WO2015141674A1 - Ferritic stainless steel sheet for use in tailored blank, tailored blank material exhibiting excellent workability, and method for producing same - Google Patents

Ferritic stainless steel sheet for use in tailored blank, tailored blank material exhibiting excellent workability, and method for producing same Download PDF

Info

Publication number
WO2015141674A1
WO2015141674A1 PCT/JP2015/057892 JP2015057892W WO2015141674A1 WO 2015141674 A1 WO2015141674 A1 WO 2015141674A1 JP 2015057892 W JP2015057892 W JP 2015057892W WO 2015141674 A1 WO2015141674 A1 WO 2015141674A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
tailored blank
stainless steel
tailored
blank material
Prior art date
Application number
PCT/JP2015/057892
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 純一
伊藤 宏治
泰山 正則
井上 裕滋
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to JP2016508735A priority Critical patent/JP6811609B2/en
Publication of WO2015141674A1 publication Critical patent/WO2015141674A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A ferritic stainless steel sheet for use in a tailored blank, and characterized by containing, in mass%, 0.001-0.10% of C, 0.01-3.00% of Si, 0.01-3.00% of Mn, 0.01-0.05% of P, 0.0001-0.010% of S, 10-30% of Cr, and 0.001-0.10% of N, with the remainder constituting Fe and inevitable impurities. In addition, a tailored blank material exhibiting excellent workability and having said steel sheet as at least one of the constituent materials thereof.

