, yellow fever, malaria, leishmaniasis, among others, including Aedes aegypti or Anopheles mosquito larva, non-limiting.
  • the material can also promote the degradation of cells of disease vector larvae, such as dengue, yellow fever, malaria, leishmaniasis, among others.
  • the invention may be employed in domestic or industrial aquatic environments with light incidence in household containers.
  • the present invention may also be characterized by not releasing toxic organic compounds into the aquatic environment that harm superior animals such as molluscs, fish, mammalian reptiles, among others.
  • the invention proposed herein is characterized by processes for the application and use of photocatalysis. None of the above described prior art supports apply to reduce or even eliminate organic matter from living beings with a focus on larvae that generate diseases such as yellow or dengue fever or chinkungunya (Aedes aegypti) or West Nile fever, or malaria ⁇ Anopheles). Thus, the present invention precisely fills this gap to contribute to the reduction or even elimination of disease vectors whose vector originates from its development in one of its phases in the aquatic phase.
  • Figure 1 shows the device when the matrix is TNT tissue.
  • TNT tissue Since the TNT tissue was immersed in Ti, Nb and / or Fe oxide solutions, it was subjected to mild heat treatment to form metal oxides.
  • the high photocatalytic activity of this material allows the removal of organic molecules, presenting low toxicity, high absorption of sunlight, versatility by flotation, besides the diffusional ease of contaminants and total elimination of insect larvae such as Aedes aegypti mosquito.
  • the materials were prepared by impregnating with different elements such as Fe, Nb, Zn and / or Ti a screen (eg nonwoven fabric / TNT) using different solutions containing the respective metals.
  • the polymeric support was maintained in contact with a 1.0 mol / l solution of Fe (NO 3 ) 3.9H 2 O, a 1.0 mol / l solution of [NH 4 NbO (C2O4) 2 (H 2 O)] (H 2 O) n and / or a 1.0 mol / l TiCb solution.
  • the screen was left in contact and stirred for 1 hour. After contact time the material was oven dried at 150 ° C for 12 hours.
  • TNT-Fe Polypropylene-based polymeric material (TNT) was purchased commercially and before being impregnated was washed with 1.0 mol / l HCl solution for 24 hours and then with 5.0 mol / l NaOH solution per 24 hours to remove impurities, and finally in distilled water.
  • TNT Polypropylene-based polymeric material
  • the photocatalytic activity of the materials was evaluated by the degradation of 20 mg / l of methylene blue (AM) organic dye at a constant temperature of 298K in a cylindrical photoreactor.
  • a high pressure mercury lamp (HPK 125 W-Philips) with a water-cooled filter served as a light source.
  • the total volume of the reaction solution was 20 mL.
  • AM dye discoloration was monitored over time by UV-Vis spectroscopy using the scan mode.
  • the screen After impregnation, the screen showed a characteristic reddish coloration of iron (III) oxide when the screen was treated with solution of this element. In addition to observing the morphology of the screen with and without iron, it was analyzed by scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the screen consists of a floating weft microfiber from the SEM images; After impregnation with iron, niobium and / or titanium solutions, particles of the respective surface-adhered elements can be observed along the microfibres ( Figure 1), with a relatively homogeneous distribution in the material. The images clearly show clumps of sponge-shaped iron oxide particles.
  • the present patent application also deals with a new use of the non-limiting iron oxide (III) catalyst supported on an autoclaved cellular concrete matrix.
  • the method of preparation consists in impregnating a catalyst species precursor into the support matrix and then heat treating in an atmosphere suitable for the formation of the catalyst species (method described and claimed in patent application PM 002600-2).
  • the support matrix can be preformed into spheres or cubic (brick) shapes with a particle size ranging from 1 cm 3 to 10 cm 3 with the reduced size providing greater photocatalytic activity.
  • Catalyst manufacture has two stages: catalyst impregnation and activation.
  • the impregnation process consists of dipping the autoclaved cellular concrete in a solution of ferric chloride with concentration between 0.3 and 1 mol / L, for a period between 10 and 30 minutes.
  • the second step of the catalyst preparation process is to heat the autoclaved cellular concrete soaked in the precursor solution to a temperature between 100 ° C and 500 ° C for 1 to 4 hours with air atmosphere.
  • Table 1 shows the 57 Fe Mössbauer parameters for autoclaved cellular concrete samples before and after impregnation and heat treatment.
  • the determination of the iron content in the cellular concrete before the hematite impregnation process is 1.89% w / w and after the fixation of Fe2O3 in the matrix the iron content is 3.53% w / w.
  • the iron content is only twice that of the pre-existing amount, the catalytic activity of autoclaved cellular concrete is imperceptible, because according to the distribution analysis of iron-containing species, it is observed in Figure 5 that 40% of the iron content.
  • Early iron is in the forms of iron sulfide or metallic iron. Another important feature concerns the spatial distribution of the impregnated iron on the surface of the support matrix.
  • the pre-existing iron is homogeneously mixed in the autoclaved cellular concrete.
  • FIG. 7 shows the weekly evolution of the average amount of larvae developed for each type of solution.
  • the graph in Figure 7 demonstrates the efficiency of the catalyst in consuming organic matter from the aqueous medium, inhibiting insect larval proliferation.
  • the samples with bleach were efficient up to 8 weeks, when the first larvae began to appear, and at week 10 the behavior of these samples became similar to the control sample, without the addition of any oxidizing agent.
  • Example 4 Application test using TNT (nonwoven fabric) catalyst containing Fe, Nb, Zn and Ti oxides for oxidation of organic matter
  • the graph in Figure 3 demonstrates the efficiency of the catalyst in consuming organic matter from the aqueous medium, inhibiting the proliferation of insect larvae.
  • the samples with catalyst from week 6, the formation of some larvae was observed, however the larval population remained stable in a range between 17 to 23 larvae.
  • the samples with bleach were efficient up to 8 weeks, when the first larvae began to appear, and at week 10 the behavior of these samples became similar to the control sample, without the addition of any oxidizing agent.
  • Addition of the TNT-Fe catalyst consistently inhibited the formation of 100% of the larvae that could develop in solution I without loss of efficiency as with solution II.
  • Floating screens are particularly interesting for use in environmental remediation as they do not require agitation and mechanical oxygenation in large reservoirs.
  • the weft morphology of the fibers confers a good lighted area which favors a high rate of hydroxyl radical formation and consequently efficient oxidation.
  • the glass and / or bi-directional polymer, e.g. fiberglass, iron-containing screen was laid out in an ultrasonic bath for 30 min and the liquid was analyzed by atomic absorption spectrometry. The results did not show the presence of iron or its concentration was below the detection limit of the technique.

Abstract

The present invention relates to floating photocatalytic devices made of autoclaved cellular concrete or micro-crosslinked polymeric microfibre, such as TNT (nonwoven fabric) by way of non-limiting example, containing Fe, Nb, Zn and Ti oxides, alone or in combination, and to the uses thereof. The uses include photocatalysis, hence with in situ generation of free radicals, the hydroxyl radical (OH) and the O2 ●- and HO2 radicals. The devices oxidise all organic materials in the water, eradicating insect larvae, including larvae of Aedes aegypti mosquitoes which transmit yellow fever, dengue or chinkungunya (Aedes aegypti), or Western Nile fever or malaria (Anopheles). The invention can be efficiently used in domestic containers and in areas where water accumulates.

