WO2015144947A1 - Rescue system - Google Patents

Rescue system Download PDF

Info

Publication number
WO2015144947A1
WO2015144947A1 PCT/ES2015/000040 ES2015000040W WO2015144947A1 WO 2015144947 A1 WO2015144947 A1 WO 2015144947A1 ES 2015000040 W ES2015000040 W ES 2015000040W WO 2015144947 A1 WO2015144947 A1 WO 2015144947A1
Authority
WO
WIPO (PCT)
Prior art keywords
rescue
rpas
subsystem
emergency
rescue system
Prior art date
Application number
PCT/ES2015/000040
Other languages
Spanish (es)
French (fr)
Inventor
José Manuel ANDUJAR MARQUEZ
Andrés Mejias Borrero
Marco Antonio Marquez Sanchez
María Reyes Sanchez Herrera
Original Assignee
Universidad De Huelva
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Huelva filed Critical Universidad De Huelva
Publication of WO2015144947A1 publication Critical patent/WO2015144947A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/24Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure
    • A47J31/34Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure
    • A47J31/36Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means
    • A47J31/3604Coffee-making apparatus in which hot water is passed through the filter under pressure, i.e. in which the coffee grounds are extracted under pressure with hot water under liquid pressure with mechanical pressure-producing means with a mechanism arranged to move the brewing chamber between loading, infusing and ejecting stations
    • A47J31/3609Loose coffee being employed
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/44Parts or details or accessories of beverage-making apparatus
    • A47J31/4403Constructional details
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/01Air-sea rescue devices, i.e. equipment carried by, and capable of being dropped from, an aircraft