Description

テーラードブランク用フェライト系ステンレス鋼板、成形性に優れたテーラードブランク材及びその製造方法Ferritic stainless steel sheet for tailored blanks, tailored blanks excellent in formability, and manufacturing method thereof
 本発明は、プレス成形用に用いられる2種以上のステンレス鋼板、あるいはステンレス鋼板と異素材を組み合わせた異材質テーラードブランク材に関する。さらに詳しくは、2種以上の板厚又は同じ板厚で機械的性質が異なるステンレス鋼板、あるいはステンレス鋼板と異素材を接合した素板に関して、適正な溶接方法を適用することで得られる成形性に優れたテーラードブランク材に関する。 The present invention relates to two or more kinds of stainless steel plates used for press molding, or a different material tailored blank material in which a stainless steel plate and a different material are combined. More specifically, regarding the formability obtained by applying an appropriate welding method for stainless steel plates having two or more types or the same plate thickness and different mechanical properties, or for a base plate in which stainless steel plates and different materials are joined. It relates to excellent tailored blanks.
 自動車の排気ガス処理システムは、エキゾーストマニホールド、触媒コンバーター、マフラー、フロントパイプ、センターパイプ、DPF、EGRなど、種々の部材から構成されている。各部材には、高温強度、耐食性、及び耐酸化性等を考慮したCr含有耐熱ステンレス鋼が使用されている。 An automobile exhaust gas treatment system is composed of various members such as an exhaust manifold, a catalytic converter, a muffler, a front pipe, a center pipe, a DPF, and an EGR. For each member, Cr-containing heat-resistant stainless steel is used in consideration of high-temperature strength, corrosion resistance, oxidation resistance, and the like.
 近年では、軽量化又は排ガス規制等の観点から、Nb、Si、Mo、Cu等、多種の元素を添加したフェライト系ステンレス鋼が使用される場合が多く、各部材の要求性能に応じた鋼成分が選択されている。これらの排気部材は、鋼板又は鋼管を素材とし、成形加工と溶接を繰り返し施し、完成される。多くの自動車排気部品の溶接は、TIG溶接やMIG溶接で行われる。 In recent years, ferritic stainless steel to which various elements such as Nb, Si, Mo, and Cu are added is often used from the viewpoint of weight reduction or exhaust gas regulation, and steel components according to the required performance of each member. Is selected. These exhaust members are made of steel plates or steel pipes, and are subjected to molding and welding repeatedly to be completed. Many automobile exhaust parts are welded by TIG welding or MIG welding.
 各種の部品を製造する上で、工程の簡素化、金型数の削減の観点から、2種以上の部品を一体成形する技術が取り入れられている。自動車のボディ部品では、必要な材料強度や板厚を変えた素材を連続溶接した後、プレスにて一体化成形して用いる異材質テーラードブランクの技術が用いられている。 In manufacturing various parts, the technology to integrate two or more kinds of parts is adopted from the viewpoint of simplifying the process and reducing the number of molds. For body parts of automobiles, a technique of different material tailored blanks is used, in which materials having different required material strength and thickness are continuously welded and then integrally formed by a press.
 特許文献1は、引張強さが異なる2種以上の普通鋼素材を用いた成形性に優れたテーラードブランク材に関する技術を開示している。特許文献1には、高強度鋼板の異材質テーラードブランク材で生じるプレス成形不良を改善するために、強度バランスを適正化することが示されている。しかしながら、排ガス流路部材のテーラードブランク技術に関する開示はない。 Patent Document 1 discloses a technique related to a tailored blank material excellent in formability using two or more kinds of ordinary steel materials having different tensile strengths. Patent Document 1 discloses that the strength balance is optimized in order to improve the press molding failure that occurs in a different-material tailored blank material of a high-strength steel plate. However, there is no disclosure regarding tailored blank technology for exhaust gas flow path members.
 特許文献1に示されているように、テーラードブランク材の作製には、レーザー溶接が用いられることが多い。 As shown in Patent Document 1, laser welding is often used for producing tailored blank materials.
 特許文献2は、ステンレス鋼におけるレーザー溶接に関して、自動車排気管の製造方法として、レーザー溶接で重ね合わせ溶接する技術が開示されている。 Patent Document 2 discloses a technique for performing superposition welding by laser welding as a method of manufacturing an automobile exhaust pipe for laser welding in stainless steel.
 特許文献3は、溶接部の低温強度に優れたフェライト系ステンレス鋼板製容器を製造することを目的として、拝み溶接においてレーザー溶接を適用する技術を開示している。 Patent Document 3 discloses a technique in which laser welding is applied in prayer welding for the purpose of manufacturing a ferritic stainless steel plate container having excellent low-temperature strength at a welded portion.
 特許文献4は、燃料タンクの製造方法に関する技術の中で、容器のフランジ部にレーザー溶接を用いる技術を開示している。 Patent Document 4 discloses a technique of using laser welding for a flange portion of a container among techniques relating to a method for manufacturing a fuel tank.
 特許文献2~4のステンレス鋼板のレーザー溶接に関する技術は、テーラードブランク材とは異なり、一旦プレス成形された成形品のフランジ部をレーザー溶接するものである。特許文献2及び3の実施例には、レーザー溶接における出力と溶接速度の記載がある。 Unlike the tailored blank material, the techniques related to laser welding of stainless steel sheets disclosed in Patent Documents 2 to 4 are laser welding of a flange portion of a press-molded product. In Examples of Patent Documents 2 and 3, there is a description of output and welding speed in laser welding.
特許第4546590号公報Japanese Patent No. 4546590 特許第5131765号公報Japanese Patent No. 5131765 特開2007-119808号公報JP 2007-119808 A 特開2003-021012号公報JP 2003-021012 A
 従来のテーラードブランク用ステンレス鋼板、及びそれを用いたテーラードブランク材では、特にテーラードブランク材の溶接部の成形性が十分ではなく、排ガス流路部材に用いることはできなかった。 Conventional stainless steel plates for tailored blanks and tailored blank materials using the same have not been particularly satisfactory in the formability of welded portions of tailored blank materials, and cannot be used for exhaust gas flow path members.
 排ガス流路部材のテーラードブランク技術が実現できれば、高温強度、耐酸化性、高温疲労特性等、排ガス流路部材に要求される耐熱性について異なる特性を有する材料の組み合わせを選択して、部品製造における工程を簡素化でき、さらに、機能性に優れた排ガス経路部品を提供することが可能になる。 If tailored blank technology for exhaust gas flow path members can be realized, a combination of materials having different characteristics for heat resistance required for exhaust gas flow path members such as high temperature strength, oxidation resistance, high temperature fatigue characteristics, etc. It is possible to simplify the process and to provide an exhaust gas path component having excellent functionality.
 本発明の目的は、溶接部の成形性が十分でないという既知技術の問題点を解決し、複雑形状を有する排気部品の製造を工程簡素化した上で実現するために、テーラードブランク用ステンレス鋼板、成形性に優れたテーラードブランク材、及びその製造方法を提供することにある。 The object of the present invention is to solve the problems of the known technology that the formability of the welded part is not sufficient, and to realize the manufacture of exhaust parts having a complicated shape after simplifying the process, It is providing the tailored blank material excellent in the moldability, and its manufacturing method.
 本発明者らは、前記の課題を解決するために、テーラードブランク用ステンレス鋼板、成形性に優れたテーラードブランク材、及びその製造方法に関して、鋼板の成分組成と溶接条件について詳細に研究した。その結果、溶接部についても十分な成形性を備えたテーラードブランク材を製造するための鋼板の成分組成と溶接条件を見出した。 In order to solve the above-mentioned problems, the present inventors have studied in detail the component composition and welding conditions of a steel plate regarding a stainless steel plate for tailored blanks, a tailored blank material excellent in formability, and a manufacturing method thereof. As a result, the composition of the steel sheet and welding conditions for producing a tailored blank material having sufficient formability for the welded portion were found.
 本発明は、上記の知見に基づいてなされたもので、その要旨は以下のとおりである。 The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
 (1)質量%で、C:0.001~0.10%、Si:0.01~3.00%、Mn:0.01~3.00%、P:0.01~0.05%、S:0.0001~0.010%、Cr:10~30%、及びN:0.001~0.10%を含有し、残部がFe及び不可避的不純物であることを特徴とするテーラードブランク用フェライト系ステンレス鋼板。 (1) By mass%, C: 0.001 to 0.10%, Si: 0.01 to 3.00%, Mn: 0.01 to 3.00%, P: 0.01 to 0.05% , S: 0.0001 to 0.010%, Cr: 10 to 30%, and N: 0.001 to 0.10%, the balance being Fe and inevitable impurities, Ferritic stainless steel sheet.
 (2)さらに、質量%で、Ti:0.005~0.50%、Nb:0.005~1.00%、V:0.05~1.00%、B:0.0002~0.005%、及びAl:0.001~2.0%の1種又は2種以上を含有することを特徴とする前記(1)のテーラードブランク用フェライト系ステンレス鋼板。 (2) Further, by mass, Ti: 0.005 to 0.50%, Nb: 0.005 to 1.00%, V: 0.05 to 1.00%, B: 0.0002 to 0.00. The ferritic stainless steel sheet for tailored blanks according to (1) above, containing 005% and Al: one or more of 0.001 to 2.0%.
 (3)さらに、質量%で、Mo:0.01~3.00%、Cu:0.10~3.00%、Ni:0.01~2.00%、W:0.10~3.00%、Zr:0.05~0.30%、Sn:0.005~0.50%、Sb:0.005~0.50%、Co:0.03~0.30%、Mg:0.0002~0.010%、Ca:0.0001~0.0030%、及びREM:0.001~0.20%の1種又は2種以上を含有することを特徴とする前記(1)又は(2)のテーラードブランク用フェライト系ステンレス鋼板。 (3) Further, in terms of mass%, Mo: 0.01 to 3.00%, Cu: 0.10 to 3.00%, Ni: 0.01 to 2.00%, W: 0.10 to 3. 00%, Zr: 0.05 to 0.30%, Sn: 0.005 to 0.50%, Sb: 0.005 to 0.50%, Co: 0.03 to 0.30%, Mg: 0 (1) or characterized by containing one or more of 0002 to 0.010%, Ca: 0.0001 to 0.0030%, and REM: 0.001 to 0.20% (2) Ferritic stainless steel sheet for tailored blanks.
