WO2008012377A1 - Locating system that uses personal radiobeacons - Google Patents

Locating system that uses personal radiobeacons Download PDF

Info

Publication number
WO2008012377A1
WO2008012377A1 PCT/ES2006/070119 ES2006070119W WO2008012377A1 WO 2008012377 A1 WO2008012377 A1 WO 2008012377A1 ES 2006070119 W ES2006070119 W ES 2006070119W WO 2008012377 A1 WO2008012377 A1 WO 2008012377A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacons
radio beacons
personal
locator system
receiver
Prior art date
Application number
PCT/ES2006/070119
Other languages
Spanish (es)
French (fr)
Inventor
Juan José DÍAZ MENÉNDEZ
Sebastián RODRÍGUEZ NÚÑEZ
Lucio HERNÁNDEZ GARCÍA
Original Assignee
Indra Sistemas, S.A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indra Sistemas, S.A filed Critical Indra Sistemas, S.A
Priority to PCT/ES2006/070119 priority Critical patent/WO2008012377A1/en
Publication of WO2008012377A1 publication Critical patent/WO2008012377A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/68Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information
    • G01S1/685Marker, boundary, call-sign, or like beacons transmitting signals not carrying directional information using pulse modulation, e.g. pulse frequency modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/0005Life-saving in water by means of alarm devices for persons falling into the water, e.g. by signalling, by controlling the propulsion or manoeuvring means of the boat

Definitions

  • the present invention relates to a location system that uses personal radio beacons, and that has a special application in the tasks of search and rescue of people and objects.
  • the waveform of the distress signal at 121.5 MHz or 243 MHz is defined by the recommendation of the International Telecommunication Union ITU-R M.690-1 ("Technical characteristics ⁇ e the ⁇ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
  • ETSI EN 300 152-1 “Electromagnetic compatibility and Radio spectrum Matters (ERM); Maritime Emergency Position Indicating Radio Beacons (EPIRBs) intended for use on the frequency 121.5 MHz or the frequencies 121.5 MHz and 243 MHz for homing purposes only; Part 1: Technical characteristics and methods of measurement ") is an example of how the international community is adopting the waveform defined by ITU-R recommendation M.690-1 for" man-in-the-water "incidents.
  • radio-beacon locator systems that use digital signals and have substantial differences with respect to the systems described above for incidents of the ⁇ man-to-water ”type (also called“ proximity ”locator systems.)
  • claims beacons. (such as shipwrecks) are also used in the maritime field and are designed to be released by themselves in case of sinking of the ship.
  • the distress signal is transmitted with the power necessary to reach the CORPAS-SARSAT satellite system, which it picks up the distress signal and relays it later when it passes over certain stations on the ground.
  • the distress signal is emitted at 406 MHz ⁇ there are also satellites operating at 121.5 MHz that are expected to cease their service at this frequency).
  • Relief of this type ⁇ e sinister differ from the actions in ios man-to-water incidents, since In these, the incident must be resolved by the ship itself without warning the CORPAS-SARSAT satellite system (reserved for the resolution of claims), whose speed of response is substantially less than that of the ship itself.
  • EPIRB beacons (emergency position indicating beacon: "Emergency Position Information Radio Beacon”).
  • EPIRB radio beacons transmit data information in 406 MHz to CORPAS-SARSAT satellites using a digital signal other than the analog distress signal of personal radio beacons.
  • This signal from EPIRB radio beacons is defined by the recommendation of the International Telecommunication Union ITU-R M.633-2 ("Transmission characteristics of a satellite emergency position-indicating radio beacon ⁇ satellite EPIRB) system operating through a satellite system in the 406 MHz band ").
  • U.S. Pat. US 6388617 provides an EPIRB type beacon, of those used to send an emergency signal from a ship to the satellite system when it is in trouble and requires help.
  • Said patent which, as indicated, is oriented towards EPIRB type beacons, instead of personal beacons (also known by its acronym in English as PLB: "Personal Locator Beacon”), makes use of the GPS navigation system (" Global positioning system ", or global positioning system) to obtain information geographical posi ⁇ tion.
  • GPS navigation system Global positioning system
  • This patent proposes a system that reduces the consumption of the beacon battery while retaining recent data from the information obtained by GPS in the beacon's memory, which allows the battery life to be extended.
  • radio beacons in 4ub ivihiz / 121.5 MHz, which are preferably used in terrestrial applications for assistance in mountain climbing or hiking incidents. These are radio beacons that are manually activated by the user, and that transmit the signal from 406 MHz relief to be captured by the CORPAS-SARSAT satellite system. This type of radio beacon also emits, with less power, a 121.5 MHz signal that is used for the final location in proximity. To make use of this service it is necessary to register the bearer of the radio beacon with the NESDIS (National Environmental Satellite, Data and Information Device). It is a service of the US government. through NOAA (National Oceanic & Atmospheric Administration).
  • radio beacons in general, are not suitable for "man-to-water” applications, since their signal is not received on the ship's bridge and they are not usually equipped with an automatic activation mechanism in case of immersion .
  • radio beacons personal or EPIRB
  • EPIRB electronic photometric beacon
  • the analog distress signal does not carry more information than a characteristic audio signal, allowing receivers in 121.5 MHz or 243 MHz to demodulate an alarm signal at the time of the "man in the water” incident.
  • this type of auditory signal only allows the alert without facilitate search and location tasks
  • the Spanish patent ES 2014359 (“Alarm system and location by radio signals”) is an example of a transmitter-receiver system with acoustic and / or optical alarm signal and which allows to know in which direction the castaway is.
  • the object of the present invention is to provide a localization system in proximity by means of personal beacons that allows to identify and position separately, and without interference, the emissions of several simultaneously active beacons, all immediately.
  • the invention relates to a locator system that uses personal radio beacons, which also comprises at least one controller-receiver device comprising an antenna and a GPS antenna-receiver and is associated with a visualization means, in which each of said Personal radio beacons comprise an antenna and a GPS antenna-receiver, so that the personal radio beacons, when activated, can emit an analog distress signal whose modulating wave consists of audio sweeps.
  • each beacon By inserting binary modulating signals into the silence zones of the analog distress signal and the fact that the moment of transmission of said signals for each radio beacon is governed by the GPS system, it is achieved that each beacon transmits the corresponding additional signal at a designated instant, thereby avoiding interference between the emissions of several simultaneously active radio beacons.
  • the analog distress signal may be 121.5 MHz or 243 MHz.
  • an additional advantage of the system is that it can be used with the receivers currently in service at the frequencies of 121.5 MHz or 243 MHz.
  • the binary modulating signals comprise geogratic position coordinate data and the instant of the radio beacon activation.
  • the binary modulating signals are FSK ("Frequency Shift Keying") signals.
  • the binary modulating signals are PSK ("Phase Shift Keying") signals.
  • the shape of the modulating wave of the analog distress signal consists of a descending audio frequency sweep in a range not less than 700 Hz, between 1600 Hz and 300 Hz, and with a sweep repetition frequency of 2 to 4 times per second.
  • the descending audio frequency scan is performed between 1200 Hz and 400 Hz.
  • the display means is a radar screen.
  • the display means is a screen with user interface.
  • the radio beacons are integrated into a garment of a vest or similar type.
  • the radio beacons are activated by an automatic water immersion activation mechanism.
  • Figure 1 shows a basic scheme of the locator system of the invention, with a personal beacon.
  • Figure 2 shows a graph of the frequency as a function of time, corresponding to the analog distress signal and the inserts of the data signals in the silence zones of the analog distress signal.
  • Figure 1 illustrates in a very schematic way the locator system of the invention, in which a personal radio beacon and a receiver have been represented.
  • the controller-receiver device may consist of a panel computer that integrates the receiver capable of receiving the analog signal from the radio beacons.
  • Said device may further comprise an antenna, a GPS antenna-receiver (which, in marine salvage applications, allows to know the position of the vessel) and be associated with a display means (which can be, for example, a screen with user interface) . In this screen you can locate, for example, the geographical position information transmitted by the radio beacons.
  • the controller-receiving device can also, for ahem ⁇ ple, provide the information received by the personal radar screen beacon boat, allowing to concentrate all the graphic representation on a ma ⁇ sists.
  • each of the personal radio beacons comprises an antenna and a GPS antenna-receiver.
  • personal radio beacons When personal radio beacons are activated, they emit an analog distress signal whose modulating wave consists of descending audio frequency sweeps (they are represented graphically in Figure 2 with the indication "Audio") separated by zones of silence. That analog signal is received and demodulated by the controller-receiver device.
  • the radio beacon's GPS antenna receiver allows obtaining various additional information, such as the precise Instances of occurrence (or "tics") of the seconds (that is, the PPS signal, in English "Pulse Per Second", of the GPS system).
  • binary modulating signals (represented as DATA 1, DATA 2, etc.) are inserted, respectively, from radio beacons 1, 2 , etc. These signals carry data with the various additional information obtained through the GPS antenna-receiver of the corresponding radio beacon.
  • the transmission time for each radio beacon is governed by the time information provided by the GPS system.
  • Said binary modulator signals are also transmitted to the controller-receiver device, which can also receive and demodulate them.
  • the analog distress signal is transmitted in 121.5 MHz or 243 MHz, as established by ITÜ-R M.690-1.
  • the data comprising the binary modulating signals can be the coordinates of geographical position (longitude and latitude) and the instant of activation of the beacon. In the case of marine rescue applications, this instant of activation of the beacon must coincide with the moment of immersion of the beacon in the water.
  • the binary modulating signals (or data signals) indicated above may be, for example FSK ("Frequency Shift Keying") signals, PSK ("Phase Shift Keying") signals, etc.
  • FSK Frequency Shift Keying
  • PSK Phase Shift Keying
  • the modulating waveform signal in consis relief ⁇ will sweep downward audio not less than 700 Hz range between 1600 and 300 Hz, and a repeat sweep frequency of 2 to 4 times according to do.
  • a typical multiplexing of this modulating waveform is said sweeps separated by zones of silence, as can be seen in Figure 2.
  • said descending audio-frequency scan is performed between 1200 Hz and 400 Hz
  • the locator system of the invention has multiple applications, such as the search and rescue of people who accidentally fall into the sea from a vessel (maritime rescue), the search and retrieval of objects (in military applications, for example, training torpedoes), the control of the members of forest patrols in firefighting mission and, in general, the simultaneous control of the position of the components of any group of mobile elements.
  • the personal radio beacon would be integrated into a garment of the castaway, usually the life jacket.
  • the controller-receiver device would be located on the ship's bridge, which could receive both the 121.5 MHz or 243 MHz analog distress signal and personal radio beacon data signals, such as its geographical position or the instant of falling into the water.
  • personal radio beacons would be activated by means of an automatic water immersion activation mechanism of those commonly used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Transmitters (AREA)