Description

DISPOSITIVO FLUTUANTE FOTOCATALÍTICO PARA ERRADICAÇÃO DE  PHOTOCATALYTIC FLOATING DEVICE FOR ERADICATION OF
LARVAS E USOS  LARVES AND USES
[001 ] A presente invenção trata de dispositivos flutuantes fotocatalisadores, constituídos de concreto celular autoclavado ou microfibra polimérica microreticulada, como exemplo, não limitante, o TNT (tecido não tecido), contendo óxidos de Fe, Nb, Zn e Ti, separados ou combinados entre si e usos. As aplicações abrangem fotocatálise, portanto com a geração in situ de radicais, o radical hidroxila (ΟΗ·), como também os radicais Ο2·" e ΗΟ2·. Portanto, o radical formado atua como um oxidante forte, atacando diretamente a larva, e sendo assim permitindo erradicação das mesmas. [001] The present invention relates to photocatalyst floating devices consisting of autoclaved cellular concrete or microreticulated polymeric microfiber, such as non-limiting example, TNT (nonwoven fabric), containing separate or combined Fe, Nb, Zn and Ti oxides. among themselves and uses. Applications include photocatalysis, so with the in situ generation of radicals, the hydroxyl radical (ΟΗ ·), as well as the radicals Ο2 · " and ΗΟ2 ·. Therefore, the formed radical acts as a strong oxidant, directly attacking the larva, and thus allowing their eradication.
[002] Esse processo e método podem ser usados onde possa existir acúmulo de água como caixas d'água, lajes de residências e sistemas aquáticos que permitam o desenvolvimento de larvas. Este material pode ser utilizado para degradar microorganismos, tais como bactérias, fungos, plancton que servem como base de alimentação para larvas de insetos vetores de doenças tais como dengue, febre amarela, malária, leishmaniose, dentre outros. O catalisador quando em contato com o ambiente aquoso sob incidência de luz solar ou iluminação artificial na faixa do ultravioleta produz o radical hidroxila (OH*) com um potencial padrão de oxidação de 2,8 eV. Esse radical degrada os compostos orgânicos podendo chegar ao nível de mineralização total. A presente invenção tem eficiência onde possa existir acúmulo de água como caixas d'água, lajes de residências e/ou sistemas aquáticos que permitam o desenvolvimento de larvas. [002] This process and method can be used where water may accumulate such as water tanks, house slabs and aquatic systems that allow larvae to develop. This material can be used to degrade microorganisms such as bacteria, fungi, plankton that serve as a food base for insect vector larvae such as dengue, yellow fever, malaria, leishmaniasis, among others. The catalyst when in contact with the aqueous environment under sunlight or artificial illumination in the ultraviolet range produces the hydroxyl radical (OH *) with a standard oxidation potential of 2.8 eV. This radical degrades organic compounds to the level of total mineralization. The present invention has efficiency where there may be water accumulation such as water tanks, house slabs and / or aquatic systems that allow the development of larvae.
[003] A densidade, porosidade e resistência mecânica dos suportes contendo o(s) óxido(s) tornam-os bastante apropriados para o emprego no processo de degradação de material orgânico dissolvido em ambientes aquáticos com forte potencial de aplicação para evitar a proliferação de vetores transmissores de doenças que têm como etapa inicial de desenvolvimento o ambiente aquático.  The density, porosity and mechanical strength of the substrates containing the oxide (s) make them very suitable for use in the process of degradation of dissolved organic material in aquatic environments with strong application potential to prevent the proliferation of disease-transmitting vectors that have as their initial stage of development the aquatic environment.
[004] A atividade dos catalisadores determina a operacionalização de reações químicas importantes para diversos setores industriais na produção de substratos, remoção de impurezas, descontaminação de rejeitos industriais, descontaminação de ambientes que haja acúmulo de água, dentre outros. Entretanto, adição do catalisador ao meio reacional deve levar em consideração aspectos físicos e químicos, tais como a área de contato do catalisador com os substratos, e o processo de recuperação do catalisador ou descarte do mesmo. [004] The activity of catalysts determines the operationalization of chemical reactions important for various industrial sectors in the production of substrates, removal of impurities, decontamination of industrial waste, decontamination of environments that accumulate water, among others. However, addition of the catalyst to the reaction medium should take into consideration physical and chemical aspects, such as the area of contact of the catalyst with the substrates, and the catalyst recovery or disposal process.
[005] As Nações Unidas estimam que 884 milhões de pessoas não possuam acesso a água potável e, ainda, um cenário ainda mais desalentador surge quando 2,6 bilhões de pessoas não possuem qualquer tipo de serviços sanitários. Estima-se que investimentos da ordem de U$ 1 1 bilhões são necessários para recuperar e proteger os aquíferos que suprem os centros urbanos e U$ 140 bilhões para prover os serviços sanitários básicos à população brasileira (Conejo Conjuntura dos recursos hídricos no Brasil 2009, Relatório 978-85-89629-48-5, Agência Nacional de Águas, Brasília). Esse montante representa cerca de 7% do produto interno bruto brasileiro. Sendo assim, fica claro que a remediação/recuperação de fontes naturais de águas poluídas demandam o desenvolvimento de novas tecnologias, as quais devem ser aplicadas de forma economicamente viável.  [005] The United Nations estimates that 884 million people do not have access to safe drinking water, and an even more daunting scenario arises when 2.6 billion people do not have any kind of sanitation services. Investments of around US $ 1 billion are estimated to be needed to recover and protect the aquifers that supply urban centers and US $ 140 billion to provide basic sanitation services to the Brazilian population (Conejo Conjuntura de las aguas do Brasil 2009, Report 978-85-89629-48-5, National Water Agency, Brasilia). This amount represents about 7% of Brazilian gross domestic product. Thus, it is clear that the remediation / recovery of natural sources of polluted water requires the development of new technologies, which must be economically viable.
[006] A fotocatálise é uma alternativa e/ou um complemento a muitos processos conhecidos para o tratamento e descontaminação de aquíferos e águas residuais. Para Robert e Malato, 2002 e Ravelli et al., 2009 uma tecnologia inovadora é aquela que atende aos princípios de química verde e apresenta baixo custo, particularmente, se possível, é capaz de contemplar a utilização de radiação solar (D. Robert, S. Malato, Sei. Total Environ., 2002, 291 , 85-97; D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soe. Rev., 2009, 38, 1999-201 1 ).  Photocatalysis is an alternative and / or complement to many known processes for the treatment and decontamination of aquifers and wastewater. For Robert and Malato, 2002 and Ravelli et al., 2009 an innovative technology is one that meets the principles of green chemistry and presents low cost, particularly, if possible, is able to contemplate the use of solar radiation (D. Robert, S Malato, Sci., Total Environ., 2002, 291, 85-97; D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev., 2009, 38, 1999-2011 1).
[007] Diversos estudos têm mostrado excelentes resultados na remoção de uma variedade de contaminantes orgânicos, através da fotocatálise, como pigmentos industriais (A. R. Khataee, M. B. Kasiri, J. Mol. Catai. A: Chem., 2010, 328, 8-26; C. M. Teh, A. R. Mohamed, J. Alloys Compd., 201 1 , 509, 1648-1660; F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catai., A, 2009, 359, 25-40; A. Batista, H. Carvalho, G. Luz, P. Martins, M. Gonçalves, L. C. A. Oliveira, Environ. Chem. Lett., 2010, 8, 63-67); contaminantes emergentes (V. Belgiorno, L. Rizzo, D. Fatta, C. D. Rocca, G. Lofrano, A. Nikolaou, V. Naddeo, S. Meric, Desalination, 2007, 215, 166-176); microorganismos patogênicos (M. A. Mahmood, S. Baruah, A. K. Anal, J. Dutta, Environ. Chem. Lett., 2012, 10, 145-151 ; e agroquímicos (S. Ahmed, M. G. Rasul, R. Brown, M. A. Hashib, J. Environ. Manage., 201 1 , 92, 31 1 -330). Several studies have shown excellent results in the removal of a variety of organic contaminants by photocatalysis as industrial pigments (AR Khataee, MB Kasiri, J. Mol. Catai. A: Chem., 2010, 328, 8-26 ; CM Teh, AR Mohamed, J. Alloys Compd., 2011, 509, 1648-1660; F. Han, VSR Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catai., A, 2009, 359, 25-40; A. Batista, H. Carvalho, G. Luz, P. Martins, M. Goncalves, L. Oliveira (Environ. Chem. Lett., 2010, 8, 63-67); emerging contaminants (V. Belgiorno, L. Rizzo, D. Fatta, CD Rocca, G. Lofrano, A. Nikolaou, V. Naddeo, S. Meric, Desalination, 2007, 215, 166-176); pathogenic microorganisms (MA Mahmood, S. Baruah, AK Anal, J. Dutta, Environ. Chem. Lett., 2012, 10, 145-151; and agrochemicals (S. Ahmed, MG Rasul, Brown, MA Hashib, J Environ, Manage, 2011, 92, 311-30).
[008] Desde a primeira observação da atividade fotocatalítica do T1O2 de lise da água reportada no início da década de 1970 por Fujishima, 1972 (A. Fujishima and K. Honda, Nature, 1972, 238, 37-38) diversos trabalhos vem sendo investigados para a remoção de compostos orgânicos de ar e água poluídos. Outros trabalhos científicos buscam aumentar a eficiência desse processo e dos fotocatalisadores. Algumas possibilidades alternativas estão sendo propostas incluindo a preparação de compósitos semicondutores relatado por Woan e Sigmund, 2009 (K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater., 2009, 21 , 2233-2239); mudança na morfologia dos materiais e dopagem com nitrogénio relatado nos trabalhos de Xiang et al., 2012 (Q. Xiang, J. Yu, M. Jaroniec, Chem. Soe. Rev., 2012, 41 , 782-796); metais de transição relatado por Chen et al., 2008 (J. Chen, M. Yao, X. Wang, J. Nanopart. Res., 2008, 10, 163-171 ); e dispersão de metais nobres relatado por Yu et al., 2010 (J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C, 2010, 1 14, 131 18-13125). Since the first observation of T1O2 photocatalytic activity of water lysis reported in the early 1970s by Fujishima, 1972 (A. Fujishima and K. Honda, Nature, 1972, 238, 37-38), several studies have been investigated for the removal of polluted organic compounds from air and water. Other scientific works seek to increase the efficiency of this process and photocatalysts. Some alternative possibilities are being proposed including the preparation of semiconductor composites reported by Woan and Sigmund, 2009 (K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater., 2009, 21, 2233-2239); change in material morphology and nitrogen doping reported in the work of Xiang et al., 2012 (Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev., 2012, 41, 782-796); transition metals reported by Chen et al., 2008 (J. Chen, M. Yao, X. Wang, J. Nanopart. Res., 2008, 10, 163-171); and noble metal dispersion reported by Yu et al., 2010 (J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C, 2010, 1114, 131 18-13125).