 (4)2つの素材を溶接により接合して製造したテーラードブランク材であって、前記素材の少なくとも1つが前記(1)~(3)のいずれかのテーラードブランク用ステンレス鋼板であることを特徴とする成形性に優れたテーラードブランク材。 (4) A tailored blank produced by welding two materials by welding, wherein at least one of the materials is the stainless steel plate for tailored blanks according to any one of (1) to (3). Tailored blank material with excellent formability.
 (5)溶接部の厚みをTw、薄板側の板厚をT0としたとき、Tw/T0≧0.7であることを特徴とする前記(4)の成形性に優れたテーラードブランク材。 (5) The tailored blank material excellent in formability of (4) above, wherein Tw / T0 ≧ 0.7, where Tw is the thickness of the welded portion and T0 is the thickness of the thin plate side.
 (6)前記(4)又は(5)に記載の成形性に優れたテーラードブランク材を製造する方法であって、2つの素材をTIG溶接、MIG溶接、又は、レーザー溶接で接合することを特徴とする成形性に優れたテーラードブランク材の製造方法。 (6) A method for producing a tailored blank material excellent in formability as described in (4) or (5) above, wherein two materials are joined by TIG welding, MIG welding, or laser welding. A method for producing a tailored blank material having excellent formability.
 (7)2つの素材をレーザー溶接で接合し、上記レーザー溶接において、溶接出力を5kW以下、溶接速度を2~6m/min、突合わせ隙間をレーザー光のスポット径に対して30%以下とし、レーザー狙い位置を厚板側エッジから厚板側に上記スポット径に対して30%以下オフセットすることを特徴とする前記(6)の成形性に優れたテーラードブランク材の製造方法。 (7) Two materials are joined by laser welding, and in the above laser welding, the welding output is 5 kW or less, the welding speed is 2 to 6 m / min, the butt gap is 30% or less with respect to the laser beam spot diameter, The method for producing a tailored blank material excellent in formability according to (6) above, wherein the laser target position is offset from the thick plate side edge to the thick plate side by 30% or less with respect to the spot diameter.
 本発明によれば、テーラードブランク用ステンレス鋼板、成形性に優れたテーラードブランク材、及びその製造方法を得ることが可能となり、部品製造効率の向上、部品性能の向上等を図ることができる。 According to the present invention, it is possible to obtain a stainless steel plate for tailored blanks, a tailored blank material excellent in formability, and a manufacturing method thereof, and it is possible to improve component manufacturing efficiency and component performance.
厚さの異なるフェライト系ステンレス鋼板を突き合わせ溶接により接合した際の溶接部の形状と、溶接部のエリクセン試験を行った際の成形高さの関係の一例を示す図である。It is a figure which shows an example of the relationship between the shape of the welding part at the time of joining the ferritic stainless steel plate from which thickness differs by butt welding, and the forming height at the time of performing the Ericksen test of a welding part.
 以下、本発明について説明する。 Hereinafter, the present invention will be described.
 本発明の成形性に優れたテーラードブランク材(以下「本発明ブランク材」という)は、本発明のテーラードブランク用ステンレス鋼板(以下「本発明鋼板」という)同士、あるいは本発明鋼板と本発明鋼板以外の異材が溶接されていることを特徴とする。 The tailored blank material excellent in formability of the present invention (hereinafter referred to as “the present invention blank material”) is a stainless steel plate for tailored blanks of the present invention (hereinafter referred to as “the present invention steel plate”) or the present invention steel plate and the present invention steel plate. It is characterized in that different materials other than are welded.
 本発明の成形性に優れたテーラードブランク材の製造方法(以下「本発明製造方法」という)は、本発明ブランク材の製造方法であって、本発明鋼板同士、あるいは本発明鋼板と本発明鋼板以外の異材を溶接することを特徴とする。 The method for producing a tailored blank material excellent in formability according to the present invention (hereinafter referred to as “the present invention production method”) is a method for producing the present blank material, and the present invention steel plates, or the present invention steel plate and the present invention steel plate. It is characterized by welding different materials other than.
 まず、本発明鋼板の成分組成の限定理由について説明する。以下、成分組成についての「%」は「質量%」を意味する。 First, the reasons for limiting the component composition of the steel sheet of the present invention will be described. Hereinafter, “%” for the component composition means “mass%”.
 C:0.001~0.10%
 Cは、加工性、溶接性、耐食性、及び耐酸化性を劣化させる元素であるので、少ないほど好ましく、上限を0.10%とする。ただし、Cを過度に低減すると、精錬コストが増加し、さらに、溶接部の結晶粒粗大化により靭性が低下するので、下限を0.001%とする。製造コスト、溶接部の加工性と耐食性を考慮すると、0.002~0.02%が好ましい。
C: 0.001 to 0.10%
Since C is an element that deteriorates workability, weldability, corrosion resistance, and oxidation resistance, it is preferably as small as possible, and the upper limit is set to 0.10%. However, if C is excessively reduced, the refining cost is increased, and further, the toughness is lowered due to the coarsening of the crystal grains of the welded portion, so the lower limit is made 0.001%. Considering the manufacturing cost, workability of the welded portion and corrosion resistance, 0.002 to 0.02% is preferable.
 Si:0.01~3.00%
 Siは、脱酸元素として作用する。また、Siは、耐酸化性と高温強度を向上させる。添加の効果を得るため、下限は0.01%とする。過度な添加は、常温延性を低下させて加工性を劣化させるので、上限は3.00%とする。溶接性と溶接部の張出し加工性を考慮すると、0.10~1.00%が好ましい。さらに好ましくは、0.50~1.00%である。耐酸化性と高温強度よりも溶接性と溶接部の張り出し加工性を重視する場合には、0.10~0.50%が好ましい。
Si: 0.01 to 3.00%
Si acts as a deoxidizing element. Si also improves oxidation resistance and high temperature strength. In order to obtain the effect of addition, the lower limit is made 0.01%. Excessive addition lowers the room temperature ductility and degrades workability, so the upper limit is made 3.00%. Considering the weldability and the overhang workability of the welded portion, 0.10 to 1.00% is preferable. More preferably, it is 0.50 to 1.00%. When emphasis is placed on weldability and workability of the welded portion over oxidation resistance and high-temperature strength, 0.10 to 0.50% is preferable.
 Mn:0.01~3.00%
 Mnは、脱酸元素として作用する。また、Mnは、高温においてMnCr24やMnOを形成し、スケール密着性を向上させる。添加の効果を得るため、下限は0.01%とする。Mnの含有量が3.00%を超えると、特に、溶接部での異常酸化が生じやすくなり、排ガス経路の損傷に繋がるので、上限は3.00%とする。製造性と溶接部の加工性を考慮すると、0.10~1.50%が好ましい。さらに好ましくは、0.50~1.50%である。スケール密着性よりも製造性と溶接部の加工性を重視する場合には、0.10~0.50%が好ましい。
Mn: 0.01 to 3.00%
Mn acts as a deoxidizing element. Further, Mn forms MnCr 2 O 4 and MnO at a high temperature and improves the scale adhesion. In order to obtain the effect of addition, the lower limit is made 0.01%. If the Mn content exceeds 3.00%, abnormal oxidation tends to occur particularly in the welded portion, leading to damage to the exhaust gas path, so the upper limit is made 3.00%. Considering manufacturability and workability of the welded portion, 0.10 to 1.50% is preferable. More preferably, it is 0.50 to 1.50%. In the case where the manufacturability and workability of the weld are more important than the scale adhesion, 0.10 to 0.50% is preferable.
 P:0.01~0.05%、
 Pは、固溶強化元素であり、溶接部の延性を低下させる。また、Pは、溶接時の凝固割れを生じさせる。Pは少ないほど好ましく、上限は0.05%とする。過度の低減は精錬コストの増加に繋がるので、下限は0.01%とする。製造コストと溶接部の耐食性を考慮すると、0.015~0.03%が好ましい。
P: 0.01 to 0.05%,
P is a solid solution strengthening element and reduces the ductility of the weld. P causes solidification cracking during welding. The smaller the P, the better. The upper limit is made 0.05%. Since excessive reduction leads to an increase in refining costs, the lower limit is made 0.01%. Considering the manufacturing cost and the corrosion resistance of the welded portion, 0.015 to 0.03% is preferable.
 S:0.0001~0.010%
 Sは、材質、耐食性、及び、耐酸化性を低下させるので、少ないほど好ましく、上限は0.010%とする。過度の低減は溶接時の溶け込み性の低下や精錬コストの増加に繋がるので、下限は0.0001%とする。製造コストと溶接性を考慮すると、0.0005~0.0050%が好ましい。
S: 0.0001 to 0.010%
S decreases the material, corrosion resistance, and oxidation resistance, so it is preferably as small as possible, and the upper limit is 0.010%. Excessive reduction leads to a decrease in penetration during welding and an increase in refining costs, so the lower limit is made 0.0001%. Considering the manufacturing cost and weldability, 0.0005 to 0.0050% is preferable.
 Cr:10~30%、
 Crは、排気部品の高温強度及び耐酸化性を確保する元素である。添加の効果を得るため、下限は10%とする。Crの含有量が30%を超えると、母材及び溶接部の靱性が著しく劣化し、また、製造性や延性が低下するので、上限は30%とする。製造コスト、耐食性、及び、溶接部の低温靭性を考慮すると、10.5~22%が好ましい。
Cr: 10-30%,
