WO2015143623A1 - 飞轮储能装置、风力发电系统及车辆能量回馈制动系统 - Google Patents

飞轮储能装置、风力发电系统及车辆能量回馈制动系统 Download PDF

Info

Publication number
WO2015143623A1
WO2015143623A1 PCT/CN2014/074031 CN2014074031W WO2015143623A1 WO 2015143623 A1 WO2015143623 A1 WO 2015143623A1 CN 2014074031 W CN2014074031 W CN 2014074031W WO 2015143623 A1 WO2015143623 A1 WO 2015143623A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
rotor
rotating
shell
storage device
Prior art date
Application number
PCT/CN2014/074031
Other languages
English (en)
French (fr)
Inventor
蹇林旎
尉进
石玉君
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to PCT/CN2014/074031 priority Critical patent/WO2015143623A1/zh
Priority to US15/101,074 priority patent/US9837874B2/en
Publication of WO2015143623A1 publication Critical patent/WO2015143623A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/30Electric propulsion with power supplied within the vehicle using propulsion power stored mechanically, e.g. in fly-wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/12Combinations of wind motors with apparatus storing energy storing kinetic energy, e.g. using flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/30Arrangements for balancing of the load in a network by storage of energy using dynamo-electric machines coupled to flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of energy storage technologies, and in particular, to a flywheel energy storage device, a wind power generation system, and a vehicle energy feedback brake system.
  • Flywheel energy storage technology is an efficient mechanical energy storage technology that can convert non-mechanical energy such as electric energy, wind energy and solar energy into flywheel kinetic energy.
  • flywheel energy storage has been characterized by its high energy storage density, high power density, high energy conversion efficiency, temperature insensitivity, environmental friendliness, long service life, fast charge and discharge speed, and easy combination with other devices. Extensive research and application, especially in the field of system energy feedback and power regulation of wind power systems have good prospects.
  • the flywheel In order to reduce the flywheel loss and improve the energy storage efficiency of the flywheel, the flywheel is in a closed vacuum chamber. Therefore, in order to transfer the energy stored in the flywheel to the outside of the system, or transfer the mechanical energy outside the system to the flywheel for storage, a coupling device is necessary.
  • the existing coupling device is a rotating shaft provided with a rotating sealing ring, which will The external energy is converted into the kinetic energy of the flywheel.
  • An additional vacuum environment monitoring system is provided to monitor the working environment of the vacuum chamber and maintain the vacuum system, thereby ensuring that the flywheel operates in a certain vacuum environment, which invisibly increases the volume and manufacturing cost of the flywheel energy storage device.
  • a magnetic connector In order to solve the defect that the above-mentioned rotary sealing ring is likely to cause air leakage due to physical contact, a magnetic connector has been invented, and the magnetic connector can remove the rotating sealing ring and transfer the energy stored by the flywheel to the outside of the vacuum chamber without physical contact. Or the external energy can be converted into the kinetic energy of the flywheel without physical contact.
  • the magnetic connector is applied to the flywheel energy storage system, the rotating seal is removed, the expensive environmental monitoring system and the vacuum holding system are eliminated, and the defects of the existing rotary seal are solved.
  • the energy flow path of the flywheel energy storage device is very single, that is, the kinetic energy of the flywheel passes through the rotating component on the high speed side, passes through the magnetic adjustment mechanism, and is transmitted to the rotating component on the low speed side; or the mechanical energy on the low speed side passes through the magnetic adjustment mechanism, The contact is transmitted to the high-speed side rotor in the vacuum chamber, which drives the flywheel to accelerate and stores the energy in the flywheel.
  • the energy of the device is only two rounds of a single flow path, and the single energy flow path is not conducive to adjusting the size of the output input power and the flexible configuration of the energy.
  • the above-mentioned flywheel energy storage device still has an occupied body. A large defect. Summary of the invention
  • a flywheel energy storage device having a small volume and a multi-directional energy flow path.
  • a flywheel energy storage device including a vacuum shell, a flywheel, a radial magnetic gear, a disk magnetic gear motor, and a second rotating shaft, wherein
  • the vacuum shell includes a vacuum shell body, a first pole pole holder and an end cap, the vacuum shell enclosing a vacuum receiving chamber, and the first pole pole holder is mounted on the vacuum shell body and the end cap Between
  • the flywheel is received in the accommodating cavity, the flywheel has a first rotating shaft, and the first rotating shaft is rotatably mounted on the vacuum shell body;
  • the radial magnetic gear includes an inner rotor, an outer rotor and a first pole pole piece, the inner rotor is located inside the first pole pole piece seat, and the outer rotor is located at the first pole pole piece seat
  • the inner rotor is coaxially fixed with the first rotating shaft, the inner rotor is provided with a first permanent magnet, the outer rotor is coaxially rotated with respect to the inner rotor, and the outer rotor is provided with a second permanent a magnet, the first pole pole pieces are respectively embedded in the first pole pole piece holder;
  • the disc-type magnetic gear motor is mounted to a periphery of the rotor outside the radial magnetic gear, and the disc-type magnetic gear motor includes a first stator that is both in the shape of a circular disk and is coaxially disposed with the first rotating shaft a sub-disc, a first rotor disk, a second stator disk, a second rotor disk, and a third rotor disk, the first stator disk being fixed relative to the vacuum casing body, the first rotor disk, the third a rotor disk, the second rotor disk, and the second stator disk are sequentially stacked on a side of the first stator disk away from the vacuum shell body, wherein
  • the first stator disk is provided with a first winding
  • the first rotor disk is fixed to the outer rotor, the first rotor disk is opposite to the first stator disk, and the first rotor disk is provided with a third permanent magnet;
  • the second stator disk is fixed relative to the vacuum casing, the second stator disk is provided with a second winding, and the second stator disk is opposite to the first stator disk;
  • the second rotor disk is facing the second stator disk, and the second rotor disk is provided with a fourth permanent magnet;
  • the third rotor disk is opposite to the first rotor disk and the second rotor disk, and the second rotor disk is embedded with N 2 second pole pole pieces;
  • the first stator disk and the first rotor disk constitute a first disk motor
  • the second stator disk and the second rotor disk constitute a second disk motor
  • the The second rotor disk and the third rotor disk constitute a disk magnetic gear
  • the first disk motor, the second disk motor and the disk magnetic gear are coupled to each other to form the disk magnetic gear motor ;
  • the second rotating shaft is coaxially fixed to the third rotor disk.
  • the first permanent magnet is magnetized in a radial or parallel manner
  • the second permanent magnet is magnetized in a radial or parallel manner
  • the first magnetic pole pieces are located along the first a first circumference of the magnetic pole piece holder is arranged, the rotation axis vertically passes through a center of the first circumference, and the first magnetic pole pieces are insulated from each other, and each of the first magnetic pole pieces Insulated from the vacuum envelope.
  • the magnetization directions of the third permanent magnet and the fourth permanent magnet are both parallel to the rotation axis, and the third rotor disk a second pole pole holder is disposed, the N 2 second pole pole pieces are embedded in the second pole pole piece seat, and the second second pole pole pieces are located along the second pole of the second pole pole holder The circumference is hooked, and the axis of rotation passes perpendicularly through the center of the second circumference.
  • the flywheel energy storage device further includes a casing fixed to an outer wall of the vacuum casing body, the casing and the outer wall of the vacuum casing body enclosing a rotating cavity, the second rotating shaft Rotating mounted to the outer casing and extending out of the outer casing.
  • the flywheel energy storage device further includes a first fixed seat in the shape of a circular disk, and the first fixed seat is the same as the rotating axis
  • the first fixing base is fixed to the outer wall of the vacuum shell body, and one end of the first pole pole piece seat is fixed to the first fixing seat, and the other end extends radially to form the end cap.
  • the flywheel energy storage device further includes a first rotating shell and a second rotating shell both coaxial with the rotating axis, the first The rotating shell includes a rotating base and a rotating cylinder, the rotating base is fixed to one end of the rotating cylinder, the rotating base is rotatably supported by the first fixing seat, and the rotating cylinder is away from the vacuum shell body
  • One end is provided with a second shaft hole coaxial with the rotation axis, the second rotating shell is a disc-shaped structure adapted to the second shaft hole, and the second rotating shell is rotatably supported in the second shaft hole
  • the outer rotor is fixed to The inner wall of the rotating cylinder body is fixed to the outer wall of the rotating cylinder body, and the second rotating shaft is rotatably supported by the second rotating shell near one end of the vacuum shell body.
  • the flywheel energy storage device further includes a third rotating shell coaxial with the axis of rotation, the third rotating shell being a rotating body An empty shell, one end of the third rotating shell is integrally connected with the second rotating shaft, and the other end is fixedly connected with the third rotor disk;
  • the flywheel energy storage device further includes a fourth rotating shell coaxial with the axis of rotation, the fourth rotating shell is a rotating shell, and one end of the fourth rotating shell is fixed to the second rotor The other end is rotatably supported on the second rotating shaft.
  • the outer wall of the outer casing is provided with a first wiring hole and a second wiring hole, the first wiring hole and the first stator disk The first winding is electrically connected, and the second wiring hole is electrically connected to the second winding of the second stator disk.
  • a wind power generation system including a wind wheel, a first power converter, a second power converter, a power grid, and a flywheel energy storage device in any of the foregoing implementations, wherein the wind wheel is coaxially fixed
  • the first winding of the first disc motor is electrically connected to the grid via the first power converter
  • the second winding of the second disc motor is via the second
  • the power converter is electrically connected to the power grid.
  • a vehicle energy feedback braking system including a vehicle drive axle, a third power converter, a fourth power converter, a DC bus, and a flywheel energy storage device in any of the foregoing implementations,
  • An output shaft of the vehicular axle is coaxially fixed to the second rotating shaft, and a first winding of the first disk motor is electrically connected to the DC bus via the third power converter, and the second disk is A second winding of the electric machine is electrically connected to the DC bus via the fourth power converter.