[009] Além disso, o T1O2 é um semicondutor com espaçamento entre bandas de 3,2 V (para o polimorfo anatásio), valor esse incompatível para absorção da radiação visível, sendo ativo somente para a radiação ultravioleta próxima, especificamente com comprimentos de onda menores que 385 nm conforme descrito por Zhang et al., 1994 (Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, Environ. Sei. Technol., 1994, 28, 435-442). Já, os óxidos de ferro são candidatos promissores no desenvolvimento de fotocatalisadores sensíveis à luz visível. Óxidos de ferro (III) são semicondutores tipo-n com um espaçamento entre bandas de 2,1 V, possuem alta estabilidade sob condição ambiente e em solução aquosa com pH 4,3, baixa toxicidade, absorbância na região da luz visível, capacidade de coletar até 45% do espectro de radiação solar, amplamente disponíveis e uma fonte acessível de materiais semicondutores. In addition, T1O2 is a 3.2 V band-spaced semiconductor (for the anatase polymorph), which is incompatible for visible radiation absorption and is active only for near ultraviolet radiation, specifically at wavelengths. smaller than 385 nm as described by Zhang et al., 1994 (Y. Zhang, JC Crittenden, DW Hand, DL Perram, Environ. Sci. Technol., 1994, 28, 435-442). Iron oxides are promising candidates for the development of photocatalysts sensitive to visible light. Iron (III) oxides are n-type semiconductors with a band spacing of 2.1 V, have high stability under ambient conditions and in aqueous solution with pH 4.3, low toxicity, visible light absorbance, collect up to 45% of the widely available solar radiation spectrum and an affordable source of semiconductor materials.
[010] Assim, nanoparticulas de hematita (a-Fe2O3), por exemplo, com elevado valor de área específica e estrutura porosa foram obtidas e apresentaram boa atividade fotocatalítica conforme proposto por Li e Koshizaki, 2010 (L. Li; N. Koshizaki, J. Mater. Chem., 2010, 20, 2972-2978). Portanto, o desenvolvimento de fotocatalisadores mais eficientes requer a combinação de características como alta capacidade de absorção de radiação, alta eficiência catalítica e baixo custo. Thus, hematite nanoparticles (α-Fe 2 O 3), for example with high Specific area value and porous structure were obtained and showed good photocatalytic activity as proposed by Li and Koshizaki, 2010 (L. Li; N. Koshizaki, J. Mater. Chem., 2010, 20, 2972-2978). Therefore, the development of more efficient photocatalysts requires the combination of features such as high radiation absorption capacity, high catalytic efficiency and low cost.
[01 1 ] Além disso, o projeto de novos fotoreatores frequentemente requer um desenvolvimento meticuloso em escala laboratorial antes de qualquer operação em larga escala (U. I. Gaya, A. H. Abdullah, J. Photochem. Photobiol., C, 2008, 9, 1 -12). Pesquisas científicas e desenvolvimento tecnológico na área de reatores fotocatalíticos possuem grande interesse por inovação ao utilizar filmes suspensos ou fixos contendo o fotocatalisador em arranjos variados desenvolvidos por Shchukin, 2006 (D. G. Shchukin, D. V. Sviridov, J. Photochem. Photobiol., C, 2006, 7, 23-39) e Mozia, 2010 (S. Mozia, Sep. Purif. Technol., 2010, 73, 71 -91 ). Por possuir melhor absorção e atividade fotocatalítica a configuração mais comum para fotocatalisadores é baseada na utilização de materiais sólidos, geralmente em escala nanométrica, dispersa ou suportada em matrizes com elevada área especifica. Contudo a obtenção de um fotocatalisador eficiente apresenta desafios. A maior dificuldade está associada com a possibilidade de ciclos de reutilização dos materiais. Uma característica desejável que comumente impõe limitações prática é a tendência dos fotocatalisadores de serem facilmente desativados após algumas reações subsequentes. Também, qualquer consequência prejudicial do material ao meio ambiente deve ser rigorosamente evitada.  [01 1] In addition, the design of new photoreactors often requires meticulous laboratory scale development prior to any large scale operation (UI Gaya, AH Abdullah, J. Photochem. Photobiol., C, 2008, 9, 1 -12 ). Scientific research and technological development in the field of photocatalytic reactors are of great interest for innovation when using suspended or fixed films containing the photocatalyst in various arrangements developed by Shchukin, 2006 (DG Shchukin, DV Sviridov, J. Photochem. Photobiol., C, 2006, 7, 23-39) and Mozia, 2010 (S. Mozia, Sep. Purif. Technol., 2010, 73, 71-91). Because it has better absorption and photocatalytic activity the most common configuration for photocatalysts is based on the use of solid materials, usually in nanometer scale, dispersed or supported in matrices with high specific area. However, obtaining an efficient photocatalyst presents challenges. The greatest difficulty is associated with the possibility of material reuse cycles. One desirable feature that commonly imposes practical limitations is the tendency of photocatalysts to be easily deactivated after some subsequent reactions. Also, any harmful consequences of the material to the environment must be strictly avoided.
[012] Em casos onde o catalisador está fixo em um material de suporte (vidro e quartzo) a redução da área fotocataliticamente ativa acessível aos componentes da solução aquosa promove redução substancial na atividade catalítica conforme relatado por Hoffmann et al., 1995 (M. R. Hoffmann, S. T.Martin,W. Choi, D. W. Bahnemann, Chem. Rev., 1995, 95, 69-96). A fim de aumentar a aplicabilidade do sistema, o fotoreator deve possuir a versatilidade de abranger uma série de configurações do fotocatalisador nanoescala, membranas, leito fluidizado, impregnado em cabo de fibra ótica, pratos ondulados e reatores flutuantes relatado por Huo et al., 2010 (P. Huo, Y. Yan, S. Li, H. Li, W. Huang, Desalination, 2010, 256, 196-200), e Castro et al., 2009 (C. S. Castro, M. C. Guerreiro, L. C. A. Oliveira, M. Goncalves, A. S. Anastácio, M. Nazzarro, Appl. Catai., A, 2009, 367, 53-58). [012] In cases where the catalyst is fixed to a support material (glass and quartz) the reduction of the photocatalytically active area accessible to the aqueous solution components promotes substantial reduction in catalytic activity as reported by Hoffmann et al., 1995 (MR Hoffmann STMartin, W. Choi, DW Bahnemann, Chem. Rev., 1995, 95, 69-96). In order to increase system applicability, the photoreactor must have the versatility to cover a range of nanoscale photocatalyst configurations, membranes, fluidized bed, fiber optic impregnated plates, plates corrugated and floating reactors reported by Huo et al., 2010 (P. Huo, Y. Yan, S. Li, H. Li, W. Huang, Desalination, 2010, 256, 196-200), and Castro et al., 2009 (CS Castro, MC Guerreiro, LCA Oliveira, M. Goncalves, AS Anastacio, M. Nazzarro, Appl. Catai., A, 2009, 367, 53-58).
[013] Dispositivos desenvolvidos para melhorar a eficiência de descontaminação de matéria orgânica nos processos de tratamento de efluentes industriais com membranas porosas de T1O2 foi requerida em US005779912. A inovação afirma possibilitar a difusão de fluido por entre os poros da membrana de titânio tornando possível a oxidação de substrato orgânico no local por ativação do fotocatalisador com radiação UV. A utilização de materiais semicondutores e mistura de óxidos contendo elementos Ta, La e Co é descrita em US007763149. O emprego de óxidos contendo elétrons d° (NaTaO3) e uma mistura de óxidos fornecendo elétrons d6 na estrutura eletrônica (NaTaO3/LaCoO3) fornece aplicação diferenciada para fotocatálise nas diferentes faixas de energia da região do UV e VIS de acordo com a lacuna energética do fotocatalisador. [013] Devices developed to improve the decontamination efficiency of organic matter in T1O2 porous membrane industrial effluent treatment processes were required in US005779912. The innovation claims to allow fluid diffusion through the pores of the titanium membrane making it possible to oxidize organic substrate on site by activating the photocatalyst with UV radiation. The use of semiconductor materials and oxide blends containing Ta, La and Co elements is described in US007763149. The use oxides having d electrons ° (NaTaO3) and a mixture of oxides supplying electrons d 6 on electronic structure (NaTaO3 / LaCoO3) provides differentiated application for photocatalysis in different energy ranges of UV and VIS region according to the energy gap photocatalyst.
[014] Han e Bai, 2010 propuseram o uso de catalisador de T1O2 depositado em tecido flutuante para degradação de alaranjado de metila. Para redução da hidrofobicidade do tecido, a tecnologia utilizou tratamento com dicromato de potássio e ácido sulfúrico para facilitar a impregnação, utilizando método hidrotérmico, 150°C/4h, para impregnação do fotocatalisador (Sep. Purif. Technol., 2010, 73, 142-150).  [014] Han and Bai, 2010 proposed the use of T1O2 catalyst deposited in floating tissue for methyl orange degradation. To reduce tissue hydrophobicity, the technology used treatment with potassium dichromate and sulfuric acid to facilitate impregnation using hydrothermal method, 150 ° C / 4h, for photocatalyst impregnation (Sep. Purif. Technol., 2010, 73, 142 -150).
[015] O trabalho publicado por Xu et al., 2013 faz utilização da centrifugação para recuperação do catalisador (Appl. Catai. B-Environ., 2013, 142-143, 377- 386).  [015] The work published by Xu et al., 2013 makes use of centrifugation for catalyst recovery (Appl. Catai. B-Environ., 2013, 142-143, 377-386).