Definitions

  • the present invention relates to a complete system, capable of reaching a person in danger of drowning (bathers, float crew, small boats, etc.) emergency equipment such as a life jacket, from a base or a rescue post located on the ground, by means of a robotic flying device, scientifically called RPAS (Remotely Piloted Aerial / Aircraft / Air System) and that adopts in society in general names such as UAV, UAS, VANT, multicopter or drone, according to its variant (hereinafter will adopt the generic name of RPAS).
  • RPAS Remote Piloted Aerial / Aircraft / Air System
  • the system is able to reach the exact point where the person is in danger of drowning automatically, keep the flight over its position and launch the emergency material at the precise point where it is located.
  • the RPAS may have a video camera that sends a real-time image (preferably with sound) to the ground rescue station of the person in danger of drowning from a low height.
  • the RPAS can have a sound receiver and a speaker, which allows the rescue post to send voice instructions.
  • the rescue system supports both a single-position configuration (a single RPAS) and a configuration with multiple RPAS that work in cooperation to cover a wider coastal area.
  • a single RPAS single-position configuration
  • RPAS multiple RPAS that work in cooperation to cover a wider coastal area.
  • the exact position of the person in danger of drowning is determined by a control system located at the rescue station on the ground, supported by other systems as described in this document.
  • This service consists of a human component (first responders, medical personnel, etc.) and a set of material resources, such as inflatable boats, jet skis or individual assistance systems (personal floats, life jackets, etc.) that the lifeguard makes reach the person in danger of drowning either by swimming or using motorized resources such as those already mentioned.
  • material resources such as inflatable boats, jet skis or individual assistance systems (personal floats, life jackets, etc.) that the lifeguard makes reach the person in danger of drowning either by swimming or using motorized resources such as those already mentioned.
  • these means require a total performance of the human component at all times and can be slow.
  • the time needed to reach the person in danger of drowning a first aid for their survival depends on factors such as the orography of the coastal area, availability of nearby rescue boats, distance from the relief team to the media and the area where the person is in danger of drowning, etc.
  • Coastal maritime rescue services based on observation towers and lifeguards on land, must cover extensive coastal areas, to provide assistance to bathers and other users in positions relatively close to the coast.
  • the time that elapses since a lifeguard locates a person in danger of drowning until he receives help at sea is a critical factor, since it its survival depends in many cases.
  • This response time can also be strongly influenced by the orography of the area, such as the presence of rocks and other obstacles.
  • the invention presented here optimizes the response time by using RPAS that immediately and directly carry a first aid to the person in danger of drowning in the form of an automatic inflation lifejacket.
  • This invention makes it possible to eliminate some of the factors that do delay the classic method (usually consisting of motorized inflatable boats, or jet skis) from the response time of a rescue system, such as terrain orography or preparation time or the availability of the rescue boat.
  • the RPAS can arrive in a straight line to the position of the person in danger of drowning or vessel at risk, regardless of the obstacles that are in that path, and that are easily avoidable by adjusting of the flight height on the way.
  • the present invention by its characteristics, optimizes the time needed to reach the person in danger of drowning a first aid, in the form of a personal rescue device, until the rescue personnel who come to their rescue can arrive.
  • the rescue system consists of at least one robotic flying device, RPAS (drone, multicopter or others), with a flight device subsystem that manages its transfer to the emergency point indicated by a rescue client subsystem which is the in charge of identifying the emergency position and transmitting the coordinates to the RPAS through a communications subsystem, for example wireless.
  • the flight device subsystem also decides on the release of the relief load.
  • the rescue client subsystem can calculate the emergency coordinates.
  • the rescue client subsystem comprises a base microphone and a wireless sound transmission system
  • the flight device subsystem comprises a wireless audio receiver connected to a speaker.
  • the flight device subsystem has a camcorder and a wireless audio / video transmission system for broadcast to a video / audio receiver arranged in the rescue client subsystem, which issues it by a lifeguard computer or control center.
  • the camcorder can be mounted on a self-stabilized stand by means of an electronic management unit, and comprise night vision means.
  • the RPAS may have elements that facilitate its location, by the person at risk (which gives certainty that the relief is coming soon) or by the emergency services that come to rescue the person at risk, who They can locate it more easily. These can be strobe lights or the speaker itself. DESCRIPTION OF THE DRAWINGS
  • Figure 1 General view of the system of the invention where its main components are indicated.
  • Figure 2 Diagram of the components of an RPAS of the flight device subsystem.
  • Figure 3 Enlarged view of the different components of the rescue client subsystem.
  • each RPAS corresponds to a multicopter.
  • the embodiment of the system of the invention shown in Figure 1 of this document preferably comprises the following main elements:
  • the emergency material will normally be a quick-inflation life jacket, preferably that it automatically inflates on contact with water or shortly after be launched by the RPAS (4), although it may include other salvage elements and auxiliary equipment such as flares or signaling buoys, concentrated foods or isotonic liquid, etc.
  • the RPAS (4) will incorporate all the necessary elements to receive the flight parameters when they are in the ground base, preferably wirelessly. This allows you to quickly program the RPAS (4) and then start the support mission.
  • This will consist of a microcontrolled system for wireless reception of flight parameters (100). This system will be based on a microprocessor board that is mounted on the RPAS itself (4), with connection to the system network (Wifi or equivalent technology), and that makes these parameters available to the navigation control system.
  • the RPAS (4) may autonomously reach the point where the person is in danger of drowning, to maintain the position on it and then return to the base station.
  • This will consist of a navigation control system (110) based on a GPS (111) or other geolocation system (radio beacons, ).
  • the system can follow a route based on the coordinates it receives on land.
  • the RPAS (4) will be able to send in real time a video image (with sound) of the area where the person is in danger of drowning (taken from the flight position).
  • a digital camcorder (120) preferably with a remotely manipulable zoom, for example through the flight control system (180) from the user interface, or an automatic zoom that regulates the image once identified by a operator or by an image recognition system the person at risk. It is recommended that you understand night vision elements.
  • the camcorder (120) will preferably be mounted on a self-stabilized support (121) by means of an electronic administration unit (122) and may have a microphone.
  • the RPAS (4) will comprise a wireless audio / video transmission system (130).
  • the receivers will be installed in the rescue client subsystems (2), thus providing the image and sound from the RPAS (4) on the computer of the rescue client subsystem.
  • the RPAS (4) will also allow you to receive a sound stream wirelessly and play it through a self-powered speaker (140) or connected to a small integrated amplifier (142).
  • the RPAS (4) will comprise a wireless audio receiver (141), which will receive the sound from the base microphone of the lifeguard who activated the mission or the control center.
  • the person in danger of drowning can receive instructions, and know that relief is on its way.
  • the load securing system (150) will be electronically controlled to release the load, usually of a small size, by means of servomotors that will release the retentions.
  • the servomotors will be controlled from the flight control system (180), by means of specific channels for it so that they do not interfere with the other functions of the flight control system (180). It is advisable to facilitate the visual location of the RPAS (4), already simple because of its low flight height, using one or more strobe lights (160) all horizon, and eventual sounds through the speaker (140).
  • the RPAS (4) will comprise the consequent engines (170) activated and controlled by the engine control system (171), at the command of the flight control system (180), as well as the corresponding power supply of all systems .
  • the lifeguard uses a rescue client subsystem (2) to determine the exact position of the person in danger of drowning who is sighting through his observation binoculars, (200), which preferably will have laser telemetry and compass or compass to correctly locate the emergency coordinates from the position, known, of the lifeguard post or observation tower.
  • the distance and orientation will be introduced by the lifeguard, or transmitted directly by the observation binoculars (200), on a computer (210), tablet digital or similar instrument, client with the control software to calculate the GPS coordinates of the emergency, and calculate the flight parameters, (altitude, destination, base station of return, maintenance of rescue position) to be sent to the device subsystem of flight (1).
  • the user interface should be simple to enter the fundamental orders without requiring great training.
  • the computer (210) will select the RPAS (4), if more than one is available, which will perform the service. Normally the one that identifies the person closest to the danger, or more prepared according to the parameters of the emergency (number of people, ...) or the state of the RPAS (4).
  • the computer (210) will have access to the RPAS database (4) of the system (resident concurrently in all client computers), to have the units that are currently operational and their conditions of loading and fuel or battery If any RPAS (4) is not operational (for example for maintenance reasons) it will be marked in the database as "non-operational". Likewise, if an RPAS (4) is performing a service, or must replace its load, it is marked during the duration of the mission as "non-operational", thus avoiding that a new support service that coincides with time may attempt to use an RPAS (4) already in service or empty.
  • the computer (210) will also proceed to the wireless transmission of data to the microcontrolled system of wireless reception of flight parameters (100) of the RPAS (4) chosen to perform the service.
  • the rescue client subsystem (2) will comprise a video / audio receiver (220) that receives from the RPAS (4) active the image and audio of the camcorder (120) located on board.
  • the video / audio receiver (220) is connected to the computer (210) that will display the video flow on the screen and provide the sound coming from the RPAS (4), preferably filtered to reduce the noise of the RPAS motors (4).
  • the invention will allow the person at risk to give information about their situation (cramps, hypothermia, wounds, ).
  • the RPAS (4) has a loudspeaker (140), and wireless sound transmission system (231)
  • the lifeguard can communicate with the person in danger of remote drowning, giving instructions and safety of his prompt assistance by his own base microphone (230).
  • the communications subsystem (3) will be formed by a wireless network that covers the land area that comprises the previous subsystems. Its mission is to maintain connectivity between the rescue client subsystems (2) and the flight device subsystems (1) of the RPAS (4) when they are on the ground (to program their flight plan and give the order to initiate the rescue service). A private network with Wifi or similar technology perfectly covers the needs of the robotic assistance system for coastal maritime rescue.
  • the communications subsystem (3) may be carried out by radio in the event of changing the emergency coordinates during the RPAS trip (4) to the emergency point, for example because the tide or currents have dragged the person in situation of emergency.
  • Example of operating mode Example of operating mode:
  • the client computer (210) of the rescue client subsystem (2) located in the lifeguard's observation tower calculates, based on these two data and the known GPS position (Global Positioning System) of the observer lifeguard, the swimmer's GPS position observed. In addition, it calculates the distance from each of the base stations where the RPAS (4) of the flight device subsystem (positions also known) are located to the person in danger of drowning, automatically choosing from this data the RPAS (4 ) closest available.
  • the computer (210) generates the flight parameters, sending them via the communications system (3) (a Wifi network) to the selected RPAS (4), which is programmed and begins the mission immediately, moving in a straight line to the place of the incident.
  • the load with the life jacket or other rescue device is released from the RPAS (4).
  • the lifeguard can see the swimmer using the RPAS camcorder (120) (4), and can instruct him by voice from the observation post.
  • the vest or other rescue device is automatically inflated, using the bottle of compressed air that it incorporates (this vest is an existing product in the market).
  • the RPAS (4) can remain in flight at the place of the incident, either static if it is a multicopter, or in circles if it is another type of drone, until a rescue boat or motorcycle arrives, thus facilitating these means to arrive at the scene of the incident by directly observing the position held by the RPAS (4), which also incorporates a strobe light pilot (160) to facilitate Your sighting Finally, the RPAS (4) returns to its base, thus terminating that rescue mission.
  • RPAS (4) it is also possible to place a plurality of RPAS (4) on a single base per beach, so that the rescue client subsystem (2) transmits to that base the azimuth and distance, as well as the position of the lifeguard (which can be detected by a geolocation system specific to the lifeguard or by the coordinates of his observation tower), and this base includes the RPAS and emergency monitoring equipment.
  • a single control center could manage several RPAS (4) and remotely manage emergency equipment over a long coastline. In this way, the lifeguard is released to remain alert to new emergencies, or to go by their means to attend to the person or people at risk.
  • control center will be able to respond to emergencies farther from the coast (within the scope of the RPAS (4)) that are received by other means, such as distress calls from vessels transferred by Maritime Rescue, which normally already will have obtained the coordinates of the emergency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Alarm Devices (AREA)
  • Alarm Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention relates to a rescue system, for emergencies close to the coast, comprising: at least one flying automated device, RPAS (4) (drone, multicopter etc.); a client rescue sub-system (2) that identifies the position of the emergency and transmits the coordinates to the RPAS (4), said RPAS having a sub-system (1) of flying devices that manages the transfer thereof to the point of the emergency, and the release of the aid cargo; and a, for example wireless, communications sub-system (3) between the two. The position of the emergency can be calculated on the basis of the azimuth and distance measurements calculated by observation binoculars (200). The RPAS (4) can comprise a video camera (120), speaker (140) or strobe lights (160).