Abstract

Locating system that uses personal radiobeacons. The system also comprises at least one controller/receiver device with an antenna and a GPS antenna receiver, associated with a display means. Each personal radiobeacon comprises an antenna and a GPS antenna receiver and upon activation emits an analogue help signal, whose modulating wave consists of sweeps of descending audio frequency separated by intervals of silence, which may be received and demodulated by the controller/receiver device. Respective binary modulating signals from the respective radiobeacons are inserted in the intervals of silence of the analogue help signal, which carry data with additional information obtained by means of the GPS antenna receiver of the radiobeacon, whose instant of transmission for each radiobeacon is governed by the time information of the GPS system, and which can also be received and demodulated by the controller/receiver device.

Description

SISTEMA. LOCALIZADOR QUE UTILIZA RADIOBALIZAS PERSONALES SYSTEM. LOCATOR THAT USES PERSONAL RADIOBALIZES
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención se refiere a un sistema de localización que utiliza radiobalizas personales, y que tiene una especial aplicación en las tareas de búsqueda y rescate de personas y objetos.The present invention relates to a location system that uses personal radio beacons, and that has a special application in the tasks of search and rescue of people and objects.
ESTADO DE LA TÉCNICA ANTERIOR Existen sistemas empleados en las tareas de búsqueda y rescate de personas basados en la utilización de radiobalizas portadas por las personas a las que se desea localizar. Estos sistemas pueden tener múltiples aplicaciones en tareas de control y seguimiento de personas de cara a su seguridad y su posible rescate en situaciones de emergencia. Por ejemplo, pueden tener una especial aplicación en las tareas de búsqueda y rescate de personas que caen al mar accidentalmente desde una embarcación, o en el control de los miembros de patrullas forestales en misión de extinción de incendios. Estos sistemas también son aplicables a la búsqueda y rescate de objetos.STATE OF THE PREVIOUS TECHNIQUE There are systems used in the tasks of search and rescue of people based on the use of beacons carried by the people to whom you want to locate. These systems can have multiple applications in tasks of control and monitoring of people for their safety and their possible rescue in emergency situations. For example, they may have a special application in the search and rescue tasks of people who accidentally fall into the sea from a boat, or in the control of forest patrol members on firefighting mission. These systems are also applicable to the search and rescue of objects.
En el caso concreto de los sistemas de búsqueda y rescate de náufragos (incidentes del tipo "hombre al agua") , la radiobaliza personal suele llevarse en el chaleco salvavidas y emite una señal analógica de socorro en 121,5 MHz o 243 MHz que se recibe en el puente de gobierno del barco.In the specific case of shipwreck search and rescue systems ("man-to-water" incidents), personal beacon is usually carried on the life jacket and emits an analog distress signal at 121.5 MHz or 243 MHz. receive on the ship's bridge of government.
La forma de onda de la señal de socorro en 121,5 MHz o 243 MHz está definida por la recomendación de la Unión Internacional de Telecomunicaciones ITU-R M.690-1 ("Características técnxcas αe las raαiooaiizas αe locanzacion αe siniestros que funcionan con frecuencias portadoras de 121,5 MHz y 243 MHz"). Aunque esta recomendación fue prevista para las radiobalizas de siniestros (como naufra- gios de buques) ha sido también adoptada como la señal analógica de socorro que emiten las radiobalizas persona¬ les en incidentes del tipo ""hombre al agua" que son, tipicamente, resueltos desde el propio buque (es decir, "en proximidad") . La norma europea ETSI EN 300 152-1 ("Electromagnetic compatibility and Radio spectrum Matters (ERM) ; Maritime Emergency Position Indicating Radio Bea- cons (EPIRBs) intended for use on the frequency 121,5 MHz or the frequencies 121,5 MHz and 243 MHz for homing purpo- ses only; Part 1: Technical characteristics and methods of measurement") es un ejemplo de cómo la comunidad internacional está adoptando la forma de onda definida por la recomendación ITU-R M.690-1 para los incidentes del tipo "hombre al agua".The waveform of the distress signal at 121.5 MHz or 243 MHz is defined by the recommendation of the International Telecommunication Union ITU-R M.690-1 ("Technical characteristics αe the αaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa) carrier frequencies of 121.5 MHz and 243 MHz "). Although this recommendation was envisaged for claims radio beacons (such as shipwrecks) it has also been adopted as the signal analog distress beacons that emit them in person ¬ incidents of type "" man overboard "that are typically resolved from the ship itself (ie," in proximity . ") The European standard ETSI EN 300 152-1 ( "Electromagnetic compatibility and Radio spectrum Matters (ERM); Maritime Emergency Position Indicating Radio Beacons (EPIRBs) intended for use on the frequency 121.5 MHz or the frequencies 121.5 MHz and 243 MHz for homing purposes only; Part 1: Technical characteristics and methods of measurement ") is an example of how the international community is adopting the waveform defined by ITU-R recommendation M.690-1 for" man-in-the-water "incidents.
Existen otro tipo de sistemas localizadores con radiobalizas que utilizan señales digitales y presentan diferencias sustanciales con respecto a los sistemas descritos anteriormente para incidentes del tipo ΛΛhombre al agua" (también llamados sistemas localizadores "en proximidad") . Por ejemplo, las radiobalizas de siniestros (como naufragios de buques) también se utilizan en el ámbito marítimo y están diseñadas para liberarse por si solas en caso de hundimiento del buque. La señal de socorro es transmitida con la potencia necesaria para alcanzar el sistema de satélites CORPAS-SARSAT, el cual recoge la señal de socorro y la retransmite más tarde cuando pasa sobre determinadas estaciones en tierra. La señal de socorro se emite en 406 MHz {también existen satélites operando en 121,5 MHz que previsiblemente cesarán su servicio en esta frecuencia) . Las acciones de socorro de este tipo αe siniestro difieren de las acciones en ios incidentes de tipo "hombre al agua", ya que en éstos el incidente debe ser resuelto por el propio buque sin llegar a alertar al sistema de satélites CORPAS-SARSAT (reservado para la resolución de siniestros) , cuya velocidad de respuesta es sustancialmente menor que la del propio buque .There are other types of radio-beacon locator systems that use digital signals and have substantial differences with respect to the systems described above for incidents of the ΛΛ man-to-water ”type (also called“ proximity ”locator systems.) For example, claims beacons. (such as shipwrecks) are also used in the maritime field and are designed to be released by themselves in case of sinking of the ship.The distress signal is transmitted with the power necessary to reach the CORPAS-SARSAT satellite system, which it picks up the distress signal and relays it later when it passes over certain stations on the ground. The distress signal is emitted at 406 MHz {there are also satellites operating at 121.5 MHz that are expected to cease their service at this frequency). Relief of this type αe sinister differ from the actions in ios man-to-water incidents, since In these, the incident must be resolved by the ship itself without warning the CORPAS-SARSAT satellite system (reserved for the resolution of claims), whose speed of response is substantially less than that of the ship itself.
