WO2015141659A1 - Pseudo-sunlight irradiation device, photo-irradiation-intensity measurement device, and heat-collector-efficiency measurement method - Google Patents

Pseudo-sunlight irradiation device, photo-irradiation-intensity measurement device, and heat-collector-efficiency measurement method Download PDF

Info

Publication number
WO2015141659A1
WO2015141659A1 PCT/JP2015/057835 JP2015057835W WO2015141659A1 WO 2015141659 A1 WO2015141659 A1 WO 2015141659A1 JP 2015057835 W JP2015057835 W JP 2015057835W WO 2015141659 A1 WO2015141659 A1 WO 2015141659A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
pseudo
light
receiver
sunlight
Prior art date
Application number
PCT/JP2015/057835
Other languages
French (fr)
Japanese (ja)
Inventor
芳樹 奥原
友宏 黒山
則武 和人
Original Assignee
一般財団法人ファインセラミックスセンター
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人ファインセラミックスセンター, 株式会社豊田自動織機 filed Critical 一般財団法人ファインセラミックスセンター
Publication of WO2015141659A1 publication Critical patent/WO2015141659A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/006Solar simulators, e.g. for testing photovoltaic panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0403Mechanical elements; Supports for optical elements; Scanning arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S2201/00Prediction; Simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J2001/4247Photometry, e.g. photographic exposure meter using electric radiation detectors for testing lamps or other light sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a simulated sunlight irradiation device, a light irradiation intensity measurement device, and a heat collection efficiency measurement method.
  • the present invention relates to a pseudo-sunlight irradiation device used when measuring heat collection efficiency in a receiver (a heat collection tube that converts sunlight into heat) used in a solar heat utilization system.
  • a pseudo-sunlight irradiation device used when measuring heat collection efficiency in a receiver (a heat collection tube that converts sunlight into heat) used in a solar heat utilization system.
  • it is related with the light irradiation intensity
  • the present invention relates to a heat collection efficiency measurement method for quantitatively measuring the absolute value of the heat collection efficiency in a receiver from the result of measurement using a simulated sunlight irradiation apparatus and a light irradiation intensity measurement apparatus.
  • the heat obtained by absorbing sunlight is used to heat fluids such as water, steam or oil.
  • solar heat can be used as a thermal energy source or for the generation of an electrical energy source for generating electricity.
  • solar heat has been eagerly desired as a countermeasure against global warming or as a clean energy alternative to nuclear power generation.
  • solar heat is typically used to generate hot water as disclosed in Japanese Patent Laid-Open No. 7-139818.
  • solar heat has been used in a technique for generating electricity using high-temperature steam, oil, or the like, as described in Japanese Patent Application Laid-Open No. 2014-31787.
  • a solar heat utilization system that concentrates sunlight at a high magnification to generate a high-temperature heat source has been developed.
  • a solar heat utilization system disclosed in Japanese Patent Application Laid-Open No. 2013-119971 collects sunlight in a linear shape by a parabolic reflector that is a horizontally long concave mirror.
  • a long hollow cylindrical receiver is installed in the line condensing line, and a heat medium is circulated in the pipe of the receiver to recover heat.
  • the receiver is referred to as a heat collecting tube, and converts sunlight into heat to recover thermal energy.
  • Japanese Patent Laid-Open No. 2013-119971 does not show the overall configuration of the solar heat utilization system, but the basic configuration is as follows.
  • the basic mechanism of the solar heat utilization system 100 uses a liquid fluid such as water or oil as a heat medium.
  • the fluid is supplied from the stored tank 101 into the receiver 103.
  • the fluid is heated by receiving sunlight collected by a parabolic reflector (not shown).
  • the heat exchanger 104 extracts heat from the heated fluid and uses it.
  • the fluid is cooled by using heat and returned to the tank 101. This constitutes a circulation path.
  • Reference numeral 105 denotes a pipe through which the fluid flows, and reference numeral 106 denotes a pump that supplies the fluid.
  • Reference numeral 107 denotes a thermometer for measuring the temperature difference between the upstream and downstream of the receiver 103.
  • FIG. 10 there is also a once-through solar heat utilization system that uses a heated fluid as it is without using a heat exchanger.
  • FIG. 10 the same members as those in FIG. 9 are denoted by the same reference numerals.
  • the heat collection efficiency at the receiver is an extremely important matter.
  • the heat collection efficiency is the ratio of the amount of heat (output energy) that can be recovered to the irradiation intensity (input energy) of the light irradiated to the receiver.
  • the heat collection efficiency at the receiver is directly linked to the efficiency of the entire solar heat utilization system.
  • Japanese Unexamined Patent Application Publication No. 2009-198170 proposes an improved receiver for improving the heat collection efficiency.
  • the receiver has a vacuum double structure, and has a glass tube covering a metal heat collecting tube, and a space evacuated between the heat collecting tube and the glass tube. Furthermore, the surface of the heat collecting tube which becomes the light absorption surface is covered with a selective absorption film.
  • a long elliptic cylindrical mirror 210 having substantially the same left and right length as the receiver 200 is used.
  • a receiver 200 and a plurality of simulated solar light sources 202 are installed on the elliptical cylindrical mirror 210 along two condensing positions.
  • the simulated solar light source 202 irradiates the receiver 200 with simulated sunlight.
  • Water which is a heat medium, is allowed to flow through the receiver 200 pipe, and the amount of recovered heat is measured from the amount of water temperature rise.
  • a method for measuring the heat collection efficiency shown in FIG. 12 is also disclosed.
  • a plurality of pseudo solar light sources 202 are arranged in front of the parabolic reflector 201 and the receiver 200 is irradiated with the pseudo sunlight emitted from the pseudo solar light source 202 using the parabolic reflector 201.
  • the absolute value of the heat collection efficiency cannot be measured because the light irradiation intensity (input energy) to the receiver cannot be quantitatively measured. Therefore, the heat collection performance is evaluated based on a relative comparison of whether the heat recovery amount of the receiver to be measured is larger or smaller than the reference heat recovery amount obtained by the standard receiver.
  • simulated sunlight from the simulated solar light source 202 is irradiated using only the elliptic cylindrical mirror or the parabolic reflecting mirror 201. Therefore, the incident angle distribution of light with respect to the receiver 200 is not determined randomly.
  • the optical absorption characteristics (transmission / reflection / absorption performance) of the selective absorption film formed on the light absorption surface of the receiver and the glass tube surface for the vacuum double structure are greatly influenced by the incident angle of light. Therefore, the heat collection efficiency also changes depending on the incident angle. That is, in FIG. 11 and FIG. 12, the simulated solar light source cannot be irradiated to the receiver under conditions close to the real environment. As a result, accurate heat collection efficiency cannot be measured.
  • a concave mirror in order to align the incident angle distribution of pseudo sunlight to the receiver to some extent.
  • one concave mirror is installed in one pseudo solar light source 202, and pseudo sunlight is collected from each pseudo solar light source 202.
  • the pseudo-sunlight is spot-concentrated, and a plurality of heat collecting points coexist in the receiver 200. Therefore, the artificial sunlight cannot be irradiated uniformly in the axial direction of the receiver 200.
  • the cost is high, and there is a limit to irradiating the simulated sunlight uniformly.
  • the simulated sunlight irradiation device includes a simulated solar light source that irradiates light, a concave mirror, an integrator lens, and a Fresnel lens.
  • the concave mirror focuses light from the pseudo solar light source forward.
  • the integrator lens is provided in front of the pseudo solar light source, and diffuses the light spot-condensed by the concave mirror into a quadrangular pyramid optical path.
  • the Fresnel lens condenses light incident from the integrator lens through a quadrangular pyramid optical path.
  • the Fresnel lens includes a collimating lens that converts light diffused in a quadrangular pyramid shape from the integrator lens into a parallel direction, and a cylindrical lens that linearly collects light incident from the collimating lens.
  • the light from the pseudo solar light source can be finally condensed and irradiated. Therefore, the light irradiation intensity can be improved by concentrating the light in the circumferential direction of the linear receiver.
  • the incident intensity and the incident angle distribution of the irradiated artificial sunlight can be constant. Therefore, the heat collection efficiency of the receiver used in the solar heat utilization system can be accurately measured by using the simulated sunlight. As a result, the design of the receiver can be accurately changed. Since the pseudo solar light source collects rays, the condensing part has a certain width. Therefore, the number of installed pseudo solar light sources can be reduced as compared with the conventional one. Moreover, since the rays are condensed, the simulated sunlight can be irradiated with a substantially uniform intensity within a certain range.
  • the point light source can be directly focused using only a cylindrical lens.
  • the cylindrical lens has a large aberration between the incident light and the transmitted light, the cylindrical lens has a characteristic that the light collection efficiency is lowered when used at a wide angle of view.
  • the collimating lens converts light incident on the cylindrical lens into a parallel direction. Therefore, the collimating lens can suppress a decrease in light collection efficiency due to only the cylindrical lens.
  • a light irradiation intensity measuring device for measuring an irradiation intensity distribution of light from a pseudo solar light source has a sensor, a rotation mechanism, and a slide mechanism.
  • the sensor detects the light irradiation intensity.
  • the rotation mechanism includes a rotation shaft that rotatably supports the sensor.
  • the slide mechanism slides the sensor in the axial direction of the rotation shaft.
  • the light irradiation intensity of the entire range of the axial direction of the cylindrical virtual receiver can be measured.
  • the light irradiation intensity distribution in the circumferential direction of the virtual receiver can also be measured by rotating the sensor by the rotation mechanism.
  • Another feature of the present invention relates to a heat collection efficiency measurement method for measuring heat collection efficiency in a receiver used in a solar heat utilization system.
  • the simulated sunlight irradiating device irradiates the receiver with simulated sunlight, and calculates the output energy from the temperature rise of the fluid circulated inside the receiver.
  • the input energy is calculated from the light irradiation intensity distribution measured by the light irradiation intensity measuring device.
  • the absolute value of heat collection efficiency is quantitatively measured by the ratio of output energy to input energy (output energy / input energy).
  • the simulated sunlight irradiation device 10 includes a simulated solar light source 1, a concave mirror 2, an integrator lens 3, and a Fresnel lens 4.
  • the simulated sunlight irradiation device 10 is configured as a unit in which a plurality of components are installed in one housing 5.
  • An air mass filter 6 is provided between the integrator lens 3 and the Fresnel lens 4.
  • the power supply unit 11 is connected to one (rear side) electrode 1 r of the pseudo solar light source 1.
  • the column 12 supports the other (front side) electrode 1 f of the pseudo solar light source 1 and electrically connects the electrode 1 f and the power supply unit 11.
  • the pseudo solar light source 1 emits light when it is energized between the electrodes 1f and 1r by the power supply unit 11.
  • the pseudo solar light source 1 is, for example, a xenon lamp (Xe lamp), a metal halide lamp, or a plasma light source.
  • the Xe lamp becomes a point light source with high emission intensity, and is excellent in intensity in a wavelength region that can be converted from light to heat. Therefore, the Xe lamp, specifically, the Xe short arc lamp can be suitably used as the pseudo solar light source 1.
  • the simulated solar light source 1 is disposed in the center of the rear end portion of the housing 5, and the axial direction of the simulated solar light source 1 is disposed in parallel with the irradiation direction of the simulated sunlight S or the longitudinal direction of the housing 5.
  • the power supply unit 11 is, for example, a transformer type dropper power source or a thyristor type switching power source.
  • the dropper power supply is preferable as the power supply unit 11 in terms of high time stability.
  • a switching power supply is preferable as the power supply unit 11 in that it is relatively inexpensive.
  • the axial adjustment mechanism of the pseudo solar light source 1 is preferably provided at the rear end or rear of the housing 5.
  • the concave mirror 2 is, for example, hemispherical as shown in FIG.
  • the concave mirror 2 is arranged so as to completely cover the light emitting part of the pseudo solar light source 1 from behind.
  • the concave mirror 2 performs point condensing (primary condensing) on the light emitted from the pseudo solar light source 1 in the irradiation direction.
  • the concave mirror 2 is preferably formed of a material having high long-term durability against heat so as to withstand the high temperature from the pseudo solar light source 1.
  • the concave mirror 2 preferably has an aluminum vapor deposition mirror covered with a SiO 2 protective film.
  • the integrator lens 3 is a square plate-like glass lens as shown in FIG.
  • the integrator lens 3 is located in front of the concave mirror 2.
  • the integrator lens 3 converts the light collected by the concave mirror 2 into a quadrangular pyramid optical path and makes the light intensity distribution uniform. If the integrator lens 3 is small and the integrator lens 3 is shifted from the point condensing position by the concave mirror 2, the amount of transmitted light is reduced. In order to prevent this phenomenon, the integrator lens 3 is preferably set larger than the size of the point condensing by the concave mirror 2. The area of the integrator lens 3 is smaller than that of the concave mirror 2.
  • the air mass filter 6 is located in front of the integrator lens 3 as shown in FIG.
  • the air mass filter 6 is larger than the integrator lens 3 and is provided at the center of a rectangular frame.
  • the air mass filter 6 adjusts the light spectrum. For example, when an Xe lamp is used as the simulated solar light source 1, the air mass filter 6 adjusts the light so that the spectral distribution of the light from the simulated solar light source 1 becomes closer to the spectral distribution of sunlight.
  • the air mass filter 6 is preferably configured so as to control the adjustment amount of the spectral distribution. For example, you may have a moving structure which moves the position of the air mass filter 6 in an optical path.
  • the Fresnel lens 4 is an irradiation lens as shown in FIG. 1 and is installed at the front end of the housing 5. Light from a quadrangular pyramid light path is incident on the Fresnel lens 4 from the integrator lens 3. The Fresnel lens 4 refracts light in a quadrangular pyramid optical path so as to condense it linearly.
  • the Fresnel lens 4 has two functions of a collimating lens that is a point condensing lens and a cylindrical lens that is a line condensing lens. Specifically, as shown in FIGS. 2 and 3, a circular Fresnel shape that functions as a collimating lens 4 a is formed on one surface of the Fresnel lens 4.
  • a linear type Fresnel shape that functions as a cylindrical lens 4 b is formed on the other surface of the Fresnel lens 4.
  • the Fresnel lens 4 is composed of one member.
