WO2015141668A1 - Method for non-invasively determining angle formed by structure inside organism - Google Patents
Method for non-invasively determining angle formed by structure inside organism Download PDFInfo
- Publication number
- WO2015141668A1 WO2015141668A1 PCT/JP2015/057880 JP2015057880W WO2015141668A1 WO 2015141668 A1 WO2015141668 A1 WO 2015141668A1 JP 2015057880 W JP2015057880 W JP 2015057880W WO 2015141668 A1 WO2015141668 A1 WO 2015141668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tomographic image
- structures
- tomographic
- determining
- plane
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/269—Analysis of motion using gradient-based methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10101—Optical tomography; Optical coherence tomography [OCT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10116—X-ray image
Definitions
- the present invention generally relates to analysis of tomographic images, and more particularly, based on the tomographic images, determines the relative orientation (eg, relative angle) of two structures within an object such as a living body.
- the present invention relates to a computer program, an apparatus, a method, and the like.
- the cochlea the organ that controls hearing, is an organ that exists in the inner ear, is surrounded by hard bones, and is divided into two compartments with different ionic compositions.
- a three-story tube is wound like a snail, and the central part is called a membrane maze (or the central floor) in one compartment, and a liquid with a high potassium concentration called endolymph is inside.
- the three-story upper (vestibule floor) and lower (tymroom floor) are continuous compartments connected by the tip of the cochlea, filled with a liquid with a low potassium concentration equivalent to normal extracellular fluid.
- the boundary between the central floor and the vestibular floor is the Ricenell membrane, which is normally stretched straight.
- Meniere's disease is an intractable disease that repeats dizziness and hearing loss, and in the most severe cases, hearing may be abolished.
- the cause has not yet been determined, but the endolymphatic edema has been observed as a result of a marked enlargement of the endolymph when preparing a postmortem temporal bone specimen from a patient with Meniere's disease. It is assumed to be deeply involved in the pathology. However, it has not been proved because there is no direct diagnosis of endolymphatic hydrops in living humans or animals. So far, diseases associated with endolymphatic edema have been considered, such as low-frequency sensorineural hearing loss, Lermoye syndrome, delayed endolymphatic edema.
- Optical coherence tomography is a technology that uses the fact that near-infrared rays are not easily absorbed by living tissue, and detects tomographic images with high-sensitivity detection of the reflected infrared rays inside the tissue. It is.
- the present inventors have shown that the internal structure including endolymphatic edema can be depicted without destroying the cochlea of a living mouse (Non-patent Document 2).
- Non-patent Document 2 a dental diagnostic apparatus using OCT is known (Patent Document 1).
- the present invention makes it possible to evaluate endolymphatic edema from a living cochlea without removing the cochlea and performing solvent treatment for sectioning and staining. It is an object to provide a computer program, an apparatus, a method, and the like.
- the present inventors have further studied, and based on a plurality of tomographic images obtained by using OCT, the outer shapes of both tissues in a virtual space in the vicinity of a certain position where the inner surface of the cochlea and the Ricenell membrane are in contact with each other.
- the inventors have found that the optical flow method used for mobile tracking can be applied for this methodology. That is, in general, in moving object tracking, it is assumed that a moving object always appears in the vicinity in temporally continuous images in a moving image.
- a computer program for determining the relative orientation of two structures in the vicinity of each other in an object Computer (M1) means for receiving a tomographic image group including at least two tomographic images in which position information in the object is associated and the two structures appear; and (M2) The computer program for causing a computer to function as means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group.
- the means (M2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and the positional information associated with each of the at least one set of tomographic images and
- the means (M2) Displaying at least one tomographic image included in the tomographic image group on an image display means; Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, the user selects at least two points in the vicinity of the contour line, receives the selected points, For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and Configured to determine, for each of the two structures, a plane that approximates a portion of the surface shape based on the selected point and the identified point;
- the computer program according to [1] or [2] above.
- the means (M1) includes means for determining the tomographic image group from a plurality of given tomographic images based at least in part on a user input.
- Further computer (M3) determining a straight line intersecting the two planes determined by the means (M2) in the three-dimensional space, calculating a rotation angle from one plane to the other plane with respect to the determined straight line; and
- a device for determining the relative orientation of two structures in the vicinity of each other in an object, and the computer program according to any one of [1] to [5] functions An apparatus comprising: a computer configured as described above. [7] (M4) The apparatus according to [6], further including means for acquiring a tomographic image in the object. [8] The apparatus according to [7], wherein the means (M4) is an optical coherence tomography device. [9] The apparatus according to [8], wherein the optical coherence tomography device is configured to acquire a tomographic image of the inner surface of the cochlea and the Risnel membrane.
- a method for determining the relative orientation of two structures in the vicinity of each other in an object (S1) preparing a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear; and (S2) including a step of determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group, and based on the determined two planes, Said method wherein the relative orientation is determined.
- the step (S2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and the positional information associated with each of the at least one set of tomographic images;
- the step (S2) Displaying at least one tomographic image included in the tomographic image group on an image display means; Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, select at least two points near the contour line; For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and Determining, for each of the two structures, a plane that approximates a portion of a surface shape based on the selected point and the identified point; The method according to [10] or [11] above. [13] The method according to any one of [10] to [12] above, wherein the tomographic image is acquired using an optical coherence tomography device.
- [16] including a step of determining a relative angle between the inner surface of the cochlea and the Ricenel membrane by using the method according to [14] above with the inner surface of the cochlea and the Ricenel membrane as the two structures,
- the present invention it is not necessary to acquire data parallel to the cochlear axis, and the inner surface of the cochlea and the Ricenell membrane are distorted on the cut surface in any direction. Even if it is visible at a certain angle, a correct relative angle can be calculated by approximating a part of the surface shape of both tissues three-dimensionally.
- a correct relative angle can be calculated by approximating a part of the surface shape of both tissues three-dimensionally.
- even if there is no tomographic image having a depth up to the cochlea axis it is possible to evaluate the shift of the Ricenell film without any problem using a partial image outside the cochlea. Therefore, by using the present invention, it is possible to evaluate endolymphatic edema based on the cochlea of a living animal.
- the procedure was complicated in the prior art (for example, it takes several hours for fixation in mice, 7 days for decalcification, several days for sectioning and staining, and more than one month for fixation in humans)
- the present invention since it can be easily digitized after image acquisition and analyzed on a computer, it is excellent in simplicity, rapidity, and economy.
- the analysis program can be configured using an existing library that is generally available.
- the use of the present invention makes it possible to diagnose endolymphatic edema in vivo, so that medication or stimuli that cause inner ear damage (for example, loud sounds or barotrauma) cause endolymphatic edema. Observe in real time.
- the present invention can also be used to evaluate animal experimental models for the development of treatments for endolymphatic edema.
- the present invention can be applied not only to a cochlea but also to any tissue or structure in a target (eg, a living body) from which a tomographic image can be acquired.
- FIG. 2 is a diagram illustrating a configuration of an apparatus of the present invention according to an exemplary embodiment.
- FIG. 6 shows a flowchart of a procedure for determining relative orientation according to the present invention according to an exemplary embodiment. It is an example of the image which applied the computer program of this invention to the OCT tomographic image of a mouse cochlea. It is a graph which shows the angle of a Ricenell membrane and the cochlea inner side surface computed by the method of this invention.
- examples of the “object” include a living body, but are not limited thereto.
- the living body includes, for example, animals (for example, mammals such as humans, dogs, cats, monkeys, horses, sheep, goats, mice, rats, rabbits, and other vertebrates) and plant bodies.
- the target object has at least two structures that are targets for determining the relative orientation, and may have other components.
- the “structure” is not particularly limited as long as it is a physical entity having a specific shape.
- the structure is, for example, a living tissue.
- the structure may be inside the object or may form a part of the surface of the object.
- “two structures close to each other”, which are targets for determining the relative orientation, are close enough that at least a part of each structure appears in one tomographic image. If it is, it will not specifically limit.
- the two structures may be in contact with each other.
- examples of the two structures include a cochlea inner surface and a Ricenell membrane.
- Meniere's disease, bass-sensitive sensorineural hearing loss, Lermoye syndrome, delayed endolymphatic hydrops, etc. are associated with endolymphatic hydrops.
- the relative angle change between the cochlear inner surface and the Ricenell's membrane is observed due to significant expansion.
- endolymphatic edema By determining the relative orientation between the cochlear inner surface and the Ricenell's membrane, endolymphatic edema, and the above mentioned Evaluation and medical insights about such diseases can be obtained. Therefore, the inner surface of the cochlea and the Ricenell membrane are preferred objects as the two structures.
- the object when a tube is arranged inside the object and a valve is fixed to the inner wall of the tube, the object is destroyed by obtaining a tomographic image around the fixed part of the inner wall of the tube and the valve.
- the angle between the inner wall of the tube and the valve can be determined non-invasively.
- relative orientation refers to the relationship between the orientation of one structure and the orientation of the other structure. Usually, in the space around the position where both structures are close to each other, It can be grasped as the direction in which the surface formed by the outer shape of one structure extends with respect to the surface formed by the outer shape of the other structure.
- the relative orientation may be given as a quantitative one (eg, a relative angle defined as described below), a qualitative one, or a visual one. It may be given as information (for example, display on a display of a three-dimensional model serving as an indicator of the relative orientation of both structures).
- the relative angle between the two structures can be defined as follows. For example, consider a case where two structures T 1 and T 2 are in contact with each other, and therefore a line 1 is formed where the outer shapes of both structures are in contact with each other (FIG. 1). Focusing on one point A on the line l, in the vicinity of the point A can be approximated to a respective outer planar S 1 and S 2 of the two structures, a line profile come into contact with each other can be approximated as a straight line l '.
- the planes S 1 and S 2 are preferably tangent planes of the structures T 1 and T 2 respectively passing through the point A.
- a rotation angle ⁇ from the plane S 1 to the plane S 2 with respect to the straight line l ′ can be defined as a relative angle between both structures near the point A.
- the planes S 1 and S 2 and the rotation angle ⁇ can be determined according to the invention. Note that although the relative angle obtained according to the selection of the point A on the line l varies, those skilled in the art can appropriately determine the position to which attention should be paid according to the object and purpose of analysis. Moreover, since the shape change of the structure in the living body is generally smooth, a constant relative angle can be obtained in a minute space regardless of the position of interest. Therefore, instead of selecting the point A on the line 1 where the outer shapes of the two structures are in contact with each other, as shown in FIG.
- the planes S 1 and S 2 that approximate the outer shape of 2 may be determined.
- the relative angles of the two structures may be determined by selecting a plurality of points and obtaining the relative angles, and then averaging the obtained relative angles.
- a point A near the two structures is determined.
- the relative angle can be defined in the same manner as in the above case where both structures are in contact.
- the “tomographic image” may be obtained by any means as long as the analysis according to the present invention is possible.
- means for acquiring a tomographic image for example, optical coherence tomography (OCT), nuclear magnetic resonance imaging (MRI), X-ray computed tomography (X-ray CT), or ultrasonic imaging (echo) is used. Things.
- OCT optical coherence tomography
- MRI nuclear magnetic resonance imaging
- X-ray CT X-ray computed tomography
- echo ultrasonic imaging
- Things a means using OCT is preferable because it has low invasiveness to a living body and can acquire a high-resolution tomographic image.
- OCT may be time-domain OCT (time-domain OCT, TD-OCT) or Fourier-domain OCT (Fourier-domain OCT, FD-OCT).
- FD-OCT is preferable because data can be acquired.
- FD-OCT examples include spectral domain OCT (Spectral-domain OCT, SD-OCT) and wavelength sweep type OCT (Swept source OCT, SS-OCT).
- SS-OCT is exemplified as a preferred one.
- a commercially available device can be used as the OCT device or a device for the various means described above.
- the tomographic image can be acquired by a normal procedure according to a standard textbook, a manual of the equipment to be used, or the like.
- the procedure for obtaining a cochlear tomographic image using an OCT device is described in the examples below and Non-Patent Document 2 above, and the following settings can be used, for example: 800-1400nm (1300nm in the example), scan frequency up to 200KHz (16kHz in the example, but slower if the target doesn't move).
- a method of obtaining an OCT image by irradiating from an outer window can be used.
- an OCT probe may be inserted through the middle ear after the eardrum has been excised to obtain an image.
- the “tomographic image group” for use in the present invention includes at least two tomographic images in which positional information in the object is associated and the two structures appear.
- positional information in the object is information indicating which position of the object the tomographic image represents the tomographic plane, and therefore each point in the tomographic image is in (or outside of) the object. It is known which position corresponds to.
- the position may be relative, that is, the relative positional relationship between any one point in one image included in the group of tomographic images and any one point in the other image (ie, the length of the vector). And the direction) may be known.
- “Two structures appear” means that at least a part of each structure is seen in the tomographic image.
- the number of tomographic images included in the tomographic image group varies depending on a specific analysis target, an image set, and the like, but is at least two, preferably at least three.
- the upper limit of the number of images is not limited as long as different images can be actually acquired and can be used for processing according to the present invention, but is 512, for example.
- the plurality of images included in the tomographic image group have a good signal-noise ratio and that there is no large positional shift between the images.
- the computer program of the present invention and an apparatus (hereinafter referred to as “the apparatus of the present invention”) for determining the relative orientation of the two structures according to the present invention.
- the apparatus of the present invention will be described in particular with reference to the drawings.
- the computer program of the present invention is a computer program for executing the functions of the apparatus of the present invention, and is configured according to the description of the apparatus of the present invention. can do.
- FIG. 2 is a diagram illustrating the configuration of the apparatus of the present invention according to an exemplary embodiment.
- the apparatus of the present invention comprises (M1) means for receiving a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear, and (M2) Based on the group of tomographic images, the apparatus has at least means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space. In a preferred embodiment, it is shown in FIG.
- the relative orientation of the two structures is calculated as the relative angle between the two structures, and the above-described output for outputting it (M3) may be further included.
- the means (M1), (M2) and (M3) may be implemented in one computer as shown in FIG. 2, or are configured to be executed using a plurality of computers. May be.
- (M4) means for acquiring a tomographic image in the object may be included in the configuration of the apparatus of the present invention.
- the means (M4) those described above in this specification can be used.
- various input means and output means for example, a display, a printer, etc.
- the above means (M1) is a means for receiving a tomographic image group to be subjected to analysis by the means (M2), and the definition of each term is as described above.
- the tomographic image group may be received by reading data of a plurality of previously acquired tomographic images recorded in an auxiliary storage device such as a hard disk drive or an external storage device (eg, CD-ROM).
- the tomographic image acquired by the tomographic image acquiring means (M4) may be received in real time.
- the means (M1) selects the tomographic image group from a plurality of given tomographic images based at least in part on a user input so that an appropriate tomographic image group is selected for analysis by the means (M2). It is preferred to have a means for determining. For example, such means displays a plurality of candidate tomographic images on the image display means, and selects at least one image to be used for analysis by the means (M2) from the displayed images. Can be configured.
- the means may be configured such that all images used by the means (M2) are selected by the user, or based on an image selected by the user, a preset reference (for example, already Another image may be selected automatically or semi-automatically (that is, presentation and confirmation to the user) according to a criterion in terms of the positional relationship of the selected image with respect to the tomographic plane).
- a preset reference for example, already Another image may be selected automatically or semi-automatically (that is, presentation and confirmation to the user) according to a criterion in terms of the positional relationship of the selected image with respect to the tomographic plane).
- the means (M2) is a means for determining a plane that approximates a part of the surface shape of each of the two structures in the three-dimensional space based on the tomographic image group determined by the means (M1). is there.
- the planes may be the planes S 1 and S 2 described above with reference to FIG. These planes are planes that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the point of interest A (or two points A 1 and A 2 ), respectively.
- plane determination based on a plurality of tomographic images can be performed using a technique known per se.