Un tipo de radiobalizas de siniestros son las radiobalizas EPIRB (radiobaliza indicadora de posición de emergencia: "Emergency Position Information Radio Beacon", en inglés) . Usualmente, las radiobalizas de tipo EPIRB transmiten información de datos en 406 MHz a los satélites CORPAS-SARSAT utilizando una señal digital diferente a la señal analógica de socorro de las radiobalizas personales. Dicha señal de las radiobalizas EPIRB la define la recomendación de la Unión Internacional de Telecomunicaciones ITU-R M.633-2 ("Transmission characteristics of a satelli- te emergency position-indicating radio beacon {satellite EPIRB) system operating through a satellite system in the 406 MHz band") .One type of accident beacons are EPIRB beacons (emergency position indicating beacon: "Emergency Position Information Radio Beacon"). Usually, EPIRB radio beacons transmit data information in 406 MHz to CORPAS-SARSAT satellites using a digital signal other than the analog distress signal of personal radio beacons. This signal from EPIRB radio beacons is defined by the recommendation of the International Telecommunication Union ITU-R M.633-2 ("Transmission characteristics of a satellite emergency position-indicating radio beacon {satellite EPIRB) system operating through a satellite system in the 406 MHz band ").
La patente de EE.UU. US 6388617 proporciona una radiobaliza de tipo EPIRB, de las utilizadas para enviar una señal de emergencia desde un barco al sistema de satélites cuando éste se encuentra en apuros y requiere ayuda. Dicha patente, que, como se ha indicado, está orientada hacia balizas de tipo EPIRB, en lugar de radiobalizas personales (conocidas también por sus siglas en inglés como PLB: "Personal Locator Beacon") , hace uso del sistema de navegación GPS ("Global Positioning System", o sistema de posicionamiento global) para obtener información de posi¬ ción geográfica. Esta patente propone un sistema que reduce el consumo de la batería de la radiobaliza a la vez que conserva los datos recientes de la información obtenida por GPS en la memoria de la radiobaliza, lo que permite ampliar la duración de la batería.U.S. Pat. US 6388617 provides an EPIRB type beacon, of those used to send an emergency signal from a ship to the satellite system when it is in trouble and requires help. Said patent, which, as indicated, is oriented towards EPIRB type beacons, instead of personal beacons (also known by its acronym in English as PLB: "Personal Locator Beacon"), makes use of the GPS navigation system (" Global positioning system ", or global positioning system) to obtain information geographical posi ¬ tion. This patent proposes a system that reduces the consumption of the beacon battery while retaining recent data from the information obtained by GPS in the beacon's memory, which allows the battery life to be extended.
Existen ademas radiobalizas personales en 4ub ivihiz / 121,5 MHz, que se emplean preferentemente en aplicaciones terrestres para el auxilio en incidentes de montañismo o senderísmo. Se trata de radiobalizas que se activan ma- nualmente por el usuario, y que transmiten la señal de socorro en 406 MHz para ser captada por el sistema de satélites CORPAS-SARSAT. Este tipo de radiobalizas emiten también, con menor potencia, una señal de 121,5 MHz que se utiliza para la localización final en proximidad. Para hacer uso de este servicio es necesario el registro personal del portador de la radiobaliza ante el NESDIS (National Environmental Satellite, Data and Information Device) . Se trata de un servicio del gobierno de los EE.UU. por medio de la NOAA (National Oceanic & Atmospheric Adminis- tration) . Estas radiobalizas, en general, no son aptas para aplicaciones del tipo "hombre-al-agua", ya que su señal no se recibe en el puente de gobierno del buque y no suelen estar equipadas con un mecanismo automático de activación en caso de inmersión. En general, las radiobalizas (personales o de tipo EPIRB) que hacen uso del sistema de satélites CORPAS- SARSAT no pueden ofrecer ayuda inmediata, dado que el tiempo mínimo de respuesta de este sistema puede estimarse en alrededor de 90 minutos. Volviendo a los sistemas localizadores para incidentes del tipo "hombre al agua" (también llamados sistemas localizadores λλen proximidad") en la mencionada recomendación ITU-R M.690-1 se describe que la señal analógica de socorro no transporta más información que una señal audio característica, permitiendo a los receptores en 121,5 MHz o 243 MHz la demodulación de una señal de alarma en el momento del incidente "hombre al agua". Por tanto, el uso de este tipo de señal auditiva sólo permite la alerta sin facilitar las tareas de búsqueda y localización. Algunos receptores, utilizando técnicas de radiogo¬ niometría, logran indicar tamJoien la dirección αe llegada de la señal de socorro, sin poder aportar más información dadas las limitaciones intrínsecas de la señal de socorro definida por la recomendación ITU-R M.690-1. Debido sus características, estos receptores no gestionan de manera adecuada aquellas situaciones en las que hay más de una radiobaliza activa, al no poder indicar la correcta dirección de dos o más radiobalizas activas a la vez.There are also personal radio beacons in 4ub ivihiz / 121.5 MHz, which are preferably used in terrestrial applications for assistance in mountain climbing or hiking incidents. These are radio beacons that are manually activated by the user, and that transmit the signal from 406 MHz relief to be captured by the CORPAS-SARSAT satellite system. This type of radio beacon also emits, with less power, a 121.5 MHz signal that is used for the final location in proximity. To make use of this service it is necessary to register the bearer of the radio beacon with the NESDIS (National Environmental Satellite, Data and Information Device). It is a service of the US government. through NOAA (National Oceanic & Atmospheric Administration). These radio beacons, in general, are not suitable for "man-to-water" applications, since their signal is not received on the ship's bridge and they are not usually equipped with an automatic activation mechanism in case of immersion . In general, radio beacons (personal or EPIRB) that use the CORPAS-SARSAT satellite system cannot offer immediate help, since the minimum response time of this system can be estimated at around 90 minutes. Returning to the "man-to-water" incident locator systems (also called proximity λλ locator systems) in the aforementioned ITU-R recommendation M.690-1 it is described that the analog distress signal does not carry more information than a characteristic audio signal, allowing receivers in 121.5 MHz or 243 MHz to demodulate an alarm signal at the time of the "man in the water" incident. Therefore, the use of this type of auditory signal only allows the alert without facilitate search and location tasks Some receivers, using radio ¬ niometry techniques, can also indicate the direction αe arrival of the distress signal, without being able to provide more information given the intrinsic limitations of the distress signal defined by the ITU recommendation -R M.690-1 Due to their characteristics, these receivers do not manage so adequate situations in which there is more than one active beacon, unable to indicate the correct direction of two or more active beacons at the same time.