  • the disk magnetic gear motor of the flywheel energy storage device coaxially surrounds the entire radial magnetic gear, the first disk motor and the second disk type
  • the motors are coaxial disc structures, which reduces the axial length of the entire flywheel energy storage device, thereby reducing the volume of the entire flywheel energy storage device, making the flywheel energy storage device compact.
  • the flywheel energy storage device also has a flexible energy flow path, which can realize multi-path circulation of energy between the second rotating shaft, the first winding, the second winding and the flywheel, satisfies the utilization requirements of various modes of energy, and supports "mechanical energy".
  • FIG. 1 is a schematic structural view of a flywheel energy storage device according to an embodiment of the present invention.
  • Figure 2 is a cross-sectional view of the radial magnetic gear in the flywheel energy storage device shown in Figure 1;
  • FIG. 3 is a schematic structural view of a disk type magnetic gear motor in the flywheel energy storage device shown in FIG. 1;
  • FIG. 4 is a schematic view showing the assembly of the flywheel energy storage device according to the embodiment of the present invention;
  • FIG. 5 is an enlarged view showing the structure of the V in the flywheel energy storage device shown in Figure 4;
  • FIG. 6 is a schematic block diagram of a wind power generation system according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a vehicle energy feedback brake system according to an embodiment of the present invention.
  • an embodiment of the present invention discloses a flywheel energy storage device 1, including a vacuum casing 100, a flywheel 200, a radial magnetic gear 300, a disk magnetic gear motor 400, and a second rotating shaft 500.
  • the vacuum envelope 100 is a vacuum closed casing surrounded by the vacuum shell body 110, the first pole pole piece holder 120 and the end cover 130.
  • the vacuum shell 100 is surrounded by a receiving chamber 101, and the vacuum shell 100 is provided with a first shaft hole. 102.
  • the first pole pole holder 120 is mounted between the vacuum shell body 110 and the end cover 130.
  • the first pole pole holder 120 is a cylindrical structure extending outward from the edge of the first shaft hole 102.
  • the pole pole holder 120 is made of a high-strength material that is neither magnetically conductive nor electrically conductive, including but not limited to reinforced nylon, epoxy resin, phenolic resin, etc., and the end cap 130 is mounted on the first pole pole holder 120 away from the pole.
  • the end of the vacuum envelope body 110 is surrounded by a receiving chamber 101, and the vacuum shell 100 is provided with a first shaft hole. 102.
  • the first pole pole holder 120 is mounted between the vacuum shell body 110 and the end cover 130.
  • the flywheel 200 is housed in the accommodating cavity 101.
  • the flywheel 200 includes a flywheel body 210 and a first rotating shaft 220 extending axially from the center of the flywheel body 210.
  • the first rotating shaft 220 is rotatably mounted.
  • the first rotating shaft 220 has an axis of rotation 600
  • the first rotating shaft 220 is made of a material with high mechanical strength
  • the first rotating shaft 220 is rigidly connected with the flywheel body 210
  • the flywheel 200 is The main energy storage component of the flywheel energy storage device 1, the flywheel 200 stores external energy in the form of kinetic energy.
  • the flywheel 200 is placed in the accommodating chamber 101 in order to eliminate windage loss.
  • the radial magnetic gear 300, the disk magnetic gear motor 400, and the second rotating shaft 500 are all coaxially mounted to the rotational axis 600.
  • the radial magnetic gear 300 includes an inner rotor 310, an outer rotor 320, and a first pole pole piece 330.
  • the inner rotor 310 is located inside the first pole pole holder 120, and the outer rotor 320 is located at the first pole pole piece.
  • the outer rotor 310 is coaxially fixed with the first rotating shaft 220, the outer rotor 320 is coaxially rotatable relative to the inner rotor 310, and the outer rotor 320 is coaxially and spaced apart from the inner rotor 310.
  • the first magnetic pole piece holder 120 is disposed on the outer side of the seat 120. Located between the outer rotor 320 and the inner rotor 310, the N first pole pole pieces 330 are embedded in the first pole pole holder 120.
  • the first pole pole pieces 330 are evenly arranged along the first circumference of the first pole pole piece holder 120, the rotation axis 600 vertically passes through the center of the first circumference, and the first pole pole pieces 330 are mutually Insulation, each of the first pole pole pieces 330 is insulated from the vacuum envelope 100.
  • the first pole piece 330 is made of a highly magnetically permeable material, such as a silicon steel sheet.
  • the inner rotor 310 is mounted with a first permanent magnet 311 that is radially or parallel magnetized.
  • the first permanent magnet 311 is disposed on the outer wall of the inner rotor 310
  • the outer rotor 320 is mounted with a second or second radial or parallel magnetization.
  • the magnet 321 has a second permanent magnet disposed on an inner wall of the outer rotor 320.
  • the pole pair number of the first permanent magnet 311 is a pole pair number P 2 of the second permanent magnet 321 .
  • N! ⁇ 2 + ⁇ ⁇ , where corpse 2 >;
  • the numbers indicate that the rotational speeds of the inner rotor 310 and the outer rotor 320 are opposite.
  • the radial magnetic gear 300 is transposed by the magnetic field of the first permanent magnet 311 of the inner rotor 310 and the second permanent magnet 321 of the outer rotor 320 without physical contact. Since ⁇ 2 > ⁇ , when the external energy is supplemented to the flywheel 200, the ratio of the radial magnetic gear 300 is adjusted, and the rotational speed is amplified, so the charging speed of the flywheel 200 is faster; when the flywheel 200 releases energy, the radial magnetic gear The variable ratio of 300 is adjusted, and the rotation speed is reduced, so the flywheel 200 can provide a large torque to the outside.
  • the disc-type magnetic gear motor 400 is mounted to the periphery of the rotor outside the radial magnetic gear 300, and the disc-type magnetic gear motor 400 includes a first stator disc 410 that is both in the shape of a circular disc and is disposed coaxially with the axis of rotation 600, A rotor disk 420, a second stator disk 430, a second rotor disk 440, and a third rotor disk 450.
  • the first stator disk 410 is fixed relative to the vacuum envelope body 110, and the first rotor disk 420, the third rotor disk 450, the second rotor disk 420, and the second stator disk 430 are sequentially stacked at intervals away from the first stator disk 410.
  • One side of the vacuum envelope body 110 One side of the vacuum envelope body 110.
  • the first stator disk 410 is fixed relative to the vacuum shell body 110, and is disposed around the first pole pole piece holder 120.
  • the first stator disk 410 is coaxial with the rotation axis 600, and the first stator disk 410 is provided with the first winding. 411.
  • the first rotor disk 420 is coaxially fixed to the outer rotor 320, the first rotor disk 420 is opposite to the first stator disk 410, and the first rotor disk 420 is located on the side of the first stator disk 410 away from the vacuum casing body 110.
  • the first rotor disk 420 is located directly above the first stator disk 410, and the upper and lower surfaces of the first rotor disk 420 are each provided with a third permanent magnet 421.
  • the third permanent magnet 421 is magnetized in a direction parallel to the rotation axis 600, and the number of pole pairs of the third permanent magnet 421 is ⁇ 3 , wherein the number of pole pairs of the first winding 411 is the same as the number of pole pairs of the third permanent magnet 421 .
  • the second stator disk 430 is fixed relative to the vacuum envelope body 110, the second stator disk 430 is coaxial with the axis of rotation 600, the second stator disk 430 is provided with a second winding 431, and the second stator disk 430 is facing the first stator disk 410 .
  • the second rotor disk 440 is opposite to the second stator disk 430, and the second rotor disk 440 is spaced apart from the first rotor disk 420, and the second rotor disk 440 is located on the side of the second stator disk 430 adjacent to the vacuum casing body 110, second The upper and lower surfaces of the rotor disk 440 are each provided with a fourth permanent magnet 441.
  • the fourth permanent magnet 441 is magnetized in a direction parallel to the rotation axis 600, and the number of pole pairs of the fourth permanent magnet 441 is ⁇ 4 , wherein the number of pole pairs of the second winding 431 is the same as the number of pole pairs of the fourth permanent magnet 441.
  • the third rotor disk 450 is located between the first rotor disk 420 and the second rotor disk 440, and the third rotor disk
  • the third rotor disk 450 is coaxially fixed with the second rotating shaft 500, and the third rotor disk 450 is provided with a second magnetic pole piece holder 452, ⁇ 2 second
  • the pole pole piece 451 is embedded in the second pole pole holder 452, and the second pole pole pieces 451 are evenly arranged along the second circumference of the second pole pole holder 452, and the axis of rotation 600 passes vertically through The center of the second circumference is described.
  • the second pole piece holder 452 is made of a high strength material that is neither magnetically conductive nor electrically conductive, and materials include, but are not limited to, reinforced nylon, epoxy resin, phenolic resin, and the like.
  • the first stator disk and the first rotor disk constitute a first disk motor 400a
  • the second stator disk and the second rotor disk constitute a second disk motor 400b
  • the first rotor disk, the second rotor disk and the third rotor disk constitute
  • the disc type magnetic gear 400c, the first disc type motor 400a, the second disc type motor 400b, and the disc type magnetic gear 400c are coupled to each other to constitute a disc type magnetic gear motor 400.
  • the disc type magnetic gear 400c satisfies the following conditions:
  • the second rotating shaft 500 rotates coaxially with respect to the rotation axis 600, and the third rotor disk 450 is coaxially fixed with the second rotating shaft 500.
  • the second shaft 500 serves as an input or output shaft of the flywheel energy storage device 1.
  • the first disk motor 400a, the second disk motor 400b, and the disk magnetic gear 400c are coupled together into a disk type magnetic gear motor, and the disk type magnetic gear motor plays an important role in widening the energy circulation path.
  • the second rotating shaft 500 serves as an output/input port of the mechanical energy.
  • the flywheel energy storage device 1 can pass the disc magnetic gear 400c and the radial magnetic gear. 300 converts the mechanical energy of the second rotating shaft 500 into the mechanical energy of the flywheel 200 without contact, and the flywheel energy storage device 1 can also pass through the disc magnetic gear 400c, the first disc motor 400a, and the second disc motor 400b without contact.
  • the mechanical energy of the two rotating shafts 500 is converted into electric energy of the first winding 411 and the second winding 431, and the electric energy can be output to the load, the power grid, the battery, etc. through the corresponding power converter; when the rotation speed of the second rotating shaft 500 is lower than the preset At the time of the rotation speed, the flywheel energy storage device 1 converts the mechanical energy of the flywheel 200 into the mechanical energy of the second rotating shaft 500 through the disk magnetic gear 400c and the radial magnetic gear 300.