- Examples of such a technique include, but are not limited to, a method described later based on an optical flow method, a method of creating three-dimensional volume data from a tomographic image, extracting a continuous object therefrom, and performing plane approximation, and the like. It is done.
- the method described later based on the optical flow method is preferable from the viewpoint of high-speed processing and high reliability of results.
- the means (M2) reduces image noise by applying generally used filtering such as a bilateral filter and a column filter to the tomographic image group used for analysis before performing the process of determining the plane. It is preferable that it is comprised.
- the determination of the plane based on the optical flow method is performed by the following general procedure: calculating an optical flow between at least one set of tomographic images included in the tomographic image group, and determining the at least one set of tomographic images.
- the plane can be determined using the position information associated with each of the positions and the calculated optical flow.
- the method is based on the assumption that in the tomographic images close to each other, each structure should always appear in the vicinity of the image. Therefore, the set of tomographic images is an image representing the tomographic planes close to each other. It is preferable that In a particularly preferred embodiment, the set of tomographic images are adjacent tomographic images parallel to each other.
- tomographic images that are close to or adjacent to each other means that the tomographic planes represented by the tomographic images are close to or adjacent to each other.
- each point of each structure in one of the set of tomographic images may be associated as being continuous with any point in the structure in the other tomographic image. it can.
- An optical flow (that is, a distribution of flow vectors) can be calculated by representing a position where each point in one image has moved in the other image by a series of vectors (flow vectors).
- calculating the optical flow between a set of tomographic images means calculating a flow vector map over the entire image by calculating the above flow vector for all points in one image. It does not necessarily need to be generated and means to determine at least one flow vector.
- the calculation of the optical flow can be performed using, for example, various methods used in the field of moving object tracking in a moving image. Examples of such a method include a pattern recognition-based method, Particle Filter, Mean Shift tracking, gradient method, and the like.
- a flow relating to a point in the tomographic image near the outline of each structure that is, a point on the outline or a point in the structure near the outline
- the vector it is necessary to determine the vector.
- at least one point in this case, in addition to the point and one point identified as corresponding to the point in a different image
- Need another point in the vicinity of the line more preferably the flow vector needs to be determined at at least two points (thus identifying the at least two points and corresponding those points in different images) At least 2 points, and thus a total of at least 4 points).
- the plurality of points selected for determining the plane may be points in one image or points in different images.
- Such a point can be acquired, for example, by allowing the user to select a corresponding point in the tomographic image displayed on the image display means, but a more automated method may be used.
- the means (M2) causes the image display means to display at least one tomographic image included in the tomographic image group, and in the displayed image, at least two points in the vicinity of the contour line for each structure of interest are displayed by the user.
- the selected point may be received and the selected point may be received.
- the means (M2) applies the above-described method to each of the points selected in this way, and corresponds the selected point in the tomographic image close to the selected tomographic image. May be configured to identify points to do.
- the adjacent tomographic images may be selected by the user based on position information associated with each tomographic image, or automatically or semi-automatically (ie, presented to the user) by means (M2) based on the position information. And confirmation).
- the means (M2) is, for example, selected as described above, at least two points in the vicinity of the outline of the structure of interest in one tomographic image, and at least two points specified to correspond to them in another tomographic image
- a plane that approximates a part of the surface shape of the structure is determined.
- the set of points used for the determination of the plane is preferably at least mostly in the vicinity of the outline of the structure.
- the plane is determined by approximating one plane passing through all of these points (the positions of all the points are known in a three-dimensional space) using, for example, the least square method. Can do. By performing the same procedure for each of the two structures, two target planes are determined.
- the above means (M3) is a means for calculating the relative angle between the two planes determined by the means (M2) and outputting it.
- the definition of relative angle is given above, and the skilled person can determine the angle based on the two planes.
- the present invention also provides a method for determining the relative orientation of two structures in the vicinity of each other in an object (hereinafter also referred to as the method (I) of the present invention).
- FIG. 3 shows a flowchart of an exemplary embodiment of the method.
- the method (I) of the present invention includes at least the steps (S1) and (S2) described above, and as shown in FIG. 3, in a preferred embodiment, the structure is based on the two planes determined by the step (S2).
- the step (S3) for determining the relative angle between the bodies is included.
- (S4) a step of acquiring a tomographic image in the object may be included in the method of the present invention.
- the above step (S1) is a step of preparing a tomographic image group to be subjected to the analysis in the step (S2), and the definition of each term is as described above.
- the preparation of the tomographic image group may be to read out data of a plurality of tomographic images acquired in advance and recorded in an auxiliary storage device such as a hard disk drive or an external storage device (eg, CD-ROM).
- the tomographic image acquired in step (S4) may be received in real time.
- step (S1) in order to select an appropriate tomographic image group for analysis in step (S2), the tomographic image group is obtained from a plurality of given tomographic images based at least in part on a user input. It is preferable to have a step of determining. Such a process can be carried out according to the above description relating to the means (M1) of the apparatus of the present invention.
- the step (S2) is a step of determining a plane that approximates a part of the surface shape of each of the two structures in the three-dimensional space based on the tomographic image group determined in the step (S1). is there.
- the planes may be the planes S 1 and S 2 described above with reference to FIG. These planes are planes that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the point of interest A (or two points A 1 and A 2 ), respectively.
- plane determination based on a plurality of tomographic images can be performed using a technique known per se, for example, using the means (M2) of the apparatus of the present invention.
- step (S3) is a step of calculating the relative angle between the two planes determined in step (S2).
- the definition of relative angle is given above, and the skilled person can determine the angle based on the two planes.
- the present invention also provides a method for assisting diagnosis of endolymphatic hydrops in a mammal (hereinafter also referred to as the method (II) of the present invention).
- the method evaluates endolymphatic edema based on the relative orientation obtained by applying the method (I) of the present invention for the determination of the relative orientation of the cochlear inner surface and the Ricenell membrane. Can be done. Endolymphatic edema is considered to be present in various diseases and to various extents, and therefore quantitative evaluation is preferable. Therefore, the relative orientation is preferably a relative angle between both tissues.
- the evaluation of endolymphatic edema based on the relative angle is, for example, the relative angle calculated by the method (I) of the present invention based on the tomographic image of the cochlea from an individual that is known not to have endolymphedema. This can be done by comparing the relative angle calculated by the method (I) of the present invention based on the tomographic image of the cochlea from the individual to be tested.
- the threshold value or normal range of the relative angle that serves as an index of endolymphatic hydrops is determined, and the individual to be tested is determined.
- the relative angle may be evaluated by comparing it with the threshold or the normal range. In that case, the degree of endolymphatic edema may be determined using the threshold or the magnitude of deviation from the normal range.
- Example 1 Determination of the relative angle between the inner surface of the cochlea and the Ricenel membrane in normal mice and endolymphatic hydrops model mice from OCT images
- FIG. 4 shows an image displaying the intersection line between the two planes identified in the selected tomographic image.
- (a) is an image of a normal mouse and
- (b) is an image of a knockout mouse.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Multimedia (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Endoscopes (AREA)
Abstract
The present invention provides a computer program, a device, a method and the like which make it possible to evaluate endolymphatic hydrops from a live cochlea without requiring extraction and slicing of the cochlea or a solvent treatment thereof for dyeing. The present invention uses a cross-sectional image group including two or more cross-sectional images in which the cochlea inside surface and the Reissner's membrane appear, and determines a plane approximating one section of the surface shape of each of the two tissues inside a three-dimensional space. It is possible to use an optical flow method in order to determine said plane.
Description
本発明は、概しては、断層画像の解析に関し、より詳細には、断層画像に基づいて、生体等の対象物内における2つの構造体の相対的な配向性(例えば、相対角度)を決定するためのコンピュータプログラム、装置および方法等に関する。
The present invention generally relates to analysis of tomographic images, and more particularly, based on the tomographic images, determines the relative orientation (eg, relative angle) of two structures within an object such as a living body. The present invention relates to a computer program, an apparatus, a method, and the like.
聴覚を司る臓器である蝸牛は、内耳に存在し、硬い骨で包まれ、内部がイオン組成の異なる2つのコンパートメントに区切られた臓器である。3階建ての管がカタツムリのように巻いた形になっており、中央部分が一つのコンパートメントで膜迷路(または中央階)と呼ばれていて、内部には内リンパというカリウム濃度の高い液体が入っている。3階建ての上(前庭階)と下(鼓室階)は蝸牛先端でつながっている連続したコンパートメントで、通常の細胞外液と同等のカリウム濃度が低い液体で満たされている。中央階と前庭階の境界がライスネル膜で、正常では真っ直ぐに張った状態である。
聴 覚 The cochlea, the organ that controls hearing, is an organ that exists in the inner ear, is surrounded by hard bones, and is divided into two compartments with different ionic compositions. A three-story tube is wound like a snail, and the central part is called a membrane maze (or the central floor) in one compartment, and a liquid with a high potassium concentration called endolymph is inside. In. The three-story upper (vestibule floor) and lower (tymroom floor) are continuous compartments connected by the tip of the cochlea, filled with a liquid with a low potassium concentration equivalent to normal extracellular fluid. The boundary between the central floor and the vestibular floor is the Ricenell membrane, which is normally stretched straight.
メニエール病は、めまいと聴力低下を反復し、最重症例では聴力が廃絶することもある難病である。その原因は確定していないが、メニエール病患者の死後の側頭骨標本を作成すると内リンパが著明に拡大しているという「内リンパ水腫」が観察されていることから、内リンパ水腫がその病態に深く関与していると想定されている。しかし、生きている人間で、あるいは動物で、内リンパ水腫を直接的に診断する方法がなかったために、その証明はされていない。これまでに内リンパ水腫と関係している疾患として、低音障害型感音難聴、レルモワイエ症候群、遅発性内リンパ水腫などが考えられている。
Meniere's disease is an intractable disease that repeats dizziness and hearing loss, and in the most severe cases, hearing may be abolished. The cause has not yet been determined, but the endolymphatic edema has been observed as a result of a marked enlargement of the endolymph when preparing a postmortem temporal bone specimen from a patient with Meniere's disease. It is assumed to be deeply involved in the pathology. However, it has not been proved because there is no direct diagnosis of endolymphatic hydrops in living humans or animals. So far, diseases associated with endolymphatic edema have been considered, such as low-frequency sensorineural hearing loss, Lermoye syndrome, delayed endolymphatic edema.
内リンパ水腫に対する研究が必要であるが、そのためにはヒトやモデル動物で内リンパ水腫を観察する必要がある。しかし、内耳は硬い骨の中に入っており、ヒトでも動物でも生きている状態ではもちろん、死後摘出しても蝸牛の形のままでは内リンパ水腫の評価を行うことは困難であった。内リンパ水腫という形態の評価が可能なのは、摘出標本を薄い切片にするほかには方法がなかった(非特許文献1)。
Research on endolymphatic edema is necessary. To do so, it is necessary to observe endolymphedema in humans and model animals. However, the inner ear is in a hard bone, and it is difficult to evaluate endolymphatic edema in the form of a cochlea even if it is removed after death as well as being alive in humans and animals. There was no method that could evaluate the form of endolymphatic edema other than thinning the excised specimen (Non-patent Document 1).
光コヒーレンストモグラフィー(Optical Coherence Tomography; OCT)は近赤外線が生体組織で吸収されにくいことを利用して、組織に照射した赤外線が組織内部で反射したものを高感度で検出し、断層画像を得る技術である。生きたマウスの蝸牛を破壊することなく、内リンパ水腫を含めた内部構造を描出できることが本発明者らにより示されている(非特許文献2)。また、OCTを利用した歯科用診断装置が知られている(特許文献1)。
Optical coherence tomography (Optical Coherence Tomography: OCT) is a technology that uses the fact that near-infrared rays are not easily absorbed by living tissue, and detects tomographic images with high-sensitivity detection of the reflected infrared rays inside the tissue. It is. The present inventors have shown that the internal structure including endolymphatic edema can be depicted without destroying the cochlea of a living mouse (Non-patent Document 2). Moreover, a dental diagnostic apparatus using OCT is known (Patent Document 1).
上述の通り、従来、内リンパ水腫を評価するためには切片を作製する必要があった。しかし、切片での評価は、機能を持っている状態とは異なる状態での評価になるため、本来の病態を反映していない可能性があった。また、実際に切片を作ることの出来たある特定の断面のみに着目しての評価であるため、斜めに切れる等、切片の作り方によっては正しく内リンパ水腫の状態を評価できていない可能性があった。それを回避するために、従来の方法では蝸牛軸を通る切片を作るように十分に留意する必要があった。更に、従来技術では、骨性蝸牛管の少なくとも1断面全体を観察しなければ、前庭階と中央階との面積比として内リンパ水腫を正しく評価することは困難であった。
As described above, conventionally, in order to evaluate endolymphatic edema, it was necessary to prepare a section. However, since the evaluation by the section is an evaluation in a state different from the state having the function, there is a possibility that the original disease state is not reflected. In addition, since the evaluation is focused on a specific cross section where the section can actually be made, the state of endolymphatic edema may not be evaluated correctly depending on how the section is made, such as cutting at an angle. there were. In order to avoid that, in the conventional method, it was necessary to take great care to make a section through the cochlear shaft. Furthermore, according to the prior art, it is difficult to correctly evaluate endolymphatic edema as an area ratio between the vestibular floor and the central floor unless at least one entire cross section of the osseous cochlear duct is observed.
従来技術の上述の問題点に対し、本発明は、蝸牛を摘出して切片化や染色のための溶媒処理を行うことなく、生きている状態の蝸牛から内リンパ水腫を評価することを可能にするコンピュータプログラム、装置および方法等を提供することを目的とする。
In contrast to the above-mentioned problems of the prior art, the present invention makes it possible to evaluate endolymphatic edema from a living cochlea without removing the cochlea and performing solvent treatment for sectioning and staining. It is an object to provide a computer program, an apparatus, a method, and the like.
本発明者らは、上記課題を解決するために、生きた動物における蝸牛の断層画像に基づいて内リンパ水腫を評価する可能性について鋭意検討を行った。その過程において、低侵襲的、リアルタイム、かつ高解像度で生体からの断層画像を取得できるOCTに特に着目した。しかし、適切な角度の切断面での評価であることを保証するために、内耳表面からの十分な深さ(特に、蝸牛軸までの深さ)を観察する必要性があるのに対し、OCTでは深達度が制限されるという問題があった。また、蝸牛骨包の表面から蝸牛軸を正確に通る断面で画像を描出することも困難であった。そこで本発明者らは更に検討を行い、OCTを用いて得られる複数の断層画像に基づいて、蝸牛内側面とライスネル膜とが接触するある位置の近傍の仮想空間内でそれら両組織の外形をそれぞれ平面近似し、かつそれら2つの平面が為す角度を両組織の相対角度として求めることでライスネル膜の偏移を評価する方法論に想到した。
更に、移動体追尾のために用いられるオプティカルフロー法をこの方法論のために適用できることを本発明者らは見出した。即ち、一般的に、移動体追尾では、動画中の時間的に連続する画像において移動体が常に近傍に現れると仮定される。これと同様に、医療分野で用いられる断層画像群においては、隣接断層画像(空間的に連続する画像)中では一つの連続する物体は常に画像内の近傍に現れるはずであるという仮説に基づいて、一つの画像中での各組織の輪郭線付近の点をそれと隣接する画像中での特定の点と対応付けることができる。このようにして得られた一連の点を通る平面を近似的に求めることにより、目的とする平面を決定することが可能となる。
係る知見に基づいて本発明者らは更なる研究を行い、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventors diligently studied the possibility of evaluating endolymphatic edema based on cochlear tomographic images in live animals. In that process, we paid particular attention to OCT that can acquire tomographic images from living bodies with minimally invasive, real-time and high resolution. However, it is necessary to observe a sufficient depth from the inner ear surface (especially the depth to the cochlea axis) to ensure that the evaluation is at an appropriate angle cut, whereas OCT Then there was a problem that the depth of penetration was limited. It was also difficult to draw an image from the surface of the cochlear bone capsule in a cross section that accurately passes the cochlear axis. Therefore, the present inventors have further studied, and based on a plurality of tomographic images obtained by using OCT, the outer shapes of both tissues in a virtual space in the vicinity of a certain position where the inner surface of the cochlea and the Ricenell membrane are in contact with each other. We came up with a methodology for evaluating the deviation of the Risnel film by approximating each plane and obtaining the angle between these two planes as the relative angle between the two tissues.