Existen también radiobalizas personales que transmi- ten la señal de socorro en 121,5 MHz junto con una llamada selectiva digital {en inglés, Digital Selective Calling) en otra frecuencia de VHF.There are also personal radio beacons that transmit the distress signal at 121.5 MHz along with a digital selective call (in English, Digital Selective Calling) on another VHF frequency.
La patente española ES 2014359 ("Sistema de alarma y localización por señales de radio") es un ejemplo de un sistema emisor-receptor con señal de alarma acústica y/u óptica y que permite conocer en qué dirección se encuentra el náufrago.The Spanish patent ES 2014359 ("Alarm system and location by radio signals") is an example of a transmitter-receiver system with acoustic and / or optical alarm signal and which allows to know in which direction the castaway is.
A pesar de que existen múltiples sistemas de localización que emplean radiobalizas personales que emiten señales analógicas de socorro, dichos sistemas presentan el inconveniente de que, en aquellos casos en los que se activan más de una radiobaliza, la gestión del sistema puede ser problemática.Although there are multiple location systems that employ personal radio beacons that emit analog distress signals, these systems have the disadvantage that, in those cases where more than one radio beacon is activated, the management of the system can be problematic.
SUMARIO DE LA INVENCIÓNSUMMARY OF THE INVENTION
El objeto de la presente invención es proporcionar un sistema localizador en proximidad mediante radiobalizas personales que permita identificar y posicionar separadamente, y sin interferencias, las emisiones de varias radiobalizas simultáneamente activas, todo ello de manera inmediata .The object of the present invention is to provide a localization system in proximity by means of personal beacons that allows to identify and position separately, and without interference, the emissions of several simultaneously active beacons, all immediately.
La invención se refiere a un sistema localizador que utiliza radiobalizas personales, el cual comprende también al menos un dispositivo controlador-receptor que comprende una antena y una antena-receptor GPS y está asociado a un medio de visualizacion, en el que cada una de dichas radiobalizas personales comprende una antena y una antena- receptor GPS, de modo que las radiobalizas personales al activarse pueden emitir una señal analógica de socorro cuya onda moduladora consiste en unos barridos de audio- frecuencia descendente separados por zonas de silencio que puede recibirse y ser demodulada por el al menos un dispositivo controlador-receptor, en el que mediante la antena- receptor GPS de la radiobaliza pueden obtenerse diversas informaciones adicionales, de manera que en las zonas de silencio de la señal de socorro se insertan respectivas señales moduladoras binarias, procedentes de las respectivas radiobalizas, que transportan datos con las diversas informaciones adicionales obtenidas mediante la antena- receptor GPS de la radiobaliza, cuyo instante de transmisión para cada radiobaliza está regido por la información de tiempo suministrada por el sistema GPS, y que también pueden recibirse y ser demoduladas por el al menos un dispositivo controlador-receptor. Mediante la inserción de señales moduladoras binarias en las zonas de silencio de la señal analógica de socorro y el hecho de que el instante de transmisión de dichas señales para cada radiobaliza esté regido por el sistema GPS, se consigue que cada radiobaliza transmita la señal adicional correspondiente en un instante designado, evitando con ello las interferencias entre las emisiones de varias radiobalizas activas simultáneamente.The invention relates to a locator system that uses personal radio beacons, which also comprises at least one controller-receiver device comprising an antenna and a GPS antenna-receiver and is associated with a visualization means, in which each of said Personal radio beacons comprise an antenna and a GPS antenna-receiver, so that the personal radio beacons, when activated, can emit an analog distress signal whose modulating wave consists of audio sweeps. descending frequency separated by zones of silence that can be received and demodulated by the at least one controller-receiver device, in which various additional information can be obtained through the GPS-antenna of the radio beacon, so that in the zones of silence of the distress signal is inserted respective binary modulating signals, coming from the respective radio beacons, that carry data with the various additional information obtained by the radio-beacon GPS receiver, whose transmission moment for each beacon is governed by the time information supplied by the GPS system, and which can also be received and demodulated by the at least one controller-receiver device. By inserting binary modulating signals into the silence zones of the analog distress signal and the fact that the moment of transmission of said signals for each radio beacon is governed by the GPS system, it is achieved that each beacon transmits the corresponding additional signal at a designated instant, thereby avoiding interference between the emissions of several simultaneously active radio beacons.
Según realizaciones adicionales de la invención, la señal analógica de socorro puede ser en 121,5 MHz o en 243 MHz.According to further embodiments of the invention, the analog distress signal may be 121.5 MHz or 243 MHz.
Por tanto, una ventaja adicional del sistema es que puede emplearse con los receptores actualmente en servicio en las frecuencias de 121,5 MHz o 243 MHz.Therefore, an additional advantage of the system is that it can be used with the receivers currently in service at the frequencies of 121.5 MHz or 243 MHz.
Según otra realización de la invención, las señales moduladoras binarias comprenden datos de las coordenadas de posición geogratica y αel instante cíe activación de la radiobaliza .According to another embodiment of the invention, the binary modulating signals comprise geogratic position coordinate data and the instant of the radio beacon activation.
Según otra realización de la invención, las señales moduladoras binarias son señales FSK ("Frequency Shift Keying") . „ η __According to another embodiment of the invention, the binary modulating signals are FSK ("Frequency Shift Keying") signals. „Η __
De acuerdo con otra realización de la invención, las señales moduladoras binarias son señales PSK ("Phase Shift Keying") .According to another embodiment of the invention, the binary modulating signals are PSK ("Phase Shift Keying") signals.
Preferentemente la forma de la onda moduladora de la señal analógica de socorro consiste en un barrido de audiofrecuencia descendente en una gama no menor de 700 Hz, entre 1600 Hz y 300 Hz, y con una frecuencia de repetición de barrido de 2 a 4 veces por segundo.Preferably the shape of the modulating wave of the analog distress signal consists of a descending audio frequency sweep in a range not less than 700 Hz, between 1600 Hz and 300 Hz, and with a sweep repetition frequency of 2 to 4 times per second.
