WO2015141941A1 - Polymer-modified concrete composition and method for repairing pavement of road using same - Google Patents

Polymer-modified concrete composition and method for repairing pavement of road using same Download PDF

Info

Publication number
WO2015141941A1
WO2015141941A1 PCT/KR2015/000729 KR2015000729W WO2015141941A1 WO 2015141941 A1 WO2015141941 A1 WO 2015141941A1 KR 2015000729 W KR2015000729 W KR 2015000729W WO 2015141941 A1 WO2015141941 A1 WO 2015141941A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
concrete
concrete composition
weight
strength
Prior art date
Application number
PCT/KR2015/000729
Other languages
French (fr)
Korean (ko)
Inventor
허형석
노재호
이태경
정혁진
Original Assignee
(주)제이엔티아이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이엔티아이엔씨 filed Critical (주)제이엔티아이엔씨
Publication of WO2015141941A1 publication Critical patent/WO2015141941A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/005Methods or materials for repairing pavings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/10Coherent pavings made in situ made of road-metal and binders of road-metal and cement or like binders
    • E01C7/14Concrete paving
    • E01C7/147Repairing concrete pavings, e.g. joining cracked road sections by dowels, applying a new concrete covering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Definitions

  • the present invention relates to a modified concrete composition in which a polymer such as acrylic is mixed, and a road pavement repairing method capable of quickly repairing a broken part of a road using the polymer modified concrete composition.
  • Road pavement uses asphalt concrete or cement concrete.
  • Asphalt concrete is deformed and cracked due to softening of asphalt in high temperature and high humidity environment in summer, leading to breakage of the package.
  • Rainwater that penetrates into the pavement moves between the pavement and the substructure to space the joints and freezes during the winter to cause pop-out of the ascon pavement. Due to these problems, the highway is repairing asphalt concrete pavement every three years.
  • Cement concrete pavement is corroded by reinforcing steel in the substructure due to the cracks generated during concrete construction and salt penetration by calcium chloride spraying in winter, and accelerated aggregate alkali reaction, which significantly reduces the durability of concrete. It is true.
  • the latex modified concrete currently used has a limitation that requires special installation equipment such as a mobile mixer truck (M / M) to be installed and used at the repair site. That is, since the working time of the latex modified concrete is very short, about 20 minutes, since it can not be mixed and transported in the ready-mixed concrete plant like general ready-mixed concrete, it is being constructed using a mobile mixer so that it can be directly compounded and poured in the field.
  • M / M mobile mixer truck
  • the mixing speed is very slow. Since the mobile mixer can mix only 7 m 3 of concrete per hour, there is a problem that the area that can be constructed per hour is very small.
  • the cement used in the conventional paving repair method is acting as a major cause of lowering the economics of repair work by using a super fast cement for rapid curing.
  • the present invention is to solve the above problems, while limiting the use of cemented carbide cement, using the polymer emulsion and the fastener additives of the optimized composition to improve the workability, economical efficiency of the road pavement repair as well as pavement quality
  • the purpose is to provide a modified concrete composition.
  • the present invention can improve the construction quality and speed by using the above-described polymer modified concrete composition, without providing a mobile mixer, by providing a method for stably mixing the ready mixed concrete and polymer emulsion in the factory.
  • the purpose is to provide packaging repair methods.
  • Road pavement repair method for achieving the above object, the step of cutting the pavement surface of the road that needs to be repaired, after mixing the polymer emulsion in the ready-mixed concrete to move to the repair site, the rapid additive additive Mixing at the repair site to produce a polymer modified concrete composition and laying and curing the polymer modified concrete composition on the cut pavement surface.
  • the polymer-modified concrete composition according to the present invention includes concrete, a polymer emulsion, and a quick additive.
  • Polymer emulsion resin is mixed in the range of 1 to 15% by weight relative to the concrete.
  • FIG. 1 is a schematic flowchart of a road pavement repair method according to an embodiment of the present invention.
  • Figure 2 is a table showing the mixing ratio of the sample for experimenting the effect of the high-strength fastener additives.
  • FIG. 3 is a table showing the physical property test results for the samples described in FIG.
  • FIG. 5 is a table showing the physical property test results for the samples described in FIG.
  • FIG. 6 is a table showing the compounding ratio of the sample in the experiment to determine the effect of changing the compounding ratio of the high-strength fastener additive in a fixed state of the polymer emulsion.
  • FIG. 7 is a table showing the physical property test results for the samples described in FIG.
  • FIG. 9 is a table showing the physical property test results for the samples described in FIG.
  • Road pavement repair method for achieving the above object, the step of cutting the pavement surface of the road that needs to be repaired, after mixing the polymer emulsion in the ready-mixed concrete to move to the repair site, the rapid additive additive Mixing at the repair site to produce a polymer modified concrete composition and laying and curing the polymer modified concrete composition on the cut pavement surface.
  • the polymer modified concrete composition includes concrete and a polymer emulsion and a fastener additive.
  • Polymer emulsion resin is mixed in the range of 1 to 15% by weight relative to the concrete.
  • the polymer emulsion comprises an amine-based strength promoter, preferably at least one of ethanolamine and isopropanolamine.
  • the polymer emulsion 75 ⁇ 97.5% by weight of the acrylic emulsion resin, 0.05% by weight of the polymer surfactant, 0.05-5% by weight of glycerin, 0.05-5% by weight of the amine strength accelerator, 0.05-5% by weight of aluminum hydration accelerator %, A reducing agent of 0.05 to 5% by weight can be mixed.
  • the quick setting additive includes precipitated silica.
  • the fastening additive is 10 to 50% by weight of the high strength material, 0.05 to 5% by weight of the coagulation accelerator, 30 to 80% by weight of the fastener, 0.05 to 5% by weight of the heating material, 0.05 to 5% by weight of the stabilizer, It can be mixed in the ratio of 0.05-3 weight% of retardants and 0.05-2 weight% of a reducing agent.
  • FIG. 1 is a schematic flowchart of a road pavement repairing method according to the present invention.
  • the road pavement repair method according to an embodiment of the present invention is largely divided into three steps.
  • the first step is to remove any damaged parts such as cracks and pop-outs from the pavement surface.
  • the damaged pavement is cut or broken to remove it.
  • the preparatory work for the pavement surface is completed by retaining the deteriorated surface by using high pressure washing water in the place where the package is removed.
  • the second step is to prepare the concrete composition for repair pavement.
  • Polymer modified concrete compositions according to the invention are used.
  • the polymer modified concrete composition according to the present invention mainly consists of three components. That is, concrete, a polymer emulsion, and a quick additive.
  • the present invention is unique in that concrete and polymer emulsions are pre-mixed in a factory and then moved to the site using a ready-mixed vehicle.
  • the high-strength fastener additive is further mixed to blend the polymer-modified concrete composition.
  • the polymer-modified concrete composition is prepared, the polymer-modified concrete composition is laid in the cut portion of the pavement. That is, the concrete composition is filled and cured.
  • the present invention unlike the conventional method of directly mixing cement, aggregate, and water at a repair site to form concrete, the present invention mixes in a factory to make ready-mixed concrete, and also incorporates polymer emulsion into concrete.
  • the existing road repair paving method there is a big difference from the existing road repair paving method.
  • the high-strength fastener additive is used in the concrete composition for road repair pavement.
  • the polymer modified concrete composition is composed of concrete and polymer emulsion.
  • a method of directly mixing materials in the field using a mobile mixer was used.
  • Mixing materials in the field as in the prior art introduces many problems.
  • First of all it is not easy to manage the moisture content of materials according to rainfall and temperature because materials are placed on site. And since the mobile mixer can mix only 7m 3 of concrete per hour, the construction amount per hour is very small.
  • due to the limitations of the mobile mixer only a single type of cement can be used, and various additives such as blast furnace slag and silica fume cannot be mixed, thereby making it difficult to improve the properties of the concrete composition.
  • the reason why the conventional site mixing method was selected during road repair is because the fluidity of the concrete is kept short for about 20 to 30 minutes when the polymer emulsion is mixed with the concrete.
  • cement, aggregate, and water are mixed in the factory, and the ready mixed concrete moving to the ready-mixed vehicle is used.
  • the polymer emulsion is also mixed in the factory first, and then takes the method of moving to the site through the ready-mixed vehicle.
  • the polymer modified concrete composition according to the present invention consists of concrete and polymer emulsion and high strength quenchable additives.
  • concrete is prepared by mixing cement with aggregate and water, and cement is generally used portland cement, but may also use (ultra) crude steel cement or slag cement.
  • cemented carbide is not used as the main material.
  • 1m 3 The amount of cement per 500kg / m 3 or less, preferably in the range of 100 ⁇ 400kg, and more preferably in the range of 200 ⁇ 350kg / m 3.
  • Polymer emulsions are intended to modify concrete with polymer latex as the main material.
  • the latex homogeneously dispersed in the concrete increases the adhesion strength and the bending strength of the concrete, and serves to prevent the diffusion of chlorine ions by filling the micro voids of the concrete.
  • the polymer emulsion may include a modified additive such as a polymer surfactant, glycerin, an amine strength accelerator, an aluminum hydration accelerator, and the like based on an acrylic emulsion resin.
  • a modified additive such as a polymer surfactant, glycerin, an amine strength accelerator, an aluminum hydration accelerator, and the like based on an acrylic emulsion resin.
  • acrylic emulsion resins, polymer surfactants and amine strength accelerators are incorporated as essential materials.
  • the acrylic emulsion resin may be prepared by adding an additive for improving performance to a general acrylic emulsion resin and then aging. More specifically, in the acrylic emulsion resin, ion-exchanged water and an emulsifier are added to the reaction tank and heated up to 80 ° C. while stirring, and then, the ion-exchange water and emulsifier are dissolved and stirred in a pre-emulsion tank, and then the acrylic monomer (C4-C9 Acryl monomer and acrylic acid) are added in order to make a pre-emulsion state. After the initiator is added to the reaction tank and while maintaining the reaction temperature at 80 ⁇ 83 °C while uniformly dropping for about 3 hours in the pre-emulsion tank.
  • ion-exchanged water and an emulsifier are added to the reaction tank and heated up to 80 ° C. while stirring, and then, the ion-exchange water and emulsifier are dissolved and stirred in a pre-emulsion tank
  • ammonia, antifoaming agent, preservative, and the modifier added in the present invention are prepared by stirring and aging for 2 hours.
  • Polymeric surfactants as modifiers are used to prevent condensation of concrete and to prevent aggregation of acrylic particles.
  • Polymeric surfactants for preventing concrete condensation include dichlorodiphenyldi (tri) coloethane (TDE; p, p'-dichlorodiphenyldi (tri) chloroeth ane), nonylphenol (NP; nonylphenol), and sodium lauryl sulfate (SLES). At least one of sodium laureth sulfate) and ⁇ -olefin sulfonate (AOS).
  • Glycerin (or glycerol) is to prevent material separation of polymer modified concrete, colorless, odorless liquid, and has a very high viscosity to prevent material separation and improve workability when mixed with concrete.
  • Amine-based strength accelerators increase the initial strength of concrete, shorten the construction period and increase the strength of concrete.
  • Amine-based strength accelerator for increasing concrete strength is a compound in which hydrogen atoms of ammonia (NH 3 ) are substituted with one to three hydrocarbon groups (R).
  • Monoethanolamine (MEA; Monoethanolamine) At least one of triethanolamine (TEA; Triethanolamine), monoisopropanolamine (MIPA; Monoisopropanolamine), diisopropanolamine (DIPA; Diisopropanolamine), and triisopropanolamine (TIPA; Triisopropanolamine).
  • an aluminum catalysis accelerator may be additionally used. At least one of sodium aluminate (NaAlO 2 ) and aluminum sulfate (Al 2 (SO 4 ) 3 ; aluminum sulfate) may be used as the aluminum conversion accelerator.
  • polycarboxylic acid-based high performance water reducing agent can be mixed to secure workability
  • cement hydration retardant can be mixed to prevent slump change of concrete.
  • Cement Hydration Delay Agent mixes one or more of Tartaric Acid, Sodium Gluconate, Citric Acid, Phosphate, and Glucose.
  • antifoaming agent silicone type or alcohol type can be added.
  • the polymer emulsion can be mixed in the concrete at a ratio of 1 to 15% by weight of the concrete.
  • the acrylic emulsion resin 75 ⁇ 97.5% by weight, polymer surfactant 0.05% by weight, glycerin 0.05-5% by weight, amine-based strength promoter 0.05-5% by weight, aluminum hydration promoter 0.05-5% by weight Mix in proportion of 0.05-5% by weight
  • the important materials of the present invention are a polymer surfactant and an amine strength promoter.
  • the amine-based accelerators not only increase the strength of the concrete itself, but in particular, the initial strength is formed high, thereby reducing the vehicle traffic suppression time for repair to a minimum.
  • the high-strength quenchable additive is for rapid hardening of the polymer-modified concrete.
  • high-speed super hard cement was used as a main material to express fast hardening, which acted as a main cause of increasing construction economics of road repairing concrete.
  • by blending the high-strength quick-adding additive to the concrete in the field not only can shorten the construction period without using expensive superhard cement, but also increases the strength of the concrete.
  • High-strength fastener additives are composed of a high strength material, a fastening material, a heating material, a condensation accelerator, a stabilizer, a retardant, a high performance water reducing agent.
  • precipitated silica is used as the high strength material. It is also possible to use silica fume and type II anhydrous gypsum together.
  • Sedimented silica is a particle having a BET specific surface area of about 220 to 350 cm 2 / g, prepared by reacting an alkali silicate aqueous solution with an acid, and having a very small particle diameter, which has an excellent effect of filling fine pores of concrete. It also exhibits a higher level of reactivity than silica fume in chemical change of particulates. However, due to the property of absorbing water on the surface of particles, the number of compounding may increase, so the amount of use should be adjusted by testing.
  • BET specific surface area means S. Bruno, P. H. Emmett, this. J. Am. By S. Brunaure, P. H. Emmett, E. Teller. Chem.
  • the specific surface area measured by applying the multi-molecular layer adsorption theory described in Soc., 60, 309 (1938) is considered to correspond to the average primary particle diameter of silica.
  • the powder Engineering Sculpture "Revision Supplementary Powder Property Sculpture" (1985) assuming that the primary particles are spherical, the following equation (a) is obtained between the specific surface area and the average diameter of the primary particles: 1), the larger the specific surface area, the smaller the average primary particle size.
  • Silica fume is a generic name of by-products generated by floating in exhaust gas when silicon alloys such as silicon or ferrosilicon are manufactured in electric arc furnaces. It is put into an electric furnace to produce ferrosilicon at a high temperature of about 2,000 °C. At this time, the intermediate product SiO is gasified, which is oxidized by air to SiO 2 and condensed again to produce ultrafine particles. The produced ultrafine particles are recovered by using an electrostatic precipitator to obtain silica fume. Silica fume is composed of more than 90% of spherical shape, particle size is less than 1 ⁇ m, average particle size is about 0.1 ⁇ m, specific surface area is about 20m 2 / g and specific gravity is about 2.1 ⁇ 2.2. ) thereby expressing a high strength by filling and produce a hydrate concrete micropores by 2) and pozzolanic reaction.
  • Type II anhydrous gypsum is pulverized natural anhydrous gypsum with a fine powder of 50m 2 / g or more through a pulverizer, composed of crystal structure and reactive in alkaline environment, calcium silicate hydrate (CSH) and A1 2 O 3 It can react with to form Ettringite, a needle-like crystal in the concrete pores, and densify the structure to express high strength.
  • CSH calcium silicate hydrate
  • the oil supply payment is amorphous calcium aluminate may be used;; (C 4 A 3 S 3CaO ⁇ 3Al 2 O 3 ⁇ CaSO 4) one or more (Amorphous 12CaO ⁇ 7Al 2 O 3 C12A7), CSA.
  • Amorphous calcium aluminate is prepared by pulverizing a bauxite (Bauxite) with limestone and then fired in an electric furnace for (Limestone) diameter from 1 to more than 40m 2 / g even powder as mineral amorphous prepared by rapid cooling with granulated forms of 2mm or less Preferably it is the range of 50-70m ⁇ 2> / g. It reacts with cement hydrate Ca (OH) 2 and type II anhydrous gypsum rapidly to produce Ettringite and harden cement. However, when the amount is high, excessively large initial crystallites (Ettringite) are rapidly formed, resulting in very short condensation and no strength.
  • CSA is a mineral produced by calcining Bauxite, CaCO 3 and CaSO 4 in an electric furnace after cooling at room temperature.
  • the powder level is 50m 2 / g or more, preferably 60m 2 / g ⁇ 80m 2 / g, cement hydrate It reacts with Type II Natural Anhydrite Gypsum to rapidly produce Ettringite, thereby exhibiting fast hardness.
  • Type II Natural Anhydrite Gypsum to rapidly produce Ettringite, thereby exhibiting fast hardness.
  • the setting time is not shortened drastically.
  • the hardening of the cemented carbide is closely related to the amount of heat of hydration. Hydration reaction of cement minerals shows the form of exothermic reaction, and the expression of initial strength depends on the amount of calorific value.
  • potassium carbonate potassium carbonate
  • calcium oxide calcium oxide, CaO
  • K 2 CO 3 potassium carbonate
  • CaO calcium oxide
  • Potassium carbonate reacts with water to give off 0.2103 J / g of heat of dissolution
  • calcium oxide reacts with water to give 1.0679 of heat of dissolution.
  • calcium oxide absorbs water, which may cause calcium hydroxide (Ca (OH) 2 ) to be doubled in volume. Therefore, an appropriate amount of heating material should be used.
  • sodium silicate powder Na 2 SiO 3 ; sodium silicate
  • tunnel white with an Al 2 O 3 content of 80% or more
  • lithium carbonate may be used as a coagulant.
  • Sodium silicate powder reacts with CaO of cement to produce calcium silicate hydrate (CSH) and promotes cement condensation.
  • Tunnel White is an amorphous white powder prepared by calcining bauxite in an electric furnace, containing 80% or more of Al 2 O 3 , ACA (Amorphous Calcium aluminate) and CSA (Calcium Sulfo) Promote the reaction of Ettringite formation of aluminate).
  • Lithium carbonate (Li 2 CO 3 ; Lithum carbonate) is the raw material with the smallest atomic weight among alkali metals. It is a white monoclinic powder that rapidly increases the concentration of alkali ions in concrete and promotes condensation of concrete and shows super-speed hardness.
  • Super absorbency material can be used as a stabilizer. This absorbs and retains surplus water during the initial mixing of concrete, and serves to gradually supply the moisture necessary for the curing process. Therefore, concrete can be supplied with sufficient moisture during curing, which can increase long-term durability and strength.
  • Tataric acid, sodium gluconate, or citric acid may be used as the retardant.
  • the high-performance susceptor may include one of polycarboxylate powder, naphthalin powder, melamine powder, and nigrin powder.
  • the present invention mixes ready-mixed concrete at the factory, and also mixes the polymer emulsion with the ready-mixed concrete at the factory, and transfers it to the road repair site using the ready-mixed vehicle.
  • road repair is carried out by mixing high-strength fastener additives using a shear mixer at the road repair site.
  • the concrete composition according to the present invention can be transported over a long distance irrespective of the transport distance and time, and also a long distance transport using a sea transport or a pump car.
  • the present invention has a great advantage in that it is possible to solve the economic problems caused by the use of cemented carbide in the existing road pavement repair concrete using a high-strength fastener additives.
  • FIG. 2 shows the composition and blending ratio of Sample 1 without mixing the high-strength additive material, Sample 2 to Sample 5 with only a few materials, and Sample 6 with all additives mixed.
  • 3 shows physical property test results for the samples described in FIG. 2.
  • the water-cement ratio and sand-aggregate ratio and high-performance water-reducing agent consumption is constant, and the performance of each formulation while replacing the high-strength filler with the navigator in the total cement amount and changing the high-strength filler composition ratio Confirmed.
  • Sample 1 In the case of Sample 1, general concrete was prepared using only cement, sand, gravel and water, and a high performance water reducing agent, and concrete was mixed at a normal ratio. As expected, in Sample 1, there was a problem in which fast hardness for road pavement repair was not expressed and a problem in which high strength was not expressed at the initial setting of condensation.
  • Samples 2 to 6 additionally used a fastener, a high strength material, a heating material, a coagulation accelerator, a stabilizer, and a retardant to show quickness and high strength. As a result, initial strength expression and initial high strength could be secured. .
  • the slump was performed according to KS F 2402, and Sample 1 showed a result of decreasing to 200 mm and 180 mm with time after the initial slump showed 210 mm.
  • Sample 2 was used by navigating 120kg of cement amount as a fastener. While the initial slump was 180mm, it was lowered to 100mm or less after 15 minutes of age, and the change with time gradually decreased in samples 3 to 6 as well. As a result of the decrease in the change over time, it was confirmed that Samples 2 to 6 can secure the minimum workability for the construction of ultra-high speed concrete.
  • Sample 1 was not cured at 4 hours of age as a concrete concrete, so it was impossible to measure the strength. After 1 day (24 hours), strength measurement was possible.
  • Samples 2 to 6 the composition of the high strength mixture was changed and mixed to measure the strength.
  • initial condensation proceeded too fast and the strength was relatively decreased.
  • Samples 3 to 6 using high-strength material and heating material condensation accelerator showed strength. Is increasing. Sample 6 shows a result that the intensity of 4 hours is similar to that of Sample 5 and the intensity is higher after 1 day by using a stabilizer. Therefore, it was confirmed that the highest initial strength could be secured when all the materials of the high strength fastness additive were mixed.
  • sample 1 was applied to general concrete formulation without using polymer emulsion and high strength fastener
  • sample 2 was used to general acrylic emulsion with high strength fastener
  • samples 3 to 6 were common acrylic emulsion with high strength fastener.
  • the resin further mixed with the modifier used in the present invention.
  • Sample 1 with normal concrete mixture shows the result that the slump is maintained for 60 minutes, while sample 2 using the general acrylic emulsion and the high-strength filler is rapidly cured after the initial slump measurement due to the influence of the high-strength filler. After 15 minutes, the slump is lowered to 115 mm. After that, condensation proceeded rapidly, and measurement was impossible at 30 minutes.
  • Samples 3 to 6 improve the performance of the acrylic emulsion resin by using a modifier. The surfactant is adsorbed to the acrylic particles to prevent sudden aggregation between the particles when mixed with the cement, and the hydration reaction between the high strength filler and the cement is appropriately performed. I'm adjusting. Sample 3 shows the result that the slump is maintained for up to 60 minutes using only the surfactant, and Examples 3 to 5 also show a relatively better slump retention time than the sample 2 under the influence of the surfactant.
  • Example 2 shows the result that the initial strength is greatly improved compared to the comparative example due to the effect of using a common acrylic resin and a high strength filler.
  • Example 2 using only surfactant as the modifier, exhibits relatively low initial strength compared to Example 1. This may be due to the hydration retardation action of the high-strength filler with the use of surfactants.
  • Examples 3 to 5 show the change in physical properties by using a modifier to prevent the decrease in strength due to the modification of the acrylic emulsion. Compared to Example 2, the change over time tended to be slightly larger, but the initial strength was increased, and the long-term strength was also excellent.
  • Sample 1 As a result of measuring the chlorine ion permeation performance, Sample 1 exhibited a high passing charge of 2,750 coulomb, while 300 ⁇ 500 coulomb was used in the composition using the high-strength filler and general acrylic emulsion (sample 2) or modified acrylic emulsion water quality (samples 3 to 6). By showing a very low amount of charge passing through it can be seen that the resistance to chlorine ions is very excellent.
  • Sample 1 showed the adhesive strength of general concrete, while Samples 2 to 6 showed very improved adhesion strength.
  • sample 2-6 shows the results of the physical properties of the concrete is increased from 63kg / m 3 up to 315kg / m 3 the high strength grade integrity additive amount.
  • Sample 1 has good retention performance due to the small amount of change in slump over time. However, the compressive strength expression is lowered, which is not suitable for emergency repair concrete, and the amount of charge passing through chlorine ions is lowered, but it is relatively higher than other samples. Indicated. This is believed to be the result of the high strength quenchable additive reacting with the cement hydrate, thereby producing a hydrate in the capillary pores of the concrete to form the concrete matrix more densely.
  • Samples 2 to 6 showed a tendency to increase the initial strength of 4 hours of age as the amount of high-strength fastener additives used increased, but samples 5 to 6 that used excessively increased strength decreased compared to samples 3 to 4 Results are shown. This is because, due to the reaction of the formation of the early quenchable hydrate, if the initial quenching amount is excessively high, the size of the quenchable hydrate is very large, and the formation and expansion of cement hydrate is hindered, so that the amount of capillary void is increased and the matrix of the concrete is loosely formed. The result can be said.
  • the amount of chlorine ion passing charge is lower than 1,000 coulomb due to the use of polymer emulsion at all composition ratios, but the amount of charge decreases to 270 coulomb as the amount of high-strength fastener additive is increased.
  • the high-strength fastener additive in the present invention may be mixed in the range of 2.7 to 14% by weight throughout the polymer-modified concrete composition, preferably in the range of 5.5 to 8.5% by weight in terms of initial compressive strength. It was confirmed that.
  • Sample 1 did not use a polymer emulsion, and Samples 2 to 7 gradually increased the amount of polymer emulsion used.
  • the high-performance susceptor was used by changing the amount of use to maintain a constant initial slump value of concrete.
  • Sample 1 without polymer emulsion showed rapid slump loss after initial slump expression, while compressive strength showed the highest result.
  • the compressive strength has been shown to decrease the strength of the initial 4 hours as the amount of the polymer emulsion increases. This can be said to be the result of delayed hydration reaction of the polymer emulsion. Therefore, it is confirmed that the amount of use needs to be properly adjusted according to the site conditions and working hours.
  • the polymer-modified concrete composition according to the present invention prepares the ready-mixed concrete at the factory and transfers the concrete composition to the construction site after incorporating the polymer emulsion.
  • high-strength quenchable additives are mixed at high speed in the concrete composition transferred from the plant in the mixing device.
  • data where no data is displayed means that the material is not added.
  • the parts not checked in the time-varying part are all cases where the time-varying change is 100 mm or less or measurement is impossible.
  • the part not written in the strength part means that hardening is not performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a polymer-modified concrete composition for repairing the pavement of a road and a method for repairing the pavement of a road using the same. The method for repairing the pavement of a road according to the present invention comprises the steps of: crushing a pavement surface of the road, which is in need of repair; mixing a polymer emulsion with ready-mixed concrete, transferring the mixture to a location of the repair, and mixing a quick-setting additive with the mixture at the location of the repair to prepare a polymer-modified concrete composition; and spreading the polymer-modified concrete composition on the crushed pavement surface, followed by curing. Further, the polymer-modified concrete composition used to repair and pave a road comprises ready-mixed concrete, a polymer emulsion, and a high-strength quick-setting additive. Particularly, the polymer emulsion contains an amine-based strength accelerator and a polymer surfactant, and the high-strength quick-setting additive contains precipitated silica.

