WO2015144647A1 - Materiau composite comprenant des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau - Google Patents

Materiau composite comprenant des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau Download PDF

Info

Publication number
WO2015144647A1
WO2015144647A1 PCT/EP2015/056143 EP2015056143W WO2015144647A1 WO 2015144647 A1 WO2015144647 A1 WO 2015144647A1 EP 2015056143 W EP2015056143 W EP 2015056143W WO 2015144647 A1 WO2015144647 A1 WO 2015144647A1
Authority
WO
WIPO (PCT)
Prior art keywords
objects
nano
molecule
submicron
carbon
Prior art date
Application number
PCT/EP2015/056143
Other languages
English (en)
Inventor
Pascal Tiquet
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to US15/128,779 priority Critical patent/US20180183051A1/en
Publication of WO2015144647A1 publication Critical patent/WO2015144647A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/746Modified with biological, organic, or hydrocarbon material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the invention relates to a composite material comprising carbon nano-objects.
  • the material according to the invention could thus also be called nanocomposite material.
  • the invention relates to a composite material comprising carbon nanotubes ("NCT” or “Carbon NanoTubes” "CNT” in the English language) or carbon nanofibers and silicon nanoparticles or submicron silicon particles.
  • the invention further relates to a process for preparing said composite material.
  • the invention also relates to an ink comprising the composite material according to the invention.
  • the composite material according to the invention which is a silicon / carbon composite material, may in particular be used, optionally after carbonization, as an electrochemically active electrode material, in particular a negative electrode, in electrochemical systems with organic electrolyte.
  • aqueous such as rechargeable electrochemical accumulators with organic electrolyte, especially in lithium batteries and even more precisely in lithium ion batteries.
  • the invention therefore also relates to an electrode including a negative electrode comprising this composite material, carbonized as an electrochemically active material.
  • the invention also relates to an electrochemical system, for example a lithium ion accumulator comprising such electrodes.
  • the technical field of the invention may, in general, be defined as that of composite materials comprising carbon and another material such as silicon.
  • Lithium technology offers the best features compared to other technologies present.
  • the lithium element is the lightest and most reductive metal and electrochemical systems using lithium technology can reach voltages of 4V against 1.5V for other systems.
  • Lithium ion batteries offer a mass energy density of
  • Carbon nanotubes have been used as additives for active negative electrode or positive electrode materials, or as anode active material to improve the performance of lithium ion batteries.
  • carbon nanotubes can be used as anode material in place of graphite, and describes nanocomposite anode materials comprising single-wall carbon nanotubes and various anode active materials such as that Sn; Bi; SnSb; CoSb3; Ag, Fe, and Sn; T1O2; Sn0 2 ; Li 4 TiO 2; transition metal oxides such as T1O2, CO3U 4, CoO, and Fe3 ⁇ 4; and finally silicon.
  • silicon represents a desirable alternative to carbon as a negative electrode material. Nevertheless, this material has a major disadvantage preventing its use. Indeed, the volume expansion of the silicon particles which can reach up to 400% during charging during the insertion of lithium (Li-ion system) leads to a degradation of the material with the cracking of the particles and the detachment of these of the current collector.
  • This composite material is prepared by a process comprising the following successive steps:
  • the silicon nanoparticles and the carbon nanotubes are dispersed in a solvent such as water or ethanol, in the presence of a dispersing agent;
  • the particles of this composite material are brought into contact with a solution of an amorphous carbon precursor in an organic solvent;
  • the solvent is removed from the precursor and the carbonization of the precursor is carried out by a chemical vapor deposition (CVD) process.
  • CVD chemical vapor deposition
  • the amorphous carbon precursor is an organic compound selected from resins, asphalts, sugars, benzene, and naphthalene.
  • the statistical mixture is defined as an isoprobability to assemble a carbon nanotube (CNT, NTC) to a silicon particle (PCNT-SI), OR to assemble a silicon particle to a carbon nanotube (PS CNT) ), OR to assemble a silicon particle to a silicon particle (Psi-si), or to assemble a carbon nanotube to a carbon nanotube (PcNT-cNT).
  • the statistical mixture corresponds to an equality of the assembly probabilities, that is to say PCNT-SÎ ⁇ PSÎ-CNT ⁇ Psi-si ⁇ PCNT-CNT.
  • the amorphous carbon content of the composite material prepared in this document is at least about 24%, which is very high for use as a negative electrode active material in lithium ion batteries.
  • the process described in this document also has the drawback of using three organic molecules: one as a dispersing agent, one as an organic solvent and one as an amorphous carbon precursor.
  • nanocomposite material comprising nano-carbon objects, more specifically carbon nanotubes or carbon nanofibers, and nano-objects of a material other than carbon, that is, silicon nanoparticles or submicron silicon particles, wherein the nano-objects are distributed in an organized manner.
  • the purpose of the present invention is, among others, to meet these needs.
  • the object of the present invention is in particular to provide a nanocomposite material comprising carbon nano-objects, more specifically carbon nanotubes or carbon nanofibers and nano-objects of a material other than carbon, namely nanoparticles of carbon.
  • silicon or submicron silicon particles which does not have the disadvantages, defects, limitations and disadvantages of the nanocomposite materials of the prior art, as represented in particular by the documents studied above, and which solves the problems of the materials of the prior art.
  • the object of the present invention is still to provide a process for the preparation of such a nanocomposite material which likewise does not have the disadvantages, defects, limitations and disadvantages of the processes for preparing nanocomposite materials of the prior art.
  • a composite material comprising nano-objects in at least a first electronically conductive material and nano-objects or submicron objects in which at least one second material different from the first material; said composite material comprising nanostructures each consisting of the nano-objects in at least one first electronically conductive material marked by a first molecule, nano-objects or submicron objects in at least one second material different from the first material being marked by a second molecule and being self-assembled and fixed on the nano-objects in at least one first material by specific recognition between the first molecule and the second molecule, said nanostructures being distributed from homogeneous manner in the material, the nano-objects in at least a first electronically conductive material being selected from carbon nanotubes and carbon nanofibers, and nano-objects or submicron objects in at least a second material different from the first material being selected from silicon nanoparticles and submicron silicon particles.
  • the second molecule is usually different from the first molecule.
  • labeled is generally meant that the first molecule, said first molecule of marking, is fixed on the nano-objects in a first material (generally at least on the outer surface thereof) and that the second molecule, so-called second molecule of marking, is fixed on the nano-objects in a second material (generally at least on the outer surface thereof).
  • the methods of purification, analysis and detection of such macromolecules also implement such specific recognitions.
  • the latter involve the avid / biotin (strept) pair; protein A / immunoglobulin; G protein / immunoglobulin; the antibody / antigen or antibody / epitope pairs such as the poly-His peptide and an antibody specific for this peptide or the C-terminal fragment of the Myc protein and the monoclonal antibody 9E10; enzyme / substrate pairs such as the glutathione S-transferase / glutathione couple; or the pairs nucleotide sequence / complementary nucleotide sequence.
  • the first labeling molecule and the second labeling molecule constitute what may be called a specific recognition pair between molecules or molecular recognition pair.
  • the first molecule is biotin
  • the second molecule is avidin or streptavidin.
  • nanostructures are uniformly distributed evenly throughout the volume of the material, and that their concentration, presence, are substantially the same throughout the volume of the material, in all parts of the material. this one.
  • each of the nanostructures has a size that is at least equal to the size of each of the nano-objects in at least one first electronically conductive material, for example the length of the carbon nanotubes.
  • Each of the nanostructures can thus have a size of 1 ⁇ to 10 ⁇ .
  • the content of nano-objects in at least one first electronically conductive material and nano-objects or submicron objects in at least one second material different from the first material is respectively from 1% to 40%, and from 60% to 99% by weight .
  • the nano-objects in at least one first electronically conductive material are specifically selected from carbon nanotubes and carbon nanofibers; and nano-objects or submicron objects in at least a second material different from the first material are specifically selected from silicon nanoparticles and submicron silicon particles.
  • the carbon nanotubes may be chosen from single-walled carbon nanotubes, and multi-walled carbon nanotubes such as double-walled carbon nanotubes.
  • the silicon nanoparticles or the submicron silicon particles may have a spherical or spheroidal shape.
  • the ratio of the number of nano-objects or submicron objects in at least one second material, the number of nano-objects in at least one first material is less than or equal to 1/100.
  • the material according to the invention is in the form of a powder.
  • this powder has a mean particle size, which generally corresponds to the average size of the nanostructures, between 1 ⁇ and 100 ⁇ , for example 20 ⁇ , a specific surface area of between 10 m 2 / g and 50 m 2 / g, and a density of between 2.014 g / cm 3 and 2.225 g / cm 3 .
  • the very specific structure or organization of the material according to the invention can be defined as a "self-assembly" structure or organization in which around and on carbon nano-objects, more specifically carbon nanotubes or carbon nanofibers, which are marked by a first molecule come to agglomerate, aggregate, self-assemble, set the nano-objects in a second material namely silicon nanoparticles or submicron silicon particles, these nano-objects in one second material being labeled with a second molecule.
  • the organization of nano-objects into a first material namely carbon NTCs or nanofibers
  • nano-objects of a second material namely silicon nanoparticles. or the submicron silicon particles
  • a first material namely carbon NTCs or nanofibers
  • nano-objects of a second material namely silicon nanoparticles. or the submicron silicon particles
  • self-assembly in which the nano-objects in a second material, are self-assembled, fixed, around, on, nano-objects in a first material, for example on NTCs which are used as electronically conductive skeleton.
  • the nano-objects in a first material for example the NTCs form a three-dimensional electronically conductive network.
  • the phenomenon of marking a particular material with a molecule is a very particular, random and unpredictable phenomenon which depends on many factors and in particular the shape, nature and chemical and physical properties of this material.
  • the nano-objects in at least a first electronically conductive material are specifically selected from carbon nanotubes and carbon nanofibers; and nano-objects or submicron objects in at least a second material different from the first material are specifically selected from silicon nanoparticles and submicron silicon particles.
  • the material according to the invention exhibits excellent performance. improved eg cycle, fast charge, when implemented in a lithium ion accumulator.
  • the structure, organization, self-assembly by molecular recognition of the material according to the invention makes it possible to retain the electronic conduction and the accessibility to the electrolyte. , even when nano-objects or submicron objects in a second material, namely silicon nanoparticles or submicron silicon particles, increase in volume.
  • the invention furthermore relates to a process for the preparation of the nanocomposite material described above, in which the following steps are carried out:
  • the nanocomposite material is dried, for example by lyophilization or by contact with a supercritical fluid.
  • the dispersion in water of the nano-objects in a first material may for example be carried out as follows:
  • the nano-objects are brought into contact with at least one first material with water, then the nano-objects are mixed with at least one first material with water using the succession, possibly repeated, of a mixing technique.
  • ultrasound then a high speed mixing technique the mixture of nano-objects in at least a first material and water being circulated, for example by a pump such as a peristaltic pump, so as to avoid nano-objects made of a first material do not agglomerate, whereby a dispersion consisting of nano-objects in at least one first material and water is obtained which is preferably kept in circulation.
  • this dispersion is an unstable mixture when the circulation stops, for example when the pump is stopped, such as a peristaltic pump which conveys the mixture nano-objects and water from the apparatus to implement the ultrasonic mixing technique, such as a disperser, mixer, ultrasonic, to the apparatus for implementing the mixture at high speed.
  • the pump such as a peristaltic pump which conveys the mixture nano-objects and water from the apparatus to implement the ultrasonic mixing technique, such as a disperser, mixer, ultrasonic, to the apparatus for implementing the mixture at high speed.
  • the method according to the invention comprises a series of simple steps, easy to implement.
  • the process according to the invention does not use organic solvents because it uses water as the only solvent, more exactly a dispersion liquid.
  • the invention further relates to an ink which comprises the composite material according to the invention, and a vehicle.
  • the vehicle generally comprises at least one binder and at least one solvent.
  • the organic polymer may also be chosen from polytretrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) and the PVDF-HFP copolymer (propylene hexafluoride); carboxymethylcellulose; and elastomers such as CMC-SBR (carboxymethylcellulose-rubber styrene butadiene).
  • PTFE polytretrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF-HFP copolymer propylene hexafluoride
  • carboxymethylcellulose elastomers
  • CMC-SBR carboxymethylcellulose-rubber styrene butadiene
  • the solvent is water.
  • the ink may further comprise at least one electronic conductor.
  • This electronic conductor may be chosen from graphite, graphene, carbon fibers, and mixtures thereof.
  • the invention also relates to an electrode comprising as an electrochemically active material the composite material according to the invention.
  • This electrode inherently has all the advantageous properties related to the composite material that it contains as an electrochemically active material.
  • This electrode may be a positive electrode or a negative electrode.
  • the invention further relates to an electrochemical system comprising such an electrode.
  • This electrochemical system may be a non-aqueous electrolyte system such as a non-aqueous electrolyte rechargeable electrochemical accumulator.
  • this electrochemical system is a lithium ion accumulator.
  • This electrochemical system such as a lithium ion accumulator inherently has all the advantageous properties related to the electrode it contains.
  • Figure 1 is a schematic side sectional view of the mixing device used to disperse the nano-objects in at least a first material such as carbon nano-objects, such as carbon nanotubes.
  • FIG. 2 is a photograph, taken with an SEM SEM microscope, which shows the composite material according to the invention with the powder of active material, namely silicon nanoparticles, self-assembled by molecular recognition on carbon nanotubes.
  • the scale shown in FIG. 2 represents 10 ⁇ .
  • Figure 3 is a schematic side sectional view of a battery in the form of a button cell comprising for example a negative electrode to be tested according to the invention.
  • Viscosities are generally measured at 20 ° C.
  • nano-objects is generally meant any object that is alone or related to a nanostructure of which at least one dimension is less than or equal to 500 nm, preferably less than or equal to 300 nm, more preferably less than or equal to
  • 200 nm more preferably less than or equal to 100 nm, for example is in the range of 1 to 500 nm, preferably 1 to 300 nm, more preferably 1 to 200 nm, more preferably 1 to 100 nm, more preferably 2 to 100 nm, or even 5 to 100 nm.