Más preferentemente, el barrido de audiofrecuencia descendente se efectúa entre 1200 Hz y 400 Hz.More preferably, the descending audio frequency scan is performed between 1200 Hz and 400 Hz.
Por tanto, otra ventaja adicional seria la rapidez de la repetición del barrido, lo que permitiria en relativamente poco tiempo obtener los datos de varias radiobalizas. Según otra realización de la invención el medio de visualización es una pantalla de radar.Therefore, another additional advantage would be the rapidity of the sweep repetition, which would allow to obtain data from several radio beacons in a relatively short time. According to another embodiment of the invention the display means is a radar screen.
Según otra realización de la invención el medio de visualización es una pantalla con interfaz de usuario.According to another embodiment of the invention, the display means is a screen with user interface.
Según otra realización de la Invención, las radioba- lizas van integradas en una prenda de tipo chaleco o similar .According to another embodiment of the Invention, the radio beacons are integrated into a garment of a vest or similar type.
De acuerdo con otra realización de la invención las radiobalizas se activan mediante un mecanismo automático de activación por Inmersión en agua.According to another embodiment of the invention, the radio beacons are activated by an automatic water immersion activation mechanism.
BREVE DESCRIPCIÓN DE LOS DIBUJOSBRIEF DESCRIPTION OF THE DRAWINGS
A continuación se describirá una realización ilustrativa, y en ningún sentido limitativa, del objeto de la presente invención, haciendo referencia a los dibujos que se acompañan, en los cuales:An illustrative, and in no way limiting, embodiment of the object of the present invention will be described below, with reference to the accompanying drawings, in which:
La figura 1 muestra un esquema básico del sistema localizador de la invención, con una radiobaliza personal.Figure 1 shows a basic scheme of the locator system of the invention, with a personal beacon.
La figura 2 muestra una gráfica de la frecuencia en función del tiempo, correspondiente a la señal analógica de socorro y a las inserciones de las señales de datos en las zonas de silencio de la señal analógica de socorro.Figure 2 shows a graph of the frequency as a function of time, corresponding to the analog distress signal and the inserts of the data signals in the silence zones of the analog distress signal.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La figura 1 ilustra de manera muy esquemática el sis- tema localizador de la invención, en el que se ha representado una radiobaliza personal y un receptor. No obstan¬ te, en la mayoría de los casos los sistemas de localiza- ción constarán de varias radiobalizas personales y uno o más dispositivos receptores o controladores-receptores . El dispositivo controlador-receptor puede consistir en un ordenador de panel que integra el receptor capaz de recibir la señal analógica proveniente de las radiobalizas. Dicho dispositivo puede comprender además una antena, una antena-receptor GPS (que, en aplicaciones de salvamen- to marítimo, permite conocer la posición del buque) y estar asociado a un medio de visualización (que puede ser, por ejemplo, una pantalla con interfaz de usuario) . En esta pantalla se puede situar, por ejemplo, la información geográfica de posición que transmiten las radiobalizas. El dispositivo controlador-receptor también puede, por ejem¬ plo, entregar la información recibida por las radiobalizas personales a la pantalla de radar del barco, lo que permite concentrar toda la representación gráfica en un siste¬ ma . Por su parte, cada una de las radiobalizas personales comprende una antena y una antena-receptor GPS. Al activarse las radiobalizas personales, emiten una señal analógica de socorro cuya onda moduladora consiste en unos barridos de audiofrecuencia descendente (se representan gráficamente en la figura 2 con la indicación "Audio") separados por zonas de silencio. Esa señal analógica es recibida y demodulada por el dispositivo controlador- receptor. Además, la antena-receptor GPS de la radiobaliza permite obtener diversas informaciones adicionales, como los Instantes precisos de ocurrencia (o "tics") de los segundos (es decir, la señal PPS, en inglés "Pulse Per Second", del sistema GPS) .Figure 1 illustrates in a very schematic way the locator system of the invention, in which a personal radio beacon and a receiver have been represented. ¬ not prejudge you, in most cases localized tion systems consist of several personal radio beacon devices and one or more receivers or transceivers controllers. The controller-receiver device may consist of a panel computer that integrates the receiver capable of receiving the analog signal from the radio beacons. Said device may further comprise an antenna, a GPS antenna-receiver (which, in marine salvage applications, allows to know the position of the vessel) and be associated with a display means (which can be, for example, a screen with user interface) . In this screen you can locate, for example, the geographical position information transmitted by the radio beacons. The controller-receiving device can also, for ahem ¬ ple, provide the information received by the personal radar screen beacon boat, allowing to concentrate all the graphic representation on a ma ¬ sists. On the other hand, each of the personal radio beacons comprises an antenna and a GPS antenna-receiver. When personal radio beacons are activated, they emit an analog distress signal whose modulating wave consists of descending audio frequency sweeps (they are represented graphically in Figure 2 with the indication "Audio") separated by zones of silence. That analog signal is received and demodulated by the controller-receiver device. In addition, the radio beacon's GPS antenna receiver allows obtaining various additional information, such as the precise Instances of occurrence (or "tics") of the seconds (that is, the PPS signal, in English "Pulse Per Second", of the GPS system).
Como se observa en la figura 2, en las zonas de silencio de la señal analógica de socorro se insertan res- pectivas señales moduladores binarias (representadas como DATOS 1, DATOS 2, etc.), procedentes, respectivamente, de las radiobalizas 1, 2, etc. Dichas señales transportan datos con las diversas informaciones adicionales obtenidas mediante la antena-receptor GPS de la radiobaliza correspondiente. Además, el instante de transmisión para cada radiobaliza está regido por la información de tiempo suministrada por el sistema GPS. Dichas señales modulado- ras binarias también son transmitidas al dispositivo controlador-receptor, que asimismo puede recibirlas y demodularlas.As can be seen in figure 2, in the silence zones of the analog distress signal, binary modulating signals (represented as DATA 1, DATA 2, etc.) are inserted, respectively, from radio beacons 1, 2 , etc. These signals carry data with the various additional information obtained through the GPS antenna-receiver of the corresponding radio beacon. In addition, the transmission time for each radio beacon is governed by the time information provided by the GPS system. Said binary modulator signals are also transmitted to the controller-receiver device, which can also receive and demodulate them.