  • the flywheel energy storage device 1 also passes through the first disk motor 400a, the second Disc type
  • the machine 400b and the disk-type magnetic gear 400c convert the electrical energy of the power grid or the battery into the mechanical energy of the second rotating shaft 500 without contact, so that the second rotating shaft 500 reaches a preset rotational speed.
  • the above-described radial magnetic gear 300 and disk magnetic gear 400c satisfy the rotational speed relationship in the formulas 2) and 4).
  • the rotational speed decoupling between the second rotating shaft 500 and the flywheel 200 can be achieved by controlling the rotational speed of the second rotor disk 440.
  • the disk magnetic gear motor coaxially surrounds the entire radial magnetic gear 300, and the first stator disk 410 is fixed to the outer wall of the vacuum casing main body 110, the first disk motor 400a and The second disc motor 400b is a coaxial disc structure, which reduces the axial length of the entire flywheel energy storage device 1, thereby reducing the volume of the entire flywheel energy storage device 1.
  • a rotation support is disposed at the first shaft hole 102 of the vacuum shell body 110, and a rotation support is disposed on the bottom wall of the vacuum shell body 110 away from the first shaft hole 102.
  • the first rotating shaft 220 is rotatably mounted to the vacuum casing main body 110 by the above two rotating supports, and the rotating support may be a bearing.
  • the flywheel energy storage device 1 further includes a first fixing seat 140 fixed to the outer wall of the vacuum shell 110.
  • the first fixing seat 140 is coaxial with the rotation axis 600, and the first fixing seat 140 is surrounded.
  • the first rotating shaft 220 has an annular disk shape, one end of the first magnetic pole piece holder 120 is fixed to the first fixing base 140, and the other end radially extends to form the end cover 130, the vacuum shell main body 110, the first magnetic pole piece holder 120 and The end cap 130 encloses a sealed chamber 101 for sealing the vacuum.
  • the inner rotor 310 has a gap away from the end of the vacuum casing main body 110 and the end cover 130, and the first rotating shaft 220 is rotatably supported by the end cover 130 away from the end of the vacuum casing main body 110.
  • the flywheel energy storage device 1 further includes a first rotating shell 810 and a second rotating shell 820 each coaxial with the axis of rotation, the first rotating shell 810 being a rotating shell
  • the rotating housing 810 includes a rotating base 811 and a rotating cylinder 812 fixedly coupled to each other.
  • the rotating base 811 is rotatably supported by the first fixing seat.
  • the rotating cylinder 812 is disposed at a distance from the vacuum housing main body 110 and is disposed coaxially with the rotation axis 600.
  • the shaft hole, the second rotating shell 820 is in the shape of a disk adapted to the second shaft hole, and the second rotating shell 820 is rotatably supported by the second shaft hole.
  • the outer rotor 320 is fixed to the inner wall of the rotating cylinder 812 or the rotating base 811, and the first rotor disk 420 of the first disk motor 400a is fixed to the rotation.
  • the flywheel energy storage device 1 further includes a casing 700.
  • the casing 700 is a rotating body casing, and the casing 700 is fixed to the outer wall of the vacuum casing body 110, and the casing 700 and the vacuum casing body 110 are The outer wall is surrounded by a rotating cavity 103.
  • the disk magnetic gear motor 400 is located in the rotating cavity 103.
  • the outer casing 700 is provided with a third axial hole 701 coaxial with the axis of rotation 600, and the second rotating shaft 500 of the second rotating shaft 500 is rotatably supported by the third.
  • the shaft hole 701, the second rotating shaft 500 is also rotatably supported by the second rotating shell 820 near the end of the vacuum shell body 110.
  • the flywheel energy storage device 1 further includes a third rotating shell 900 in the form of a rotating shell, and one end of the third rotating shell 900 is integrally connected with the second rotating shaft 500. The other end is fixedly connected to the third rotor disk 450.
  • the outer wall of the outer casing 700 is provided with a first wiring hole 710 and a second wiring hole 720.
  • the first wiring hole 710 is electrically connected to the first winding 411 of the first stator disk 410, and the second wiring hole 720 and the second stator disk 430 are connected.
  • the second winding 431 is electrically connected.
  • the flywheel energy storage device 1 further includes a fourth rotating shell 900 in the shape of a rotating body, and the fourth rotating shell 900 is located in the outer casing 700 and the third Between the rotating shells 820, one end of the fourth rotating shell 442 is fixedly connected to the second rotor disk 440, and the other end is rotatably supported by the second rotating shaft 500.
  • the fourth rotating case 442 extends from the second rotor disk 440 toward the second rotating shaft 500, and the fourth rotating case 442 is rotatably coupled to the second rotating shaft 500 via a rotational support.
  • the second stator disk 430 of the second disk motor 400b is fixed to the inner wall of the outer casing 700.
  • the flywheel energy storage device 1 of the embodiment of the present invention is applicable to a wind power generation system
  • the wind power generation system includes a flywheel energy storage device 1, a wind wheel 2, a first power converter 3, and a second power converter 4.
  • the power grid 5, the battery 6, the electric load 7, the wind wheel 2 is coaxially fixed to the second rotating shaft 500, and the first winding 411 of the first disc motor 400a is electrically connected to the power grid 5 via the first power converter 3, first
  • the power converter 3 is connected to the grid 5 via the microgrid bus 8
  • the second winding 431 of the second disc motor 400b is electrically connected to the grid 5 via the second power converter 4, and the second power converter 4 is passed through the microgrid bus 8.
  • the battery 6 and the electric load 7 are electrically connected to the micro grid bus 8 .
  • the wind wheel 2 When the wind wheel 2 rotates at a speed higher than or equal to the preset speed, the wind wheel 2 inputs mechanical energy to the system through the second rotating shaft 500 to avoid the rotation speed of the wind wheel 2, and the flywheel energy storage device 1 can pass the disk magnetic gear.
  • 400c and the radial magnetic gear 300 directly convert the mechanical energy of the rotor 2 into the mechanical energy of the flywheel 200 without contact; likewise, the first disc motor 400a and the second disc as the electromagnetic power conversion unit
  • the motor 400b can participate in the distribution of energy as needed and realize the rotation speed between the second rotating shaft 500 and the flywheel 200 by controlling the rotational speed of the second rotor disk 440 of the second disk motor 400b according to the rotational speed relationship of the disk magnetic gear 400c.
  • the flywheel energy storage device 1 can also convert the mechanical energy of the wind wheel 2 into the first winding 411 and the second winding 431 without contact by the disc magnetic gear 400c, the first disc motor 400a, and the second disc motor 400b.
  • the electric energy at this time, the first winding 411 transmits electric energy to the electric grid 5, the battery 6 or the electric load 7 through the first power converter 3, and the second winding 431 passes through the second electric power converter 4 to the electric grid 5, the energy storage battery 6 or Electrical energy is delivered by electrical load 7.
  • the flywheel energy storage device 1 converts the mechanical energy of the flywheel 200 into the mechanical energy of the second rotating shaft 500 through the radial magnetic gear 300 and the disk magnetic gear 400c to avoid the wind wheel 2
  • the speed is reduced, that is, the flywheel 200 is used to adjust the wind energy fluctuation, so that the power generation and the power generation frequency can be basically stabilized, and the quality of the grid-connected wind power can be improved.
  • the black arrow characterizes the mechanical energy flow
  • the white arrow characterizes the system electrical
  • the flywheel energy storage device 1 of the embodiment of the present invention is applicable to a vehicle energy feedback brake system
  • the vehicle energy feedback brake system includes a flywheel energy storage device 1, a vehicle drive axle 10, and a third power converter 20.
  • the fourth power converter 30, the DC bus 40, the battery 50, and the vehicle load 60, the output shaft of the vehicle drive axle 20 is coaxially fixed to the second rotating shaft 500, and the first winding 411 of the first disk motor 400a is subjected to the third power conversion.
  • the second winding 431 of the second disk motor 400b is electrically connected to the DC bus 40 via the fourth power converter 30, and the battery 50 and the vehicle load 60 are electrically connected to the DC bus 40.
  • the third power converter 20 or the fourth power converter 30, under the action of the controller, distributes or controls the electric power flowing into and out of the flywheel energy storage device 1 by modulating the switching mode of the power switch tube as needed.
  • the flywheel energy storage device 1 transmits the vehicle braking torque directly to the flywheel 200 through the disk magnetic gear 400c and the radial magnetic gear 300, and at the same time, the first disk motor 400a as the electromagnetic power conversion unit
  • the second disk motor 400b can participate in the distribution of energy as needed, and realize the second rotating shaft 500 by controlling the rotational speed of the second rotor disk 440 of the second disk motor 400b according to the rotational speed relationship of the disk magnetic gear 400c. Decoupling from the rotational speed of the flywheel 200, that is, the flywheel energy storage device 1 can convert the vehicle braking energy into the first winding 411 and the second winding through the disc magnetic gear 400c, the first disc motor 400a, and the second disc motor 400b.
  • the electric energy of the 431, the electric energy of the first winding 411 and the second winding 431 flows into the DC bus 40 through the third power converter 20 and the fourth power converter 30, respectively. It is stored in the battery 50 or used by the vehicle load 60.
  • the flywheel energy storage device 1 can convert the mechanical energy of the flywheel 200 into the mechanical energy of the second rotating shaft 500 through the radial magnetic gear 300 and the disk magnetic gear 400c to provide an auxiliary acceleration torque for the wheel; the flywheel energy storage device 1 further
  • the electric energy of the battery 50 can be converted into the mechanical energy of the second rotating shaft 500 by the first disc type motor 400a, the second disc type motor 400b, and the disc type magnetic gear 400c to provide an auxiliary acceleration torque to the wheel.
  • the flywheel energy storage device of the embodiment of the present invention has a flexible energy flow path, and energy can be realized between the second rotating shaft 500, the first winding 411, the second winding 431, and the flywheel 200.
  • the multi-path circulation meets the utilization requirements of various energy modes, and supports the direct and efficient transfer of "mechanical energy-mechanical energy", which greatly reduces the pressure on the power and capacity of electrical components.
  • all the transmissions of the flywheel energy storage device of the embodiment of the invention are realized by a magnetic contactless mechanism, the transmission efficiency is greatly improved, and the system robustness is greatly enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