  • nano-objects can be for example nanoparticles, nanowires, nanofibers, nanocrystals, or nanotubes.
  • micron object is generally meant any object whose size, such as the diameter in the case of a spherical or spheroidal object, is less than 1 ⁇ , preferably 50 nm to 800 nm, for example 310 nm.
  • nanostructure is generally meant an architecture consisting of an assembly of nano-objects and / or submicron objects which are organized with functional logic and which are structured in a space ranging from cubic nanometer to cubic micrometer.
  • polysaccharide is generally meant a polymeric organic macromolecule consisting of a chain of monosaccharide units. Such a macromolecule can be represented by a chemical formula of the form - [C x (H 2 O) y ] n -.
  • macromolecules consisting of mannuronic acid (M-unit) and guluronic acid are preferably used according to the invention.
  • pattern G The macromolecular chains most suitable for the invention are those which maximize the M units (that is to say that the ratio of M units / G units is greater than 60%).
  • the composite material prepared by the process according to the invention is the positive or negative electrode active material of a lithium ion rechargeable battery, but it is quite obvious that the description which follows may easily be extended and adapted, where appropriate, to any application and any method of implementation of the composite material prepared by the process according to the invention.
  • active material negative or positive electrode of a lithium ion accumulator
  • the molecular marking of the active material (Si) of the nanoparticles or submicron particles of active material (Si) is carried out by a second labeling molecule.
  • the nanoparticles or submicron particles of active material (Si) are added to a solution in a solvent of a second labeling molecule.
  • the molecular recognition pair implemented according to the invention is not limited and may be chosen in particular from the specific recognition or molecular recognition couples already mentioned above.
  • the first molecule is biotin
  • the second molecule is avidin or streptavidin and the following description is made for convenience in reference to this molecular recognition couple.
  • this description applies to any pair of molecular recognition.
  • the particles of active material namely the silicon particles are generally submicron particles, namely whose size such that the diameter is less than 1 ⁇ , for example from 50 nm to 800 nm, for example still 310 nm.
  • a spherical shape of the silicon particles is recommended to allow easy insertion of these silicon particles into the entanglement network of carbon nanotubes.
  • a silicon powder which is particularly suitable for use in the process according to the invention is a submicron spherical silicon powder, the particles of which have a diameter of about 310 nm and which is available from the company S'tile.
  • the solvent of this solution of nanoparticles or submicron particles generally consists exclusively of water, to the exclusion of any other solvent.
  • the water of this solution is deionized water (water "DI").
  • the amount of active ingredient (Si) in the solution is such that it is the solution obtained after adding the protein solution to the solution. powder) is above the limit of solubility of the active substances in water and that we thus obtain a dispersion in water nanoparticles or submicron particles of active material (Si).
  • the volume of water of the protein solution such as avidin or streptavidin required is that of the interstitial volume of the unpacked active ingredient.
  • the mass of protein such as avidin or streptavidin introduced into the solution is generally equivalent to 0.1% to 1%, for example 1%, of the mass of interstitial water volume of the unfilled active material.
  • the dissolution of the protein such as avidin or streptavidin in water is carried out generally with magnetic stirring at room temperature and the solution of water containing the protein, such as avidin or streptavidin, is then poured into a container containing the powder of nanoparticles or particles submicron active material (Si).
  • a nanoparticle powder or submicron particles of active material (Si) labeled with the protein such as avidin or streptavidin is thus obtained.
  • a homogenization mixture is carried out before lyophilization by freezing, for example at -80.degree. C. of the active material powder (Si) labeled with the protein such as avidin or streptavidin.
  • the molecular marking of carbon nanotubes is carried out by biotin, which is a water-soluble vitamin.
  • This step could be carried out analogously with carbon nanofibers.
  • nano-carbon objects are dispersed in water, namely carbon nanotubes (CNTs).
  • CNTs carbon nanotubes
  • the solvent of the dispersion thus prepared consists exclusively of water, to the exclusion of any other solvent.
  • the water of the dispersion is deionized water ("DI" water).
  • Carbon nanotubes may be single-walled carbon nanotubes ("SWCNT” or “Single Wall Carbon Nanotube” in English) or multi-walled carbon nanotubes (“MWCNT”). Or “Multi Wall Carbon Nanotubes” such as double-walled carbon nanotubes (“DWCNT” or “Double Wall Carbon Nanotubes” in English).
  • the carbon nanotubes may have an average length of 1 ⁇ to
  • the concentration of carbon nano-objects in the dispersion is generally 1 to 5 g / L of water, for example 2.5 g / L of water.
  • concentration of carbon nano-objects in the dispersion is generally 1 to 5 g / L of water, for example 2.5 g / L of water.
  • biotin it is thus possible to use a dispersion containing 0.5 g of carbon nanotube in 500 ml of water, ie 0.25 g / l of water.
  • the maximum concentration not to be exceeded is estimated for 10 ⁇ tubes at 5 mg / ml of water.
  • this dispersion of nano-carbon objects namely carbon nanotubes in water
  • the ultrasound is generated by a probe placed in a container where the carbon nanotubes are placed in the water.
  • Ultrasound generally has an acoustic power density of 1 to 1000 W / cm 2 , for example 90 W / cm 2, and the carbon nano-objects, ie carbon nanotubes are exposed to the action of ultrasound for a period of time.
  • short duration generally from 1 to 100 ms, for example 20 ms. Such a short duration makes it possible to disaggregate the nano-carbon objects without breaking them and thus prevents carbon nano-objects from being damaged.
  • High speed mixing is generally understood to mean that the carbon nano-objects in the water are accelerated and sheared with a shear rate of 500 s 1 to 2000 s "1 , and that the speed of the carbon nano-objects is generally from 1 to 5 m / s, for example 3 m / s.
  • This device comprises a high-speed mixing tank (1) and an ultrasonic reactor (2) specific for this purpose.
  • the high-speed mixing tank (1) and the ultrasonic reactor (2) are in the form of circular cylindrical open vessels (3, 4).
  • a second pipe (8) on which is placed a second pump (12), connects an orifice (9) located in the center of the base (4) of the ultrasonic reactor (2) at the top of the mixing tank at high speed (1).
  • the diameter of the second pipe (8) is for example 6 mm.
  • the flow velocity inside this pipe is estimated for example at 17 m / min for a flow rate greater than 0.5 L / min.
  • the high-speed vessel (1) is equipped with a high-speed agitator (10), for example of the Ultra Turrax ®.
  • the mixing technique is a hybridization of the technique with the ultrasound technique by a probe.
  • the ultrasonic probe or rod (11) is placed in the center of the ultrasonic reactor (2) opposite the orifice, outlet (9) located in the center of the base (4) of the ultrasonic reactor (2).
  • water is first available in the mixing tank without the high-speed stirrer being actuated, and then the carbon nano-objects, namely the carbon nanotubes, are added. carbon, with water.
  • the carbon nano-objects are initially placed in the mixing tank without the high-speed agitator being actuated, and then water is added thereto.
  • a mixture of nano-objects of carbon and water is thus formed.
  • the nano-carbon objects are predispersed, mixed beforehand and this predispersion, this mixture is placed in the tank (1).
  • the mixture of water and nano-carbon objects consists for example of 1.25 g of carbon nano-objects, namely of NTCs, in 500 ml of deionized water, that is to say that the nano-carbon concentration of the mixture is 2.5 mg / ml.
  • the mixture of water and nano-carbon objects, namely carbon nanotubes, is conveyed via the pipe (5) under the action of the pump (6) and arrives in the ultrasonic reactor ( 2).
  • the carbon nanobots are exposed to ultrasound emitted by the probe; for example they are exposed to ultrasound with a frequency of 20 kHz and a power of 250W for a short time, for example for about 20 ms, which corresponds to about 400 pulses.
  • This short ultrasound exposure time ensures that carbon nano-objects, namely NTCs, are not damaged, and allows them to disagglomerate without breaking them since the energy involved does not generally exceed 5 Joules.
  • the mixture of water and nano-objects of carbon which has been exposed to ultrasound is then set in motion by the peristaltic pump (12) in order to acquire a linear velocity which is sufficient for the nano-carbon objects to be do not agglomerate again in the pipe (8) after their passage in the reactor (2) and their exposure to ultrasound.
  • This linear speed is at least 10 m / min, and can be for example 17 m / min.
  • the nano-carbon objects thus arrive via the pipe (8) in the high speed tank (1) where they are accelerated and sheared at a shear rate of, for example, 1175 s "1 .
  • the preparation of the aqueous dispersion by combination of the ultrasonic mixing technique and the high speed mixing technique generally lasts from 10 to 60 minutes, for example 30 minutes.
  • the dispersion is characterized by the presence of agglomerates whose size is for example between 5 ⁇ and 80 ⁇ .
  • NTCs are not fully networked, but there are interactions, connections, between these NTCs, and they form surprisingly agglomerates in which they are linked.
  • the water expands the network of NTCs but interactions between the NTCs are indeed present.
  • the dispersion obtained at the end of the first stage contains, in addition to water, no other solvent and contains no additives, for example of the dispersant type, such as sodium dodecyl sulphate ("Sodium"). dodecyl
  • the dispersion obtained is constituted by carbon nanotubes and water, usually deionized water.
  • This dispersion is an "out-of-equilibrium" dispersion, comprising only a phase of NTCs and non-stable water, it must therefore be kept under stirring and not stop the stirring.
  • the dispersion In general, during all transfers, the dispersion must always be in motion, always possess kinetic energy, and have a sufficient linear velocity already specified above.
  • Biotin generally in an amount of 0.1% to 1% by weight, is then added to the dispersion of carbon nanotubes with magnetic stirring at room temperature so that the vitamin, such as biotin, binds to the nanotubes of the nanotubes. carbon due to interactions n graphene sheets.
  • the amount of biotin added is generally from 1 to 10 mg / L of the carbon nanotube dispersion. Thus, 10 mg of biotin can be added per 1000 ml of dispersion of carbon nanotubes.
  • the dispersion is then lyophilized, that is to say that it is successively frozen solidified, then sublimated.
  • droplets of the dispersion generally from 0.5 to 2 mm in diameter, for example 1 mm in diameter, for example with the aid of a "pilling" system, are formed and these are dropped. drops directly in liquid nitrogen to thereby obtain, by fast freezing, macro-objects or frozen capsules preferably having a spherical shape such as ice-balls and whose size, such as the diameter is for example 0, 5mm to 2mm, for example 1mm.
  • These frozen macro-objects or capsules preferably having a spherical shape such as ice-balls contain the expanded carbon nanotubes and labeled with biotin.
  • This solidification, freezing, is in fact the first part of the lyophilization treatment.
  • This solidification, freezing the dispersion to give macro-objects, is followed by a sublimation step which constitutes the second part of the lyophilization treatment.
  • the frozen solvent namely ice
  • the enzyme such as biotin is fixed on the surface of the carbon nanotubes.
  • Lyophilization is generally carried out under a high vacuum, namely under a pressure not exceeding 5.10 3 mbar, for example a pressure of 10 -3 at 10 7 mbar and at a temperature not exceeding -20 ° C., for example a temperature of -80 ° C.
  • the duration of lyophilization depends on the equipment used and can range, for example, from 1 h to 12 h per liter of dispersion.
  • a dispersion consisting of labeled carbon nanotubes and water is first prepared.
  • the lyophilized labeled carbon nanotubes prepared above are added in a certain volume of water, for example 500 ml of water, with magnetic stirring, so as to obtain a dispersion of labeled carbon nanotubes.
  • the concentration of carbon nanotubes in this dispersion is generally 1 to 2.5 mg / L.
  • the quantity of nanoparticles or submicron particles of active material (silicon) is such that the dispersion of carbon nanotubes and nanoparticles or submicron particles of active material (silicon) obtained generally contains from 5 to 15 g, for example 8 g of nanoparticles or submicron particles of active material (silicon) / dispersion L.
  • the self-assembly is generally no longer possible because the number of silicon particles is too large compared to the number of carbon nanotubes. It is the same below 5 g of silicon particles / L of dispersion.
  • the mass ratio of the number of nanoparticles or submicron particles of labeled active material (silicon): number of carbon nanotubes is generally from 60/1 to 99/1, for example 99/1.
  • the nanoparticles or submicron particles of labeled active material are generally added at a constant rate, generally at a rate of 10 to 500 mg / min, for example at a rate of 300 mg / min.
  • a rate of 10 to 500 mg / min for example at a rate of 300 mg / min.
  • the duration of the addition will generally be 30 minutes.
  • the duration of this step during which the above-mentioned conditions are maintained, namely among others, the addition of the particles of active material (silicon) at constant speed, the shear rate, and the high speed of the fluid is generally from 15 to 60 minutes, for example 30 minutes.
  • the self-assembled composite material according to the invention is thus obtained, which is then separated from the water of the dispersion in the form of a powder and then optionally dried.
  • the composite material may be lyophilized under the proper conditions, or simply dried, generally by contact with a supercritical fluid such as supercritical CO 2 .
  • the SEM image of Figure 2 shows a typical image of a self-assembly of silicon nanoparticles on carbon nanotubes by molecular recognition.
  • the powder of the self-assembled composite material thus prepared according to the invention is ready for use for any subsequent use, for example to make an ink and does not require grinding. which would break the whole organization present in the powder.
  • the particle size of the self-assembled powder is generally between 1 ⁇ and 100 ⁇ , its specific surface area is generally between 10 m 2 / g and 50 m 2 / g, and its density is generally between 2.014 g / cm 3 and 2.25 g / cm 3 .
  • the self-assembled powder can be mixed, for example by simple mechanical action with all kinds of materials.
  • This mechanical action may include one or more operations for example, it can only perform an extrusion; or a simple mechanical mixing can be achieved; or we can achieve a simple mechanical mixing optionally followed by drying of the mixture.
  • vehicle of an ink or paste is generally meant components, ingredients necessary to impart to this ink or paste and to the marking obtained with this ink or paste the desired properties.
  • the vehicle of the ink or paste generally comprises a binder and a solvent.
  • the vehicle may further comprise at least one electronic conductor different from the self-assembled composite material according to the invention.
  • the ink in which the composite material according to the invention can be incorporated there is no limitation on the ink in which the composite material according to the invention can be incorporated, in particular there is no limitation with regard to the vehicle, the binder and the solvent with which the material according to the invention can be mixed to prepare an ink or paste.
  • the ink may be a water-based ink, that is to say one whose solvent mainly comprises water or consists of water; an organic-based ink, that is to say one whose solvent mainly comprises one or more organic solvents or is constituted by one or more organic solvents, for example a so-called fat-based ink whose solvent is constituted by one or more several drying oils; an ink based on a sol-gel of silica or carbon.
  • the binder may be chosen from organic polymers such as photo-crosslinkable polymers such as acrylic polymers, heliographic resins, photolithographic resins, crosslinkable thermosetting polymers such as epoxides, natural polymers such as polysaccharides such as alginates.
  • organic polymers such as photo-crosslinkable polymers such as acrylic polymers, heliographic resins, photolithographic resins, crosslinkable thermosetting polymers such as epoxides, natural polymers such as polysaccharides such as alginates.