Description

폴리머 개질 콘크리트 조성물 및 이를 이용한 도로 포장 보수방법Polymer modified concrete composition and road pavement repair method using the same
본 발명은 아크릴과 같은 폴리머를 혼합한 개질 콘크리트 조성물 및 이 폴리머 개질 콘크리트 조성물을 이용하여 도로의 포장이 파손된 부분을 신속하게 보수할 수 있는 도로 포장 보수방법에 관한 것이다. The present invention relates to a modified concrete composition in which a polymer such as acrylic is mixed, and a road pavement repairing method capable of quickly repairing a broken part of a road using the polymer modified concrete composition.
도로포장은 아스팔트콘크리트 또는 시멘트콘크리트를 사용한다. Road pavement uses asphalt concrete or cement concrete.
아스팔트콘크리트는 하절기 고온다습한 환경에서 아스팔트의 연화(softening) 현상에 의해 변형 및 균열이 발생하여 포장체가 파손에 이르게 된다. 포장체 내부로 침투한 빗물은 포장체와 하부구조물 사이를 이동하면서 접합부를 이격시키고, 동절기에는 결빙되어 아스콘 포장체의 Pop-out을 유발한다. 이러한 문제로 인해 고속도로의 경우 3년을 주기로 아스팔트콘크리트포장을 보수하고 있다.Asphalt concrete is deformed and cracked due to softening of asphalt in high temperature and high humidity environment in summer, leading to breakage of the package. Rainwater that penetrates into the pavement moves between the pavement and the substructure to space the joints and freezes during the winter to cause pop-out of the ascon pavement. Due to these problems, the highway is repairing asphalt concrete pavement every three years.
시멘트콘크리트포장은 콘크리트 시공시 발생되는 균열과, 동절기 염화칼슘 살포에 의한 염분의 침투 등으로 인해 하부구조물 내의 철근이 부식되고 골재알칼리반응이 촉진되어 콘크리트의 내구성이 현저히 저하되고 결국에는 포장체가 파손되고 있는 실정이다. Cement concrete pavement is corroded by reinforcing steel in the substructure due to the cracks generated during concrete construction and salt penetration by calcium chloride spraying in winter, and accelerated aggregate alkali reaction, which significantly reduces the durability of concrete. It is true.
그러나 콘크리트포장이 아스팔트콘크리트에 비해 내구성과 내구수명이 우수하다는 장점이 있어 최근 시공량이 점차 늘어나고 있다. However, since the concrete pavement has the advantage of superior durability and durability life as compared to asphalt concrete, the amount of construction is increasing gradually in recent years.
한편, 고속도로와 같이 교통량이 많은 도로의 포장이 파손되면 짧은 기간 동안 보수공사가 완료되어야 한다. 파손된 포장체의 보수방법으로, 종래에는 아스콘 또는 초속경시멘트모르터를 이용한 패칭보수방법이 사용되어 왔으나, 최근에는 고무성질을 갖는 고분자라텍스(SBLatex)를 콘크리트에 혼입하여 시공할 수 있는 기술이 개발되어 시공되고 있다. 이러한 기술은 라텍스를 콘크리트에 균질하게 분산시킴으로써 콘크리트의 부착강도와 휨강도를 증가시키고 콘크리트의 미세공극을 라텍스가 충전하여 염소이온의 확산을 방지하는 장점이 있다. On the other hand, if the pavement of high traffic roads such as a highway is damaged, the repair work should be completed for a short period. As a method of repairing a damaged package, a patching repair method using ascon or cemented carbide cement has been used in the past, but recently, a technology has been developed to mix and construct a polymer latex (SBLatex) having rubber properties into concrete. It is built. This technique has the advantage of increasing the adhesion strength and flexural strength of the concrete by homogeneously dispersing the latex homogeneously in the concrete and preventing the diffusion of chlorine ions by latex filling the micro voids of the concrete.
그러나 현재 사용되는 라텍스 개질 콘크리트는 모바일믹서트럭(Mobile Mixer Truck; M/M)과 같은 특수한 전용 시공장비를 보수 현장에서 설치해서 사용해야만 하는 제약이 있다. 즉, 라텍스 개질 콘크리트의 작업가능 시간은 대략 20분 정도로 매우 짧으므로, 일반 레미콘과 같이 레미콘 공장에서 배합하여 운반할 수가 없기 때문에 현장에서 바로 배합하여 타설할 수 있도록 모바일 믹서를 사용하여 시공하고 있다. However, the latex modified concrete currently used has a limitation that requires special installation equipment such as a mobile mixer truck (M / M) to be installed and used at the repair site. That is, since the working time of the latex modified concrete is very short, about 20 minutes, since it can not be mixed and transported in the ready-mixed concrete plant like general ready-mixed concrete, it is being constructed using a mobile mixer so that it can be directly compounded and poured in the field.
그러나, 상기한 바와 같이 라텍스 개질 콘크리트를 배합하기 위하여 모바일 믹서를 사용하는 경우 많은 문제점이 발생한다.   However, many problems arise when using a mobile mixer to blend latex modified concrete as described above.
우선, 배합속도가 매우 느리다. 모바일 믹서는 1시간당 7m3의 콘크리트만을 배합할 수 있기 때문에 시간당 시공할 수 있는 면적이 매우 작다는 문제점이 있다. First of all, the mixing speed is very slow. Since the mobile mixer can mix only 7 m 3 of concrete per hour, there is a problem that the area that can be constructed per hour is very small.
또한 모바일 믹서를 사용하는 경우, 시멘트, 골재 등의 원재료를 현장 부근에 적치 보관하므로 혼잡한 도심지에서는 적당한 장소의 확보가 어려울 수 있고, 기상상황에 따라 골재의 함수율 변동이 심해 콘크리트의 단위수량 조절 및 슬럼프 조절이 어려워져 품질관리가 용이하지 않다는 단점이 있다.In addition, when using a mobile mixer, since raw materials such as cement and aggregate are stored in close proximity to the site, it may be difficult to secure a suitable place in a crowded downtown area. It is difficult to control the slump, so quality control is not easy.
그리고, 모바일 믹서의 경우 장비 구성의 한계로 인하여 1종류의 시멘트만을 사용할 수 있으며, 고로 슬래그 미분말, 실리카 흄 등의 다양한 혼합재를 첨가할 수 없어 콘크리트의 내염해성, 강도, 화학적 저항성을 개선하는데 한계가 있다. In addition, in case of mobile mixer, only one type of cement can be used due to the limitation of equipment configuration, and it is not possible to add various mixed materials such as blast furnace slag powder and silica fume, so it is difficult to improve the salt resistance, strength and chemical resistance of concrete. have.
마찬가지로, 골재에 있어서도 다양한 입도를 가지는 골재를 사용할 수 없고 단지 1종류의 골재만을 사용해야 하므로 콘크리트의 물성 향상과 품질관리가 용이하지 않다는 문제점이 있다. Similarly, in aggregate, aggregates having various particle sizes cannot be used, and only one type of aggregates must be used, so there is a problem in that the improvement of physical properties and quality control of concrete are not easy.
한편, 종래의 포장 보수공법에서 사용하는 시멘트는 신속한 양생을 위해 초속경시멘트를 사용함으로써 보수시공의 경제성을 저하시키는 주요한 원인으로 작용하고 있다. On the other hand, the cement used in the conventional paving repair method is acting as a major cause of lowering the economics of repair work by using a super fast cement for rapid curing.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 초속경 시멘트의 사용을 제한하면서도 최적화된 조성의 폴리머에멀젼 및 급결성첨가재를 이용하여 도로 포장 보수의 시공성, 경제성은 물론 포장품질을 향상시킬 수 있는 폴리머 개질 콘크리트 조성물을 제공하는데 그 목적이 있다.The present invention is to solve the above problems, while limiting the use of cemented carbide cement, using the polymer emulsion and the fastener additives of the optimized composition to improve the workability, economical efficiency of the road pavement repair as well as pavement quality The purpose is to provide a modified concrete composition.
또한 본 발명은 상기한 폴리머 개질 콘크리트 조성물을 이용하되, 모바일 믹서를 사용하지 않고, 레디믹스 콘크리트와 폴리머에멀젼을 공장에서 미리 안정적으로 혼합할 수 있는 방법을 제공함으로써 시공 품질과 속도를 향상시킬 수 있는 포장 보수방법을 제공하는데 목적이 있다. In addition, the present invention can improve the construction quality and speed by using the above-described polymer modified concrete composition, without providing a mobile mixer, by providing a method for stably mixing the ready mixed concrete and polymer emulsion in the factory. The purpose is to provide packaging repair methods.
상기 목적을 달성하기 위한 본 발명에 따른 도로 포장 보수방법은, 보수가 필요한 도로의 포장면을 절개하는 단계와, 레디믹스 콘크리트에 폴리머 에멀젼을 혼합하여 보수 현장으로 이동한 후, 급결성 첨가재를 상기 보수 현장에서 혼합하여 폴리머 개질 콘크리트 조성물을 제조하는 단계 및 상기 폴리머 개질 콘크리트 조성물을 절개된 포장면에 포설 및 양생하는 단계를 포함하여 이루어진다. Road pavement repair method according to the present invention for achieving the above object, the step of cutting the pavement surface of the road that needs to be repaired, after mixing the polymer emulsion in the ready-mixed concrete to move to the repair site, the rapid additive additive Mixing at the repair site to produce a polymer modified concrete composition and laying and curing the polymer modified concrete composition on the cut pavement surface.
또한 본 발명에 따른 폴리머 개질 콘크리트 조성물은, 콘크리트와, 폴리머에멀젼 및 급결성 첨가재를 포함한다. 폴리머에멀젼 수지는 상기 콘크리트 대비 1~15중량%의 범위로 혼합한다. In addition, the polymer-modified concrete composition according to the present invention includes concrete, a polymer emulsion, and a quick additive. Polymer emulsion resin is mixed in the range of 1 to 15% by weight relative to the concrete.
본 발명에서는 폴리머 에멀젼과 고강도 급결성 첨가재를 사용함으로써 기존의 도로 포장 보수용 콘크리트 조성물에 비하여 많은 이점이 나타난다. In the present invention, by using a polymer emulsion and a high strength fastener additive material, many advantages appear over the conventional road pavement repair concrete composition.
먼저, 독특한 조성의 폴리머 에멀젼을 이용함으로써 기존과 달리 작업 조건이 우수한 공장에서 콘크리트를 레디믹스할 수 있으며, 폴리머 에멀젼도 공장에서 혼합하여 도로 보수 현장으로 이송할 수 있다. 즉, 콘크리트 조성물의 유동성을 장시간 확보할 수 있으므로, 콘크리트 조성물을 안정적으로 공장에서 제조하여 콘크리트 조성물의 품질을 보장할 수 있다는 이점이 있다. 더욱이, 기존에는 현장에서 모바일 믹서를 이용하므로 콘크리트를 빠른 시간 내에 다량으로 배합할 수 없었지만, 공장에서 레디믹스 콘크리트를 조성하여 레미콘 차량으로 이동함으로써 단위 시간당 콘크리트 공급량이 획기적으로 증대되며, 시공 기간을 단축시킬 수 있다. First, by using a polymer emulsion of a unique composition can be mixed concrete in a factory with excellent working conditions unlike the existing, polymer emulsion can also be mixed in the factory and transported to the road repair site. That is, since the fluidity of the concrete composition can be secured for a long time, there is an advantage that the concrete composition can be stably manufactured at a factory to ensure the quality of the concrete composition. Moreover, in the past, due to the use of mobile mixers in the field, it was not possible to mix a large amount of concrete in a short time, but by constructing ready-mixed concrete at the factory and moving to ready-mixed vehicles, the amount of concrete supplied per unit time was dramatically increased, and the construction period was shortened. You can.
또한, 독특한 조성의 고강도 급결성 첨가재를 사용함으로써, 기존의 도로 보수용 콘크리트에서처럼 초속경 시멘트를 사용하지 않는 바, 시공의 경제성이 탁월하다는 이점이 있다. In addition, by using a high-strength fastener additive material of a unique composition, it does not use cemented carbide cement as in the conventional road repair concrete, there is an advantage that the economics of construction excellent.
도 1은 본 발명의 일 실시예에 따른 도로 포장 보수방법의 개략적 흐름도이다. 1 is a schematic flowchart of a road pavement repair method according to an embodiment of the present invention.
도 2는 고강도 급결성 첨가재의 효과를 실험하기 위한 시료의 배합비가 나타난 표이다. Figure 2 is a table showing the mixing ratio of the sample for experimenting the effect of the high-strength fastener additives.
도 3은 도 2에 기재된 시료들에 대한 물성시험 결과가 나타난 표이다. 3 is a table showing the physical property test results for the samples described in FIG.
도 4는 개질 폴리머 에멀젼의 효과를 실험하기 위한 시료의 배합비가 나타난 표이다. 4 is a table showing the mixing ratio of the sample for experimenting with the effect of the modified polymer emulsion.
도 5는 도 4에 기재된 시료들에 대한 물성시험 결과가 나타난 표이다. 5 is a table showing the physical property test results for the samples described in FIG.
도 6은 폴리머 에멀젼 사용량을 고정시킨 상태에서 고강도 급결성 첨가재의 배합비를 변경한 효과를 알아보기 위한 실험에서 시료의 배합비가 나타난 표이다. 6 is a table showing the compounding ratio of the sample in the experiment to determine the effect of changing the compounding ratio of the high-strength fastener additive in a fixed state of the polymer emulsion.
도 7은 도 6에 기재된 시료들에 대한 물성시험 결과가 나타난 표이다. 7 is a table showing the physical property test results for the samples described in FIG.
도 8은 고강도 급결성 첨가재 사용량을 고정시킨 상태에서 폴리머 에멀젼의 배합비를 변경한 효과를 알아보기 위한 실험에서 시료의 배합비가 나타난 표이다. 8 is a table showing the compounding ratio of the sample in an experiment to determine the effect of changing the compounding ratio of the polymer emulsion in a state in which the high-strength fastener additive amount is fixed.
도 9는 도 8에 기재된 시료들에 대한 물성시험 결과가 나타난 표이다. 9 is a table showing the physical property test results for the samples described in FIG.