[016] Trabalhos com fotocatalisadores que possuem propriedades magnéticas e utilizam o magnetismo para recuperação do catalisador é relatado por Wang, 2013 (Catai. Commun, 2013, 37, 92-95) ao final do processo. O material é disposto na forma de tela que pode apresentar diversas dimensões conforme a necessidade de aplicação local.  [016] Work with photocatalysts that have magnetic properties and use magnetism for catalyst recovery is reported by Wang, 2013 (Catai. Commun, 2013, 37, 92-95) at the end of the process. The material is arranged in the form of a screen that can have various dimensions according to the need for local application.
[017] O pedido de patente BR0504197-0, "Processo de tratamento de efluentes aquosos com contaminantes orgânicos utilizando catalisadores a base de minério de ferro e peróxido de hidrogénio", com data de depósito em 09/08/2005, utiliza a hematita (Fe2O3) na forma de pó aplicada diretamente para a degradação de contaminantes orgânicos pelo processo Fenton para a geração de radicais hidroxila. [017] Patent application BR0504197-0, "Process of treating aqueous effluents with organic contaminants using catalysts from Iron Ore and Hydrogen Peroxide ", filed on 08/09/2005, uses hematite (Fe2O3) as a powder applied directly to the degradation of organic contaminants by the Fenton process for the generation of hydroxyl radicals.
[018] O pedido de patente PI0601465-8, "Processo para preparação de um catalisador de óxido de ferro suportado através de impregnação física", com data de depósito em 27/04/2006, descreve um material catalisador formado por óxido de ferro (III) suportado em alumina, α-zeólita ou sílica que pode ser empregado na degradação catalítica de compostos orgânicos com elevada resistência à degradação biológica.  [018] Patent application PI0601465-8, "Process for the Preparation of a Physical Impregnated Supported Iron Oxide Catalyst", filed April 27, 2006, describes an iron oxide catalyst material ( III) supported on alumina, α-zeolite or silica that can be used in catalytic degradation of organic compounds with high resistance to biological degradation.
[019] Outro pedido de patente com a mesma aplicação, PI0405915-8, "Processo catalítico para a destruição de contaminantes em água utilizando peróxido de hidrogénio e catalisador heterogéneo", com data de depósito em 21 /12/2004, utiliza o carvão mineral betuminoso como material de suporte.  Another patent application with the same application, PI0405915-8, "Catalytic process for the destruction of contaminants in water using hydrogen peroxide and heterogeneous catalyst", filed on 12/21/2004, utilizes mineral coal. bituminous as support material.
[020] Portanto, conforme exposto neste documento, há vários processos e métodos para a aplicação e uso da fotocatálise. Entretanto, nenhum dos suportes descritos no estado da técnica até o momento se aplica para reduzir ou mesmo eliminar matéria orgânica de seres vivos com o foco em larvas que geram doenças como febre amarela ou dengue ou chinkungunya {Aedes aegypti) ou febre do Nilo ocidental, ou malária {Anopheles). [020] Therefore, as set forth in this document, there are various processes and methods for the application and use of photocatalysis. However, none of the supports described in the prior art so far apply to reduce or even eliminate organic matter from living beings with a focus on larvae that generate diseases such as yellow fever or dengue fever or chinkungunya (Aedes aegypti) or West Nile fever, or malaria {Anopheles).
[021 ] A presente invenção vem justamente suprir essa lacuna para contribuir com a redução ou até mesmo a eliminação de vetores de doenças cujo vetor tem origem de seu desenvolvimento numa de suas fases na fase aquática. [021] The present invention precisely fills this gap to contribute to the reduction or even elimination of disease vectors whose vector originates from its development in one of its phases in the aquatic phase.
[022] Diversos meios para reduzir a proliferação do mosquito Aedes aegypti, principal vetor da dengue, tem sido estudado. A técnica do inseto estéril tem sido utilizada com sucesso há mais de 50 anos para o controle a erradicação de várias pragas e doenças vetores. Estudos de liberação de mosquitos machos esterilizados tiotepa enjaulados com A. aegypti foi realizado por Gato, 2014 (Acta Trop., 2014, 132S, S164-S169) se mostrou eficaz na redução da capacidade reprodutiva de fêmeas Aedes. O trabalho desenvolvido por Melo- Santos et al. 2010 (Acta Trop., 2010, 1 13, 180-189) aborda a questão da resistência de inseticidas organofosforados em algumas cepas de Aedes aegypti. [022] Several ways to reduce the proliferation of the Aedes aegypti mosquito, the main dengue vector, have been studied. The sterile insect technique has been successfully used for over 50 years to control the eradication of various pests and vector diseases. Release studies of sterilized male thiotepa mosquitoes caged with A. aegypti was performed by Gato, 2014 (Acta Trop., 2014, 132S, S164-S169) proved effective in reducing reproductive capacity of Aedes females. The work developed by Melo-Santos et al. 2010 (Acta Trop., 2010, 1 13, 180-189) addresses the issue of resistance of organophosphate insecticides in some strains of Aedes aegypti.
[023] A presente invenção consiste em utilizar as vantagens de baixa densidade de material polimérico comercial, capaz de flutuar em água, por exemplo, poliestireno e/ou poliuretano, não limitantes, para atuar como suporte de materiais semicondutores como óxidos de ferro, nióbio e titânio. O material sofre ativação com uso da radiação eletromagnética na faixa do UV e visível para gerar radicais hidroxilas, que são eficientes na oxidação de matéria orgânica como os que existem nas larvas do mosquito Aedes aegypti ou Anopheles em sua fase inicial de desenvolvimento na água.  [023] The present invention is to utilize the advantages of low density commercially available floating water polymeric material, for example non-limiting polystyrene and / or polyurethane, to support semiconductor materials such as iron oxides, niobium and titanium. The material is activated by the use of electromagnetic radiation in the UV range and visible to generate hydroxyl radicals, which are efficient in the oxidation of organic matter such as those found in the larvae of the mosquito Aedes aegypti or Anopheles in their early phase of development in water.
[024] Os dispositivos e os seus usos, objetos da presente invenção, apresentam eficiência, facilidade e praticidade no seu processo de manufatura, pois parte da matéria-prima pode ser encontrada no comércio. A inovação consiste em fazer uso da propriedade flutuante do suporte que permite maior incidência de radiação solar, importante para eficiência luminosa para ativação do fotocatalisador, além da sua fácil recuperação ao final do processo e ter alto grau de eficiência no ataque às larvas, por exemplo, não limitante, do Anopheles e Aedes aegypti. [024] The devices and their uses, objects of the present invention, exhibit efficiency, ease and practicality in their manufacturing process, as part of the raw material can be found in commerce. The innovation consists in making use of the fluctuating property of the support that allows a higher incidence of solar radiation, important for light efficiency for photocatalyst activation, as well as its easy recovery at the end of the process and having a high degree of efficiency in attacking the larvae, for example. , not limiting, of Anopheles and Aedes aegypti.
LISTA DE FIGURAS LIST OF FIGURES
[025] A Figura 1 apresenta as imagens antes e após a impregnação com ferro, nióbio e titânio e respectivas imagens de microscopia eletrônica de varredura com o material preparado utilizando a matriz TNT. [025] Figure 1 presents the images before and after impregnation with iron, niobium and titanium and respective scanning electron microscopy images with the material prepared using the TNT matrix.
[026] A Figura 2 mostra a remoção de AM por fotocatálise utilizando TNT-Fe (a) e remoção de AM por fotocatálise utilizando TNT-Nb (b). Figure 2 shows removal of AM by photocatalysis using TNT-Fe (a) and removal of AM by photocatalysis using TNT-Nb (b).
[027] A Figura 3 apresenta a evolução semanal da contagem média de larvas vivas de Aedes aegypti em diferentes meios aquáticos contento solução de sacarose para alimentação das larvas para o material TNT-Fe. [027] Figure 3 shows the weekly evolution of the average live larvae count of Aedes aegypti in different aquatic environments containing sucrose solution for feeding larvae to TNT-Fe material.
[028] A Figura 4A mostra uma representação esquemática da geração do radical hidroxila (*OH) pelo catalisador. A Figura 4B apresenta imagens óticas indicando o resultado do experimento de ataque do radical hidroxila (catalisador) à membrana celular de larvas de mosquitos da dengue antes e após o processo reacional. Figure 4A shows a schematic representation of the generation of the hydroxyl radical (* OH) by the catalyst. Figure 4B presents optical images indicating the result of the hydroxyl radical attack experiment. (catalyst) to the cell membrane of dengue mosquito larvae before and after the reaction process.
[029] A Figura 5 apresenta o espectroscopia Mõssbauer de 57Fe. [029] Figure 5 shows the 57 Fe Febauer spectroscopy.
[030] A Figura 6 mostra a distribuição das fases de ferro (III), onde a) concreto celular autoclavado e b) catalisador Fe2O3/concreto celular autoclavado. [030] Figure 6 shows the iron (III) phase distribution, where a) autoclaved cellular concrete and b) Fe2O3 catalyst / autoclaved cellular concrete.
[031 ] A Figura 7 apresenta a evolução semanal da contagem média de larvas vivas de Aedes aegypti em diferentes meios aquáticos contento solução de sacarose para alimentação das larvas para o material catalisador Fe2O3/concreto celular autoclavado. [031] Figure 7 shows the weekly evolution of the average live larvae count of Aedes aegypti in different aquatic media containing sucrose feed solution for the catalyst material Fe2O3 / autoclaved cellular concrete.
DESCRIÇÃO DETALHADA DA INVENÇÃO DETAILED DESCRIPTION OF THE INVENTION