  • the solvent is water
  • the binder is a polysaccharide such as an alginate.
  • the self-assembly of the nanopowders of the composite material according to the invention is carried out upstream of the manufacture of the ink, it becomes It is possible to use any binder, especially organic, as the binder of this ink and the electrode prepared therefrom.
  • This ink or paste is generally intended for the preparation of an electrode by coating, printing, depositing, using a printing device, said ink or paste on a current collector.
  • the composite material according to the invention can be used as an electrochemically active electrode material in any electrochemical system.
  • the composite material according to the invention can in particular be used as electrochemically active material of positive or negative electrode in any electrochemical system. in particular in any electrochemical system with non-aqueous electrolyte.
  • This positive or negative electrode comprises, besides the electrochemically active material of positive or negative electrode as defined above, a binder which is generally an organic polymer, optionally one or more additive (s) conductor (s) electronic (s), and a current collector.
  • a binder which is generally an organic polymer, optionally one or more additive (s) conductor (s) electronic (s), and a current collector.
  • the organic polymer may also be chosen from polytretrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF) and the PVDF-HFP copolymer (propylene hexafluoride); carboxymethylcellulose; and elastomers such as CMC-SBR (carboxymethylcellulose-rubber styrene butadiene).
  • PTFE polytretrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVDF-HFP copolymer propylene hexafluoride
  • carboxymethylcellulose elastomers
  • CMC-SBR carboxymethylcellulose-rubber styrene butadiene
  • the binder is a polysaccharide such as an alginate.
  • the optional electronic conductive additive may be chosen from metal particles such as Ag particles, graphite, graphene, carbon black, carbon fibers, carbon nanowires, carbon nanotubes, and polymers. electronic conductors, and their mixtures.
  • graphene and carbon fibers can fulfill exactly the same role as graphite in ink. Only large-scale organization will be different depending on the nature of the electronic conductor envisioned as carbon fiber or micron graphite.
  • the current collector is generally in the form of a sheet or grid of copper, nickel or aluminum.
  • the electrode generally comprises from 70% to 94% by mass of electrochemically active material, from 1% to 20% by weight, preferably from 1% to 10% by weight of the binder, and optionally from 1% to 15% by weight. mass of the electronic conductive additive (s).
  • Such an electrode can be prepared in a conventional manner according to a first embodiment of the method for preparing an electrode according to the invention by forming, as described above, a suspension, paste or ink with the composite material according to the invention, the binder which is then preferably a polysaccharide, optionally the electronically conductive additive (s), and a solvent, by depositing, coating or printing this suspension, paste or ink on a current collector, in drying the ink, pulp or suspension deposited, calendering, squeezing the ink or paste deposited, dried and the current collector, and finally by thermally treating the electrode to carbonize the polysaccharide, such as an alginate, and turn it into amorphous carbon.
  • the binder which is then preferably a polysaccharide, optionally the electronically conductive additive (s), and a solvent
  • the material according to the invention is incorporated in the ink vehicle, that is to say a mixture of binder, solvent, and optional conductive additives.
  • the solvent and the binder are in the form of an aqueous polysaccharide gel, such as an alginate hydrogel.
  • polysaccharide macromolecule there is indeed no limitation as to the polysaccharide macromolecule and all the molecules belonging to the family of polysaccharides can be used in the process according to the invention. It can be natural or synthetic polysaccharides.
  • the polysaccharide macromolecule may be selected from pectins, alginates, alginic acid, and carrageenans.
  • alginates is meant alginic acid as well as salts and derivatives thereof such as sodium alginate.
  • Alginates and in particular sodium alginate are extracted from various brown algae Phaeophyceae, mainly Laminaria such as Laminaria hyperborea and Macrocystis such as Macrocystis pyrifera Sodium alginate is the most common commercialized form of alginic acid.
  • Alginic acid is a natural polymer of the empirical formula (C6H7NaO6) n consisting of two monosaccharide units: D-mannuronic acid (M) and L-guluronic acid (G).
  • the number of base units of the alginates is generally about 200.
  • the proportion of mannuronic acid and guluronic acid varies from one species of seaweed to another and the number of units M on the number of units G may range from 0.5 to 1.5, preferably from 1 to 1.5.
  • the alginates are linear unbranched polymers and are not generally random copolymers but according to the alga from which they come, they consist of sequences of similar or alternating units, namely GGGGGGGGG sequences, M M M M M M M, or G M G M G M G M.
  • the M / G ratio of alginate from Macrocystis pyrifera is about 1.6 while the M / G ratio of alginate from Laminaria hyperborea is about 0.45.
  • alginates polysaccharides derived from Laminaria hyperborea mention may be made of Satialgine SG 500, among the alginates polysaccharides derived from Macrocystiis pyrifera of different lengths of molecule, mention may be made of the polysaccharides designated A7128, A2033 and A2158 which are generics of acids alginic.
  • the polysaccharide macromolecule used according to the invention generally has a molecular weight of 80000 g / mol to 500000 g / mol, preferably 80000 g / mol to 450000 g / mol.
  • the incorporation of the composite material according to the invention into this mixture is preferably carried out by a non-grinding mixing technique, in a mixing apparatus, for example of the planetary mixer type, which does not cause any grinding, and involving a very low energy, namely generally less than 100 Joules / turn, to preserve the self-assembly of carbon nanotubes with nanoparticles or submicron particles of active material, namely silicon, which is stored at 60 J / revolution.
  • Such a mixing apparatus makes it possible to avoid lumps, and makes it possible to retain an ink fineness of less than 10 ⁇ .
  • the alginate gel at a concentration generally of 6% to 10% by weight, for example 8% by weight, and then the self-assembled powder of carbon nanotubes and nanoparticles or submicron particles of active material, namely silicon, possibly with its electronic conductor.
  • the speed of rotation is slow, for example approximately 100 rpm and the pressure is for example 2 bar on the plate.
  • composition of the dry extract ink is from 60% to 90% by weight, for example 85% by weight of self-assembled active material, to 0.5% to 5% by weight, for example 1% by weight of carbon nanotubes (electronic conductive additive), bound to 5% to 20% by weight, for example 14% by weight of alginate.
  • the ink, paste or suspension can be applied by any suitable method such as coating, coating, gravure, flexography, offset.
  • the thickness of ink, paste, or deposited suspension, applied is generally 50 to 300 ⁇ , for example 100 ⁇ .
  • the deposited ink, paste, or suspension is generally dried at room temperature, i.e. 15 ° C to 30 ° C, preferably 20 ° C.
  • the heat treatment of the electrode to carbonize the polysaccharide of the binder, such as an alginate, and transform it into amorphous carbon is generally carried out at a temperature of 400 ° C to 650 ° C, for example 600 ° C, for a duration of 15 to 60 minutes, for example 30 minutes under a scanning of inert gas such as argon or under a slightly reducing gas scan, such as a mixture of an inert gas such as argon and a reducing gas such as hydrogen, by a mixture of argon and hydrogen (for example 2% by volume of hydrogen).
  • the loss of mass does not generally exceed 30%, which is a low value which guarantees good cohesion of the electrode and good adhesion to the current collector, for example to the copper foil forming this current collector.
  • Electrodes are then cut into pellets and these pellets can then be treated with a hydrogen plasma to deoxidize the silicon of the composite material and etch the amorphous carbon to improve the accessibility of the electrolyte to the surfaces of the silicon nanoparticles or submicron particles. of silicon.
  • the electrochemical system in which the electrode according to the invention is implemented can be in particular a rechargeable electrochemical accumulator with non-aqueous electrolyte such as an accumulator or a lithium battery, and more particularly a lithium ion accumulator, which in addition to the positive or negative electrode as defined above, comprising as electrochemically active material the composite material prepared according to the invention wherein the polysaccharide of the binder has been carbonized and converted into amorphous carbon, comprises a negative or positive electrode which does not comprise not the composite material according to the invention, and a non-aqueous electrolyte.
  • a rechargeable electrochemical accumulator with non-aqueous electrolyte such as an accumulator or a lithium battery
  • a lithium ion accumulator which in addition to the positive or negative electrode as defined above, comprising as electrochemically active material the composite material prepared according to the invention wherein the polysaccharide of the binder has been carbonized and converted into amorphous carbon, comprises a negative or positive electrode which
  • the negative or positive electrode which does not comprise as an electrochemically active material the composite material according to the invention in which the polysaccharide has been carbonized, comprises an electrochemically active material different from the composite material according to the invention, a binder, optionally one or more electronic conductive additive (s) and a current collector.
  • the binder and the optional electronic additive (s) have already been described above.
  • the electrochemically active material of the negative or positive electrode which does not comprise the composite material according to the invention in which the polysaccharide has been carbonized as electrochemically active material may be chosen from any material known to those skilled in the art.
  • the electrochemically active material of the negative electrode when the composite material according to the invention in which the polysaccharide has been carbonized is the electrochemically active material of the negative electrode, then the electrochemically active material of the positive electrode may be chosen from lithium metal and any material known to the skilled person in this field of the art.
  • the electrochemically active material of the positive electrode is formed by the material according to the invention in which the polysaccharide has been carbonized
  • the electrochemically active material of the negative electrode can be made of any material known and adaptable by the human being. job.
  • the electrolyte may be solid or liquid.
  • the electrolyte When the electrolyte is liquid, it consists for example of a solution of at least one conductive salt such as a lithium salt in an organic solvent and / or an ionic liquid.
  • the electrolyte When the electrolyte is solid, it comprises a polymeric material and a lithium salt.
  • the lithium salt may be chosen for example from LiAsF 6, LiClO 4 , LiBF 4 , LiPF 6, LiBOB, LiODBF, LiB (C 6 H 5 ), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 (LiTFSI), LiC (CF 3 S0 2 ) 3 (LiTFSM).
  • the organic solvent is preferably a solvent compatible with the constituents of the electrodes, relatively nonvolatile, aprotic and relatively polar.
  • ethers, esters and mixtures thereof may be mentioned.
  • the ethers are chosen in particular from linear carbonates such as dimethyl carbonate (DMC), diethyl carbonate (DEC), methylethyl carbonate (EMC), dipropyl carbonate (DPC), cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate; alkyl esters such as formates, acetates, propionates and butyrates; gamma butyrolactone, triglyme, tetraglyme, lactone, dimethylsulfoxide, dioxolane, sulfolane and mixtures thereof.
  • the solvents are preferably mixtures including EC / DMC, EC / DEC, EC / DPC and EC / DMC.
  • the accumulator may have the shape of a button cell.
  • the stainless steel shims (104) which serve both for example to cut the lithium metal and, later, to ensure good contact of the current collectors with the external parts of the battery,
  • a silicon nanoparticle / carbon nanotube composite material according to the invention is prepared by the method according to the invention, as described above.
  • the first manufacturing step is the molecular marking of silicon nanoparticles.
  • the amount of silicon nanoparticles is such that the solution (i.e. the solution containing the active ingredient, the D1 water and the avidin protein or streptavidin) is above the solubility limit.
  • the solution i.e. the solution containing the active ingredient, the D1 water and the avidin protein or streptavidin
  • avidin or streptavidin is used to label these silicon nanoparticles.
  • the volume of water required is that of the interstitial volume of the unpacked silicon nanoparticles.
  • the mass of avidin or streptavidin introduced into the solution is equivalent to 1% of the mass of the volume of interstitial water.
  • the dissolution is carried out with magnetic stirring at room temperature and the water solution containing avidin (or streptavidin) is then poured into the container containing the powder.
  • a homogenization mixture is carried out before freezing at -80 ° C. and lyophilization of the labeled active substance powders.
  • the second manufacturing step is the molecular marking of carbon nanotubes with biotin, a water-soluble vitamin.
  • the carbon nanotubes in powder form are dissolved at a concentration of less than 5 mg / ml of water.
  • a dispersion solution containing 0.5 g of carbon nanotube is used in 500 ml of water.
  • the carbon nanotubes are dispersed by using mixed agitation by ultrasound and high shear rate (Ultra-Turrax ® type ). The facility for performing such mixed agitation is described in Figure 1.
  • biotin 10 mg are introduced into the NTCs solution with magnetic stirring at room temperature so that the biotin binds to the carbon nanotubes via the ⁇ interactions of the graphene sheets.
  • the solution is then passed through a "pilling" system to form drops of about 1 mm in diameter which fall directly into a liquid nitrogen container for rapid freezing.
  • the ice pellets containing the expanded carbon nanotubes and labeled with biotin are then lyophilized so that the biotin is fixed on the surfaces of the carbon nanotubes.
  • the third step is the step of assembling the labeled silicon nanoparticle powder on the carbon nanotubes labeled by molecular recognition between avidin and biotin.
  • the labeled nanotubes are poured into 500 ml of water with magnetic stirring and then the labeled active ingredients are poured into the water.
  • the mass proportion of silicon nanoparticles / NTCs is 99/1.
  • the composite material is separated from the water, and the water is then removed by any suitable means.
  • the SEM image of Figure 2 shows a typical image of a self-assembly of silicon nanoparticles on carbon nanotubes by molecular recognition.
  • an ink according to the invention is prepared using a planetary mixer described.
  • the planetary mixer is first introduced with an 8% alginate gel and then the self-assembled active material prepared in Example 1 with its electronic conductor, which is carbon black, or VGCF carbon fibers. .
  • the rotation speed is slow, approximately 100 rpm and the pressure is 2 bar on the plate.
  • composition of the ink in dry extract is 85% of active ingredients selfassembled at 1% of NTCs bound to 14% of alginate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Matériau composite comprenant des nano-objets en au moins un premier matériau conducteur électronique et des nano-objets ou des objets submicroniques en au moins un deuxième matériau différent du premier matériau; ledit matériau composite comprenant des nanostructures constituées chacune par les nano-objets en au moins un premier matériau conducteur électronique marqués par une première molécule, les nano- objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant marqués par une deuxième molécule et étant auto-assemblés et fixés sur les nano-objets en au moins un premier matériau par reconnaissance spécifique entre la première molécule et le deuxième molécule, lesdites nanostructures étant réparties de manière homogène dans le matériau, les nano-objets en au moins un premier matériau conducteur électronique étant choisis parmi les nanotubes de carbone et les nanofibres de carbone, et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant choisis parmi les nanoparticules de silicium et les particules submicroniques de silicium. Procédé de préparation dudit matériau nanocomposite. Encre comprenant ledit matériau composite. Electrode comprenant en tant que matière électrochimiquement active ledit matériau composite. Système électrochimique, notamment accumulateur aux ions lithium, comprenant une telle électrode.