Cr is an element that ensures high-temperature strength and oxidation resistance of exhaust parts. In order to obtain the effect of addition, the lower limit is made 10%. If the Cr content exceeds 30%, the toughness of the base metal and the welded portion is remarkably deteriorated, and the manufacturability and ductility are lowered, so the upper limit is made 30%. Considering the manufacturing cost, corrosion resistance, and low temperature toughness of the welded portion, 10.5 to 22% is preferable.
 N:0.001~0.10%
 Nは、Cと同様に、溶接部の加工性と耐酸化性を劣化させる元素であるので、少ないほど好ましく、上限は0.10%とする。過度の低減は精錬コストの増加に繋がるので、下限は0.001%とする。溶接部の結晶粒粗大化の抑制とコストを考慮すると、0.005~0.02%が好ましい。
N: 0.001 to 0.10%
N, like C, is an element that degrades the workability and oxidation resistance of the welded portion, so it is preferably as small as possible, and the upper limit is 0.10%. Since excessive reduction leads to an increase in refining costs, the lower limit is made 0.001%. Considering the suppression of crystal grain coarsening in the weld and the cost, 0.005 to 0.02% is preferable.
 本発明鋼板は、上記必須元素の他、下記の元素を、必要に応じて含有してもよい。 The steel sheet of the present invention may contain the following elements in addition to the above essential elements as necessary.
 Ti:0.005~0.50%
 Tiは、C、N、Sと結合して母材の成形性、特にr値を向上させる元素である。また、Tiは、溶接部の耐食性と耐粒界腐食性の向上に寄与する。添加の効果を得るため、下限は0.005%とする。Tiの含有量が0.50%を超えると、コストが著しく上昇し、また、溶接部の靭性や延性が低下するので、上限は0.50%とする。製造コスト、表面疵、延性、及び、スケール剥離性を考慮すると、0.030~0.20%が好ましい。
Ti: 0.005 to 0.50%
Ti is an element that combines with C, N, and S to improve the formability of the base material, particularly the r value. Further, Ti contributes to the improvement of the corrosion resistance and intergranular corrosion resistance of the weld. In order to obtain the effect of addition, the lower limit is made 0.005%. If the Ti content exceeds 0.50%, the cost increases remarkably, and the toughness and ductility of the welded portion decrease, so the upper limit is made 0.50%. In consideration of production cost, surface defects, ductility, and scale peelability, 0.030 to 0.20% is preferable.
 Nb:0.005~1.00%
 Nbは、Ti同様に、成形性や、溶接部の耐食性と耐粒界腐食性を向上させる元素である。また、Nbは、固溶強化及び析出強化により高温強度や高温疲労特性を向上させる。添加効果を得るため、0.005%以上とする。一方、1.00%を超えると、コストが著しく上昇する他、溶接部の靭性や延性が低下するので、上限を1.00%とする。コストや製造性を考慮すると、0.100~0.60%が好ましい。
Nb: 0.005 to 1.00%
Nb, like Ti, is an element that improves formability, corrosion resistance of welds, and intergranular corrosion resistance. Nb improves high temperature strength and high temperature fatigue properties by solid solution strengthening and precipitation strengthening. In order to obtain the addition effect, the content is made 0.005% or more. On the other hand, if it exceeds 1.00%, the cost is remarkably increased, and the toughness and ductility of the welded portion are lowered. In consideration of cost and manufacturability, 0.100 to 0.60% is preferable.
 V:0.05~1.00%
 Vは、TiやNbと同様に、CやNと結合して、成形性や溶接部の耐食性と耐粒界腐食性を向上させる元素である。また、Vは、母材の耐食性を向上させる。添加の効果を得るため、下限は0.05%とする。Vの含有量が1.00%を超えると、コストが著しく上昇し、また、溶接部の耐酸化性が低下するので、上限は1.00%とする。コストや製造性を考慮すると、0.05~0.30%が好ましい。
V: 0.05-1.00%
V, like Ti and Nb, is an element that combines with C and N to improve the formability, corrosion resistance of welds and intergranular corrosion resistance. V also improves the corrosion resistance of the base material. In order to obtain the effect of addition, the lower limit is made 0.05%. If the V content exceeds 1.00%, the cost increases remarkably and the oxidation resistance of the welded portion decreases, so the upper limit is made 1.00%. Considering cost and manufacturability, 0.05 to 0.30% is preferable.
 B:0.0002~0.005%
 Bは、2次加工性を向上させ、また、中温域の高温強度を向上させる元素である。添加の効果を得るため、下限は0.0002%とする。Bの含有量が0.005%を超えると、Cr2B等のB化合物が生成し、溶接部の粒界腐食性や疲労特性が劣化し、さらに、凝固割れが多発するので、上限は0.005%とする。溶接性や製造性を考慮すると、0.0003~0.002%が好ましい。
B: 0.0002 to 0.005%
B is an element that improves secondary workability and improves high-temperature strength in the middle temperature range. In order to obtain the effect of addition, the lower limit is made 0.0002%. If the B content exceeds 0.005%, a B compound such as Cr 2 B is produced, the intergranular corrosion resistance and fatigue characteristics of the weld are deteriorated, and further, solidification cracks occur frequently, so the upper limit is 0. 0.005%. Considering weldability and manufacturability, 0.0003 to 0.002% is preferable.
 Al:0.001~2.0%
 Alは、脱酸元素として作用し、また、高温強度や耐酸化性を向上させる元素である。添加の効果を得るため、下限は0.001%とする。Alの含有量が2.0%を超えると、溶接時の溶込み性が著しく低下し、また、靭性や酸洗性が低下するので、上限は2.0%とする。精錬コストや鋼管製造時の溶接割れ等を考慮すると、0.010~0.20%が好ましい。
Al: 0.001 to 2.0%
Al is an element that acts as a deoxidizing element and improves high-temperature strength and oxidation resistance. In order to obtain the effect of addition, the lower limit is made 0.001%. If the Al content exceeds 2.0%, the penetration at the time of welding is remarkably lowered, and the toughness and pickling properties are lowered, so the upper limit is made 2.0%. In consideration of refining costs, weld cracks at the time of steel pipe production, etc., 0.010 to 0.20% is preferable.
 Mo:0.01~3.00%
 Moは、母材と溶接部の耐食性を向上させる、また、固溶することにより高温強度及び熱疲労特性を向上させる元素である。添加の効果を得るため、下限は0.01%とする。Moの過度な添加は溶接部の靭性劣化や伸びの低下をもたらし、さらに、コストを増加させるので、上限は3.00%とする。長時間高温に曝された後の高温特性、特に、高温強度や高温高サイクル疲労特性、さらに、製造コスト及び製造性を考慮すると、0.05~2.00%が好ましい。
Mo: 0.01 to 3.00%
Mo is an element that improves the corrosion resistance of the base material and the welded part, and improves the high temperature strength and thermal fatigue characteristics by solid solution. In order to obtain the effect of addition, the lower limit is made 0.01%. Excessive addition of Mo causes deterioration of the toughness and elongation of the weld and further increases costs, so the upper limit is made 3.00%. In consideration of the high temperature characteristics after being exposed to a high temperature for a long time, in particular, high temperature strength and high temperature and high cycle fatigue characteristics, as well as manufacturing cost and manufacturability, 0.05 to 2.00% is preferable.
 Cu:0.10~3.00%
 Cuは、耐食性を向上させ、また、ε-Cu析出によって、特に、中温域での高温強度を高める元素である。添加の効果を得るため、下限は0.10%とする。Cuの含有量が3.00%を超えると、溶接部の靭性劣化や伸びの極端な低下をもたらし、さらに、熱延過程で割れが多発するので、上限は3.00%とする。製造性に加え、耐酸化性や溶接部の加工性を考慮すると、0.40~1.50%が好ましい。
Cu: 0.10 to 3.00%
Cu is an element that improves the corrosion resistance and increases the high-temperature strength, particularly in the middle temperature range, by ε-Cu precipitation. In order to obtain the effect of addition, the lower limit is made 0.10%. If the Cu content exceeds 3.00%, the toughness of the welded portion is deteriorated and the elongation is extremely lowered. Further, cracks frequently occur in the hot rolling process, so the upper limit is made 3.00%. Considering oxidation resistance and workability of the welded part in addition to manufacturability, 0.40 to 1.50% is preferable.
 Ni:0.01~2.00%
 Niは、溶接部の靭性と耐食性を向上させる元素である。添加の効果を得るため、下限は0.01%とする。Niの含有量が2.00%を超えると、オーステナイト相が過度に生成し、成形性が低下するので、上限は2.00%とする。コストを考慮すると、0.05~1.20%が好ましい。
Ni: 0.01-2.00%
Ni is an element that improves the toughness and corrosion resistance of the weld. In order to obtain the effect of addition, the lower limit is made 0.01%. If the Ni content exceeds 2.00%, an austenite phase is excessively generated and the formability is lowered, so the upper limit is made 2.00%. Considering the cost, 0.05 to 1.20% is preferable.
 W:0.10~3.00%
 Wは、高温強度を向上させる元素である。添加の効果を得るため、下限は0.10%とする。Wの過度な添加は溶接部の靭性劣化や伸びの低下をもたらすので、上限は3.00%とする。製造コストと製造性を考慮すると、0.10~2.00%が好ましい。
W: 0.10 to 3.00%
W is an element that improves high-temperature strength. In order to obtain the effect of addition, the lower limit is made 0.10%. Since excessive addition of W brings about deterioration of toughness and elongation of the welded portion, the upper limit is made 3.00%. Considering the manufacturing cost and manufacturability, 0.10 to 2.00% is preferable.
 Zr:0.05~0.30%
 Zrは、耐酸化性を向上させる元素である。添加の効果を得るため、下限は0.05%とする。Zeの含有量が0.30%を超えると、靭性や酸洗性などの製造性が著しく劣化するので、上限は0.30%とする。製造コストを考慮すると、0.05~0.20%が好ましい。
Zr: 0.05-0.30%
Zr is an element that improves oxidation resistance. In order to obtain the effect of addition, the lower limit is made 0.05%. If the content of Ze exceeds 0.30%, manufacturability such as toughness and pickling properties deteriorates remarkably, so the upper limit is made 0.30%. Considering the production cost, 0.05 to 0.20% is preferable.