[032] A presente invenção compreende dispositivos flutuantes fotocatalisadores, constituídos a partir de óxidos de metais de transição tais como óxido de ferro (III) (Fe2O3), óxido de titânio (T1O2) ou óxido de nióbio (V) (Nb2Oõ) combinados ou não que são fixados na matriz de microfibra polimérica microreticulada, por exemplo, não limitante, TNT (tecido não tecido) ou concreto celular autoclavado. Os dispositivos oxidam toda a matéria orgânica na água, consumindo assim as fontes de alimento para larvas, como por exemplo, material orgânico suspenso e microorganismos, erradicando larvas de inseto, de doenças tais como dengue, febre amarela, malária, leishmaniose, dentre outras, inclusive larva do mosquito Aedes aegypti ou do Anopheles, não limitante. Portanto, o material também pode promover a degradação das células de larvas de vetores de doenças, tais como: dengue, febre amarela, malária, leishmaniose, dentre outras. A invenção pode ser empregada em ambientes aquáticos domésticos ou industriais com incidência de luz em recipientes domésticos. Além disso, a presente invenção também pode ser caracterizada por não liberar compostos orgânicos tóxicos no ambiente aquático que prejudiquem animais superiores, tais como molúsculos, peixes, repteis mamíferos, dentre outros. [032] The present invention comprises photocatalyst floating devices consisting of transition metal oxides such as iron (III) oxide (Fe2O3), titanium (T1O2) oxide or niobium (V) (Nb2O6) oxide combined or not that they are attached to the microreticulated polymeric microfiber matrix, for example non-limiting, TNT (nonwoven fabric) or autoclaved cellular concrete. The devices oxidize all organic matter in water, thus consuming food sources for larvae such as suspended organic material and microorganisms, eradicating insect larvae from diseases such as dengue fever, yellow fever, malaria, leishmaniasis, among others, including Aedes aegypti or Anopheles mosquito larva, non-limiting. Therefore, the material can also promote the degradation of cells of disease vector larvae, such as dengue, yellow fever, malaria, leishmaniasis, among others. The invention may be employed in domestic or industrial aquatic environments with light incidence in household containers. In addition, the present invention may also be characterized by not releasing toxic organic compounds into the aquatic environment that harm superior animals such as molluscs, fish, mammalian reptiles, among others.
[033] Portanto, a invenção aqui proposta caracteriza-se por processos para a aplicação e uso da fotocatálise. Nenhum dos suportes descritos no estado da técnica acima apontados até o momento se aplica para reduzir ou mesmo eliminar matéria orgânica de seres vivos com o foco em larvas que geram doenças como febre amarela ou dengue ou chinkungunya {Aedes aegypti) ou febre do Nilo ocidental, ou malária {Anopheles). A presente invenção vem, dessa forma, justamente suprir essa lacuna para contribuir com a redução ou até mesmo a eliminação de vetores de doenças cujo vetor tem origem de seu desenvolvimento numa de suas fases na fase aquática. A Figura 1 mostra o dispositivo quando a matriz é o tecido TNT. [033] Therefore, the invention proposed herein is characterized by processes for the application and use of photocatalysis. None of the above described prior art supports apply to reduce or even eliminate organic matter from living beings with a focus on larvae that generate diseases such as yellow or dengue fever or chinkungunya (Aedes aegypti) or West Nile fever, or malaria {Anopheles). Thus, the present invention precisely fills this gap to contribute to the reduction or even elimination of disease vectors whose vector originates from its development in one of its phases in the aquatic phase. Figure 1 shows the device when the matrix is TNT tissue.
[034] Uma vez que o tecido TNT foi imerso nas soluções de óxido de Ti, Nb e/ou de Fe, o mesmo foi submetido a tratamento térmico brando para formação de óxidos metálicos. A alta atividade fotocatalítica desse material permite a remoção de moléculas orgânicas, apresentando baixa toxicidade, alta absorção de luz solar, versatilidade pela flutuação, além da facilidade difusional dos contaminantes e totais eliminações das larvas de insetos como por exemplo, mosquito Aedes aegypti.  Since the TNT tissue was immersed in Ti, Nb and / or Fe oxide solutions, it was subjected to mild heat treatment to form metal oxides. The high photocatalytic activity of this material allows the removal of organic molecules, presenting low toxicity, high absorption of sunlight, versatility by flotation, besides the diffusional ease of contaminants and total elimination of insect larvae such as Aedes aegypti mosquito.
[035] Os materiais foram preparados impregnando com diferentes elementos como Fe, Nb, Zn e/ou Ti uma tela (por exemplo, tecido não tecido/TNT) utilizando diferentes soluções contendo os respectivos metais. O suporte polimérico foi mantido em contato com uma solução 1 ,0 mol/L de Fe(NO3)3.9H2O, uma solução 1 ,0 mol/L de [NH4NbO(C2O4)2(H2O)](H2O)n e/ou uma solução 1 ,0 mol/L TiCb. A tela foi deixada em contato e, em agitação, por 1 hora. Após o tempo de contato o material foi seco em estufa a 150 °C por 12 horas. A amostra foi nomeada de TNT-Fe, TNT-Nb e TNT-Ti. O material polimérico a base de polipropileno (TNT) foi adquirido no comércio e antes de ser impregnado foi lavado com solução 1 ,0 mol/L de HCI por 24 horas e, em seguida, com solução 5,0 mol/L de NaOH por 24 horas para remoção de impurezas, e finalmente em água destilada. [035] The materials were prepared by impregnating with different elements such as Fe, Nb, Zn and / or Ti a screen (eg nonwoven fabric / TNT) using different solutions containing the respective metals. The polymeric support was maintained in contact with a 1.0 mol / l solution of Fe (NO 3 ) 3.9H 2 O, a 1.0 mol / l solution of [NH 4 NbO (C2O4) 2 (H 2 O)] (H 2 O) n and / or a 1.0 mol / l TiCb solution. The screen was left in contact and stirred for 1 hour. After contact time the material was oven dried at 150 ° C for 12 hours. The sample was named TNT-Fe, TNT-Nb and TNT-Ti. Polypropylene-based polymeric material (TNT) was purchased commercially and before being impregnated was washed with 1.0 mol / l HCl solution for 24 hours and then with 5.0 mol / l NaOH solution per 24 hours to remove impurities, and finally in distilled water.
[036] A atividade fotocatalítica dos materiais foi avaliada pela degradação de 20 mg/L de corante orgânico Azul de Metileno (AM), a uma temperatura constante de 298K em um fotoreator cilíndrico. Uma lâmpada de mercúrio de alta pressão (HPK 125 W-Philips) com um filtro refrigerado a água serviu de fonte de luz. O volume total da solução reacional foi de 20 mL. A descoloração do corante AM foi monitorada no tempo por espectroscopia UV-Vis utilizando o modo varredura. [036] The photocatalytic activity of the materials was evaluated by the degradation of 20 mg / l of methylene blue (AM) organic dye at a constant temperature of 298K in a cylindrical photoreactor. A high pressure mercury lamp (HPK 125 W-Philips) with a water-cooled filter served as a light source. The total volume of the reaction solution was 20 mL. AM dye discoloration was monitored over time by UV-Vis spectroscopy using the scan mode.
[037] Após a impregnação, a tela apresentou uma coloração avermelhada característica de óxido de ferro (III), quando a tela foi tratada com solução desse elemento. Além de observar a morfologia da tela com e sem ferro, ela foi analisada por microscopia eletrônica de varredura (MEV). A tela consiste de uma microfibra flutuante com tramas, a partir das imagens de MEV; após a impregnação com soluções de ferro, nióbio e/ou titânio podem ser observadas partículas dos respectivos elementos aderidos à superfície ao longo das microfibras (Figura 1 ), com uma distribuição relativamente homogénea no material. As imagens mostram claramente aglomerados de partículas de óxido de ferro com formato de esponjas.  [037] After impregnation, the screen showed a characteristic reddish coloration of iron (III) oxide when the screen was treated with solution of this element. In addition to observing the morphology of the screen with and without iron, it was analyzed by scanning electron microscopy (SEM). The screen consists of a floating weft microfiber from the SEM images; After impregnation with iron, niobium and / or titanium solutions, particles of the respective surface-adhered elements can be observed along the microfibres (Figure 1), with a relatively homogeneous distribution in the material. The images clearly show clumps of sponge-shaped iron oxide particles.
[038] O presente pedido de patente também trata de um novo uso do catalisador formado por óxido de ferro (III), não limitante, suportado em uma matriz de concreto celular autoclavado. O método de preparação consiste em impregnar um precursor da espécie catalítica na matriz do suporte e em seguida realizar o tratamento térmico em uma atmosfera apropriada para a formação da espécie catalisadora (método descrito e reivindicado no pedido de patente PM 002600-2).  [038] The present patent application also deals with a new use of the non-limiting iron oxide (III) catalyst supported on an autoclaved cellular concrete matrix. The method of preparation consists in impregnating a catalyst species precursor into the support matrix and then heat treating in an atmosphere suitable for the formation of the catalyst species (method described and claimed in patent application PM 002600-2).
[039] Para a preparação do material catalisador a matriz de suporte pode ser pré-moldada em esferas ou formato cúbico (tijolo) com granulometria variando entre 1 cm3 e 10cm3 sendo que o tamanho reduzido proporciona uma maior atividade fotocatalítica. [039] For the preparation of the catalyst material, the support matrix can be preformed into spheres or cubic (brick) shapes with a particle size ranging from 1 cm 3 to 10 cm 3 with the reduced size providing greater photocatalytic activity.
[040] A fabricação do catalisador apresenta duas etapas: impregnação do catalisador e ativação do mesmo. O processo de impregnação consiste em mergulhar o concreto celular autoclavado em uma solução de cloreto férrico com concentração entre 0,3 e 1 mol/L, por um período entre 10 e 30 minutos. A segunda etapa do processo de preparação do catalisador consiste em aquecer o concreto celular autoclavado embebido na solução precursora até uma temperatura entre 100°C e 500°C por um período entre 1 e 4 horas com atmosfera de ar.  [040] Catalyst manufacture has two stages: catalyst impregnation and activation. The impregnation process consists of dipping the autoclaved cellular concrete in a solution of ferric chloride with concentration between 0.3 and 1 mol / L, for a period between 10 and 30 minutes. The second step of the catalyst preparation process is to heat the autoclaved cellular concrete soaked in the precursor solution to a temperature between 100 ° C and 500 ° C for 1 to 4 hours with air atmosphere.