상기 목적을 달성하기 위한 본 발명에 따른 도로 포장 보수방법은, 보수가 필요한 도로의 포장면을 절개하는 단계와, 레디믹스 콘크리트에 폴리머 에멀젼을 혼합하여 보수 현장으로 이동한 후, 급결성 첨가재를 상기 보수 현장에서 혼합하여 폴리머 개질 콘크리트 조성물을 제조하는 단계 및 상기 폴리머 개질 콘크리트 조성물을 절개된 포장면에 포설 및 양생하는 단계를 포함하여 이루어진다. Road pavement repair method according to the present invention for achieving the above object, the step of cutting the pavement surface of the road that needs to be repaired, after mixing the polymer emulsion in the ready-mixed concrete to move to the repair site, the rapid additive additive Mixing at the repair site to produce a polymer modified concrete composition and laying and curing the polymer modified concrete composition on the cut pavement surface.
폴리머 개질 콘크리트 조성물은, 콘크리트와, 폴리머에멀젼 및 급결성 첨가재를 포함한다. 폴리머에멀젼 수지는 상기 콘크리트 대비 1~15중량%의 범위로 혼합한다. The polymer modified concrete composition includes concrete and a polymer emulsion and a fastener additive. Polymer emulsion resin is mixed in the range of 1 to 15% by weight relative to the concrete.
본 발명의 일 실시예에서, 상기 폴리머에멀젼은 아민계 강도촉진제를 포함하며, 에탄올아민과 이소프로판올아민 중 적어도 하나를 포함하는 것이 바람직하다. In one embodiment of the present invention, the polymer emulsion comprises an amine-based strength promoter, preferably at least one of ethanolamine and isopropanolamine.
보다 구체적으로, 상기 폴리머에멀젼은, 아크릴에멀젼 수지 75~97.5 중량%, 고분자계면활성제 0.05 중량%, 글리세린 0.05~5 중량%, 아민계강도촉진제 0.05~5 중량%, 알루미늄계수화촉진제 0.05~5 중량%, 감수제 0.05~5 중량%의 비율로 혼합가능하다. More specifically, the polymer emulsion, 75 ~ 97.5% by weight of the acrylic emulsion resin, 0.05% by weight of the polymer surfactant, 0.05-5% by weight of glycerin, 0.05-5% by weight of the amine strength accelerator, 0.05-5% by weight of aluminum hydration accelerator %, A reducing agent of 0.05 to 5% by weight can be mixed.
그리고, 상기 급결성 첨가재는 침강실리카를 포함하는 것이 바람직하다. And, it is preferable that the quick setting additive includes precipitated silica.
보다 구체적으로, 상기 급결성 첨가재는, 고강도재 10~50 중량%, 응결촉진재 0.05~5 중량%, 급결재 30~80 중량%, 발열재 0.05~5 중량%, 안정재 0.05~5 중량%, 지연재 0.05~3 중량%, 감수제 0.05~2 중량%의 비율로 혼합가능하다. More specifically, the fastening additive is 10 to 50% by weight of the high strength material, 0.05 to 5% by weight of the coagulation accelerator, 30 to 80% by weight of the fastener, 0.05 to 5% by weight of the heating material, 0.05 to 5% by weight of the stabilizer, It can be mixed in the ratio of 0.05-3 weight% of retardants and 0.05-2 weight% of a reducing agent.
이하, 첨부된 도면을 참고하여, 본 발명의 일 실시예에 따른 도로 포장 보수방법 및 이에 사용되는 폴리머 개질 콘크리트 조성물에 대하여 더욱 상세히 설명하기로 한다. Hereinafter, with reference to the accompanying drawings, it will be described in more detail with respect to the road pavement repair method according to an embodiment of the present invention and the polymer-modified concrete composition used therein.
도 1은 본 발명에 따른 도로 포장 보수방법의 개략적 흐름도이다. 1 is a schematic flowchart of a road pavement repairing method according to the present invention.
도 1을 참고하면, 본 발명의 일 실시예에 따른 도로 포장 보수방법은 크게 3가지 단계로 나뉜다. Referring to Figure 1, the road pavement repair method according to an embodiment of the present invention is largely divided into three steps.
첫 번째 단계는 도로 포장면에서 균열이나 pop-out 등 파손된 부분을 제거하는 작업이다. 공지의 장비들을 이용하여 파손된 포장면을 절개하거나 파쇄하여 제거한다. 파손된 부분을 제거한 후에는 포장이 제거된 자리에 고압 세정수를이용하여 열화된 표면을 소지함으로써 포장면 보수의 준비작업을 완료한다. The first step is to remove any damaged parts such as cracks and pop-outs from the pavement surface. Using known equipment, the damaged pavement is cut or broken to remove it. After removing the damaged parts, the preparatory work for the pavement surface is completed by retaining the deteriorated surface by using high pressure washing water in the place where the package is removed.
두 번째 단계는 보수 포장용 콘크리트 조성물을 준비하는 것이다. 본 발명에 따른 폴리머 개질 콘크리트 조성물이 사용된다. 본 발명에 따른 폴리머 개질 콘크리트 조성물은 크게 3가지 성분으로 이루어진다. 즉, 콘크리트와, 폴리머 에멀젼 및 급결성 첨가재이다. 본 발명에서 독특한 점은 기존의 도로 포장 보수공법과는 달리 콘크리트와 폴리머 에멀젼을 공장에서 미리 혼합한 후 레미콘 차량을 이용하여 현장으로 이동한다는 점이다. 그리고 현장에서 고강도 급결성 첨가재를 추가적으로 혼합하여 폴리머 개질 콘크리트 조성물을 배합한다는 점이다. The second step is to prepare the concrete composition for repair pavement. Polymer modified concrete compositions according to the invention are used. The polymer modified concrete composition according to the present invention mainly consists of three components. That is, concrete, a polymer emulsion, and a quick additive. Unlike the conventional road pavement repair method, the present invention is unique in that concrete and polymer emulsions are pre-mixed in a factory and then moved to the site using a ready-mixed vehicle. In addition, in the field, the high-strength fastener additive is further mixed to blend the polymer-modified concrete composition.
상기한 바와 같이, 폴리머 개질 콘크리트 조성물이 준비되면, 포장을 절개한 부분에 폴리머 개질 콘크리트 조성물을 포설한다. 즉, 콘크리트 조성물을 충진 및 양생하다. As described above, when the polymer-modified concrete composition is prepared, the polymer-modified concrete composition is laid in the cut portion of the pavement. That is, the concrete composition is filled and cured.
마지막으로 도로 표면에 줄눈을 시공하면 본 발명에 따른 도로 포장 보수방법이 완료된다. Finally, when the joint is installed on the road surface, the road pavement repair method according to the present invention is completed.
본 발명은 방법적인 측면에서 기존에 시멘트와 골재 및 물을 보수 현장에서 직접 혼합하여 콘크리트를 조성하는 것과 달리, 공장에서 혼합하여 레디믹스 콘크리트를 만들며, 폴리머 에멀젼도 콘크리트에 혼입하는 것도 공장에서 진행한다는 점에서 기존의 도로 보수 포장방법과 큰 차이가 있다. 또한 고강도 급결성 첨가재를 도로 보수 포장용 콘크리트 조성물에 사용한다는 점에서도 기존의 방법과 차이가 있다. According to the present invention, unlike the conventional method of directly mixing cement, aggregate, and water at a repair site to form concrete, the present invention mixes in a factory to make ready-mixed concrete, and also incorporates polymer emulsion into concrete. In this respect, there is a big difference from the existing road repair paving method. In addition, there is a difference from the existing method in that the high-strength fastener additive is used in the concrete composition for road repair pavement.
폴리머 개질 콘크리트 조성물은 콘크리트와 폴리머 에멀젼으로 이루어지는데, 상기한 바와 같이 기존에는 모바일 믹서를 이용하여 현장에서 직접 재료를 혼합하는 방식을 사용하였다. 종래 기술처럼 현장에서 재료들을 혼합하면 많은 문제가 발생한다. 우선, 재료들을 현장에 적치해 놓고 있으므로 강우와 기온에 따라 재료들의 함수율 관리가 용이하지 않다. 그리고 모바일 믹서는 1시간당 7m3의 콘크리트만을 배합할 수 있기 때문에 시간당 시공량이 매우 작다. 또한 모바일 믹서의 장치적 한계로 인하여 단일 종류의 시멘트만 사용할 수 있을 뿐, 고로슬래그, 실리카흄 등 다양한 첨가재를 혼합할 수 없어 콘크리트 조성물의 물성을 개선하기가 어렵다. 이러한 문제점에도 불구하고, 종래에 도로 보수시 현장 혼합 방식을 택할 수밖에 없었던 이유는 폴리머 에멀젼을 콘크리트에 혼합하는 경우 콘크리트의 유동성이 20~30분 정도로 짧게 유지되기 때문이다. The polymer modified concrete composition is composed of concrete and polymer emulsion. As described above, conventionally, a method of directly mixing materials in the field using a mobile mixer was used. Mixing materials in the field as in the prior art introduces many problems. First of all, it is not easy to manage the moisture content of materials according to rainfall and temperature because materials are placed on site. And since the mobile mixer can mix only 7m 3 of concrete per hour, the construction amount per hour is very small. In addition, due to the limitations of the mobile mixer, only a single type of cement can be used, and various additives such as blast furnace slag and silica fume cannot be mixed, thereby making it difficult to improve the properties of the concrete composition. In spite of these problems, the reason why the conventional site mixing method was selected during road repair is because the fluidity of the concrete is kept short for about 20 to 30 minutes when the polymer emulsion is mixed with the concrete.
그러나 본 발명에서는 시멘트, 골재 및 물을 공장에서 미리 혼합하여 레미콘 차량으로 이동하는 레디믹스 콘크리트를 사용하며, 폴리머 에멀젼도 공장에서 먼저 혼합한 후 레미콘 차량을 통해 현장까지 이동하는 방식을 취한다. However, in the present invention, cement, aggregate, and water are mixed in the factory, and the ready mixed concrete moving to the ready-mixed vehicle is used. The polymer emulsion is also mixed in the factory first, and then takes the method of moving to the site through the ready-mixed vehicle.
또한, 본 발명에서는 고강도 급결성 첨가재를 사용하여 기존의 보수 포장과 달리 초속경 시멘트는 사용하지 않거나 최소한으로 사용함으로써 시공의 경제성을 획기적으로 향상시킨다. In addition, in the present invention, unlike the conventional repair packaging using high-strength fastener additives, super fast cement does not use or minimally improve the economics of construction.
이를 통해 종래기술에서 문제되었던 품질관리의 문제, 물성 향상의 한계 및 시간당 시공량의 문제를 모두 해결하게 되었다. 이렇게 본 발명에서 종래의 문제점을 해결할 수 있는 이유는 본 발명에 따른 폴리머 개질 콘크리트 조성물의 독특한 조성 및 배합비로부터 기인한다. This solves all the problems of quality control, limitations of improvement of physical properties, and the amount of construction per hour, which have been a problem in the prior art. The reason for solving the conventional problems in the present invention is due to the unique composition and blending ratio of the polymer modified concrete composition according to the present invention.
이하, 본 발명에서 사용하는 폴리머 개질 콘크리트 조성물에 대하여 더욱 상세히 설명한다. Hereinafter, the polymer modified concrete composition used in the present invention will be described in more detail.
본 발명에 따른 폴리머 개질 콘크리트 조성물은 콘크리트와 폴리머 에멀젼 및 고강도 급결성 첨가재로 이루어진다. The polymer modified concrete composition according to the present invention consists of concrete and polymer emulsion and high strength quenchable additives.
본 발명에서 콘크리트는 시멘트와 골재 및 물을 혼합하여 제조하며, 시멘트는 일반적으로 보통 포틀랜드 시멘트를 사용하지만, (초)조강시멘트나 슬래그시멘트도 사용할 수 있다. 다만, 기존과 같이 초속경 시멘트를 메인 재료로 사용하지는 않는다. 시멘트와 골재 및 물의 혼합비에서는 특별한 조건이 없으며 KS 기준을 그대로 적용한다. 예컨대, 1m3당 시멘트 사용량은 500kg/m3이하, 바람직하게는 100~400kg범위이며, 더 바람직하게는 200~350kg/m3의 범위이다. In the present invention, concrete is prepared by mixing cement with aggregate and water, and cement is generally used portland cement, but may also use (ultra) crude steel cement or slag cement. However, cemented carbide is not used as the main material. There is no special condition in the mixing ratio of cement, aggregate and water and the KS standard is applied as it is. For example, 1m 3 The amount of cement per 500kg / m 3 or less, preferably in the range of 100 ~ 400kg, and more preferably in the range of 200 ~ 350kg / m 3.
폴리머 에멀젼은 고분자 라텍스를 주재료로 하여 콘크리트를 개질하기 위한 것이다. 콘크리트에 균질하게 분산된 라텍스는 콘크리트의 부착강도와 휨강도를 증가시키며, 콘크리트의 미세공극을 채워 염소 이온의 확산을 방지하는 기능을 한다. Polymer emulsions are intended to modify concrete with polymer latex as the main material. The latex homogeneously dispersed in the concrete increases the adhesion strength and the bending strength of the concrete, and serves to prevent the diffusion of chlorine ions by filling the micro voids of the concrete.
본 발명에서 폴리머 에멀젼은 아크릴 에멀젼 수지를 주재료로 하여 고분자 계면활성제, 글리세린, 아민계강도촉진제, 알루미늄계 수화촉진제 등의 개질첨가재를 포함할 수 있다. 다만, 아크릴 에멀젼 수지, 고분자 계면활성제 및 아민계강도촉진제는 필수적 재료로 혼입된다. In the present invention, the polymer emulsion may include a modified additive such as a polymer surfactant, glycerin, an amine strength accelerator, an aluminum hydration accelerator, and the like based on an acrylic emulsion resin. However, acrylic emulsion resins, polymer surfactants and amine strength accelerators are incorporated as essential materials.
아크릴에멀젼 수지는 일반적인 아크릴 에멀젼수지에 성능개선을 위한 첨가제를 첨가한 후 숙성처리를 통해 제조할 수 있다. 보다 구체적으로, 아크릴에멀젼 수지는 반응조에 이온교환수 및 유화제를 투입하고 80℃까지 교반하면서 승온시킨 후, 프리 에멀젼탱크에 이온교환수 및 유화제를 녹여 교반하면서 투입 후, 아크릴계 단량체(C4~C9의 아크릴 모노머 및 아크릴산)를 순서대로 투입하여 프리 에멀젼상태로 만들게 된다. 이후 반응조에 개시제를 투입하고 프리 에멀젼탱크에서 약 3시간 동안 균일하게 드로핑하면서 반응온도를 80~83℃로 유지시키게 된다. 드로핑완료 후 1시간 동안 82℃로 유지시키고 70℃로 냉각한다. 이 후, CHASER 처리를 하고 20분 유지시키고 50℃로 냉각한다. 그리고 암모니아, 소포제, 방부제 및 본 발명에서 제시하는 개질첨가제를 투입후 2시간 동안 교반 및 숙성하여 제조하게 된다.The acrylic emulsion resin may be prepared by adding an additive for improving performance to a general acrylic emulsion resin and then aging. More specifically, in the acrylic emulsion resin, ion-exchanged water and an emulsifier are added to the reaction tank and heated up to 80 ° C. while stirring, and then, the ion-exchange water and emulsifier are dissolved and stirred in a pre-emulsion tank, and then the acrylic monomer (C4-C9 Acryl monomer and acrylic acid) are added in order to make a pre-emulsion state. After the initiator is added to the reaction tank and while maintaining the reaction temperature at 80 ~ 83 ℃ while uniformly dropping for about 3 hours in the pre-emulsion tank. After dropping, it is kept at 82 ° C. and cooled to 70 ° C. for 1 hour. After that, the CHASER treatment is performed and held for 20 minutes and cooled to 50 ° C. In addition, ammonia, antifoaming agent, preservative, and the modifier added in the present invention are prepared by stirring and aging for 2 hours.