  • the Fresnel lens 4 is installed in the housing 5 shown in FIG. 1 so that the collimating lens 4a faces the integrator lens 3 and the cylindrical lens 4b faces the irradiation side. Therefore, the light diffused from the integrator lens 3 is refracted by the collimator lens 4a so as to be parallel to the irradiation direction. The parallel light is refracted so as to be linear by the cylindrical lens 4b.
  • the simulated sunlight irradiation device 10 emits simulated sunlight S that is line-collected.
  • 0.5fs ⁇ fr ⁇ 2fs (2) D is the size of the point light source by the concave mirror 2, that is, the light collection area at the installation position of the integrator lens 3.
  • fs is the focal length of the collimating lens 4a.
  • fr is the focal length of the cylindrical lens 4b.
  • the Fresnel lens 4 is preferably a glass lens in terms of high transmittance, and is preferably a resin lens (for example, made of polymethyl methacrylate resin (PMMA)) in order to increase the size to some extent.
  • the pitch of the unevenness in the lens In order to set the focal length of the pseudo sunlight S from the Fresnel lens 4, it is preferable to set the pitch of the unevenness in the lens to 0.1 to 0.5 mm. Distributing the unevenness height (sag amount) in the range of 0.00001 to 0.4mm and the unevenness angle (slope) in the range of 0.001 to 50 ° from the center of the lens toward the lens edge. Is preferred. More preferably, it is preferable to distribute the pitch in the range of 0.2 to 0.4 mm, the sag amount in the range of 0.00002 to 0.2 mm, and the slope in the range of 0.003 to 30 °.
  • the housing 5 is not particularly limited as long as the various members can be unitized. Simply, as shown in FIGS. 4 and 5, a uniform hollow cylindrical shape from the rear end to the front end may be used. Alternatively, the shape from the rear end to the integrator lens 3 portion may be a cylindrical shape, while the integrator lens 3 to the front end may have a skeleton at each corner and the others open.
  • the simulated solar light systems 40 and 41 include a frame-shaped gantry 15 and a plurality of simulated solar light irradiation devices 10.
  • Each simulated sunlight irradiation device 10 is installed on the gantry 15 so as to face the receiver 20.
  • a plurality of simulated solar light irradiation devices 10 are arranged in a line in the axial direction corresponding to the axial length of the receiver 20.
  • a plurality of rows are installed in the vertical direction, for example, a plurality of rows are arranged on the circumference of a predetermined distance with respect to the axis center of the receiver 20.
  • the simulated sunlight system 40 in FIG. 4 has two rows of simulated sunlight irradiation devices 10, and the simulated sunlight system 41 in FIG. 5 has four rows of simulated sunlight irradiation devices 10.
  • the simulated sunlight irradiation device 10 in each row irradiates the receiver 20 with the simulated sunlight S at a predetermined angle, and the receiver 20 receives the simulated sunlight S from a plurality of angles in the circumferential direction.
  • the direction of the plurality of simulated solar light irradiation devices 10 is set so that the line condensing lines are on the same straight line in the receiver 20.
  • the light irradiation intensity measuring device 30 includes a sensor 31, a slide mechanism, and a rotation mechanism as shown in FIG.
  • the sensor 31 detects the irradiation intensity of the simulated sunlight S irradiated from the simulated sunlight irradiation device 10 (see FIG. 1).
  • the slide mechanism slides the sensor 31 in the axial direction of the receiver 20.
  • the rotation mechanism rotates the sensor 31 about the rotation shaft 32.
  • the light irradiation intensity measuring device 30 includes a horizontally long scanning stage 33 and a rotating stage 34 slidably installed on the scanning stage 33.
  • the sensor 31 is a sensor that can measure the light collection density.
  • a variety of sensors can be used as the sensor 31, for example, MEDTHERM's Gurdon radiometer used as a thermal anemometer can be used.
  • a light receiving unit 31 a that detects the irradiation intensity of the simulated sunlight S is provided at the tip of the sensor 31.
  • a distance L 1 from the rotating shaft 32 to the light receiving unit 31 a is set to be the same as a distance L 0 from the central axis of the receiver 20 to be measured to the outer surface of the peripheral wall 20 a to be a light absorbing surface.
  • the slide mechanism shown in FIG. 6 can use various mechanisms.
  • the slide mechanism may be a rack and pinion mechanism having a rack provided on the scanning stage 33 and a pinion provided on the rotary stage 34.
  • the pinion rotates on the rack by being rotated by, for example, a motor or the like.
  • the slide mechanism may include a rail provided on the scanning stage 33 and an air cylinder, a hydraulic cylinder, or the like that slides the rotary stage 34 on the rail.
  • the slide mechanism may include a worm gear provided on the scanning stage 33 and a spur gear provided on the rotary stage 34.
  • the worm gear may be rotated by a motor.
  • the spur gear is provided on the rotary stage 34 so as to freely rotate and is meshed with the worm gear.
  • the slide mechanism may have a configuration in which the rotary stage 34 is slid by a timing belt or a chain stretched over the scanning stage 33.
  • the rotary stage 34 has two props 38 that stand up as shown in FIG. 6 and a rotary shaft 32 that is rotatably supported between the props 38.
  • a sensor 31 is provided on the rotation shaft 32, and the sensor 31 rotates about the rotation shaft 32.
  • a gear box 35 and a motor box 36 are provided as a rotation mechanism of the sensor 31 .
  • the gear box 35 is connected to one end of the rotating shaft 32 and attached to the upper part of the rotating stage 34.
  • the motor box 36 is provided below the rotary stage 34 and accommodates the motor.
  • the motor and the gear in the gear box 35 are connected by a chain 37, and the rotating shaft 32 rotates around the axis by the output of the motor.
  • the motor is located away from the line collector. Therefore, it is possible to prevent the periphery of the motor from being heated by light and causing the motor to malfunction.
  • the sensor 31 is connected to the data processing device via a cable (not shown). Electric power is supplied to the motor via a cable (not shown).
  • the light irradiation intensity measuring device When measuring the light collection efficiency in the receiver 20 using the light irradiation intensity measuring device 30, as shown in FIGS. 5 to 7, the light irradiation intensity measuring device so that the sensor 31 is located at the position where the receiver 20 is installed. 30 is installed. Specifically, the rotation shaft 32 of the sensor 31 is positioned on the central axis of the virtual receiver 20. When measuring the light collection efficiency, the sensor 31 is rotated while being slid. Specifically, the sensor 31 is rotated about the rotation shaft 32 while sliding left and right within the range of the axial length of the virtual receiver 20. The distance L 1 from the rotating shaft 32 to the light receiving unit 31 a is the same as the distance L 0 from the central axis of the virtual receiver 20 to the outer surface of the peripheral wall 20 a.
  • the light receiving unit 31 a moves along the peripheral wall 20 a that is a light absorption surface of the virtual receiver 20.
  • the irradiation intensity distribution of the pseudo sunlight S that the receiver 20 will receive can be measured.
  • the receiver 20 has a long hollow cylindrical shape as shown in FIGS.
  • a fluid that is a heat medium flows through the pipe of the receiver 20.
  • the fluid is heated by the simulated sunlight S irradiated on the receiver 20, thereby recovering thermal energy from the sunlight. Therefore, the receiver 20 is also referred to as a heat collecting tube.
  • the input energy per unit time to the receiver 20 can be calculated by integrating the light irradiation intensity distribution obtained by the light irradiation intensity measuring device 30 with respect to the irradiation area.
  • the amount of heat recovered by the receiver 20 is calculated by measuring the amount of fluid in the receiver 20 heated by simulated sunlight, that is, the temperature rise at the inlet and outlet of the receiver 20, as in the conventional method.
  • ⁇ Q Cp ⁇ T ⁇ (3)
  • ⁇ T (K) is a temperature difference between the liquid at the inlet and the outlet of the receiver 20.
  • Cp (kJ / kgK) is the specific heat at the fluid test temperature
  • ⁇ (kg / m 3 ) is the density
  • ⁇ (m 3 / s) is the flow rate.
  • Water, steam, oil, etc. can be used as the fluid as the heat medium.
  • the heat medium can be selected depending on the temperature zone of the receiver 20 to be measured. By adjusting the temperature of the fluid by heating the fluid before entering the receiver 20, the temperature zone in the receiver 20 can be arbitrarily set.
  • the diameter of the concave mirror 2 was set to 380 mm, and the focal length between the concave mirror 2 and the integrator lens 3 (primary focusing point) was set to about 700 mm.
  • a lens made of polymethyl methacrylate resin was used as the Fresnel lens 4.
  • a Xe lamp having a rated output of 5 kW was used as the simulated solar light source 1.
  • a trough-type receiver having a heat collecting tube having an axial length of 4.0 m and a diameter of 70 mm was assumed as the receiver 20.
  • Two simulated sunlight irradiation devices 10 were used as the simulated sunlight system 40, and 10 simulated sunlight irradiation devices 10 were arranged in one row.
  • a trough receiver having an axial length of 4.0 m and a diameter of 70 mm was assumed.
  • the scanning range was set to 4.8 m, and the scanning rotation range was set to ⁇ 90 °.
  • a MEDHERRM thermal anemometer “Gardon radiometer” was used as a sensor. The distance between the light receiving part of the sensor and the rotation axis was set to 35 mm, which is the same as the radius of the 70 mm tube.
  • Optical axis adjustment and light irradiation intensity distribution were measured using the light irradiation intensity measuring device 30 under the above conditions.
  • a water-cooled plate coated with a black body paint is provided at a position opposite to the simulated sunlight system 40 with the light irradiation intensity measuring device 30 interposed therebetween.
  • the water cooling plate can absorb the simulated sunlight S and release heat by water circulation.
  • FIG. 13 shows a two-dimensional distribution map of the light irradiation intensity in the axial direction and the circumferential direction obtained by using the light irradiation intensity measuring device 30 set as described above. From the results of FIG. 13, the on-axis direction line in the horizontal position or angle 0 ° of the virtual receiver, up to 37.7kW / m 2, minimum 28.2kW / m illuminance distribution in the range of 2, unevenness ⁇ 14 Within 5%. The illuminance is distributed so as to decrease as the angle from the horizon increases from 0 ° to ⁇ 90 °. When the average value of the light irradiation intensity is obtained from the two-dimensional map, it is 18.1 kW / m 2 .
  • the two-dimensional distribution map indicates the light irradiation intensity in the half surface of the virtual receiver.
  • the light irradiation intensity obtained from sunlight with a trough-type receiver (aperture: 5.77 m) was 52.5 kW / m 2 . Therefore, it has been found that the apparatus using the above-described pseudo solar light source 1 emits about 35% of the actual sunlight.
  • the light irradiation intensity emitted by the DLR EliREC is 5.1 kW / m 2 on average from a heat collection amount of 4 kW and a receiver efficiency of 90%. It can be seen that the apparatus using the pseudo solar light source 1 described above can achieve a light irradiation intensity of about 3.6 times that of DLR. Since the apparatus using the above-described pseudo solar light source 1 has a light irradiation intensity based on the circumferential surface of 18.1 kW / m 2 , the light irradiation intensity based on a rectangular cross-sectional area of 4 m ⁇ 70 mm diameter is 28.5 kW / m 2. Can be converted to m 2 .
  • a test was performed to calculate the absolute value of the heat collection efficiency of the receiver under measurement.
  • a receiver having a shaft length of 4.0 m, a diameter of 70 mm, and a SUS heat collecting tube covered with a glass tube having a diameter of 125 mm was used.
  • a selective absorption film having an absorptivity in the sunlight wavelength region of 83% and an emissivity in the infrared region of 5% is provided on the surface of the heat collecting tube.
  • the vacuum tube was evacuated between the heat collecting tube and the glass tube, and after the pressure was reduced to 0.5 Pa or less by bellows portion baking, simulated sunlight was irradiated under the same conditions as the light irradiation distribution measurement test.
  • the circulation method shown in FIG. 10 or the once-through method shown in FIG. 11 can be used.
  • a circulation system was adopted, and a static mixer having a length of about 300 mm was added near the outlet of the receiver.
  • the static mixer has seven plates that shield about 3/2 of the cross section inside, and the seven plates are alternately arranged up and down. Therefore, the heat medium passing through the static mixer is stirred so that the heat becomes uniform by meandering up and down.
  • the heat medium was water.
  • the water temperature difference at the receiver inlet / outlet tends to increase as the water flow rate becomes slower.
  • the maximum water temperature difference is 8.8 ° C.
  • FIG. 15 shows the theoretical efficiency expected from the optical characteristics by dotted lines. From FIG. 15, it was found that the heat collection efficiency obtained in this example was in good agreement with the theoretical efficiency. That is, it was confirmed that the heat collection efficiency can be accurately measured by the apparatus and method of this example.
  • the theoretical efficiency from the optical characteristics can be calculated from the absorption spectrum of the selective absorption film of the receiver and the transmittance of the glass tube having a vacuum double structure, and was 76.4% in this test.
  • the simulated solar light irradiation device 10 is a unit in which a plurality of members are installed in one housing 5. Thereby, the simulated solar light irradiation apparatus 10 can be easily installed.
  • the Fresnel lens 4 is a single member, and a Fresnel shape that functions as a collimating lens 4 a is formed on one surface of the Fresnel lens 4.
  • a Fresnel shape that functions as the cylindrical lens 4b is formed on the other surface.
  • the collimating lens 4a and the cylindrical lens 4b are formed as a single lens.
  • the Fresnel lens 4 can have the same shape as an aspheric lens, aberration correction can be performed on a single surface. Further, in the Fresnel lens 4, the optical path lengths in the optical elements near the optical axis and near the off-axis are substantially the same. Therefore, there is a merit that the optical element is hardly affected by absorption.
  • Examples of the light source for irradiating the pseudo sunlight S include a xenon lamp (Xe lamp), a metal halide lamp, a plasma light source, and the like.
  • Xe lamp xenon lamp
  • the plasma light source has a large light emitting area and does not become a point light source, there remains a problem in condensing light.
  • the metal halide lamp has a high intensity on the short wavelength side in the ultraviolet region, and there remains a problem in terms of simulating the sunlight spectrum. Therefore, the pseudo solar light source is preferably an Xe lamp.