 Sn:0.005~0.50%
 Snは、粒界に偏析して高温強度を向上させる元素である。添加の効果を得るため、下限は0.005%とする。Snの含有量が0.50%を超えると、Snの偏析が生じて、溶接時に割れが生じるので、上限は0.50%とする。高温特性と製造コスト及び靭性を考慮すると、0.03~0.30%が好ましい。さらに好ましくは0.05~0.20%である。
Sn: 0.005 to 0.50%
Sn is an element that segregates at the grain boundaries and improves the high temperature strength. In order to obtain the effect of addition, the lower limit is made 0.005%. If the Sn content exceeds 0.50%, Sn segregation occurs and cracks occur during welding, so the upper limit is made 0.50%. Considering high temperature characteristics, production cost and toughness, 0.03 to 0.30% is preferable. More preferably, it is 0.05 to 0.20%.
 Sb:0.001~0.50%
 Sbは、粒界に偏析して高温強度を向上させる元素である。添加の効果を得るため、下限は0.001%とする。Sbの含有量が0.50%を超えると、Sbの偏析が生じて、溶接時に割れが生じるので、上限は0.50%とする。高温特性と製造コスト及び靭性を考慮すると、0.03~0.30%が好ましい。さらに好ましくは0.05~0.20%である。
Sb: 0.001 to 0.50%
Sb is an element that segregates at the grain boundary and improves the high-temperature strength. In order to obtain the effect of addition, the lower limit is made 0.001%. If the Sb content exceeds 0.50%, Sb segregation occurs and cracks occur during welding, so the upper limit is made 0.50%. Considering high temperature characteristics, production cost and toughness, 0.03 to 0.30% is preferable. More preferably, it is 0.05 to 0.20%.
 Co:0.03~0.30%
 Coは、高温強度を向上させる元素である。添加の効果を得るため、下限は0.03%とする。Coの過度な添加は溶接部の加工性を劣化させるので、上限は0.30%とする。製造コストと製造性を考慮すると、0.05~0.20%が好ましい。
Co: 0.03-0.30%
Co is an element that improves high-temperature strength. In order to obtain the effect of addition, the lower limit is made 0.03%. Since excessive addition of Co deteriorates the workability of the weld zone, the upper limit is made 0.30%. Considering the production cost and manufacturability, 0.05 to 0.20% is preferable.
 Mg:0.0002~0.010%
 Mgは、溶鋼中でAlとともにMg酸化物を形成し、脱酸剤として作用する元素である。微細晶出したMg酸化物は、NbやTi系析出物が微細析出するための核として機能する。溶接時に、NbやTi系析出物が微細析出すると、微細析出物が再結晶核となり、非常に微細な溶接組織を得ることができる。
Mg: 0.0002 to 0.010%
Mg is an element that forms Mg oxide together with Al in molten steel and acts as a deoxidizer. The finely crystallized Mg oxide functions as a nucleus for fine precipitation of Nb and Ti-based precipitates. When Nb and Ti-based precipitates are finely precipitated during welding, the fine precipitates become recrystallization nuclei, and a very fine weld structure can be obtained.
 Mgの添加の効果を得るため、下限は0.0002%とする。Mgの過度な添加は、耐酸化性の劣化や溶接性の低下をもたらすので、上限は0.010%とする。精錬コストを考慮すると、0.0003~0.0020%が好ましい。 In order to obtain the effect of adding Mg, the lower limit is made 0.0002%. Excessive addition of Mg causes deterioration in oxidation resistance and weldability, so the upper limit is made 0.010%. Considering the refining cost, 0.0003 to 0.0020% is preferable.
 Ca:0.0001~0.0030%
 Caは、脱酸元素として作用する元素である。添加の効果を得るため、下限は0.0001%とする。Caの含有量が0.0030%を超えると、水溶性介在物であるCaSが生成して、溶接部の耐食性が著しく低下するので、上限は0.0030%とする。精錬コストや溶接部の耐食性を考慮すると、0.0003~0.0010%が好ましい。
Ca: 0.0001 to 0.0030%
Ca is an element that acts as a deoxidizing element. In order to obtain the effect of addition, the lower limit is made 0.0001%. If the Ca content exceeds 0.0030%, CaS, which is a water-soluble inclusion, is generated and the corrosion resistance of the welded portion is remarkably reduced. Therefore, the upper limit is made 0.0030%. In consideration of the refining cost and the corrosion resistance of the welded portion, 0.0003 to 0.0010% is preferable.
 REM:0.001~0.2%
 REM(希土類元素)は、耐酸化性の向上に有効であり、必要に応じて0.001%以上で添加する。0.2%を超えて添加してもその効果は飽和し、REMの粒化物による耐食性低下を生じるため、上限は0.2%とする。製品の加工性や製造コストを考慮すると、下限を0.002%、上限を0.10%とすることが望ましい。
REM: 0.001 to 0.2%
REM (rare earth element) is effective in improving the oxidation resistance, and is added at 0.001% or more as necessary. Even if added over 0.2%, the effect is saturated and the corrosion resistance is reduced by the REM granulated material, so the upper limit is made 0.2%. Considering the workability and manufacturing cost of the product, it is desirable that the lower limit is 0.002% and the upper limit is 0.10%.
 REM(希土類元素)は、一般的な定義に従い、スカンジウム (Sc)、イットリウム (Y)の2元素と、ランタン(La)からルテチウム(Lu) までの15元素(ランタノイド)の総称である。単独で添加してもよいし、混合物であってもよい。 REM (rare earth element) is a general term for two elements of scandium soot (Sc) and yttrium soot (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu) soot according to a general definition. It may be added alone or as a mixture.
 その他、Ta、Ga、Biを、必要に応じて0.001~0.02%含有してもかまわない。成分組成の残部はFe及び不可避的不純物である。As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが好ましい。 In addition, Ta, Ga and Bi may be contained in an amount of 0.001 to 0.02% as necessary. The balance of the component composition is Fe and inevitable impurities. It is preferable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.
 本発明鋼板の製造方法は、所定の板厚で十分な材質特性が得られるように、各工程の製造条件を適宜設計すればよい。具体的には、例えば、スラブ厚さ、熱延板厚、圧延温度、圧下率、ロール粗度、ロール径、圧延油、圧延パス回数、圧延速度、圧延温度、焼鈍温度、雰囲気などを適宜選択すればよい。 In the manufacturing method of the steel sheet of the present invention, manufacturing conditions for each process may be appropriately designed so that sufficient material properties can be obtained with a predetermined thickness. Specifically, for example, slab thickness, hot rolled sheet thickness, rolling temperature, rolling reduction, roll roughness, roll diameter, rolling oil, number of rolling passes, rolling speed, rolling temperature, annealing temperature, atmosphere, etc. are appropriately selected. do it.
 本発明ブランク材は、たとえば、板厚が異なる2つの本発明鋼板を素材として溶接したもの、又は板厚が同じで機械的性質が異なる2つの本発明鋼板ステンレス鋼板を素材として溶接したものである。また、本発明鋼板と本発明鋼板とは異なる異材を素材として溶接したものであっても構わない。その際の異材の板厚は、本発明鋼板と同じでも異なっていてもよい。 The blank material of the present invention is, for example, one in which two steel plates of the present invention having different plate thicknesses are welded as raw materials, or two steel plates of the present invention steel plates having the same thickness but different mechanical properties are welded as raw materials. . Further, the steel plate of the present invention and the steel plate of the present invention may be made by welding different materials as raw materials. The thickness of the different material at that time may be the same as or different from that of the steel plate of the present invention.
 溶接には、TIG溶接、MIG溶接、又はレーザー溶接を用いる。レーザー溶接は、一般に、他の溶接法と比べて、溶接熱影響部の幅が狭く、溶接後の成形性に優れている、溶接時の熱歪が少ない、溶接設計の自由度が高い等の利点を有するので、テーラードブランク材の製造方法として多く用いられている。 T TIG welding, MIG welding, or laser welding is used for welding. Laser welding, in general, has a narrower heat affected zone than other welding methods, is superior in formability after welding, has less thermal distortion during welding, has a high degree of freedom in welding design, etc. Since it has advantages, it is often used as a method for producing tailored blanks.
 レーザー溶接は、溶接金属や熱影響部の組織粗大化領域が他の溶接方法より狭く、優れた成形性が得られるので、本発明鋼板の溶接に好ましい。レーザーとしては、CO、YAG、ファイバーレーザー等の溶接用レーザーを用いればよい。さらに、TIG溶接やMIG溶接等のレーザー溶接以外の溶接とレーザー溶接を組み合わせてもよい。 Laser welding is preferable for welding the steel sheet of the present invention because the coarsened region of the weld metal or heat-affected zone is narrower than other welding methods and excellent formability can be obtained. As the laser, a welding laser such as CO 2 , YAG, or fiber laser may be used. Furthermore, welding other than laser welding such as TIG welding or MIG welding may be combined with laser welding.
 本発明製造方法において、本発明鋼板は、成分組成が異なっても、同じでもよく、また、板厚が、異なっても、同じでもよい。溶接形状及び溶接条件を適正化することで、優れた成形性を有するテーラードブランク材を得ることができる。 In the production method of the present invention, the steel plate of the present invention may have the same or different component composition, and may have the same or different plate thickness. By optimizing the welding shape and welding conditions, a tailored blank material having excellent formability can be obtained.
 溶接形状に関しては、溶接部の厚みをTw、薄板側の板厚をT0として、Tw/T0≧0.7とすることで、溶接部の成形性が優れたテーラードブランク材を得ることができる。溶接部の成形性はエリクセン試験で評価できる。 Regarding the weld shape, a tailored blank material with excellent weldability can be obtained by setting Tw / T0 ≧ 0.7, where Tw is the thickness of the weld and T0 is the thickness of the thin plate. The formability of the weld can be evaluated by the Eriksen test.