Preferentemente, en aplicaciones de salvamento mari- timo para incidentes de tipo "hombre al agua", la señal analógica de socorro se transmite en 121,5 MHz o en 243 MHz, según establece la recomendación ITÜ-R M.690-1. Los datos que comprenden las señales moduladoras binarias pueden ser las coordenadas de posición geográfica (longitud y latitud) y el instante de activación de la radiobaliza. En el caso de aplicaciones de salvamento marítimo, este instante de activación de la radiobaliza deberá coincidir con el momento de la inmersión de la radiobaliza en el agua.Preferably, in marine rescue applications for "man-in-the-water" incidents, the analog distress signal is transmitted in 121.5 MHz or 243 MHz, as established by ITÜ-R M.690-1. The data comprising the binary modulating signals can be the coordinates of geographical position (longitude and latitude) and the instant of activation of the beacon. In the case of marine rescue applications, this instant of activation of the beacon must coincide with the moment of immersion of the beacon in the water.
Las señales moduladoras binarias (o señales de datos) indicadas anteriormente pueden ser, por ejemplo señales FSK ("Frequency Shift Keying", en inglés), señales PSK ("Phase Shift Keying", en inglés) , etc.The binary modulating signals (or data signals) indicated above may be, for example FSK ("Frequency Shift Keying") signals, PSK ("Phase Shift Keying") signals, etc.
Como se describe en la recomendación ITU-R M.690-1, la forma de onda moduladora de la señal de socorro consis¬ te en barrido de audiofrecuencia descendente en una gama no menor que 700 Hz, entre 1600 y 300 Hz, y con una fre- cuencia de repetición de barrido de 2 a 4 veces por según- do. Una irtiplementación típica de esta forma de onda modu- ladora son dichos barridos separados por zonas de silencio, como se puede observar en la figura 2. En una realización preferida de la invención, dicho barrido de audio- frecuencia descendente se efectúa entre 1200 Hz y 400 Hz.As described in the ITU-R recommendation M.690-1, the modulating waveform signal in consis relief ¬ will sweep downward audio not less than 700 Hz range between 1600 and 300 Hz, and a repeat sweep frequency of 2 to 4 times according to do. A typical multiplexing of this modulating waveform is said sweeps separated by zones of silence, as can be seen in Figure 2. In a preferred embodiment of the invention, said descending audio-frequency scan is performed between 1200 Hz and 400 Hz
Es de destacar que el sistema localizador de la invención tiene múltiples aplicaciones, como las tareas de búsqueda y rescate de personas que caen al mar accidentalmente desde una embarcación (salvamento marítimo) , la búsqueda y recuperación de objetos (en aplicaciones militares, por ejemplo, torpedos de entrenamiento) , el control de los miembros de patrullas forestales en misión de extinción de incendios y, en general, el control simultáneo de la posición de los componentes de cualquier grupo de elementos móviles.It is noteworthy that the locator system of the invention has multiple applications, such as the search and rescue of people who accidentally fall into the sea from a vessel (maritime rescue), the search and retrieval of objects (in military applications, for example, training torpedoes), the control of the members of forest patrols in firefighting mission and, in general, the simultaneous control of the position of the components of any group of mobile elements.
Como hemos indicado, una de sus principales aplicaciones es en las tareas de salvamento marítimo {incidentes "hombre al agua") . En este caso, la radiobaliza personal Iría integrada en una prenda del náufrago, normalmente el chaleco salvavidas. En el puente de gobierno del barco se encontraría el dispositivo controlador-receptor, que podría recibir tanto la señal analógica de socorro en 121,5 MHz o 243 MHz como señales de datos de la radiobaliza personal, como pueden ser su posición geográfica o el instante de caída al agua. En esta aplicación concreta, las radiobalizas personales se activarían mediante un mecanismo automático de activación por inmersión en agua de los habitualmente empleados.As we have indicated, one of its main applications is in the tasks of maritime rescue ("man in the water" incidents). In this case, the personal radio beacon would be integrated into a garment of the castaway, usually the life jacket. The controller-receiver device would be located on the ship's bridge, which could receive both the 121.5 MHz or 243 MHz analog distress signal and personal radio beacon data signals, such as its geographical position or the instant of falling into the water. In this specific application, personal radio beacons would be activated by means of an automatic water immersion activation mechanism of those commonly used.
De acuerdo con la figura 2, cuando una persona cae al agua su radiobaliza envía la señal analógica de socorro ("Audio") y la señal de datos correspondiente (DATOS i) . El instante en el que dicha señal DATOS 1 es transmitida se rige por la información de tiempo que proporciona el sistema GPS. Así, cuando se produce la caída al agua de una segunda persona, su radiobaliza emitirá también su señal de datos correspondiente (DATOS 2} en un instante diferente al de transmisión de la señal DATOS 1 y regido asimismo por la información de tiempo que proporciona el sistema GPS. De igual modo sucedería con las sucesivas radiobalizas. Asi, en el caso de encontrarse varias radio¬ balizas simultáneamente activadas, cada una de ellas transmitirla en un instante designado, con lo que se evitarían las interferencias entre las emisiones de dichas radiobalizas y se permitiria su fácil identificación y detección de posición por separado.According to Figure 2, when a person falls into the water, his radio beacon sends the analog distress signal ("Audio") and the corresponding data signal (DATA i). The moment in which said DATA 1 signal is transmitted is governed by the time information provided by the GPS system. Thus, when a second person falls into the water, his radio beacon will also emit his corresponding data signal (DATA 2} at a different time than the transmission of the DATA 1 signal and also governed by the time information provided by the GPS system. In the same way it would happen with successive radio beacons. several radio ¬ beacons simultaneously activated, each of them transmitting it at a designated instant, thereby avoiding interference between the emissions of said beacons and allowing easy identification and detection of position separately.
Aunque se ha descrito y representado una realización de la invención, es evidente que pueden introducirse en ella modificaciones comprendidas dentro del alcance del mismo, no debiendo considerarse limitado éste a dicha realización, sino únicamente al contenido de las reivindicaciones siguientes: Although an embodiment of the invention has been described and represented, it is evident that modifications within the scope of the invention can be introduced therein, which should not be considered limited to said embodiment, but only to the content of the following claims:

Claims

REIVINDICACIONES
1. -Sistema localizador que utiliza radiobalizas personales, el cual comprende también al menos un dispositivo controlador-receptor que comprende una antena y una antena-receptor GPS y está asociado a un medio de visualiza- ción, en el que cada una de dichas radiobalizas personales comprende una antena y una antena-receptor GPS, de modo que las radiobalizas personales al activarse pueden emitir una señal analógica de socorro cuya onda moduladora consiste en unos barridos de audiofrecuencia descendente separados por zonas de silencio que puede recibirse y ser demodulada por el al menos un dispositivo controlador- receptor, en el que mediante la antena-receptor GPS de la radiobaliza pueden obtenerse diversas informaciones adicionales, caracterizado porque en las zonas de silencio de la señal analógica de socorro se insertan respectivas señales moduladoras binarias, procedentes de las respectivas radiobalizas, que transportan datos con las diversas informaciones adicionales obtenidas mediante la antena- receptor GPS de la radiobaliza, cuyo instante de transmisión para cada radiobaliza está regido por la información de tiempo suministrada por el sistema GPS, y que también pueden recibirse y ser demoduladas por el al menos un dispositivo controlador-receptor.1.-Locator system that uses personal radio beacons, which also comprises at least one controller-receiver device comprising an antenna and a GPS antenna-receiver and is associated with a visualization means, in which each of said radio beacons personal includes an antenna and a GPS antenna-receiver, so that the personal radio beacons, when activated, can emit an analog distress signal whose modulating wave consists of descending audio frequency sweeps separated by zones of silence that can be received and demodulated by the less a controller-receiver device, in which various additional information can be obtained by means of the GPS-antenna of the radio beacon, characterized in that in the silence zones of the analog distress signal respective binary modulating signals are inserted, from the respective radio beacons , which carry data with the various additional information obtained given by the radio beacon GPS receiver, whose transmission instant for each beacon is governed by the time information supplied by the GPS system, and which can also be received and demodulated by the at least one controller-receiver device.
2.- Sistema localizador que utiliza radiobalizas personales, según la reivindicación 1, caracterizado porque la señal analógica de socorro es en 121,5 MHz.2. A locator system using personal radio beacons, according to claim 1, characterized in that the analog distress signal is 121.5 MHz.
J.- Sistema localizador que utiliza radiobalizas personales, según la reivindicación 1, caracterizado porque la señal analógica de socorro es en 243 MHz. "1 *3J.- Locator system using personal radio beacons, according to claim 1, characterized in that the analog distress signal is 243 MHz. "1 * 3
— _L o —- _L or -
4. -Sistema localizador que utiliza radiobalizas personales, según cualquiera de las reivindicaciones anteriores, caracterizado porque las señales moduladoras binarias comprenden datos de las coordenadas de posición geográfica y del instante de activación de la radiobaliza.4.-Locator system that uses personal radio beacons, according to any of the preceding claims, characterized in that the binary modulating signals comprise data of the geographical position coordinates and the instant of activation of the beacon.
5. -Sistema localizador que utiliza radiobalizas personales, según cualquiera de las reivindicaciones anteriores, caracterizado porque las señales moduladoras binarias son señales FSK ("Frequency Shift Keying", en inglés) .5.-Locator system that uses personal radio beacons, according to any of the preceding claims, characterized in that the binary modulating signals are FSK ("Frequency Shift Keying") signals.
6. -Sistema localizador que utiliza radiobalizas personales, según las reivindicaciones 1 a 4, caracterizado porque las señales moduladoras binarias son señales PSK ("Phase Shift Keying", en inglés) .6.-Locator system using personal radio beacons, according to claims 1 to 4, characterized in that the binary modulating signals are PSK ("Phase Shift Keying" signals).
7. -Sistema localizador que utiliza radiobalizas personales, según cualquiera de las reivindicaciones anteriores, caracterizado porque la forma de la onda moduladora de la señal analógica de socorro consiste en un barrido de audiofrecuencia descendente en una gama no menor de 700 Hz, entre 1600 Hz y 300 Hz, y con una frecuencia de repetición de barrido de 2 a 4 veces por segundo.7.-Locator system using personal radio beacons, according to any of the preceding claims, characterized in that the shape of the modulating wave of the analog distress signal consists of a descending audio frequency sweep in a range not less than 700 Hz, between 1600 Hz and 300 Hz, and with a repeat sweep frequency of 2 to 4 times per second.
8. -Sistema localizador que utiliza radiobalizas personales, según la reivindicación 7, en el que el barrido de audiofrecuencia descendente se efectúa entre 1200 Hz y 400 Hz.8.-Locator system using personal radio beacons, according to claim 7, wherein the descending audio frequency scan is performed between 1200 Hz and 400 Hz.
9. -Sistema localizador que utiliza radiobalizas personales, según cualquiera αe las reivindicaciones anteriores, caracterizado porque el medio de visualización es una pantalla de radar. 9.-Locator system that uses personal radio beacons, according to any of the preceding claims, characterized in that the display means is a radar screen.
10. -Sistema localizador que utiliza radiobalizas personales, según cualquiera de las reivindicaciones 1 a 8, caracterizado porque el medio de visualización es una pantalla con interfaz de usuario.10.-Locator system using personal radio beacons, according to any of claims 1 to 8, characterized in that the display means is a screen with user interface.
11. -Sistema localizador que utiliza radiobalizas personales, según cualquiera de las reivindicaciones anteriores, caracterizado porque las radiobalizas van integradas en una prenda de tipo chaleco o similar.11.-Locator system that uses personal beacons, according to any of the preceding claims, characterized in that the beacons are integrated into a vest-type garment or similar.
12. -Sistema localizador que utiliza radiobalizas personales, según la reivindicación 11, caracterizado porque las radiobalizas se activan mediante un mecanismo automático de activación por inmersión en agua. 12. - Locator system using personal radio beacons, according to claim 11, characterized in that the beacons are activated by an automatic activation mechanism by water immersion.
PCT/ES2006/070119 2006-07-28 2006-07-28 Locating system that uses personal radiobeacons WO2008012377A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/070119 WO2008012377A1 (en) 2006-07-28 2006-07-28 Locating system that uses personal radiobeacons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/070119 WO2008012377A1 (en) 2006-07-28 2006-07-28 Locating system that uses personal radiobeacons