Furthermore, the inventors have found that the optical flow method used for mobile tracking can be applied for this methodology. That is, in general, in moving object tracking, it is assumed that a moving object always appears in the vicinity in temporally continuous images in a moving image. Similarly, in the group of tomographic images used in the medical field, in the adjacent tomographic image (spatial continuous image), one continuous object should always appear in the vicinity of the image. A point in the vicinity of the outline of each tissue in one image can be associated with a specific point in the image adjacent to the tissue. By approximating the plane passing through the series of points thus obtained, the target plane can be determined.
Based on such findings, the present inventors have conducted further research and completed the present invention.
更に、移動体追尾のために用いられるオプティカルフロー法をこの方法論のために適用できることを本発明者らは見出した。即ち、一般的に、移動体追尾では、動画中の時間的に連続する画像において移動体が常に近傍に現れると仮定される。これと同様に、医療分野で用いられる断層画像群においては、隣接断層画像(空間的に連続する画像)中では一つの連続する物体は常に画像内の近傍に現れるはずであるという仮説に基づいて、一つの画像中での各組織の輪郭線付近の点をそれと隣接する画像中での特定の点と対応付けることができる。このようにして得られた一連の点を通る平面を近似的に求めることにより、目的とする平面を決定することが可能となる。
係る知見に基づいて本発明者らは更なる研究を行い、本発明を完成させるに至った。 In order to solve the above-mentioned problems, the present inventors diligently studied the possibility of evaluating endolymphatic edema based on cochlear tomographic images in live animals. In that process, we paid particular attention to OCT that can acquire tomographic images from living bodies with minimally invasive, real-time and high resolution. However, it is necessary to observe a sufficient depth from the inner ear surface (especially the depth to the cochlea axis) to ensure that the evaluation is at an appropriate angle cut, whereas OCT Then there was a problem that the depth of penetration was limited. It was also difficult to draw an image from the surface of the cochlear bone capsule in a cross section that accurately passes the cochlear axis. Therefore, the present inventors have further studied, and based on a plurality of tomographic images obtained by using OCT, the outer shapes of both tissues in a virtual space in the vicinity of a certain position where the inner surface of the cochlea and the Ricenell membrane are in contact with each other. We came up with a methodology for evaluating the deviation of the Risnel film by approximating each plane and obtaining the angle between these two planes as the relative angle between the two tissues.
Furthermore, the inventors have found that the optical flow method used for mobile tracking can be applied for this methodology. That is, in general, in moving object tracking, it is assumed that a moving object always appears in the vicinity in temporally continuous images in a moving image. Similarly, in the group of tomographic images used in the medical field, in the adjacent tomographic image (spatial continuous image), one continuous object should always appear in the vicinity of the image. A point in the vicinity of the outline of each tissue in one image can be associated with a specific point in the image adjacent to the tissue. By approximating the plane passing through the series of points thus obtained, the target plane can be determined.
Based on such findings, the present inventors have conducted further research and completed the present invention.
本発明は即ち、以下の通りである。
[1]対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するためのコンピュータプログラムであって、
コンピュータを、
(M1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を受け取る手段、および、
(M2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する手段
として機能させるための前記コンピュータプログラム。
[2]前記手段(M2)が、該断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた該位置情報と該算出されたオプティカルフローとを用いて該平面を決定するように構成されている、上記[1]に記載のコンピュータプログラム。
[3]前記手段(M2)が、
該断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、
該表示された1つの断層画像または複数の断層画像を用いて、該2つの構造体のそれぞれについて、輪郭線近傍の点を少なくとも2つユーザに選択させ、該選択された点を受け取り、
該選択された点のそれぞれについて、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定し、かつ、
該選択された点および該特定された点に基づいて、該2つの構造体のそれぞれについて、表面形状の一部分を近似する平面を決定するように構成されている、
上記[1]または[2]に記載のコンピュータプログラム。
[4]前記手段(M1)が、ユーザの入力に少なくとも部分的に基づいて、与えられた複数の断層画像から前記断層画像群を決定する手段を有する、上記[1]~[3]のいずれかに記載のコンピュータプログラム。
[5]コンピュータを更に、
(M3)三次元空間内において前記手段(M2)により決定された2つの平面同士が交わる直線を決定し、該決定された直線に関する一方の平面から他方の平面への回転角度を算出し、かつ該算出された回転角度を該2つの構造体の相対角度として出力する手段
として機能させるための、上記[1]~[4]のいずれかに記載のコンピュータプログラム。
[6]対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための装置であって、上記[1]~[5]のいずれかに記載のコンピュータプログラムが機能するように構成されたコンピュータを含む、前記装置。
[7](M4)対象物内の断層画像を取得するための手段
を更に有する、上記[6]に記載の装置。
[8]前記手段(M4)が、光コヒーレンストモグラフィーデバイスである、上記[7]に記載の装置。
[9]該光コヒーレンストモグラフィーデバイスが、蝸牛内側面およびライスネル膜の断層画像を取得できるように構成されたものである、上記[8]に記載の装置。
[10]対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための方法であって、
(S1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を用意する工程、および、
(S2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する工程
を含み、該決定された2つの平面に基づいて該相対的な配向性が決定される、前記方法。
[11]前記工程(S2)が、該断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた該位置情報と該算出されたオプティカルフローとを用いて該平面を決定することを含む、上記[10]に記載の方法。
[12]前記工程(S2)が、
該断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、
該表示された1つの断層画像または複数の断層画像を用いて、該2つの構造体のそれぞれについて、輪郭線近傍の点を少なくとも2つ選択し、
該選択された点のそれぞれについて、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定し、かつ、
該選択された点および該特定された点に基づいて、該2つの構造体のそれぞれについて、表面形状の一部分を近似する平面を決定することを含む、
上記[10]または[11]に記載の方法。
[13]該断層画像が、光コヒーレンストモグラフィーデバイスを用いて取得されたものである、上記[10]~[12]のいずれかに記載の方法。
[14](S3)三次元空間内において前記工程(S2)により決定された2つの平面同士が交わる直線を決定し、該決定された直線に関する一方の平面から他方の平面への回転角度を算出し、かつ該算出された回転角度を該2つの構造体の相対角度として決定する工程
を更に含む、上記[10]~[13]のいずれかに記載の方法。
[15]該2つの構造体が蝸牛内側面およびライスネル膜である、上記[10]~[14]のいずれかに記載の方法。
[16]蝸牛内側面およびライスネル膜を該2つの構造体として上記[14]に記載の方法を用いることにより、蝸牛内側面とライスネル膜との相対角度を決定する工程を含み、該相対角度に基づいて内リンパ水腫が診断される、哺乳動物における内リンパ水腫の診断を補助する方法。 That is, the present invention is as follows.
[1] A computer program for determining the relative orientation of two structures in the vicinity of each other in an object,
Computer
(M1) means for receiving a tomographic image group including at least two tomographic images in which position information in the object is associated and the two structures appear; and
(M2) The computer program for causing a computer to function as means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group.
[2] The means (M2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and the positional information associated with each of the at least one set of tomographic images and The computer program according to [1], wherein the computer program is configured to determine the plane using the calculated optical flow.
[3] The means (M2)
Displaying at least one tomographic image included in the tomographic image group on an image display means;
Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, the user selects at least two points in the vicinity of the contour line, receives the selected points,
For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and
Configured to determine, for each of the two structures, a plane that approximates a portion of the surface shape based on the selected point and the identified point;
The computer program according to [1] or [2] above.
[4] Any of the above [1] to [3], wherein the means (M1) includes means for determining the tomographic image group from a plurality of given tomographic images based at least in part on a user input. A computer program according to the above.
[5] Further computer
(M3) determining a straight line intersecting the two planes determined by the means (M2) in the three-dimensional space, calculating a rotation angle from one plane to the other plane with respect to the determined straight line; and The computer program according to any one of the above [1] to [4], which functions as means for outputting the calculated rotation angle as a relative angle between the two structures.
[6] A device for determining the relative orientation of two structures in the vicinity of each other in an object, and the computer program according to any one of [1] to [5] functions An apparatus comprising: a computer configured as described above.
[7] (M4) The apparatus according to [6], further including means for acquiring a tomographic image in the object.
[8] The apparatus according to [7], wherein the means (M4) is an optical coherence tomography device.
[9] The apparatus according to [8], wherein the optical coherence tomography device is configured to acquire a tomographic image of the inner surface of the cochlea and the Risnel membrane.
[10] A method for determining the relative orientation of two structures in the vicinity of each other in an object,
(S1) preparing a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear; and
(S2) including a step of determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group, and based on the determined two planes, Said method wherein the relative orientation is determined.
[11] The step (S2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and the positional information associated with each of the at least one set of tomographic images; The method according to [10] above, including determining the plane using the calculated optical flow.
[12] The step (S2)
Displaying at least one tomographic image included in the tomographic image group on an image display means;
Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, select at least two points near the contour line;
For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and
Determining, for each of the two structures, a plane that approximates a portion of a surface shape based on the selected point and the identified point;
The method according to [10] or [11] above.
[13] The method according to any one of [10] to [12] above, wherein the tomographic image is acquired using an optical coherence tomography device.
[14] (S3) A straight line intersecting the two planes determined in the step (S2) in the three-dimensional space is determined, and a rotation angle from one plane to the other plane with respect to the determined straight line is calculated. The method according to any one of [10] to [13], further including the step of determining the calculated rotation angle as a relative angle between the two structures.
[15] The method according to any one of [10] to [14] above, wherein the two structures are a cochlear inner surface and a Ricenell membrane.
[16] including a step of determining a relative angle between the inner surface of the cochlea and the Ricenel membrane by using the method according to [14] above with the inner surface of the cochlea and the Ricenel membrane as the two structures, A method for assisting in the diagnosis of endolymphatic hydrops in a mammal, wherein endolymphatic hydrops are diagnosed.
[1]対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するためのコンピュータプログラムであって、
コンピュータを、
(M1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を受け取る手段、および、
(M2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する手段
として機能させるための前記コンピュータプログラム。
[2]前記手段(M2)が、該断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた該位置情報と該算出されたオプティカルフローとを用いて該平面を決定するように構成されている、上記[1]に記載のコンピュータプログラム。
[3]前記手段(M2)が、
該断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、
該表示された1つの断層画像または複数の断層画像を用いて、該2つの構造体のそれぞれについて、輪郭線近傍の点を少なくとも2つユーザに選択させ、該選択された点を受け取り、
該選択された点のそれぞれについて、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定し、かつ、
該選択された点および該特定された点に基づいて、該2つの構造体のそれぞれについて、表面形状の一部分を近似する平面を決定するように構成されている、
上記[1]または[2]に記載のコンピュータプログラム。
[4]前記手段(M1)が、ユーザの入力に少なくとも部分的に基づいて、与えられた複数の断層画像から前記断層画像群を決定する手段を有する、上記[1]~[3]のいずれかに記載のコンピュータプログラム。
[5]コンピュータを更に、
(M3)三次元空間内において前記手段(M2)により決定された2つの平面同士が交わる直線を決定し、該決定された直線に関する一方の平面から他方の平面への回転角度を算出し、かつ該算出された回転角度を該2つの構造体の相対角度として出力する手段
として機能させるための、上記[1]~[4]のいずれかに記載のコンピュータプログラム。
[6]対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための装置であって、上記[1]~[5]のいずれかに記載のコンピュータプログラムが機能するように構成されたコンピュータを含む、前記装置。
[7](M4)対象物内の断層画像を取得するための手段
を更に有する、上記[6]に記載の装置。
[8]前記手段(M4)が、光コヒーレンストモグラフィーデバイスである、上記[7]に記載の装置。
[9]該光コヒーレンストモグラフィーデバイスが、蝸牛内側面およびライスネル膜の断層画像を取得できるように構成されたものである、上記[8]に記載の装置。
[10]対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための方法であって、
(S1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を用意する工程、および、
(S2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する工程
を含み、該決定された2つの平面に基づいて該相対的な配向性が決定される、前記方法。
[11]前記工程(S2)が、該断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた該位置情報と該算出されたオプティカルフローとを用いて該平面を決定することを含む、上記[10]に記載の方法。
[12]前記工程(S2)が、
該断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、
該表示された1つの断層画像または複数の断層画像を用いて、該2つの構造体のそれぞれについて、輪郭線近傍の点を少なくとも2つ選択し、
該選択された点のそれぞれについて、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定し、かつ、
該選択された点および該特定された点に基づいて、該2つの構造体のそれぞれについて、表面形状の一部分を近似する平面を決定することを含む、
上記[10]または[11]に記載の方法。
[13]該断層画像が、光コヒーレンストモグラフィーデバイスを用いて取得されたものである、上記[10]~[12]のいずれかに記載の方法。
[14](S3)三次元空間内において前記工程(S2)により決定された2つの平面同士が交わる直線を決定し、該決定された直線に関する一方の平面から他方の平面への回転角度を算出し、かつ該算出された回転角度を該2つの構造体の相対角度として決定する工程
を更に含む、上記[10]~[13]のいずれかに記載の方法。
[15]該2つの構造体が蝸牛内側面およびライスネル膜である、上記[10]~[14]のいずれかに記載の方法。
[16]蝸牛内側面およびライスネル膜を該2つの構造体として上記[14]に記載の方法を用いることにより、蝸牛内側面とライスネル膜との相対角度を決定する工程を含み、該相対角度に基づいて内リンパ水腫が診断される、哺乳動物における内リンパ水腫の診断を補助する方法。 That is, the present invention is as follows.
[1] A computer program for determining the relative orientation of two structures in the vicinity of each other in an object,
Computer
(M1) means for receiving a tomographic image group including at least two tomographic images in which position information in the object is associated and the two structures appear; and
(M2) The computer program for causing a computer to function as means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group.
[2] The means (M2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and the positional information associated with each of the at least one set of tomographic images and The computer program according to [1], wherein the computer program is configured to determine the plane using the calculated optical flow.
[3] The means (M2)
Displaying at least one tomographic image included in the tomographic image group on an image display means;
Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, the user selects at least two points in the vicinity of the contour line, receives the selected points,
For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and
Configured to determine, for each of the two structures, a plane that approximates a portion of the surface shape based on the selected point and the identified point;
The computer program according to [1] or [2] above.
[4] Any of the above [1] to [3], wherein the means (M1) includes means for determining the tomographic image group from a plurality of given tomographic images based at least in part on a user input. A computer program according to the above.
[5] Further computer
(M3) determining a straight line intersecting the two planes determined by the means (M2) in the three-dimensional space, calculating a rotation angle from one plane to the other plane with respect to the determined straight line; and The computer program according to any one of the above [1] to [4], which functions as means for outputting the calculated rotation angle as a relative angle between the two structures.
[6] A device for determining the relative orientation of two structures in the vicinity of each other in an object, and the computer program according to any one of [1] to [5] functions An apparatus comprising: a computer configured as described above.
[7] (M4) The apparatus according to [6], further including means for acquiring a tomographic image in the object.
[8] The apparatus according to [7], wherein the means (M4) is an optical coherence tomography device.
[9] The apparatus according to [8], wherein the optical coherence tomography device is configured to acquire a tomographic image of the inner surface of the cochlea and the Risnel membrane.
[10] A method for determining the relative orientation of two structures in the vicinity of each other in an object,
(S1) preparing a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear; and
(S2) including a step of determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group, and based on the determined two planes, Said method wherein the relative orientation is determined.