 図1は、2mm厚さのフェライト系ステンレス鋼板(鋼A:17.0%Cr-0.24%Si-0.94%Mn-0.02%P-0.0010%S-1.8%Mo-0.48%Nb-0.11%Ti-0.005%C-0.013%N)と、1.5mm厚さのフェライト系ステンレス鋼板(鋼B:13.3%Cr-0.94%Si-0.22%Mn-0.03%P-0.0012%S-0.43%Nb-0.005%C-0.010%N)を種々の溶接条件でレーザー溶接し、溶接部のエリクセン試験を行った際の成形高さに及ぼすTw/T0の影響を示す。 FIG. 1 shows a 2 mm thick ferritic stainless steel sheet (steel A: 17.0% Cr-0.24% Si-0.94% Mn-0.02% P-0.010% S-1.8% Mo-0.48% Nb-0.11% Ti-0.005% C-0.013% N) and a 1.5 mm thick ferritic stainless steel sheet (steel B: 13.3% Cr-0. 94% Si-0.22% Mn-0.03% P-0.0012% S-0.43% Nb-0.005% C-0.010% N) under different welding conditions, The influence of Tw / T0 on the forming height when the Erichsen test of the welded part is performed is shown.
 溶接には直交3軸ガントリータイプの溶接ロボットを使用し、レーザー発振機はファイバーレーザー、集光スポット径はφ0.6mm、シールドガスはArを20L/minとした。溶接部の厚みは、溶接後の断面組織を観察して求めた。 For the welding, an orthogonal 3-axis gantry type welding robot was used, the laser oscillator was a fiber laser, the focused spot diameter was φ0.6 mm, and the shielding gas was Ar at 20 L / min. The thickness of the welded portion was determined by observing the cross-sectional structure after welding.
 図1より、Tw/T0が0.7未満となると溶接部の厚さが薄くなりすぎて溶接部の成形性が著しく劣化し、排気ガス経路部品を成形する際に所定の形状に加工できないことが解る。したがって、本発明ブランク材の溶接部の断面形状は、Tw/T0≧0.7を満たす形状とする。溶接部の靭性を考慮すると、好ましくはTw/T0≧0.8である。 As shown in FIG. 1, when Tw / T0 is less than 0.7, the thickness of the welded portion becomes too thin, the formability of the welded portion is significantly deteriorated, and the exhaust gas path component cannot be processed into a predetermined shape. I understand. Therefore, the cross-sectional shape of the welded portion of the blank material of the present invention is a shape that satisfies Tw / T0 ≧ 0.7. Considering the toughness of the welded portion, Tw / T0 ≧ 0.8 is preferable.
 次に、上記の溶接形状を実現するために好ましいレーザー溶接における溶接条件について説明する。 Next, the welding conditions in laser welding that are preferable for realizing the above welding shape will be described.
 レーザー溶接において、溶接部の厚さを確保するために、溶接出力、溶接速度、突合わせ形状、レーザー狙い位置を制御することにより、成形性に優れる溶接形状を得ることができる。 In laser welding, in order to ensure the thickness of the welded portion, a welding shape with excellent formability can be obtained by controlling the welding output, welding speed, butting shape, and laser aiming position.
 溶接出力が5kW超の場合、エネルギー密度が過度に高くなり、溶接溶落ちが生じる。溶接出力が2KW未満になると、十分な接合ができない。したがって、好ましい溶接出力は2~5kWである。コスト、溶接部の粗粒化防止、溶接形状の安定性を考慮すると、3~4.5kWがより好ましい。 When the welding power exceeds 5 kW, the energy density becomes excessively high and welding burnout occurs. When the welding output is less than 2 KW, sufficient joining cannot be performed. Therefore, a preferable welding power is 2 to 5 kW. In consideration of cost, prevention of coarsening of the welded portion, and stability of the weld shape, 3 to 4.5 kW is more preferable.
 溶接速度が2m/min未満の低速では、溶込み性は良いが、結晶粒が粗大化し靭性が低下して、成形不良となるので、下限は2m/minとする。溶接速度を6m/min超の高速にすると、溶込み深さが低減し、また、溶接形状の凹凸が激しくなり、溶接品質の確保が困難になるので、上限は6m/minとする。 When the welding speed is lower than 2 m / min, the penetration is good, but the crystal grains are coarsened and the toughness is lowered, resulting in poor molding. Therefore, the lower limit is 2 m / min. If the welding speed is higher than 6 m / min, the penetration depth is reduced, the unevenness of the weld shape becomes severe, and it becomes difficult to ensure the welding quality. Therefore, the upper limit is set to 6 m / min.
 突合わせ時の隙間が広すぎると溶接部の窪みが多くなり、成形性が劣化する。スポット径の30%を超える隙間がある状態でレーザー溶接すると、著しくエリクセン値が低くなるので、突合わせ時の隙間は、スポット径の30%以下とする。凹量を小さくするためには、20%以下が好ましい。 と If the gap at the time of butt is too wide, there will be many dents in the weld and the formability will deteriorate. If laser welding is performed in a state where there is a gap exceeding 30% of the spot diameter, the Erichsen value is remarkably lowered. Therefore, the gap at the time of butting is set to 30% or less of the spot diameter. In order to reduce the concave amount, 20% or less is preferable.
 レーザー光の狙い位置は、片方の鋼板に偏り過ぎると他方の鋼板が溶融されないので、両鋼板にレーザー光を照射するのがよい。板厚が異なる鋼板を溶接する場合、溶融程度を考慮して厚板側の方を優先的に溶融させる必要がある。溶接部の凹みを抑制するために、レーザー狙い位置は厚板側にスポット径の30%以下とする。溶接部の成形性の観点から、スポット径の20%以下が好ましい。 If the target position of the laser beam is too biased to one steel plate, the other steel plate is not melted, so it is better to irradiate both steel plates with laser light. When welding steel plates having different plate thicknesses, it is necessary to preferentially melt the thick plate side in consideration of the degree of melting. In order to suppress the dent of the welded portion, the laser target position is set to 30% or less of the spot diameter on the thick plate side. From the viewpoint of formability of the welded portion, 20% or less of the spot diameter is preferable.
 本発明ブランク材を成形し、テーラードブランク部品とすることができる。たとえば、本発明ブランク材は、自動車の排気部品に成形され、他部品と結合後、所定の設置場所に固定される。このようにして、テーラードブランク材から排気部品が完成する。 The blank material of the present invention can be formed into a tailored blank part. For example, the blank material of the present invention is molded into an exhaust part of an automobile, and after being combined with other parts, fixed at a predetermined installation location. In this way, an exhaust part is completed from the tailored blank material.
 テーラードブランク材を成形する際、冷間、温間、及び熱間のいずれで加工しても構わない。自動車に搭載される排気ガス経路に使用される排ガス部品を例に説明したが、その他の輸送機器、化学プラント、建築部材、家電部品等、広範囲な用途に、本発明ブランク材を適用できることは言うまでもない。 When forming a tailored blank material, it may be processed cold, warm, or hot. Although the exhaust gas parts used in the exhaust gas path mounted on automobiles have been described as an example, it goes without saying that the blank material of the present invention can be applied to a wide range of uses such as other transportation equipment, chemical plants, building members, home appliance parts, and the like. Yes.
 次に、本発明の実施例について説明する。実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一例であり、本発明は、この例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, examples of the present invention will be described. The conditions of the examples are examples employed for confirming the feasibility and effects of the present invention, and the present invention is not limited to these examples. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
 表1に示す成分組成のステンレス鋼板を供試材とし、表2に示す条件でレーザー溶接し、エリクセン試験を実施した。溶接部の形状については、断面観察からTw/T0を算出した。 Using a stainless steel plate having the composition shown in Table 1 as a test material, laser welding was performed under the conditions shown in Table 2, and an Erichsen test was performed. For the shape of the weld, Tw / T0 was calculated from cross-sectional observation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 発明例に示すように、本発明で規定する成分組成を有する鋼板を、本発明で規定する溶接条件でレーザー溶接すると、Tw/T0が0.7以上となり、エリクセン値が4mm以上となることが確認できた。 As shown in the invention examples, when a steel plate having the component composition defined in the present invention is laser-welded under the welding conditions defined in the present invention, Tw / T0 may be 0.7 or more, and the Erichsen value may be 4 mm or more. It could be confirmed.
 本発明で規定する成分組成を外れる鋼板、又は本発明で規定する溶接条件から外れる溶接条件で溶接した比較例は、エリクセン値が4mm未満であり、成形性が悪く、排ガス部品として満足する成形性が得られなかった。 The comparative example welded with a steel sheet deviating from the component composition specified in the present invention or under welding conditions deviating from the welding conditions specified in the present invention has an Erichsen value of less than 4 mm, poor formability, and satisfactory formability as an exhaust gas part. Was not obtained.
 本発明によれば、テーラードブランク用ステンレス鋼板、成形性に優れたテーラードブランク材、及びその製造方法を得ることが可能となり、部品製造効率の向上、部品性能の向上等を図ることができる。よって、本発明は、鋼板加工産業において利用可能性が高いものである。 According to the present invention, it is possible to obtain a stainless steel plate for tailored blanks, a tailored blank material excellent in formability, and a manufacturing method thereof, and it is possible to improve component manufacturing efficiency and component performance. Therefore, the present invention has high applicability in the steel plate processing industry.