  • the air mass filter 6 can adjust the spectral distribution of light. Therefore, when the pseudo solar light source is an Xe lamp, if the air mass filter 6 is provided between the integrator lens 3 and the Fresnel lens 4, the pseudo solar light S can be brought close to the actual solar spectrum distribution. .
  • the receiver 20 is installed in the simulated solar system 40, 41, and the heat collection efficiency of the receiver 20 is measured.
  • the light irradiation intensity measuring device 30 is incorporated in the simulated sunlight systems 40 and 41, and the light irradiation intensity distribution of the simulated sunlight S irradiated on the receiver 20 is measured.
  • the light irradiation intensity measuring device 30 can measure the light irradiation intensity of the entire range of the virtual receiver in the axial direction by sliding the sensor 31 to the left and right by the slide mechanism. At the same time, the light irradiation intensity distribution in the circumferential direction in the virtual receiver can also be measured by rotating the sensor 31 by the rotation mechanism.
  • the distance from the rotating shaft 32 to the light receiving unit 31a is set to be the same as the distance from the central axis of the receiver 20 to the peripheral wall 20a. Therefore, since the light receiving unit 31a rotates at a position corresponding to the peripheral wall 20a of the receiver 20, the light irradiation intensity distribution in the receiver 20 can be accurately measured.
  • the input energy to the receiver 20 can be known.
  • the output energy can be calculated from the temperature rise of the fluid that is radiated into the receiver 20 by irradiating the receiver 20 with the simulated sunlight S. Therefore, the heat collection efficiency of the receiver 20 can be derived as an absolute value from the input energy and the output energy.
  • this embodiment is not a conventional relative performance evaluation method, and can obtain absolute conversion efficiency. Specifically, in the conventional evaluation method, the information is whether the heat recovery amount of the receiver to be measured is relatively large or small with respect to the heat recovery amount of the standard receiver. Therefore, it was not easy to apply to the plant design of solar thermal utilization system.
  • the absolute value of the heat collection efficiency of the receiver 20 is known.
  • the efficiency in the whole solar heat utilization system to which the receiver 20 is applied can be derived.
  • the heat collection efficiency of the receiver 20 is extremely useful information even in the process of designing the total extension of the receiver 20 necessary for obtaining the total amount of energy required in the solar heat utilization system.
  • the simulated sunlight irradiation device 10 may have the air mass filter 6 or may not have the air mass filter 6.
  • the pseudo solar light source 1 may be provided at the rear end of the housing 5, the rear portion near the rear end, and the center.
  • the Fresnel lens 4 may be provided at the front end of the housing 5, the front portion near the front end, and the central portion.
  • the concave mirror 2 may be hemispherical, or may have other shapes capable of focusing on one point, such as a bowl shape, a partial spherical shape, a parabolic curved surface shape, and various curved surface shapes.
  • the collimating lens 4a of the Fresnel lens 4 bends the light diffused in a quadrangular pyramid shape from the integrator lens 3 in a parallel direction.
  • the collimating lens 4a may refract the light diffused in a quadrangular pyramid shape so that it is parallel to the quadrangular prism shape, that is, completely parallel, or refracted so as to be parallel or substantially parallel.
  • the light may be bent so as to reduce the diffusion angle, or the light may be bent so as to collect light with a small angle.
  • the light irradiation intensity measuring device 30 is used when measuring the light irradiation intensity distribution in the cylindrical receiver 20 as shown in FIGS.
  • the light irradiation intensity distribution on the surface of the square plate may be calculated from the detection result as described above, and may be used when measuring the light irradiation intensity distribution in the receiver having the surface of the square plate. .
  • the distance between the center of the rotating shaft 32 and the light receiving portion 31a is fixed to a predetermined distance.
  • the light irradiation intensity measuring device 30 may have a configuration in which the distance between the axis center of the rotating shaft 32 and the light receiving unit 31a can be changed.
  • the sensor 31 may be attached to the rotary shaft 32 so as to be movable in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A pseudo-sunlight irradiation device (10) having a pseudo-sunlight source (1) for emitting light, a concave mirror (2), an integrator lens (3), and a Fresnel lens (4). The concave mirror (2) point-focuses the light from the pseudo-sunlight source (1) toward the front. The integrator lens (3) is provided to the front of the pseudo-sunlight source (1), and scatters the light which was point-focused by the concave mirror (2) in a quadrangular-pyramid-shaped optical path. The Fresnel lens (4) line-focuses the light incident in the quadrangular-pyramid-shaped optical path from the integrator lens (3). The Fresnel lens (4) is equipped with a collimating lens (4a) for converting the light scattered in a quadrangular-pyramid shape from the integrator lens (3) into a parallel direction, and a cylindrical lens (4b) for line-focusing the light incident from the collimating lens (4a).

Description

擬似太陽光照射装置、光照射強度測定装置、集熱効率測定方法Simulated sunlight irradiation device, light irradiation intensity measurement device, heat collection efficiency measurement method
 本発明は、擬似太陽光照射装置、光照射強度測定装置、集熱効率測定方法に関する。具体的には、太陽熱利用システムで使用されるレシーバ(太陽光を熱に変換する集熱管)における集熱効率を測定する際に用いられる擬似太陽光照射装置に関する。あるいは擬似太陽光照射装置から照射された光の照射強度分布を測定するために用いられる光照射強度測定装置に関する。あるいは擬似太陽光照射装置と光照射強度測定装置を使用して測定された結果からレシーバにおける集熱効率の絶対値を定量測定する集熱効率測定方法に関する。 The present invention relates to a simulated sunlight irradiation device, a light irradiation intensity measurement device, and a heat collection efficiency measurement method. Specifically, the present invention relates to a pseudo-sunlight irradiation device used when measuring heat collection efficiency in a receiver (a heat collection tube that converts sunlight into heat) used in a solar heat utilization system. Or it is related with the light irradiation intensity | strength measuring apparatus used in order to measure the irradiation intensity distribution of the light irradiated from the pseudo-sunlight irradiation apparatus. Alternatively, the present invention relates to a heat collection efficiency measurement method for quantitatively measuring the absolute value of the heat collection efficiency in a receiver from the result of measurement using a simulated sunlight irradiation apparatus and a light irradiation intensity measurement apparatus.
 太陽光を吸収して得られる熱は、水、蒸気又はオイル等の流体の加熱に利用されている。さらに太陽熱は、熱エネルギー源に利用、あるいは発電する電気エネルギー源の生成のために利用され得る。しかも昨今、太陽熱は、地球温暖化対策のため、あるいは原子力発電に代わるクリーンエネルギー等として切望されている。具体的には、古くは特開平7-139818号公報を参照するように代表的には温水の生成に太陽熱が利用されている。近年では特開2014-31787号公報を参照するように高温の蒸気やオイル等によって発電する技術に太陽熱が利用されている。 The heat obtained by absorbing sunlight is used to heat fluids such as water, steam or oil. Furthermore, solar heat can be used as a thermal energy source or for the generation of an electrical energy source for generating electricity. Moreover, recently, solar heat has been eagerly desired as a countermeasure against global warming or as a clean energy alternative to nuclear power generation. Specifically, in the old days, solar heat is typically used to generate hot water as disclosed in Japanese Patent Laid-Open No. 7-139818. In recent years, solar heat has been used in a technique for generating electricity using high-temperature steam, oil, or the like, as described in Japanese Patent Application Laid-Open No. 2014-31787.
 近年ではより効率的に太陽熱を集めるために、太陽光を高倍率で集光して高温熱源を生み出す太陽熱利用システムが開発されている。例えば特開2013-119971号公報の太陽熱利用システムは、横長の凹面鏡であるパラボリック反射鏡によって太陽光を線状に集光する。その線集光ラインに長尺な中空円筒形のレシーバを設置して、レシーバの管内に熱媒体を流通させて熱を回収する。レシーバは、集熱管と称され、太陽光を熱に変換して熱エネルギーを回収する。特開2013-119971号公報には、太陽熱利用システム全体の構成が図示されていないが、その基本的構成は次の通りである。 In recent years, in order to collect solar heat more efficiently, a solar heat utilization system that concentrates sunlight at a high magnification to generate a high-temperature heat source has been developed. For example, a solar heat utilization system disclosed in Japanese Patent Application Laid-Open No. 2013-119971 collects sunlight in a linear shape by a parabolic reflector that is a horizontally long concave mirror. A long hollow cylindrical receiver is installed in the line condensing line, and a heat medium is circulated in the pipe of the receiver to recover heat. The receiver is referred to as a heat collecting tube, and converts sunlight into heat to recover thermal energy. Japanese Patent Laid-Open No. 2013-119971 does not show the overall configuration of the solar heat utilization system, but the basic configuration is as follows.
 すなわち図9に示すように太陽熱利用システム100の基本的な機構は、熱媒体として水やオイル等の液状の流体を利用する。流体は、貯留されたタンク101からレシーバ103内に供給される。流体は、レシーバ103内を流れる際に、パラボリック反射鏡(図示せず)によって集光された太陽光を受けて加熱される。熱交換器104が加温された流体から熱を取り出して利用する。流体は、熱利用により降温されてタンク101に返流される。これにより循環経路が構成される。符号105は流体が流動する配管であり、符号106は流体を供給するポンプである。符号107はレシーバ103の上流と下流における流体の温度差を測定するための温度計である。図10に示す熱利用システム110のように、熱交換器を使用せず、加温された流体をそのまま使用する貫流式の太陽熱利用システムもある。なお、図10では、図9と同じ部材に同じ符号を付している。 That is, as shown in FIG. 9, the basic mechanism of the solar heat utilization system 100 uses a liquid fluid such as water or oil as a heat medium. The fluid is supplied from the stored tank 101 into the receiver 103. When the fluid flows in the receiver 103, the fluid is heated by receiving sunlight collected by a parabolic reflector (not shown). The heat exchanger 104 extracts heat from the heated fluid and uses it. The fluid is cooled by using heat and returned to the tank 101. This constitutes a circulation path. Reference numeral 105 denotes a pipe through which the fluid flows, and reference numeral 106 denotes a pump that supplies the fluid. Reference numeral 107 denotes a thermometer for measuring the temperature difference between the upstream and downstream of the receiver 103. As in the heat utilization system 110 shown in FIG. 10, there is also a once-through solar heat utilization system that uses a heated fluid as it is without using a heat exchanger. In FIG. 10, the same members as those in FIG. 9 are denoted by the same reference numerals.
 太陽熱利用システムでは、レシーバにおける集熱効率が極めて重要なマターになる。集熱効率は、レシーバに照射された光の照射強度(入力エネルギー)に対して回収できる熱量(出力エネルギー)の比である。レシーバにおける集熱効率は、太陽熱利用システム全体の効率に直結する。特開2009-198170号公報には、集熱効率を高めるために改良されたレシーバが提案されている。該レシーバは、真空二重構造であって、金属製の集熱管を覆うガラス管と、集熱管とガラス管の間において真空引きされた空間を有する。さらに光吸収表面となる集熱管の表面は、選択吸収膜で被覆される。 In the solar heat utilization system, the heat collection efficiency at the receiver is an extremely important matter. The heat collection efficiency is the ratio of the amount of heat (output energy) that can be recovered to the irradiation intensity (input energy) of the light irradiated to the receiver. The heat collection efficiency at the receiver is directly linked to the efficiency of the entire solar heat utilization system. Japanese Unexamined Patent Application Publication No. 2009-198170 proposes an improved receiver for improving the heat collection efficiency. The receiver has a vacuum double structure, and has a glass tube covering a metal heat collecting tube, and a space evacuated between the heat collecting tube and the glass tube. Furthermore, the surface of the heat collecting tube which becomes the light absorption surface is covered with a selective absorption film.
 より集熱効率の高いレシーバを開発する際、効果、性能、品質などが最適となるように改良の条件を選定する。この時、レシーバにおける集熱効率の測定が必須となる。集熱効率の正確な評価によって、太陽熱利用システム全体のコスト低減、効率向上のための最適設計に必須となる基礎データを得ることができる。レシーバにおける集熱性能の評価方法は、例えば文献A(J. Pernpeintner, N. Lichtenthaler, B. Schiricke, E. Lupfert, T. Litzke, and W. Minich, "Test benches for the measurement of the optical efficiency of parabolic trough receivers using natural sunlight and solar simulator light", Proceedings of SolarPACES, Perpignan, 2010)に開示されている。具体的には、図11に示すようにレシーバ200と略同じ左右長さの長尺な楕円筒面鏡210を利用する。2ヶ所の集光位置に沿って楕円筒面鏡210にレシーバ200と複数の擬似太陽光源202を設置する。擬似太陽光源202からレシーバ200に擬似太陽光を照射する。レシーバ200管内に熱媒体である水を貫流させて、水の温度上昇量から回収熱量を測定する。図12に示す集熱効率を測定する方法も開示されている。図12の方法では、パラボリック反射鏡201の前に擬似太陽光源202を複数並設し、擬似太陽光源202から発せられた擬似太陽光をパラボリック反射鏡201を利用してレシーバ200に照射する。 When developing a receiver with higher heat collection efficiency, select the conditions for improvement so that the effects, performance, quality, etc. are optimal. At this time, it is essential to measure the heat collection efficiency at the receiver. Accurate evaluation of heat collection efficiency can provide basic data essential for optimal design for cost reduction and efficiency improvement of the entire solar heat utilization system. The evaluation method of the heat collecting performance in the receiver is, for example, Document A (J. Pernpeintner, N. Lichtenthaler, B. Schiricke, E. Lupfert, T. Litzke, and W. Minich, "Test benches for the measurement of the optical efficiency parabolic trough receivers using natural sunlight and solar simulator light ", Proceedings of SolarPACES, Perpignan, 2010). Specifically, as shown in FIG. 11, a long elliptic cylindrical mirror 210 having substantially the same left and right length as the receiver 200 is used. A receiver 200 and a plurality of simulated solar light sources 202 are installed on the elliptical cylindrical mirror 210 along two condensing positions. The simulated solar light source 202 irradiates the receiver 200 with simulated sunlight. Water, which is a heat medium, is allowed to flow through the receiver 200 pipe, and the amount of recovered heat is measured from the amount of water temperature rise. A method for measuring the heat collection efficiency shown in FIG. 12 is also disclosed. In the method of FIG. 12, a plurality of pseudo solar light sources 202 are arranged in front of the parabolic reflector 201 and the receiver 200 is irradiated with the pseudo sunlight emitted from the pseudo solar light source 202 using the parabolic reflector 201.