Description

DESCRIPCIÓN  DESCRIPTION
SISTEMA DE SALVAMENTO SECTOR DE LA TÉCNICA SALVAMENTO SYSTEM SECTOR OF THE TECHNIQUE
La presente invención se refiere a un sistema completo, capaz de hacer llegar a una persona en peligro de ahogamiento (bañistas, tripulantes de flotadores, pequeñas embarcaciones, etc.) material de emergencia como un chaleco salvavidas, desde una base o un puesto de salvamento localizado en tierra, mediante un dispositivo robotizado volador, denominado científicamente RPAS (Remotely Piloted Aerial/Aircraft/Air System) y que adopta en la sociedad en general nombres como UAV, UAS, VANT, multicóptero o drone, según su variante (en adelante se adoptará el nombre genérico de RPAS). El sistema es capaz de llegar al punto exacto donde se encuentra la persona en peligro de ahogamiento de forma automática, mantener el vuelo sobre su posición y lanzar el material de emergencia en el punto preciso donde se encuentra. El RPAS puede disponer de una cámara de vídeo que envía al puesto de salvamento en tierra una imagen (preferiblemente con sonido) en tiempo real de la persona en peligro de ahogamiento desde baja altura. Al mismo tiempo, el RPAS puede disponer de un receptor de sonido y un altavoz, que permite al puesto de salvamento enviar instrucciones de voz. The present invention relates to a complete system, capable of reaching a person in danger of drowning (bathers, float crew, small boats, etc.) emergency equipment such as a life jacket, from a base or a rescue post located on the ground, by means of a robotic flying device, scientifically called RPAS (Remotely Piloted Aerial / Aircraft / Air System) and that adopts in society in general names such as UAV, UAS, VANT, multicopter or drone, according to its variant (hereinafter will adopt the generic name of RPAS). The system is able to reach the exact point where the person is in danger of drowning automatically, keep the flight over its position and launch the emergency material at the precise point where it is located. The RPAS may have a video camera that sends a real-time image (preferably with sound) to the ground rescue station of the person in danger of drowning from a low height. At the same time, the RPAS can have a sound receiver and a speaker, which allows the rescue post to send voice instructions.
El sistema de salvamento admite tanto una configuración monopuesto (un único RPAS) como una configuración con múltiples RPAS que trabajan en cooperación para cubrir una zona de costa más amplia. La posición exacta de la persona en peligro de ahogamiento es fijada mediante un sistema de control situado en el puesto de salvamento en tierra, apoyado en otros sistemas tal y como se describe en este documento. The rescue system supports both a single-position configuration (a single RPAS) and a configuration with multiple RPAS that work in cooperation to cover a wider coastal area. The exact position of the person in danger of drowning is determined by a control system located at the rescue station on the ground, supported by other systems as described in this document.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Tradicionalmente, el auxilio en las playas y zonas costeras de personas en peligro de ahogamiento, se realiza mediante personal especializado (socorristas) que cuenta con puestos de vigilancia situados a lo largo de la zona costera, y bajo la jurisdicción de los organismos pertinentes (en España normalmente Cruz Roja coordinada con Salvamento Marítimo) que cubren este servicio público. Traditionally, the help on the beaches and coastal areas of people in danger of drowning is carried out by specialized personnel (lifeguards) who have surveillance posts located along the coastal area, and under the jurisdiction of the relevant organizations (in Spain normally the Red Cross coordinated with Maritime Rescue) that cover this public service.
Este servicio está formado por un componente humano (socorristas, personal médico, etc.) y un conjunto de recursos materiales, tales como lanchas neumáticas, motos acuáticas o sistemas de asistencia individual (flotadores personales, chalecos salvavidas, etc.) que el socorrista hace llegar a la persona en peligro de ahogamiento bien a nado o usando recursos motorizados como los ya citados. No obstante, estos medios requieren en todo momento un total desempeño del componente humano y pueden ser lentos. El tiempo necesario para hacer llegar a la persona en peligro de ahogamiento una primera ayuda para su supervivencia depende de factores tales como la orografía de la zona costera, disponibilidad de lanchas de salvamento cercanas, distancia del equipo de socorro a los medios y a la zona donde se encuentra la persona en peligro de ahogamiento, etc. This service consists of a human component (first responders, medical personnel, etc.) and a set of material resources, such as inflatable boats, jet skis or individual assistance systems (personal floats, life jackets, etc.) that the lifeguard makes reach the person in danger of drowning either by swimming or using motorized resources such as those already mentioned. However, these means require a total performance of the human component at all times and can be slow. The time needed to reach the person in danger of drowning a first aid for their survival depends on factors such as the orography of the coastal area, availability of nearby rescue boats, distance from the relief team to the media and the area where the person is in danger of drowning, etc.
Igualmente en las costas se disponen equipos de recepción de señales de socorro de embarcaciones. Cuando se aprecia una, se envía una embarcación o helicóptero de asistencia que rescata o asiste a las personas en riesgo. Also on the coasts there are equipment for receiving distress signals from boats. When one is appreciated, an assistance boat or helicopter is sent that rescues or assists people at risk.
Esto conlleva un tiempo de respuesta que en ocasiones es demasiado. Igualmente, cuando la emergencia incluye condiciones adversas climatológicas, de mareas o de oleaje, pone en riesgo al personal que acude a la emergencia. El solicitante no conoce ningún sistema de salvamento costero o marítimo que aplique principios similares a los de la invención. This entails a response time that is sometimes too much. Likewise, when the emergency includes adverse weather, tidal or swell conditions, it puts at risk the personnel that comes to the emergency. The applicant does not know of any coastal or maritime rescue system that applies principles similar to those of the invention.
BREVE EXPLICACIÓN DE LA INVENCIÓN Los servicios de salvamento marítimo costero, basados en torres de observación y socorristas en tierra, deben cubrir extensas zonas costeras, para proporcionar un servicio de asistencia a los bañistas y otros usuarios en posiciones relativamente cercanas a la costa. El tiempo que transcurre desde que un socorrista localiza una persona en peligro de ahogamiento hasta que ésta recibe ayuda en el mar es un factor crítico, ya que de ello depende en muchos casos su supervivencia. Este tiempo de respuesta puede verse además fuertemente influenciado por la orografía de la zona, como por ejemplo la presencia de rocas y otros obstáculos. La invención que se presenta aquí optimiza el tiempo de respuesta mediante el uso de RPAS que llevan de forma inmediata y directa una primera ayuda a la persona en peligro de ahogamiento en forma de un chaleco salvavidas de inflado automático. BRIEF EXPLANATION OF THE INVENTION Coastal maritime rescue services, based on observation towers and lifeguards on land, must cover extensive coastal areas, to provide assistance to bathers and other users in positions relatively close to the coast. The time that elapses since a lifeguard locates a person in danger of drowning until he receives help at sea is a critical factor, since it its survival depends in many cases. This response time can also be strongly influenced by the orography of the area, such as the presence of rocks and other obstacles. The invention presented here optimizes the response time by using RPAS that immediately and directly carry a first aid to the person in danger of drowning in the form of an automatic inflation lifejacket.
Esta invención permite eliminar del tiempo de respuesta de un sistema de salvamento algunos de los factores que sí generan retraso en el método clásico (habitualmente consistente en lanchas neumáticas motorizadas, o motos acuáticas), como por ejemplo la orografía del terreno o el tiempo de preparación o la disponibilidad de la lancha de salvamento. This invention makes it possible to eliminate some of the factors that do delay the classic method (usually consisting of motorized inflatable boats, or jet skis) from the response time of a rescue system, such as terrain orography or preparation time or the availability of the rescue boat.
Desde el punto de vista de la orografía, el RPAS puede llegar en línea recta hasta la posición de la persona en peligro de ahogamiento o embarcación en riesgo, independientemente de los obstáculos que se encuentren en ese trayecto, y que son fácilmente evitables mediante el ajuste de la altura de vuelo en el trayecto. From the point of view of the orography, the RPAS can arrive in a straight line to the position of the person in danger of drowning or vessel at risk, regardless of the obstacles that are in that path, and that are easily avoidable by adjusting of the flight height on the way.
La presente invención, por sus características, optimiza el tiempo necesario para hacer llegar a la persona en peligro de ahogamiento una primera ayuda, en forma de un dispositivo personal de salvamento, hasta que pueda llegar el personal de salvamento que proceda a su rescate. The present invention, by its characteristics, optimizes the time needed to reach the person in danger of drowning a first aid, in the form of a personal rescue device, until the rescue personnel who come to their rescue can arrive.