Claims (7)

  1.  質量%で、
      C :0.001~0.10%、
      Si:0.01~3.00%、
      Mn:0.01~3.00%、
      P :0.01~0.05%、
      S :0.0001~0.010%、
      Cr:10~30%、及び
      N :0.001~0.10%
    を含有し、残部がFe及び不可避的不純物であることを特徴とするテーラードブランク用フェライト系ステンレス鋼板。
    % By mass
    C: 0.001 to 0.10%,
    Si: 0.01 to 3.00%,
    Mn: 0.01 to 3.00%,
    P: 0.01 to 0.05%,
    S: 0.0001 to 0.010%,
    Cr: 10 to 30%, and N: 0.001 to 0.10%
    Ferritic stainless steel sheet for tailored blanks, characterized in that the balance is Fe and inevitable impurities.
  2.  さらに、質量%で、
      Ti:0.005~0.50%、
      Nb:0.005~1.00%、
      V :0.05~1.00%、
      B :0.0002~0.005%、及び
      Al:0.001~2.0%
    の1種又は2種以上を含有することを特徴とする請求項1に記載のテーラードブランク用フェライト系ステンレス鋼板。
    Furthermore, in mass%,
    Ti: 0.005 to 0.50%,
    Nb: 0.005 to 1.00%,
    V: 0.05-1.00%
    B: 0.0002 to 0.005%, and Al: 0.001 to 2.0%
    The ferritic stainless steel sheet for tailored blanks according to claim 1, comprising one or more of the following.
  3.  さらに、質量%で、
      Mo:0.01~3.00%、
      Cu:0.10~3.00%、
      Ni:0.01~2.00%、
      W :0.10~3.00%、
      Zr:0.05~0.30%、
      Sn:0.005~0.50%、
      Sb:0.005~0.50%、
      Co:0.03~0.30%、
      Mg:0.0002~0.010%、
      Ca:0.0001~0.0030%、及び
      REM:0.001~0.20%
    の1種又は2種以上を含有することを特徴とする請求項1又は2に記載のテーラードブランク用フェライト系ステンレス鋼板。
    Furthermore, in mass%,
    Mo: 0.01 to 3.00%,
    Cu: 0.10 to 3.00%,
    Ni: 0.01 to 2.00%,
    W: 0.10 to 3.00%
    Zr: 0.05 to 0.30%,
    Sn: 0.005 to 0.50%,
    Sb: 0.005 to 0.50%,
    Co: 0.03-0.30%,
    Mg: 0.0002 to 0.010%,
    Ca: 0.0001 to 0.0030%, and REM: 0.001 to 0.20%
    The ferritic stainless steel sheet for tailored blanks according to claim 1 or 2, characterized by containing one or more of the following.
  4.  2つの素材を溶接により接合して製造したテーラードブランク材であって、
     前記素材の少なくとも1つが請求項1~3のいずれか1項に記載のテーラードブランク用ステンレス鋼板であることを特徴とする成形性に優れたテーラードブランク材。
    A tailored blank produced by joining two materials by welding,
    A tailored blank material excellent in formability, wherein at least one of the materials is the stainless steel plate for tailored blanks according to any one of claims 1 to 3.
  5.  溶接部の厚みをTw、薄板側の板厚をT0としたとき、Tw/T0≧0.7であることを特徴とする請求項4に記載の成形性に優れたテーラードブランク材。 The tailored blank material excellent in formability according to claim 4, wherein Tw / T0≥0.7, where Tw is the thickness of the welded portion and T0 is the thickness of the thin plate side.
  6.  請求項4又は5に記載の成形性に優れたテーラードブランク材を製造する方法であって、
     2つの素材をTIG溶接、MIG溶接、又は、レーザー溶接で接合することを特徴とする成形性に優れたテーラードブランク材の製造方法。
    A method for producing a tailored blank material excellent in formability according to claim 4 or 5,
    A method for producing a tailored blank material excellent in formability, characterized by joining two materials by TIG welding, MIG welding, or laser welding.
  7.  2つの素材をレーザー溶接で接合し、上記レーザー溶接において、溶接出力を5kW以下、溶接速度を2~6m/min、突合わせ隙間をレーザー光のスポット径に対して30%以下とし、レーザー狙い位置を厚板側エッジから厚板側に上記スポット径に対して30%以下オフセットすることを特徴とする請求項6に記載の成形性に優れたテーラードブランク材の製造方法。 Two materials are joined by laser welding. In the above laser welding, the welding power is 5 kW or less, the welding speed is 2 to 6 m / min, the butt gap is 30% or less with respect to the laser beam spot diameter, and the laser target position The method for producing a tailored blank material excellent in formability according to claim 6, wherein: is offset from the thick plate side edge to the thick plate side by 30% or less with respect to the spot diameter.
PCT/JP2015/057892 2014-03-17 2015-03-17 Ferritic stainless steel sheet for use in tailored blank, tailored blank material exhibiting excellent workability, and method for producing same WO2015141674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508735A JP6811609B2 (en) 2014-03-17 2015-03-17 Manufacturing method of tailored blank material with excellent moldability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-054138 2014-03-17
JP2014054138 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015141674A1 true WO2015141674A1 (en) 2015-09-24