 文献Aの方法では、レシーバへの光照射強度(入力エネルギー)の定量測定ができないため、集熱効率の絶対値を測定することができない。そのため標準レシーバで得られる回収熱量を基準として、被測定レシーバの回収熱量がその基準より大きいか小さいかという相対比較で集熱性能を評価する。図11および図12において擬似太陽光源202からの擬似太陽光は、楕円円筒面鏡もしくはパラボリック反射鏡201だけを使用して照射している。そのためレシーバ200に対する光の入射角度分布等はランダムで定まらない。レシーバの光吸収表面に形成される選択吸収膜や、真空二重構造のためのガラス管表面の光学特性(透過・反射・吸収性能)は、光の入射角度によって大きく影響を受ける。そのため集熱効率も入射角度によって変わる。つまり図11および図12では、擬似太陽光源を実環境に近い条件でレシーバに照射することはできない。その結果、正確な集熱効率を測定できない。 In the method of Document A, the absolute value of the heat collection efficiency cannot be measured because the light irradiation intensity (input energy) to the receiver cannot be quantitatively measured. Therefore, the heat collection performance is evaluated based on a relative comparison of whether the heat recovery amount of the receiver to be measured is larger or smaller than the reference heat recovery amount obtained by the standard receiver. In FIG. 11 and FIG. 12, simulated sunlight from the simulated solar light source 202 is irradiated using only the elliptic cylindrical mirror or the parabolic reflecting mirror 201. Therefore, the incident angle distribution of light with respect to the receiver 200 is not determined randomly. The optical absorption characteristics (transmission / reflection / absorption performance) of the selective absorption film formed on the light absorption surface of the receiver and the glass tube surface for the vacuum double structure are greatly influenced by the incident angle of light. Therefore, the heat collection efficiency also changes depending on the incident angle. That is, in FIG. 11 and FIG. 12, the simulated solar light source cannot be irradiated to the receiver under conditions close to the real environment. As a result, accurate heat collection efficiency cannot be measured.
 レシーバに対する擬似太陽光の入射角度分布をある程度揃えるために凹面鏡を利用することも考えられる。例えば1つの擬似太陽光源202に1つの凹面鏡を設置し、各擬似太陽光源202から擬似太陽光を集める。しかしこの場合、擬似太陽光が点集中し、レシーバ200においては集熱点が複数並在することになる。そのためレシーバ200の軸方向において均一に擬似太陽光を照射できない。レシーバ200の軸方向にできるだけ均一に擬似太陽光を照射するためには、単純には多数の擬似太陽光源202を密に並設することが考えられる。しかしこの場合、コストが高くなり、しかも均一に擬似太陽光を照射することに限界がある。 It is conceivable to use a concave mirror in order to align the incident angle distribution of pseudo sunlight to the receiver to some extent. For example, one concave mirror is installed in one pseudo solar light source 202, and pseudo sunlight is collected from each pseudo solar light source 202. However, in this case, the pseudo-sunlight is spot-concentrated, and a plurality of heat collecting points coexist in the receiver 200. Therefore, the artificial sunlight cannot be irradiated uniformly in the axial direction of the receiver 200. In order to irradiate the pseudo-sunlight as uniformly as possible in the axial direction of the receiver 200, it can be simply considered that a large number of pseudo-sun light sources 202 are arranged closely in parallel. However, in this case, the cost is high, and there is a limit to irradiating the simulated sunlight uniformly.
 本発明の1つの特徴によると擬似太陽光照射装置は、光を照射する擬似太陽光源、凹面鏡、インテグレータレンズ、フレネルレンズを有する。凹面鏡は、擬似太陽光源からの光を前方へ点集光させる。インテグレータレンズは、擬似太陽光源の前方に設けられ、凹面鏡によって点集光された光を四角錐状の光路に拡散する。フレネルレンズは、インテグレータレンズから四角錐状の光路で入射された光を線集光する。フレネルレンズは、インテグレータレンズから四角錐状に拡散される光を平行になる方向へ変換するコリメートレンズと、コリメートレンズから入射された光を線集光するシリンドリカルレンズとを備える。 According to one feature of the present invention, the simulated sunlight irradiation device includes a simulated solar light source that irradiates light, a concave mirror, an integrator lens, and a Fresnel lens. The concave mirror focuses light from the pseudo solar light source forward. The integrator lens is provided in front of the pseudo solar light source, and diffuses the light spot-condensed by the concave mirror into a quadrangular pyramid optical path. The Fresnel lens condenses light incident from the integrator lens through a quadrangular pyramid optical path. The Fresnel lens includes a collimating lens that converts light diffused in a quadrangular pyramid shape from the integrator lens into a parallel direction, and a cylindrical lens that linearly collects light incident from the collimating lens.
 したがって擬似太陽光源からの光を最終的に線集光して照射できる。そのため線状のレシーバの円周方向に対して光を集中させて光照射強度を向上することができる。しかも、照射される擬似太陽光の入射強度や入射角度分布も一定となり得る。そのため該擬似太陽光を利用することで、太陽熱利用システムで使用されるレシーバの集熱効率を的確に測定し得る。これによりレシーバを的確に設計変更等し得る。擬似太陽光源は、線集光しているため集光部分が一定の幅を有する。そのため擬似太陽光源の設置個数を従来に比べて抑えることもできる。しかも線集光しているので一定の範囲でほぼ均一の強度で擬似太陽光が照射され得る。 Therefore, the light from the pseudo solar light source can be finally condensed and irradiated. Therefore, the light irradiation intensity can be improved by concentrating the light in the circumferential direction of the linear receiver. In addition, the incident intensity and the incident angle distribution of the irradiated artificial sunlight can be constant. Therefore, the heat collection efficiency of the receiver used in the solar heat utilization system can be accurately measured by using the simulated sunlight. As a result, the design of the receiver can be accurately changed. Since the pseudo solar light source collects rays, the condensing part has a certain width. Therefore, the number of installed pseudo solar light sources can be reduced as compared with the conventional one. Moreover, since the rays are condensed, the simulated sunlight can be irradiated with a substantially uniform intensity within a certain range.
 なお、技術的にはシリンドリカルレンズのみを使用して点光源を直接線集光させることもできる。しかしシリンドリカルレンズは、入射光と透過光との収差が大きいため、広い画角で使用すると集光効率が低下する特性を持つ。これに対してコリメートレンズは、シリンドリカルレンズに入射される光を平行になる方向へ変換する。そのためコリメートレンズは、シリンドリカルレンズのみによる集光効率の低下を抑制できる。 Technically, the point light source can be directly focused using only a cylindrical lens. However, since the cylindrical lens has a large aberration between the incident light and the transmitted light, the cylindrical lens has a characteristic that the light collection efficiency is lowered when used at a wide angle of view. In contrast, the collimating lens converts light incident on the cylindrical lens into a parallel direction. Therefore, the collimating lens can suppress a decrease in light collection efficiency due to only the cylindrical lens.
 本発明の他の特徴によると擬似太陽光源からの光の照射強度分布を測定するための光照射強度測定装置は、センサと回転機構とスライド機構を有する。センサは、光照射強度を検知する。回転機構は、センサを回転可能に支持する回転軸を具備する。スライド機構は、センサを回転軸の軸方向にスライドさせる。 According to another feature of the present invention, a light irradiation intensity measuring device for measuring an irradiation intensity distribution of light from a pseudo solar light source has a sensor, a rotation mechanism, and a slide mechanism. The sensor detects the light irradiation intensity. The rotation mechanism includes a rotation shaft that rotatably supports the sensor. The slide mechanism slides the sensor in the axial direction of the rotation shaft.
 したがってスライド機構によってセンサをスライドさせることで、例えば円筒状の仮想レシーバの軸方向の全範囲の光照射強度を測定できる。同時に、回転機構によってセンサを回転させることで、仮想レシーバにおける周方向の光照射強度分布も測定できる。 Therefore, by sliding the sensor with the slide mechanism, for example, the light irradiation intensity of the entire range of the axial direction of the cylindrical virtual receiver can be measured. At the same time, the light irradiation intensity distribution in the circumferential direction of the virtual receiver can also be measured by rotating the sensor by the rotation mechanism.
 本発明の他の特徴は、太陽熱利用システムで使用されるレシーバにおける集熱効率を測定する集熱効率測定方法に関する。該方法では、上記擬似太陽光照射装置によりレシーバへ擬似太陽光を照射し、レシーバ内部に流通させた流体の温度上昇から出力エネルギーを算出する。上記光照射強度測定装置によって測定された光照射強度分布から入力エネルギーを算出する。出力エネルギーと入力エネルギーとの比(出力エネルギー/入力エネルギー)により、集熱効率の絶対値を定量測定する。 Another feature of the present invention relates to a heat collection efficiency measurement method for measuring heat collection efficiency in a receiver used in a solar heat utilization system. In this method, the simulated sunlight irradiating device irradiates the receiver with simulated sunlight, and calculates the output energy from the temperature rise of the fluid circulated inside the receiver. The input energy is calculated from the light irradiation intensity distribution measured by the light irradiation intensity measuring device. The absolute value of heat collection efficiency is quantitatively measured by the ratio of output energy to input energy (output energy / input energy).
 したがって擬似太陽光を利用することで正確な集熱効率の絶対値を導出するとともにその測定精度を向上できる。集熱効率の測定精度が向上すれば、そのレシーバを適用した太陽熱利用システム全体の過剰仕様設計や仕様未達リスクを低減できる。これにより効率的で最適コストでのプラント設計にも貢献できる。 Therefore, by using simulated sunlight, it is possible to derive an accurate absolute value of heat collection efficiency and improve the measurement accuracy. If the measurement accuracy of the heat collection efficiency is improved, it is possible to reduce the over-specification design and the risk of failure to achieve the specification of the entire solar heat utilization system using the receiver. This can contribute to efficient and optimal plant design.
擬似太陽光照射装置の内部構造を示す斜視図である。It is a perspective view which shows the internal structure of a pseudo sunlight irradiation apparatus. フレネルレンズの照射側の斜視図である。It is a perspective view of the irradiation side of a Fresnel lens. フレネルレンズの入射側の斜視図である。It is a perspective view of the incident side of a Fresnel lens. 擬似太陽光システムの斜視図である。It is a perspective view of a pseudo solar system. 別の擬似太陽光システムの斜視図である。It is a perspective view of another pseudo solar system. 光照射強度測定装置の斜視図である。It is a perspective view of a light irradiation intensity measuring device. 光照射強度分布測定状態を示す斜視図である。It is a perspective view which shows a light irradiation intensity distribution measurement state. 光照射強度分布測定の模式図である。It is a schematic diagram of light irradiation intensity distribution measurement. 循環式熱利用システムの模式図である。It is a schematic diagram of a circulation type heat utilization system. 貫流式熱利用システムの模式図である。It is a schematic diagram of a once-through heat utilization system. 従来の集熱効率測定機構の模式図である。It is a schematic diagram of the conventional heat collection efficiency measuring mechanism. 従来の別の集熱効率測定機構の模式図である。It is a schematic diagram of another conventional heat collection efficiency measurement mechanism. 光照射強度分布の測定結果である。It is a measurement result of light irradiation intensity distribution. 流体の流速に対する集熱挙動を示すグラフである。It is a graph which shows the heat collecting behavior with respect to the flow velocity of the fluid. 流体の流速に対する集熱効率の測定結果を示すグラフである。It is a graph which shows the measurement result of the heat collection efficiency with respect to the flow rate of a fluid.
 本発明の1つの実施形態を図にしたがって説明する。図1に示すように擬似太陽光照射装置10は、擬似太陽光源1と凹面鏡2とインテグレータレンズ3とフレネルレンズ4を有する。擬似太陽光照射装置10は、複数の部品が1つのハウジング5内に設置されたユニットとして構成される。インテグレータレンズ3とフレネルレンズ4との間にはエアマスフィルター6が設けられる。電源部11は、擬似太陽光源1の一方(後方側)の電極1rと接続される。支柱12は、擬似太陽光源1の他方(前方側)の電極1fを支持し、電極1fと電源部11を電気的に接続する。 One embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the simulated sunlight irradiation device 10 includes a simulated solar light source 1, a concave mirror 2, an integrator lens 3, and a Fresnel lens 4. The simulated sunlight irradiation device 10 is configured as a unit in which a plurality of components are installed in one housing 5. An air mass filter 6 is provided between the integrator lens 3 and the Fresnel lens 4. The power supply unit 11 is connected to one (rear side) electrode 1 r of the pseudo solar light source 1. The column 12 supports the other (front side) electrode 1 f of the pseudo solar light source 1 and electrically connects the electrode 1 f and the power supply unit 11.
 擬似太陽光源1は、電源部11によって電極1f・1r間に通電されることで発光する。擬似太陽光源1は、例えばキセノンランプ(Xeランプ)、メタルハライドランプ、もしくはプラズマ光源等である。特にXeランプは、発光強度の高い点光源となり、光から熱へ変換可能な波長領域の強度に優れる。そのためXeランプ、詳しくは、Xeショートアークランプは、擬似太陽光源1として好適に使用され得る。擬似太陽光源1は、ハウジング5の後端部中央に配され、擬似太陽光源1の軸方向が擬似太陽光Sの照射方向あるいはハウジング5の長手方向と平行に配される。 The pseudo solar light source 1 emits light when it is energized between the electrodes 1f and 1r by the power supply unit 11. The pseudo solar light source 1 is, for example, a xenon lamp (Xe lamp), a metal halide lamp, or a plasma light source. In particular, the Xe lamp becomes a point light source with high emission intensity, and is excellent in intensity in a wavelength region that can be converted from light to heat. Therefore, the Xe lamp, specifically, the Xe short arc lamp can be suitably used as the pseudo solar light source 1. The simulated solar light source 1 is disposed in the center of the rear end portion of the housing 5, and the axial direction of the simulated solar light source 1 is disposed in parallel with the irradiation direction of the simulated sunlight S or the longitudinal direction of the housing 5.