Publications (1)

Publication Number Publication Date
WO2008012377A1 true WO2008012377A1 (en) 2008-01-31

Family

ID=38981166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070119 WO2008012377A1 (en) 2006-07-28 2006-07-28 Locating system that uses personal radiobeacons

Country Status (1)

Country Link
WO (1) WO2008012377A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
US8072382B2 (en) 1999-03-05 2011-12-06 Sra International, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0107596A1 (en) * 1982-10-25 1984-05-02 Société d'Etudes, de Recherches, de Travaux d'Organisation et de Gestion S.E.R.T.O.G. Distress beacon for ship-wrecks
US4888595A (en) * 1986-11-13 1989-12-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acquisition signal transmitter
US20020097157A1 (en) * 2001-01-25 2002-07-25 Piri John L. Device and method for alerting to the need to recover something, identifying it, and determining its location for purposes of recovery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0107596A1 (en) * 1982-10-25 1984-05-02 Société d'Etudes, de Recherches, de Travaux d'Organisation et de Gestion S.E.R.T.O.G. Distress beacon for ship-wrecks
US4888595A (en) * 1986-11-13 1989-12-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Acquisition signal transmitter
US20020097157A1 (en) * 2001-01-25 2002-07-25 Piri John L. Device and method for alerting to the need to recover something, identifying it, and determining its location for purposes of recovery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Airborne Decoder Enhances SAR Effectiveness", FARNBOROUGH INTERNATIONAL AIRSHOW, 2006, Retrieved from the Internet <URL:http://www.farnborough.com/media/news/news-article.asp?n=2288> *
"Emergency Beacon Evaluation Summary", EQUIPPED TO SURVIVE FOUNDATION, 2005, Retrieved from the Internet <URL:http://www.equipped.com/406_GPS_beacon_test_2005_summary.htm> *
"Specification for COSPAS-SARSAT 406 MHz Distress Beacons", COSPAS-SARSAT, no. 3, November 2005 (2005-11-01) *
"Vecta 2 Direction Finder", ACR ELECTRONICS, Retrieved from the Internet <URL:http://www.acrelectronics.com/vecta2/vecta2.html> *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US8072382B2 (en) 1999-03-05 2011-12-06 Sra International, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator

Similar Documents

Publication Publication Date Title
WO2008012377A1 (en) Locating system that uses personal radiobeacons
US7855654B2 (en) Location recording system
US6222484B1 (en) Personal emergency location system
EP1461242B1 (en) Safety system at sea for accurately locating a shipwrecked navigator
US7492251B1 (en) Dual mode personal locator beacon
US7564404B2 (en) Determining precise direction and distance to a satellite radio beacon
CN106056976B (en) Ship positioning navigation and safe early warning alarm system
US8674853B2 (en) System and method for automatic distress at sea
ES2372134T3 (en) PERSONAL SECURITY SYSTEM.
US5355140A (en) Emergency reporting for marine and airborne vessels
WO2013041740A1 (en) Maritime alarm and rescue system and method for controlling said system
US20110122019A1 (en) Apparatus for searching a distress signal and the controlling method thereof
CN101723064A (en) GPS maritime life-saving system
CN101723067A (en) Personal GPS sea lifesaving equipment
CA2710703A1 (en) Improvements in and relating to emergency devices
CN101661662A (en) Locating lifesaving terminal
CN104683941A (en) Improved emergency position indication radio beacon
CN103052025A (en) Improved EPIRB (Emergency Position Indicating Radio-Beacon)
ES2335079B1 (en) LOCALIZING SYSTEM THAT USES PERSONAL RADIOBALIZES.
CN104683942A (en) Marine emergency position-indicating radio beacon
US11741823B2 (en) Distress alert systems and processes related thereto
US20020158795A1 (en) Electronic distress call and position finding system for rescueing distressed people
GB2506108A (en) A marine vessel emergency warning system incorporating recording means
CN203057524U (en) Improved EPIRB (Emergency Position Indication Radio Beacon)
US11254400B2 (en) Distress alert systems and processes related thereto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06778472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 200850098

Country of ref document: ES

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06778472

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 200850098

Country of ref document: ES

Kind code of ref document: A