提供了一种飞轮储能装置,包括径向磁齿轮、盘式磁齿轮电机、真空壳和飞轮;其中,径向磁齿轮包括内转子、外转子以及N1个第一调磁极片,第一调磁极片嵌在第一调磁极片座中;盘式磁齿轮电机包括第一定子盘、第一转子盘、第二定子盘、第二转子盘和第三转子盘;其中第一定子盘相对于真空主壳体固定并与第一转子盘组成第一盘式电机;第二定子盘相对于真空主壳体固定并与第二转子盘组成第二盘式电机;第三转子盘均勾布置有N2个第二调磁极片,第一、第二和第三转子盘一起组成盘式磁齿轮;第一盘式电机、第二盘式电机及盘式磁齿轮相互耦合共同组成盘式磁齿轮电机。该飞轮储能装置结构紧凑,具有灵活的能量流动路径。

Description

飞 能装置、 风力发电系统及车辆能量回镇制动系统
技^!城
本发明涉及储能技术领域, 尤其涉及一种飞轮储能装置、风力发电系统及 车辆能量回馈制动系统。 背 *技术
飞轮储能技术是一种可以将电能、风能、 太阳能等非机械能转化成飞轮动 能的高效机械储能技术。 近几年来, 飞轮储能以其储能密度高、 功率密度大、 能量转换效率高、 对温度不敏感、 对环境友好、 使用寿命长、 充放电速度快以 及易与其它装置组合使用等优点得到广泛的研究及应用,特别是在系统能量回 馈及风力发电系统功率调节等领域有着良好的前景。
为了减小飞轮损耗,提高飞轮储能效率,飞轮处于密闭的真空室中。因而, 为了将飞轮储存的能量传到系统外,或者将系统外的机械能传递给飞轮储存起 来, 耦合装置是必需的, 现有的耦合装置是一根设置有旋转密封圈的转轴, 该 转轴将外部能量转化为飞轮的动能。然而,旋转密封圈不可避免地会产生漏气, 而且随着使用时间的延长、转速的提高及老化程度的加深,漏气的可能性越大, 因而在现有的飞轮储能装置中,需设置额外的真空环境监测系统来监测真空室 的工作环境及保持真空系统等,从而保证飞轮工作在一定的真空环境中, 这样 无形之中增大了飞轮储能装置的体积及制造使用成本。
为了解决上述旋转密封圈存在物理接触容易导致漏气的缺陷,人们发明了 一种磁连接器,磁连接器可以去掉旋转密封圈并无物理接触地将飞轮所储能量 传给真空室外面的系统或者将外面的能量无物理接触地转换为飞轮的动能存 储起来。 磁连接器应用到飞轮储能系统, 去掉了旋转密封圈, 去掉了昂贵的环 境监测系统和真空保持系统, 解决了现有旋转密封圈的缺陷。 然而, 上述飞轮 储能装置的能量流通路径非常的单一, 即飞轮的动能经过高速侧的转动部件, 经过调磁机构,传递给低速侧的转动部件;或者低速侧的机械能通过调磁机构, 无接触传递给真空室中高速侧转子, 带动飞轮加速, 将能量储存到飞轮中。 该 装置能量只有往返两条单一的流通路径,其能量流通路径单一不利于调节输出 输入功率的大小和能源的灵活配置。而且上述的飞轮储能装置仍然存在占用体 积较大的缺陷。 发明内容
本发明的目的在于提供一种体积小、 能量流通路径多向的飞轮储能装置。 一方面,提供了一种飞轮储能装置,所述飞轮储能装置包括真空壳、飞轮、 径向磁齿轮、 盘式磁齿轮电机和第二转轴, 其中,
所述真空壳包括真空壳主体、第一调磁极片座和端盖, 所述真空壳包围成 一真空的容纳腔, 所述第一调磁极片座安装于所述真空壳主体与所述端盖之 间;
所述飞轮容纳于所述容纳腔内, 所述飞轮具有第一转轴, 所述第一转轴转 动安装于所述真空壳主体;
所述径向磁齿轮包括内转子、外转子以及 个第一调磁极片,所述内转子 位于所述第一调磁极片座的内侧, 所述外转子位于所述第一调磁极片座的外 侧, 所述内转子与所述第一转轴同轴固定, 所述内转子设置有第一永磁体, 所 述外转子相对于所述内转子同轴转动,所述外转子设置有第二永磁体,所述 个第一调磁极片均嵌装于所述第一调磁极片座;
所述盘式磁齿轮电机安装至所述径向磁齿轮之外转子的外围,所述盘式磁 齿轮电机包括均呈圓环盘状且均与所述第一转轴同轴设置的第一定子盘、第一 转子盘、 第二定子盘、 第二转子盘和第三转子盘, 所述第一定子盘相对于所述 真空壳主体固定, 所述第一转子盘、 所述第三转子盘、 所述第二转子盘和所述 第二定子盘依次层叠间隔设置于所述第一定子盘之远离所述真空壳主体的一 侧, 其中,
所述第一定子盘设置有第一绕组;
所述第一转子盘固定于所述外转子,所述第一转子盘正对于所述第一定子 盘, 所述第一转子盘设置有第三永磁体;
所述第二定子盘相对于所述真空壳固定, 所述第二定子盘设置有第二绕 组, 所述第二定子盘正对于所述第一定子盘;
所述第二转子盘正对于所述第二定子盘,所述第二转子盘设置有第四永磁 体; 所述第三转子盘正对于所述第一转子盘和所述第二转子盘,所述第三转子 盘中嵌装有 N2个第二调磁极片;
所述第一定子盘和所述第一转子盘构成第一盘式电机,所述第二定子盘和 所述第二转子盘构成第二盘式电机, 所述第一转子盘、所述第二转子盘和所述 第三转子盘构成盘式磁齿轮, 所述第一盘式电机、所述第二盘式电机和所述盘 式磁齿轮相互耦合共同组成所述盘式磁齿轮电机;
所述第二转轴与所述第三转子盘同轴固定。
在第一种可能的实现方式中, 所述第一永磁体径向或平行充磁, 所述第二 永磁体径向或平行充磁,所述 个第一调磁极片沿位于所述第一调磁极片座的 第一圓周均勾排布,所述转动轴线垂直穿过所述第一圓周的圓心,所述 个第 一调磁极片相互之间绝缘, 每一所述第一调磁极片与所述真空壳之间绝缘。
结合第一种可能的实现方式,在第二种可能的实现方式中, 所述第三永磁 体和所述第四永磁体的充磁方向均平行于所述转动轴线,所述第三转子盘设置 有第二调磁极片座,所述 N2个第二调磁极片嵌入第二调磁极片座中,所述 ^个 第二调磁极片沿位于所述第二调磁极片座的第二圓周均勾排布,所述转动轴线 垂直穿过所述第二圓周的圓心。
在第三种可能的实现方式中,所述飞轮储能装置还包括一固定于所述真空 壳主体外壁的外壳, 所述外壳与所述真空壳主体外壁包围成一转动腔, 所述第 二转轴转动安装于所述外壳且伸出所述外壳外。
结合第三种可能的实现方式,在第四种可能的实现方式中, 所述飞轮储能 装置还包括呈圓环盘状的第一固定座, 所述第一固定座与所述转动轴线同轴, 所述第一固定座固定于所述真空壳主体的外壁,所述第一调磁极片座的一端固 定于第一固定座、 另一端径向延伸形成所述端盖。
结合第四种可能的实现方式,在第五种可能的实现方式中, 所述飞轮储能 装置还包括均与所述转动轴线同轴的第一旋转壳和第二旋转壳,所述第一旋转 壳包括旋转底座和旋转筒体, 所述旋转底座固定于所述旋转筒体的一端, 所述 旋转底座转动支撑于所述第一固定座,所述旋转筒体远离所述真空壳主体的一 端设置有与转动轴线同轴的第二轴孔,所述第二旋转壳为与所述第二轴孔相适 应的圓盘状结构, 所述第二旋转壳转动支撑于第二轴孔中, 所述外转子固定于 所述旋转筒体的内壁, 所述第一转子盘则固定于所述旋转筒体的外壁, 所述第 二转轴靠近于所述真空壳主体的一端转动支撑于所述第二旋转壳。
结合第三种可能的实现方式,在第六种可能的实现方式中, 所述飞轮储能 装置还包括与所述转动轴线同轴的第三旋转壳,所述第三旋转壳为一回转体空 壳, 所述第三旋转壳的一端与所述第二转轴一体化连接、 另一端与所述第三转 子盘固定连接;
所述飞轮储能装置还包括与所述转动轴线同轴的第四旋转壳,所述第四旋 转壳为一回转体空壳, 所述第四旋转壳的一端与所述第二转子盘固定连接、 另 一端转动支撑于所述第二转轴。
结合第三种可能的实现方式,在第七种可能的实现方式中, 所述外壳的外 壁设置有第一接线孔和第二接线孔,所述第一接线孔与所述第一定子盘的第一 绕组电性连接, 所述第二接线孔与所述第二定子盘的第二绕组电性连接。
另一方面, 提供了一种风力发电系统, 包括风轮、 第一电力变换器、 第二 电力变换器、 电网和前述任一种实现方式中的飞轮储能装置, 所述风轮同轴固 定于所述第二转轴,所述第一盘式电机的第一绕组经所述第一电力变换器与所 述电网电性连接,所述第二盘式电机的第二绕组经所述第二电力变换器与所述 电网电性连接。
另一方面, 提供了一种车辆能量回馈制动系统, 包括车辆驱动桥、 第三电 力变换器、第四电力变换器、直流母线和前述任一种实现方式中的飞轮储能装 置, 所述车辆驱动桥的输出轴同轴固定于所述第二转轴, 所述第一盘式电机的 第一绕组经所述第三电力变换器与所述直流母线电性连接,所述第二盘式电机 的第二绕组经所述第四电力变换器与所述直流母线电性连接。
根据本发明的飞轮储能装置、风力发电系统及车辆能量回馈制动系统, 飞 轮储能装置的盘式磁齿轮电机同轴包绕整个径向磁齿轮,第一盘式电机和第二 盘式电机均为同轴的盘式结构, 这样缩小了整个飞轮储能装置的轴向长度,从 而减小了整个飞轮储能装置的体积,使得该飞轮储能装置结构紧凑。 飞轮储能 装置还具有灵活的能流路径, 可以实现能量在第二转轴、 第一绕组、 第二绕组 和飞轮之间的多路径流通, 满足了能量多种方式的利用需求, 并支持 "机械能 -机械能" 的直接高效转移, 大大减轻了电气部件在功率、 容量方面的压力。 此外本发明实施例的飞轮储能装置的所有传动都有磁性无接触机构实现,传动 效率大大提高, 系统鲁棒性大大增强。 附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的 附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的一些实施 方式, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其它的附图。