[11] The step (S2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and the positional information associated with each of the at least one set of tomographic images; The method according to [10] above, including determining the plane using the calculated optical flow.
[12] The step (S2)
Displaying at least one tomographic image included in the tomographic image group on an image display means;
Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, select at least two points near the contour line;
For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and
Determining, for each of the two structures, a plane that approximates a portion of a surface shape based on the selected point and the identified point;
The method according to [10] or [11] above.
[13] The method according to any one of [10] to [12] above, wherein the tomographic image is acquired using an optical coherence tomography device.
[14] (S3) A straight line intersecting the two planes determined in the step (S2) in the three-dimensional space is determined, and a rotation angle from one plane to the other plane with respect to the determined straight line is calculated. The method according to any one of [10] to [13], further including the step of determining the calculated rotation angle as a relative angle between the two structures.
[15] The method according to any one of [10] to [14] above, wherein the two structures are a cochlear inner surface and a Ricenell membrane.
[16] including a step of determining a relative angle between the inner surface of the cochlea and the Ricenel membrane by using the method according to [14] above with the inner surface of the cochlea and the Ricenel membrane as the two structures, A method for assisting in the diagnosis of endolymphatic hydrops in a mammal, wherein endolymphatic hydrops are diagnosed.
本発明によれば、蝸牛軸に対して平行なデータ取得を行う必要がなく、たとえどのような方向の切断面であっても、そしてその切断面上で蝸牛内側面とライスネル膜とが歪曲された角度で見えていたとしても、両組織の表面形状の一部分を三次元的に近似することで正しい相対角度を算出できる。加えて、本発明によれば、蝸牛軸までの深さの断層画像がなくても、蝸牛の外側の部分的な画像を用いて問題なくライスネル膜の偏移を評価できる。従って、本発明を用いることで、生きている動物の蝸牛に基づいて内リンパ水腫を評価することが可能となる。更に、従来技術では手順が複雑であったのに対し(例えば、マウスでは固定に数時間、脱灰に7日間、切片化・染色に数日を要し、ヒトでは固定に1ヶ月以上を要する。)、本発明では、画像取得後に容易に数値化して、コンピュータ上で解析を行うことができるので、簡便性、迅速性、経済性に優れる。また、解析用のプログラムは、一般に入手できる既存のライブラリを利用して構成することができる。
本発明を用いることでin vivoで内リンパ水腫を診断することが可能となるので、投薬が、あるいは内耳障害を起こすような刺激(例えば、強大音や圧外傷)が内リンパ水腫を引き起こすことをリアルタイムに観察できる。本発明を用いることで、これまで診断が不可能であった一時的な内リンパ水腫の状態についても観察可能になり、これまで分からなかった内リンパ水腫の病態を明らかにするためのツールになる。本発明はまた、内リンパ水腫に対する治療法の開発のための動物実験モデルの評価にも用いることが出来る。
本発明は、蝸牛のみならず、断層画像を取得できる対象物(例:生体)内のあらゆる組織または構造体に対して適用することができる。 According to the present invention, it is not necessary to acquire data parallel to the cochlear axis, and the inner surface of the cochlea and the Ricenell membrane are distorted on the cut surface in any direction. Even if it is visible at a certain angle, a correct relative angle can be calculated by approximating a part of the surface shape of both tissues three-dimensionally. In addition, according to the present invention, even if there is no tomographic image having a depth up to the cochlea axis, it is possible to evaluate the shift of the Ricenell film without any problem using a partial image outside the cochlea. Therefore, by using the present invention, it is possible to evaluate endolymphatic edema based on the cochlea of a living animal. Furthermore, the procedure was complicated in the prior art (for example, it takes several hours for fixation in mice, 7 days for decalcification, several days for sectioning and staining, and more than one month for fixation in humans) In the present invention, since it can be easily digitized after image acquisition and analyzed on a computer, it is excellent in simplicity, rapidity, and economy. The analysis program can be configured using an existing library that is generally available.
The use of the present invention makes it possible to diagnose endolymphatic edema in vivo, so that medication or stimuli that cause inner ear damage (for example, loud sounds or barotrauma) cause endolymphatic edema. Observe in real time. By using the present invention, it becomes possible to observe the state of temporary endolymphatic edema that could not be diagnosed until now, and it becomes a tool for clarifying the pathophysiology of endolymphatic edema that has not been known so far. . The present invention can also be used to evaluate animal experimental models for the development of treatments for endolymphatic edema.
The present invention can be applied not only to a cochlea but also to any tissue or structure in a target (eg, a living body) from which a tomographic image can be acquired.
本発明を用いることでin vivoで内リンパ水腫を診断することが可能となるので、投薬が、あるいは内耳障害を起こすような刺激(例えば、強大音や圧外傷)が内リンパ水腫を引き起こすことをリアルタイムに観察できる。本発明を用いることで、これまで診断が不可能であった一時的な内リンパ水腫の状態についても観察可能になり、これまで分からなかった内リンパ水腫の病態を明らかにするためのツールになる。本発明はまた、内リンパ水腫に対する治療法の開発のための動物実験モデルの評価にも用いることが出来る。
本発明は、蝸牛のみならず、断層画像を取得できる対象物(例:生体)内のあらゆる組織または構造体に対して適用することができる。 According to the present invention, it is not necessary to acquire data parallel to the cochlear axis, and the inner surface of the cochlea and the Ricenell membrane are distorted on the cut surface in any direction. Even if it is visible at a certain angle, a correct relative angle can be calculated by approximating a part of the surface shape of both tissues three-dimensionally. In addition, according to the present invention, even if there is no tomographic image having a depth up to the cochlea axis, it is possible to evaluate the shift of the Ricenell film without any problem using a partial image outside the cochlea. Therefore, by using the present invention, it is possible to evaluate endolymphatic edema based on the cochlea of a living animal. Furthermore, the procedure was complicated in the prior art (for example, it takes several hours for fixation in mice, 7 days for decalcification, several days for sectioning and staining, and more than one month for fixation in humans) In the present invention, since it can be easily digitized after image acquisition and analyzed on a computer, it is excellent in simplicity, rapidity, and economy. The analysis program can be configured using an existing library that is generally available.
The use of the present invention makes it possible to diagnose endolymphatic edema in vivo, so that medication or stimuli that cause inner ear damage (for example, loud sounds or barotrauma) cause endolymphatic edema. Observe in real time. By using the present invention, it becomes possible to observe the state of temporary endolymphatic edema that could not be diagnosed until now, and it becomes a tool for clarifying the pathophysiology of endolymphatic edema that has not been known so far. . The present invention can also be used to evaluate animal experimental models for the development of treatments for endolymphatic edema.
The present invention can be applied not only to a cochlea but also to any tissue or structure in a target (eg, a living body) from which a tomographic image can be acquired.
以下、本発明をより詳細に説明する。
Hereinafter, the present invention will be described in more detail.
(定義)
(Definition)
本明細書において「対象物」としては例えば生体が挙げられるが、それに限定されない。生体としては、例えば、動物(例えば、ヒト、イヌ、ネコ、サル、ウマ、ヒツジ、ヤギ、マウス、ラット、ウサギ等の哺乳動物、およびその他の脊椎動物)および植物の体が挙げられる。対象物は、相対的な配向性を決定する対象である2つの構造体を少なくとも有するものであり、それ以外の構成要素を有していてもよい。
In this specification, examples of the “object” include a living body, but are not limited thereto. The living body includes, for example, animals (for example, mammals such as humans, dogs, cats, monkeys, horses, sheep, goats, mice, rats, rabbits, and other vertebrates) and plant bodies. The target object has at least two structures that are targets for determining the relative orientation, and may have other components.
本明細書において「構造体」とは、特定の形状を有する物理的実体である限り、特に限定されない。構造体は、例えば、生体の組織である。構造体は、対象物の内部にあってもよいし、対象物の表面の一部分を形成していてもよい。本発明において相対的な配向性を決定する対象である「互いに近傍にある2つの構造体」は、1つの断層画像中にいずれの構造体も少なくともその一部分が現れる程度に近接して存在するものであれば特に限定されない。該2つの構造体は、互いに接触していてもよい。
In the present specification, the “structure” is not particularly limited as long as it is a physical entity having a specific shape. The structure is, for example, a living tissue. The structure may be inside the object or may form a part of the surface of the object. In the present invention, “two structures close to each other”, which are targets for determining the relative orientation, are close enough that at least a part of each structure appears in one tomographic image. If it is, it will not specifically limit. The two structures may be in contact with each other.
より具体的には、該2つの構造体として、例えば、蝸牛内側面とライスネル膜が挙げられる。上述の通り、メニエール病、低音障害型感音難聴、レルモワイエ症候群、遅発性内リンパ水腫等と内リンパ水腫との関連性が示唆されており、また内リンパ水腫を伴う蝸牛においては中央階の著明な拡張により蝸牛内側面とライスネル膜との相対的な角度の変化が観察されるので、蝸牛内側面とライスネル膜との相対的な配向性を決定することで内リンパ水腫、ひいては上記のような疾患についての評価や医学的洞察が得られ得る。そのため、蝸牛内側面およびライスネル膜は、該2つの構造体として好ましい対象である。
あるいは、例えば、対象物の内部に管が配置され、その管の内壁に弁が固定されている場合、管の内壁と弁との固定部位周辺の断層画像を取得することにより、対象物を破壊することなく、非侵襲的に管の内壁と弁との角度を決定することができる。 More specifically, examples of the two structures include a cochlea inner surface and a Ricenell membrane. As mentioned above, it has been suggested that Meniere's disease, bass-sensitive sensorineural hearing loss, Lermoye syndrome, delayed endolymphatic hydrops, etc. are associated with endolymphatic hydrops. The relative angle change between the cochlear inner surface and the Ricenell's membrane is observed due to significant expansion. By determining the relative orientation between the cochlear inner surface and the Ricenell's membrane, endolymphatic edema, and the above mentioned Evaluation and medical insights about such diseases can be obtained. Therefore, the inner surface of the cochlea and the Ricenell membrane are preferred objects as the two structures.
Alternatively, for example, when a tube is arranged inside the object and a valve is fixed to the inner wall of the tube, the object is destroyed by obtaining a tomographic image around the fixed part of the inner wall of the tube and the valve. The angle between the inner wall of the tube and the valve can be determined non-invasively.
あるいは、例えば、対象物の内部に管が配置され、その管の内壁に弁が固定されている場合、管の内壁と弁との固定部位周辺の断層画像を取得することにより、対象物を破壊することなく、非侵襲的に管の内壁と弁との角度を決定することができる。 More specifically, examples of the two structures include a cochlea inner surface and a Ricenell membrane. As mentioned above, it has been suggested that Meniere's disease, bass-sensitive sensorineural hearing loss, Lermoye syndrome, delayed endolymphatic hydrops, etc. are associated with endolymphatic hydrops. The relative angle change between the cochlear inner surface and the Ricenell's membrane is observed due to significant expansion. By determining the relative orientation between the cochlear inner surface and the Ricenell's membrane, endolymphatic edema, and the above mentioned Evaluation and medical insights about such diseases can be obtained. Therefore, the inner surface of the cochlea and the Ricenell membrane are preferred objects as the two structures.
Alternatively, for example, when a tube is arranged inside the object and a valve is fixed to the inner wall of the tube, the object is destroyed by obtaining a tomographic image around the fixed part of the inner wall of the tube and the valve. The angle between the inner wall of the tube and the valve can be determined non-invasively.
本明細書において「相対的な配向性」とは、一方の構造体の向きと他方の構造体の向きとの関係性をいい、通常、両構造体が互いに近接する位置の周囲の空間において、一方の構造体の外形が作る面が、他方の構造体の外形が作る面に対して、どのような方向性で広がっているかとして把握することができる。該相対的な配向性は、定量的なもの(例えば、後述するようにして定義される相対角度)として与えられてもよいし、定性的なものとして与えられてもよいし、あるいは視覚的な情報(例えば、両構造体の相対的な配向性の指標となる三次元モデルのディスプレイ上への表示)として与えられてもよい。
As used herein, “relative orientation” refers to the relationship between the orientation of one structure and the orientation of the other structure. Usually, in the space around the position where both structures are close to each other, It can be grasped as the direction in which the surface formed by the outer shape of one structure extends with respect to the surface formed by the outer shape of the other structure. The relative orientation may be given as a quantitative one (eg, a relative angle defined as described below), a qualitative one, or a visual one. It may be given as information (for example, display on a display of a three-dimensional model serving as an indicator of the relative orientation of both structures).
2つの構造体間の相対角度は以下の通りに定義できる。
例えば、2つの構造体T1およびT2が互いに接触しており、従って両構造体の外形同士が接触するある線lが形成されている場合を考える(図1)。線l上の一点Aに着目すると、点Aの近傍において両構造体の外形はそれぞれ平面S1およびS2として近似でき、外形同士が接触する線は直線l’として近似できる。平面S1およびS2は、好ましくは、点Aを通るそれぞれ構造体T1およびT2の接平面である。直線l’に関する平面S1から平面S2への回転角度θを、点A近傍における両構造体の相対角度として定義することができる。平面S1およびS2や回転角度θは、本発明に従って決定され得る。
なお、線l上の点Aの選択に応じて得られる相対角度は変動するが、解析の対象や目的に従って、当業者は着目すべき位置を適切に決定することができる。また、生体内の構造体の形状変化は一般に滑らかであるので、微小空間内であれば着目する位置によらずに一定の相対角度が得られ得る。従ってまた、両構造体の外形同士が接触する線l上の点Aを選択する代わりに、図1に示されるように、点Aの近傍にある構造体T1の外形上(またはその近く)の1点A1と、点Aの近傍にある構造体T2の外形上(またはその近く)の1点A2を選択し、それぞれ点A1、A2の近傍における構造体T1およびT2の外形を近似する平面S1、S2を決定してもよい。
あるいは、必要に応じて、複数の点を選択して相対角度をそれぞれ求めた後、得られた複数の相対角度を平均する等して、2つの構造体の相対角度を決定してもよい。
また、2つの構造体T1およびT2が互いに近傍にあるが、接触していない場合についても、例えば、両構造体の近くの位置にある一点Aを定め、上記と同様に、点Aの近傍にある構造体T1の外形上(またはその近く)の1点A1と、点Aの近傍にある構造体T2の外形上(またはその近く)の1点A2を選択し、それぞれ点A1、A2の近傍における構造体T1およびT2の外形を近似する平面S1、S2を決定し、更に生成された2つの平面が互いに交差するように両平面を伸長することにより、両構造体が接触している上記の場合と同様にして相対角度を定義することができる。 The relative angle between the two structures can be defined as follows.
For example, consider a case where two structures T 1 and T 2 are in contact with each other, and therefore aline 1 is formed where the outer shapes of both structures are in contact with each other (FIG. 1). Focusing on one point A on the line l, in the vicinity of the point A can be approximated to a respective outer planar S 1 and S 2 of the two structures, a line profile come into contact with each other can be approximated as a straight line l '. The planes S 1 and S 2 are preferably tangent planes of the structures T 1 and T 2 respectively passing through the point A. A rotation angle θ from the plane S 1 to the plane S 2 with respect to the straight line l ′ can be defined as a relative angle between both structures near the point A. The planes S 1 and S 2 and the rotation angle θ can be determined according to the invention.
Note that although the relative angle obtained according to the selection of the point A on the line l varies, those skilled in the art can appropriately determine the position to which attention should be paid according to the object and purpose of analysis. Moreover, since the shape change of the structure in the living body is generally smooth, a constant relative angle can be obtained in a minute space regardless of the position of interest. Therefore, instead of selecting the point A on theline 1 where the outer shapes of the two structures are in contact with each other, as shown in FIG. 1, the outer shape of the structure T 1 in the vicinity of the point A (or near it). the point a 1, select a point a 2 of the outer shape of the structure T 2 in the vicinity of the point a (or near) the structure T 1 and T in the vicinity of each point a 1, a 2 The planes S 1 and S 2 that approximate the outer shape of 2 may be determined.