Description

MATERIAU COMPOSITE COMPRENANT DES NANO-OBJETS DE CARBONE, SON PROCEDE DE PREPARATION, ET ENCRE ET ELECTRODE COMPRENANT CE MATERIAU.
DESCRIPTION
DOMAINE TECHNIQUE
L'invention concerne un matériau composite comprenant des nano-objets de carbone.
Le matériau selon l'invention pourrait ainsi être aussi dénommé matériau nanocomposite.
Plus précisément, l'invention concerne un matériau composite comprenant des nanotubes de carbone (« NCT », ou « Carbon NanoTubes » « CNT » en langue anglaise) ou des nanofibres de carbone et des nanoparticules de silicium ou des particules submicroniques de silicium.
L'invention concerne, en outre, un procédé de préparation dudit matériau composite.
L'invention a également trait à une encre comprenant le matériau composite selon l'invention.
Le matériau composite selon l'invention qui est un matériau composite silicium/carbone peut notamment être utilisé, éventuellement après carbonisation, en tant que matière électrochimiquement active d'électrode, en particulier d'électrode négative, dans les systèmes électrochimiques à électrolyte organique, non aqueux, tels que les accumulateurs électrochimiques rechargeables à électrolyte organique, notamment dans les batteries au lithium et encore plus précisément dans les batteries aux ions lithium.
L'invention a donc aussi trait à une électrode notamment une électrode négative comprenant ce matériau composite, carbonisé en tant que matière électrochimiquement active.
L'invention concerne aussi un système électrochimique, par exemple un accumulateur aux ions lithium comprenant de telles électrodes. Le domaine technique de l'invention peut, de manière générale, être défini comme celui des matériaux composites comprenant du carbone et un autre matériau tel que le silicium. ÉTAT DE LA TECHNIQUE ANTÉRIEURE
La croissance du marché des équipements portables a permis à la technologie des accumulateurs au lithium d'émerger ; et ensuite le cahier des charges pour les appareils mettant en œuvre ces accumulateurs est devenu de plus en plus contraignant. Ces appareils demandent toujours plus d'énergie et d'autonomie tandis qu'une diminution du volume et du poids des accumulateurs est en même temps souhaitée.
La technologie lithium offre les meilleures caractéristiques par rapport aux autres technologies présentes. L'élément lithium est le plus léger et le plus réducteur des métaux et les systèmes électrochimiques utilisant la technologie lithium peuvent atteindre des tensions de 4V contre 1,5V pour les autres systèmes.
Les batteries à ions lithium offrent une densité d'énergie massique de
200 Wh/kg contre 100 Wh/kg pour la technologie NiM H, 30 Wh/kg pour le plomb, et 50 Wh/kg pour NiCd.
Cependant, les matériaux actuels et en particulier les matériaux actifs d'électrode atteignent leurs limites en termes de performances.
Ces matériaux actifs d'électrodes sont constitués par une matière électrochimiquement active qui constitue une structure d'accueil dans laquelle les cations, par exemple les cations lithium, s'insèrent et se désinsèrent au cours du cyclage. Le matériau actif d'électrode négative le plus couramment utilisé dans les accumulateurs aux ions lithium est le carbone graphite, mais sa capacité réversible est faible et il présente une perte de capacité irréversible « ICL ».
Les nanotubes de carbone ont été utilisés comme additifs pour les matériaux actifs d'électrode négative ou d'électrode positive, ou en tant que matériau actif d'anode en vue d'améliorer les performances des accumulateurs aux ions lithium.
Ainsi le document [1], LIU et al., « Carbon nanotube (CNT)-based composites as électrode material for rechargeable Li-ion batteries : A review », Composites Science and Technology, 72 (2012), 121-144, décrit des matériaux nanocomposites comprenant des nanotubes de carbone monoparoi et divers matériaux de cathode tels que le LJC0O2, le LiFeP04, le LiMn204, ou encore des polymères intrinsèquement conducteurs.
Ce document indique, en outre, que les nanotubes de carbone peuvent être utilisés en tant que matériau d'anode à la place du graphite, et décrit des matériaux d'anode nanocomposites comprenant des nanotubes de carbone monoparoi et divers matériaux actifs d'anode tels que Sn ; Bi ; SnSb ; CoSb3 ; Ag, Fe, et Sn ; T1O2 ; Sn02 ; Li4TisOi2 ; des oxydes de métaux de transition tels que T1O2, Co3Û4, CoO, et Fe3Û4; et enfin du silicium.
Les accumulateurs qui utilisent les matériaux énumérés dans le document [1] possèdent encore des performances insuffisantes.
Par ailleurs, on sait que dans le cas des matériaux actifs d'électrode négative en filière Li/ion, une possibilité permettant d'en améliorer les performances est de remplacer le graphite par un autre matériau de meilleure capacité comme l'étain, ou le silicium.
Avec une capacité théorique estimée à 3579 mAh/g (pour Si -> Li3,7sSi), le silicium représente une alternative souhaitable au carbone en tant que matériau d'électrode négative. Néanmoins, ce matériau possède un inconvénient majeur empêchant son utilisation. En effet, l'expansion volumique des particules de silicium qui peut atteindre jusqu'à 400% en cours de charge lors de l'insertion du lithium (système Li-ion) entraîne une dégradation du matériau avec la fissuration des particules et le décollement de celles-ci du collecteur de courant.
Cette fragilisation du matériau est actuellement difficilement maîtrisée et conduit à une faible cyclabilité de l'électrode.
Il a été montré que l'utilisation de ces matériaux, tels que le silicium, sous forme de poudres nanométriques peut permettre de limiter l'ampleur de ces phénomènes de dégradation et de parvenir à une réversibilité améliorée pour des capacités proches des valeurs théoriques.
Cependant, l'utilisation de poudres nanométriques de silicium se confronte rapidement à des problèmes de maintien de la percolation électronique au sein de l'électrode. Afin de fournir un matériau capable de maintenir l'intégrité de l'électrode après des cycles de charge-décharge répétés et de surmonter les problèmes inhérents au silicium, de nombreuses recherches ont donc, depuis plusieurs années, porté sur des matériaux dans lesquels le matériau alternatif, tel que le silicium est couplé avec le carbone, il s'agit en particulier de matériaux composites silicium/carbone dans lesquels, généralement, le silicium est dispersé dans une matrice de carbone.
Le but de ces matériaux est de combiner la bonne cyclabilité du carbone avec un apport supplémentaire de capacité dû à l'addition de silicium.
Cependant, les accumulateurs tels que les accumulateurs aux ions lithium qui comprennent de tels matériaux possèdent encore, là-aussi, des performances insuffisantes.
Le document CN-A-101439972 [2] décrit des particules d'un matériau composite silicium-carbone qui comprend des nanotubes de carbone liés à des nanoparticules de silicium par du carbone amorphe.
Ce matériau composite est préparé par un procédé comprenant les étapes successives suivantes :
on disperse les nanoparticules de silicium et les nanotubes de carbone dans un solvant tel que de l'eau ou de l'éthanol, en présence d'un agent dispersant ;
on élimine le solvant et l'agent dispersant pour obtenir ainsi des particules d'un matériau composite comprenant des nanoparticules de silicium et des nanotubes de carbone ;
on met en contact les particules de ce matériau composite avec une solution d'un précurseur de carbone amorphe dans un solvant organique ;
on élimine le solvant du précurseur et on effectue la carbonisation du précurseur par un procédé de dépôt chimique en phase vapeur (CVD).
Le précurseur de carbone amorphe est un composé organique choisi parmi les résines, les asphaltes, les sucres, le benzène, et le naphtalène.
Dans ce document, on réalise un simple mélange statistique des nanoparticules de silicium et des nanotubes de carbone, sans que ne se produise une auto-organisation des nanoparticules de silicium autour des nanotubes de carbone, de ce fait les performances des accumulateurs aux ions lithium comprenant le matériau préparé dans ce document sont encore insuffisantes.
En effet, le mélange statistique se définit comme une isoprobabilité d'assembler un nanotube de carbone (CNT, NTC) à une particule de silicium (PCNT-SÎ), OU d'assembler une particule de silicium à un nanotube de carbone (PSÎ CNT), OU d'assembler une particule de silicium à une particule de silicium (Psi-si), ou d'assembler un nanotube de carbone à un nanotube de carbone(PcNT-cNT). Le mélange statistique correspond à une égalité des probabilités d'assemblage, c'est-à-dire PCNT-SÎ ~ PSÎ-CNT ~ Psi-si ~ PCNT-CNT.
Le mélange statistique n'est pas optimal, il ne permet pas de générer la structure « auto-assemblée » spécifique du matériau composite selon l'invention. Pour obtenir la structure « auto-assemblée » spécifique du matériau selon l'invention, il faut que Psi-CNT » PCNT-CNT » Psi-si ·
En outre, la teneur en carbone amorphe du matériau composite préparé dans ce document est au minimum de l'ordre de 24%, ce qui est très élevé pour une utilisation en tant que matériau actif d'électrode négative dans les accumulateurs aux ions lithium.
Enfin, le procédé décrit dans ce document présente également l'inconvénient d'utiliser trois molécules organiques : une comme agent dispersant, une comme solvant organique et une dernière comme précurseur de carbone amorphe.
Il existe donc, au regard de ce qui précède un besoin pour un matériau nanocomposite comprenant des nano-objets de carbone, plus précisément des nanotubes de carbone ou des nanofibres de carbone, et des nano-objets d'un matériau autre que le carbone, à savoir des nanoparticules de silicium ou des particules submicroniques de silicium, dans lequel les nano-objets sont répartis de manière organisée.
Plus exactement, il existe un besoin pour un matériau composite dans lequel des nanoparticules de silicium sont organisées autour de nanotubes de carbone.
I l existe encore un besoin pour un tel matériau qui, lorsqu'il est utilisé en tant que matière électrochimiquement active dans un accum ulateur tel qu'un accumulateur aux ions lithium, permette d'obtenir des performances améliorées notamment quant à la capacité en décharge de ces accumulateurs. Il existe, en outre, un besoin pour un tel matériau qui puisse résister aux augmentations de volume en cours de charge du matériau autre que le carbone à savoir le silicium.
Il existe enfin un besoin pour un procédé de préparation d'un tel matériau qui soit simple, fiable, comporte un nombre limité d'étapes et mette également en œuvre un nombre restreint de composés organiques.
Le but de la présente invention est, entre autres, de répondre à ces besoins.
Le but de la présente invention est notamment de fournir un matériau nanocomposite comprenant des nano-objets de carbone, plus précisément des nanotubes de carbone ou des nanofibres de carbone et des nano-objets d'un matériau autre que le carbone à savoir des nanoparticules de silicium ou des particules submicroniques de silicium, qui ne présente pas les inconvénients, défauts, limitations et désavantages des matériaux nanocomposites de l'art antérieur, tel que représenté notamment par les documents étudiés plus haut, et qui résolve les problèmes des matériaux de l'art antérieur.
Le but de la présente invention est encore de fournir un procédé de préparation d'un tel matériau nanocomposite qui, de même, ne présente pas les inconvénients, défauts, limitations et désavantages des procédés de préparation de matériaux nanocomposites de l'art antérieur.
EXPOSÉ DE L'INVENTION Ce but, et d'autres encore, sont atteints, conformément à l'invention, par un matériau composite comprenant des nano-objets en au moins un premier matériau conducteur électronique et des nano-objets ou des objets submicroniques en au moins un deuxième matériau différent du premier matériau; ledit matériau composite comprenant des nanostructures constituées chacune par les nano-objets en au moins un premier matériau conducteur électronique marqués par une première molécule, les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant marqués par une deuxième molécule et étant auto-assemblés et fixés sur les nano-objets en au moins un premier matériau par reconnaissance spécifique entre la première molécule et le deuxième molécule, lesdites nanostructures étant réparties de manière homogène dans le matériau, les nano-objets en au moins un premier matériau conducteur électronique étant choisis parmi les nanotubes de carbone et les nanofibres de carbone, et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant choisis parmi les nanoparticules de silicium et les particules submicroniques de silicium.
La deuxième molécule est généralement différente de la première molécule.
Par « marqué », on entend généralement que la première molécule, dite première molécule de marquage, est fixée sur les nano-objets en un premier matériau (généralement au moins sur la surface externe de ceux-ci) et que la deuxième molécule, dite deuxième molécule de marquage, est fixée sur les nano-objets en un deuxième matériau (généralement au moins sur la surface externe de ceux-ci).
Précisons que le phénomène de reconnaissance spécifique entre molécules que l'on peut aussi appeler phénomène de reconnaissance moléculaire est bien connu de l'homme du métier, est à la base des systèmes biologiques et est utilisé dans de nombreuses applications en biotechnologie.
Cette reconnaissance, par exemple entre macromolécules (protéines, acides nucléiques) ou entre macromolécules et molécules organiques de plus petite taille ou atomes se fait, dans la très grande majorité des cas, par l'intermédiaire de plusieurs liaisons chimiques non-covalentes.
Les procédés de purification, d'analyse et de détection de telles macromolécules mettent également en œuvre de telles reconnaissances spécifiques. Par exemple, ces dernières impliquent le couple (strept)avidine/biotine ; protéine A/immunoglobuline ; protéine G/immunoglobuline ; les couples anticorps/antigène ou anticorps/épitope comme le peptide poly-His et un anticorps spécifique de ce peptide ou le fragment C-terminal de la protéine Myc et l'anticorps monoclonal 9E10 ; les couples enzyme/substrat comme le couple glutathione S- transférase/glutathione ; ou les couples séquence nucléotidique/séquence nucléotidique complémentaire.
Ces interactions non-covalentes impliquent des liaisons ioniques, des liaisons hydrogène, des liaisons hydrophobes et/ou des forces de Van der Waals. La première molécule de marquage et la deuxième molécule de marquage constituent ce que l'on peut appeler un couple de reconnaissance spécifique entre molécules ou couple de reconnaissance moléculaire.
Le couple de reconnaissance spécifique entre molécules ou couple de reconnaissance moléculaire qui peut être mis en œuvre selon l'invention n'est pas limité et peut être notamment choisi parmi les couples de reconnaissance spécifique ou de reconnaissance moléculaire déjà mentionnés plus haut ((strept)avidine/biotine etc.).
De préférence, la première molécule est la biotine, et la deuxième molécule est l'avidine ou la streptavidine.
Par « répartis de manière homogène », on entend généralement que les nanostructures sont réparties uniformément, régulièrement, dans tout le volume du matériau, et que leurs concentration, présence, sont sensiblement les mêmes dans tout le volume du matériau, dans toutes les parties de celui-ci.
Avantageusement, chacune des nanostructures a une taille qui est au minimum égale à la taille de chacun des nano-objets en au moins un premier matériau conducteur électronique, par exemple à la longueur des nanotubes de carbones.
Chacune des nanostructures pourra ainsi avoir une taille de 1 μιη à 10 μιη.
La teneur en nano-objets en au moins un premier matériau conducteur électronique et en nano-objets ou objets submicroniques en au moins un deuxième matériau différent du premier matériau est respectivement de 1% à 40%, et de 60% à 99% en masse.
Selon l'invention, les nano-objets en au moins un premier matériau conducteur électronique sont choisis spécifiquement parmi les nanotubes de carbone et les nanofibres de carbone ; et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau sont spécifiquement choisis parmi les nanoparticules de silicium et les particules submicroniques de silicium.
Les nanotubes de carbone peuvent être choisis parmi les nanotubes de carbone monoparoi, et les nanotubes de carbone multiparoi tels que les nanotubes de carbone double paroi. Avantageusement, les nanoparticules de silicium ou les particules submicroniques de silicium peuvent avoir une forme sphérique ou sphéroïdale.
Il est à noter qu'il est plus avantageux comme on le fait selon l'invention, d'utiliser des nanotubes de carbone, qui permettent d'obtenir des réseaux tridimensionnels flexibles (« spaghettis » cuits) alors que les nanofils de métaux donnent des réseaux tridimensionnels rigides (« aiguilles à tricoter »).
Avantageusement, le rapport du nombre de nano-objets ou d'objets submicroniques en au moins un deuxième matériau, au nombre de nano-objets en au moins un premier matériau est inférieur ou égal à 1/100.
Avantageusement, le matériau selon l'invention se présente sous la forme d'une poudre.
Généralement, cette poudre est une poudre extrêmement aérée, expansée, très peu dense, avec un volume apparent important, généralement supérieur à 18 litres/Kg de poudre.
Avantageusement, cette poudre présente une granulométrie moyenne, qui correspond généralement à la taille moyenne des nanostructures, comprise entre 1 μιη et 100 μιη par exemple de 20 μιη, une surface spécifique comprise entre 10 m2/g et 50 m2/g, et une masse volumique comprise entre 2,014 g/cm3 et 2,225 g/cm3.
Le matériau composite selon l'invention n'a jamais été décrit ni suggéré dans l'art antérieur.
Ce matériau répond aux besoins évoqués plus haut et apporte une solution aux problèmes des matériaux de l'art antérieur.
Le matériau composite selon l'invention possède une structure très spécifique, avec des nanostructures constituées chacune par les nano-objets en au moins un premier matériau conducteur électronique marqués par une première molécule, les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant marqués par une deuxième molécule, et étant auto-assemblés et fixés sur les nano-objets en au moins un premier matériau par un phénomène de reconnaissance spécifique (reconnaissance moléculaire) entre la première molécule et la deuxième molécule, et lesdites nanostructures étant réparties de manière homogène dans le matériau.