 電源部11は、例えばトランス方式のドロッパ電源、サイリスタ方式のスイッチング電源である。ドロッパ電源は、時間安定性が高い点において電源部11として好ましい。スイッチング電源は、比較的安価である点において電源部11として好ましい。擬似太陽光源1の軸方向調整機構をハウジング5の後端ないし後方に設けることが好ましい。 The power supply unit 11 is, for example, a transformer type dropper power source or a thyristor type switching power source. The dropper power supply is preferable as the power supply unit 11 in terms of high time stability. A switching power supply is preferable as the power supply unit 11 in that it is relatively inexpensive. The axial adjustment mechanism of the pseudo solar light source 1 is preferably provided at the rear end or rear of the housing 5.
 凹面鏡2は、図1に示すように例えば半球状である。凹面鏡2は、擬似太陽光源1の発光部を後方から完全に覆うように配される。凹面鏡2は、擬似太陽光源1から発せられた光を照射方向へ向けて点集光(一次集光)する。凹面鏡2は、擬似太陽光源1からの高温に耐するように熱に対して長期耐久性の高い材料から形成されることが好ましい。例えば凹面鏡2は、SiO2保護膜で覆われたアルミ蒸着ミラーを有していることが好ましい。 The concave mirror 2 is, for example, hemispherical as shown in FIG. The concave mirror 2 is arranged so as to completely cover the light emitting part of the pseudo solar light source 1 from behind. The concave mirror 2 performs point condensing (primary condensing) on the light emitted from the pseudo solar light source 1 in the irradiation direction. The concave mirror 2 is preferably formed of a material having high long-term durability against heat so as to withstand the high temperature from the pseudo solar light source 1. For example, the concave mirror 2 preferably has an aluminum vapor deposition mirror covered with a SiO 2 protective film.
 インテグレータレンズ3は、図1に示すように四角板状のガラスレンズである。インテグレータレンズ3は、凹面鏡2の前方に位置する。インテグレータレンズ3は、凹面鏡2によって集光された光を四角錐状の光路に変換し、且つ光強度分布を均一化する。仮にインテグレータレンズ3が小さく、インテグレータレンズ3が凹面鏡2による点集光位置からずれて位置していると光の透過量が低減する。この現象を防止するためにインテグレータレンズ3は、好ましくは凹面鏡2による点集光の大きさに比べて大きく設定される。なおインテグレータレンズ3の面積は、凹面鏡2よりも小さい。 The integrator lens 3 is a square plate-like glass lens as shown in FIG. The integrator lens 3 is located in front of the concave mirror 2. The integrator lens 3 converts the light collected by the concave mirror 2 into a quadrangular pyramid optical path and makes the light intensity distribution uniform. If the integrator lens 3 is small and the integrator lens 3 is shifted from the point condensing position by the concave mirror 2, the amount of transmitted light is reduced. In order to prevent this phenomenon, the integrator lens 3 is preferably set larger than the size of the point condensing by the concave mirror 2. The area of the integrator lens 3 is smaller than that of the concave mirror 2.
 エアマスフィルター6は、図1に示すようにインテグレータレンズ3の前方に位置する。エアマスフィルター6は、インテグレータレンズ3よりも大きく、四角形状の枠の中央に設けられる。エアマスフィルター6は、光のスペクトルを調整する。例えば擬似太陽光源1としてXeランプを使用する場合、エアマスフィルター6は、擬似太陽光源1からの光のスペクトル分布をより太陽光のスペクトル分布に近づけるように光を調整する。エアマスフィルター6は、スペクトル分布の調整量を制御できるように構成されることが好ましい。例えばエアマスフィルター6の位置を光路において移動させる移動構造を有していても良い。 The air mass filter 6 is located in front of the integrator lens 3 as shown in FIG. The air mass filter 6 is larger than the integrator lens 3 and is provided at the center of a rectangular frame. The air mass filter 6 adjusts the light spectrum. For example, when an Xe lamp is used as the simulated solar light source 1, the air mass filter 6 adjusts the light so that the spectral distribution of the light from the simulated solar light source 1 becomes closer to the spectral distribution of sunlight. The air mass filter 6 is preferably configured so as to control the adjustment amount of the spectral distribution. For example, you may have a moving structure which moves the position of the air mass filter 6 in an optical path.
 フレネルレンズ4は、図1に示すように照射レンズであって、ハウジング5の前端に設置される。フレネルレンズ4には、インテグレータレンズ3から四角錐状の光路の光が入射される。フレネルレンズ4は、四角錐状の光路の光を線状に集光するように屈折させる。フレネルレンズ4は、点集光レンズとなるコリメートレンズと、線集光レンズとなるシリンドリカルレンズとの2つの機能を備える。詳しくは、図2,3に示すようにフレネルレンズ4の一面にコリメートレンズ4aとして機能するサーキュラータイプのフレネル形状が形成される。フレネルレンズ4の他面にシリンドリカルレンズ4bとして機能するリニアタイプのフレネル形状が形成される。フレネルレンズ4は、一部材で構成される。フレネルレンズ4は、コリメートレンズ4aがインテグレータレンズ3側、シリンドリカルレンズ4bが照射側を向くように図1に示すハウジング5内に設置される。したがってインテグレータレンズ3から拡散される光がコリメートレンズ4aによって照射方向と平行になるように屈折する。平行な光は、シリンドリカルレンズ4bによって線状になるように屈折される。これにより擬似太陽光照射装置10は、線集光される擬似太陽光Sを発する。 The Fresnel lens 4 is an irradiation lens as shown in FIG. 1 and is installed at the front end of the housing 5. Light from a quadrangular pyramid light path is incident on the Fresnel lens 4 from the integrator lens 3. The Fresnel lens 4 refracts light in a quadrangular pyramid optical path so as to condense it linearly. The Fresnel lens 4 has two functions of a collimating lens that is a point condensing lens and a cylindrical lens that is a line condensing lens. Specifically, as shown in FIGS. 2 and 3, a circular Fresnel shape that functions as a collimating lens 4 a is formed on one surface of the Fresnel lens 4. A linear type Fresnel shape that functions as a cylindrical lens 4 b is formed on the other surface of the Fresnel lens 4. The Fresnel lens 4 is composed of one member. The Fresnel lens 4 is installed in the housing 5 shown in FIG. 1 so that the collimating lens 4a faces the integrator lens 3 and the cylindrical lens 4b faces the irradiation side. Therefore, the light diffused from the integrator lens 3 is refracted by the collimator lens 4a so as to be parallel to the irradiation direction. The parallel light is refracted so as to be linear by the cylindrical lens 4b. Thereby, the simulated sunlight irradiation device 10 emits simulated sunlight S that is line-collected.
 擬似太陽光Sが線集光の線長さ方向において強度が均一になるために下記の式(1)(2)を満たすことが好ましい。
 fs>5D・・・(1)
 0.5fs<fr<2fs・・・(2)
 Dは、凹面鏡2による点光源サイズ、すなわちインテグレータレンズ3の設置位置における集光面積である。fsは、コリメートレンズ4aの焦点距離である。frは、シリンドリカルレンズ4bの焦点距離である。フレネルレンズ4は、透過率が高い点においてガラスレンズであることが好ましく、ある程度大型化にする点において樹脂製(例えばポリメタクリル酸メチル樹脂(PMMA)製)のレンズであることが好ましい。
It is preferable that the following formulas (1) and (2) are satisfied in order for the pseudo sunlight S to have uniform intensity in the line length direction of the line collection.
fs> 5D (1)
0.5fs <fr <2fs (2)
D is the size of the point light source by the concave mirror 2, that is, the light collection area at the installation position of the integrator lens 3. fs is the focal length of the collimating lens 4a. fr is the focal length of the cylindrical lens 4b. The Fresnel lens 4 is preferably a glass lens in terms of high transmittance, and is preferably a resin lens (for example, made of polymethyl methacrylate resin (PMMA)) in order to increase the size to some extent.
 擬似太陽光Sのフレネルレンズ4からの焦点距離を所定とするために、レンズ内の凹凸のピッチを0.1~0.5mmとすることが好ましい。レンズ中央からレンズ端部に向けて凹凸の高さ(サグ量)を0.00001~0.4mmの範囲で分布させ、凹凸の角度(スロープ)を0.001~50°の範囲で分布させることが好ましい。より好ましくは、ピッチを0.2~0.4mm、サグ量を0.00002~0.2mm、スロープを0.003~30°の範囲で分布させることが好ましい。 In order to set the focal length of the pseudo sunlight S from the Fresnel lens 4, it is preferable to set the pitch of the unevenness in the lens to 0.1 to 0.5 mm. Distributing the unevenness height (sag amount) in the range of 0.00001 to 0.4mm and the unevenness angle (slope) in the range of 0.001 to 50 ° from the center of the lens toward the lens edge. Is preferred. More preferably, it is preferable to distribute the pitch in the range of 0.2 to 0.4 mm, the sag amount in the range of 0.00002 to 0.2 mm, and the slope in the range of 0.003 to 30 °.
 ハウジング5は、上記各種部材をユニット化できるものであれば特に限定されない。単純には、図4,5に示すように後端から前端にかけて一様な中空筒状のものとすることもできる。あるいは後端からインテグレータレンズ3部分までは筒状とする一方、インテグレータレンズ3から前端までは、各コーナーに骨格を有するだけでその他は開放されたような形状にすることもできる。 The housing 5 is not particularly limited as long as the various members can be unitized. Simply, as shown in FIGS. 4 and 5, a uniform hollow cylindrical shape from the rear end to the front end may be used. Alternatively, the shape from the rear end to the integrator lens 3 portion may be a cylindrical shape, while the integrator lens 3 to the front end may have a skeleton at each corner and the others open.
 太陽熱利用システムのレシーバ20における集熱効率を測定する際は、図4,5に示すように擬似太陽光システム40,41を利用する。擬似太陽光システム40,41は、フレーム状の架台15と複数の擬似太陽光照射装置10を有する。各擬似太陽光照射装置10は、レシーバ20に向くように架台15に設置される。詳しくは、レシーバ20の軸方向長さに対応させて軸方向に複数個の擬似太陽光照射装置10を一列に並設する。該列を上下に複数段設置し、例えばレシーバ20の軸中心に対して所定距離の円周上に複数設置する。図4の擬似太陽光システム40は、2列の擬似太陽光照射装置10を有し、図5の擬似太陽光システム41は、4列の擬似太陽光照射装置10を有する。各列の擬似太陽光照射装置10は、レシーバ20に対して所定の角度で擬似太陽光Sを照射し、レシーバ20には周方向において複数の角度から擬似太陽光Sが入射される。複数の擬似太陽光照射装置10の向きは、レシーバ20において線集光ラインが同一直線上になるように設定される。 When measuring the heat collection efficiency in the receiver 20 of the solar heat utilization system, pseudo solar systems 40 and 41 are used as shown in FIGS. The simulated solar light systems 40 and 41 include a frame-shaped gantry 15 and a plurality of simulated solar light irradiation devices 10. Each simulated sunlight irradiation device 10 is installed on the gantry 15 so as to face the receiver 20. Specifically, a plurality of simulated solar light irradiation devices 10 are arranged in a line in the axial direction corresponding to the axial length of the receiver 20. A plurality of rows are installed in the vertical direction, for example, a plurality of rows are arranged on the circumference of a predetermined distance with respect to the axis center of the receiver 20. The simulated sunlight system 40 in FIG. 4 has two rows of simulated sunlight irradiation devices 10, and the simulated sunlight system 41 in FIG. 5 has four rows of simulated sunlight irradiation devices 10. The simulated sunlight irradiation device 10 in each row irradiates the receiver 20 with the simulated sunlight S at a predetermined angle, and the receiver 20 receives the simulated sunlight S from a plurality of angles in the circumferential direction. The direction of the plurality of simulated solar light irradiation devices 10 is set so that the line condensing lines are on the same straight line in the receiver 20.
 次に、レシーバ20に対する擬似太陽光Sの照射強度分布を測定する装置について説明する。光照射強度測定装置30は、図6に示すようにセンサ31とスライド機構と回転機構を備える。センサ31は、擬似太陽光照射装置10(図1参照)から照射された擬似太陽光Sの照射強度を検知する。スライド機構は、センサ31をレシーバ20の軸方向にスライドさせる。回転機構は、回転軸32を中心としてセンサ31を回転させる。具体的には、光照射強度測定装置30は、左右横長の走査ステージ33と、走査ステージ33上にスライド可能に設置された回転ステージ34を有する。 Next, an apparatus for measuring the irradiation intensity distribution of the pseudo sunlight S on the receiver 20 will be described. The light irradiation intensity measuring device 30 includes a sensor 31, a slide mechanism, and a rotation mechanism as shown in FIG. The sensor 31 detects the irradiation intensity of the simulated sunlight S irradiated from the simulated sunlight irradiation device 10 (see FIG. 1). The slide mechanism slides the sensor 31 in the axial direction of the receiver 20. The rotation mechanism rotates the sensor 31 about the rotation shaft 32. Specifically, the light irradiation intensity measuring device 30 includes a horizontally long scanning stage 33 and a rotating stage 34 slidably installed on the scanning stage 33.
 センサ31は、集光密度を計測できるセンサである。センサ31は、様々なセンサを利用でき、例えば熱流速計として使用されるMEDTHERM社のガードン放射計を利用できる。図6,8に示すようにセンサ31の先端には、擬似太陽光Sの照射強度を検知する受光部31aが設けられる。回転軸32から受光部31aまでの距離L1は、測定対象となるレシーバ20の中心軸から光吸収面となる周壁20aの外面までの距離L0と同じになるように設定される。 The sensor 31 is a sensor that can measure the light collection density. A variety of sensors can be used as the sensor 31, for example, MEDTHERM's Gurdon radiometer used as a thermal anemometer can be used. As shown in FIGS. 6 and 8, a light receiving unit 31 a that detects the irradiation intensity of the simulated sunlight S is provided at the tip of the sensor 31. A distance L 1 from the rotating shaft 32 to the light receiving unit 31 a is set to be the same as a distance L 0 from the central axis of the receiver 20 to be measured to the outer surface of the peripheral wall 20 a to be a light absorbing surface.