Alternatively, if necessary, the relative angles of the two structures may be determined by selecting a plurality of points and obtaining the relative angles, and then averaging the obtained relative angles.
In addition, even when the two structures T 1 and T 2 are close to each other but are not in contact with each other, for example, a point A near the two structures is determined. select one point a 1 on the outer shape of the structure T 1 (or near) in the vicinity, the outer shape of the structure T 2 in the vicinity of the point a (or near) 1 point a 2 of each Determine planes S 1 and S 2 that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the points A 1 and A 2 , and further extend both planes so that the two generated planes intersect each other Thus, the relative angle can be defined in the same manner as in the above case where both structures are in contact.
例えば、2つの構造体T1およびT2が互いに接触しており、従って両構造体の外形同士が接触するある線lが形成されている場合を考える(図1)。線l上の一点Aに着目すると、点Aの近傍において両構造体の外形はそれぞれ平面S1およびS2として近似でき、外形同士が接触する線は直線l’として近似できる。平面S1およびS2は、好ましくは、点Aを通るそれぞれ構造体T1およびT2の接平面である。直線l’に関する平面S1から平面S2への回転角度θを、点A近傍における両構造体の相対角度として定義することができる。平面S1およびS2や回転角度θは、本発明に従って決定され得る。
なお、線l上の点Aの選択に応じて得られる相対角度は変動するが、解析の対象や目的に従って、当業者は着目すべき位置を適切に決定することができる。また、生体内の構造体の形状変化は一般に滑らかであるので、微小空間内であれば着目する位置によらずに一定の相対角度が得られ得る。従ってまた、両構造体の外形同士が接触する線l上の点Aを選択する代わりに、図1に示されるように、点Aの近傍にある構造体T1の外形上(またはその近く)の1点A1と、点Aの近傍にある構造体T2の外形上(またはその近く)の1点A2を選択し、それぞれ点A1、A2の近傍における構造体T1およびT2の外形を近似する平面S1、S2を決定してもよい。
あるいは、必要に応じて、複数の点を選択して相対角度をそれぞれ求めた後、得られた複数の相対角度を平均する等して、2つの構造体の相対角度を決定してもよい。
また、2つの構造体T1およびT2が互いに近傍にあるが、接触していない場合についても、例えば、両構造体の近くの位置にある一点Aを定め、上記と同様に、点Aの近傍にある構造体T1の外形上(またはその近く)の1点A1と、点Aの近傍にある構造体T2の外形上(またはその近く)の1点A2を選択し、それぞれ点A1、A2の近傍における構造体T1およびT2の外形を近似する平面S1、S2を決定し、更に生成された2つの平面が互いに交差するように両平面を伸長することにより、両構造体が接触している上記の場合と同様にして相対角度を定義することができる。 The relative angle between the two structures can be defined as follows.
For example, consider a case where two structures T 1 and T 2 are in contact with each other, and therefore a
Note that although the relative angle obtained according to the selection of the point A on the line l varies, those skilled in the art can appropriately determine the position to which attention should be paid according to the object and purpose of analysis. Moreover, since the shape change of the structure in the living body is generally smooth, a constant relative angle can be obtained in a minute space regardless of the position of interest. Therefore, instead of selecting the point A on the
Alternatively, if necessary, the relative angles of the two structures may be determined by selecting a plurality of points and obtaining the relative angles, and then averaging the obtained relative angles.
In addition, even when the two structures T 1 and T 2 are close to each other but are not in contact with each other, for example, a point A near the two structures is determined. select one point a 1 on the outer shape of the structure T 1 (or near) in the vicinity, the outer shape of the structure T 2 in the vicinity of the point a (or near) 1 point a 2 of each Determine planes S 1 and S 2 that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the points A 1 and A 2 , and further extend both planes so that the two generated planes intersect each other Thus, the relative angle can be defined in the same manner as in the above case where both structures are in contact.
本明細書において「断層画像」は、本発明による解析が可能である限り、いかなる手段を用いて得られたものであってもよい。断層画像を取得する手段としては、例えば、光コヒーレンストモグラフィー法(OCT)、核磁気共鳴画像法(MRI)、X線コンピュータ断層撮影法(X線CT)、または超音波撮影法(エコー)等によるものが挙げられる。
これらのうち、生体に対する侵襲性が低く、かつ高解像度の断層画像を取得することができる等の利点から、OCTを用いる手段が好ましい。OCTとしては、タイムドメインOCT(time-domain OCT、TD-OCT)であってもよいし、フーリエドメインOCT(Fourier-domain OCT、FD-OCT)であってもよいが、より高速かつ高感度のデータ取得が可能という点から、FD-OCTが好ましい。FD-OCTとしては、スペクトラルドメインOCT(Spectral-domain OCT、SD-OCT)および波長掃引型OCT(Swept source OCT、SS-OCT)が挙げられ、データ取得の高速性や深達度の点から、SS-OCTが好ましいものとして例示される。OCTデバイス、または上記の各種手段のためのデバイスとしては、市販されているものを用いることができる。 In the present specification, the “tomographic image” may be obtained by any means as long as the analysis according to the present invention is possible. As means for acquiring a tomographic image, for example, optical coherence tomography (OCT), nuclear magnetic resonance imaging (MRI), X-ray computed tomography (X-ray CT), or ultrasonic imaging (echo) is used. Things.
Among these, a means using OCT is preferable because it has low invasiveness to a living body and can acquire a high-resolution tomographic image. OCT may be time-domain OCT (time-domain OCT, TD-OCT) or Fourier-domain OCT (Fourier-domain OCT, FD-OCT). FD-OCT is preferable because data can be acquired. Examples of FD-OCT include spectral domain OCT (Spectral-domain OCT, SD-OCT) and wavelength sweep type OCT (Swept source OCT, SS-OCT). SS-OCT is exemplified as a preferred one. A commercially available device can be used as the OCT device or a device for the various means described above.
これらのうち、生体に対する侵襲性が低く、かつ高解像度の断層画像を取得することができる等の利点から、OCTを用いる手段が好ましい。OCTとしては、タイムドメインOCT(time-domain OCT、TD-OCT)であってもよいし、フーリエドメインOCT(Fourier-domain OCT、FD-OCT)であってもよいが、より高速かつ高感度のデータ取得が可能という点から、FD-OCTが好ましい。FD-OCTとしては、スペクトラルドメインOCT(Spectral-domain OCT、SD-OCT)および波長掃引型OCT(Swept source OCT、SS-OCT)が挙げられ、データ取得の高速性や深達度の点から、SS-OCTが好ましいものとして例示される。OCTデバイス、または上記の各種手段のためのデバイスとしては、市販されているものを用いることができる。 In the present specification, the “tomographic image” may be obtained by any means as long as the analysis according to the present invention is possible. As means for acquiring a tomographic image, for example, optical coherence tomography (OCT), nuclear magnetic resonance imaging (MRI), X-ray computed tomography (X-ray CT), or ultrasonic imaging (echo) is used. Things.
Among these, a means using OCT is preferable because it has low invasiveness to a living body and can acquire a high-resolution tomographic image. OCT may be time-domain OCT (time-domain OCT, TD-OCT) or Fourier-domain OCT (Fourier-domain OCT, FD-OCT). FD-OCT is preferable because data can be acquired. Examples of FD-OCT include spectral domain OCT (Spectral-domain OCT, SD-OCT) and wavelength sweep type OCT (Swept source OCT, SS-OCT). SS-OCT is exemplified as a preferred one. A commercially available device can be used as the OCT device or a device for the various means described above.
断層画像の取得は、標準的な教科書や用いる機器のマニュアル等に従って通常の手順で行うことができる。例えば、OCTデバイスを用いた蝸牛の断層画像の取得手順は後述の実施例、および上記非特許文献2に説明されており、例えば以下の設定を用いることができる:光源波長としてよく用いられるのは800-1400nm(実施例では1300nm)、スキャン周波数は最大200KHz(実施例では16kHzだが、対象が動かないならもっと遅くても良い)。対物レンズを用いて対象物にレーザー光を照射する方法や(実施例で使用)、二重構造のファイバーで内側のものだけが回転し、内側のファイバーを通った光が先端のレンズで反射して外側の窓から照射されることでOCT画像を得る方法などを用いることが出来る。
なお、対象がヒトである等、侵襲性がより問題となる場合においては、例えば、鼓膜を切除した上で中耳を経由してOCTプローブを挿入し、画像を取得すればよい。 The tomographic image can be acquired by a normal procedure according to a standard textbook, a manual of the equipment to be used, or the like. For example, the procedure for obtaining a cochlear tomographic image using an OCT device is described in the examples below andNon-Patent Document 2 above, and the following settings can be used, for example: 800-1400nm (1300nm in the example), scan frequency up to 200KHz (16kHz in the example, but slower if the target doesn't move). A method of irradiating an object with laser light using an objective lens (used in the examples), or a double-structured fiber that rotates only the inner one, and the light that passes through the inner fiber is reflected by the tip lens. For example, a method of obtaining an OCT image by irradiating from an outer window can be used.
In the case where invasiveness becomes a more serious problem, such as when the subject is a human, for example, an OCT probe may be inserted through the middle ear after the eardrum has been excised to obtain an image.
なお、対象がヒトである等、侵襲性がより問題となる場合においては、例えば、鼓膜を切除した上で中耳を経由してOCTプローブを挿入し、画像を取得すればよい。 The tomographic image can be acquired by a normal procedure according to a standard textbook, a manual of the equipment to be used, or the like. For example, the procedure for obtaining a cochlear tomographic image using an OCT device is described in the examples below and
In the case where invasiveness becomes a more serious problem, such as when the subject is a human, for example, an OCT probe may be inserted through the middle ear after the eardrum has been excised to obtain an image.
本発明において用いるための「断層画像群」は、対象物内における位置情報が関連付けられており、かつ上記2つの構造体が現れる少なくとも2つの断層画像を含む。
上記の「対象物内における位置情報」とは、断層画像が対象物のどの位置の断層面を表すものかを示す情報であり、従って断層画像中の各点は対象物中(またはその外側)のどの位置に対応するかが分かっている。該位置は相対的なものであってよく、即ち、該断層画像群に含まれる一つの画像中の任意の一点と他の画像中の任意の一点の相対的な位置関係(即ち、ベクトルの長さと方向)が既知であればよい。
上記の「2つの構造体が現れる」とは、断層画像中に各構造体の少なくとも一部分が見られることを意味する。
該断層画像群に含まれる断層画像の個数としては、具体的な解析対象や画像セット等に応じて異なるが、少なくとも2つ、好ましくは少なくとも3つ以上である。画像数の上限としては、異なる画像を実際に取得でき、また本発明に従う処理のためにそれらを用いることができる限り限定されないが、例えば512個である。また、該断層画像群に含まれる複数の画像は、シグナルノイズ比が良好であり、かつ画像間に大きな位置のずれがないことが好ましい。 The “tomographic image group” for use in the present invention includes at least two tomographic images in which positional information in the object is associated and the two structures appear.
The above-mentioned “positional information in the object” is information indicating which position of the object the tomographic image represents the tomographic plane, and therefore each point in the tomographic image is in (or outside of) the object. It is known which position corresponds to. The position may be relative, that is, the relative positional relationship between any one point in one image included in the group of tomographic images and any one point in the other image (ie, the length of the vector). And the direction) may be known.
“Two structures appear” means that at least a part of each structure is seen in the tomographic image.
The number of tomographic images included in the tomographic image group varies depending on a specific analysis target, an image set, and the like, but is at least two, preferably at least three. The upper limit of the number of images is not limited as long as different images can be actually acquired and can be used for processing according to the present invention, but is 512, for example. In addition, it is preferable that the plurality of images included in the tomographic image group have a good signal-noise ratio and that there is no large positional shift between the images.
上記の「対象物内における位置情報」とは、断層画像が対象物のどの位置の断層面を表すものかを示す情報であり、従って断層画像中の各点は対象物中(またはその外側)のどの位置に対応するかが分かっている。該位置は相対的なものであってよく、即ち、該断層画像群に含まれる一つの画像中の任意の一点と他の画像中の任意の一点の相対的な位置関係(即ち、ベクトルの長さと方向)が既知であればよい。
上記の「2つの構造体が現れる」とは、断層画像中に各構造体の少なくとも一部分が見られることを意味する。
該断層画像群に含まれる断層画像の個数としては、具体的な解析対象や画像セット等に応じて異なるが、少なくとも2つ、好ましくは少なくとも3つ以上である。画像数の上限としては、異なる画像を実際に取得でき、また本発明に従う処理のためにそれらを用いることができる限り限定されないが、例えば512個である。また、該断層画像群に含まれる複数の画像は、シグナルノイズ比が良好であり、かつ画像間に大きな位置のずれがないことが好ましい。 The “tomographic image group” for use in the present invention includes at least two tomographic images in which positional information in the object is associated and the two structures appear.
The above-mentioned “positional information in the object” is information indicating which position of the object the tomographic image represents the tomographic plane, and therefore each point in the tomographic image is in (or outside of) the object. It is known which position corresponds to. The position may be relative, that is, the relative positional relationship between any one point in one image included in the group of tomographic images and any one point in the other image (ie, the length of the vector). And the direction) may be known.
“Two structures appear” means that at least a part of each structure is seen in the tomographic image.
The number of tomographic images included in the tomographic image group varies depending on a specific analysis target, an image set, and the like, but is at least two, preferably at least three. The upper limit of the number of images is not limited as long as different images can be actually acquired and can be used for processing according to the present invention, but is 512, for example. In addition, it is preferable that the plurality of images included in the tomographic image group have a good signal-noise ratio and that there is no large positional shift between the images.
その他の用語の定義または説明は、以下において必要に応じて与えられる。
定義 Definitions or explanations of other terms are given below as required.
(コンピュータプログラムおよび装置)
(Computer program and device)
次に、本発明による上記2つの構造体の相対的な配向性を決定するためのコンピュータプログラム(以下、「本発明のコンピュータプログラム」ともいう。)および装置(以下、「本発明の装置」ともいう。)について説明する。以下では特に本発明の装置について図面を参照しながら説明するが、本発明のコンピュータプログラムは、本発明の装置が有する機能を実行するためのコンピュータプログラムであるので、本発明の装置の説明に従って構成することができる。
Next, a computer program (hereinafter also referred to as “the computer program of the present invention”) and an apparatus (hereinafter referred to as “the apparatus of the present invention”) for determining the relative orientation of the two structures according to the present invention. Will be explained. In the following, the apparatus of the present invention will be described in particular with reference to the drawings. However, the computer program of the present invention is a computer program for executing the functions of the apparatus of the present invention, and is configured according to the description of the apparatus of the present invention. can do.
図2は、例示的な実施形態による本発明の装置の構成を示す図である。本発明の装置は、(M1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を受け取る手段、および、(M2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する手段を少なくとも有するものであり、好ましい実施形態においては、図2に示されるように、手段(M2)による三次元空間内における平面の決定に基づいて、該2つの構造体の相対的な配向性を両構造体の相対角度として算出し、それを出力するための上記の手段(M3)を更に有してもよい。手段(M1)、(M2)および(M3)は、図2に示されるように1台のコンピュータ内に実装されていてもよいし、あるいは複数のコンピュータを用いて実行されるように構成されていてもよい。
また、同様に図2に示されるように、(M4)対象物内の断層画像を取得するための手段(断層画像取得手段)も本発明の装置の構成に含めてもよい。手段(M4)としては、本明細書において上述したものを用いることができる。更に、図示しない各種の入力手段や出力手段(例:ディスプレイ、プリンター等)もまた、本発明の装置の構成要素としてもよい。 FIG. 2 is a diagram illustrating the configuration of the apparatus of the present invention according to an exemplary embodiment. The apparatus of the present invention comprises (M1) means for receiving a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear, and (M2) Based on the group of tomographic images, the apparatus has at least means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space. In a preferred embodiment, it is shown in FIG. As described above, based on the determination of the plane in the three-dimensional space by the means (M2), the relative orientation of the two structures is calculated as the relative angle between the two structures, and the above-described output for outputting it (M3) may be further included. The means (M1), (M2) and (M3) may be implemented in one computer as shown in FIG. 2, or are configured to be executed using a plurality of computers. May be.