图 1是本发明实施例的飞轮储能装置的结构示意图;
图 2是图 1所示的飞轮储能装置中的径向磁齿轮的横切剖面图;
图 3是图 1所示的飞轮储能装置中的盘式磁齿轮电机的结构示意图; 图 4是本发明实施例的飞轮储能装置的装配示意图;
图 5是图 4所示的飞轮储能装置中 V处结构的放大图;
图 6是本发明实施例的风力发电系统的原理框图;
图 7是本发明实施例的车辆能量回馈制动系统的原理框图。 实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进 行清楚、 完整地描述。
参照图 1, 本发明实施例公开了一种飞轮储能装置 1, 包括真空壳 100、 飞轮 200、 径向磁齿轮 300、 盘式磁齿轮电机 400和第二转轴 500。
其中, 真空壳 100为由真空壳主体 110、 第一调磁极片座 120和端盖 130 包围而成的真空封闭壳体, 真空壳 100包围成一容纳腔 101, 真空壳 100开设 有第一轴孔 102,第一调磁极片座 120安装于真空壳主体 110和端盖 130之间, 第一调磁极片座 120由第一轴孔 102边缘沿轴向外延伸而成的筒状结构,第一 调磁极片座 120由既不导磁又不导电的高强度材料制成,包括但不限于增强型 尼龙、 环氧树脂、 酚酸树脂等, 端盖 130安装于第一调磁极片座 120远离真空 壳主体 110的端部。 飞轮 200容纳于容纳腔 101内, 飞轮 200包括飞轮体 210 和由飞轮体 210的中心轴向延伸形成的第一转轴 220, 第一转轴 220转动安装 于真空壳主体 110的第一轴孔 102中, 第一转轴 220具有一转动轴线 600, 第 一转轴 220由机械强度高的材料制成, 第一转轴 220与飞轮体 210刚性连接, 飞轮 200是飞轮储能装置 1的主要储能部件,飞轮 200把外界的能量以动能的 形式储存起来。 飞轮 200置于容纳腔 101内是为了消除风阻损耗。径向磁齿轮 300、 盘式磁齿轮电机 400以及第二转轴 500均同轴安装于转动轴线 600。
进一步参照图 2, 径向磁齿轮 300包括内转子 310、 外转子 320以及 个 第一调磁极片 330, 内转子 310位于第一调磁极片座 120的内侧, 外转子 320 位于第一调磁极片座 120的外侧, 内转子 310与第一转轴 220同轴固定, 外转 子 320相对于内转子 310可同轴转动,外转子 320与内转子 310同轴且间隔设 置,第一调磁极片座 120位于外转子 320与内转子 310之间, N个第一调磁极 片 330均嵌装于第一调磁极片座 120。
N,个第一调磁极片 330沿位于第一调磁极片座 120的第一圓周均匀排布, 转动轴线 600垂直穿过所述第一圓周的圓心, 个第一调磁极片 330相互之间 绝缘,每一第一调磁极片 330与真空壳 100之间绝缘。 第一调磁极片 330有高 导磁材料制成, 例如硅钢片。
具体而言, 内转子 310安装有径向或平行充磁的第一永磁体 311, 第一永 磁体 311设置于内转子 310的外壁,外转子 320安装有径向或平行充磁的第二 永磁体 321 , 第二永磁体设置于外转子 320的内壁, 第一永磁体 311的极对数 为 , 第二永磁体 321的极对数 P2, 为了稳定传递能量, 径向磁齿轮 300满足 以下两个条件:
1) N! = Ρ2 + Ρλ , 其中, 尸 2> ;
2) ω2=-Ά , 其中, 和62分别是内转子 310和外转子 320的转速, 负
号表示内转子 310和外转子 320的转速相反。 径向磁齿轮 300通过内转子 310的第一永磁体 311和外转子 320的第二永 磁体 321的磁场相互作用无物理接触地变速传动。 由于 ρ2> ^,外界给飞轮 200 补充能量时, 经径向磁齿轮 300的变比调速, 转速放大, 故飞轮 200的充电速 度较快; 当飞轮 200释放能量时, 经径向磁齿轮 300的变比调速, 转速缩小, 故飞轮 200能够向外界提供较大的转矩。
盘式磁齿轮电机 400安装至径向磁齿轮 300之外转子的外围,盘式磁齿轮 电机 400包括均呈圓环盘状且均与转动轴线 600同轴设置的第一定子盘 410、 第一转子盘 420、 第二定子盘 430、 第二转子盘 440和第三转子盘 450。 第一 定子盘 410相对于真空壳主体 110固定, 第一转子盘 420、 第三转子盘 450、 第二转子盘 420和第二定子盘 430依次层叠间隔设置于第一定子盘 410之远离 真空壳主体 110的一侧。
其中, 第一定子盘 410相对于真空壳主体 110固定, 环绕第一调磁极片座 120设置, 第一定子盘 410与转动轴线 600同轴, 第一定子盘 410设置有第一 绕组 411。
第一转子盘 420同轴固定于外转子 320, 第一转子盘 420正对于第一定子 盘 410, 且第一转子盘 420位于第一定子盘 410远离真空壳主体 110的一侧, 由图 1的视角来看, 第一转子盘 420位于第一定子盘 410的正上方, 第一转子 盘 420上下表面均设置有第三永磁体 421。 第三永磁体 421沿平行于转动轴线 600的方向充磁, 第三永磁体 421的极对数为 Ρ3, 其中, 第一绕组 411的极对 数与第三永磁体 421的极对数相同。
第二定子盘 430相对于真空壳主体 110固定,第二定子盘 430与转动轴线 600同轴, 第二定子盘 430设置有第二绕组 431, 第二定子盘 430正对于第一 定子盘 410。
第二转子盘 440正对于第二定子盘 430, 且第二转子盘 440与第一转子盘 420间隔设置, 第二转子盘 440位于第二定子盘 430靠近真空壳主体 110的一 侧, 第二转子盘 440的上下表面均设置有第四永磁体 441。 第四永磁体 441沿 平行于转动轴线 600的方向充磁, 第四永磁体 441的极对数为 Ρ4, 其中第二绕 组 431的极对数与第四永磁体 441的极对数相同。
第三转子盘 450位于第一转子盘 420和第二转子盘 440之间,第三转子盘 450正对于第一转子盘 420和第二转子盘 440,第三转子盘 450与第二转轴 500 同轴固定, 第三转子盘 450中设置有第二调磁极片座 452, ^2个第二调磁极片 451嵌装在所述第二调磁极片座 452中, ^个第二调磁极片 451沿位于第二调 磁极片座 452的第二圓周均匀排布,转动轴线 600垂直穿过所述第二圓周的圓 心。 第二调磁极片座 452由既不导磁又不导电的高强度材料制成,材料包括但 不限于增强型尼龙、 环氧树脂、 酚醛树脂等。
第一定子盘和第一转子盘构成第一盘式电机 400a, 第二定子盘和第二转 子盘构成第二盘式电机 400b, 第一转子盘、 第二转子盘和第三转子盘构成盘 式磁齿轮 400c, 第一盘式电机 400a、 第二盘式电机 400b和盘式磁齿轮 400c 相互耦合共同组成盘式磁齿轮电机 400。
根据磁齿轮的工作原理, 盘式磁齿轮 400c满足以下条件:
3 ) N2 ^ P3 + P4 , 其中尸 3 >尸4; ω4 , 其中 、 、 《5分别为第一转子盘 420、 第二转
ΡΛ 子盘 440、 第三转子盘 450的角速度, 很显然地, 《3 = ί¾。 第二转轴 500相对于转动轴线 600同轴转动,第三转子盘 450与第二转轴 500同轴固定。 第二转轴 500作为飞轮储能装置 1的输入或输出轴。
在本发明实施例中, 第一盘式电机 400a、 第二盘式电机 400b和盘式磁齿 轮 400c共同耦合成盘式磁齿轮电机, 盘式磁齿轮电机在拓宽能量流通路径方 面扮演着重要角色。 从功能上讲, 第二转轴 500作为机械能的输出 /输入端口, 当第二转轴 500以高于或等于预设转速转动时,飞轮储能装置 1可以通过盘式 磁齿轮 400c、 径向磁齿轮 300无接触地将第二转轴 500的机械能转换成飞轮 200的机械能, 飞轮储能装置 1还可以通过盘式磁齿轮 400c、 第一盘式电机 400a, 第二盘式电机 400b无接触地将第二转轴 500的机械能转换成第一绕组 411、 第二绕组 431的电能, 通过相应的电力变换器即可以将上述电能输出给 负载、 电网、 蓄电池等; 当第二转轴 500的转速低于预设转速时, 飞轮储能装 置 1通过盘式磁齿轮 400c、 径向磁齿轮 300将飞轮 200的机械能转换为第二 转轴 500的机械能, 飞轮储能装置 1还通过第一盘式电机 400a、 第二盘式电 机 400b、盘式磁齿轮 400c无接触地将电网或蓄电池的电能转换为第二转轴 500 的机械能,使得第二转轴 500达到预设的转速。上述的径向磁齿轮 300和盘式 磁齿轮 400c中满足公式 2 )、 4 )中的转速关系。在上述的盘式磁齿轮 400c中, 可以通过控制第二转子盘 440的转速实现第二转轴 500与飞轮 200之间的转速 解耦。