Esto se realiza mediante un sistema informático en tierra (subsistema cliente de salvamento) que realiza los cálculos necesarios, y que programa y envía un RPAS de vuelo automático que lleva hasta la persona o personas en peligro de ahogamiento el material de emergencia, además de poder proporcionar al equipo de socorro una visión directa de la persona en peligro de ahogamiento mediante video en tiempo real, e incluso pudiéndole permitir dar instrucciones e información relevante a la persona en peligro o al resto de personal de salvamento. En las realizaciones más completas tiene un elevado grado de automatización, e incorpora todos los componentes hardware y software necesarios para que pueda ser manejado con facilidad por personal no especializado. La invención consta de los elementos que se definen en la reivindicación primera, aunque posee varías realizaciones secundarias como se indica en las reivindicaciones dependientes. En concreto, el sistema de salvamento consta de al menos un dispositivo robotizado volador, RPAS (drone, multicóptero u otros), con un subsistema de dispositivos de vuelo que gestiona su traslado al punto de emergencia señalado por un subsistema cliente de salvamento que es el encargado de identificar la posición de la emergencia y transmitir las coordenadas al RPAS por un subsistema de comunicaciones, por ejemplo inalámbrico. El subsistema de dispositivos de vuelo decide igualmente sobre la liberación de la carga de socorro. This is done through a computer system on the ground (rescue client subsystem) that performs the necessary calculations, and that programs and sends an automatic flight RPAS that brings emergency material to the person or persons in danger of drowning, in addition to being able to provide the relief team with a direct view of the person in danger of drowning through real-time video, and even allowing him to give relevant instructions and information to the person in danger or to other rescue personnel. In the most complete embodiments it has a high degree of automation, and incorporates all the necessary hardware and software components so that it can be easily handled by non-specialized personnel. The invention consists of the elements defined in the first claim, although it has several secondary embodiments as indicated in the dependent claims. Specifically, the rescue system consists of at least one robotic flying device, RPAS (drone, multicopter or others), with a flight device subsystem that manages its transfer to the emergency point indicated by a rescue client subsystem which is the in charge of identifying the emergency position and transmitting the coordinates to the RPAS through a communications subsystem, for example wireless. The flight device subsystem also decides on the release of the relief load.
Para la localización de la emergencia se puede disponer de unos prismáticos de observación con medios para detectar la distancia y acimut de la emergencia respecto del socorrista que los porta, los cuales forman parte del subsistema cliente de salvamento. Como éste subsistema conoce la posición del socorrista o torre de observación, por ser fijos o disponer de un sistema propio de geolocalización, el subsistema cliente de salvamento puede calcular las coordenadas de la emergencia. Preferentemente, el subsistema cliente de salvamento comprende un micrófono base y un sistema de transmisión inalámbrica de sonido, y el subsistema de dispositivos de vuelo comprende un receptor inalámbrico de audio conectado a un altavoz. For the location of the emergency observation binoculars can be provided with means to detect the distance and azimuth of the emergency with respect to the lifeguard who carries them, which are part of the rescue client subsystem. As this subsystem knows the position of the lifeguard or observation tower, because they are fixed or have their own geolocation system, the rescue client subsystem can calculate the emergency coordinates. Preferably, the rescue client subsystem comprises a base microphone and a wireless sound transmission system, and the flight device subsystem comprises a wireless audio receiver connected to a speaker.
Es igualmente preferido que el subsistema de dispositivos de vuelo posea una videocámara y un sistema de transmisión inalámbrica de audio/vídeo para su emisión a un receptor de vídeo/audio dispuesto en el subsistema cliente de salvamento, que lo emite por un ordenador del socorrista o centro de control. La videocámara puede estar montada en un soporte autoestabilizado mediante una unidad de administración electrónica, y comprender medios de visión nocturna. It is also preferred that the flight device subsystem has a camcorder and a wireless audio / video transmission system for broadcast to a video / audio receiver arranged in the rescue client subsystem, which issues it by a lifeguard computer or control center. The camcorder can be mounted on a self-stabilized stand by means of an electronic management unit, and comprise night vision means.
Además, el RPAS podrá disponer de elementos que faciliten su localización, por la persona en riesgo (lo cual se da seguridad de que el socorro va a venir pronto) o por los servicios de emergencia que acudan a rescatar a la persona en riesgo, que podrán localizar a ésta más fácilmente. Estos pueden ser unas luces estroboscópicas o el propio altavoz. DESCRIPCIÓN DE LOS DIBUJOS In addition, the RPAS may have elements that facilitate its location, by the person at risk (which gives certainty that the relief is coming soon) or by the emergency services that come to rescue the person at risk, who They can locate it more easily. These can be strobe lights or the speaker itself. DESCRIPTION OF THE DRAWINGS
Para una mejor comprensión de la invención, se incluyen las siguientes figuras. Figura 1. Vista general del sistema de la invención donde se señalan sus componentes principales. For a better understanding of the invention, the following figures are included. Figure 1. General view of the system of the invention where its main components are indicated.
Figura 2. Esquema de los componentes de un RPAS del subsistema de dispositivos de vuelo. Figure 2. Diagram of the components of an RPAS of the flight device subsystem.
Figura 3. Vista ampliada de los diferentes componentes del subsistema cliente de salvamento. Figure 3. Enlarged view of the different components of the rescue client subsystem.
MODOS DE REALIZACIÓN DE LA INVENCIÓN EMBODIMENTS OF THE INVENTION
A continuación se pasa a describir de manera breve un modo de realización de la invención, como ejemplo ilustrativo y no limitativo de ésta, con referencia a las figuras adjuntas, en las que cada RPAS corresponde a un multicóptero. La realización del sistema de la invención que se muestra en la figura 1 del presente documento comprende, preferentemente, los siguientes elementos principales: Next, an embodiment of the invention is briefly described, as an illustrative and non-limiting example thereof, with reference to the attached figures, in which each RPAS corresponds to a multicopter. The embodiment of the system of the invention shown in Figure 1 of this document preferably comprises the following main elements:
Subsistema de dispositivos de vuelo (1 ).  Flight device subsystem (1).
Subsistema cliente de salvamento (2).  Rescue customer subsystem (2).
Subsistema de comunicaciones (3)  Communications Subsystem (3)
Subsistema de dispositivos de vuelo (1) Flight device subsystem (1)
Es el subsistema que gestiona el RPAS (4), dirigiéndole al punto de emergencia y decidiendo dónde y cuándo se libera la carga con el material de emergencia. Éste será lanzado preferentemente a baja altura para controlar mejor el punto de caída. Esta altura podrá ser configurada desde el subsistema cliente de salvamento en función de las condiciones climatológicas. Una situación de viento fuerte requerirá una altura menor, aunque tampoco demasiado baja para no poner en riesgo el RPAS (4) lo cual impediría la asistencia a la persona en peligro. El material de emergencia será normalmente un chaleco salvavidas de inflado rápido, preferentemente que se infle automáticamente al contacto con el agua o al poco rato de ser lanzado por el RPAS (4), aunque puede comprender otros elementos de salvamento y equipo auxiliar como bengalas o boyas de señalización, alimentos concentrados o líquido isotónico, etc. Por su parte, los RPAS (4) incorporarán todos los elementos necesarios para recibir los parámetros de vuelo cuando se encuentre en la base de tierra, preferentemente de forma inalámbrica. Esto permite programar rápidamente el RPAS (4) y seguidamente iniciar la misión de apoyo. Para ello constará de un sistema microcontrolado de recepción inalámbrica de parámetros de vuelo (100). Este sistema se basará en una placa con microprocesador que se monta en el propio RPAS (4), con conexión a la red del sistema (Wifi o tecnología equivalente), y que hace llegar al sistema de control de navegación estos parámetros. It is the subsystem that manages the RPAS (4), directing it to the emergency point and deciding where and when the cargo is released with the emergency material. This will preferably be launched at a low height to better control the drop point. This height can be configured from the rescue client subsystem depending on the weather conditions. A strong wind situation will require a lower height, but not too low to avoid putting the RPAS at risk (4) which would prevent assistance to the person in danger. The emergency material will normally be a quick-inflation life jacket, preferably that it automatically inflates on contact with water or shortly after be launched by the RPAS (4), although it may include other salvage elements and auxiliary equipment such as flares or signaling buoys, concentrated foods or isotonic liquid, etc. For their part, the RPAS (4) will incorporate all the necessary elements to receive the flight parameters when they are in the ground base, preferably wirelessly. This allows you to quickly program the RPAS (4) and then start the support mission. This will consist of a microcontrolled system for wireless reception of flight parameters (100). This system will be based on a microprocessor board that is mounted on the RPAS itself (4), with connection to the system network (Wifi or equivalent technology), and that makes these parameters available to the navigation control system.