개질첨가제로인 고분자 계면활성제는 콘크리트 위응결 방지 및 아크릴입자의 응집방지를 위해 사용된다. 콘크리트 위응결방지를 위한 고분자 계면활성제는 디클로로디페닐디(트리)콜로로에탄(TDE; p,p'-dichlorodiphenyldi(tri)chloroeth ane), 노닐페놀(NP; nonylphenol), 소디움라우릴설페이트(SLES; Sodium laureth sulfate), α-올레핀술폰산소다(AOS;α-olefin sulfonate) 중 적어도 하나가 혼합될 수 있다.Polymeric surfactants as modifiers are used to prevent condensation of concrete and to prevent aggregation of acrylic particles. Polymeric surfactants for preventing concrete condensation include dichlorodiphenyldi (tri) coloethane (TDE; p, p'-dichlorodiphenyldi (tri) chloroeth ane), nonylphenol (NP; nonylphenol), and sodium lauryl sulfate (SLES). At least one of sodium laureth sulfate) and α-olefin sulfonate (AOS).
글리세린(또는 글리세롤)은 폴리머 개질 콘클기트의 재료분리 방지를 위한 것으로서, 무색, 무취의 액체이며 점성이 매우 높은 특징이 있어 콘크리트에 혼합시 재료분리를 방지하고 작업성을 향상시킨다.Glycerin (or glycerol) is to prevent material separation of polymer modified concrete, colorless, odorless liquid, and has a very high viscosity to prevent material separation and improve workability when mixed with concrete.
아민계 강도촉진제는 콘크리트의 초기강도를 증진시켜 시공 기간을 단축시킴과 동시에 콘크리트의 강도를 증대시킨다. Amine-based strength accelerators increase the initial strength of concrete, shorten the construction period and increase the strength of concrete.
콘크리트 강도증가를 위한 아민계강도촉진제는 암모니아(NH3)의 수소원자를 1~3개의 탄화수소기(R)로 치환한 화합물로 모노에탄올아민(MEA; Monoethanolamine), 디에탄올아민(DEA; Diethanolamine), 트리에탄올아민(TEA; Triethanolamine), 모노이소프로판올아민(MIPA; Monoisopropanolamine), 디이소프로판올아민(DIPA; Diisopropanolamine), 트리이소프로판올아민(TIPA; Triisopropanolamine) 중 적어도 어느 하나를 혼합한다.Amine-based strength accelerator for increasing concrete strength is a compound in which hydrogen atoms of ammonia (NH 3 ) are substituted with one to three hydrocarbon groups (R). Monoethanolamine (MEA; Monoethanolamine) , At least one of triethanolamine (TEA; Triethanolamine), monoisopropanolamine (MIPA; Monoisopropanolamine), diisopropanolamine (DIPA; Diisopropanolamine), and triisopropanolamine (TIPA; Triisopropanolamine).
초기강도의 발현을 위하여 알루미늄계수화촉진제를 추가적으로 사용할 수 있다. 알루미늄계수화촉진제로는 소디움알루미네이트(NaAlO2; Sodium aluminate), 알루미늄설페이트(Al2(SO4)3; Aluminum sulfate) 중 적어도 어느 하나가 사용될 수 있다. In order to express the initial strength, an aluminum catalysis accelerator may be additionally used. At least one of sodium aluminate (NaAlO 2 ) and aluminum sulfate (Al 2 (SO 4 ) 3 ; aluminum sulfate) may be used as the aluminum conversion accelerator.
또한 작업성 확보를 위하여 폴리카본산계 고성능 감수제를 혼합할 수 있으며, 콘크리트의 슬럼프변화 방지를 위해 시멘트 수화지연제를 혼합할 수 있다In addition, polycarboxylic acid-based high performance water reducing agent can be mixed to secure workability, and cement hydration retardant can be mixed to prevent slump change of concrete.
시멘트 수화지연제는 탈타릭에시드(Tartaric Acid), 쇼디움글루코네이트(Sodium Gluconate), 씨트릭에시드(Ctric Acid), 파스페이트(Phosphate), 글루코스(Glucose) 중 하나 이상을 혼합한다. 소포제로는 실리콘계 또는 알콜계를 첨가할 수 있다.Cement Hydration Delay Agent mixes one or more of Tartaric Acid, Sodium Gluconate, Citric Acid, Phosphate, and Glucose. As antifoaming agent, silicone type or alcohol type can be added.
폴리머 에멀젼은 콘크리트 대비 1~15중량%의 비율로 콘크리트에 혼합가능하다. 본 발명의 일 실시예에서, 아크릴에멀젼 수지 75~97.5 중량%, 고분자계면활성제 0.05 중량%, 글리세린 0.05~5 중량%, 아민계강도촉진제 0.05~5 중량%, 알루미늄계수화촉진제 0.05~5 중량%, 감수제 0.05~5 중량%의 비율로 혼합한다The polymer emulsion can be mixed in the concrete at a ratio of 1 to 15% by weight of the concrete. In one embodiment of the present invention, the acrylic emulsion resin 75 ~ 97.5% by weight, polymer surfactant 0.05% by weight, glycerin 0.05-5% by weight, amine-based strength promoter 0.05-5% by weight, aluminum hydration promoter 0.05-5% by weight Mix in proportion of 0.05-5% by weight
상기한 조성의 폴리머 에멀젼에서 본 발명에서 중요한 재료는 고분자 계면활성제와 아민계 강도촉진제이다. In the polymer emulsion of the above composition, the important materials of the present invention are a polymer surfactant and an amine strength promoter.
기존에 폴리머 개질 콘크리트를 현장에서 배합할 수 밖에 없었던 이유는 아크릴에멀젼 수지를 혼합하면 콘크리트에 위응결과 슬럼프 손실이 발생하기 때문이었다. 본 발명에서는 상기한 재료의 고분자 계면활성제를 사용함으로써 이러한 문제를 해결하였다. Previously, polymer modified concrete was inevitably compounded on site because mixing acrylic emulsion resin caused slump loss as a result of condensation on concrete. In the present invention, this problem is solved by using the polymer surfactant of the above-mentioned material.
또한 아민계 강도촉진제는 콘크리트 자체의 강도를 증가시킬 뿐만 아니라, 특히 초기강도를 높게 형성하므로, 보수를 위한 차량 통행 억제시간을 최소한으로 단축시킬 수 있다. In addition, the amine-based accelerators not only increase the strength of the concrete itself, but in particular, the initial strength is formed high, thereby reducing the vehicle traffic suppression time for repair to a minimum.
한편, 고강도 급결성 첨가재는 폴리머 개질 콘크리트의 속경성 발현을 위한 것이다. 종래의 도로 보수용 폴리머 개질 콘크리트는 속경성 발현을 위하여 고가의 초속경 시멘트를 주재료로 사용하였으며, 이는 도로 보수용 콘크리트의 시공 경제성을 상승시키는 주요 원인으로 작용하였다. 본 발명에서는 고강도 급결성 첨가재를 현장에서 콘크리트에 배합함으로써, 고가의 초속경 시멘트를 사용하지 않고도 시공 기간을 단축시킬 수 있을 뿐만 아니라, 콘크리트의 강도도 증대시킨다. On the other hand, the high-strength quenchable additive is for rapid hardening of the polymer-modified concrete. In the conventional road repair polymer modified concrete, high-speed super hard cement was used as a main material to express fast hardening, which acted as a main cause of increasing construction economics of road repairing concrete. In the present invention, by blending the high-strength quick-adding additive to the concrete in the field, not only can shorten the construction period without using expensive superhard cement, but also increases the strength of the concrete.
고강도 급결성 첨가재는 고강도재, 급결재, 발열재, 응결촉진재, 안정재, 지연제, 고성능 감수제로 이루어진다. High-strength fastener additives are composed of a high strength material, a fastening material, a heating material, a condensation accelerator, a stabilizer, a retardant, a high performance water reducing agent.
본 발명에서 고강도재로는 침강실리카를 사용한다. 또한 실리카흄과 Ⅱ형 무수석고를 함께 사용할 수도 있다. In the present invention, precipitated silica is used as the high strength material. It is also possible to use silica fume and type II anhydrous gypsum together.
침강실리카는 BET 비표면적이 220~350cm2/g 정도의 입자로, 규산알칼리 수용액과 산을 반응시켜 석출하여 제조된 것으로서, 입경이 매우 작아 콘크리트의 더 미세한 공극을 채우는 효과가 뛰어나다. 또한 미립자의 화학적 변화에 있어 실리카흄보다 더 높은 수준의 반응성을 나타낸다. 다만 입자 표면에 물을 흡수하는 특성 때문에 배합수가 증가할 우려가 있으므로 그 사용량은 시험을 통해 조정해서 사용하는 것이 좋다.Sedimented silica is a particle having a BET specific surface area of about 220 to 350 cm 2 / g, prepared by reacting an alkali silicate aqueous solution with an acid, and having a very small particle diameter, which has an excellent effect of filling fine pores of concrete. It also exhibits a higher level of reactivity than silica fume in chemical change of particulates. However, due to the property of absorbing water on the surface of particles, the number of compounding may increase, so the amount of use should be adjusted by testing.
또한, "BET 비표면적"이란, 에스. 브루노르, 피이. 에이치. 에메트, 이이. 텔러(S. Brunaure, P. H. Emmett, E.Teller)에 의한 J. Am. Chem. Soc., 60, 309(1938)에 기재된 다분자층 흡착 이론을 응용하여 측정되는 비표면적이며, 실리카의 평균 1차 입자경에 상당한다고 생각된다. 예를 들면, 분체 공학회편「개정 증보 분체 물성 도설」(1985)에도 기재되어 있는 바와 같이, 1차 입자를 구형(球形)으로 가정하면, 비표면적과 1차 입자의 평균 지름 사이에는 하기 식(1)의 관계가 있어, 비표면적이 클수록 평균 1차 입자경은 미소하게 된다.In addition, "BET specific surface area" means S. Bruno, P. H. Emmett, this. J. Am. By S. Brunaure, P. H. Emmett, E. Teller. Chem. The specific surface area measured by applying the multi-molecular layer adsorption theory described in Soc., 60, 309 (1938) is considered to correspond to the average primary particle diameter of silica. For example, as described in the Powder Engineering Sculpture "Revision Supplementary Powder Property Sculpture" (1985), assuming that the primary particles are spherical, the following equation (a) is obtained between the specific surface area and the average diameter of the primary particles: 1), the larger the specific surface area, the smaller the average primary particle size.
D=6/(S·ρ) ... 식(1)D = 6 / (S · ρ) ... equation (1)
(여기서, D는 평균 1차 입자경, S는 비표면적이고 ρ는 입자의 밀도를 나타냄)(Where D is the average primary particle diameter, S is the specific surface, and ρ is the density of the particle)
실리카흄은 실리콘이나 페로실리콘 등의 규소합금을 전기아크식 로에서 제조할 때 배출가스에 부유하여 발생하는 부산물의 총칭이며, 규소합금의 원료로서 규석, 석탄, 목편, 철가루 등과 환원제로써 코우크스를 전기로에 투입하여 약 2,000℃의 고온으로 페로실리콘을 제조하게 된다. 이때 중간생성물인 SiO가 가스화하여 이것이 공기에 의해 산화하여 SiO2로 되고 다시 응축하여 초미립자로 생성되는 것이다. 생성된 초미립자는 전기집진장치를 이용하여 회수함으로써 실리카흄이 얻어진다. 실리카흄은 90%이상이 구형으로 구성되어 있고, 입경이 1μm이하, 평균입경은 0.1μm정도, 비표면적이 약 20m2/g정도, 비중이 약 2.1~2.2정도의 비정질로써 시멘트알칼리(Ca(OH)2)와 포졸란 반응에 의해 콘크리트 미세공극을 충전하고 수화물을 생성시킴으로써 고강도를 발현시킨다.Silica fume is a generic name of by-products generated by floating in exhaust gas when silicon alloys such as silicon or ferrosilicon are manufactured in electric arc furnaces. It is put into an electric furnace to produce ferrosilicon at a high temperature of about 2,000 ℃. At this time, the intermediate product SiO is gasified, which is oxidized by air to SiO 2 and condensed again to produce ultrafine particles. The produced ultrafine particles are recovered by using an electrostatic precipitator to obtain silica fume. Silica fume is composed of more than 90% of spherical shape, particle size is less than 1μm, average particle size is about 0.1μm, specific surface area is about 20m 2 / g and specific gravity is about 2.1 ~ 2.2. ) thereby expressing a high strength by filling and produce a hydrate concrete micropores by 2) and pozzolanic reaction.
Ⅱ형무수석고는 천연무수석고를 분쇄기를 통해 50m2/g이상의 고미분말도로 분쇄한 것으로써, 결정구조로 이루어져 알칼리환경에서 반응성을 가지며, 시멘트 수화물(CSH; calcium silicate hydrate) 및 A12O3와 반응하여 콘크리트 공극내에 침상의 결정체인 Ettringite를 생성시키고 조직을 치밀화시켜 고강도를 발현할 수 있다. Type II anhydrous gypsum is pulverized natural anhydrous gypsum with a fine powder of 50m 2 / g or more through a pulverizer, composed of crystal structure and reactive in alkaline environment, calcium silicate hydrate (CSH) and A1 2 O 3 It can react with to form Ettringite, a needle-like crystal in the concrete pores, and densify the structure to express high strength.
본 실시예에서, 급결재로는 비정질칼슘알루미네이트(Amorphous 12CaO·7Al2O3; C12A7), CSA(3CaO·3Al2O3·CaSO4; C4A3S)를 하나 이상 사용할 수 있다. In this embodiment, the oil supply payment is amorphous calcium aluminate may be used;; (C 4 A 3 S 3CaO · 3Al 2 O 3 · CaSO 4) one or more (Amorphous 12CaO · 7Al 2 O 3 C12A7), CSA.
비정질칼슘알루미네이트는 보크사이트(Bauxite)와 석회석(Limestone)을 전기로에서 소성후 직경 1~2mm이하의 작은 알갱이형태로 급냉시켜 제조되는 비정질의 광물로써 분말도 40m2/g이상으로 분쇄하여 제조되며, 바람직하게는 50~70m2/g의 범위이다. 시멘트수화물인 Ca(OH)2 및 Ⅱ형천연무수석고와 반응하여 급격하게 Ettringite를 생성시키고 시멘트를 경화시킨다. 그러나 사용량이 높을 경우 초기 과다하게 큰 결정체(Ettringite)가 급격하게 생성되어 응결이 매우 짧아지고 강도가 발현되지 않는 결과가 나오게 된다. Amorphous calcium aluminate is prepared by pulverizing a bauxite (Bauxite) with limestone and then fired in an electric furnace for (Limestone) diameter from 1 to more than 40m 2 / g even powder as mineral amorphous prepared by rapid cooling with granulated forms of 2mm or less Preferably it is the range of 50-70m <2> / g. It reacts with cement hydrate Ca (OH) 2 and type II anhydrous gypsum rapidly to produce Ettringite and harden cement. However, when the amount is high, excessively large initial crystallites (Ettringite) are rapidly formed, resulting in very short condensation and no strength.