在本发明实施例中,从结构上看,盘式磁齿轮电机同轴包绕整个径向磁齿 轮 300, 第一定子盘 410固定于真空壳主体 110的外壁, 第一盘式电机 400a 和第二盘式电机 400b均为同轴的盘式结构, 这样既缩小了整个飞轮储能装置 1的轴向长度, 从而减小了整个飞轮储能装置 1的体积。
进一步参照图 4和图 5, 为了让第一转轴 220形成稳定的转动, 第一转轴
220至少需两处转动支撑,在本实施方式中,在真空壳主体 110的第一轴孔 102 处设置有一转动支撑,在真空壳主体 110的远离第一轴孔 102的底壁设置有一 转动支撑, 第一转轴 220通过上述两转动支撑转动安装于真空壳主体 110, 转 动支撑可以为一轴承。
为了将内转子 310与第二转轴 500同轴固定,内转子 310的轴孔与第二转 轴 500过盈配合。 为了方便固定第一调磁极片座 120, 飞轮储能装置 1还包括 固定于真空壳 110外壁的第一固定座 140, 第一固定座 140与转动轴线 600同 轴, 第一固定座 140呈环绕第一转轴 220的圓环盘状, 第一调磁极片座 120 的一端固定于第一固定座 140、另一端径向延伸形成端盖 130,真空壳主体 110、 第一调磁极片座 120和端盖 130包围一密封真空的容纳腔 101。 内转子 310远 离真空壳主体 110的端部与端盖 130具有一间隙,第一转轴 220远离真空壳主 体 110的端部转动支撑于端盖 130。
为了让外转子 320形成稳定的转动,飞轮储能装置 1还包括均与转动轴线 同轴的第一旋转壳 810和第二旋转壳 820, 第一旋转壳 810为一回转体空壳, 第一旋转壳 810包括相互固定连接的旋转底座 811和旋转筒体 812, 旋转底座 811转动支撑于第一固定座, 旋转筒体 812远离真空壳主体 110的一端设置有 与转动轴线 600同轴的第二轴孔,第二旋转壳 820为与第二轴孔相适应的圓盘 状, 第二旋转壳 820转动支撑于第二轴孔。 外转子 320 固定于旋转筒体 812 的内壁或旋转底座 811, 第一盘式电机 400a的第一转子盘 420则固定于旋转 筒体 812的外壁。
为了方便让第二转轴 500形成稳定的转动, 飞轮储能装置 1还包括外壳 700, 外壳 700为一回转体空壳, 外壳 700固定于真空壳主体 110的外壁, 外 壳 700与真空壳主体 110的外壁包围成一转动腔 103, 盘式磁齿轮电机 400位 于转动腔 103内, 外壳 700设置有与转动轴线 600同轴的第三轴孔 701, 第二 转轴 500的第二转轴 500转动支撑于第三轴孔 701, 第二转轴 500靠近于真空 壳主体 110的端部还转动支撑于第二旋转壳 820。 为了将第二转轴 500和第三 转子盘 630固定连接,飞轮储能装置 1还包括一呈回转空壳的第三旋转壳 900, 第三旋转壳 900的一端与第二转轴 500—体化连接、 另一端与第三转子盘 450 固定连接。 外壳 700的外壁设置有第一接线孔 710和第二接线孔 720, 第一接 线孔 710与第一定子盘 410的第一绕组 411电性连接,第二接线孔 720与第二 定子盘 430的第二绕组 431电性连接。
为了方便第二盘式电机 400b的第二转子盘 440形成稳定转动, 飞轮储能 装置 1还包括呈一回转体空壳状的第四旋转壳 900, 第四旋转壳 900位于外壳 700与第三旋转壳 820之间, 第四旋转壳 442的一端与第二转子盘 440固定连 接、 另一端转动支撑于第二转轴 500。 第四旋转壳 442由第二转子盘 440朝向 第二转轴 500延伸,第四旋转壳 442与第二转动轴 500通过一转动支撑转动连 接。 第二盘式电机 400b的第二定子盘 430固定于外壳 700的内壁。
参照图 6, 本发明实施例的飞轮储能装置 1可应用于风力发电系统, 该风 力发电系统包括飞轮储能装置 1、 风轮 2、 第一电力变换器 3、 第二电力变换 器 4、 电网 5、 蓄电池 6、 用电负荷 7, 风轮 2同轴固定于第二转轴 500, 第一 盘式电机 400a的第一绕组 411经第一电力变换器 3与电网 5电性连接, 第一 电力变换器 3通过微电网总线 8与电网 5连接, 第二盘式电机 400b的第二绕 组 431经第二电力变换器 4与电网 5电性连接,第二电力变换器 4通过微电网 总线 8与电网 5连接。 蓄电池 6、 用电负荷 7均与微电网总线 8电性连接。
当风轮 2以高于或等于预设转速转动时,风轮 2通过第二转轴 500向系统 输入机械能, 以避免风轮 2的转速上升, 此时飞轮储能装置 1可以通过盘式磁 齿轮 400c和径向磁齿轮 300无接触地将风轮 2的机械能直接转换为飞轮 200 的机械能; 同样地, 作为电磁功率转化单元的第一盘式电机 400a和第二盘式 电机 400b可以根据需要参与能量的分配并根据盘式磁齿轮 400c的转速关系 式,通过控制第二盘式电机 400b的第二转子盘 440的转速来实现第二转轴 500 与飞轮 200之间的转速解耦, 飞轮储能装置 1还可以通过盘式磁齿轮 400c、 第一盘式电机 400a、 第二盘式电机 400b无接触地将风轮 2的机械能转换成第 一绕组 411、 第二绕组 431的电能, 此时第一绕组 411通过第一电力变换器 3 向电网 5、 蓄电池 6或用电负荷 7传输电能, 第二绕组 431通过第二电力变换 器 4向电网 5、 储能电池 6或用电负荷 7输送电能。 当风轮 2的转速低于预设 转速时, 飞轮储能装置 1通过径向磁齿轮 300、 盘式磁齿轮 400c将飞轮 200 的机械能转换为第二转轴 500的机械能, 以避免风轮 2的转速下降, 即利用飞 轮 200对风能波动进行调节, 可以实现发电功率、 发电频率的基本稳定, 提高 并网风电的质量。 在图 6中, 黑色箭头表征机械能流, 白色箭头表征系统电气
6匕、、云
参照图 7, 本发明实施例的飞轮储能装置 1可应用于车辆能量回馈制动系 统, 该车辆能量回馈制动系统包括飞轮储能装置 1、 车辆驱动桥 10、 第三电力 变换器 20、 第四电力变换器 30、 直流母线 40、 蓄电池 50和车载负荷 60, 车 辆驱动桥 20的输出轴同轴固定于第二转轴 500, 第一盘式电机 400a的第一绕 组 411经第三电力变换器 20与直流母线 40电性连接, 第二盘式电机 400b的 第二绕组 431经第四电力变换器 30与直流母线 40电性连接, 蓄电池 50和车 载负荷 60均与直流母线 40电性连接。 第三电力变换器 20或第四电力变换器 30在控制器的作用下, 通过调制功率开关管的开关模式, 根据需求对流入流 出飞轮储能装置 1的电功率进行分配或控制。
当车辆制动时, 飞轮储能装置 1通过盘式磁齿轮 400c和径向磁齿轮 300 将车辆制动力矩直接传递给飞轮 200, 与此同时, 作为电磁功率转化单元的第 一盘式电机 400a、 第二盘式电机 400b可以根据需要参与能量的分配, 并根据 盘式磁齿轮 400c的转速关系式, 通过控制第二盘式电机 400b的第二转子盘 440的转速来实现第二转动轴 500与飞轮 200的转速解耦, 即飞轮储能装置 1 可以通过盘式磁齿轮 400c、 第一盘式电机 400a、 第二盘式电机 400b将车辆制 动能转换成第一绕组 411、第二绕组 431的电能,第一绕组 411和第二绕组 431 的电能分别经第三电力变换器 20和第四电力变换器 30流入直流母线 40, 进 而储存于蓄电池 50或被车载负荷 60利用。 当车辆加速时, 飞轮储能装置 1 可以通过径向磁齿轮 300、 盘式磁齿轮 400c将飞轮 200的机械能转换为第二 转轴 500的机械能, 为车轮提供辅助加速力矩; 飞轮储能装置 1还可以通过第 一盘式电机 400a, 第二盘式电机 400b, 盘式磁齿轮 400c将蓄电池 50的电能 转换为第二转轴 500的机械能, 为车轮提供辅助加速力矩。
从上述的两个具体应用来看,本发明实施例提出的飞轮储能装置具有灵活 的能流路径, 可以实现能量在第二转轴 500、 第一绕组 411、 第二绕组 431、 飞轮 200之间的多路径流通, 满足了能量多种方式的利用需求, 并支持 "机械 能-机械能" 的直接高效转移, 大大减轻了电气部件在功率、 容量方面的压力。 此外本发明实施例的飞轮储能装置的所有传动都有磁性无接触机构实现,传动 效率大大提高, 系统鲁棒性大大增强。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也视为本发明的保护范围。