Une telle structure pour un matériau nanocomposite à base de nano-objets de carbone, par exemple des nanotubes de carbone est totalement nouvelle.
La structure ou organisation très spécifique du matériau selon l'invention peut être définie comme une structure ou organisation « auto-assemblée » dans laquelle autour et sur des nano-objets en carbone, plus précisément des nanotubes de carbone ou des nanofibres de carbone, qui sont marqués par une première molécule viennent s'agglomérer, s'agréger, s'auto-assembler, se fixer les nano-objets en un deuxième matériau à savoir les nanoparticules de silicium ou les particules submicroniques de silicium, ces nano-objets en un deuxième matériau étant marqués par une deuxième molécule.
Cette fixation est assurée conformément à l'invention par un phénomène très particulier, à savoir un phénomène de reconnaissance spécifique entre la première molécule et la deuxième molécule qui marquent respectivement les nano-objets en un premier matériau et les nano-objets en un deuxième matériau.
Le matériau nanocomposite selon l'invention se différencie fondamentalement des matériaux nanocomposites et notamment des matériaux nanocomposites silicium/carbone de l'art antérieur en ce que dans le matériau selon l'invention, les nano- objets en un premier matériau à savoir les NTCs ou les nanofibres de carbone, et les nano- objets en un deuxième matériau, à savoir les nanoparticules de silicium ou les particules submicroniques de silicium, sont organisés, auto-assemblés alors que dans les matériaux de l'art antérieur, les nano-objets sont répartis de manière aléatoire, statistique.
Dans aucun des matériaux de l'art antérieur une dispersion aussi bonne des nano-objets avec une répartition aussi régulière de ceux-ci ne peut être obtenue.
Qui plus est, dans le matériau selon l'invention, l'organisation des nano-objets en un premier matériau, à savoir les NTCs ou les nanofibres de carbone, et des nano-objets d'un deuxième matériau à savoir les nanoparticules de silicium ou les particules submicroniques de silicium, est une organisation très particulière dite « auto-assemblée » dans laquelle les nano-objets en un deuxième matériau, sont auto-assemblés, fixés, autour, sur, des nano-objets en un premier matériau, par exemple sur des NTCs qui sont utilisés comme squelette conducteur électronique. Généralement, on peut dire que les nano- objets en un premier matériau, par exemple les NTCs forment un réseau tridimensionnel conducteur électronique.
En outre cette fixation est, selon l'invention, assurée par un phénomène très particulier, à savoir un phénomène de reconnaissance spécifique entre la première molécule et la deuxième molécule qui marquent respectivement les nano-objets en un premier matériau et les nano-objets en un deuxième matériau. La fixation par ce phénomène particulier mise en œuvre selon l'invention de reconnaissance moléculaire est très fiable, uniforme et très précise.
Le phénomène de marquage d'un matériau particulier par une molécule est un phénomène très particulier, aléatoire et imprévisible qui dépend de nombreux facteurs et notamment de la forme, de la nature et des propriétés chimiques et physiques de ce matériau.
Le phénomène d'auto-assemblage par reconnaissance spécifique de nano- objets en un premier matériau sur des nano-objets en un deuxième matériau est, de même et a fortiori, un phénomène très particulier, imprévisible et aléatoire, qui dépend là-aussi de nombreux facteurs notamment de la forme, de la nature, et des propriétés chimiques et physiques du premier et du deuxième matériaux.
Comme on l'a déjà vu plus haut, selon l'invention, les nano-objets en au moins un premier matériau conducteur électronique sont choisis spécifiquement parmi les nanotubes de carbone et les nanofibres de carbone ; et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau sont spécifiquement choisis parmi les nanoparticules de silicium et les particules submicroniques de silicium.
Il était donc totalement étonnant et surprenant que l'on puisse marquer, d'une part des premiers nano-objets spécifiques en un matériau spécifique tel que le carbone et présentant une forme spécifique à savoir la forme de nanotubes ou de nanofibres, et d'autre part, des seconds objets tout autant spécifiques en un matériau spécifique tel que le silicium et présentant une forme spécifique à savoir la forme de nanoparticules ou de particules submicroniques.
Il était encore plus étonnant et surprenant que ces premier et second objets, chacun très spécifique, s'auto-assemblent par reconnaissance spécifique, moléculaire pour donner les nanostructures du matériau selon l'invention.
Par rapport à des matériaux dans lesquels les nano-objets ne sont pas organisés conformément à l'invention avec une structure auto-assemblée due à une reconnaissance moléculaire, et sont répartis de manière statistique, aléatoire, le matériau selon l'invention présente des performances améliorées par exemple en cycle, en charge rapide, lorsqu'il est mis en œuvre dans un accumulateur aux ions lithium.
La structure, organisation, auto-assemblée par reconnaissance moléculaire du matériau selon l'invention, au contraire des matériaux dans lesquels les nano-objets ne sont pas organisés de la sorte, permet de conserver la conduction électronique et l'accessibilité à l'électrolyte, même lorsque les nano-objets ou les objets submicroniques en un deuxième matériau, à savoir les nanoparticules de silicium ou les particules submicroniques de silicium, voient leur volume augmenter.
La structure, organisation, auto-assemblée du matériau selon l'invention, permet également de conserver la connectivité des nano-objets ou des objets submicroniques en au moins un deuxième matériau, à savoir des nanoparticules de silicium ou des particules submicroniques de silicium, au réseau tridimensionnel conducteur électronique. L'organisation du matériau selon l'invention est conservée et n'est pas modifiée lors d'une augmentation individuelle du volume des nano-objets en un deuxième matériau, à savoir des nanoparticules de silicium ou des particules submicroniques de silicium.
L'invention concerne, en outre, un procédé de préparation du matériau nanocomposite décrit plus haut, dans lequel on réalise les étapes suivantes :
a) on marque les nano-objets en au moins un premier matériau par une première molécule, en mélangeant la première molécule et une dispersion dans l'eau des nano-objets en au moins un premier matériau, puis on lyophilise les nano-objets en au moins un premier matériau marqués par la première molécule ; b) on marque les nano-objets ou les objets submicroniques en au moins un deuxième matériau par une deuxième molécule en mettant en contact une solution dans l'eau de la deuxième molécule avec les nano-objets ou les objets submicroniques en au moins un deuxième matériau, puis on lyophilise les nano-objets ou les objets submicroniques en au moins un deuxième matériau marqués par la deuxième molécule; puis
c) on met en contact, sous agitation dans de l'eau, les nano-objets lyophilisés en au moins un premier matériau marqués par la première molécule et les nano- objets ou les objets submicroniques lyophilisés en au moins un deuxième matériau marqués par la deuxième molécule; moyennant quoi on obtient le matériau nanocomposite comprenant les nano-objets en au moins un premier matériau conducteur électronique et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau, et on sépare le matériau nanocomposite de l'eau sous la forme d'une poudre ;
d) éventuellement, on sèche le matériau nanocomposite, par exemple par lyophilisation ou par contact avec un fluide supercritique.
La dispersion dans l'eau des nano-objets en un premier matériau, peut être par exemple réalisée de la manière suivante :
On met en contact les nano-objets en au moins un premier matériau avec de l'eau, puis on mélange les nano-objets en au moins un premier matériau avec l'eau en utilisant la succession, éventuellement répétée d'une technique de mélange par ultrasons puis d'une technique de mélange à haute vitesse, le mélange de nano-objets en au moins un premier matériau et d'eau étant maintenu en circulation, par exemple par une pompe telle qu'une pompe péristaltique, de manière à éviter que les nano-objets en un premier matériau ne s'agglomèrent, moyennant quoi on obtient une dispersion constituée des nano-objets en un au moins un premier matériau et d'eau que l'on maintient de préférence en circulation.
En effet, cette dispersion est un mélange instable à l'arrêt de la circulation, par exemple à l'arrêt de la pompe, telle qu'une pompe péristaltique qui achemine le mélange de nano-objets et d'eau depuis l'appareil pour mettre en œuvre la technique de mélange à ultrasons, tel qu'un disperseur, mélangeur, à ultrasons, à l'appareil pour mettre en œuvre le mélange à haute vitesse.
Le procédé selon l'invention comporte une suite spécifique d'étapes spécifiques qui n'a jamais été ni décrite ni suggérée dans l'art antérieur et qui permet la préparation du matériau selon l'invention possédant la structure et les propriétés spécifiques exposées plus haut.
Le procédé selon l'invention comporte une suite d'étapes simples, faciles à mettre en œuvre.
Généralement, le procédé selon l'invention n'utilise pas de solvants organiques car il met en œuvre de l'eau en tant que seul solvant, plus exactement liquide de dispersion.
Il n'utilise pas d'additifs, tels que des agents dispersant organiques. L'invention concerne, en outre, une encre qui comprend le matériau composite selon l'invention, et un véhicule.
Le véhicule comprend généralement au moins un liant et au moins un solvant.
Le polymère organique peut aussi être choisi parmi le polytrétrafluoroéthylène (PTFE), le poly (fluorure de vinylidène) (PVDF), le copolymère PVDF-HFP (hexafluorure de propylène) ; la carboxyméthylcellulose ; et les élastomères tels que le CMC-SBR (carboxyméthylcellulose-caoutchouc styrène butadiène).
De préférence, le liant est un polysaccharide tel qu'un alginate.
De préférence, le solvant est de l'eau.
Le polymère organique tel qu'un polysaccharide joue également le rôle de précurseur de carbone amorphe, car il se transforme en carbone amorphe lors de la carbonisation pour préparer une électrode.
Avantageusement, l'encre peut comprendre en outre au moins un conducteur électronique.
Ce conducteur électronique peut être choisi parmi le graphite, le graphène, les fibres de carbone, et leurs mélanges.
L'invention a également trait à une électrode comprenant en tant que matière électrochimiquement active le matériau composite selon l'invention. Cette électrode possède de manière inhérente toutes les propriétés avantageuses liées au matériau composite qu'elle contient en tant que matière électrochimiquement active.
Cette électrode peut être une électrode positive ou une électrode négative.
L'invention concerne en outre un système électrochimique comprenant une telle électrode.
Ce système électrochimique peut être un système à électrolyte non aqueux tel qu'un accumulateur électrochimique rechargeable à électrolyte non aqueux.
De préférence, ce système électrochimique est un accumulateur aux ions lithium.
Ce système électrochimique tel qu'un accumulateur aux ions lithium possède de manière inhérente toutes les propriétés avantageuses liées à l'électrode qu'il contient.
BRÈVE DESCRIPTION DES DESSINS
L'invention sera mieux comprise à la lecture de la description détaillée qui va suivre, faite à titre illust ratif et non limitatif en référence aux dessins joints dans lesquels :
La Figure 1 est une vue schématique en coupe latérale du dispositif de mélange utilisé pour disperser les nano-objets en au moins un premier matériau comme les nano-objets de carbone, tels que des nanotubes de carbone.
La Figure 2 est une photographie, prise au microscope électronique à balayage MEB qui montre le matériau composite selon l'invention avec la poudre de matière active, à savoir des nanoparticules de silicium, auto-assemblées par reconnaissance moléculaire sur des nanotubes de carbone.
L'échelle portée sur la Figure 2 représente 10 μιη.
La Figure 3 est une vue schématique en coupe latérale d'un accumulateur sous forme de pile bouton comprenant par exemple une électrode négative à tester selon l'invention. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
La description détaillée qui suit est plutôt faite en liaison avec le procédé selon l'invention de préparation d'un matériau selon l'invention puis d'une électrode selon l'invention, mais elle contient aussi des enseignements qui s'appliquent aux matériaux selon l'invention.
En préambule à cette description détaillée, nous précisons tout d'abord la définition de certains des termes utilisés dans la présente.
Les viscosités sont généralement mesurées à 20°C.
Par « nano-objets », on entend généralement tout objet seul ou lié à une nanostructure dont au moins une dimension est inférieure ou égale à 500 nm, de préférence inférieure ou égale à 300 nm, de préférence encore inférieure ou égale à
200 nm, mieux inférieure ou égale à 100 nm, par exemple est dans la plage de 1 à 500 nm, de préférence de 1 à 300 nm, de préférence encore de 1 à 200 nm, mieux de 1 à 100 nm, mieux encore de 2 à 100 nm, voire de 5 à 100 nm.
Ces nano-objets peuvent être par exemple des nanoparticules, des nanofils, des nanofibres, des nanocristaux, ou des nanotubes.
Par « objet submicronique », on entend généralement tout objet dont la taille, telle que le diamètre dans le cas d'un objet sphérique ou sphéroïdal, est inférieure à 1 μιη, de préférence est de 50 nm à 800 nm, par exemple de 310 nm.
Par « nanostructure », on entend généralement une architecture constituée d'un assemblage de nano-objets et/ou d'objets submicroniques qui sont organisés avec une logique fonctionnelle et qui sont structurés dans un espace allant du nanomètre cube au micromètre cube.
Par « polysaccharide », on entend généralement une macromolécule organique polymérique constituée d'une chaîne d'unités de monosaccharides. Une telle macromolécule peut être représentée par une formule chimique de la forme -[Cx(H20)y]n-.
Comme on le précise plus bas, on utilise de préférence, selon l'invention, des macromolécules constituées d'acide mannuronique (motif M) et d'acide guluronique
(motif G). Les chaînes macromoléculaires les plus adaptées à l'invention sont celles qui maximisent les motifs M (c'est-à-dire que le rapport motifs M/motifs G est supérieur à 60%).
Cette description se réfère généralement plus particulièrement à un mode de réalisation dans lequel le matériau composite préparé par le procédé selon l'invention est le matériau actif d'électrode positive ou négative d'un accumulateur rechargeable aux ions lithium, mais il est bien évident que la description qui suit pourra être facilement étendue et adaptée, le cas échéant, à toute application et tout mode de mise en œuvre du matériau composite préparé par le procédé selon l'invention.
Dans la description qui suit, dans un soucis de simplification, on décrit plus particulièrement un procédé de préparation d'un matériau composite comprenant des nanotubes de carbone, et des nanoparticules de silicium ou des particules submicroniques de silicium qui constituent le matériau actif ou matière active d'électrode négative ou positive d'un accumulateur aux ions lithium (ci après désignée « matière active »).
On décrit ensuite la préparation d'une électrode comprenant ce matériau composite. La description qui suit s'applique aussi à la préparation d'un matériau composite comprenant des nanofibres de carbone.
Dans la première étape du procédé selon l'invention de préparation d'un matériau composite, on réalise le marquage moléculaire de la matière active (Si) des nanoparticules ou particules submicroniques de matière active (Si) par une deuxième molécule de marquage.
Pour cela, on ajoute aux nanoparticules ou particules submicroniques de matière active (Si) une solution dans un solvant d'une deuxième molécule de marquage.
Comme on l'a vu plus haut, le couple de reconnaissance moléculaire mis en œuvre selon l'invention n'est pas limité et peut être notamment choisi parmi les couples de reconnaissance spécifique ou de reconnaissance moléculaire déjà mentionnés plus haut.
De préférence, la première molécule est la biotine, et la deuxième molécule est l'avidine ou la streptavidine et la description qui suit est plutôt faite par commodité en référence à ce couple de reconnaissance moléculaire. Cependant l'homme du métier comprendra que cette description s'applique à tout couple de reconnaissance moléculaire.
Les particules de matière active, à savoir les particules de silicium sont généralement des particules submicroniques, à savoir dont la taille telle que le diamètre est inférieur à 1 μιη, par exemple de 50 nm à 800 nm, par exemple encore de 310 nm.
Une forme sphérique des particules de silicium est recommandée pour permettre une insertion facile de ces particules de silicium dans le réseau d'enchevêtrement des nanotubes de carbone.
Une poudre de silicium qui convient particulièrement bien pour une utilisation dans le procédé selon l'invention est une poudre de silicium sphérique submicronique, dont les particules ont un diamètre d'environ 310 nm et qui est disponible auprès de la société S'tile.
Le solvant de cette solution de nanoparticules ou particules submicroniques est généralement constitué exclusivement par de l'eau, à l'exclusion de tout autre solvant. Généralement, l'eau de cette solution est de l'eau désionisée (eau « Dl »).
Même si les matières actives sont généralement partiellement ou totalement solubles dans l'eau, la quantité de matière active (Si) dans la solution est telle qu'elle (il s'agit de la solution obtenue après addition de la solution de protéine à la poudre) soit au- delà de la limite de solubilité des matières actives dans l'eau et que l'on obtienne donc une dispersion dans l'eau des nanoparticules ou particules submicroniques de matière active (Si).
Le volume d'eau de la solution de protéine telle que l'avidine ou la streptavidine requis est celui du volume interstitiel de la matière active non tassée.