CSA는 Bauxite, CaCO3 및 CaSO4를 전기로에서 소성후 상온에서 냉각하여 제조되는 광물로써 분말도는 50m2/g이상이며, 바람직하게는 60m2/g~80m2/g의범위이고, 시멘트수화물 및 Ⅱ형천연무수석고와 반응하여 급격하게 Ettringite를 생성시켜 속경성을 나타내게 된다. ACA와는 달리 사용량이 높아도 응결시간이 급격하게 짧아지지 않고 안정적인 고강도 속경성을 나타내게 된다.CSA is a mineral produced by calcining Bauxite, CaCO 3 and CaSO 4 in an electric furnace after cooling at room temperature. The powder level is 50m 2 / g or more, preferably 60m 2 / g ~ 80m 2 / g, cement hydrate It reacts with Type II Natural Anhydrite Gypsum to rapidly produce Ettringite, thereby exhibiting fast hardness. Unlike the ACA, even if the amount of use is high, the setting time is not shortened drastically.
초속경재료의 경화는 수화열량과 밀접하게 관계가 있다. 시멘트광물의 수화반응은 발열반응의 형태를 나타내게 되고, 발열량의 크기에 따라 초기강도의 발현이 좌우된다. 본 발명에서는 콘크리트의 초기강도 증진을 위한 광물계 발열재로 탄산칼륨(potassium carbonate, K2CO3)과 산화칼슘(calcium oxide, CaO)을 하나 이상 사용할 수 있다.The hardening of the cemented carbide is closely related to the amount of heat of hydration. Hydration reaction of cement minerals shows the form of exothermic reaction, and the expression of initial strength depends on the amount of calorific value. In the present invention, one or more of potassium carbonate (potassium carbonate, K 2 CO 3 ) and calcium oxide (calcium oxide, CaO) may be used as a mineral heating material for improving the initial strength of concrete.
탄산칼륨은 물과 반응하여 0.2103J/g의 용해열을 발산하고, 산화칼슘은 물과 반응하여 1.0679의 용해열을 발산한다. 그러나 산화칼슘은 물을 흡수하여 수산화칼슘(Ca(OH)2)화 되고 체적이 2배로 증가하는 문제점이 발생될 수 있다. 따라서 적당한 량의 발열재를 사용하여야 한다.Potassium carbonate reacts with water to give off 0.2103 J / g of heat of dissolution, and calcium oxide reacts with water to give 1.0679 of heat of dissolution. However, calcium oxide absorbs water, which may cause calcium hydroxide (Ca (OH) 2 ) to be doubled in volume. Therefore, an appropriate amount of heating material should be used.
응결촉진재로 규산나트륨분말(Na2SiO3; sodium silicate), 터널화이트(Al2O3 함량이 80%이상인것), 리튬카보네이트를 하나 이상 사용할 수 있다. 규산나트륨분말은 시멘트의 CaO와 반응하여 규산칼슘수화물(CSH)을 생성하고 시멘트의 응결을 촉진한다. 터널화이트(Tunnel White)는 보크사이트(Bauxite)를 전기로에서 소성하여 제조한 비정질의 백색분말로써, Al2O3 함량이 80%이상을 함유하고 있으며, ACA(Amorphous Calcium aluminate) 및 CSA(Calcium Sulfo aluminate)의 Ettringite 생성반응을 촉진시킨다. 리튬카보네이트(Li2CO3; Lithum carbonate)는 알칼리금속중 원자량이 가장 작은 원료이며 백색의 단사정계 분말로 콘크리트 중의 알칼리이온 농도를 급격하게 증대시켜 콘크리트의 응결을 촉진하고 초속경성을 나타내게 한다. As a coagulant, sodium silicate powder (Na 2 SiO 3 ; sodium silicate), tunnel white (with an Al 2 O 3 content of 80% or more) and lithium carbonate may be used. Sodium silicate powder reacts with CaO of cement to produce calcium silicate hydrate (CSH) and promotes cement condensation. Tunnel White is an amorphous white powder prepared by calcining bauxite in an electric furnace, containing 80% or more of Al 2 O 3 , ACA (Amorphous Calcium aluminate) and CSA (Calcium Sulfo) Promote the reaction of Ettringite formation of aluminate). Lithium carbonate (Li 2 CO 3 ; Lithum carbonate) is the raw material with the smallest atomic weight among alkali metals. It is a white monoclinic powder that rapidly increases the concentration of alkali ions in concrete and promotes condensation of concrete and shows super-speed hardness.
안정재로 고보수성폴리머(SAM; Super absorbency material)를 사용할 수 있다. 이것은 콘크리트 초기 혼합시에 잉여수를 흡수하여 보유하고, 콘크리트가 경화과정에서 필요한 수분을 서서히 공급하는 역할을 수행한다. 따라서 콘크리트는 양생과정에서 충분한 수분공급이 이루어져 장기내구성 및 강도가 증가할 수 있다.Super absorbency material (SAM) can be used as a stabilizer. This absorbs and retains surplus water during the initial mixing of concrete, and serves to gradually supply the moisture necessary for the curing process. Therefore, concrete can be supplied with sufficient moisture during curing, which can increase long-term durability and strength.
지연제로 탈타릭에시드(Tartaric Acid), 쇼디움글루코네이트(Sodium Gluconate), 씨트릭에시드(Ctric Acid)를 하나 또는 2개 이상 사용할 수 있다.Tataric acid, sodium gluconate, or citric acid may be used as the retardant.
고성능감수제는 폴리카본산계분말(Polycarboxylate powder), 나프탈린파우더(Naphthalin powder), 멜라민분말(Melamine powder), 니그린분말(Lignin powder)를 하나 사용할 수 있다.The high-performance susceptor may include one of polycarboxylate powder, naphthalin powder, melamine powder, and nigrin powder.
상기한 바와 같이, 본 발명은 공장에서 레디믹스 콘크리트를 배합하고, 또한 공장에서 레디믹스 콘크리트에 폴리머 에멀젼을 혼합한 후, 이를 레미콘 차량을 이용하여 도로 보수 현장으로 이송한다. 그리고 도로 보수 현장에서 전단 믹서를 이용하여 고강도 급결성 첨가재를 혼합하여 도로 보수를 수행한다. As described above, the present invention mixes ready-mixed concrete at the factory, and also mixes the polymer emulsion with the ready-mixed concrete at the factory, and transfers it to the road repair site using the ready-mixed vehicle. And road repair is carried out by mixing high-strength fastener additives using a shear mixer at the road repair site.
본 발명에서는 콘크리트 조성물에 아크릴에멀전 수지가 포함되어 있음에도 유동성을 유지할 수 있다. 따라서 본 발명에 따른 콘크리트 조성물은 이송거리 및 시간에 관계되지 않고 장거리 운송이 가능하고, 더불어 해상운송이나 펌프카를 이용한 원거리 이송 또한 가능하게 된다. In the present invention, fluidity can be maintained even though the acrylic emulsion resin is included in the concrete composition. Therefore, the concrete composition according to the present invention can be transported over a long distance irrespective of the transport distance and time, and also a long distance transport using a sea transport or a pump car.
상기한 바와 같이, 공장에서 콘크리트를 배합할 수 있다는 것은 콘크리트의 품질 관리 측면에서 매우 큰 이점이 있다. 즉, KS인증을 받은 콘크리트 생산공장에서 콘크리트를 제조함으로써 원재료의 상태를 일정하게 유지할 수 있으며, 모든 재료의 정량계량이 가능하고, 생산된 콘크리트의 슬럼프 및 공기량이 요구 품질에 적합한 콘크리트만 출하되게 할 수 있다. As mentioned above, being able to mix concrete in a factory has a very big advantage in terms of quality control of concrete. In other words, by manufacturing concrete in a KS-certified concrete production plant, it is possible to maintain the condition of raw materials, to quantitatively measure all materials, and to ensure that only concrete that meets the required quality can be shipped with the slump and air volume of the produced concrete. Can be.
또한 본 발명에서는 고강도 급결성 첨가재를 사용하여 기존의 도로 포장 보수용 콘크리트에 초속경 시멘트를 사용함으로써 초래된 경제성의 문제를 해결할 수 있다는데 큰 장점이 있다. In addition, the present invention has a great advantage in that it is possible to solve the economic problems caused by the use of cemented carbide in the existing road pavement repair concrete using a high-strength fastener additives.
본 연구진은 폴리머 개질 콘크리트 조성물의 물성을 실험하였다. The researchers tested the properties of the polymer-modified concrete composition.
우선 고강도 급결성 첨가재의 각 재료의 혼합에 따른 효과를 알아보는 실험을 수행하였다. 도 2에는 고강도 급결성 첨가재를 혼합하지 않은 시료1과, 일부의 재료들만 혼합한 시료2~시료5, 모든 첨가재를 혼합한 시료6의 조성과 배합비가 나타나 있다. 그리고 도 3에는 도 2에 기재된 시료들에 대한 물성 시험결과가 나타나 있다. First of all, an experiment was conducted to determine the effect of the mixing of each material of the high-strength fastness additive. FIG. 2 shows the composition and blending ratio of Sample 1 without mixing the high-strength additive material, Sample 2 to Sample 5 with only a few materials, and Sample 6 with all additives mixed. 3 shows physical property test results for the samples described in FIG. 2.
도 2의 표에 나타난 대로, 6개의 시료를 만들어 공기량, 슬럼프 및 강도에 대한 물성을 실험하였다. As shown in the table of Figure 2, six samples were made to test the physical properties for air volume, slump and strength.
도 2를 참조하면, 물-시멘트비와 모래-골재비 및 고성능 감수제 사용량을 일정하게 하고, 총시멘트량에서 고강도급결재를 내비로 치환하고 고강도급결재 조성비율을 변경하면서 각각의 배합에 대한 성능을 확인하였다.Referring to Figure 2, the water-cement ratio and sand-aggregate ratio and high-performance water-reducing agent consumption is constant, and the performance of each formulation while replacing the high-strength filler with the navigator in the total cement amount and changing the high-strength filler composition ratio Confirmed.
시료1의 경우, 시멘트, 모래, 자갈 및 물과, 고성능감수제만을 사용하여 일반적인 콘크리트를 제조하였으며, 통상의 비율로 콘크리트를 배합하였다. 예견한 대로, 시료1에서는 도로포장체 보수를 위한 속경성이 발현되지 않는 문제와 응결 초기에 고강도가 발현되지 않는 문제가 나타났다. In the case of Sample 1, general concrete was prepared using only cement, sand, gravel and water, and a high performance water reducing agent, and concrete was mixed at a normal ratio. As expected, in Sample 1, there was a problem in which fast hardness for road pavement repair was not expressed and a problem in which high strength was not expressed at the initial setting of condensation.
시료2~6에서는 급결성과 고강도를 나타내기 위해 급결재, 고강도재, 발열재, 응결촉진재, 안정재 및 지연제를 각각 추가적으로 사용하였으며, 그 결과로써 초기강도발현과 초기고강도를 확보할 수 있었다. Samples 2 to 6 additionally used a fastener, a high strength material, a heating material, a coagulation accelerator, a stabilizer, and a retardant to show quickness and high strength. As a result, initial strength expression and initial high strength could be secured. .
실험결과를 참고하면, 슬럼프는 KS F 2402에 따라 진행하였으며, 시료1은 초기 슬럼프가 210mm를 나타낸 후 시간이 경과함에 따라 200mm, 180mm까지 감소하는 결과를 나타내었다. 시료2는 시멘트량의 120kg를 급결재로 내비치환하여 사용하였다. 초기슬럼프는 180mm를 나타낸 반면 재령 15분 경과후 100mm이하로 저하되었고, 시료3~6에서도 경시변화량이 점차 감소하는 경향을 보이고 있다. 경시변화가 감소 결과를 참고하면, 시료2~6은 초속경콘크리트 시공을 위한 최소한의 작업성 확보가 가능하다는 것을 확인하였다. Referring to the experimental results, the slump was performed according to KS F 2402, and Sample 1 showed a result of decreasing to 200 mm and 180 mm with time after the initial slump showed 210 mm. Sample 2 was used by navigating 120kg of cement amount as a fastener. While the initial slump was 180mm, it was lowered to 100mm or less after 15 minutes of age, and the change with time gradually decreased in samples 3 to 6 as well. As a result of the decrease in the change over time, it was confirmed that Samples 2 to 6 can secure the minimum workability for the construction of ultra-high speed concrete.
본 발명에서 가장 중요한 것은 재령 4시간 압축강도이다. 공용중인 도로의 긴급보수 시공을 수행하기 위해서는 시공초기에 높은 강도를 발현하는 것이 가장 중요하다. 그러나 종래 기술에서는 초속경시멘트를 전량사용하여 초속경폴리머콘크리트를 제조하는 것만이 유일한 방법이었으나, 본 발명에서는 초속경 발현을 위한 첨가재를 시멘트의 20~40%를 치환사용하여 초속경폴리머콘크리트를 제조할 수 있다.Most important in the present invention is age 4 hours compressive strength. In order to perform emergency repair construction of public roads, it is most important to express high strength at the beginning of construction. However, in the prior art, the only method was to manufacture superhard polymer concrete using the whole amount of superhard cement, but in the present invention, superhard polymer concrete was manufactured by substituting 20-40% of cement as an additive for the super hard carbide expression. can do.
시료1은 일반콘크리트로써 재령4시간에 경화가 되지 않아 강도 측정이 불가능 하였으며, 1일(24시간)이후에 강도 측정이 가능하였다. 시료2~6에서는 고강도 혼합재의 조성을 변경하여 혼합하고 강도를 측정하였다. 시료2에서와 같이 급결성재료만을 첨가할 경우는 초기 응결이 너무 빨리 진행되어 오히려 강도가 상대적으로 저하되는 현상이 나타났으며, 고강도재 및 발열재 응결촉진재 등을 사용한 시료3~6은 강도가 증가되는 현상이 나타나고 있다. 시료6은 안정재를 사용함으로써 4시간 강도는 시료5와 유사하면서 1일 이후 강도는 더 높게 발현되는 결과를 나타내고 있다. 따라서, 고강도 급결성 첨가재의 모든 재료들을 혼합하였을 때 가장 높은 초기강도를 확보할 수 있음을 확인하였다. Sample 1 was not cured at 4 hours of age as a concrete concrete, so it was impossible to measure the strength. After 1 day (24 hours), strength measurement was possible. In Samples 2 to 6, the composition of the high strength mixture was changed and mixed to measure the strength. When only the quick-setting material was added as in Sample 2, initial condensation proceeded too fast and the strength was relatively decreased. Samples 3 to 6 using high-strength material and heating material condensation accelerator showed strength. Is increasing. Sample 6 shows a result that the intensity of 4 hours is similar to that of Sample 5 and the intensity is higher after 1 day by using a stabilizer. Therefore, it was confirmed that the highest initial strength could be secured when all the materials of the high strength fastness additive were mixed.
또한, 폴리머 에멀젼의 효과에 대해서도 실험하였다. In addition, the effect of the polymer emulsion was also tested.