Similarly, as shown in FIG. 2, (M4) means for acquiring a tomographic image in the object (tomographic image acquiring means) may be included in the configuration of the apparatus of the present invention. As the means (M4), those described above in this specification can be used. Furthermore, various input means and output means (for example, a display, a printer, etc.) not shown may also be components of the apparatus of the present invention.
また、同様に図2に示されるように、(M4)対象物内の断層画像を取得するための手段(断層画像取得手段)も本発明の装置の構成に含めてもよい。手段(M4)としては、本明細書において上述したものを用いることができる。更に、図示しない各種の入力手段や出力手段(例:ディスプレイ、プリンター等)もまた、本発明の装置の構成要素としてもよい。 FIG. 2 is a diagram illustrating the configuration of the apparatus of the present invention according to an exemplary embodiment. The apparatus of the present invention comprises (M1) means for receiving a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear, and (M2) Based on the group of tomographic images, the apparatus has at least means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space. In a preferred embodiment, it is shown in FIG. As described above, based on the determination of the plane in the three-dimensional space by the means (M2), the relative orientation of the two structures is calculated as the relative angle between the two structures, and the above-described output for outputting it (M3) may be further included. The means (M1), (M2) and (M3) may be implemented in one computer as shown in FIG. 2, or are configured to be executed using a plurality of computers. May be.
Similarly, as shown in FIG. 2, (M4) means for acquiring a tomographic image in the object (tomographic image acquiring means) may be included in the configuration of the apparatus of the present invention. As the means (M4), those described above in this specification can be used. Furthermore, various input means and output means (for example, a display, a printer, etc.) not shown may also be components of the apparatus of the present invention.
上記の手段(M1)は、手段(M2)による解析に供すべき断層画像群を受け取る手段であり、各用語の定義については上述した通りである。該断層画像群の受け取りは、ハードディスクドライブや外部記憶装置(例:CD-ROM等)等の補助記憶装置に記録された、予め取得された複数の断層画像のデータを読み出すものであってもよいし、あるいは、断層画像取得手段(M4)により取得される断層画像をリアルタイムで受け取るものであってもよい。
The above means (M1) is a means for receiving a tomographic image group to be subjected to analysis by the means (M2), and the definition of each term is as described above. The tomographic image group may be received by reading data of a plurality of previously acquired tomographic images recorded in an auxiliary storage device such as a hard disk drive or an external storage device (eg, CD-ROM). Alternatively, the tomographic image acquired by the tomographic image acquiring means (M4) may be received in real time.
手段(M1)は、手段(M2)による解析のために適切な断層画像群が選択されるべく、ユーザの入力に少なくとも部分的に基づいて、与えられた複数の断層画像から前記断層画像群を決定する手段を有することが好ましい。そのような手段は、例えば、候補となる複数の断層画像を画像表示手段に表示させ、該表示された画像から、手段(M2)による解析のために用いられるべき少なくとも1つの画像をユーザに選択させるように構成され得る。該手段は、手段(M2)により用いられる全ての画像がユーザにより選択されるように構成されていてもよいし、あるいは、ユーザが選択した画像に基づいて、予め設定された基準(例えば、既に選択された画像の断層面に対する位置関係の観点での基準)に従って他の画像を自動または半自動(即ち、ユーザへの提示および確認)で選択するように構成されていてもよい。
The means (M1) selects the tomographic image group from a plurality of given tomographic images based at least in part on a user input so that an appropriate tomographic image group is selected for analysis by the means (M2). It is preferred to have a means for determining. For example, such means displays a plurality of candidate tomographic images on the image display means, and selects at least one image to be used for analysis by the means (M2) from the displayed images. Can be configured. The means may be configured such that all images used by the means (M2) are selected by the user, or based on an image selected by the user, a preset reference (for example, already Another image may be selected automatically or semi-automatically (that is, presentation and confirmation to the user) according to a criterion in terms of the positional relationship of the selected image with respect to the tomographic plane).
上記の手段(M2)は、手段(M1)により決定された断層画像群に基づいて、三次元空間内において上記の2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する手段である。該平面は、図1を参照して上述した平面S1およびS2であってよい。これらの平面は、着目する一点A(または二点A1およびA2)の近傍においてそれぞれ構造体T1およびT2の外形を近似する平面である。複数の断層画像に基づくこのような平面の決定は、それ自体公知の技術を用いて行うことができる。そのような技術としては、以下に限定されないが、例えば、オプティカルフロー法に基づく後述の手法、断層画像から三次元ボリュームデータを創り出し、そこから連続するオブジェクトを抽出して平面近似する手法等が挙げられる。なかでも、処理が高速で、結果の信頼性が高いという点から、オプティカルフロー法に基づく後述の手法が好ましい。
また、手段(M2)は、該平面を決定する処理を行う前に、解析に用いる断層画像群に対して、bilateral filterやcolumn filter等の一般に用いられるフィルタリングを適用して画像のノイズを低減するように構成されていることが好ましい。 The means (M2) is a means for determining a plane that approximates a part of the surface shape of each of the two structures in the three-dimensional space based on the tomographic image group determined by the means (M1). is there. The planes may be the planes S 1 and S 2 described above with reference to FIG. These planes are planes that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the point of interest A (or two points A 1 and A 2 ), respectively. Such plane determination based on a plurality of tomographic images can be performed using a technique known per se. Examples of such a technique include, but are not limited to, a method described later based on an optical flow method, a method of creating three-dimensional volume data from a tomographic image, extracting a continuous object therefrom, and performing plane approximation, and the like. It is done. In particular, the method described later based on the optical flow method is preferable from the viewpoint of high-speed processing and high reliability of results.
Further, the means (M2) reduces image noise by applying generally used filtering such as a bilateral filter and a column filter to the tomographic image group used for analysis before performing the process of determining the plane. It is preferable that it is comprised.
また、手段(M2)は、該平面を決定する処理を行う前に、解析に用いる断層画像群に対して、bilateral filterやcolumn filter等の一般に用いられるフィルタリングを適用して画像のノイズを低減するように構成されていることが好ましい。 The means (M2) is a means for determining a plane that approximates a part of the surface shape of each of the two structures in the three-dimensional space based on the tomographic image group determined by the means (M1). is there. The planes may be the planes S 1 and S 2 described above with reference to FIG. These planes are planes that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the point of interest A (or two points A 1 and A 2 ), respectively. Such plane determination based on a plurality of tomographic images can be performed using a technique known per se. Examples of such a technique include, but are not limited to, a method described later based on an optical flow method, a method of creating three-dimensional volume data from a tomographic image, extracting a continuous object therefrom, and performing plane approximation, and the like. It is done. In particular, the method described later based on the optical flow method is preferable from the viewpoint of high-speed processing and high reliability of results.
Further, the means (M2) reduces image noise by applying generally used filtering such as a bilateral filter and a column filter to the tomographic image group used for analysis before performing the process of determining the plane. It is preferable that it is comprised.
オプティカルフロー法に基づく前記の平面の決定は、以下の一般的手順:上記の断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた上記位置情報と該算出されたオプティカルフローとを用いて該平面を決定する、に従って行うことができる。
上述の通り、該手法は、互いに近接する断層画像中では各構造体は常に画像内の近傍に現れるはずであるという仮定に基づくため、該1組の断層画像は互いに近接する断層面を表す画像であることが好ましい。特に好ましい実施形態では、該1組の断層画像は、互いに平行な隣接する断層画像である。なお、本明細書において、断層画像同士が近接または隣接するとは、各断層画像が表す断層面同士が互いに近接または隣接することを意味する。
上記の仮定が成立する場合、該1組の断層画像の一つにおける各構造体の各点は、他方の断層画像における該構造体中のいずれかの点と連続しているものとして対応付けることができる。一方の画像中の各点が他方の画像中でどの位置に移動したかを一連のベクトル(フローベクトル)で表すことにより、オプティカルフロー(即ち、フローベクトルの分布)を算出することができる。なお、本明細書において、1組の断層画像の間のオプティカルフローを算出することは、一つの画像中の全ての点について上述のフローベクトルを算出することにより該画像全体にわたるフローベクトルのマップを生成することを必ずしも必要とせず、少なくとも1つのフローベクトルを決定することを意味する。 The determination of the plane based on the optical flow method is performed by the following general procedure: calculating an optical flow between at least one set of tomographic images included in the tomographic image group, and determining the at least one set of tomographic images. The plane can be determined using the position information associated with each of the positions and the calculated optical flow.
As described above, the method is based on the assumption that in the tomographic images close to each other, each structure should always appear in the vicinity of the image. Therefore, the set of tomographic images is an image representing the tomographic planes close to each other. It is preferable that In a particularly preferred embodiment, the set of tomographic images are adjacent tomographic images parallel to each other. In this specification, tomographic images that are close to or adjacent to each other means that the tomographic planes represented by the tomographic images are close to or adjacent to each other.
When the above assumption holds, each point of each structure in one of the set of tomographic images may be associated as being continuous with any point in the structure in the other tomographic image. it can. An optical flow (that is, a distribution of flow vectors) can be calculated by representing a position where each point in one image has moved in the other image by a series of vectors (flow vectors). In this specification, calculating the optical flow between a set of tomographic images means calculating a flow vector map over the entire image by calculating the above flow vector for all points in one image. It does not necessarily need to be generated and means to determine at least one flow vector.
上述の通り、該手法は、互いに近接する断層画像中では各構造体は常に画像内の近傍に現れるはずであるという仮定に基づくため、該1組の断層画像は互いに近接する断層面を表す画像であることが好ましい。特に好ましい実施形態では、該1組の断層画像は、互いに平行な隣接する断層画像である。なお、本明細書において、断層画像同士が近接または隣接するとは、各断層画像が表す断層面同士が互いに近接または隣接することを意味する。
上記の仮定が成立する場合、該1組の断層画像の一つにおける各構造体の各点は、他方の断層画像における該構造体中のいずれかの点と連続しているものとして対応付けることができる。一方の画像中の各点が他方の画像中でどの位置に移動したかを一連のベクトル(フローベクトル)で表すことにより、オプティカルフロー(即ち、フローベクトルの分布)を算出することができる。なお、本明細書において、1組の断層画像の間のオプティカルフローを算出することは、一つの画像中の全ての点について上述のフローベクトルを算出することにより該画像全体にわたるフローベクトルのマップを生成することを必ずしも必要とせず、少なくとも1つのフローベクトルを決定することを意味する。 The determination of the plane based on the optical flow method is performed by the following general procedure: calculating an optical flow between at least one set of tomographic images included in the tomographic image group, and determining the at least one set of tomographic images. The plane can be determined using the position information associated with each of the positions and the calculated optical flow.
As described above, the method is based on the assumption that in the tomographic images close to each other, each structure should always appear in the vicinity of the image. Therefore, the set of tomographic images is an image representing the tomographic planes close to each other. It is preferable that In a particularly preferred embodiment, the set of tomographic images are adjacent tomographic images parallel to each other. In this specification, tomographic images that are close to or adjacent to each other means that the tomographic planes represented by the tomographic images are close to or adjacent to each other.
When the above assumption holds, each point of each structure in one of the set of tomographic images may be associated as being continuous with any point in the structure in the other tomographic image. it can. An optical flow (that is, a distribution of flow vectors) can be calculated by representing a position where each point in one image has moved in the other image by a series of vectors (flow vectors). In this specification, calculating the optical flow between a set of tomographic images means calculating a flow vector map over the entire image by calculating the above flow vector for all points in one image. It does not necessarily need to be generated and means to determine at least one flow vector.
オプティカルフローの算出は、例えば、動画中の移動体追尾の分野において用いられている各種の手法を用いて行うことができる。そのような手法としては、パターン認識ベースの手法、Particle Filter、Mean Shift追跡、勾配法、等が挙げられる。
The calculation of the optical flow can be performed using, for example, various methods used in the field of moving object tracking in a moving image. Examples of such a method include a pattern recognition-based method, Particle Filter, Mean Shift tracking, gradient method, and the like.
各構造体の表面形状の一部分を近似する平面を決定するために、断層画像中の各構造体の輪郭線近傍の点(即ち、輪郭線上の点または輪郭線付近の構造体内の点)に関するフローベクトルの決定が必要である。一般に平面の決定のためには3つ以上の点が必要であるので、少なくとも1つの点(その場合、該点と、異なる画像中で該点に対応すると特定された1点に加えて、輪郭線近傍の別の1点が必要である)、より好ましくは少なくとも2つの点においてフローベクトルを決定する必要がある(それにより、該少なくとも2点と、異なる画像中でそれらの点に対応すると特定された少なくとも2点、従って合計で少なくとも4点が決定される)。平面を決定するために選択される複数の点は、一つの画像中の点であってもよいし、異なる画像中の点であってもよい。
In order to determine a plane that approximates a part of the surface shape of each structure, a flow relating to a point in the tomographic image near the outline of each structure (that is, a point on the outline or a point in the structure near the outline) It is necessary to determine the vector. In general, since more than two points are needed to determine the plane, at least one point (in this case, in addition to the point and one point identified as corresponding to the point in a different image) Need another point in the vicinity of the line), more preferably the flow vector needs to be determined at at least two points (thus identifying the at least two points and corresponding those points in different images) At least 2 points, and thus a total of at least 4 points). The plurality of points selected for determining the plane may be points in one image or points in different images.
そのような点は、例えば、画像表示手段に表示された断層画像中で該当する点をユーザに選択させることで取得することができるが、より自動化された手法を用いてもよい。従って、手段(M2)は、断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、表示された画像において、着目する各構造体について、輪郭線近傍の少なくとも2つの点をユーザに選択させ、選択された点を受け取るように構成されていてもよい。手段(M2)は、そのようにして選択された点のそれぞれに対して、上記の手法を適用して、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定するように構成され得る。該近接する断層画像は、各断層画像に関連付けられた位置情報に基づいてユーザにより選択されてもよいし、あるいは該位置情報に基づいて手段(M2)により自動または半自動(即ち、ユーザへの提示および確認)で選択されてもよい。
Such a point can be acquired, for example, by allowing the user to select a corresponding point in the tomographic image displayed on the image display means, but a more automated method may be used. Accordingly, the means (M2) causes the image display means to display at least one tomographic image included in the tomographic image group, and in the displayed image, at least two points in the vicinity of the contour line for each structure of interest are displayed by the user. The selected point may be received and the selected point may be received. The means (M2) applies the above-described method to each of the points selected in this way, and corresponds the selected point in the tomographic image close to the selected tomographic image. May be configured to identify points to do. The adjacent tomographic images may be selected by the user based on position information associated with each tomographic image, or automatically or semi-automatically (ie, presented to the user) by means (M2) based on the position information. And confirmation).
手段(M2)は、例えば上述のようにして選択された、ある断層画像中において着目する構造体の輪郭線近傍の少なくとも2点と、別の断層画像においてそれらに対応すると特定された少なくとも2点に基づいて、該構造体の表面形状の一部分を近似する平面を決定する。該平面の決定のために用いられる点のセットは、少なくとも大部分が該構造体の輪郭線近傍の点であることが好ましい。該平面の決定は、例えば最小二乗法等を用いて、それら全ての点(いずれの点も、三次元空間内での位置が既知である。)を通る一つの平面を近似することにより行うことができる。2つの構造体のそれぞれに対して同様の手順を行うことで、目的とする2つの平面が決定される。
The means (M2) is, for example, selected as described above, at least two points in the vicinity of the outline of the structure of interest in one tomographic image, and at least two points specified to correspond to them in another tomographic image Based on the above, a plane that approximates a part of the surface shape of the structure is determined. The set of points used for the determination of the plane is preferably at least mostly in the vicinity of the outline of the structure. The plane is determined by approximating one plane passing through all of these points (the positions of all the points are known in a three-dimensional space) using, for example, the least square method. Can do. By performing the same procedure for each of the two structures, two target planes are determined.