La masse de protéine telle que l'avidine ou la streptavidine introduite dans la solution est généralement équivalente à de 0,1% à 1%, par exemple 1%, de la masse du volume d'eau interstitiel de la matière active non tassée.
La dissolution de la protéine telle que l'avidine ou la streptavidine dans l'eau est effectuée généralement sous agitation magnétique à température ambiante et la solution d'eau contenant la protéine, telle que l'avidine ou la streptavidine, est versée ensuite dans un récipient contenant la poudre de nanoparticules ou particules submicroniques de matière active (Si). On obtient ainsi une poudre de nanoparticules ou particules submicroniques de matière active (Si) marquée par la protéine telle que l'avidine ou la streptavidine.
Un mélange d'homogénéisation est effectué avant la lyophilisation par congélation, par exemple à -80°C de la poudre de matière active (Si) marquée par la protéine telle que l'avidine ou la streptavidine.
Dans la deuxième étape du procédé selon l'invention, on réalise le marquage moléculaire des nanotubes de carbones par la biotine, qui est une vitamine hydrosoluble.
Cette étape pourrait être réalisée de manière analogue avec des nanofibres de carbone.
Pour cela, on disperse dans de l'eau des nano-objets de carbone, à savoir ici des nanotubes de carbone (NTC). Autrement dit, lors de cette étape, on mélange des nano- objets de carbone avec de l'eau.
Le solvant de la dispersion ainsi préparée est constitué exclusivement par de l'eau, à l'exclusion de tout autre solvant. Généralement, l'eau de la dispersion est de l'eau désionisée (eau « Dl »).
Tout additif est proscrit, et aucun additif, quel qu'il soit n'est ajouté à l'eau, car il faut que dans la dispersion obtenue les nanotubes de carbone soient « hors équilibre ».
Les nanotubes de carbone (« NTC », ou encore « CNT » ou « Carbon Nanotubes » en langue anglaise) peuvent être des nanotubes de carbone monoparoi (« SWCNT » ou « Single Wall Carbon Nanotube » en langue anglaise) ou multiparoi (« MWCNT » ou « Multi Wall Carbon Nanotubes » en langue anglaise) tels que des nanotubes de carbone double paroi (« DWCNT » ou « Double Wall Carbon Nanotubes » en langue anglaise).
Les nanotubes de carbone peuvent avoir une longueur moyenne de 1 μιη à
10 μιη, par exemple de 2 μιη et un diamètre moyen de 5 nm à 50 nm, par exemple de 20 nm.
La concentration des nano-objets de carbone dans la dispersion est généralement de 1 à 5 g/L d'eau, par exemple de 2,5 g/L d'eau. Pour le marquage par la biotine, on peut ainsi utiliser une dispersion contenant 0,5 g de nanotube de carbone dans 500 ml d'eau , soit 0,25 g/L d'eau.
Ainsi, la concentration maximale à ne pas dépasser est estimée pour des tubes de 10 μιη à 5 mg/ml d'eau.
Selon l'invention, cette dispersion des nano-objets de carbone à savoir des nanotubes de carbone dans l'eau, peut se faire en ajoutant les nano-objets de carbone à de l'eau puis en soumettant les nano-objets de carbone dans l'eau à une opération de mélange, dispersion, combinant deux techniques de mélange à savoir une technique de mélange par les ultrasons puis une technique de mélange à haute vitesse.
De préférence, les ultrasons sont générés par une sonde placée dans un récipient où sont disposés les nanotubes de carbone dans l'eau.
Les ultrasons ont généralement une densité de puissance acoustique de 1 à 1000 W/cm2, par exemple de 90 W/cm2 et les nano-objets de carbone, à savoir les nanotubes de carbone sont exposés à l'action des ultrasons pendant une durée courte généralement de 1 à 100 ms, par exemple de 20 ms. Une telle durée courte permet de désagglomérer les nano-objets de carbone sans les briser et évite ainsi que les nano-objets de carbone ne soient endommagés.
Par mélange haute vitesse, on entend généralement que les nano-objets de carbone dans l'eau sont accélérés et cisaillés avec un taux de cisaillement de 500 s 1 à 2000 s"1, et que la vitesse des nano-objets de carbone est généralement de 1 à 5 m/s, par exemple de 3 m/s.
Une telle vitesse garantit une désagglomération optimale des nano-objets de carbone. En effet, en dessous de 1 m/s et au-delà de 5 m/s, il se produit généralement une agglomération des nano-objets de carbone.
Un dispositif qui peut être mis en œuvre pour réaliser cette étape est représenté sur la Figure 1.
Ce dispositif comprend une cuve de mélange à haute-vitesse (1) et un réacteur à ultrasons (2) spécifique à cet usage. La cuve de mélange haute-vitesse (1) et le réacteur à ultrasons (2) se présentent sous la forme de cuves cylindriques ouvertes à bases circulaires (3, 4). Une première canalisation (5), sur laquelle est placée une première pompe, par exemple une pompe péristaltique (6), relie un orifice (7) situé au centre de la base (3) de la cuve de mélange à haute-vitesse (1) au sommet du réacteur à ultrasons (2).
Une seconde canalisation (8), sur laquelle est placée une seconde pompe (12), relie un orifice (9) situé au centre de la base (4) du réacteur à ultrasons (2) au sommet de la cuve de mélange à haute vitesse (1).
Le diamètre de la seconde canalisation (8) est par exemple de 6 mm.
La vitesse d'écoulement à l'intérieur de cette canalisation est estimée par exemple à 17 m/min pour un débit supérieur à 0,5 L/min.
II est à noter que, au lieu d'utiliser deux pompes, on peut utiliser une seule pompe à deux voies par exemple la pompe (6) qui est alors placée sur la canalisation (5) et sur la canalisation (8).
La cuve haute-vitesse (1) est équipée d'un agitateur à haute-vitesse (10), par exemple de type Ultra Turrax®.
La technique de mélange est une hybridation de la technique avec la technique ultra-son par une sonde.
La sonde ou canne à ultrasons (11) est placée au centre du réacteur à ultrasons (2) en face de l'orifice, sortie (9) situé au centre de la base (4) du réacteur à ultrasons (2).
Pour préparer la dispersion de nano-objets de carbone, on commence par disposer de l'eau dans la cuve de mélange sans que l'agitateur à haute-vitesse soit actionné puis on ajoute les nano-objets de carbone, à savoir les nanotubes de carbone, à l'eau. Ou bien, on commence par disposer les nano-objets de carbone dans la cuve de mélange sans que l'agitateur à haute-vitesse soit actionné, puis on leur ajoute de l'eau.
On forme ainsi un mélange de nano-objets de carbone et d'eau.
Ou bien encore, les nano-objets de carbone sont prédispersés, mélangés au préalable puis cette prédispersion, ce mélange est placé dans la cuve (1).
Le mélange d'eau et de nano-objets de carbone est constitué par exemple de 1,25 g de nano-objets de carbone, à savoir de NTCs, dans 500 ml d'eau désionisée, c'est-à- dire que la concentration en nano-objets de carbone du mélange est de 2,5 mg/ml. Le mélange d'eau et de nano-objets de carbone, à savoir des nanotubes de carbone, est acheminé par l'intermédiaire de la canalisation (5) sous l'action de la pompe (6) et arrive dans le réacteur à ultrasons (2).
Dans le réacteur à ultrasons, les nano-objets de carbone subissent une exposition aux ultrasons émis par la sonde ; par exemple ils subissent une exposition à des ultrasons d'une fréquence de 20 kHz et d'une puissance de 250W pendant une courte durée, par exemple pendant environ 20 ms, ce qui correspond à environ 400 impulsions.
Cette durée d'exposition brève aux ultrasons assure que les nano-objets de carbone, à savoir les NTCs, ne soient pas endommagés, et permet de les désagglomérer sans les briser puisque l'énergie mise en jeu ne dépasse pas généralement 5 Joules.
Le mélange d'eau et de nano-objets de carbone qui a été exposé aux ultrasons est ensuite mis en mouvement par la pompe péristaltique (12) afin d'acquérir une vitesse linéaire qui soit suffisante pour que les nano-objets de carbone ne s'agglomèrent pas de nouveau dans la canalisation (8) après leur passage dans le réacteur (2) et leur exposition aux ultrasons. Cette vitesse linéaire est au minimum de 10 m/min, et peut être par exemple de 17 m/min.
Après le réacteur à ultrasons (2), les nano-objets de carbone arrivent ainsi par l'intermédiaire de la canalisation (8) dans la cuve haute vitesse (1) où ils sont accélérés et cisaillés à un taux de cisaillement par exemple de 1175 s"1.
Là-aussi, les nano-objets de carbone atteignent localement une vitesse généralement de 3 m/s ce qui garantit une désagglomération optimale. En-dessous de 1 m/s et au-delà de 5 m/s, il se produit une agglomération des nano-objets, à savoir des NTCs.
La préparation de la dispersion aqueuse par combinaison de la technique de mélange aux ultrasons et de la technique de mélange à haute vitesse dure généralement de 10 à 60 minutes, par exemple 30 minutes.
La dispersion est caractérisée par la présence d'agglomérats dont la taille est comprise par exemple entre 5 μιη et 80 μιη.
Il existe donc toujours des agglomérats de NTCs dans la dispersion préparée, ce qui est étonnant. Les NTCs ne sont pas entièrement en réseau, mais il existe des interactions, connexions, entre ces NTCs, et ils forment de manière surprenante des agglomérats dans lesquels ils sont liés.
En d'autres termes, l'eau expanse le réseau de NTCs mais des interactions entre les NTCs sont bien présentes.
Le but de cette mise en dispersion des nanotubes de carbone, n'est pas d'obtenir une dispersion parfaite, car alors les connexions entre les tubes n'existent plus et on arrive à un état statistique de la dispersion de NTCs.
Comme on l'a précisé plus haut, la dispersion obtenue à la fin de la première étape ne contient, outre l'eau, aucun autre solvant et ne contient aucun additif par exemple de type agent dispersant, comme le dodécylsulfate de sodium (« Sodium Dodecyl
Sulfate », SDS), le dodécylbenzènesulfate de sodium (« Dodecyl Benzène Sulfate », SDBS), le dodécylsulfate de lithium (« Lithium Dodecyl Sulfate », LDS), le bromure de triméthylammonium (« Trimethyl ammonium Bromide », TTAB), le bromure de cétiltriméthylammonium (« Cetyltrimethyl ammonium bromide », CTAB), le désoxycholate de Sodium (« Sodium Désoxycholate », SC), le taurodésoxycholate de sodium
(« Taurodeoxycholate », DOC), l'Igeal Co890¾, le Triton X-100¾
(C8Hi7C6H4(OC2H4)9-ioOH), et les Tween* 20 et 80.
La dispersion obtenue est donc constituée par des nanotubes de carbone et de l'eau, généralement de l'eau désionisée.
Cette dispersion est une dispersion « hors équilibre », comprenant seulement une phase de NTCs et d'eau non stable, il faut donc la maintenir sous agitation et ne pas stopper l'agitation.
De manière générale, lors de tous les transferts, la dispersion doit toujours être en mouvement, toujours posséder une énergie cinétique, et posséder une vitesse linéaire suffisante déjà précisée plus haut.
On ajoute ensuite de la biotine, généralement à raison de 0,1% à 1% en masse, dans la dispersion de nanotubes de carbone sous agitation magnétique à température ambiante afin que la vitamine, telle que la biotine, se fixe sur les nanotubes de carbone du fait des interactions n des feuillets de graphène. La quantité de biotine ajoutée est généralement de 1 à 10 mg/L de la dispersion de nanotubes de carbone. Ainsi, on pourra ajouter 10 mg de biotine pour 1000 mL de dispersion de nanotubes de carbone.
La dispersion est ensuite lyophilisée c'est-à-dire qu'elle est successivement congelée solidifiée, puis sublimée.
Pour cela, on forme des gouttes de la dispersion, d'un diamètre généralement de 0,5 à 2 mm, par exemple de 1 mm, par exemple à l'aide d'un système de « pilling », et on fait tomber ces gouttes directement dans de l'azote liquide pour obtenir ainsi, par congélation rapide, des macro-objets ou capsules congelés ayant de préférence une forme sphérique telles que des billes de glace et dont la taille, telle que le diamètre est par exemple de 0,5mm à 2 mm, par exemple de 1 mm.
Ces macro-objets ou capsules congelés ayant de préférence une forme sphérique telles que des billes de glace contiennent les nanotubes de carbone expansés et marqués par la biotine.
Cette solidification, congélation, constitue en fait la première partie du traitement de lyophilisation.
Cette solidification, congélation de la dispersion pour donner des macro-objets, est suivie par une étape de sublimation qui constitue la deuxième partie du traitement de lyophilisation.
Au cours de cette étape de sublimation, sous l'effet du vide, on élimine le solvant congelé, à savoir la glace, à l'intérieur des macro-objets ou capsules et l'enzyme telle que la biotine se fixe sur la surface des nanotubes de carbone.
La lyophilisation est généralement effectuée sous un vide poussé, à savoir sous une pression n'excédant pas 5.10 3 mbar, par exemple une pression de 10~3 à ÎO 7 mbar et à une température n'excédant pas -20°C, par exemple une température de -80°C.
La durée de la lyophilisation dépend de l'équipement utilisé et peut aller par exemple de lh à 12h par litre de dispersion. Ensuite, dans une troisième étape du procédé selon l'invention, on réalise l'assemblage de la poudre de matière active (Si) marquée sur les nanotubes de carbone marqués par reconnaissance moléculaire entre la biotine et l'avidine ou la streptavidine.
On prépare tout d'abord une dispersion constituée de nanotubes de carbone marqués et d'eau.
Pour cela, on ajoute les nanotubes de carbone marqués lyophilisés préparés précédemment dans un certain volume d'eau, par exemple 500 mL d'eau, sous agitation magnétique, de façon à obtenir une dispersion de nanotubes de carbone marqués.
La concentration en nanotubes de carbone de cette dispersion est généralement de 1 à 2,5 mg/L.
On ajoute ensuite à cette dispersion de nanotubes de carbone marqués ; toujours sous agitation magnétique, la poudre de nanoparticules ou particules submicroniques de matière active (Si) marquée.
La quantité de nanoparticules ou particules submicroniques de matière active (silicium), est telle que la dispersion de nanotubes de carbone et de nanoparticules ou particules submicroniques de matière active (silicium) obtenue contient généralement de 5 à 15 g, par exemple 8 g de nanoparticules ou particules submicroniques de matière active (silicium)/L de dispersion.
En effet, au-delà de 15 g de particules de silicium/L de dispersion, l'auto- assemblage n'est généralement plus possible, car le nombre de particules de silicium est trop important par rapport au nombre de nanotubes de carbone. Il en est de même en- dessous de 5 g de particules de silicium /L de dispersion.
Le rapport massique du nombre de nanoparticules ou particules submicroniques de matière active marquée (silicium) : nombre de nanotubes de carbone est généralement de 60/1 à 99/1, par exemple de 99/1.
Les nanoparticules ou particules submicroniques de matière active marquée (silicium) sont généralement ajoutées à vitesse constante, généralement à raison de 10 à 500 mg/min, par exemple à raison de 300 mg/min. Ainsi, si l'on ajoute 9 g de matière active, à savoir de silicium, la durée de l'addition sera généralement de 30 minutes. La durée de cette étape au cours de laquelle sont maintenues les conditions exposées plus haut, à savoir entre autres, l'addition des particules de matière active (silicium) à vitesse constante, le taux de cisaillement, et la vitesse élevée du fluide est généralement de 15 à 60 minutes, par exemple de 30 minutes.
A la fin de cette étape, on obtient ainsi le matériau composite auto-assemblé selon l'invention qui est ensuite séparé de l'eau de la dispersion sous la forme d'une poudre puis éventuellement séché. Par exemple, le matériau composite peut être lyophilisé dans les conditions adéquates, ou simplement séché, généralement par contact avec un fluide supercritique tel que du C02 supercritique.
Le cliché MEB de la Figure 2 montre une image typique d'un auto-assemblage de nanoparticules de silicium sur des nanotubes de carbone par reconnaissance moléculaire.
La poudre du matériau composite auto-assemblé ainsi préparée selon l'invention, plus simplement dénommée poudre auto-assemblée après la lyophilisation éventuelle, est prête à l'emploi pour toute utilisation ultérieure, par exemple pour fabriquer une encre et ne nécessite pas de broyage qui casserait toute l'organisation présente dans la poudre.
La granulométrie de la poudre auto-assemblée est généralement comprise entre 1 μιη et 100 μιη, sa surface spécifique est généralement comprise entre 10 m2/g et 50 m2/g, et sa densité est généralement comprise entre 2,014 g/cm3 et 2,225 g/cm3. On peut parler de « poudre expansée ».
La poudre auto-assemblée peut être mélangée, par exemple par simple action mécanique avec toutes sortes de matériaux.
Cette action mécanique peut comprendre une ou plusieurs opérations par exemple, on peut réaliser seulement une extrusion ; ou bien on peut réaliser un simple mélange mécanique ; ou bien on peut réaliser un simple mélange mécanique suivi éventuellement d'un séchage du mélange.
L'organisation spécifique selon l'invention, l'auto-assemblage, des nanotubes ou nanofibres de carbone et des nanoparticules ou particules submicroniques de matière active (Si), tels que des NTCs et des nanoparticules de silicium, est conservée après cette action mécanique.
Par exemple, dans le cas où l'on souhaite préparer une encre ou une pâte contenant le matériau composite auto-assemblé selon l'invention, celui-ci est mélangé avec les matériaux qui constituent le véhicule de cette encre ou pâte.
Par « véhicule d'une encre ou pâte », on entend généralement les composants, ingrédients nécessaires pour communiquer à cette encre ou pâte et au marquage obtenu avec cette encre ou pâte les propriétés souhaitées.
Le véhicule de l'encre ou pâte comprend généralement un liant et un solvant.
Le véhicule peut comprendre en outre au moins un conducteur électronique différent du matériau composite auto-assemblé selon l'invention.
Il n'existe aucune limitation sur l'encre dans laquelle peut être incorporé le matériau composite selon l'invention, notamment il n'existe aucune limitation en ce qui concerne le véhicule, le liant et le solvant avec lesquels le matériau selon l'invention peut être mélangé pour préparer une encre ou pâte.
L'encre peut être une encre à base aqueuse, c'est-à-dire dont le solvant comprend en majorité de l'eau ou est constitué par de l'eau ; une encre à base organique, c'est-à-dire dont le solvant comprend en majorité un ou plusieurs solvants organiques ou est constitué par un ou plusieurs solvants organiques, par exemple une encre dite à base grasse dont le solvant est constitué par une ou plusieurs huiles siccatives ; une encre à base d'un sol-gel de silice ou de carbone.