 図6に示すスライド機構は、様々な機構を利用することができる。例えばスライド機構は、走査ステージ33に設けられたラックと、回転ステージ34に設けられたピニオンを有するラックアンドピニオン機構でも良い。ピニオンは、例えばモータ等によって回転してラック上を回転する。あるいはスライド機構は、走査ステージ33に設けられたレールと、回転ステージ34をレール上においてスライドさせるエアシリンダ、油圧シリンダ等を有していても良い。あるいはスライド機構は、走査ステージ33に設けられたウォーム歯車と、回転ステージ34に設けられた平歯車を有していても良い。ウォーム歯車は、モータによって回転されても良い。平歯車は、回転ステージ34に自由回転可能に設けられてウォーム歯車に噛み合わされる。あるいはスライド機構は、走査ステージ33に掛け渡されたタイミングベルトまたはチェーンによって回転ステージ34をスライドさせる構成であっても良い。 The slide mechanism shown in FIG. 6 can use various mechanisms. For example, the slide mechanism may be a rack and pinion mechanism having a rack provided on the scanning stage 33 and a pinion provided on the rotary stage 34. The pinion rotates on the rack by being rotated by, for example, a motor or the like. Alternatively, the slide mechanism may include a rail provided on the scanning stage 33 and an air cylinder, a hydraulic cylinder, or the like that slides the rotary stage 34 on the rail. Alternatively, the slide mechanism may include a worm gear provided on the scanning stage 33 and a spur gear provided on the rotary stage 34. The worm gear may be rotated by a motor. The spur gear is provided on the rotary stage 34 so as to freely rotate and is meshed with the worm gear. Alternatively, the slide mechanism may have a configuration in which the rotary stage 34 is slid by a timing belt or a chain stretched over the scanning stage 33.
 回転ステージ34は、図6に示すように起立する2本の支柱38と、支柱38の間に回転可能に架設された回転軸32を有する。回転軸32にセンサ31が設けられ、センサ31が回転軸32を中心に回転する。センサ31の回転機構として、ギアボックス35とモータボックス36を有する。ギアボックス35は、回転軸32の一端に接続され、回転ステージ34の上部に取付けられる。モータボックス36は、回転ステージ34の下部に設けられ、モータを収容する。モータとギアボックス35内のギアがチェーン37で連結され、モータの出力によって回転軸32が軸中心に回転する。モータは、線集光部から離れて位置されている。そのためモータの周辺が光によって加熱されてモータの動作が不良になることを防止できる。センサ31は、図示していないケーブルを介してデータ処理装置と繋がっている。モータは、図示していないケーブルを介して電力が供給される。 The rotary stage 34 has two props 38 that stand up as shown in FIG. 6 and a rotary shaft 32 that is rotatably supported between the props 38. A sensor 31 is provided on the rotation shaft 32, and the sensor 31 rotates about the rotation shaft 32. As a rotation mechanism of the sensor 31, a gear box 35 and a motor box 36 are provided. The gear box 35 is connected to one end of the rotating shaft 32 and attached to the upper part of the rotating stage 34. The motor box 36 is provided below the rotary stage 34 and accommodates the motor. The motor and the gear in the gear box 35 are connected by a chain 37, and the rotating shaft 32 rotates around the axis by the output of the motor. The motor is located away from the line collector. Therefore, it is possible to prevent the periphery of the motor from being heated by light and causing the motor to malfunction. The sensor 31 is connected to the data processing device via a cable (not shown). Electric power is supplied to the motor via a cable (not shown).
 光照射強度測定装置30を使用してレシーバ20における集光効率を計測する際は、図5~7に示すようにレシーバ20が設置される位置にセンサ31が位置するように光照射強度測定装置30を設置する。詳しくは、仮想レシーバ20の中心軸にセンサ31の回転軸32を位置させる。集光効率を計測する際は、センサ31をスライドさせつつ回転させる。詳しくは、センサ31を仮想レシーバ20の軸方向長さの範囲で左右にスライドさせながら、回転軸32を中心に回転させる。回転軸32から受光部31aまでの距離L1は、仮想レシーバ20の中心軸から周壁20aの外面までの距離L0と同じである。そのため受光部31aは、仮想レシーバ20の光吸収面となる周壁20aに沿って移動する。センサ位置(軸方向位置・回転角度)と各位置での光照射強度との関係を測定することで、レシーバ20が受けるであろう擬似太陽光Sの照射強度分布を測定できる。 When measuring the light collection efficiency in the receiver 20 using the light irradiation intensity measuring device 30, as shown in FIGS. 5 to 7, the light irradiation intensity measuring device so that the sensor 31 is located at the position where the receiver 20 is installed. 30 is installed. Specifically, the rotation shaft 32 of the sensor 31 is positioned on the central axis of the virtual receiver 20. When measuring the light collection efficiency, the sensor 31 is rotated while being slid. Specifically, the sensor 31 is rotated about the rotation shaft 32 while sliding left and right within the range of the axial length of the virtual receiver 20. The distance L 1 from the rotating shaft 32 to the light receiving unit 31 a is the same as the distance L 0 from the central axis of the virtual receiver 20 to the outer surface of the peripheral wall 20 a. Therefore, the light receiving unit 31 a moves along the peripheral wall 20 a that is a light absorption surface of the virtual receiver 20. By measuring the relationship between the sensor position (axial position / rotation angle) and the light irradiation intensity at each position, the irradiation intensity distribution of the pseudo sunlight S that the receiver 20 will receive can be measured.
 レシーバ20は、図4,5に示すように長尺な中空円筒形である。レシーバ20の管内に熱媒体である流体が流通する。流体は、レシーバ20に照射された擬似太陽光Sによって加熱され、これにより太陽光から熱エネルギーを回収する。したがってレシーバ20は、集熱管とも称される。 The receiver 20 has a long hollow cylindrical shape as shown in FIGS. A fluid that is a heat medium flows through the pipe of the receiver 20. The fluid is heated by the simulated sunlight S irradiated on the receiver 20, thereby recovering thermal energy from the sunlight. Therefore, the receiver 20 is also referred to as a heat collecting tube.
 レシーバ20への単位時間当たりの入力エネルギーは、光照射強度測定装置30によって得られた光照射強度分布を照射面積について積分することで算出できる。レシーバ20による回収熱量は、従来の方法と同様に、レシーバ20内の流体が擬似太陽光によって加熱される量、すなわちレシーバ20の入口と出口における温度上昇を測定することで算出される。単位時間当たりの回収熱量ΔQ(kW=kJ/s)は、レシーバ20から得られる単位時間当たりの出力エネルギーになり、式(3)によって求められる。
 ΔQ=CpΔTρν・・・(3)
 ΔT(K)は、レシーバ20の入口と出口における液体の温度差である。Cp(kJ/kgK)は、流体の試験温度での比熱、ρ(kg/m3)は密度、ν(m3/s)は流速である。
The input energy per unit time to the receiver 20 can be calculated by integrating the light irradiation intensity distribution obtained by the light irradiation intensity measuring device 30 with respect to the irradiation area. The amount of heat recovered by the receiver 20 is calculated by measuring the amount of fluid in the receiver 20 heated by simulated sunlight, that is, the temperature rise at the inlet and outlet of the receiver 20, as in the conventional method. The recovered heat quantity ΔQ (kW = kJ / s) per unit time is the output energy per unit time obtained from the receiver 20, and is obtained by Expression (3).
ΔQ = CpΔTρν (3)
ΔT (K) is a temperature difference between the liquid at the inlet and the outlet of the receiver 20. Cp (kJ / kgK) is the specific heat at the fluid test temperature, ρ (kg / m 3 ) is the density, and ν (m 3 / s) is the flow rate.
 熱媒体としての流体は、水、蒸気、オイルなどを用いることができる。熱媒体は、測定したいレシーバ20の温度帯によって選択できる。レシーバ20に入る前に流体を加熱等して流体の温度を調整することで、レシーバ20内における温度帯を任意に設定できる。 Water, steam, oil, etc. can be used as the fluid as the heat medium. The heat medium can be selected depending on the temperature zone of the receiver 20 to be measured. By adjusting the temperature of the fluid by heating the fluid before entering the receiver 20, the temperature zone in the receiver 20 can be arbitrarily set.
 集熱効率(=出力エネルギー/入力エネルギー)は、光照射強度測定装置30により得られた入力エネルギーに対する算出された出力エネルギーが得られる割合として導出され得る。 The heat collection efficiency (= output energy / input energy) can be derived as a ratio at which the calculated output energy with respect to the input energy obtained by the light irradiation intensity measuring device 30 is obtained.
 次に、光照射強度測定装置30による光照射分布測定試験について説明する。試験のための擬似太陽光源1として、凹面鏡2の直径を380mm、凹面鏡2とインテグレータレンズ3(一次集光点)までの焦点距離を約700mmに設定した。フレネルレンズ4としてポリメタクリル酸メチル樹脂製のレンズを使用した。該レンズは、点集光距離fs=800mmのコリメートレンズと線集光距離fr=1100mmのシリンドリカルレンズを一体に有する。擬似太陽光源1として定格出力5kWのXeランプを使用した。レシーバ20として軸長さ4.0m、直径70mmの集熱管をもつトラフ型レシーバを想定した。擬似太陽光システム40として2列の擬似太陽光照射装置10を使用し、1列に10個の擬似太陽光照射装置10を配列した。 Next, a light irradiation distribution measurement test using the light irradiation intensity measuring device 30 will be described. As a simulated solar light source 1 for the test, the diameter of the concave mirror 2 was set to 380 mm, and the focal length between the concave mirror 2 and the integrator lens 3 (primary focusing point) was set to about 700 mm. A lens made of polymethyl methacrylate resin was used as the Fresnel lens 4. The lens integrally includes a collimating lens having a point condensing distance fs = 800 mm and a cylindrical lens having a line condensing distance fr = 1100 mm. A Xe lamp having a rated output of 5 kW was used as the simulated solar light source 1. A trough-type receiver having a heat collecting tube having an axial length of 4.0 m and a diameter of 70 mm was assumed as the receiver 20. Two simulated sunlight irradiation devices 10 were used as the simulated sunlight system 40, and 10 simulated sunlight irradiation devices 10 were arranged in one row.
 レシーバ20として軸長さ4.0m、直径70mmのトラフ型レシーバを想定した。光照射強度測定装置30として、走査範囲を4.8m、スキャンの回転範囲を±90°に設定した。センサとして、MEDTHERM社の熱流速計「ガードン放射計」を使用した。センサの受光部と回転軸の距離を70mm管の半径と同じ35mmに設定した。上記条件によって光照射強度測定装置30を利用して光軸調整および光照射強度分布を測定した。光照射強度測定時には、擬似太陽光Sの多くがセンサ31の受光部31aによって測定されない。そこで光照射強度測定装置30を挟んだ擬似太陽光システム40の反対位置に黒体塗料を塗布した水冷プレートを設けた。水冷プレートは、擬似太陽光Sを吸収し、水循環により熱を逃がすことができる。 As the receiver 20, a trough receiver having an axial length of 4.0 m and a diameter of 70 mm was assumed. As the light irradiation intensity measuring device 30, the scanning range was set to 4.8 m, and the scanning rotation range was set to ± 90 °. As a sensor, a MEDHERRM thermal anemometer “Gardon radiometer” was used. The distance between the light receiving part of the sensor and the rotation axis was set to 35 mm, which is the same as the radius of the 70 mm tube. Optical axis adjustment and light irradiation intensity distribution were measured using the light irradiation intensity measuring device 30 under the above conditions. At the time of measuring the light irradiation intensity, most of the pseudo sunlight S is not measured by the light receiving unit 31a of the sensor 31. Therefore, a water-cooled plate coated with a black body paint is provided at a position opposite to the simulated sunlight system 40 with the light irradiation intensity measuring device 30 interposed therebetween. The water cooling plate can absorb the simulated sunlight S and release heat by water circulation.
 上述のように設定した光照射強度測定装置30を利用して得られた軸方向と周方向の光照射強度の2次元分布マップを図13に示す。図13の結果から、仮想レシーバの水平位置すなわち角度0°における軸方向ライン上では、最大37.7kW/m2、最小28.2kW/m2の範囲内で照度が分布し、むらが±14.5%以内であった。水平線からの角度が0°から±90°に大きくなるにつれて低下するように照度が分布する。2次元マップから光照射強度の平均値を求めると18.1kW/m2となる。2次元分布マップは、仮想レシーバの表面半周における光照射強度を示す。太陽光をトラフ型レシーバ(アパーチャー:5.77m)で得た光照射強度は、52.5kW/m2であった。したがって上述の擬似太陽光源1を利用した装置は、実太陽光の35%程度の光量を発することがわかった。 FIG. 13 shows a two-dimensional distribution map of the light irradiation intensity in the axial direction and the circumferential direction obtained by using the light irradiation intensity measuring device 30 set as described above. From the results of FIG. 13, the on-axis direction line in the horizontal position or angle 0 ° of the virtual receiver, up to 37.7kW / m 2, minimum 28.2kW / m illuminance distribution in the range of 2, unevenness ± 14 Within 5%. The illuminance is distributed so as to decrease as the angle from the horizon increases from 0 ° to ± 90 °. When the average value of the light irradiation intensity is obtained from the two-dimensional map, it is 18.1 kW / m 2 . The two-dimensional distribution map indicates the light irradiation intensity in the half surface of the virtual receiver. The light irradiation intensity obtained from sunlight with a trough-type receiver (aperture: 5.77 m) was 52.5 kW / m 2 . Therefore, it has been found that the apparatus using the above-described pseudo solar light source 1 emits about 35% of the actual sunlight.
 参考として、DLRのElliRECが発する光照射強度は、集熱量が4kW、レシーバ効率90%から平均で5.1kW/m2であると推測できる。上述の擬似太陽光源1を利用した装置は、DLRの約3.6倍の光照射強度を実現できることがわかる。上述の擬似太陽光源1を利用した装置は、円周表面に基づく光照射強度が18.1kW/m2であるため、4m×70mm径の長方形断面積に基づく光照射強度は、28.5kW/m2と換算できる。 As a reference, it can be estimated that the light irradiation intensity emitted by the DLR EliREC is 5.1 kW / m 2 on average from a heat collection amount of 4 kW and a receiver efficiency of 90%. It can be seen that the apparatus using the pseudo solar light source 1 described above can achieve a light irradiation intensity of about 3.6 times that of DLR. Since the apparatus using the above-described pseudo solar light source 1 has a light irradiation intensity based on the circumferential surface of 18.1 kW / m 2 , the light irradiation intensity based on a rectangular cross-sectional area of 4 m × 70 mm diameter is 28.5 kW / m 2. Can be converted to m 2 .