Claims

权 利 要 求
1、 一种飞轮储能装置, 其特征在于, 所述飞轮储能装置包括真空壳、 飞 轮、 径向磁齿轮、 盘式磁齿轮电机和第二转轴, 其中,
所述真空壳包括真空壳主体、第一调磁极片座和端盖, 所述真空壳包围成 一真空的容纳腔, 所述第一调磁极片座安装于所述真空壳主体与所述端盖之 间;
所述飞轮容纳于所述容纳腔内, 所述飞轮具有第一转轴, 所述第一转轴转 动安装于所述真空壳主体;
所述径向磁齿轮包括内转子、外转子以及 个第一调磁极片,所述内转子 位于所述第一调磁极片座的内侧, 所述外转子位于所述第一调磁极片座的外 侧, 所述内转子与所述第一转轴同轴固定, 所述内转子设置有第一永磁体, 所 述外转子相对于所述内转子同轴转动,所述外转子设置有第二永磁体,所述 Ni 个第一调磁极片均嵌装于所述第一调磁极片座;
所述盘式磁齿轮电机安装至所述径向磁齿轮之外转子的外围,所述盘式磁 齿轮电机包括均呈圓环盘状且均与所述第一转轴同轴设置的第一定子盘、第一 转子盘、 第二定子盘、 第二转子盘和第三转子盘, 所述第一定子盘相对于所述 真空壳主体固定, 所述第一转子盘、 所述第三转子盘、 所述第二转子盘和所述 第二定子盘依次层叠间隔设置于所述第一定子盘之远离所述真空壳主体的一 侧, 其中,
所述第一定子盘设置有第一绕组;
所述第一转子盘固定于所述外转子,所述第一转子盘正对于所述第一定子 盘, 所述第一转子盘设置有第三永磁体;
所述第二定子盘相对于所述真空壳固定, 所述第二定子盘设置有第二绕 组, 所述第二定子盘正对于所述第一定子盘;
所述第二转子盘正对于所述第二定子盘,所述第二转子盘设置有第四永磁 体;
所述第三转子盘正对于所述第一转子盘和所述第二转子盘,所述第三转子 盘中嵌装有 N2个第二调磁极片; 所述第一定子盘和所述第一转子盘构成第一盘式电机,所述第二定子盘和 所述第二转子盘构成第二盘式电机, 所述第一转子盘、所述第二转子盘和所述 第三转子盘构成盘式磁齿轮, 所述第一盘式电机、所述第二盘式电机和所述盘 式磁齿轮相互耦合共同组成所述盘式磁齿轮电机;
所述第二转轴与所述第三转子盘同轴固定。
2、 如权利要求 1所述的飞轮储能装置, 其特征在于, 所述第一永磁体径 向或平行充磁,所述第二永磁体径向或平行充磁,所述 个第一调磁极片沿位 于所述第一调磁极片座的第一圓周均勾排布,所述转动轴线垂直穿过所述第一 圓周的圓心,所述 个第一调磁极片相互之间绝缘,每一所述第一调磁极片与 所述真空壳之间绝缘。
3、 如权利要求 2所述的飞轮储能装置, 其特征在于, 所述第三永磁体和 所述第四永磁体的充磁方向均平行于所述转动轴线,所述第三转子盘设置有第 二调磁极片座, 所述 N2个第二调磁极片嵌入第二调磁极片座中, 所述 N2个第 二调磁极片沿位于所述第二调磁极片座的第二圓周均勾排布,所述转动轴线垂 直穿过所述第二圓周的圓心。
4、 如权利要求 1所述的飞轮储能装置, 其特征在于, 所述飞轮储能装置 还包括一固定于所述真空壳主体外壁的外壳,所述外壳与所述真空壳主体外壁 包围成一转动腔, 所述第二转轴转动安装于所述外壳且伸出所述外壳外。
5、 如权利要求 4所述的飞轮储能装置, 其特征在于, 所述飞轮储能装置 还包括呈圓环盘状的第一固定座, 所述第一固定座与所述转动轴线同轴, 所述 第一固定座固定于所述真空壳主体的外壁,所述第一调磁极片座的一端固定于 第一固定座、 另一端径向延伸形成所述端盖。
6、 如权利要求 5所述的飞轮储能装置, 其特征在于, 所述飞轮储能装置 还包括均与所述转动轴线同轴的第一旋转壳和第二旋转壳,所述第一旋转壳包 括旋转底座和旋转筒体, 所述旋转底座固定于所述旋转筒体的一端, 所述旋转 底座转动支撑于所述第一固定座,所述旋转筒体远离所述真空壳主体的一端设 置有与转动轴线同轴的第二轴孔,所述第二旋转壳为与所述第二轴孔相适应的 圓盘状结构, 所述第二旋转壳转动支撑于第二轴孔中, 所述外转子固定于所述 旋转筒体的内壁, 所述第一转子盘则固定于所述旋转筒体的外壁, 所述第二转 轴靠近于所述真空壳主体的一端转动支撑于所述第二旋转壳。
7、 如权利要求 4所述的飞轮储能装置, 其特征在于, 所述飞轮储能装置 还包括与所述转动轴线同轴的第三旋转壳, 所述第三旋转壳为一回转体空壳, 所述第三旋转壳的一端与所述第二转轴一体化连接、另一端与所述第三转子盘 固定连接;
所述飞轮储能装置还包括与所述转动轴线同轴的第四旋转壳,所述第四旋 转壳为一回转体空壳, 所述第四旋转壳的一端与所述第二转子盘固定连接、 另 一端转动支撑于所述第二转轴。
8、 如权利要求 4所述的飞轮储能装置, 其特征在于, 所述外壳的外壁设 置有第一接线孔和第二接线孔,所述第一接线孔与所述第一定子盘的第一绕组 电性连接, 所述第二接线孔与所述第二定子盘的第二绕组电性连接。
9、 一种风力发电系统, 其特征在于, 包括风轮、 第一电力变换器、 第二 电力变换器、 电网和权利要求 1-8任意一项所述的飞轮储能装置, 所述风轮同 轴固定于所述第二转轴,所述第一盘式电机的第一绕组经所述第一电力变换器 与所述电网电性连接,所述第二盘式电机的第二绕组经所述第二电力变换器与 所述电网电性连接。
10、 一种车辆能量回馈制动系统, 其特征在于, 包括车辆驱动桥、 第三电 力变换器、 第四电力变换器、 直流母线和权利要求 1-8任意一项所述的飞轮储 能装置, 所述车辆驱动桥的输出轴同轴固定于所述第二转轴, 所述第一盘式电 机的第一绕组经所述第三电力变换器与所述直流母线电性连接,所述第二盘式 电机的第二绕组经所述第四电力变换器与所述直流母线电性连接。
PCT/CN2014/074031 2014-03-25 2014-03-25 飞轮储能装置、风力发电系统及车辆能量回馈制动系统 WO2015143623A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/074031 WO2015143623A1 (zh) 2014-03-25 2014-03-25 飞轮储能装置、风力发电系统及车辆能量回馈制动系统
US15/101,074 US9837874B2 (en) 2014-03-25 2014-03-25 Flywheel energy storage device, wind power generation system and vehicle energy feedback brake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074031 WO2015143623A1 (zh) 2014-03-25 2014-03-25 飞轮储能装置、风力发电系统及车辆能量回馈制动系统