Le liant peut être choisi parmi les polymères organiques tels que les polymères photo-réticulables comme les polymères acryliques, les résines héliographiques, les résines photo-lithographiques, les polymères thermodurcissables réticulables comme les époxydes, les polymères naturels tels que les polysaccharides comme les alginates.
De préférence, le solvant est de l'eau, et le liant est un polysaccharide tel qu'un alginate.
Comme l'organisation, l'auto-assemblage des nanopoudres du matériau composite selon l'invention est effectué en amont de la fabrication de l'encre, il devient possible d'utiliser n'importe quel liant notamment organique en tant que liant de cette encre et de l'électrode préparée à partir de celle-ci.
Cette encre ou pâte est généralement destinée à la préparation d'une électrode par enduction, impression, dépôt, à l'aide d'un dispositif d'impression, de ladite encre ou pâte sur un collecteur de courant.
En effet, le matériau composite selon l'invention peut être utilisé en tant que matière électrochimiquement active d'électrode dans tout système électrochimique.
Plus précisément, selon une forme de réalisation du procédé de préparation d'une électrode, selon l'invention, le matériau composite selon l'invention peut notamment être utilisé, en tant que matière électrochimiquement active d'électrode positive ou négative dans tout système électrochimique en particulier dans tout système électrochimique à électrolyte non aqueux.
Cette électrode positive ou négative comprend, outre la matière électrochimiquement active d'électrode positive ou négative telle que définie plus haut, un liant qui est généralement un polymère organique, éventuellement un ou des additif(s) conducteur(s) électronique(s), et un collecteur de courant.
Certains des polymères organiques qui peuvent être utilisés pour le liant ont déjà été cités plus haut.
Le polymère organique peut aussi être choisi parmi le polytrétrafluoroéthylène (PTFE), le poly (fluorure de vinylidène) (PVDF), le copolymère PVDF-HFP (hexafluorure de propylène) ; la carboxymethylcellulose ; et les élastomères tels que le CMC-SBR (carboxyméthylcellulose-caoutchouc styrène butadiène).
De préférence, le liant est un polysaccharide tel qu'un alginate.
L'additif conducteur électronique éventuel peut être choisi parmi les particules métalliques telles que les particules d'Ag, le graphite, le graphène, le noir de carbone, les fibres de carbone, les nanofils de carbone, les nanotubes de carbone, et les polymères conducteurs électroniques, et leurs mélanges.
En effet, le graphène et les fibres de carbone peuvent remplir exactement le même rôle que le graphite dans l'encre. Seule l'organisation à grande échelle sera différente selon la nature du conducteur électronique envisagé comme les fibres de carbone ou le graphite micrométrique.
Le collecteur de courant se présente généralement sous la forme d'une feuille ou grille de cuivre, nickel ou aluminium.
L'électrode, comprend généralement de 70% à 94% en masse de matière électrochimiquement active, de 1% à 20% en masse, de préférence de 1% à 10% en masse du liant, et éventuellement de 1% à 15% en masse du ou des additif(s) conducteur(s) électronique(s).
Une telle électrode peut être préparée de manière classique selon un premier mode de réalisation du procédé de préparation d'une électrode selon l'invention en formant, comme décrit plus haut, une suspension, pâte ou encre avec le matériau composite selon l'invention, le liant qui est alors de préférence un polysaccharide, éventuellement le ou les additif(s) conducteur(s) électronique(s), et un solvant, en déposant, enduisant ou imprimant cette suspension, pâte ou encre sur un collecteur de courant, en séchant l'encre, pâte ou suspension déposée, en calandrant, pressant l'encre ou pâte déposée, séchée et le collecteur de courant, et enfin en traitant thermiquement l'électrode afin de carboniser le polysaccharide, tel qu'un alginate, et de le transformer en carbone amorphe.
Pour former une suspension, pâte ou encre, le matériau selon l'invention, généralement sous la forme d'une poudre auto-assemblée expansée telle que décrite plus haut est incorporé dans le véhicule de l'encre, c'est-à-dire un mélange du liant, du solvant, et des additifs conducteurs éventuels.
De préférence, le solvant et le liant se présentent sous la forme d'un gel aqueux de polysaccharide, tel qu'un hydrogel d'alginate.
Il n'existe en effet aucune limitation quant à la macromolécule de polysaccharide et toutes les molécules appartenant à la famille des polysaccharides peuvent être utilisées dans le procédé selon l'invention. Il peut s'agir de polysaccharides naturels ou synthétiques. La macromolécule de polysaccharide peut être choisie parmi les pectines, les alginates, l'acide alginique, et les carraghénanes.
Par « alginates", on entend aussi bien l'acide alginique que les sels et dérivés de celui-ci tels que l'alginate de sodium. Les alginates et notamment l'alginate de sodium sont extraits de diverses algues brunes Phaeophyceae, principalement les Laminaria telles que Laminaria hyperborea ; et les Macrocystis telles que Macrocystis pyrifera. L'alginate de sodium est la forme commercialisée la plus courante de l'acide alginique.
L'acide alginique est un polymère naturel de formule brute (C6H7Na06)n constitué de deux unités monosaccharidiques : l'acide D-mannuronique (M) et l'acide L- guluronique (G). Le nombre d'unités de bases des alginates est généralement d'environ 200. La proportion en acide mannuronique et en acide guluronique varie d'une espèce d'algue à l'autre et le nombre d'unités M sur le nombre d'unités G peut aller de 0,5 à 1,5, de préférence de 1 à 1,5.
Les alginates sont des polymères non ramifiés linéaires et ne sont pas généralement des copolymères statistiques mais selon l'algue dont ils proviennent, ils sont constitués de séquences d'unités similaires ou alternées, à savoir des séquences GGGGGGGG, M M M M M M M M, ou G M G M G M G M.
Par exemple, le rapport M/G de l'alginate issu de Macrocystis pyrifera est d'environ 1,6 tandis que le rapport M/G de l'alginate issu de Laminaria hyperborea est d'environ 0,45.
Parmi les alginates polysaccharides issus de la Laminaria hyperborea, on peut citer la Satialgine SG 500, parmi les alginates polysaccharides issus de Macrocystiis pyrifera de différentes longueurs de molécule, on peut citer les polysaccharides dénommés A7128, A2033 et A2158 qui sont des génériques d'acides alginiques.
La macromolécule de polysaccharide mise en œuvre selon l'invention a généralement une masse moléculaire de 80000 g/mol à 500000 g/mol, de préférence de 80000 g/mol à 450000 g/mol.
L'incorporation du matériau composite selon l'invention dans ce mélange est de préférence effectuée par une technique de mélange sans broyage, dans un appareil de mélange, par exemple du type mélangeur planétaire, n'occasionnant aucun broyage, et mettant en jeu une énergie très faible, à savoir généralement inférieure à 100 Joules/tour, afin de préserver l'auto-assemblage des nanotubes de carbone avec les nanoparticules ou particules submicroniques de matière active, à savoir de silicium, qui est conservé à 60 J/tour.
Un tel appareil de mélange permet d'éviter de faire des grumeaux, et permet de conserver une finesse d'encre inférieure à 10 μιη.
Il est donc possible avec cette technique et cet appareil, de mélanger intimement la poudre auto-assemblée de nanotubes de carbone et de nanoparticules ou particules submicroniques de matière active, à savoir de silicium, avec son véhicule, tel qu'un hydrogel d'alginate, en ajustant la viscosité avec de l'eau pour atteindre par exemple la valeur de 1 Pa.s à un taux de cisaillement de 1 s 1 et une finesse granulométrique inférieure à 10 μιη.
Par exemple, on peut commencer par introduire sur le mélangeur planétaire le gel d'alginate à une concentration généralement de 6% à 10% en masse, par exemple de 8% en masse, et ensuite la poudre auto-assemblée de nanotubes de carbone et de nanoparticules ou particules submicroniques de matière active, à savoir de silicium, avec éventuellement son conducteur électronique.
La vitesse de rotation est lente, par exemple approximativement 100 tr/min et la pression est par exemple de 2 bar sur le plateau.
La composition de l'encre en extrait sec est de 60% à 90% en masse, par exemple 85% en masse de matière active auto-assemblée, à de 0,5% à 5% en masse, par exemple 1% en masse de nanotubes de carbone (additif conducteur électronique), liée à de 5% à 20% en masse, par exemple 14% en masse d'alginate.
L'encre, pâte ou suspension peut être appliquée par tout procédé adéquat tel que l'enduction, le couchage, l'héliogravure, la flexographie, l'offset.
L'épaisseur d'encre, pâte, ou suspension déposée, appliquée, est généralement de 50 à 300 μιη, par exemple de 100 μιη.
L'encre, pâte, ou suspension déposée est généralement séchée à la température ambiante, à savoir de 15°C à 30°C, de préférence de 20°C. Le traitement thermique de l'électrode afin de carboniser le polysaccharide du liant, tel qu'un alginate, et de le transformer en carbone amorphe est généralement réalisé à une température de 400°C à 650°C, par exemple 600°C, pendant une durée de 15 à 60 minutes, par exemple 30 minutes sous un balayage de gaz inerte tel que l'argon ou sous un balayage de gaz légèrement réducteur, tel qu'un mélange d'un gaz inerte comme l'argon et d'un gaz réducteur comme l'hydrogène, par un mélange d'argon et d'hydrogène (par exemple à 2 % en volume d'hydrogène).
Au préalable, 2 cycles de vide primaire sont effectués pour éliminer l'oxygène et l'eau du matériau.
La perte de masse n'excède pas généralement 30%, ce qui est une valeur faible garantissant une bonne cohésion de l'électrode et une bonne adhérence au collecteur de courant, par exemple à la feuille de cuivre formant ce collecteur de courant.
Ces électrodes sont ensuite découpées en pastilles et ces pastilles peuvent être ensuite traitées par un plasma d'hydrogène pour désoxyder le silicium du matériau composite et graver le carbone amorphe pour améliorer l'accessibilité de l'électrolyte aux surfaces des nanoparticules de silicium ou particules submicroniques de silicium.
Le système électrochimique dans lequel est mis en œuvre l'électrode selon l'invention peut être notamment un accumulateur électrochimique rechargeable à électrolyte non aqueux tel qu'un accumulateur ou une batterie au lithium, et plus particulièrement un accumulateur à ions lithium, qui outre l'électrode positive ou négative telle que définie plus haut, comprenant en tant que matière électrochimiquement active le matériau composite préparé selon l'invention dans lequel le polysaccharide du liant a été carbonisé et transformé en carbone amorphe, comprend une électrode négative ou positive qui ne comprend pas le matériau composite selon l'invention, et un électrolyte non aqueux.
L'électrode négative ou positive, qui ne comprend pas en tant que matière électrochimiquement active le matériau composite selon l'invention dans lequel le polysaccharide a été carbonisé, comprend une matière électrochimiquement active différente du matériau composite selon l'invention, un liant, éventuellement un ou plusieurs additif(s) conducteur(s) électronique(s) et un collecteur de courant. Le liant et le ou les additif(s) électronique(s) éventuel(s) ont déjà été décrits plus haut.
La matière électrochimiquement active de l'électrode négative ou positive qui ne comprend pas le matériau composite selon l'invention dans lequel le polysaccharide a été carbonisé en tant que matière électrochimiquement active peut être choisi parmi tous les matériaux connus de l'homme du métier.
Ainsi, lorsque le matériau composite selon l'invention dans lequel le polysaccharide a été carbonisé est la matière électrochimiquement active de l'électrode négative, alors la matière électrochimiquement active de l'électrode positive peut être choisie parmi le lithium métal et tout matériau connu de l'homme du métier dans ce domaine de la technique.
Lorsque la matière électrochimiquement active de l'électrode positive est formée par le matériau selon l'invention dans lequel le polysaccharide a été carbonisé, la matière électrochimiquement active de l'électrode négative peut être faite de tout matériau connu et adaptable par l'homme du métier.
L'électrolyte peut être solide ou liquide.
Lorsque l'électrolyte est liquide, il est constitué par exemple par une solution d'au moins un sel conducteur tel qu'un sel de lithium dans un solvant organique et/ou un liquide ionique.
Lorsque l'électrolyte est solide, il comprend une matière polymère et un sel de lithium.
Le sel de lithium peut être choisi par exemple parmi LiAsF6, LiCI04, LiBF4, LiPF6, LiBOB, LiODBF, LiB(C6H5), LiCF3S03, LiN(CF3S02)2 (LiTFSI), LiC(CF3S02)3 (LiTFSM).
Le solvant organique est préférentiellement un solvant compatible avec les constituants des électrodes, relativement peu volatil, aprotique et relativement polaire. On peut citer par exemple les éthers, les esters et leurs mélanges.
Les éthers sont notamment choisis parmi les carbonates linéaires comme le carbonate de diméthyle(DMC), le carbonate de diéthyle (DEC), le carbonate de méthyléthyle (EMC), le carbonate de dipropyle (DPC), les carbonates cycliques comme le carbonate de propylène (PC), le carbonate d'éthylène (EC), et le carbonate de butylène ; les esters d'alkyle comme les formiates, les acétates, les propionates et les butyrates ; le gamma butyrolactone, le triglyme, le tétraglyme, le lactone, le diméthylsulfoxyde, le dioxolane, le sulfolane et leurs mélanges. Les solvants sont préférentiellement des mélanges incluant EC/DMC, EC/DEC, EC/DPC et EC/DMC.
L'accumulateur peut avoir notamment la forme d'une pile bouton.
Les différents éléments d'une pile bouton, en acier inoxydable 316L, sont décrits sur la Figure 3.
Ces éléments sont les suivants :
- les parties supérieure (105) et inférieure (106) du boîtier en inox,
- le joint en polypropylène (108),
- les cales en inox (104), qui servent à la fois par exemple à la découpe du lithium métal puis, plus tard, à assurer le bon contact des collecteurs de courant avec les parties externes de la pile,
- un ressort (107), qui assure le contact entre tous les éléments,
- un séparateur microporeux (102) imbibé d'électrolyte,
des électrodes (101) (103).
L'invention va maintenant être décrite en référence aux exemples suivants donnés à titre illustratif et non limitatif.
EXEMPLES.
Exemple 1.
Dans cet exemple, on prépare un matériau composite nanoparticules de silicium/nanotubes de carbone selon l'invention, par le procédé selon l'invention, tel qu'il a été décrit plus haut.
La première étape de fabrication est le marquage moléculaire des nanoparticules de silicium.
La quantité de nanoparticules de silicium est telle que la solution (à savoir la solution contenant la matière active, l'eau Dl et la protéine avidine ou la streptavidine) est au-delà de la limite de solubilité. Pour marquer ces nanoparticules de silicium, on utilise de l'avidine ou de la streptavidine. Le volume d'eau requis est celui du volume interstitiel des nanoparticules de silicium non tassées.
La masse d'avidine ou de streptavidine introduite dans la solution est équivalente à 1% de la masse du volume d'eau interstitiel.
La dissolution est effectuée sous agitation magnétique à température ambiante et la solution d'eau contenant l'avidine (ou streptavidine) est ensuite versée dans le récipient contenant la poudre.
Un mélange d'homogénéisation est effectué avant la congélation à -80°C et la lyophilisation de la poudres de matières actives marquées.
La seconde étape de fabrication est le marquage moléculaire des nanotubes de carbones par la biotine, vitamine hydrosoluble.
Les nanotubes de carbone en poudre sont mis en solution à une concentration inférieure à 5 mg/ml d'eau.
Pour le marquage par la biotine, on met en œuvre une solution, dispersion, contenant 0,5 g de nanotube de carbone dans 500 mL d'eau.
Les nanotubes de carbone sont dispersés en mettant en œuvre une agitation mixte par ultrasons et par haute vitesse de cisaillement (de type Ultra-Turrax®). L'installation permettant de réaliser une telle agitation mixte est décrite sur la Figure 1.
10 mg de biotine sont introduits dans la solution de NTCs sous agitation magnétique à température ambiante afin que la biotine se fixe sur les nanotubes de carbone par l'intermédiaire des interactions π des feuillets de graphène.
La solution est ensuite passée dans un système de « pilling » pour former des gouttes d'environ 1 mm de diamètre qui tombent directement dans un récipient d'azote liquide pour que se produise une congélation rapide.
Les billes de glace contenant les nanotubes de carbone expansés et marqués par la biotine sont ensuite lyophilisées pour que la biotine soit fixée sur les surfaces des nanotubes de carbone. La troisième étape est l'étape d'assemblage de la poudre de nanoparticules de silicium marquées sur les nanotubes de carbone marqués par reconnaissance moléculaire entre l'avidine et la biotine.
Pour cela, les nanotubes marqués sont versés dans 500 ml d'eau sous agitation magnétique et ensuite les matières actives marquées sont versées dans l'eau.
La proportion massique de nanoparticules de silicium/NTCs est de 99/1.
A l'issue de la troisième étape, le matériau composite est séparé de l'eau, et l'eau est ensuite éliminée par tout moyen adéquat.
Le cliché MEB de la Figure 2 montre une image typique d'un auto-assemblage de nanoparticules de silicium sur des nanotubes de carbone par reconnaissance moléculaire.
Exemple 2.
Dans cet exemple, on prépare une encre selon l'invention à l'aide d'un mélangeur planétaire décrit.
On commence par introduire sur le mélangeur planétaire un gel d'alginate à 8% et ensuite la matière active auto-assemblée préparée dans l'exemple 1 avec son conducteur électronique, qui est du noir de carbone, ou des fibres de carbone de type VGCF.
La vitesse de rotation est lente, approximativement 100 tr/min et la pression est de 2 bar sur le plateau.
La composition de l'encre en extrait sec est de 85% de matières actives autoassemblées à 1% de NTCs liés à 14% d'alginate.