도 4에는 콘크리트에 폴리머 에멀젼의 조성을 달리하여 시료1~6을 배합하였다. 즉, 시료1은 폴리머 에멀젼과 고강도 급결재를 사용하지 않고 일반콘크리트배합을 적용하였으며, 시료2는 고강도 급결재와 함께 일반 아크릴에멀젼을 사용하였고, 시료3~6에서는 고강도급결재와 함께 일반 아크릴에멀젼수지에 본 발명에서 사용하는 개질제를 추가적으로 혼합하였다. In Figure 4 was mixed with samples 1 to 6 by varying the composition of the polymer emulsion in concrete. In other words, sample 1 was applied to general concrete formulation without using polymer emulsion and high strength fastener, and sample 2 was used to general acrylic emulsion with high strength fastener, and samples 3 to 6 were common acrylic emulsion with high strength fastener. The resin further mixed with the modifier used in the present invention.
도 5에는 시료들의 실험 결과가 나타나 있다. 5 shows the experimental results of the samples.
일반 콘크리트 배합을 한 시료1에서는 슬럼프가 재령 60분 동안 유지되는 결과를 나타내고 있으며, 일반아크릴에멀젼과 고강도급결재를 사용한 시료2에서는 고강도급결재의 영향으로 초기슬럼프 측정 이후 급격하게 응결이 진행되어 재령 15분 후 슬럼프가 115mm로 낮아지는 결과를 나타내고 있다. 그 이후에도 계속적으로 급하게 응결이 진행되어 30분에서는 측정이 불가능하였다. 시료3~6은 개질제를 사용하여 아크릴에멀젼수지의 성능을 개선한 것으로서, 계면활성제가 아크릴 입자에 흡착되어 시멘트와 혼합시 입자간의 급격한 응집을 방지하며, 고강도급결재와 시멘트의 수화반응을 적절하게 조절하고 있다. 시료3은 계면활성제만을 사용한 것으로서 슬럼프가 60분까지 유지되는 결과를 나타내고 있으며, 실시예3~5 또한 계면활성제의 영향으로 시료2에 비해 상대적으로 우수한 슬럼프 유지시간을 나타내고 있다. Sample 1 with normal concrete mixture shows the result that the slump is maintained for 60 minutes, while sample 2 using the general acrylic emulsion and the high-strength filler is rapidly cured after the initial slump measurement due to the influence of the high-strength filler. After 15 minutes, the slump is lowered to 115 mm. After that, condensation proceeded rapidly, and measurement was impossible at 30 minutes. Samples 3 to 6 improve the performance of the acrylic emulsion resin by using a modifier. The surfactant is adsorbed to the acrylic particles to prevent sudden aggregation between the particles when mixed with the cement, and the hydration reaction between the high strength filler and the cement is appropriately performed. I'm adjusting. Sample 3 shows the result that the slump is maintained for up to 60 minutes using only the surfactant, and Examples 3 to 5 also show a relatively better slump retention time than the sample 2 under the influence of the surfactant.
압축강도를 측정한 결과, 시료1은 초기 4시간에 응결이 진행되지 않아 강도 측정이 불가능 하였으며, 재령1일(24시간)이후부터 강도 측정이 가능하였다. 시료2는 일반아크릴수지와 고강도급결재를 사용한 영향으로 비교예에 비해 초기강도가 매우 향상되는 결과를 나타내고 있다. 개질제로써 계면활성제 만을 사용한 실시예2는 실시예1에 비해 상대적으로 낮은 초기강도를 발현한다. 이것은 계면활성제 사용에 따른 고강도급결재의 수화반응 지연작용에 의한 것으로 판단된다. 실시예3~5는 상기의 아크릴에멀젼의 개질에 따른 강도저하를 방지하기 위한 개질제 사용에 의한 물성변화를 나타내고 있다. 실시예2에 비해 경시변화는 약간 커지는 경향이 나타났지만, 초기강도가 증가하는 현상을 보이고 있으며, 장기강도에서도 우수한 강도를 발현하고 있다. As a result of measuring the compressive strength, the sample 1 was unable to measure the strength because the condensation did not proceed in the initial 4 hours, and the strength could be measured after 1 day (24 hours). Sample 2 shows the result that the initial strength is greatly improved compared to the comparative example due to the effect of using a common acrylic resin and a high strength filler. Example 2, using only surfactant as the modifier, exhibits relatively low initial strength compared to Example 1. This may be due to the hydration retardation action of the high-strength filler with the use of surfactants. Examples 3 to 5 show the change in physical properties by using a modifier to prevent the decrease in strength due to the modification of the acrylic emulsion. Compared to Example 2, the change over time tended to be slightly larger, but the initial strength was increased, and the long-term strength was also excellent.
염소이온 침투성능을 측정한 결과 시료1은 2,750coulomb의 높은 통과전하량을 나타내는 반면, 고강도급결재와 일반아크릴에멀젼(시료2) 또는 개질아크릴에멀젼수질를 사용한 조성물(시료3~6)에서 300~500coulomb정도의 매우 낮은 통과전하량을 나타냄으로써 염소이온에 대한 저항성이 매우 우수하다는 것을 알 수 있다.As a result of measuring the chlorine ion permeation performance, Sample 1 exhibited a high passing charge of 2,750 coulomb, while 300 ~ 500 coulomb was used in the composition using the high-strength filler and general acrylic emulsion (sample 2) or modified acrylic emulsion water quality (samples 3 to 6). By showing a very low amount of charge passing through it can be seen that the resistance to chlorine ions is very excellent.
부착강도 측정결과 시료1은 일반적인 콘크리트의 부착강도를 나타내는 반면, 시료2~6은 매우 향상된 부착강도를 나타냈다. As a result of measuring the adhesion strength, Sample 1 showed the adhesive strength of general concrete, while Samples 2 to 6 showed very improved adhesion strength.
또한 본 연구진은 폴리머 에멀젼 사용량을 고정시키고, 고강도 급결성 첨가재의 조성비를 변경하여 시료를 조성하여 물성시험을 진행하였다. 도 6은 시료의 조성비를 나타낸 표이며, 도 7은 실험결과가 나타난 표이다. In addition, the researchers fixed the amount of polymer emulsion and changed the composition of the high-strength fastener additives to prepare a sample to test the physical properties. 6 is a table showing the composition ratio of the sample, Figure 7 is a table showing the experimental results.
시료1에서는 고강도 급결성 첨가재를 사용하지 않았으며, 시료2~6에서는 고강도 급결성 첨가재 사용량을 63kg/m3에서 315kg/m3까지 증가시킨 콘크리트의 물성결과를 나타내고 있다.In sample 1 did not use a high-strength grade additive integrity, sample 2-6 shows the results of the physical properties of the concrete is increased from 63kg / m 3 up to 315kg / m 3 the high strength grade integrity additive amount.
시료1은 슬럼프 경시변화량이 적어 유지성능은 우수하나 압축강도 발현이 저하되어 긴급보수용 콘크리트에는 적합하지 않은 결과를 나타내고 있으며, 염소이온 통과 전하량도 낮아지기는 하지만 다른 시료들과 비교할 때 상대적으로 높은 값을 나타내었다. 이것은 고강도 급결성 첨가재가 시멘트 수화물과 반응함으로써, 콘크리트의 모세관 공극에 수화물을 생성시켜 콘크리트 메트릭스를 더욱 치밀하게 형성시키는 결과로 판단된다. Sample 1 has good retention performance due to the small amount of change in slump over time. However, the compressive strength expression is lowered, which is not suitable for emergency repair concrete, and the amount of charge passing through chlorine ions is lowered, but it is relatively higher than other samples. Indicated. This is believed to be the result of the high strength quenchable additive reacting with the cement hydrate, thereby producing a hydrate in the capillary pores of the concrete to form the concrete matrix more densely.
시료2~6은 고강도 급결성 첨가재의 사용량이 증가함에 따라 재령 4시간의 초기강도가 증가하는 경향을 나타내고 있으나, 사용량이 과다하게 높아지는 시료5~6은 오히려 시료3~4에 비해 강도가 저하되는 결과를 나타낸다. 이는 초기 급결성 수화물의 생성반응의 영향으로 초기 급결재량이 과다하게 높을 경우, 급결성수화물의 크기가 매우 커지고 오히려 시멘트 수화물의 생성 및 확장이 방해를 받아 모세관 공극량이 늘어나고 콘크리트의 메트릭스가 느슨하게 형성되는 결과라고 할 수 있다. Samples 2 to 6 showed a tendency to increase the initial strength of 4 hours of age as the amount of high-strength fastener additives used increased, but samples 5 to 6 that used excessively increased strength decreased compared to samples 3 to 4 Results are shown. This is because, due to the reaction of the formation of the early quenchable hydrate, if the initial quenching amount is excessively high, the size of the quenchable hydrate is very large, and the formation and expansion of cement hydrate is hindered, so that the amount of capillary void is increased and the matrix of the concrete is loosely formed. The result can be said.
염소이온 통과전하량은 모든 조성비율에서 폴리머 에멀젼의 사용으로 1,000coulomb이하의 낮은 결과를 나타내고 있으나, 고강도 급결성 첨가재의 사용량이 증가함에 따라 전하량은 270coulomb까지 낮아지는 결과를 나타내고 있다.The amount of chlorine ion passing charge is lower than 1,000 coulomb due to the use of polymer emulsion at all composition ratios, but the amount of charge decreases to 270 coulomb as the amount of high-strength fastener additive is increased.
실험 결과를 토대로, 본 발명에서 고강도 급결성 첨가재는 폴리머 개질 콘크리트 조성물 전체에서 2.7~14 중량%의 범위로 혼합될 수 있으며, 초기 압축강도의 측면에서는 5.5~8.5 중량%의 범위로 혼합되는 것이 바람직하다는 것을 확인하였다. Based on the experimental results, the high-strength fastener additive in the present invention may be mixed in the range of 2.7 to 14% by weight throughout the polymer-modified concrete composition, preferably in the range of 5.5 to 8.5% by weight in terms of initial compressive strength. It was confirmed that.
또한 본 연구진은 고강도 급결성 첨가재 사용량을 고정시키고, 폴리머 에멀젼의 조성비를 변경하여 시료를 조성하여 물성하였다. 도 8은 시료의 조성비를 나타낸 표이며, 도 9는 실험결과가 나타난 표이다. In addition, the researchers fixed the amount of high-strength fastener additives and changed the composition of the polymer emulsion to form a sample. 8 is a table showing the composition ratio of the sample, Figure 9 is a table showing the experimental results.
시료1은 폴리머 에멀젼을 사용하지 않았고, 시료2~7은 폴리머 에멀젼의 사용량을 점차 증가시켰다. 도 8의 표에서 고성능감수제는 콘크리트의 초기 슬럼프 값을 일정하게 유지시키기 위하여 사용량을 변경하여 사용하였다.Sample 1 did not use a polymer emulsion, and Samples 2 to 7 gradually increased the amount of polymer emulsion used. In the table of Figure 8, the high-performance susceptor was used by changing the amount of use to maintain a constant initial slump value of concrete.
폴리머 에멀젼을 사용하지 않은 시료1은 초기슬럼프 발현 이후 급격한 슬럼프 손실이 발생되었으며, 반면에 압축강도는 가장 높은 결과를 나타내었다. 그리고 폴리머 에멀젼의 사용량을 증가시킨 시료2~7은 사용량이 증가함에 따라 슬럼프 경시변화량이 점차 적어지고 있으며 시료7의 경우 재령60분에도 슬럼프가 115mm를 유지하고 있었다. 그러나, 압축강도는 폴리머 에멀젼의 사용량의 증가에 따라 초기 4시간 재령 강도가 감소되는 현상이 나타나고 있다. 이는 폴리머 에멀젼의 수화반응 지연현상의 결과라고 할 수 있으며, 따라서 현장적용시는 현장여건과 작업시간에 따라 사용량을 적절하게 조정할 필요가 있다는 것을 확인하였다. Sample 1 without polymer emulsion showed rapid slump loss after initial slump expression, while compressive strength showed the highest result. Samples 2 to 7, in which the amount of polymer emulsion used was increased, gradually decreased as the amount used increased, and sample 7 maintained 115 mm at 60 minutes of age. However, the compressive strength has been shown to decrease the strength of the initial 4 hours as the amount of the polymer emulsion increases. This can be said to be the result of delayed hydration reaction of the polymer emulsion. Therefore, it is confirmed that the amount of use needs to be properly adjusted according to the site conditions and working hours.
이상에서 설명한 바와 같이, 본 발명에 따른 폴리머 개질 콘크리트 조성물은 레디믹스콘크리트를 공장에서 제조하고 폴리머 에멀젼을 혼입한 후 콘크리트 조성물을 시공 현장으로 이송한다. 도로 보수 현장에서는 혼합장치에서 공장으로부터 이송된 콘크리트 조성물에 고강도 급결성 첨가재를 고속 혼합하다. As described above, the polymer-modified concrete composition according to the present invention prepares the ready-mixed concrete at the factory and transfers the concrete composition to the construction site after incorporating the polymer emulsion. On the road repair site, high-strength quenchable additives are mixed at high speed in the concrete composition transferred from the plant in the mixing device.
따라서 기존의 도로 포장 보수용 콘크리트 조성물과 비교시, 동일한 시간 동안 내에 많은 양의 폴리머 개질 콘크리트를 제조할 수 있어 시공속도가 향상되며, 콘크리트 제조를 위한 원재료를 현장에 준비할 필요가 없게 되는 장점이 있다.Therefore, compared with the conventional road pavement concrete composition, it is possible to manufacture a large amount of polymer modified concrete within the same time, the construction speed is improved, and there is no need to prepare the raw materials for the concrete production site have.
또한, 레디믹스콘크리트를 사용함으로써 원재료의 변화를 최소화 시킬 수 있음으로 콘크리트 품질을 향상시킬 수 있다는 장점이 있다. In addition, there is an advantage that the quality of concrete can be improved by minimizing the change of raw materials by using ready mixed concrete.
무엇보다도, 콘크리트 제조를 위해서 초속경 시멘트를 사용하지 않음으로써, 기존 기술에 비해 경제성이 획기적으로 향상된다는 장점이 있다.First of all, by not using cemented carbide for the production of concrete, there is an advantage that the economy is significantly improved compared to the existing technology.
참고로, 도 2, 도 4, 도 6 및 도 8의 표에서 데이터가 표시되지 않은 부분은 해당 재료를 첨가하지 않았다는 것을 의미한다. 그리고 도 3, 도 5, 도 7 및 도 9의 표에서 경시변화 부분에서 체크되지 않은 부분은 모두 경시변화가 100mm 이하이거나, 측정이 불가한 경우이다. 강도 부분에서 기입하지 않은 부분은 경화가 이루어지지 않은 것을 의미한다. For reference, in the tables of FIGS. 2, 4, 6, and 8, data where no data is displayed means that the material is not added. In the tables of FIGS. 3, 5, 7, and 9, the parts not checked in the time-varying part are all cases where the time-varying change is 100 mm or less or measurement is impossible. The part not written in the strength part means that hardening is not performed.