[041 ] A tecnologia pode ser melhor compreendida através dos seguintes exemplos, não limitantes. EXEMPLO 1 : Síntese do catalisador Fe203/concreto celular autoclavado e caracterização do produto The technology can be better understood through the following non-limiting examples. EXAMPLE 1 Synthesis of Fe203 Catalyst / Autoclaved Cellular Concrete and Product Characterization
[042] Na síntese do catalisador de Fe2O3 utilizou-se 25g de concreto celular autoclavado mergulhado em 1 00 mL de uma solução de cloreto de ferro (III) de concentração 1 mol/L por 30 minutos; em seguida o material foi tratado termicamente à temperatura de 200 C° por 2 horas. In the synthesis of the Fe2O3 catalyst, 25g of autoclaved cellular concrete dipped in 100 ml of 1 mol / L iron (III) chloride solution was used for 30 minutes; then the material was heat treated at 200 ° C for 2 hours.
[043] A formação do óxido de ferro (III) impregnado na matriz de concreto celular autoclavado foi caracterizada através da espectroscopia Mõssbauer de 57Fe (Figura 5).  [043] The formation of iron (III) oxide impregnated in the autoclaved cellular concrete matrix was characterized by 57Fe Mössbauer spectroscopy (Figure 5).
[044] A Tabela 1 apresenta os parâmetros Mõssbauer de 57Fe para as amostras do concreto celular autoclavado antes e após a impregnação e tratamento térmico. [044] Table 1 shows the 57 Fe Mössbauer parameters for autoclaved cellular concrete samples before and after impregnation and heat treatment.
[045] De acordo com a análise de distribuição das fases de ferro (III) (Figura 5) observa-se que o teor das fases oxidadas aumentaram na amostra após a fixação do catalisador. O concreto celular autoclavado apresenta antes da impregnação e do tratamento térmico quatro fases de ferro (Figura 5, Figura 6): ferro (III), a-Fe2O3, FezSs e α-Fe, sendo que, as mais abundantes são: ferro (III) (42%) e a-Fe2O3(26%). Após a impregnação do catalisador e tratamento térmico o material passa a apresentar apenas duas fases de ferro (Figura 5): ferro (III) (60%) e a-Fe2O3 (40%). According to the iron (III) phase distribution analysis (Figure 5) it is observed that the content of oxidized phases increased in the sample after catalyst fixation. Autoclaved cellular concrete has, before impregnation and heat treatment, four iron phases (Figure 5, Figure 6): iron (III), a-Fe2O3, FezSs and α-Fe, the most abundant being: iron (III ) (42%) and α-Fe 2 O 3 (26%). After catalyst impregnation and heat treatment, the material only presents two iron phases (Figure 5): iron (III) (60%) and a-Fe 2 O 3 (40%).
[046] Tabela 1 : Parâmetros Mõssbauer de 57Fe para o concreto celular autoclavado puro e impregnado com Fe2O3 [046] Table 1: 57 Fe Mössbauer Parameters for Fe2O3 Impregnated Pure Autoclaved Cellular Concrete
Amostra δ (mm/s) QS (mm/s) Hhf(T) Area(%) Atribuição Sample δ (mm / s) QS (mm / s) Hhf (T) Area (%) Assignment
(±0,05) (±0,05) (±0,5) (±1 )  (± 0.05) (± 0.05) (± 0.5) (± 1)
concreto celular 0,33 0,53 - 42 (Fe(lll) ) autoclavado 0,35 -0,19 51 ,6 26 a- Fe2O3  cellular concrete 0.33 0.53 - 42 (Fe (lll)) autoclaved 0.35 -0.19 51, 6 26 a- Fe2O3
0,25 0,00 20,3 21 FezSs 0.25 0.00 20.3 21 FesSs
0,00 0,00 33,0 1 1 a- Fe catalisador 0,35 0,80 - 59 (Fe(lll) ) Fe2O3/concreto 0,36 -0,21 51 ,3 41 a- Fe2O3 celular autoclavado δ→ Desvio isométrico, QS→ desdobramento quadrupolar, Hhf → campo hiperfino, área→ área subespectral relativa. 0.00 0.00 33.0 1 1 a- Fe catalyst 0.35 0.80 - 59 (Fe (lll)) Fe2O3 / concrete 0.36 -0.21 51, 3 41 a- Autoclaved cellular Fe2O3 δ → Isometric Deviation, QS → Quadrupolar Splitting, Hhf → Hyperfine Field, Area → Relative Subspectral Area.
[047] A determinação do teor de ferro no concreto celular antes do processo de impregnação da hematita é de 1 ,89% m/m e após a fixação do Fe2O3 na matriz o teor de ferro é de 3,53% m/m. Embora o teor de ferro seja apenas o dobro em relação à quantidade pré-existente, a atividade catalítica do concreto celular autoclavado é imperceptível, pois de acordo com a análise de distribuição das espécies contendo ferro, observa-se na Figura 5 que 40% do ferro inicial encontra-se nas formas de sulfeto de ferro ou ferro metálico. Outra característica importante refere-se à distribuição espacial do ferro impregnado que se encontra na superfície da matriz de suporte. Por outro lado, o ferro pré- existente encontra-se misturado de forma homogénea no concreto celular autoclavado. The determination of the iron content in the cellular concrete before the hematite impregnation process is 1.89% w / w and after the fixation of Fe2O3 in the matrix the iron content is 3.53% w / w. Although the iron content is only twice that of the pre-existing amount, the catalytic activity of autoclaved cellular concrete is imperceptible, because according to the distribution analysis of iron-containing species, it is observed in Figure 5 that 40% of the iron content. Early iron is in the forms of iron sulfide or metallic iron. Another important feature concerns the spatial distribution of the impregnated iron on the surface of the support matrix. On the other hand, the pre-existing iron is homogeneously mixed in the autoclaved cellular concrete.
[048] EXEMPLO 2: Degradação de sacarose utilizando o catalisador Fe203/concreto celular autoclavado EXAMPLE 2: Sucrose Degradation Using Fe203 Catalyst / Autoclaved Cellular Concrete
[049] Para demonstrar o potencial de aplicação do material fotocatalisador para erradicação de larvas de mosquitos esse foi submetido a um teste de degradação de uma solução nutritiva constituída por glicose e sacarose com um teor total de 200 ppm. A solução nutritiva foi exposta a atividade catalítica por 24 horas em um reator de UV/vis. Após 24 horas as soluções foram submetidas à análise de carbono orgânico total (TOC), carbono total (CT) e carbono inorgânico (Cl). Como medida de referencia da atividade catalítica 3 amostras de solução também foram colocadas no reator, sem a presença do material catalisador A Tabela 2 apresenta os resultados de degradação para o material preparado de acordo com o exemplo 1 . Os experimentos foram realizados em triplicata e, portanto, 3 experimentos com o "branco" e 3 experimentos denominados Catalisador. Claramente pode ser visto que após 24 horas de atividade o material foi capaz de degradar 90% de toda a matéria orgânica presente, tornando o ambiente aquoso um meio escasso de nutrientes para o desenvolvimento de larvas de mosquitos, restando em média 10% da matéria orgânica presente inicialmente, como pode ser visto na coluna TOC(%). To demonstrate the potential application of photocatalyst material for eradication of mosquito larvae this was subjected to a degradation test of a nutrient solution consisting of glucose and sucrose with a total content of 200 ppm. The nutrient solution was exposed to catalytic activity for 24 hours in a UV / vis reactor. After 24 hours the solutions were submitted to total organic carbon (TOC), total carbon (CT) and inorganic carbon (Cl) analysis. As a reference measure of catalytic activity 3 solution samples were also placed in the reactor, without the presence of catalyst material. Table 2 presents the degradation results for the material prepared according to example 1. The experiments were performed in triplicate and therefore 3 experiments with the "white" and 3 experiments called Catalyst. Clearly it can be seen that after 24 hours of activity the material was able to degrade 90% of all organic matter present, making the aqueous environment a sparse nutrient medium for the development of mosquito larvae, leaving on average 10% of the total. organic matter present initially, as can be seen in the TOC column (%).
[050] Tabela 2: Análise do teor de matéria orgânica degradada pelo catalisador [050] Table 2: Analysis of catalyst degraded organic matter content
Figure imgf000015_0001
Figure imgf000015_0001
* CT= carbono total; ** Cl= carbono inorgânico; ***TOC= carbono orgânico total * CT = total carbon; ** Cl = inorganic carbon; *** TOC = total organic carbon
EXEMPLO 3: Teste de aplicação de campo para o catalisador Fe203/concreto celular autoclavado EXAMPLE 3: Field Application Test for Fe203 Catalyst / Autoclaved Cellular Concrete
[051 ] Para determinar a eficiência na erradicação de larvas de mosquitos o material catalisador foi submetido a um teste preliminar que consiste em expor a atividade fotocatalítica em diferentes ambientes aquosos propícios à proliferação de vetores transmissores de doenças tais como, dengue e febre amarela. A eficiência do material foi comparado com a atividade oxidativa do hipoclorito de sódio, denominado comercialmente como água sanitária, sendo este um dos compostos mais utilizados na erradicação de larvas de insetos. Como solução nutritiva foi utilizada uma solução de sacarose com 1 mg/L. Para estes testes foram preparadas 4 tipos de soluções: i) solução de sacarose, ii) solução de sacarose + água sanitária, iii) solução de sacarose + 25 g de material catalisador e iv) solução de sacarose + 12 g de material catalisador. Uma amostra de cada tipo foi colocada por 8 semanas em diferentes condições naturais, sendo estas: sombra ao ar livre, sombra com proteção contra pluviosidade e exposição direta a luz solar. Para avaliar a eficiência de cada componente (catalisador e água sanitária) foi utilizada a média de larvas presentes em cada tipo de ambiente aquoso. [052] A Figura 7 apresenta a evolução semanal da quantidade média de larvas desenvolvidas para cada tipo de solução. O gráfico da Figura 7 demonstra a eficiência do catalisador ao consumir a matéria orgânica do meio aquoso, inibindo a proliferação de larvas de insetos. Para as amostras com catalisador, durante as semanas 7 e 9, foram observadas a formação de algumas larvas, provavelmente devido a menor incidência de luz, decorrida pela presença de chuvas neste período. As amostras com água sanitária, foram eficiente até 8 semanas, quando começaram a surgir as primeiras larvas, sendo que na semana 10 o comportamento destas amostras passou a ser semelhante a amostra de controle, sem adição de qualquer agente oxidante. [051] To determine the efficiency in eradicating mosquito larvae the catalyst material was subjected to a preliminary test consisting of exposing photocatalytic activity in different aqueous environments conducive to the proliferation of disease-transmitting vectors such as dengue and yellow fever. The efficiency of the material was compared with the oxidative activity of sodium hypochlorite, commercially known as bleach, being one of the most used compounds in the eradication of insect larvae. As a nutrient solution a sucrose solution with 1 mg / L was used. For these tests 4 types of solutions were prepared: i) sucrose solution, ii) sucrose solution + bleach, iii) sucrose solution + 25 g catalyst material and iv) sucrose solution + 12 g catalyst material. One sample of each type was placed for 8 weeks under different natural conditions, such as: outdoor shade, rain shade and direct exposure to sunlight. To evaluate the efficiency of each component (catalyst and bleach) was used the average of larvae present in each type of aqueous environment. [052] Figure 7 shows the weekly evolution of the average amount of larvae developed for each type of solution. The graph in Figure 7 demonstrates the efficiency of the catalyst in consuming organic matter from the aqueous medium, inhibiting insect larval proliferation. For the samples with catalyst, during weeks 7 and 9, the formation of some larvae was observed, probably due to the lower incidence of light, due to the presence of rain during this period. The samples with bleach were efficient up to 8 weeks, when the first larvae began to appear, and at week 10 the behavior of these samples became similar to the control sample, without the addition of any oxidizing agent.