Claims

REVENDICATIONS
1. Matériau composite comprenant des nano-objets en au moins un premier matériau conducteur électronique et des nano-objets ou des objets submicroniques en au moins un deuxième matériau différent du premier matériau; ledit matériau composite comprenant des nanostructures constituées chacune par les nano- objets en au moins un premier matériau conducteur électronique marqués par une première molécule, les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant marqués par une deuxième molécule et étant auto-assemblés et fixés sur les nano-objets en au moins un premier matériau par reconnaissance spécifique entre la première molécule et le deuxième molécule, lesdites nanostructures étant réparties de manière homogène dans le matériau, les nano-objets en au moins un premier matériau conducteur électronique étant choisis parmi les nanotubes de carbone et les nanofibres de carbone, et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau étant choisis parmi les nanoparticules de silicium et les particules submicroniques de silicium.
2. Matériau selon la revendication 1, dans lequel la première molécule de marquage et la deuxième molécule de marquage constituent un couple de reconnaissance spécifique entre molécules, choisi parmi les couples (strept)avidine/biotine ; protéine A/immunoglobuline ; protéine G/immunoglobuline ; les couples anticorps/antigène ou anticorps/épitope comme le peptide poly-His et un anticorps spécifique de ce peptide ou le fragment C-terminal de la protéine Myc et l'anticorps monoclonal 9E10 ; les couples enzyme/substrat comme le couple glutathione S- transférase/glutathione ; et les couples séquence nucléotidique/séquence nucléotidique complémentaire.
3. Matériau selon la revendication 1 ou 2, dans lequel chacune des nanostructures a une taille qui est au minimum égale à la taille de chacun des nano-objets en au moins un premier matériau conducteur électronique.
4. Matériau selon l'une quelconque des revendications 1 à 3, dans lequel les nanotubes de carbone sont choisis parmi les nanotubes de carbone monoparoi, et les nanotubes de carbone multiparoi tels que les nanotubes de carbone double paroi.
5. Matériau selon l'une quelconque des revendications 1 à 4, dans lequel les nanoparticules de silicium ou les particules submicroniques de silicium ont une forme sphérique ou sphéroïdale.
6. Matériau selon l'une quelconque des revendications précédentes, dans lequel le rapport du nombre de nano-objets ou d'objets submicroniques en au moins un deuxième matériau, au nombre de nano-objets en au moins un premier matériau, est inférieur ou égal à 1/100.
7. Matériau selon l'une quelconque des revendications précédentes, qui se présente sous la forme d'une poudre, notamment d'une poudre expansée.
8. Matériau selon la revendication 7, dans lequel la poudre présente une granulométrie moyenne comprise entre 1 μιη et 100 μιη, une surface spécifique comprise entre 10 m2/g et 50 m2/g, et une masse volumique comprise entre 2,014 g/cm3 et 2,225 g/cm3.
9. Procédé de procédé de préparation du matériau nanocomposite selon l'une quelconque des revendications 1 à 8, dans lequel on réalise les étapes suivantes :
a) on marque les nano-objets en au moins un premier matériau par une première molécule, en mélangeant la première molécule et une dispersion dans l'eau des nano-objets en au moins un premier matériau, puis on lyophilise les nano-objets en au moins un premier matériau marqués par la première molécule ;
b) on marque les nano-objets ou les objets submicroniques en au moins un deuxième matériau par une deuxième molécule en mettant en contact une solution dans l'eau de la deuxième molécule avec les nano-objets ou les objets submicroniques en au moins un deuxième matériau, puis on lyophilise les nano-objets ou les objets submicroniques en au moins un deuxième matériau marqués par la deuxième molécule; puis
c) on met en contact, sous agitation dans de l'eau, les nano-objets lyophilisés en au moins un premier matériau marqués par la première molécule et les nano- objets ou les objets submicroniques lyophilisés en au moins un deuxième matériau marqués par la deuxième molécule; moyennant quoi on obtient le matériau nanocomposite comprenant les nano-objets en au moins un premier matériau conducteur électronique et les nano-objets ou les objets submicroniques en au moins un deuxième matériau différent du premier matériau, et on sépare le matériau nanocomposite de l'eau sous la forme d'une poudre ;
d) éventuellement, on sèche le matériau nanocomposite, par exemple par lyophilisation ou par contact avec un fluide supercritique.
10. Encre comprenant le matériau composite selon l'une quelconque des revendications 1 à 8, et un véhicule.
11. Encre selon la revendication 10, comprenant en outre au moins un conducteur électronique.
12. Electrode comprenant en tant que matière électrochimiquement active le matériau composite selon l'une quelconque des revendications 1 à 8.
13. Electrode selon la revendication 12, qui est une électrode négative.
14. Système électrochimique comprenant une électrode selon l'une quelconque des revendications 12 et 13.
15. Système électrochimique selon la revendication 14, qui est un système à électrolyte non aqueux tel qu'un accumulateur électrochimique rechargeable à électrolyte non aqueux.
16. Système électrochimique selon la revendication 15, qui est un accumulateur aux ions lithium.
PCT/EP2015/056143 2014-03-24 2015-03-23 Materiau composite comprenant des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau WO2015144647A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/128,779 US20180183051A1 (en) 2014-03-24 2015-03-23 Composite material comprising carbon nano-objects, process for preparing same, and ink and electrode comprising this material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452457A FR3018805A1 (fr) 2014-03-24 2014-03-24 Materiau composite comprenant des nano-objets, notamment des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau.
FR1452457 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015144647A1 true WO2015144647A1 (fr) 2015-10-01

Family

ID=51303074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/056143 WO2015144647A1 (fr) 2014-03-24 2015-03-23 Materiau composite comprenant des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau

Country Status (3)

Country Link
US (1) US20180183051A1 (fr)
FR (1) FR3018805A1 (fr)
WO (1) WO2015144647A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12002949B2 (en) * 2017-12-01 2024-06-04 Lg Energy Solution, Ltd. Negative electrode and secondary battery including the same
WO2019168376A1 (fr) * 2018-03-02 2019-09-06 주식회사 씨엔피솔루션즈 Matériau actif d'électrode ayant un polymère conducteur à base de cellulose ou à base d'un composé faiblement acide et batterie au lithium-ion le comprenant
CN116514550A (zh) * 2023-02-21 2023-08-01 南通扬子碳素股份有限公司 石墨烯改性石墨电极、制备方法及其用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020450A1 (fr) * 2002-08-30 2004-03-11 Commonwealth Scientific And Industrial Research Organisation Procedes de modification chimique et physique de nanotubes, procedes de liaison de nanotubes, procedes de positionnement dirige de nanotubes, et utilisations associees

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020450A1 (fr) * 2002-08-30 2004-03-11 Commonwealth Scientific And Industrial Research Organisation Procedes de modification chimique et physique de nanotubes, procedes de liaison de nanotubes, procedes de positionnement dirige de nanotubes, et utilisations associees

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALESSANDRA MICOLI ET AL: "Supramolecular Assemblies of Nucleoside Functionalized Carbon Nanotubes: Synthesis, Film Preparation, and Properties", CHEMISTRY - A EUROPEAN JOURNAL, vol. 20, no. 18, 19 March 2014 (2014-03-19), pages 5397 - 5402, XP055162530, ISSN: 0947-6539, DOI: 10.1002/chem.201304780 *
M. A. CORREA-DUARTE ET AL: "Linear Assemblies of Silica-Coated Gold Nanoparticles Using Carbon Nanotubes as Templates", ADVANCED MATERIALS, vol. 16, no. 23-24, 17 December 2004 (2004-12-17), pages 2179 - 2184, XP055162408, ISSN: 0935-9648, DOI: 10.1002/adma.200400626 *
MINOO J. MOGHADDAM ET AL: "Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry", NANO LETTERS, vol. 4, no. 1, 12 September 2003 (2003-09-12), pages 89 - 93, XP055162376, ISSN: 1530-6984, DOI: 10.1021/nl034915y *
RACHEL A. GRAFF ET AL: "Synthesis of Nickel-Nitrilotriacetic Acid Coupled Single-Walled Carbon Nanotubes for Directed Self-Assembly with Polyhistidine-Tagged Proteins", CHEMISTRY OF MATERIALS, vol. 20, no. 5, 19 February 2008 (2008-02-19), pages 1824 - 1829, XP055162549, ISSN: 0897-4756, DOI: 10.1021/cm702577h *
SACHIN KINGE ET AL: "Self-Assembling Nanoparticles at Surfaces and Interfaces", CHEMPHYSCHEM, vol. 9, no. 1, 11 January 2008 (2008-01-11), pages 20 - 42, XP055042089, ISSN: 1439-4235, DOI: 10.1002/cphc.200700475 *
TOBIAS SMORODIN ET AL: "Contacting gold nanoparticles with carbon nanotubes by self-assembly", NANOTECHNOLOGY, vol. 16, no. 8, 17 May 2005 (2005-05-17), pages 1123 - 1125, XP055162375, ISSN: 0957-4484, DOI: 10.1088/0957-4484/16/8/023 *
WEI G ET AL: "Controlled assembly of protein-protected gold nanoparticles on noncovalent functionalized carbon nanotubes", CARBON, ELSEVIER, OXFORD, GB, vol. 48, no. 3, 9 October 2009 (2009-10-09), pages 645 - 653, XP026804734, ISSN: 0008-6223, [retrieved on 20091009] *

Also Published As

Publication number Publication date
FR3018805A1 (fr) 2015-09-25
US20180183051A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
EP2909136A1 (fr) Materiau composite comprenant des nano-objets notamment des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau
Lao et al. Alloy‐based anode materials toward advanced sodium‐ion batteries
FR2981643A1 (fr) Procede de preparation d'un materiau composite silicium/carbone, materiau ainsi prepare, et electrode notamment electrode negative, comprenant ce materiau.
EP2323960B1 (fr) Procédé de préparation d'un matériau composite silicium/carbone
Bitew et al. Nano-structured silicon and silicon based composites as anode materials for lithium ion batteries: recent progress and perspectives
EP2780401B1 (fr) Procede de preparation d'une composition pateuse a base de charges conductrices carbonees
KR102650390B1 (ko) 배터리 응용을 위한 애노드 전극 조성물 및 수성 분산액
TW201437143A (zh) 做爲鋰離子電池陽極材料之Si/C複合物
KR20140128379A (ko) 에스아이/씨 전기활성 물질의 조성물
FR2958084A1 (fr) Melange maitre de charges conductrices carbonees pour les formulations liquides, notamment dans les batteries li-ion
FR2935546A1 (fr) Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode.
KR102461423B1 (ko) Cnt 펄프 네트워크에 의해 한정되는 구조체를 제조하기 위한 시스템 및 방법
WO2015144647A1 (fr) Materiau composite comprenant des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau
US20180198117A1 (en) Process for manufacturing an electrode, electrode thus manufactured and electrochemical system comprising said electrode
FR2965408A1 (fr) Materiau composite et utilisation pour la fabrication d'une electrode
EP3123540A1 (fr) Procede de fabrication d'une electrode, electrode ainsi fabriquee et systeme electrochimique la comprenant.
WO2020109505A1 (fr) Electrolyte polymere conducteur pour batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15712336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128779

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015712336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015712336

Country of ref document: EP