Claims (10)

  1. 도로를 보수 포장하는데 사용하는 폴리머 개질 콘크리트 조성물로서, A polymer modified concrete composition for repairing pavement,
    콘크리트와, 폴리머에멀젼 및 급결성 첨가재를 포함하는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. A polymer modified concrete composition comprising concrete and a polymer emulsion and a fastener additive.
  2. 제1항에 있어서,The method of claim 1,
    상기 폴리머에멀젼은 아민계 강도촉진제를 포함하는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. The polymer emulsion polymer modified concrete composition, characterized in that it comprises an amine strength promoter.
  3. 제2항에 있어서, The method of claim 2,
    상기 아민계강도촉진제는 에탄올아민을 포함하는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. The amine strength promoter is a polymer-modified concrete composition, characterized in that it comprises ethanolamine.
  4. 제2항에 있어서, The method of claim 2,
    상기 아민계강도촉진제는 이소프로판올아민을 포함하는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물.The amine strength promoter is a polymer-modified concrete composition, characterized in that it comprises isopropanolamine.
  5. 제1항에 있어서,The method of claim 1,
    상기 폴리머에멀젼은, The polymer emulsion,
    아크릴에멀젼 수지 75~97.5 중량%, 고분자계면활성제 0.05 중량%, 글리세린 0.05~5 중량%, 아민계강도촉진제 0.05~5 중량%, 알루미늄계수화촉진제 0.05~5 중량%, 감수제 0.05~5 중량%의 비율로 혼합되는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. 75 to 97.5% by weight of acrylic emulsion resin, 0.05% by weight of polymer surfactant, 0.05 to 5% by weight of glycerin, 0.05 to 5% by weight of amine strength accelerator, 0.05 to 5% by weight of aluminum hydration accelerator, 0.05 to 5% by weight of reducing agent Polymer modified concrete composition, characterized in that mixed in proportion.
  6. 제1항에 있어서,The method of claim 1,
    상기 아크릴에멀젼 수지는 상기 콘크리트 대비 1~15중량%의 범위로 혼합되는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. The acrylic emulsion resin is a polymer modified concrete composition, characterized in that mixed in the range of 1 to 15% by weight compared to the concrete.
  7. 제1항에 있어서, The method of claim 1,
    상기 급결성 첨가재는 침강실리카를 포함하는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. The quenchable additive is a polymer-modified concrete composition, characterized in that it comprises precipitated silica.
  8. 제1항에 있어서,The method of claim 1,
    상기 급결성 첨가재는, The quick setting additive,
    고강도재 10~50 중량%, 응결촉진재 0.05~5 중량%, 급결재 30~80 중량%, 발열재 0.05~5 중량%, 안정재 0.05~5 중량%, 지연재 0.05~3 중량%, 감수제 0.05~2 중량%의 비율로 혼합되는 것을 특징으로 하는 폴리머 개질 콘크리트 조성물. 10 to 50% by weight of high strength material, 0.05 to 5% by weight of condensation accelerator, 30 to 80% by weight of fastener, 0.05 to 5% by weight of heating material, 0.05 to 5% by weight of stabilizer, 0.05 to 3% by weight of delay material, 0.05 water reducing agent Polymer modified concrete composition, characterized in that the mixing at a ratio of ~ 2% by weight.
  9. 보수가 필요한 도로의 포장면을 절개하는 단계; Cutting the pavement of the road in need of repair;
    레디믹스 콘크리트에 폴리머 에멀젼을 혼합하여 보수 현장으로 이동한 후, 급결성 첨가재를 상기 보수 현장에서 혼합하여 폴리머 개질 콘크리트 조성물을 제조하는 단계; 및 Preparing a polymer-modified concrete composition by mixing a polymer emulsion with ready-mixed concrete and moving to a repair site, followed by mixing a quick additive in the repair site; And
    상기 폴리머 개질 콘크리트 조성물을 절개된 포장면에 포설 및 양생하는 단계:를 포함하여 이루어지는 것을 특징으로 하는 도로 포장 보수방법. Installing and curing the polymer-modified concrete composition on the cut pavement surface: road pavement repair method comprising the.
  10. 제9항에 있어서,The method of claim 9,
    상기 폴리머 개질 콘크리트 조성물은 상기 청구항 1 내지 청구항 8 중 어느 하나에 기재되어 있는 폴리머 개질 콘크리트 조성물인 것을 특징으로 하는 도로 포장 보수방법. The polymer modified concrete composition is a road pavement repair method, characterized in that the polymer modified concrete composition described in any one of claims 1 to 8.
PCT/KR2015/000729 2014-03-20 2015-01-27 Polymer-modified concrete composition and method for repairing pavement of road using same WO2015141941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140032427A KR101507934B1 (en) 2014-03-20 2014-03-20 Polymer modified concrete compostion and Method for repairing pavement using the same
KR10-2014-0032427 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141941A1 true WO2015141941A1 (en) 2015-09-24