 上記光照度分布の測定結果を踏まえて、被測定レシーバの集熱効率の絶対値を算出するための試験を行った。本試験では、軸長さ4.0m、直径70mm、SUS製の集熱管が、直径125mmのガラス管で覆われたレシーバを使用した。集熱管の表面には、太陽光波長領域の吸収率が83%、赤外領域の放射率が5%の選択吸収膜が設けられている。集熱管とガラス管の間を真空引きし、ベローズ部ベーキングにより0.5Pa以下としてから、光照射分布測定試験と同じ条件で擬似太陽光を照射した。 Based on the measurement result of the light illuminance distribution, a test was performed to calculate the absolute value of the heat collection efficiency of the receiver under measurement. In this test, a receiver having a shaft length of 4.0 m, a diameter of 70 mm, and a SUS heat collecting tube covered with a glass tube having a diameter of 125 mm was used. A selective absorption film having an absorptivity in the sunlight wavelength region of 83% and an emissivity in the infrared region of 5% is provided on the surface of the heat collecting tube. The vacuum tube was evacuated between the heat collecting tube and the glass tube, and after the pressure was reduced to 0.5 Pa or less by bellows portion baking, simulated sunlight was irradiated under the same conditions as the light irradiation distribution measurement test.
 試験用に熱媒体を流す方法として、図10に示す循環方式または図11に示す貫流方式を使用できる。本試験では循環方式を採用し、レシーバの出口付近に長さ約300mmのスタティックミキサーを追加した。スタティックミキサーは、その内部に断面の約3/2を遮蔽する7枚の板を有し、7枚の板は、上下に交互に配される。したがってスタティックミキサー内を通過する熱媒体は、上下に蛇行することで熱が均一になるように攪拌される。熱媒体は水とした。 As the method of flowing the heat medium for the test, the circulation method shown in FIG. 10 or the once-through method shown in FIG. 11 can be used. In this test, a circulation system was adopted, and a static mixer having a length of about 300 mm was added near the outlet of the receiver. The static mixer has seven plates that shield about 3/2 of the cross section inside, and the seven plates are alternately arranged up and down. Therefore, the heat medium passing through the static mixer is stirred so that the heat becomes uniform by meandering up and down. The heat medium was water.
 熱媒体である水の流速を42L/minから10L/minへと段階的に変化させる。例えば、ポンプの入力電流の周波数をインバータで調整することで水の流速を変化させた。各流速におけるレシーバ出入口での温度差を測定して、水流速と温度挙動を図14に示した。 流速 Change the flow rate of water, which is the heat medium, from 42L / min to 10L / min step by step. For example, the flow rate of water was changed by adjusting the frequency of the input current of the pump with an inverter. The temperature difference at the receiver inlet / outlet at each flow rate was measured, and the water flow rate and temperature behavior are shown in FIG.
 図14の結果から、水流速が遅いほどレシーバ出入口での水温度差は増加する傾向がある。水流速が10L/minの場合は、水温度差は最大の8.8℃になる。 From the result of FIG. 14, the water temperature difference at the receiver inlet / outlet tends to increase as the water flow rate becomes slower. When the water flow rate is 10 L / min, the maximum water temperature difference is 8.8 ° C.
 図14の結果における各流量での温度差をもとに(3)式から回収熱量(出力エネルギー)を計算する。回収熱量に基づいて集熱効率を導出し、集熱効率と水流速の関係を図15に示す。図15の結果から、集熱効率は水流速に大きく依存せずほぼ一定値を維持できることを明らかにできた。すなわち、いずれの流量でもほぼ同一の集熱効率が得られていることから、安定した温度計測・時間変動の小さい光照射ができていることを裏付けている。 14 Calculate the amount of recovered heat (output energy) from equation (3) based on the temperature difference at each flow rate in the results of FIG. The heat collection efficiency is derived based on the recovered heat quantity, and the relationship between the heat collection efficiency and the water flow rate is shown in FIG. From the result of FIG. 15, it was clarified that the heat collection efficiency can be maintained almost constant without greatly depending on the water flow velocity. That is, since almost the same heat collection efficiency is obtained at any flow rate, it is confirmed that stable temperature measurement and light irradiation with small time fluctuation can be performed.
 図15には、点線によって光学特性から予想される理論効率を示している。図15から本実施例で得られた集熱効率は、理論効率と非常に良く一致することがわかった。すなわち本実施例の装置と方法により、正確に集熱効率を測定できることが確認された。なお、光学特性からの理論効率は、レシーバの選択吸収膜における吸収率スペクトルと真空二重構造のガラス管の透過率から計算でき、本試験においては76.4%であった。 FIG. 15 shows the theoretical efficiency expected from the optical characteristics by dotted lines. From FIG. 15, it was found that the heat collection efficiency obtained in this example was in good agreement with the theoretical efficiency. That is, it was confirmed that the heat collection efficiency can be accurately measured by the apparatus and method of this example. The theoretical efficiency from the optical characteristics can be calculated from the absorption spectrum of the selective absorption film of the receiver and the transmittance of the glass tube having a vacuum double structure, and was 76.4% in this test.
 上述するように擬似太陽光照射装置10は、複数の部材を1つのハウジング5内に設置したユニットである。これにより擬似太陽光照射装置10は、容易に設置され得る。 As described above, the simulated solar light irradiation device 10 is a unit in which a plurality of members are installed in one housing 5. Thereby, the simulated solar light irradiation apparatus 10 can be easily installed.
 インテグレータレンズ3からの光に対して二枚のフレネルレンズ4を設置すると、各レンズ表面(空気との界面)において光の反射ロスが積算される。そのため効率的に線集光する際に限界が生じる。図2,3に示すようにフレネルレンズ4は、一つの部材であり、フレネルレンズ4の一面にはコリメートレンズ4aとして機能するフレネル形状が形成される。他面には、シリンドリカルレンズ4bとして機能するフレネル形状が形成される。換言すると、コリメートレンズ4aとシリンドリカルレンズ4bは、1枚レンズとして形成される。したがってレンズ厚み内において平行光が作り出され得る。これによりレンズの設置枚数を減らして、擬似太陽光Sの反射ロスを低減できる。延いては、擬似太陽光Sの照射強度を向上できる。またフレネルレンズ4は、非球面レンズと同等の形状が実現できるので、単面で収差補正が可能となる。さらにフレネルレンズ4は、光軸付近、軸外付近の光学素子内の光路長がほぼ同じになる。そのため光学素子の吸収による影響を受け難いというメリットもある。 When the two Fresnel lenses 4 are installed for the light from the integrator lens 3, the reflection loss of light is integrated on each lens surface (interface with air). For this reason, there is a limit in efficiently collecting lines. As shown in FIGS. 2 and 3, the Fresnel lens 4 is a single member, and a Fresnel shape that functions as a collimating lens 4 a is formed on one surface of the Fresnel lens 4. A Fresnel shape that functions as the cylindrical lens 4b is formed on the other surface. In other words, the collimating lens 4a and the cylindrical lens 4b are formed as a single lens. Thus, collimated light can be created within the lens thickness. Thereby, the number of installed lenses can be reduced, and the reflection loss of the simulated sunlight S can be reduced. As a result, the irradiation intensity of the pseudo sunlight S can be improved. In addition, since the Fresnel lens 4 can have the same shape as an aspheric lens, aberration correction can be performed on a single surface. Further, in the Fresnel lens 4, the optical path lengths in the optical elements near the optical axis and near the off-axis are substantially the same. Therefore, there is a merit that the optical element is hardly affected by absorption.
 擬似太陽光Sを照射するための光源としては、キセノンランプ(Xeランプ)、メタルハライドランプ、もしくはプラズマ光源などが挙げられる。しかし、プラズマ光源は発光領域が大きく点光源とならないため集光には課題を残す。また、メタルハライドランプは紫外領域の短波長側の強度が強く、太陽光スペクトルのシミュレートの点においては課題を残す。したがって擬似太陽光源としては、Xeランプが好ましい。 Examples of the light source for irradiating the pseudo sunlight S include a xenon lamp (Xe lamp), a metal halide lamp, a plasma light source, and the like. However, since the plasma light source has a large light emitting area and does not become a point light source, there remains a problem in condensing light. In addition, the metal halide lamp has a high intensity on the short wavelength side in the ultraviolet region, and there remains a problem in terms of simulating the sunlight spectrum. Therefore, the pseudo solar light source is preferably an Xe lamp.
 擬似太陽光源をXeランプとすれば、エアマスフィルター6によって光のスペクトル分布を調整することもできる。したがって、擬似太陽光源をXeランプとした場合に、インテグレータレンズ3とフレネルレンズ4との間にエアマスフィルター6を設けておけば、擬似太陽光Sを実際の太陽光のスペクトル分布に近づけることができる。 If the pseudo solar light source is an Xe lamp, the air mass filter 6 can adjust the spectral distribution of light. Therefore, when the pseudo solar light source is an Xe lamp, if the air mass filter 6 is provided between the integrator lens 3 and the Fresnel lens 4, the pseudo solar light S can be brought close to the actual solar spectrum distribution. .
 図5~7に示すように擬似太陽光システム40,41にレシーバ20が設置されて、レシーバ20の集熱効率を測定する。このレシーバ20に代えて光照射強度測定装置30を擬似太陽光システム40,41に組み込んでレシーバ20に照射される擬似太陽光Sの光照射強度分布を測定する。光照射強度測定装置30は、スライド機構によってセンサ31を左右にスライドさせることで、仮想レシーバの軸方向の全範囲の光照射強度を測定できる。同時に、回転機構によってセンサ31を回転させることで、仮想レシーバにおける周方向の光照射強度分布も測定できる。回転軸32から受光部31aまでの距離が、レシーバ20の中心軸から周壁20aまでの距離と同じに設定されている。そのため受光部31aは、レシーバ20の周壁20aに対応する位置で回転するため、レシーバ20における光照射強度分布を正確に測定できる。 As shown in FIGS. 5 to 7, the receiver 20 is installed in the simulated solar system 40, 41, and the heat collection efficiency of the receiver 20 is measured. Instead of the receiver 20, the light irradiation intensity measuring device 30 is incorporated in the simulated sunlight systems 40 and 41, and the light irradiation intensity distribution of the simulated sunlight S irradiated on the receiver 20 is measured. The light irradiation intensity measuring device 30 can measure the light irradiation intensity of the entire range of the virtual receiver in the axial direction by sliding the sensor 31 to the left and right by the slide mechanism. At the same time, the light irradiation intensity distribution in the circumferential direction in the virtual receiver can also be measured by rotating the sensor 31 by the rotation mechanism. The distance from the rotating shaft 32 to the light receiving unit 31a is set to be the same as the distance from the central axis of the receiver 20 to the peripheral wall 20a. Therefore, since the light receiving unit 31a rotates at a position corresponding to the peripheral wall 20a of the receiver 20, the light irradiation intensity distribution in the receiver 20 can be accurately measured.
 上述するようにレシーバ20への光の照射強度を定量測定できるため、レシーバ20への入力エネルギーを知ることができる。出力エネルギーは、レシーバ20へ擬似太陽光Sを照射してレシーバ20内部に流通させた流体の温度上昇からを算出できる。したがって入力エネルギーと出力エネルギーからレシーバ20の集熱効率を絶対値として導出できる。上述するように本形態は、従来の相対的な性能評価法ではなく、絶対的な変換効率を得ることができる。具体的には、従来の評価法では、標準レシーバでの回収熱量に対する被測定レシーバの回収熱量が相対的に大きいか小さいかといった情報であった。そのため太陽熱利用システムのプラント設計に応用することは容易でなかった。これに対して本形態ではレシーバ20の集熱効率の絶対値がわかる。これによりレシーバ20を適用した太陽熱利用システム全体での効率を導出できる。さらに、太陽熱利用システムにて要求される全体エネルギー量を得るために必要となるレシーバ20の総延長などを設計するプロセスでも、レシーバ20の集熱効率は極めて有用な情報となる。これらの効果により、太陽熱利用システム全体の最適設計が可能となり、過剰な仕様設計や仕様未達のリスクを回避できる。かくしてシステム全体でのコスト低減や効率向上を図ることができる。 As described above, since the light irradiation intensity to the receiver 20 can be quantitatively measured, the input energy to the receiver 20 can be known. The output energy can be calculated from the temperature rise of the fluid that is radiated into the receiver 20 by irradiating the receiver 20 with the simulated sunlight S. Therefore, the heat collection efficiency of the receiver 20 can be derived as an absolute value from the input energy and the output energy. As described above, this embodiment is not a conventional relative performance evaluation method, and can obtain absolute conversion efficiency. Specifically, in the conventional evaluation method, the information is whether the heat recovery amount of the receiver to be measured is relatively large or small with respect to the heat recovery amount of the standard receiver. Therefore, it was not easy to apply to the plant design of solar thermal utilization system. In contrast, in this embodiment, the absolute value of the heat collection efficiency of the receiver 20 is known. Thereby, the efficiency in the whole solar heat utilization system to which the receiver 20 is applied can be derived. Furthermore, the heat collection efficiency of the receiver 20 is extremely useful information even in the process of designing the total extension of the receiver 20 necessary for obtaining the total amount of energy required in the solar heat utilization system. These effects make it possible to optimally design the entire solar heat utilization system and avoid the risk of excessive specification design and specification failure. Thus, cost reduction and efficiency improvement in the entire system can be achieved.
 本発明の形態を上記構造を参照して説明したが、本発明の目的を逸脱せずに多くの交代、改良、変更が可能であることは当業者であれば明らかである。したがって本発明の形態は、添付された請求項の精神と目的を逸脱しない全ての交代、改良、変更を含み得る。例えば本発明の形態は、前記特別な構造に限定されず、下記のように変更が可能である。 Although the embodiments of the present invention have been described with reference to the above structure, it is obvious to those skilled in the art that many alternations, improvements, and changes can be made without departing from the object of the present invention. Accordingly, aspects of the invention may include all alterations, modifications, and changes that do not depart from the spirit and scope of the appended claims. For example, the form of the present invention is not limited to the special structure, and can be modified as follows.