El RPAS (4) podrá llegar de forma autónoma al punto donde se encuentra la persona en peligro de ahogamiento, para mantener la posición sobre ella y regresar luego a la estación base. Para ello constará de un sistema de control de navegación (110) basado en un GPS (111 ) u otro sistema de geolocalización (radiobalizas,... ). El sistema puede seguir una ruta en base a las coordenadas que recibe en tierra. Preferentemente, el RPAS (4) estará capacitado para enviar en tiempo real una imagen de vídeo (con sonido) de la zona donde se encuentra la persona en peligro de ahogamiento (tomada desde la posición de vuelo). The RPAS (4) may autonomously reach the point where the person is in danger of drowning, to maintain the position on it and then return to the base station. This will consist of a navigation control system (110) based on a GPS (111) or other geolocation system (radio beacons, ...). The system can follow a route based on the coordinates it receives on land. Preferably, the RPAS (4) will be able to send in real time a video image (with sound) of the area where the person is in danger of drowning (taken from the flight position).
Para ello contará con una videocámara (120) digital, preferiblemente con un zoom manipulable remotamente, por ejemplo a través del sistema de control de vuelo (180) desde la interfaz de usuario, o un zoom automático que regule la imagen una vez identificado por un operador o por un sistema de reconocimiento de imágenes la persona en riesgo. Es recomendable que comprenda elementos de visión nocturna. La videocámara (120) estará preferentemente montada en un soporte autoestabilizado (121 ) mediante una unidad de administración electrónica (122) y podrá disponer de micrófono. For this, it will have a digital camcorder (120), preferably with a remotely manipulable zoom, for example through the flight control system (180) from the user interface, or an automatic zoom that regulates the image once identified by a operator or by an image recognition system the person at risk. It is recommended that you understand night vision elements. The camcorder (120) will preferably be mounted on a self-stabilized support (121) by means of an electronic administration unit (122) and may have a microphone.
Esto proporciona una estabilización en dos ejes de la videocámara (120), lo cual permite obtener imágenes muy nítidas y detalladas de la zona donde está la persona en peligro de ahogamiento que requiere ayuda. Para ello, el RPAS (4) comprenderá un sistema de transmisión inalámbrica de audio/vídeo (130). Los receptores estarán instalados en los subsistemas cliente de salvamento (2), proporcionando así la imagen y sonido provenientes del RPAS (4) en el ordenador del subsistema cliente de salvamento. This provides a two-axis stabilization of the camcorder (120), which allows to obtain very sharp and detailed images of the area where the person is in danger of drowning who needs help. For this, the RPAS (4) will comprise a wireless audio / video transmission system (130). The receivers will be installed in the rescue client subsystems (2), thus providing the image and sound from the RPAS (4) on the computer of the rescue client subsystem.
EL RPAS (4) también permitirá recibir un flujo de sonido de forma inalámbrica y reproducirlo mediante un altavoz (140) autoamplificado o conectado a un amplificador integrado (142) de pequeño tamaño. Para ello, el RPAS (4) comprenderá un receptor inalámbrico de audio (141 ), que recibirá el sonido desde el micrófono base del socorrista que activó la misión o del centro de control. Así, la persona en peligro de ahogamiento puede recibir instrucciones, y saber que el socorro está en camino. The RPAS (4) will also allow you to receive a sound stream wirelessly and play it through a self-powered speaker (140) or connected to a small integrated amplifier (142). For this, the RPAS (4) will comprise a wireless audio receiver (141), which will receive the sound from the base microphone of the lifeguard who activated the mission or the control center. Thus, the person in danger of drowning can receive instructions, and know that relief is on its way.
El sistema de sujeción de la carga (150) será controlado electrónicamente para soltar la carga, normalmente de pequeño tamaño, mediante servomotores que liberarán las retenciones. Los servomotores estarán controlados desde el sistema de control de vuelo (180), por medio de canales específicos para ello para que no interfieran con el resto de funciones del sistema de control de vuelo (180). Es recomendable facilitar la localización visual del RPAS (4), ya de por sí sencilla por su poca altura de vuelo, mediante una o más luces estroboscópicas (160) todo horizonte, y eventuales sonidos por el altavoz (140). The load securing system (150) will be electronically controlled to release the load, usually of a small size, by means of servomotors that will release the retentions. The servomotors will be controlled from the flight control system (180), by means of specific channels for it so that they do not interfere with the other functions of the flight control system (180). It is advisable to facilitate the visual location of the RPAS (4), already simple because of its low flight height, using one or more strobe lights (160) all horizon, and eventual sounds through the speaker (140).
El RPAS (4) comprenderá los consiguientes motores (170) activados y controlados por el sistema de control de motores (171 ), a las órdenes del sistema de control de vuelo (180), así como la correspondiente fuente de alimentación de todos los sistemas. The RPAS (4) will comprise the consequent engines (170) activated and controlled by the engine control system (171), at the command of the flight control system (180), as well as the corresponding power supply of all systems .
Subsistema cliente de salvamento (2) Rescue customer subsystem (2)
El socorrista usa un subsistema cliente de salvamento (2) para determinar la posición exacta de la persona en peligro de ahogamiento que está avistando mediante sus prismáticos de observación, (200), que preferentemente dispondrán de telemetría láser y brújula o compás para localizar correctamente las coordenadas de la emergencia a partir de la posición, conocida, del puesto de socorrista o torre de observación. La distancia y orientación serán introducidas por el socorrista, o transmitidas directamente por los prismáticos de observación (200), en un ordenador (210), tableta digital o instrumento similar, cliente con el software de control para calcular las coordenadas GPS de la emergencia, y calcular los parámetros de vuelo, (altitud, destino, estación base de regreso, mantenimiento de posición de salvamento) a enviar al subsistema de dispositivos de vuelo (1 ). The lifeguard uses a rescue client subsystem (2) to determine the exact position of the person in danger of drowning who is sighting through his observation binoculars, (200), which preferably will have laser telemetry and compass or compass to correctly locate the emergency coordinates from the position, known, of the lifeguard post or observation tower. The distance and orientation will be introduced by the lifeguard, or transmitted directly by the observation binoculars (200), on a computer (210), tablet digital or similar instrument, client with the control software to calculate the GPS coordinates of the emergency, and calculate the flight parameters, (altitude, destination, base station of return, maintenance of rescue position) to be sent to the device subsystem of flight (1).
La interfaz de usuario deberá ser sencilla para introducir las órdenes fundamentales sin requerir gran formación. The user interface should be simple to enter the fundamental orders without requiring great training.
El ordenador (210) seleccionará el RPAS (4), en caso de disponer de más de uno, que realizará el servicio. Normalmente el que identifica como más cercano a la persona en peligro, o más preparado según los parámetros de la emergencia (número de personas,... ) o el estado de los RPAS (4). The computer (210) will select the RPAS (4), if more than one is available, which will perform the service. Normally the one that identifies the person closest to the danger, or more prepared according to the parameters of the emergency (number of people, ...) or the state of the RPAS (4).
El ordenador (210) tendrá acceso a la base de datos de los RPAS (4) del sistema (residente de forma concurrente en todos los ordenadores cliente), para disponer de las unidades que están operativas en ese momento y sus condiciones de carga y combustible o batería. Si algún RPAS (4) no está operativo (por ejemplo por razones de mantenimiento) se marcará en la base de datos como "no operativo". Asimismo, si un RPAS (4) está realizando un servicio, o debe reponer su carga, se marca durante el tiempo que dure la misión como "no operativo", evitándose así que un nuevo servicio de apoyo que coincida en el tiempo pueda intentar utilizar un RPAS (4) ya en servicio o vacío. El ordenador (210) también procederá a la transmisión inalámbrica de datos al sistema microcontrolado de recepción inalámbrica de parámetros de vuelo (100) del RPAS (4) elegido para realizar el servicio. The computer (210) will have access to the RPAS database (4) of the system (resident concurrently in all client computers), to have the units that are currently operational and their conditions of loading and fuel or battery If any RPAS (4) is not operational (for example for maintenance reasons) it will be marked in the database as "non-operational". Likewise, if an RPAS (4) is performing a service, or must replace its load, it is marked during the duration of the mission as "non-operational", thus avoiding that a new support service that coincides with time may attempt to use an RPAS (4) already in service or empty. The computer (210) will also proceed to the wireless transmission of data to the microcontrolled system of wireless reception of flight parameters (100) of the RPAS (4) chosen to perform the service.