上記の手段(M3)は、手段(M2)により決定された2つの平面の間の相対角度を算出し、それを出力するための手段である。相対角度の定義を上記に示しており、当業者は該2つの平面に基づいて該角度を決定することができる。
The above means (M3) is a means for calculating the relative angle between the two planes determined by the means (M2) and outputting it. The definition of relative angle is given above, and the skilled person can determine the angle based on the two planes.
(方法)
本発明はまた、対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための方法(以下、本発明の方法(I)ともいう。)を提供する。図3に、該方法の例示的な実施形態のフローチャートを示す。本発明の方法(I)は、上記の工程(S1)および(S2)を少なくとも含み、図3に示す通り、好ましい実施形態では、工程(S2)により決定された2つの平面に基づいて、構造体間の相対角度を決定する上記の工程(S3)を含む。また、(S4)対象物内の断層画像を取得する工程も本発明の方法に含めてもよい。 (Method)
The present invention also provides a method for determining the relative orientation of two structures in the vicinity of each other in an object (hereinafter also referred to as the method (I) of the present invention). FIG. 3 shows a flowchart of an exemplary embodiment of the method. The method (I) of the present invention includes at least the steps (S1) and (S2) described above, and as shown in FIG. 3, in a preferred embodiment, the structure is based on the two planes determined by the step (S2). The step (S3) for determining the relative angle between the bodies is included. Further, (S4) a step of acquiring a tomographic image in the object may be included in the method of the present invention.
本発明はまた、対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための方法(以下、本発明の方法(I)ともいう。)を提供する。図3に、該方法の例示的な実施形態のフローチャートを示す。本発明の方法(I)は、上記の工程(S1)および(S2)を少なくとも含み、図3に示す通り、好ましい実施形態では、工程(S2)により決定された2つの平面に基づいて、構造体間の相対角度を決定する上記の工程(S3)を含む。また、(S4)対象物内の断層画像を取得する工程も本発明の方法に含めてもよい。 (Method)
The present invention also provides a method for determining the relative orientation of two structures in the vicinity of each other in an object (hereinafter also referred to as the method (I) of the present invention). FIG. 3 shows a flowchart of an exemplary embodiment of the method. The method (I) of the present invention includes at least the steps (S1) and (S2) described above, and as shown in FIG. 3, in a preferred embodiment, the structure is based on the two planes determined by the step (S2). The step (S3) for determining the relative angle between the bodies is included. Further, (S4) a step of acquiring a tomographic image in the object may be included in the method of the present invention.
上記の工程(S1)は、工程(S2)における解析に供すべき断層画像群を用意する工程であり、各用語の定義については上述した通りである。該断層画像群の用意は、ハードディスクドライブや外部記憶装置(例:CD-ROM等)等の補助記憶装置に記録された、予め取得された複数の断層画像のデータを読み出すものであってもよいし、あるいは、工程(S4)により取得される断層画像をリアルタイムで受け取るものであってもよい。
The above step (S1) is a step of preparing a tomographic image group to be subjected to the analysis in the step (S2), and the definition of each term is as described above. The preparation of the tomographic image group may be to read out data of a plurality of tomographic images acquired in advance and recorded in an auxiliary storage device such as a hard disk drive or an external storage device (eg, CD-ROM). Alternatively, the tomographic image acquired in step (S4) may be received in real time.
工程(S1)は、工程(S2)における解析のために適切な断層画像群が選択されるべく、ユーザの入力に少なくとも部分的に基づいて、与えられた複数の断層画像から前記断層画像群を決定する工程を有することが好ましい。そのような工程は、本発明の装置の手段(M1)に関する上記説明に従って行うことができる。
In step (S1), in order to select an appropriate tomographic image group for analysis in step (S2), the tomographic image group is obtained from a plurality of given tomographic images based at least in part on a user input. It is preferable to have a step of determining. Such a process can be carried out according to the above description relating to the means (M1) of the apparatus of the present invention.
上記の工程(S2)は、工程(S1)により決定された断層画像群に基づいて、三次元空間内において上記の2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する工程である。該平面は、図1を参照して上述した平面S1およびS2であってよい。これらの平面は、着目する一点A(または二点A1およびA2)の近傍においてそれぞれ構造体T1およびT2の外形を近似する平面である。複数の断層画像に基づくこのような平面の決定は、それ自体公知の技術を用いて行うことができ、例えば、本発明の装置の手段(M2)を用いて行うことができる。
The step (S2) is a step of determining a plane that approximates a part of the surface shape of each of the two structures in the three-dimensional space based on the tomographic image group determined in the step (S1). is there. The planes may be the planes S 1 and S 2 described above with reference to FIG. These planes are planes that approximate the outer shapes of the structures T 1 and T 2 in the vicinity of the point of interest A (or two points A 1 and A 2 ), respectively. Such plane determination based on a plurality of tomographic images can be performed using a technique known per se, for example, using the means (M2) of the apparatus of the present invention.
上記の工程(S3)は、工程(S2)により決定された2つの平面の間の相対角度を算出する工程である。相対角度の定義を上記に示しており、当業者は該2つの平面に基づいて該角度を決定することができる。
The above step (S3) is a step of calculating the relative angle between the two planes determined in step (S2). The definition of relative angle is given above, and the skilled person can determine the angle based on the two planes.
本発明はまた、哺乳動物における内リンパ水腫の診断を補助する方法(以下、本発明の方法(II)ともいう。)を提供する。該方法は、本発明の方法(I)を蝸牛内側面とライスネル膜との相対的な配向性の決定のために適用することで得られる相対的な配向性に基づいて内リンパ水腫を評価することにより行うことができる。内リンパ水腫は、様々な疾患で、様々な程度のものが存在すると考えられているので定量的な評価が好ましく、従って該相対的な配向性は両組織の相対角度であることが好ましい。ここで、相対角度に基づく内リンパ水腫の評価は、例えば、内リンパ水腫を有しないことが既知である個体からの蝸牛の断層画像に基づいて本発明の方法(I)により算出した相対角度と、被験対象とする個体からの蝸牛の断層画像に基づいて本発明の方法(I)により算出した相対角度とを比較することにより行うことができる。また、多数の正常個体および多数の内リンパ水腫罹患個体の蝸牛の断層画像に基づいて、内リンパ水腫の罹患の指標となる相対角度の閾値または正常範囲を決定し、被験対象とする個体について求めた相対角度を該閾値または正常範囲と比較することにより評価してもよい。その場合、該閾値または正常範囲からの逸脱の大きさを利用して、内リンパ水腫の程度を判断してもよい。
The present invention also provides a method for assisting diagnosis of endolymphatic hydrops in a mammal (hereinafter also referred to as the method (II) of the present invention). The method evaluates endolymphatic edema based on the relative orientation obtained by applying the method (I) of the present invention for the determination of the relative orientation of the cochlear inner surface and the Ricenell membrane. Can be done. Endolymphatic edema is considered to be present in various diseases and to various extents, and therefore quantitative evaluation is preferable. Therefore, the relative orientation is preferably a relative angle between both tissues. Here, the evaluation of endolymphatic edema based on the relative angle is, for example, the relative angle calculated by the method (I) of the present invention based on the tomographic image of the cochlea from an individual that is known not to have endolymphedema. This can be done by comparing the relative angle calculated by the method (I) of the present invention based on the tomographic image of the cochlea from the individual to be tested. In addition, based on tomographic images of the cochlea of a large number of normal individuals and a large number of individuals with endolymphatic edema, the threshold value or normal range of the relative angle that serves as an index of endolymphatic hydrops is determined, and the individual to be tested is determined. The relative angle may be evaluated by comparing it with the threshold or the normal range. In that case, the degree of endolymphatic edema may be determined using the threshold or the magnitude of deviation from the normal range.
以下に実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例により何ら限定されない。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
実施例1:OCT画像からの、正常マウスおよび内リンパ水腫モデルマウスにおける蝸牛内側面とライスネル膜との相対角度の決定Example 1: Determination of the relative angle between the inner surface of the cochlea and the Ricenel membrane in normal mice and endolymphatic hydrops model mice from OCT images
動物:
正常マウスとSlc26a4ノックアウトマウスを用いた。Slc26a4ノックアウトマウスは重篤な内リンパ水腫を引き起こすことが知られている。
方法:
(1)OCT画像の取得
生体、摘出、および摘出脱灰の蝸牛に対して解析を行った。
[生体蝸牛の場合]麻酔薬の腹腔内投与によって全身麻酔をかけ、耳の後ろを切開して蝸牛を覆うブラと呼ばれる薄い骨を除去すると、蝸牛の骨が露出される。血液を拭き取り、少量の水またはグリセロールを垂らして表面を湿潤かつ平滑な状態にしておいてOCTプローブの下に静置し、画像を取得した。
[摘出蝸牛の場合]開心還流固定の後、内耳を摘出し、OCTプローブの下に静置してOCT画像を取得した。
[脱灰蝸牛の場合]固定に加えて、内耳を4℃の10% EDTA内で7日間振盪することで脱灰を行ったあと、OCTプローブの下に静置して画像を取得した。
なお、OCTシステムとしては、OCS1300SS OCT system (Thorlabs社製、米国)を用い、中心波長1300nm、スペクトルバンド幅100nm、平均出力10mWの条件で測定した。
(2)角度測定
専用プログラムでデータを読み込み、bilateral filter、column filterでノイズ低減処理、著しくずれた画像の除去を行った後、シリーズとして表示した。
1つの断面を選択し、蝸牛第2回転で内側面にライスネル膜が付着する1点(点Aとする)、点A近傍の蝸牛内側面に2点、点A近傍のライスネル膜に2点を指定し、optical flow法(より具体的には、特徴量として画像中の小領域そのものを用い、異なる画像間で類似の小領域を探し出す、テンプレートマッチングによるオプティカルフロー推定を利用した。)で前後数枚の画像から点Aにおいて蝸牛内側面に接する面と、点Aを通って点A近傍のライスネル膜に接する面を最小二乗法により同定し、2つの面のなす角の大きさを計算した。一つの蝸牛についてランダムに選択した3点で上記の計算により角度を取得し、その平均を算出した。
選択した断層画像に同定された2つの面との交線を表示した画像を、図4に示す。(a)は正常マウス、(b)はノックアウトマウスについての画像である。 animal:
Normal mice and Slc26a4 knockout mice were used. Slc26a4 knockout mice are known to cause severe endolymphatic edema.
Method:
(1) Acquisition of OCT image Analysis was performed on living organisms, excised, and excised decalcified cochlea.
[In the case of a living cochlea] General anesthesia is performed by intraperitoneal administration of an anesthetic, and when a thin bone called a bra covering the cochlea is removed by incision behind the ear, the cochlea bone is exposed. The blood was wiped off and a small amount of water or glycerol was dropped to leave the surface moist and smooth and left under the OCT probe to obtain an image.
[In the case of an isolated cochlea] After fixation with open heart return, the inner ear was removed and placed under the OCT probe to obtain an OCT image.
[In the case of demineralized cochlea] In addition to fixation, the inner ear was decalcified by shaking in 10% EDTA at 4 ° C for 7 days, and then placed under the OCT probe to obtain an image.
As the OCT system, an OCS1300SS OCT system (manufactured by Thorlabs, USA) was used, and measurement was performed under the conditions of a center wavelength of 1300 nm, a spectral bandwidth of 100 nm, and an average output of 10 mW.
(2) Angle measurement Data was read with a special program, noise reduction processing was performed with a bilateral filter and column filter, and images that were significantly displaced were removed, and then displayed as a series.
Select one cross-section, andpoint 1 on the inner surface of the cochlea in the second rotation of the cochlea (referred to as point A), two points on the inner surface of the cochlea near point A, and two points on the Risnel film near point A Specified and used the optical flow method (more specifically, optical flow estimation based on template matching, which uses a small area in an image itself as a feature quantity and searches for a similar small area between different images). From the images, the surface in contact with the inner surface of the cochlea at point A and the surface in contact with the Ricenell membrane near point A through point A were identified by the least square method, and the angle between the two surfaces was calculated. The angle was obtained by the above calculation at three points randomly selected for one cochlea and the average was calculated.
FIG. 4 shows an image displaying the intersection line between the two planes identified in the selected tomographic image. (a) is an image of a normal mouse and (b) is an image of a knockout mouse.
正常マウスとSlc26a4ノックアウトマウスを用いた。Slc26a4ノックアウトマウスは重篤な内リンパ水腫を引き起こすことが知られている。
方法:
(1)OCT画像の取得
生体、摘出、および摘出脱灰の蝸牛に対して解析を行った。
[生体蝸牛の場合]麻酔薬の腹腔内投与によって全身麻酔をかけ、耳の後ろを切開して蝸牛を覆うブラと呼ばれる薄い骨を除去すると、蝸牛の骨が露出される。血液を拭き取り、少量の水またはグリセロールを垂らして表面を湿潤かつ平滑な状態にしておいてOCTプローブの下に静置し、画像を取得した。
[摘出蝸牛の場合]開心還流固定の後、内耳を摘出し、OCTプローブの下に静置してOCT画像を取得した。
[脱灰蝸牛の場合]固定に加えて、内耳を4℃の10% EDTA内で7日間振盪することで脱灰を行ったあと、OCTプローブの下に静置して画像を取得した。
なお、OCTシステムとしては、OCS1300SS OCT system (Thorlabs社製、米国)を用い、中心波長1300nm、スペクトルバンド幅100nm、平均出力10mWの条件で測定した。
(2)角度測定
専用プログラムでデータを読み込み、bilateral filter、column filterでノイズ低減処理、著しくずれた画像の除去を行った後、シリーズとして表示した。
1つの断面を選択し、蝸牛第2回転で内側面にライスネル膜が付着する1点(点Aとする)、点A近傍の蝸牛内側面に2点、点A近傍のライスネル膜に2点を指定し、optical flow法(より具体的には、特徴量として画像中の小領域そのものを用い、異なる画像間で類似の小領域を探し出す、テンプレートマッチングによるオプティカルフロー推定を利用した。)で前後数枚の画像から点Aにおいて蝸牛内側面に接する面と、点Aを通って点A近傍のライスネル膜に接する面を最小二乗法により同定し、2つの面のなす角の大きさを計算した。一つの蝸牛についてランダムに選択した3点で上記の計算により角度を取得し、その平均を算出した。
選択した断層画像に同定された2つの面との交線を表示した画像を、図4に示す。(a)は正常マウス、(b)はノックアウトマウスについての画像である。 animal:
Normal mice and Slc26a4 knockout mice were used. Slc26a4 knockout mice are known to cause severe endolymphatic edema.
Method:
(1) Acquisition of OCT image Analysis was performed on living organisms, excised, and excised decalcified cochlea.
[In the case of a living cochlea] General anesthesia is performed by intraperitoneal administration of an anesthetic, and when a thin bone called a bra covering the cochlea is removed by incision behind the ear, the cochlea bone is exposed. The blood was wiped off and a small amount of water or glycerol was dropped to leave the surface moist and smooth and left under the OCT probe to obtain an image.
[In the case of an isolated cochlea] After fixation with open heart return, the inner ear was removed and placed under the OCT probe to obtain an OCT image.
[In the case of demineralized cochlea] In addition to fixation, the inner ear was decalcified by shaking in 10% EDTA at 4 ° C for 7 days, and then placed under the OCT probe to obtain an image.