Family

ID=53033661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000729 WO2015141941A1 (en) 2014-03-20 2015-01-27 Polymer-modified concrete composition and method for repairing pavement of road using same

Country Status (2)

Country Link
KR (1) KR101507934B1 (en)
WO (1) WO2015141941A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819273A1 (en) * 2019-11-07 2021-05-12 Martellus GmbH Powdered, polymer-modified additive for concrete and method for preparing a concrete

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658573B1 (en) * 2016-04-01 2016-09-21 한국건설기술연구원 Backfilling Method using Composition of Self Compacting and Rapid Setting Light-Weighted Foam Mortar
KR101694807B1 (en) * 2016-08-09 2017-01-11 콘스타주식회사 Mortar with chloride resistance and acid resistance for repairing and reinforcing concrete using eco-friendly green cement, finishing materials for protecting concrete surface and method for repairing and reinforcing concrete using the same
KR102042161B1 (en) * 2017-08-17 2019-12-18 (주)제이엔티아이엔씨 Polymer modified concrete composition and method for repairing pavement using the same
KR102045157B1 (en) 2018-12-05 2019-11-20 주식회사 빌트존 Road repair material and method for road repair construction using thereof
KR102058674B1 (en) 2019-08-01 2019-12-23 주식회사 성안이엔씨 Modified-Asphalt Concrete Composition and Constructing Methods Using Thereof
KR102292413B1 (en) * 2020-06-17 2021-08-23 건양대학교산학협력단 Cement paste composition comprising silica nanoparticle-coated carbon fibers with improved frictional bond strength
CN115650658A (en) * 2022-09-19 2023-01-31 福建省地恒建材有限责任公司 Quick repairing material for concrete pavement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234558A (en) * 1993-01-13 1994-08-23 Rhone Poulenc Chim Composition for cement and cement obtained from these compositions
JP2501591B2 (en) * 1987-08-13 1996-05-29 電気化学工業株式会社 Mortar concrete curing sealant
JP2004300008A (en) * 2003-04-01 2004-10-28 Denki Kagaku Kogyo Kk Accelerator of hardening for spraying, quick hardening cement concrete, and spraying method using the same
JP2006044960A (en) * 2004-07-30 2006-02-16 Ube Ind Ltd Hydraulic composition with improved wet adhesion
KR20110090050A (en) * 2010-02-02 2011-08-10 이풍희 Polymer modified rapid openning concrete overlay naildown

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501591B2 (en) * 1987-08-13 1996-05-29 電気化学工業株式会社 Mortar concrete curing sealant
JPH06234558A (en) * 1993-01-13 1994-08-23 Rhone Poulenc Chim Composition for cement and cement obtained from these compositions
JP2004300008A (en) * 2003-04-01 2004-10-28 Denki Kagaku Kogyo Kk Accelerator of hardening for spraying, quick hardening cement concrete, and spraying method using the same
JP2006044960A (en) * 2004-07-30 2006-02-16 Ube Ind Ltd Hydraulic composition with improved wet adhesion
KR20110090050A (en) * 2010-02-02 2011-08-10 이풍희 Polymer modified rapid openning concrete overlay naildown

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3819273A1 (en) * 2019-11-07 2021-05-12 Martellus GmbH Powdered, polymer-modified additive for concrete and method for preparing a concrete
WO2021089401A1 (en) * 2019-11-07 2021-05-14 Martellus Gmbh Pulverulent, polymer-modified additive for concrete and process for producing a concrete

Also Published As

Publication number Publication date
KR101507934B1 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2015141941A1 (en) Polymer-modified concrete composition and method for repairing pavement of road using same
CN111533517B (en) Rapid repair mortar for high-speed railway concrete track slab and preparation method thereof
CN105236891B (en) A kind of filleting flexible concrete
CN104030644B (en) A kind of polymer cement mortar for high-speed railway plate type ballastless track filling bed
KR101465446B1 (en) High early-strength concrete composite and repair method of brtdge pavement
CN103073253B (en) Mortar for quickly repairing filling layer of slab ballastless track, and preparation method and use method of mortar
US11981602B2 (en) High-toughness geopolymer grouting material modified by ultra-high weight fibers and emulsified asphalt, preparation and application
WO2016111438A1 (en) Recycled cold semi-rigid asphalt concrete composition and method for preparing same
CN105271890A (en) Pre-stressed duct grouting agent, and preparation and application methods thereof
KR100755039B1 (en) High speed hardening and high strength concreate composition using waste ascon
KR101377475B1 (en) The method of preparing the block of yellow-soil using masato-soil and sludge coming into being by separating sands from masato-soil
CN101585688A (en) Fast fixing material for highways or city roads cement surfaces
Ma et al. Preparation and characterization of a novel magnesium phosphate cement-based emulsified asphalt mortar
Ruan et al. Effects of red mud on properties of magnesium phosphate cement-based grouting material and its bonding mechanism with coal rock
Chen et al. Effect of early strength agent on the hydration of geopolymer mortar at low temperatures
Zhang et al. Experimental research on mechanical properties and microstructure of magnesium phosphate cement-based high-strength concrete
Han et al. Experimental study on the properties of a polymer-modified superfine cementitious composite material for waterproofing and plugging
WO2015060666A1 (en) High-strength mortar composition for repairing roads and method for preparing same
WO2024066530A1 (en) Pavement repair material prepared from industrial solid waste and used for winter construction
CN116514483A (en) Self-compacting high-toughness semi-flexible pavement grouting material and preparation method thereof
Li et al. Formulation and properties of a new cleaner double liquid alkali-activated grouting material
JP2004210557A (en) Grout composition
JP2013139348A (en) Fast curing composition, mortar and concrete
KR102549198B1 (en) High strength cement concrete motar composition using waste or cullet glass and the concrete product using the same and the manufacturing method thereof
WO2015060667A1 (en) Rapid hardening mortar composition for repairing roads and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764935

Country of ref document: EP

Kind code of ref document: A1