El subsistema cliente de salvamento (2) comprenderá un receptor de vídeo/audio (220) que recibe desde el RPAS (4) en activo la imagen y el audio de la videocámara (120) situada a bordo. El receptor de vídeo/audio (220) está conectado al ordenador (210) que mostrará en pantalla el flujo de vídeo y proporcionado el sonido proveniente del RPAS (4), preferiblemente filtrado para reducir el ruido de los motores del RPAS (4). Así, la invención permitirá a la persona en riesgo dar información de su situación (calambres, hipotermia, heridas,... ). Cuando el RPAS (4) disponga de altavoz (140), y sistema de transmisión inalámbrica de sonido (231 ) el socorrista podrá comunicarse con la persona en peligro de ahogamiento a distancia, dándole instrucciones y seguridad de su pronta asistencia por su propio micrófono base (230). The rescue client subsystem (2) will comprise a video / audio receiver (220) that receives from the RPAS (4) active the image and audio of the camcorder (120) located on board. The video / audio receiver (220) is connected to the computer (210) that will display the video flow on the screen and provide the sound coming from the RPAS (4), preferably filtered to reduce the noise of the RPAS motors (4). Thus, the invention will allow the person at risk to give information about their situation (cramps, hypothermia, wounds, ...). When the RPAS (4) has a loudspeaker (140), and wireless sound transmission system (231), the lifeguard can communicate with the person in danger of remote drowning, giving instructions and safety of his prompt assistance by his own base microphone (230).
Subsistema de comunicaciones (3) Communications Subsystem (3)
El subsistema de comunicaciones (3) estará formado por una red inalámbrica que abarca la zona terrestre que comprende los subsistemas anteriores. Su misión es mantener la conectividad entre los subsistemas cliente de salvamento (2) y los subsistemas de dispositivos de vuelo (1) de los RPAS (4) cuando se encuentran en tierra (para programar su plan de vuelo y dar la orden de iniciar el servicio de salvamento). Una red privada con tecnología Wifi o similar cubre perfectamente las necesidades del sistema robotizado de asistencia para salvamento marítimo costero. El subsistema de comunicaciones (3) podrá realizarse por radio en caso de preverse el cambio de coordenadas de la emergencia durante el viaje del RPAS (4) al punto de emergencia, por ejemplo porque la marea o las corrientes hayan arrastrado a la persona en situación de emergencia. Ejemplo de modo de funcionamiento:  The communications subsystem (3) will be formed by a wireless network that covers the land area that comprises the previous subsystems. Its mission is to maintain connectivity between the rescue client subsystems (2) and the flight device subsystems (1) of the RPAS (4) when they are on the ground (to program their flight plan and give the order to initiate the rescue service). A private network with Wifi or similar technology perfectly covers the needs of the robotic assistance system for coastal maritime rescue. The communications subsystem (3) may be carried out by radio in the event of changing the emergency coordinates during the RPAS trip (4) to the emergency point, for example because the tide or currents have dragged the person in situation of emergency. Example of operating mode:
Cuando un socorrista, desde una torre de observación, avista con los prismáticos de observación (200), que un bañista u otro usuario puede requerir auxilio en el agua, marca la distancia desde su puesto de observación haciendo uso del telémetro láser integrado en los prismáticos (estos prismáticos son un producto ya existente en el estado de la técnica). A la vez, se marca el ángulo de observación o acimut, valor que proporciona un compás electrónico que se coloca sobre la carcasa de los prismáticos, tal y como se muestra en la figura 1.  When a lifeguard, from an observation tower, sighs with the observation binoculars (200), that a swimmer or other user may require assistance in the water, mark the distance from their observation post using the laser rangefinder integrated in the binoculars (These binoculars are a product already existing in the state of the art). At the same time, the observation angle or azimuth is marked, a value provided by an electronic compass that is placed on the binoculars housing, as shown in Figure 1.
El ordenador (210) cliente del subsistema cliente de salvamento (2) situado en la torre de observación del socorrista calcula, a partir de estos dos datos y de la posición conocida GPS (Global Positioning System) del socorrista observador, la posición GPS del bañista observado. Además, calcula la distancia desde cada uno de los puestos base donde están situados los RPAS (4) del subsistema de dispositivos de vuelo (posiciones también conocidas) hasta la persona en peligro de ahogamiento, eligiendo automáticamente a partir de estos datos el RPAS (4) más cercano disponible. El ordenador (210) genera los parámetros de vuelo, enviándolos mediante el sistema de comunicaciones (3) (una red Wifi) al RPAS (4) seleccionado, que queda programado y comienza la misión de forma inmediata, desplazándose en línea recta hasta el lugar del incidente. The client computer (210) of the rescue client subsystem (2) located in the lifeguard's observation tower calculates, based on these two data and the known GPS position (Global Positioning System) of the observer lifeguard, the swimmer's GPS position observed. In addition, it calculates the distance from each of the base stations where the RPAS (4) of the flight device subsystem (positions also known) are located to the person in danger of drowning, automatically choosing from this data the RPAS (4 ) closest available. The computer (210) generates the flight parameters, sending them via the communications system (3) (a Wifi network) to the selected RPAS (4), which is programmed and begins the mission immediately, moving in a straight line to the place of the incident.
Una vez que llega sobre la posición de la persona en peligro de ahogamiento, la carga con el chaleco salvavidas u otro dispositivo de salvamento se suelta del RPAS (4). El socorrista puede ver al bañista mediante la videocámara (120) del RPAS (4), y puede darle instrucciones mediante voz desde el puesto de observación. Una vez en contacto con el agua, el chaleco (u otro dispositivo de salvamento) se infla de forma automática, mediante la botella de aire comprimido que incorpora (este chaleco es un producto ya existente en el mercado). Once it reaches the position of the person in danger of drowning, the load with the life jacket or other rescue device is released from the RPAS (4). The lifeguard can see the swimmer using the RPAS camcorder (120) (4), and can instruct him by voice from the observation post. Once in contact with water, the vest (or other rescue device) is automatically inflated, using the bottle of compressed air that it incorporates (this vest is an existing product in the market).
Si el socorrista o centro de control así lo indica en el ordenador mediante la interfaz de usuario, el RPAS (4) puede permanecer en vuelo en el lugar del incidente, ya sea estático si es un multicóptero, o en círculos si es otro tipo de drone, hasta que llegue una lancha o moto de salvamento, facilitando así a estos medios llegar al lugar del incidente mediante la observación directa de la posición que mantiene el RPAS (4), que incorpora también un piloto de luces estroboscópicas (160) para facilitar su avistamiento. Finalmente, el RPAS (4) regresa a su base, dándose así por concluida esa misión de salvamento. If the lifeguard or control center so indicates on the computer through the user interface, the RPAS (4) can remain in flight at the place of the incident, either static if it is a multicopter, or in circles if it is another type of drone, until a rescue boat or motorcycle arrives, thus facilitating these means to arrive at the scene of the incident by directly observing the position held by the RPAS (4), which also incorporates a strobe light pilot (160) to facilitate Your sighting Finally, the RPAS (4) returns to its base, thus terminating that rescue mission.
Es igualmente posible situar una pluralidad de RPAS (4) en una única base por playa, de forma que el subsistema cliente de salvamento (2) transmita a esa base el acimut y distancia, así como la posición del socorrista (que puede ser detectada por un sistema de geolocalización propio al socorrista o por las coordenadas de su torre de observación), y esta base comprenda el equipo de seguimiento del RPAS y de la emergencia. Un único centro de control podría gestionar varios RPAS (4) y manejar a distancia los equipos de emergencia de una gran longitud de costa. De esta forma, el socorrista queda liberado para seguir alerta a nuevas emergencias, o para acudir por sus medios a atender a la persona o personas en riesgo. It is also possible to place a plurality of RPAS (4) on a single base per beach, so that the rescue client subsystem (2) transmits to that base the azimuth and distance, as well as the position of the lifeguard (which can be detected by a geolocation system specific to the lifeguard or by the coordinates of his observation tower), and this base includes the RPAS and emergency monitoring equipment. A single control center could manage several RPAS (4) and remotely manage emergency equipment over a long coastline. In this way, the lifeguard is released to remain alert to new emergencies, or to go by their means to attend to the person or people at risk.
Igualmente, el centro de control estará capacitado para atender emergencias más lejanas a la costa (dentro del radio de acción del RPAS (4)) que se reciban por otros medios, como llamadas de socorro de embarcaciones transferidas por Salvamento Marítimo, el cual normalmente ya habrá obtenido las coordenadas de la emergencia. Likewise, the control center will be able to respond to emergencies farther from the coast (within the scope of the RPAS (4)) that are received by other means, such as distress calls from vessels transferred by Maritime Rescue, which normally already will have obtained the coordinates of the emergency.