Publications (1)

Publication Number Publication Date
WO2015143623A1 true WO2015143623A1 (zh) 2015-10-01

Family

ID=54193866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074031 WO2015143623A1 (zh) 2014-03-25 2014-03-25 飞轮储能装置、风力发电系统及车辆能量回馈制动系统

Country Status (2)

Country Link
US (1) US9837874B2 (zh)
WO (1) WO2015143623A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900002A (zh) * 2022-07-12 2022-08-12 江苏集萃华科智能装备科技有限公司 一种大扭矩容错驱动力控浮动电主轴

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10730394B2 (en) * 2016-10-04 2020-08-04 Ford Global Technologies, Llc Electromechanical integrated machine for electrified vehicles
CN106677987B (zh) * 2017-03-14 2018-01-19 刘骏 一种真空磁悬浮发电系统
US11626770B2 (en) * 2017-09-01 2023-04-11 Joshua Robert Miner Systems and methods for providing enhanced mechanical/electrical energy storage
US10899217B2 (en) * 2018-07-04 2021-01-26 Patrick J. Dugas Supplemental regenerative braking system
CN109639036B (zh) * 2018-12-17 2019-12-17 沈阳微控新能源技术有限公司 一种储能飞轮装置
EP3925060A4 (en) * 2019-02-11 2022-11-16 Amber Kinetics, Inc. STACKED LAMINATION ROTOR
CN112054542B (zh) * 2020-07-24 2022-02-22 沈阳微控新能源技术有限公司 一种配备可调节辅助承载机构的飞轮储能装置
US20230046120A1 (en) * 2021-08-13 2023-02-16 Paha Designs, Llc High efficiency electric motor
US11984761B1 (en) * 2023-03-13 2024-05-14 Elberto Berdut-Teruel Block-type windings for improved electrical generators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924418A (zh) * 2009-12-22 2010-12-22 苏州菲莱特能源科技有限公司 一种双圆盘结构飞轮储能系统
CN202856575U (zh) * 2012-04-09 2013-04-03 李文圣 多层盘式飞轮储能器
CN103051104A (zh) * 2012-11-29 2013-04-17 浙江大学 一种集驱动和悬浮于一体的多相飞轮储能装置
CN103904816A (zh) * 2014-03-25 2014-07-02 南方科技大学 飞轮储能装置、风力发电系统及车辆能量回馈制动系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011428B (zh) * 2011-12-31 2017-06-16 罗特尼克香港有限公司 机电飞轮容置系统
DE102012110691A1 (de) * 2012-11-08 2014-05-08 Pfeiffer Vacuum Gmbh Vorrichtung zur kinetischen Energiespeicherung
US20140265674A1 (en) * 2013-03-12 2014-09-18 Rotonix Usa, Inc. Electromechanical flywheel with safety features
US8978513B2 (en) * 2013-03-15 2015-03-17 Paul Prober Energy storing flywheel and bearing assembly
US10432061B2 (en) * 2013-07-19 2019-10-01 Gkn Hybrid Power Limited Flywheel assembly
NL2012577B1 (en) * 2014-04-07 2016-03-08 S4 Energy B V A flywheel system.
WO2016176597A1 (en) * 2015-04-29 2016-11-03 Active Power, Inc. Integrated motor generator flywheel with rotating permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924418A (zh) * 2009-12-22 2010-12-22 苏州菲莱特能源科技有限公司 一种双圆盘结构飞轮储能系统
CN202856575U (zh) * 2012-04-09 2013-04-03 李文圣 多层盘式飞轮储能器
CN103051104A (zh) * 2012-11-29 2013-04-17 浙江大学 一种集驱动和悬浮于一体的多相飞轮储能装置
CN103904816A (zh) * 2014-03-25 2014-07-02 南方科技大学 飞轮储能装置、风力发电系统及车辆能量回馈制动系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114900002A (zh) * 2022-07-12 2022-08-12 江苏集萃华科智能装备科技有限公司 一种大扭矩容错驱动力控浮动电主轴
CN114900002B (zh) * 2022-07-12 2022-10-28 江苏集萃华科智能装备科技有限公司 一种大扭矩容错驱动力控浮动电主轴

Also Published As

Publication number Publication date
US9837874B2 (en) 2017-12-05
US20170025922A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2015143623A1 (zh) 飞轮储能装置、风力发电系统及车辆能量回馈制动系统
CN103904816B (zh) 飞轮储能装置、风力发电系统及车辆能量回馈制动系统
CN104410204B (zh) 一种飞轮储能装置
CN204131350U (zh) 双定子单绕组游标永磁电机
CN105024479A (zh) 一种飞轮储能装置
JP6194319B2 (ja) 電気機械式フライホイール格納システム
JP2018507680A (ja) 無段変速装置
CN203942424U (zh) 一种无轭闭口槽多盘式永磁电机
WO2019019244A1 (zh) 采用五自由度混合磁轴承的车载飞轮电池
CN104113171A (zh) 一种无轭闭口槽多盘式永磁电机
CN105186740A (zh) 一种惯性储能系统
CN102130551A (zh) 双定子磁浮式永磁发电机
WO2012119542A1 (en) Permanent magnet synchronous wind-driven generator with multi-layer winding
CN101699754B (zh) 磁悬浮飞轮电池装置
JP2010207052A (ja) 発電機及びこれを備えた発電システム
CN104113173A (zh) 双定子单绕组游标永磁电机
CN109378930B (zh) 一种基于新型磁斥力混合磁轴承的外转子车载飞轮储能装置
CN202444390U (zh) 一种盘式低速大转矩永磁游标电机
CN206060459U (zh) 一种低噪散热型三相异步电机
RU2519924C2 (ru) Усовершенствованное устройство накопления электрической энергии с использованием кинетической энергии и рельсовое транспортное средство с таким устройством
TWI543890B (zh) 混合動力車及風力發電裝置
TWI690655B (zh) 飛輪能量儲存系統
CN101645688B (zh) 自动跟踪调速垂直轴永磁叠加型风力发电机
JP2010207046A (ja) 発電機及びこれを備えた発電システム
CN103078445A (zh) 一种高效散热电机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15101074

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887413

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14887413

Country of ref document: EP

Kind code of ref document: A1