Exemplo 4: Teste de aplicação utilizando o catalisador TNT (tecido não tecido), contendo óxidos de Fe, Nb, Zn e Ti, na oxidação de matéria orgânica Example 4: Application test using TNT (nonwoven fabric) catalyst containing Fe, Nb, Zn and Ti oxides for oxidation of organic matter
[053] Inicialmente, foram realizados testes de oxidação do corante azul de metileno (AM) em meio aquoso (Figura 2). Esse teste serve como balizador para os estudos empregando as larvas. A degradação do AM na presença de catalisador, na concentração entre 0,1 e 5 % m/m e luz UV promove remoção de 45% de cor após 200 min de reação utilizando somente Nb impregnando a tela. O espectro de absorção da molécula apresentou uma significativa diminuição na banda (664 nm) característico da cor do AM. A fim de verificar a eficiência do catalisador contendo os elementos suportados foram feitos testes de remoção de corante utilizando apenas luz UV e utilizando a tela não impregnada, sendo que não foi observado remoção de cor. O fotocatalisador contendo ferro foi claramente mais eficiente que os materiais contendo Nb e Ti. Diante desses resultados a tela impregnada com Fe foi utilizada nos testes com as larvas. [053] Initially, oxidation tests of methylene blue (AM) dye were performed in aqueous medium (Figure 2). This test serves as a marker for studies employing larvae. The degradation of the AM in the presence of catalyst, in the concentration between 0.1 and 5% w / w and UV light promotes 45% color removal after 200 min reaction using only Nb impregnating the screen. The absorption spectrum of the molecule showed a significant decrease in the band (664 nm) characteristic of AM color. In order to verify the efficiency of the catalyst containing the supported elements, dye removal tests were performed using only UV light and using the non-impregnated screen, and no color removal was observed. The iron-containing photocatalyst was clearly more efficient than Nb and Ti-containing materials. In view of these results, Fe-impregnated mesh was used for larval tests.
Exemplo 5: Teste de aplicação de campo para o catalisador TNT-Fe na erradicação da dengue Example 5: Field Application Test for TNT-Fe Catalyst in Dengue Eradication
[054] Para determinar a eficiência na erradicação de larvas de mosquitos o catalisador TNT-Fe foi submetido a um teste preliminar que consistiu em expor a atividade fotocatalítica em diferentes ambientes aquosos propícios à proliferação de vetores transmissores de doenças, tais como, dengue e febre amarela; comparando com a atividade oxidativa do hipoclorito de sódio, denominado comercialmente como água sanitária, sendo este um dos compostos mais utilizados na erradicação de larvas de insetos. Como solução nutritiva foi utilizada uma solução de sacarose com 1 mg/L. Para estes testes foram preparadas 4 tipos de soluções: i) solução de sacarose, ii) solução de sacarose + água sanitária, iii) solução de sacarose + material catalisador. Para a solução III o material catalisador foi colocado sobre a superfície com formato de tiras quadradas com arresta de 2 cm. Uma amostra de cada tipo foi colocada por 8 semanas em diferentes condições naturais, sendo estas: sombra ao ar livre, sombra com proteção contra pluviosidade e exposição direta a luz solar. Para avaliar a eficiência de cada componente (catalisador e água sanitária) foi utilizada a média de larvas presentes em cada tipo de ambiente aquoso. A Figura 3 apresenta a evolução semanal da quantidade média de larvas desenvolvidas para cada tipo de solução. [054] To determine the efficiency in eradicating mosquito larvae the TNT-Fe catalyst was subjected to a preliminary test which consisted of exposing photocatalytic activity in different aqueous environments prone to proliferation of disease-transmitting vectors such as dengue and yellow fever; Comparing with the oxidative activity of sodium hypochlorite, commercially known as bleach, this is one of the most used compounds in the eradication of insect larvae. As a nutrient solution a sucrose solution with 1 mg / L was used. For these tests 4 types of solutions were prepared: i) sucrose solution, ii) sucrose solution + bleach, iii) sucrose solution + catalyst material. For solution III the catalyst material was placed on the 2 cm square strip-shaped surface. One sample of each type was placed for 8 weeks under different natural conditions, such as: outdoor shade, rain shade and direct exposure to sunlight. To evaluate the efficiency of each component (catalyst and bleach) was used the average of larvae present in each type of aqueous environment. Figure 3 shows the weekly evolution of the average amount of larvae developed for each type of solution.
[055] O gráfico da Figura 3 demonstra a eficiência do catalisador ao consumir a matéria orgânica do meio aquoso, inibindo a proliferação de larvas de insetos. Para as amostras com catalisador, a partir da semana 6, foram observadas a formação de algumas larvas, entretanto a população de larvas manteve-se estável em uma faixa entre 17 a 23 larvas. Em contra partida as amostra com água sanitária, foram eficientes até 8 semanas, quando começaram a surgir as primeiras larvas, sendo que na semana 10 o comportamento destas amostras passou a ser semelhante a amostra de controle, sem adição de qualquer agente oxidante. A adição do catalisador de TNT-Fe inibiu de forma constante a formação de 100% das larvas que poderiam se desenvolver em na solução I sem perda de eficiência como acontece com a solução II. [055] The graph in Figure 3 demonstrates the efficiency of the catalyst in consuming organic matter from the aqueous medium, inhibiting the proliferation of insect larvae. For the samples with catalyst, from week 6, the formation of some larvae was observed, however the larval population remained stable in a range between 17 to 23 larvae. In contrast, the samples with bleach were efficient up to 8 weeks, when the first larvae began to appear, and at week 10 the behavior of these samples became similar to the control sample, without the addition of any oxidizing agent. Addition of the TNT-Fe catalyst consistently inhibited the formation of 100% of the larvae that could develop in solution I without loss of efficiency as with solution II.
[056] Em síntese, um novo sistema baseado em uma tela fotocatalítica flutuante atóxica, barato, estável e com alta atividade fotocatalítica foi desenvolvido. As estruturas de ferro foram aderidas nas microfibras nos formatos de esponjas que são constituídas de pequenas partículas proporcionando uma área relativamente grande, contribuindo substancialmente pela atividade fotocatalítica da tela. O fotocatalisador flutuante foi capaz de remover 75% da cor de AM utilizando o material TNT-Nb em 200 min de reação com auxílio de luz UV. Foi mostrado que o material TNT-Fe com auxílio da luz foi altamente eficiente na remoção de larvas de mosquito. A partir da semana 8 de desenvolvimento do vetor o catalisador inibiu 100% o desenvolvimento da larva do mosquito, esse resultado é superior quando se utiliza o hipoclorito de sódio. O design apresentado pelos autores propõe um diferente ponto de vista no futuro dos materiais empregados na remoção de contaminantes orgânicos. Telas flutuantes são particularmente interessantes para emprego na remediação ambiental por dispensar agitação e oxigenação mecânica em grandes reservatórios. A morfologia em trama das fibras confere boa área iluminada que favorece uma alta taxa de formação de radicais hidroxila e consequentemente eficiente oxidação. A tela a base de vidro e/ou polímero bidirecional, por exemplo, fibra de vidro, contendo ferro foi disposta em banho ultrasônico por 30 min e o líquido foi analisado por espectrometria de absorção atómica. Os resultados não mostraram presença de ferro ou a concentração do mesmo foi abaixo do limite da detecção da técnica. [056] In summary, a new system based on a cheap, stable, non-toxic floating photocatalytic screen with high photocatalytic activity was developed. The iron structures were adhered to the sponge-shaped microfibres that are made up of small particles providing a relatively large area, contributing substantially photocatalytic activity of the screen. The floating photocatalyst was able to remove 75% of the AM color using TNT-Nb material in 200 min reaction with the aid of UV light. Light-assisted TNT-Fe material has been shown to be highly efficient in removing mosquito larvae. From week 8 of vector development the catalyst inhibited 100% mosquito larvae development, this result is higher when using sodium hypochlorite. The design presented by the authors proposes a different point of view on the future of materials used in the removal of organic contaminants. Floating screens are particularly interesting for use in environmental remediation as they do not require agitation and mechanical oxygenation in large reservoirs. The weft morphology of the fibers confers a good lighted area which favors a high rate of hydroxyl radical formation and consequently efficient oxidation. The glass and / or bi-directional polymer, e.g. fiberglass, iron-containing screen was laid out in an ultrasonic bath for 30 min and the liquid was analyzed by atomic absorption spectrometry. The results did not show the presence of iron or its concentration was below the detection limit of the technique.