As the OCT system, an OCS1300SS OCT system (manufactured by Thorlabs, USA) was used, and measurement was performed under the conditions of a center wavelength of 1300 nm, a spectral bandwidth of 100 nm, and an average output of 10 mW.
(2) Angle measurement Data was read with a special program, noise reduction processing was performed with a bilateral filter and column filter, and images that were significantly displaced were removed, and then displayed as a series.
Select one cross-section, and
FIG. 4 shows an image displaying the intersection line between the two planes identified in the selected tomographic image. (a) is an image of a normal mouse and (b) is an image of a knockout mouse.
結果:
正常マウス(n=4)およびSlc26a4ノックアウトマウス(n=3)について算出された角度を下記表1に示す。 result:
The angles calculated for normal mice (n = 4) and Slc26a4 knockout mice (n = 3) are shown in Table 1 below.
正常マウス(n=4)およびSlc26a4ノックアウトマウス(n=3)について算出された角度を下記表1に示す。 result:
The angles calculated for normal mice (n = 4) and Slc26a4 knockout mice (n = 3) are shown in Table 1 below.
更に、正常マウス(n=4)、Slc26a4ノックアウトマウス(n=3)のそれぞれについて、算出された角度の平均を図5に示す。求めた角度は、正常マウス(n=4)とSlc26a4ノックアウトマウス(n=3)では有意差をもってノックアウトマウスの方が小さかった(p=0.0002)。
Furthermore, the average of the calculated angles for each of normal mice (n = 4) and Slc26a4 knockout mice (n = 3) is shown in FIG. The obtained angle was significantly smaller in normal mice (n = 4) and Slc26a4 knockout mice (n = 3) in knockout mice (p = 0.0002).
本出願は日本で出願された特願2014-053790(出願日:2014年3月17日)を基礎としており、それらの内容は本明細書に全て包含されるものである。
This application is based on Japanese Patent Application No. 2014-053790 filed in Japan (filing date: March 17, 2014), the contents of which are incorporated in full herein.
Claims (16)
- 対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するためのコンピュータプログラムであって、
コンピュータを、
(M1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を受け取る手段、および、
(M2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する手段
として機能させるための前記コンピュータプログラム。 A computer program for determining the relative orientation of two structures in the vicinity of each other in an object,
Computer
(M1) means for receiving a tomographic image group including at least two tomographic images in which position information in the object is associated and the two structures appear; and
(M2) The computer program for causing a computer to function as means for determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group. - 前記手段(M2)が、該断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた該位置情報と該算出されたオプティカルフローとを用いて該平面を決定するように構成されている、請求項1に記載のコンピュータプログラム。 The means (M2) calculates an optical flow between at least one set of tomographic images included in the tomographic image group, and calculates the positional information associated with each of the at least one set of tomographic images. The computer program according to claim 1, wherein the computer program is configured to determine the plane using the optical flow.
- 前記手段(M2)が、
該断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、
該表示された1つの断層画像または複数の断層画像を用いて、該2つの構造体のそれぞれについて、輪郭線近傍の点を少なくとも2つユーザに選択させ、該選択された点を受け取り、
該選択された点のそれぞれについて、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定し、かつ、
該選択された点および該特定された点に基づいて、該2つの構造体のそれぞれについて、表面形状の一部分を近似する平面を決定するように構成されている、
請求項1または2に記載のコンピュータプログラム。 The means (M2)
Displaying at least one tomographic image included in the tomographic image group on an image display means;
Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, the user selects at least two points in the vicinity of the contour line, receives the selected points,
For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and
Configured to determine, for each of the two structures, a plane that approximates a portion of the surface shape based on the selected point and the identified point;
The computer program according to claim 1 or 2. - 前記手段(M1)が、ユーザの入力に少なくとも部分的に基づいて、与えられた複数の断層画像から前記断層画像群を決定する手段を有する、請求項1~3のいずれか1項に記載のコンピュータプログラム。 The means (M1) according to any one of claims 1 to 3, wherein the means (M1) comprises means for determining the tomographic image group from a plurality of given tomographic images based at least in part on user input. Computer program.
- コンピュータを更に、
(M3)三次元空間内において前記手段(M2)により決定された2つの平面同士が交わる直線を決定し、該決定された直線に関する一方の平面から他方の平面への回転角度を算出し、かつ該算出された回転角度を該2つの構造体の相対角度として出力する手段
として機能させるための、請求項1~4のいずれか1項に記載のコンピュータプログラム。 Computer
(M3) determining a straight line intersecting the two planes determined by the means (M2) in the three-dimensional space, calculating a rotation angle from one plane to the other plane with respect to the determined straight line; and The computer program according to any one of claims 1 to 4, which functions as means for outputting the calculated rotation angle as a relative angle between the two structures. - 対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための装置であって、請求項1~5のいずれか1項に記載のコンピュータプログラムが機能するように構成されたコンピュータを含む、前記装置。 An apparatus for determining the relative orientation of two structures in the vicinity of each other in an object, wherein the computer program according to any one of claims 1 to 5 is configured to function. Said apparatus comprising a computer.
- (M4)対象物内の断層画像を取得するための手段
を更に有する、請求項6に記載の装置。 (M4) The apparatus of Claim 6 which further has a means for acquiring the tomographic image in a target object. - 前記手段(M4)が、光コヒーレンストモグラフィーデバイスである、請求項7に記載の装置。 The apparatus according to claim 7, wherein the means (M4) is an optical coherence tomography device.
- 該光コヒーレンストモグラフィーデバイスが、蝸牛内側面およびライスネル膜の断層画像を取得できるように構成されたものである、請求項8に記載の装置。 The apparatus according to claim 8, wherein the optical coherence tomography device is configured to acquire tomographic images of the inner surface of the cochlea and the Risnel membrane.
- 対象物内において互いに近傍にある2つの構造体の相対的な配向性を決定するための方法であって、
(S1)該対象物内における位置情報が関連付けられており、かつ該2つの構造体が現れる断層画像を、少なくとも2つ含む断層画像群を用意する工程、および、
(S2)該断層画像群に基づいて、三次元空間内において該2つの構造体のそれぞれの表面形状の一部分を近似する平面を決定する工程
を含み、該決定された2つの平面に基づいて該相対的な配向性が決定される、前記方法。 A method for determining the relative orientation of two structures in the vicinity of each other in the object,
(S1) preparing a tomographic image group including at least two tomographic images in which positional information in the object is associated and the two structures appear; and
(S2) including a step of determining a plane that approximates a part of the surface shape of each of the two structures in a three-dimensional space based on the tomographic image group, and based on the determined two planes, Said method wherein the relative orientation is determined. - 前記工程(S2)が、該断層画像群に含まれる少なくとも1組の断層画像の間のオプティカルフローを算出し、かつ該少なくとも1組の断層画像のそれぞれに関連付けられた該位置情報と該算出されたオプティカルフローとを用いて該平面を決定することを含む、請求項10に記載の方法。 The step (S2) calculates an optical flow between at least one set of tomographic images included in the group of tomographic images, and calculates the position information associated with each of the at least one set of tomographic images. The method of claim 10, comprising determining the plane using an optical flow.
- 前記工程(S2)が、
該断層画像群に含まれる少なくとも1つの断層画像を画像表示手段に表示させ、
該表示された1つの断層画像または複数の断層画像を用いて、該2つの構造体のそれぞれについて、輪郭線近傍の点を少なくとも2つ選択し、
該選択された点のそれぞれについて、該点を選択された断層画像に近接する断層画像において、該選択された点に対応する点を特定し、かつ、
該選択された点および該特定された点に基づいて、該2つの構造体のそれぞれについて、表面形状の一部分を近似する平面を決定することを含む、
請求項10または11に記載の方法。 The step (S2)
Displaying at least one tomographic image included in the tomographic image group on an image display means;
Using the displayed tomographic image or a plurality of tomographic images, for each of the two structures, select at least two points near the contour line;
For each of the selected points, identify a point corresponding to the selected point in a tomographic image close to the selected tomographic image; and
Determining, for each of the two structures, a plane that approximates a portion of a surface shape based on the selected point and the identified point;
The method according to claim 10 or 11. - 該断層画像が、光コヒーレンストモグラフィーデバイスを用いて取得されたものである、請求項10~12のいずれか1項に記載の方法。 The method according to any one of claims 10 to 12, wherein the tomographic image is acquired using an optical coherence tomography device.
- (S3)三次元空間内において前記工程(S2)により決定された2つの平面同士が交わる直線を決定し、該決定された直線に関する一方の平面から他方の平面への回転角度を算出し、かつ該算出された回転角度を該2つの構造体の相対角度として決定する工程
を更に含む、請求項10~13のいずれか1項に記載の方法。 (S3) determining a straight line where two planes determined by the step (S2) intersect in the three-dimensional space, calculating a rotation angle from one plane to the other plane with respect to the determined straight line; and The method according to any one of claims 10 to 13, further comprising the step of determining the calculated rotation angle as a relative angle between the two structures. - 該2つの構造体が蝸牛内側面およびライスネル膜である、請求項10~14のいずれか1項に記載の方法。 The method according to any one of claims 10 to 14, wherein the two structures are a cochlea inner surface and a Ricenell membrane.
- 蝸牛内側面およびライスネル膜を該2つの構造体として請求項14に記載の方法を用いることにより、蝸牛内側面とライスネル膜との相対角度を決定する工程を含み、該相対角度に基づいて内リンパ水腫が診断される、哺乳動物における内リンパ水腫の診断を補助する方法。 15. Using the method of claim 14 with the cochlear inner surface and the Ricenell membrane as the two structures, determining the relative angle between the cochlear inner surface and the Ricenell membrane, based on the relative angle, the endolymph A method of assisting in the diagnosis of endolymphatic hydrops in a mammal, wherein edema is diagnosed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-053790 | 2014-03-17 | ||
JP2014053790A JP2015175785A (en) | 2014-03-17 | 2014-03-17 | Determination of relative orientation of two structures using tomographic image |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141668A1 true WO2015141668A1 (en) | 2015-09-24 |
Family
ID=54144633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/057880 WO2015141668A1 (en) | 2014-03-17 | 2015-03-17 | Method for non-invasively determining angle formed by structure inside organism |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015175785A (en) |
WO (1) | WO2015141668A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010092869A (en) * | 2003-11-25 | 2010-04-22 | Hitachi High-Technologies Corp | Method of observing specimen |
JP2011125568A (en) * | 2009-12-18 | 2011-06-30 | Canon Inc | Image processor, image processing method, program and image processing system |
JP2012120756A (en) * | 2010-12-09 | 2012-06-28 | Canon Inc | Image processing apparatus, photographing system, method for processing image, and program |
JP2012179272A (en) * | 2011-03-02 | 2012-09-20 | Fujifilm Corp | Image-based diagnosis assistance apparatus, its operation method and program |
WO2012157406A1 (en) * | 2011-05-18 | 2012-11-22 | 株式会社 日立メディコ | Image analysis device, program, and image-capturing device |
US20130060131A1 (en) * | 2011-09-02 | 2013-03-07 | The Texas A&M University System | Method and apparatus for examining inner ear |
WO2013063564A1 (en) * | 2011-10-28 | 2013-05-02 | Massachusetts Eye & Ear Infirmary | Tissue and cellular imaging |
JP2013172792A (en) * | 2012-02-24 | 2013-09-05 | Toshiba Corp | Medical image diagnostic apparatus |
WO2014022687A1 (en) * | 2012-08-01 | 2014-02-06 | The Johns Hopkins University | Optical coherence tomography system and method for real-time surgical guidance |
-
2014
- 2014-03-17 JP JP2014053790A patent/JP2015175785A/en active Pending
-
2015
- 2015-03-17 WO PCT/JP2015/057880 patent/WO2015141668A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010092869A (en) * | 2003-11-25 | 2010-04-22 | Hitachi High-Technologies Corp | Method of observing specimen |
JP2011125568A (en) * | 2009-12-18 | 2011-06-30 | Canon Inc | Image processor, image processing method, program and image processing system |
JP2012120756A (en) * | 2010-12-09 | 2012-06-28 | Canon Inc | Image processing apparatus, photographing system, method for processing image, and program |
JP2012179272A (en) * | 2011-03-02 | 2012-09-20 | Fujifilm Corp | Image-based diagnosis assistance apparatus, its operation method and program |
WO2012157406A1 (en) * | 2011-05-18 | 2012-11-22 | 株式会社 日立メディコ | Image analysis device, program, and image-capturing device |
US20130060131A1 (en) * | 2011-09-02 | 2013-03-07 | The Texas A&M University System | Method and apparatus for examining inner ear |
WO2013063564A1 (en) * | 2011-10-28 | 2013-05-02 | Massachusetts Eye & Ear Infirmary | Tissue and cellular imaging |
JP2013172792A (en) * | 2012-02-24 | 2013-09-05 | Toshiba Corp | Medical image diagnostic apparatus |
WO2014022687A1 (en) * | 2012-08-01 | 2014-02-06 | The Johns Hopkins University | Optical coherence tomography system and method for real-time surgical guidance |
Non-Patent Citations (1)
Title |
---|
AKINOBU KAKIGI ET AL.: "Optical Coherence Tomography o Mochiita Nai Lymph Suishu no Kento", ZENTEI KINO IJO NI KANSURU CHOSA KENKYU HEISEI 24 NENDO SOKATSU BUNTAN KENKYU HOKOKUSHO, 2013, pages 96 - 97 * |
Also Published As
Publication number | Publication date |
---|---|
JP2015175785A (en) | 2015-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11935241B2 (en) | Image processing apparatus, image processing method and computer-readable medium for improving image quality | |
Carrasco-Zevallos et al. | Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography | |
Matsumoto et al. | Visualising peripheral arterioles and venules through high-resolution and large-area photoacoustic imaging | |
JP7341874B2 (en) | Image processing device, image processing method, and program | |
CA2981021C (en) | Image analysis | |
JP6568478B2 (en) | Planning, guidance and simulation system and method for minimally invasive treatment | |
JP5697733B2 (en) | Detection of optic nerve damage using 3D optical coherence tomography | |
WO2020036182A1 (en) | Medical image processing device, medical image processing method, and program | |
JP2014527434A (en) | Feature motion correction and normalization in optical coherence tomography | |
JP6144325B2 (en) | Ophthalmic image processing apparatus and ophthalmic imaging apparatus | |
CN106073700A (en) | Image generating method and video generation device | |
JP2020039851A (en) | Image processing device, image processing method and program | |
US9918680B2 (en) | Automated analysis of the optic nerve head via optical coherence tomography measurements, methods and representations | |
JP7374615B2 (en) | Information processing device, information processing method and program | |
Davoudi et al. | Optical coherence tomography platform for microvascular imaging and quantification: initial experience in late oral radiation toxicity patients | |
CN106163380B (en) | Quantitative tissue property mapping for real-time tumor detection and interventional guidance | |
JP2020163100A (en) | Image processing apparatus and image processing method | |
WO2020075719A1 (en) | Image processing device, image processing method, and program | |
Dwork et al. | Automatically determining the confocal parameters from OCT B-scans for quantification of the attenuation coefficients | |
Muller et al. | Needle-based optical coherence tomography for the detection of prostate cancer: a visual and quantitative analysis in 20 patients | |
Tkachev et al. | Visualization of different anatomical parts of the enucleated human eye using X-ray micro-CT imaging | |
AU2016346349A1 (en) | System and method to analyze various retinal layers | |
WO2015141668A1 (en) | Method for non-invasively determining angle formed by structure inside organism | |
Maloca et al. | A pilot study to compartmentalize small melanocytic choroidal tumors and choroidal vessels with speckle-noise free 1050 nm swept source optical coherence tomography (OCT choroidal “tumoropsy”) | |
JP2019092920A (en) | Ophthalmic information processing apparatus, ophthalmic system, ophthalmic information processing method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764891 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15764891 Country of ref document: EP Kind code of ref document: A1 |