Claims

REIVINDICACIONES
1- Sistema de salvamento para emergencias próximas a la costa, caracterizado por que comprende al menos un dispositivo robotizado volador, RPAS (4); un subsistema cliente de salvamento (2) que identifica la posición de la emergencia y transmite las coordenadas al RPAS (4), el cual posee un subsistema de dispositivos de vuelo (1 ) que gestiona su traslado al punto de emergencia y la liberación de la carga de socorro, y un subsistema de comunicaciones (3) entre ambos. 2- Sistema de salvamento, según la reivindicación primera, caracterizado en que el RPAS (4) es un multicóptero. 1- Rescue system for emergencies near the coast, characterized in that it comprises at least one robotic flying device, RPAS (4); a rescue client subsystem (2) that identifies the emergency position and transmits the coordinates to the RPAS (4), which has a flight device subsystem (1) that manages its transfer to the emergency point and the release of the relief load, and a communications subsystem (3) between the two. 2- Rescue system according to claim one, characterized in that the RPAS (4) is a multicopter.
3- Sistema de salvamento, según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema cliente de salvamento (2) comprende unos prismáticos de observación (200) con medios para detectar la distancia y acimut de la emergencia respecto del socorrista o torre de observación. 3- Rescue system, according to any of the preceding claims, characterized in that the rescue client subsystem (2) comprises observation binoculars (200) with means for detecting the distance and azimuth of the emergency with respect to the lifeguard or observation tower .
4- Sistema de salvamento, según la reivindicación 3, caracterizado por que el subsistema cliente de salvamento (2) calcula las coordenadas de la emergencia a partir de la distancia y el acimut, así como la posición del socorrista o torre de observación. 4- Rescue system, according to claim 3, characterized in that the rescue client subsystem (2) calculates the emergency coordinates from the distance and the azimuth, as well as the position of the lifeguard or observation tower.
5- Sistema de salvamento, según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema cliente de salvamento (2) comprende un micrófono base (230) y un sistema de transmisión inalámbrica de sonido (231 ), y el subsistema de dispositivos de vuelo (1 ) comprende un receptor inalámbrico de audio (141 ) y un altavoz (140). 5- Rescue system, according to any of the preceding claims, characterized in that the rescue client subsystem (2) comprises a base microphone (230) and a wireless sound transmission system (231), and the flight device subsystem (1) comprises a wireless audio receiver (141) and a speaker (140).
6- Sistema de salvamento, según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende una videocámara (120) en el RPAS (4) y un sistema de transmisión inalámbrica de audio/vídeo (130) en el subsistema de dispositivos de vuelo (1 ), así como un receptor de vídeo/audio (220) en el subsistema cliente de salvamento (2). 6- Rescue system, according to any of the preceding claims, characterized in that it comprises a camcorder (120) in the RPAS (4) and a wireless audio / video transmission system (130) in the flight device subsystem (1 ), as well as a video / audio receiver (220) in the rescue client subsystem (2).
7- Sistema de salvamento, según la reivindicación 6, caracterizado por que la videocámara (120) está montada en un soporte autoestabilizado (121 ) mediante una unidad de administración electrónica (122). 8- Sistema de salvamento, según cualquiera de las reivindicaciones 6 ó 7, caracterizado por que la videocámara (120) comprende medios de visión nocturna. 9- Sistema de salvamento, según cualquiera de las reivindicaciones anteriores, caracterizado por que el subsistema de comunicaciones (3) es inalámbrico. 7- Rescue system according to claim 6, characterized in that the camcorder (120) is mounted on a self-stabilized support (121) by means of an electronic administration unit (122). 8- Rescue system according to any of claims 6 or 7, characterized in that the camcorder (120) comprises night vision means. 9- Rescue system, according to any of the preceding claims, characterized in that the communications subsystem (3) is wireless.
10- Sistema de salvamento, según cualquiera de las reivindicaciones anteriores, caracterizado por que comprende unas luces estrobosco picas (160) en el subsistema de dispositivos de vuelo (1 ). 10- Rescue system, according to any of the preceding claims, characterized in that it comprises strobe lights (160) in the subsystem of flight devices (1).
PCT/ES2015/000040 2014-03-28 2015-03-26 Rescue system WO2015144947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430450 2014-03-28
ES201430450A ES2549464B1 (en) 2014-03-28 2014-03-28 SALVAMENT SYSTEM