Family

ID=54144639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057892 WO2015141674A1 (en) 2014-03-17 2015-03-17 Ferritic stainless steel sheet for use in tailored blank, tailored blank material exhibiting excellent workability, and method for producing same

Country Status (2)

Country Link
JP (1) JP6811609B2 (en)
WO (1) WO2015141674A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020115531A1 (en) * 2018-12-06 2020-06-11 Aperam Stainless steel, products made of this steel and methods of manufacturing same
CN111996462A (en) * 2020-09-07 2020-11-27 鞍钢股份有限公司 Longitudinal variable-thickness ultrahigh-strength ship board and production method thereof
US11091824B2 (en) * 2014-07-22 2021-08-17 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363712A (en) * 2000-12-22 2002-12-18 Kawasaki Steel Corp Ferritic stainless steel sheet for fuel tank and fuel pipe, and production method therefor
JP2003138347A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Ferritic stainless steel sheet, and production method therefor
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor
JP2011143430A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Method of manufacturing tailored blank, and steel plate for tailored blank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363712A (en) * 2000-12-22 2002-12-18 Kawasaki Steel Corp Ferritic stainless steel sheet for fuel tank and fuel pipe, and production method therefor
JP2003138347A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Ferritic stainless steel sheet, and production method therefor
JP2003201547A (en) * 2001-10-31 2003-07-18 Jfe Steel Kk Ferritic stainless steel sheet having excellent deep drawability, secondary working brittleness resistance and corrosion resistance and production method therefor
JP2011143430A (en) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd Method of manufacturing tailored blank, and steel plate for tailored blank

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUNOBU MIYAZAKI ET AL.: "Welding Methods and Forming Characteristics of Tailored Blanks (TBs", NIPPON STEEL TECHNICAL REPORT, July 2003 (2003-07-01), pages 35 - 39, XP055226709 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11091824B2 (en) * 2014-07-22 2021-08-17 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member
WO2020115531A1 (en) * 2018-12-06 2020-06-11 Aperam Stainless steel, products made of this steel and methods of manufacturing same
CN111996462A (en) * 2020-09-07 2020-11-27 鞍钢股份有限公司 Longitudinal variable-thickness ultrahigh-strength ship board and production method thereof
CN111996462B (en) * 2020-09-07 2022-02-18 鞍钢股份有限公司 Longitudinal variable-thickness ultrahigh-strength ship board and production method thereof

Also Published As

Publication number Publication date
JP6811609B2 (en) 2021-01-13
JPWO2015141674A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
TWI493057B (en) Fat iron stainless steel
JP4386144B2 (en) Ferritic stainless steel with excellent heat resistance
TWI460292B (en) Ferritic stainless steel
JP2022521257A (en) Manufacturing method of strength parts such as thin-walled steel with aluminum or aluminum alloy plating layer
JP5435179B2 (en) Ferritic stainless steel
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
TWI548760B (en) Fat iron stainless steel
JP2011179088A (en) Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP5505570B1 (en) Ferritic stainless steel
TWI548758B (en) Fat iron stainless steel
JP2009091654A (en) Ferritic stainless steel having excellent weldability
WO2015141674A1 (en) Ferritic stainless steel sheet for use in tailored blank, tailored blank material exhibiting excellent workability, and method for producing same
JP5610660B2 (en) Ferritic stainless steel container excellent in low temperature strength of weld zone and welding method thereof
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP2007290033A (en) Ferritic stainless steel weld metal excellent in penetration shape and formability
JP2000015353A (en) Welded joining metallic plate excellent in press formability and production thereof
JPWO2018116792A1 (en) Ferritic stainless steel
JP5958412B2 (en) Ferritic stainless steel with excellent thermal fatigue properties
JP4254583B2 (en) Cr-containing alloy with excellent strain aging resistance of welds
JP2023005308A (en) Ferritic stainless steel sheet and method for producing the same
JP2004010967A (en) Ferritic stainless steel pipe with excellent fabrication quality
JP2005281711A (en) Cr-CONTAINING ALLOY WITH EXCELLENT CORROSION RESISTANCE IN WELD ZONE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508735

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765877

Country of ref document: EP

Kind code of ref document: A1