Claims

REIVINDICAÇÕES
1. Dispositivo flutuante fotocatalítico, caracterizado por compreender óxido de ferro (III) (Fe2O3), óxido de titânio (T1O2), óxido de zinco (ZnO) óxido de nióbio (V) (Nb2Os) isolados ou combinados entre si, suportados em uma matriz de microfibra polimérica microreticulada e /ou de materiais à base de vidro tecido bidirecional e/ou polimérica. 1. Photocatalytic floating device, characterized in that it comprises iron (III) oxide (Fe2O3), titanium oxide (T1O2), zinc oxide (ZnO) niobium (V) oxide (Nb2Os) isolated or in combination, supported on a microreticulated polymeric microfiber matrix and / or bi-directional and / or polymeric woven glass-based materials.
2. Dispositivo flutuante fotocatalítico, de acordo com a revindicação 1 , caracterizado pela matriz de microfibra polimérica microreticulada, ser preferencialmente, de tecido não tecido (TNT) e pela matriz à base de vidro tecido bidirecional ser, preferencialmente, fibra de vidro e pela matriz polimérica ser, preferencialmente, poliestireno ou poliuretano. Photocatalytic floating device according to Claim 1, characterized in that the microreticulated polymeric microfiber matrix is preferably non-woven fabric (TNT) and the bidirectional woven glass-based matrix is preferably fiberglass and matrix. polymer is preferably polystyrene or polyurethane.
3. Dispositivo flutuante fotocatalítico, de acordo com a reivindicação 1 , caracterizado por compreender catalisadores nas concentrações entre 0,1 e 5 % m/m. Photocatalytic floating device according to Claim 1, characterized in that it comprises catalysts at concentrations between 0.1 and 5% w / w.
4. Uso do dispositivo flutuante fotocatalítico, definido nas reivindicações 1 a 3, caracterizado por ser na eliminação de larvas, inclusive larvas de mosquitos compreendendo febre amarela ou dengue ou chinkungunya {Aedes aegyptí) ou febre do Nilo ocidental, ou malária {Anopheles). Use of the photocatalytic floating device as defined in claims 1 to 3, characterized in that it is for the elimination of larvae, including mosquito larvae comprising yellow fever or dengue or chinkungunya (Aedes aegyptí) or West Nile fever, or malaria (Anopheles).
5. Uso do dispositivo flutuante fotocatalítico, definido nas reivindicações 1 a 3, caracterizado por decompor compostos orgânicos presentes em ambientes aquáticos. Use of the photocatalytic floating device as defined in claims 1 to 3, characterized in that it decomposes organic compounds present in aquatic environments.
6. Dispositivo flutuante fotocatalítico, caracterizado por compreender óxido de ferro (III) (Fe2O3), suportado em uma matriz de concreto celular autoclavado. 6. Photocatalytic floating device, characterized in that it comprises iron (III) oxide (Fe2O3), supported on an autoclaved cellular concrete matrix.
7. Dispositivo flutuante fotocatalítico, de acordo com a reivindicação7. Photocatalytic floating device according to claim
7, caracterizado por compreender catalisadores nas concentrações entre 0,1 e 5 % m/m. 7, characterized in that it comprises catalysts at concentrations between 0.1 and 5% w / w.
8. Uso do dispositivo flutuante fotocatalítico, definido nas reivindicações 7 e 8, caracterizado por ser na erradicação de larvas inclusive larvas de mosquitos compreendendo febre amarela ou dengue ou chinkungunya {Aedes aegyptí) ou febre do Nilo ocidental, ou malária {Anopheles). Use of the photocatalytic floating device as defined in claims 7 and 8, characterized in that it is for the eradication of larvae including mosquito larvae comprising yellow or dengue fever or chinkungunya (Aedes aegyptí) or West Nile fever, or malaria {Anopheles).
9. Uso do dispositivo flutuante fotocatalítico, caracterizado por ser na oxidação de estruturas celulares, tais como membrana plasmática, de larvas de insetos ou microorganismos. 9. Use of the photocatalytic floating device, characterized in that it is in the oxidation of cellular structures such as plasma membrane, insect larvae or microorganisms.
PCT/IB2015/052213 2014-03-25 2015-03-25 Floating photocatalytic device for eradicating larvae, and uses thereof WO2015145380A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
BR132014007098-1A BR132014007098E2 (en) 2014-03-25 2014-03-25 use of autoclaved cellular concrete supported iron oxide catalyst for eradication of mosquito larvae
BRBR1320140070981 2014-03-25
BR132014011499A BR132014011499E2 (en) 2014-05-13 2014-05-13 photocatalytic polymer floating device for larval eradication
BRBR1320140114997 2014-05-13
BRBR1320150066766 2015-03-25
BR132015006676A BR132015006676E2 (en) 2015-03-25 2015-03-25 photocatalytic floating device for larval eradication and uses

Publications (2)

Publication Number Publication Date
WO2015145380A2 true WO2015145380A2 (en) 2015-10-01
WO2015145380A3 WO2015145380A3 (en) 2016-02-11

Family

ID=54196516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/052213 WO2015145380A2 (en) 2014-03-25 2015-03-25 Floating photocatalytic device for eradicating larvae, and uses thereof

Country Status (1)

Country Link
WO (1) WO2015145380A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528170A (en) * 2019-08-21 2019-12-03 杭州高烯科技有限公司 A kind of compound nonwoven cloth of photocatalytic self-cleaning and preparation method thereof
WO2021027181A1 (en) * 2019-08-09 2021-02-18 清华大学 Use of iron-containing material in preparation of product for inhibiting transmission of dengue virus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325796A (en) * 1999-05-24 2000-11-28 Japan Organo Co Ltd Photocatalyst carrier and manufacture thereof
US6803023B1 (en) * 1999-10-01 2004-10-12 Showa Denko Kabushiki Kaisha Composite structure for deodorization or wastewater treatment
US8552399B2 (en) * 2005-10-11 2013-10-08 K2R Co., Ltd. Apparatus for producing photocatalytic reaction water
JP2011156469A (en) * 2010-01-29 2011-08-18 Daiken Corp Environmental purification agent, method for producing the same, environmental purification method, and method for recovering environmental purification agent
WO2012012766A2 (en) * 2010-07-23 2012-01-26 Uvcleaning Systems, Inc. Solar-activated photochemical purification of fluids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021027181A1 (en) * 2019-08-09 2021-02-18 清华大学 Use of iron-containing material in preparation of product for inhibiting transmission of dengue virus
CN110528170A (en) * 2019-08-21 2019-12-03 杭州高烯科技有限公司 A kind of compound nonwoven cloth of photocatalytic self-cleaning and preparation method thereof

Also Published As

Publication number Publication date
WO2015145380A3 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
Peleyeju et al. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water–A review
Tahir et al. Role of nanotechnology in photocatalysis
Ahmad et al. Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications
Ramalingam et al. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater
Yoon et al. Oxidation mechanism of As (III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism
Ge et al. Template-free synthesis and photocatalytic application of rutile TiO2 hierarchical nanostructures
Kaci et al. Insights into the optical and electrochemical features of CuAl2O4 nanoparticles and it use for methyl violet oxidation under sunlight exposure
US8481987B2 (en) Sensor including a photocatalyst
Pandey et al. Recent advancement in visible‐light‐responsive photocatalysts in heterogeneous photocatalytic water treatment technology
Choina et al. Removal of hazardous pharmaceutical from water by photocatalytic treatment
Abramovic et al. Degradation of thiacloprid by ZnO in a laminar falling film slurry photocatalytic reactor
Hermanová et al. Micromachines for microplastics treatment
J Ramirez et al. Visible light-induced photocatalytic elimination of organic pollutants by TiO2: a review
WO2015145380A2 (en) Floating photocatalytic device for eradicating larvae, and uses thereof
Navalon et al. Photocatalytic water disinfection of Cryptosporidium parvum and Giardia lamblia using a fibrous ceramic TiO2 photocatalyst
Azizi et al. Degradation of ofloxacin using the UV/ZnO/iodide process in an integrated photocatalytic-biological reactor containing baffles
Wang et al. Enhanced piezo-photocatalytic activity of Bi2MoO6 nanosheets: Theory and experimental studies
Yadav et al. Enhanced degradation of Congo-red dye by Cr3+ doped α-Fe2O3 nano-particles under sunlight and industrial wastewater treatment
Sosnin et al. Transparent ZnO-coated polydimethylsiloxane-based material for photocatalytic purification applications
Karakurt et al. Investigation of photocatalytic activity of TiO2 nanotubes synthesized by hydrothermal method
Ratchnashree et al. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water–A review
Xing et al. Zn/N co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of pentachlorophenol
Shanker et al. Eradication of Personal Care Products by Liquid and Crystal Nanomaterials
Nayak et al. Metal–Organic Framework-Derived Hierarchical Ag/Sr6Bi2O9-α-Bi2O3 Ternary Photocatalyst for Micropollutant Remediation and Bacterial Photoinactivation
BR132014011499E2 (en) photocatalytic polymer floating device for larval eradication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768045

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768045

Country of ref document: EP

Kind code of ref document: A2