Publications (1)

Publication Number Publication Date
WO2015144947A1 true WO2015144947A1 (en) 2015-10-01

Family

ID=53175070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/000040 WO2015144947A1 (en) 2014-03-28 2015-03-26 Rescue system

Country Status (2)

Country Link
ES (1) ES2549464B1 (en)
WO (1) WO2015144947A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101793434B1 (en) * 2016-08-12 2017-11-03 이종필 Drone and System for monitoring danger using drone
KR101804880B1 (en) * 2016-06-20 2017-12-05 이종필 Drone for rescue request and Rescue request method using drone
CN109814589A (en) * 2017-11-20 2019-05-28 南京模幻天空航空科技有限公司 Based on unmanned plane aerial photography technology navigation channel incident management system and method
US11136097B2 (en) * 2018-07-17 2021-10-05 BSS Technologies, Inc. System for dangerous current identification, characterization, alerting and for distressed swimmer location and assistance
KR102350056B1 (en) * 2020-08-11 2022-01-11 공주대학교 산학협력단 Tube Throw Drone

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949089A (en) * 1989-08-24 1990-08-14 General Dynamics Corporation Portable target locator system
US6056237A (en) * 1997-06-25 2000-05-02 Woodland; Richard L. K. Sonotube compatible unmanned aerial vehicle and system
US6558218B1 (en) * 2002-02-27 2003-05-06 The United States Of America As Represented By The Secretary Of The Navy Overboard rescue system
EP1462898A2 (en) * 2003-03-27 2004-09-29 Saab Ab Waypoint navigation
US20100283840A1 (en) * 2006-11-24 2010-11-11 Trex Enterprises Corp. Miniature celestial direction detection system
US20110084162A1 (en) * 2009-10-09 2011-04-14 Honeywell International Inc. Autonomous Payload Parsing Management System and Structure for an Unmanned Aerial Vehicle
JP2012116387A (en) * 2010-12-02 2012-06-21 Naka Trading Kk Radio helicopter for water rescue, water accident sufferer rescue system and operation method thereof
US20130046461A1 (en) * 2011-08-17 2013-02-21 Abram L. Balloga Orientation Device and Method
US20130253820A1 (en) * 2012-02-16 2013-09-26 Leica Camera Ag Optical observation device for target acquisition and navigation
CN203246590U (en) * 2013-03-25 2013-10-23 重庆大学 Intelligent air rescue assisting system
GB2503207A (en) * 2012-05-30 2013-12-25 Instantview Ltd Apparatus for determining position and distance to objects

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949089A (en) * 1989-08-24 1990-08-14 General Dynamics Corporation Portable target locator system
US6056237A (en) * 1997-06-25 2000-05-02 Woodland; Richard L. K. Sonotube compatible unmanned aerial vehicle and system
US6558218B1 (en) * 2002-02-27 2003-05-06 The United States Of America As Represented By The Secretary Of The Navy Overboard rescue system
EP1462898A2 (en) * 2003-03-27 2004-09-29 Saab Ab Waypoint navigation
US20100283840A1 (en) * 2006-11-24 2010-11-11 Trex Enterprises Corp. Miniature celestial direction detection system
US20110084162A1 (en) * 2009-10-09 2011-04-14 Honeywell International Inc. Autonomous Payload Parsing Management System and Structure for an Unmanned Aerial Vehicle
JP2012116387A (en) * 2010-12-02 2012-06-21 Naka Trading Kk Radio helicopter for water rescue, water accident sufferer rescue system and operation method thereof
US20130046461A1 (en) * 2011-08-17 2013-02-21 Abram L. Balloga Orientation Device and Method
US20130253820A1 (en) * 2012-02-16 2013-09-26 Leica Camera Ag Optical observation device for target acquisition and navigation
GB2503207A (en) * 2012-05-30 2013-12-25 Instantview Ltd Apparatus for determining position and distance to objects
CN203246590U (en) * 2013-03-25 2013-10-23 重庆大学 Intelligent air rescue assisting system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804880B1 (en) * 2016-06-20 2017-12-05 이종필 Drone for rescue request and Rescue request method using drone
KR101793434B1 (en) * 2016-08-12 2017-11-03 이종필 Drone and System for monitoring danger using drone
CN109814589A (en) * 2017-11-20 2019-05-28 南京模幻天空航空科技有限公司 Based on unmanned plane aerial photography technology navigation channel incident management system and method
US11136097B2 (en) * 2018-07-17 2021-10-05 BSS Technologies, Inc. System for dangerous current identification, characterization, alerting and for distressed swimmer location and assistance
KR102350056B1 (en) * 2020-08-11 2022-01-11 공주대학교 산학협력단 Tube Throw Drone

Also Published As

Publication number Publication date
ES2549464B1 (en) 2016-05-27
ES2549464A1 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
US11891158B2 (en) Unmanned aerial vehicle search and rescue system
US10668997B2 (en) Unmanned aerial vehicle search and rescue system
US10377455B2 (en) Drone-type lifesaving equipment dropping device
WO2015144947A1 (en) Rescue system
KR101812487B1 (en) Offshore lifesaving system using drone
KR101653125B1 (en) Drone system for rescue and method of rescue
US10059448B1 (en) Rescue device for distressed swimmer
KR102128677B1 (en) Maritime Propulsion Unmanned Aerial Vehicle
KR101812283B1 (en) System for remote control boat for saving a life
BR102013026726A2 (en) WATER AREA MANAGEMENT SYSTEM
WO2013041740A1 (en) Maritime alarm and rescue system and method for controlling said system
KR101927983B1 (en) Drone for life saving and system for rescuing victim using the same
US20230150625A1 (en) Unmanned Aerial Vehicle Search and Rescue System
KR20160048737A (en) It drones for rescue, environmental monitoring functions with easy operation
WO2008012377A1 (en) Locating system that uses personal radiobeacons
KR102192725B1 (en) Drone system based on underwater exploration
TWI664116B (en) Rescue device and system of unmanned aerial vehicle
KR101724049B1 (en) An interactive communication featured drone system
US20220144429A1 (en) Flight-enabled signal beacon
Ajgaonkar et al. Development of a Lifeguard assist Drone for coastal search and rescue
JP2023014016A (en) On-water monitoring system
KR102373707B1 (en) Water rescue drone and method for controlling the same
GB2608614A (en) System for assisting with water rescue
WO2017208060A1 (en) Spherical device with integrated technology for assisting operations for rescuing missing persons or unreachable victims in disasters
JP2023013876A (en) On-water monitoring system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15770370

Country of ref document: EP

Kind code of ref document: A1