 例えば、擬似太陽光照射装置10は、エアマスフィルター6を有していても良いし、エアマスフィルター6を有していなくても良い。図1を参照するように擬似太陽光源1は、ハウジング5の後端、後端近傍の後部、中央に設けられても良い。フレネルレンズ4は、ハウジング5の前端、前端近傍の前部、中央部に設けられても良い。図1を参照するように凹面鏡2は、半球状でも良いし、一点集光できる他の形状、例えば椀状、一部球状、放物曲面状、各種曲面状でも良い。 For example, the simulated sunlight irradiation device 10 may have the air mass filter 6 or may not have the air mass filter 6. As shown in FIG. 1, the pseudo solar light source 1 may be provided at the rear end of the housing 5, the rear portion near the rear end, and the center. The Fresnel lens 4 may be provided at the front end of the housing 5, the front portion near the front end, and the central portion. As shown in FIG. 1, the concave mirror 2 may be hemispherical, or may have other shapes capable of focusing on one point, such as a bowl shape, a partial spherical shape, a parabolic curved surface shape, and various curved surface shapes.
 図2を参照するようにフレネルレンズ4のコリメートレンズ4aは、インテグレータレンズ3から四角錐状に拡散される光を平行になる方向へ屈曲させる。例えば、コリメートレンズ4aは、四角錐状に拡散される光を四角柱状に平行、すなわち完全に平行になるように屈折させても良いし、平行に向けてあるいは略平行になるように屈折させても良い。例えば拡散される角度を小さくするように光を屈曲させても良いし、小さな角度を有して集光するように光を屈曲させても良い。 As shown in FIG. 2, the collimating lens 4a of the Fresnel lens 4 bends the light diffused in a quadrangular pyramid shape from the integrator lens 3 in a parallel direction. For example, the collimating lens 4a may refract the light diffused in a quadrangular pyramid shape so that it is parallel to the quadrangular prism shape, that is, completely parallel, or refracted so as to be parallel or substantially parallel. Also good. For example, the light may be bent so as to reduce the diffusion angle, or the light may be bent so as to collect light with a small angle.
 光照射強度測定装置30は、図5,6を参照するように円筒形のレシーバ20における光照射強度分布を測定する際に利用される。これに代えてあるいは加えて、上記するように検出結果から四角板の面における光照射強度分布を算出し、四角板の面を有するレシーバにおける光照射強度分布を測定する際に利用しても良い。あるいは検出結果から他の形状のレシーバにおける光照射強度分布を測定する際に利用しても良い。 The light irradiation intensity measuring device 30 is used when measuring the light irradiation intensity distribution in the cylindrical receiver 20 as shown in FIGS. Alternatively or in addition, the light irradiation intensity distribution on the surface of the square plate may be calculated from the detection result as described above, and may be used when measuring the light irradiation intensity distribution in the receiver having the surface of the square plate. . Or you may utilize when measuring the light irradiation intensity distribution in the receiver of another shape from a detection result.
 図6に示すように回転軸32の軸中心と受光部31aの距離は、所定の距離に固定されている。これに代えて光照射強度測定装置30は、回転軸32の軸中心と受光部31aの距離を変更できる構成を有していても良い。例えば回転軸32にセンサ31が径方向に移動可能に取付けられても良い。 As shown in FIG. 6, the distance between the center of the rotating shaft 32 and the light receiving portion 31a is fixed to a predetermined distance. Instead of this, the light irradiation intensity measuring device 30 may have a configuration in which the distance between the axis center of the rotating shaft 32 and the light receiving unit 31a can be changed. For example, the sensor 31 may be attached to the rotary shaft 32 so as to be movable in the radial direction.

Claims (14)

  1.  擬似太陽光照射装置であって、
     光を照射する擬似太陽光源と、
     前記擬似太陽光源からの前記光を前方へ点集光させる凹面鏡と、
     前記擬似太陽光源の前方に設けられ、前記凹面鏡によって点集光された光を四角錐状の光路に拡散するインテグレータレンズと、
     前記インテグレータレンズから四角錐状の光路で入射された光を線集光するフレネルレンズを有し、
     前記フレネルレンズは、前記インテグレータレンズから四角錐状に拡散される光を平行になる方向へ変換するコリメートレンズと、前記コリメートレンズから入射された光を線集光するシリンドリカルレンズとを備える擬似太陽光照射装置。
    A simulated solar irradiation device,
    A simulated solar light source that emits light;
    A concave mirror for focusing the light from the pseudo solar light source forward;
    An integrator lens that is provided in front of the pseudo-solar light source and diffuses the light focused by the concave mirror into a quadrangular pyramid optical path;
    A Fresnel lens that linearly collects light incident from the integrator lens through a quadrangular pyramid optical path;
    The Fresnel lens includes pseudo-sunlight including a collimating lens that converts light diffused in a quadrangular pyramid shape from the integrator lens into a parallel direction and a cylindrical lens that linearly collects light incident from the collimating lens. Irradiation device.
  2.  請求項1に記載の擬似太陽光照射装置であって、
     前記凹面鏡が半球状である擬似太陽光照射装置。
    The simulated solar light irradiation device according to claim 1,
    A pseudo-sunlight irradiation device in which the concave mirror is hemispherical.
  3.  請求項1または2に記載の擬似太陽光照射装置であって、
     前記擬似太陽光源、前記凹面鏡、前記インテグレータレンズ、前記フレネルレンズがハウジングに装着される擬似太陽光照射装置。
    The simulated solar light irradiation device according to claim 1 or 2,
    A simulated solar light irradiation device in which the simulated solar light source, the concave mirror, the integrator lens, and the Fresnel lens are mounted on a housing.
  4.  請求項3に記載の擬似太陽光照射装置であって、
     前記擬似太陽光源が前記ハウジングの後端に設けられる擬似太陽光照射装置。
    The simulated solar light irradiation device according to claim 3,
    A simulated solar light irradiation device in which the simulated solar light source is provided at a rear end of the housing.
  5.  請求項3または4に記載の擬似太陽光照射装置であって、
     前記フレネルレンズが前記ハウジングの前端に設けられる擬似太陽光照射装置。
    The pseudo-sunlight irradiation device according to claim 3 or 4,
    The simulated sunlight irradiation apparatus in which the Fresnel lens is provided at the front end of the housing.
  6.  請求項1~5のいずれか1つに記載の擬似太陽光照射装置であって、
     前記コリメートレンズは、前記フレネルレンズの一面に形成されたフレネル形状によって構成される擬似太陽光照射装置。
    The simulated solar light irradiation device according to any one of claims 1 to 5,
    The said collimating lens is a pseudo-sunlight irradiation apparatus comprised by the Fresnel shape formed in one surface of the said Fresnel lens.
  7.  請求項1~6のいずれか1つに記載の擬似太陽光照射装置であって、
     前記シリンドリカルレンズは、前記フレネルレンズの一面に形成されたフレネル形状によって構成される擬似太陽光照射装置。
    The pseudo-sunlight irradiation device according to any one of claims 1 to 6,
    The said cylindrical lens is a pseudo-sunlight irradiation apparatus comprised by the Fresnel shape formed in one surface of the said Fresnel lens.
  8.  請求項1~7のいずれか1つに記載の擬似太陽光照射装置であって、
     前記コリメートレンズ及び前記シリンドリカルレンズは、1枚レンズとして形成される擬似太陽光照射装置。
    The pseudo-sunlight irradiation device according to any one of claims 1 to 7,
    The collimating lens and the cylindrical lens are pseudo-sunlight irradiation devices formed as a single lens.
  9.  請求項1~8のいずれか1つに記載の擬似太陽光照射装置であって、
     前記擬似太陽光源がキセノン(Xe)ランプである擬似太陽光照射装置。
    The pseudo-sunlight irradiation device according to any one of claims 1 to 8,
    The simulated solar light irradiation device, wherein the simulated solar light source is a xenon (Xe) lamp.
  10.  請求項9に記載の擬似太陽光照射装置であって、
     前記インテグレータレンズと前記フレネルレンズとの間に、エアマスフィルターが設けられている擬似太陽光照射装置。
    The simulated solar light irradiation device according to claim 9,
    A pseudo-sunlight irradiation device in which an air mass filter is provided between the integrator lens and the Fresnel lens.
  11.  擬似太陽光源からの光の照射強度分布を測定するための光照射強度測定装置であって、
     光照射強度を検知するセンサと、
     前記センサを回転可能に支持する回転軸を具備する回転機構と、
     前記センサを前記回転軸の軸方向にスライドさせるスライド機構を有する光照射強度測定装置。
    A light irradiation intensity measuring device for measuring an irradiation intensity distribution of light from a pseudo solar light source,
    A sensor for detecting the light irradiation intensity;
    A rotation mechanism including a rotation shaft that rotatably supports the sensor;
    A light irradiation intensity measuring device having a slide mechanism for sliding the sensor in the axial direction of the rotation shaft.
  12.  請求項11に記載の光照射強度測定装置であって、
     前記光照射強度測定装置は、太陽熱利用システムで使用される円筒形のレシーバにおける集熱効率を測定する際に用いられる光照射強度測定装置。
    The light irradiation intensity measuring device according to claim 11,
    The said light irradiation intensity measuring apparatus is a light irradiation intensity measuring apparatus used when measuring the heat collection efficiency in the cylindrical receiver used with a solar-heat utilization system.
  13.  請求項12に記載の光照射強度測定装置であって、
     前記回転軸の軸中心と前記センサの受光部の距離が前記レシーバの中心軸から前記レシーバの周壁外面までの距離と同じになるように設定されている光照射強度測定装置。
    The light irradiation intensity measuring device according to claim 12,
    The light irradiation intensity measuring apparatus set so that the distance between the axis center of the rotating shaft and the light receiving part of the sensor is the same as the distance from the central axis of the receiver to the outer peripheral surface of the receiver.
  14.  太陽熱利用システムで使用されるレシーバにおける集熱効率を測定する集熱効率測定方法であって、
     請求項1~10のいずれか1つに記載の擬似太陽光照射装置により前記レシーバへ擬似太陽光を照射し、前記レシーバ内部に流通させた流体の温度上昇から算出される出力エネルギーと、請求項11~13のいずれか1つに記載の光照射強度測定装置によって測定された光照射強度分布から算出される入力エネルギーとの比(出力エネルギー/入力エネルギー)により、集熱効率の絶対値を定量測定する、集熱効率測定方法。
    A heat collection efficiency measurement method for measuring heat collection efficiency in a receiver used in a solar heat utilization system,
    Output energy calculated from a temperature rise of a fluid that irradiates the receiver with simulated sunlight by the simulated sunlight irradiation device according to any one of claims 1 to 10 and circulates in the receiver, and The absolute value of the heat collection efficiency is quantitatively measured by the ratio (output energy / input energy) to the input energy calculated from the light irradiation intensity distribution measured by the light irradiation intensity measuring device according to any one of 11 to 13 To measure heat collection efficiency.
PCT/JP2015/057835 2014-03-20 2015-03-17 Pseudo-sunlight irradiation device, photo-irradiation-intensity measurement device, and heat-collector-efficiency measurement method WO2015141659A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-057518 2014-03-20
JP2014057518A JP6293540B2 (en) 2014-03-20 2014-03-20 Pseudo-sunlight irradiation device for measuring heat collection efficiency of solar receiver and method for measuring heat collection efficiency using the same

Publications (1)

Publication Number Publication Date
WO2015141659A1 true WO2015141659A1 (en) 2015-09-24

Family

ID=54144626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057835 WO2015141659A1 (en) 2014-03-20 2015-03-17 Pseudo-sunlight irradiation device, photo-irradiation-intensity measurement device, and heat-collector-efficiency measurement method

Country Status (2)

Country Link
JP (1) JP6293540B2 (en)
WO (1) WO2015141659A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842145A (en) * 2016-04-26 2016-08-10 上海小糸车灯有限公司 Sunlight focusing analysis device for automobile lamp lens and use method thereof
WO2017185534A1 (en) * 2016-04-26 2017-11-02 上海小糸车灯有限公司 Sunlight focusing analysis device for vehicle lamp lens, and method for using same
CN107843335A (en) * 2016-09-20 2018-03-27 海信集团有限公司 Target surface veiling glare illuminance measurement device and measuring method
CN111740700A (en) * 2020-07-03 2020-10-02 龙岩学院 Solar panel characteristic detection device
CN112013299A (en) * 2020-08-17 2020-12-01 长春理工大学 Collimating system multidimensional adjusting mechanism for small solar simulator
CN117805011A (en) * 2024-03-01 2024-04-02 山东龙光天旭太阳能有限公司 Vacuum heat collecting pipe performance detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655903A (en) * 1979-10-12 1981-05-16 Shinko Eng:Kk Linear crossing condenser lens and its production
JPS61240178A (en) * 1985-04-18 1986-10-25 Hitachi Ltd Light measuring apparatus
JP3098792U (en) * 2003-06-25 2004-03-11 山下電装株式会社 Simulated sunlight irradiation device
JP2012093005A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Thermal collector tube, thermal collector and concentrated solar power system
JP2012181170A (en) * 2011-03-03 2012-09-20 National Institute Of Advanced Industrial & Technology Illuminance distribution measuring device and illuminance distribution measuring method
WO2014038289A1 (en) * 2012-09-05 2014-03-13 山下電装株式会社 Solar simulator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238202B4 (en) * 2002-08-21 2005-04-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Radiation measuring device
JP2007311085A (en) * 2006-05-16 2007-11-29 National Institute Of Advanced Industrial & Technology Dummy sunlight irradiation device
US20090026388A1 (en) * 2007-07-25 2009-01-29 Drozdowicz Zbigniew M Illumination Homogenizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655903A (en) * 1979-10-12 1981-05-16 Shinko Eng:Kk Linear crossing condenser lens and its production
JPS61240178A (en) * 1985-04-18 1986-10-25 Hitachi Ltd Light measuring apparatus
JP3098792U (en) * 2003-06-25 2004-03-11 山下電装株式会社 Simulated sunlight irradiation device
JP2012093005A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Thermal collector tube, thermal collector and concentrated solar power system
JP2012181170A (en) * 2011-03-03 2012-09-20 National Institute Of Advanced Industrial & Technology Illuminance distribution measuring device and illuminance distribution measuring method
WO2014038289A1 (en) * 2012-09-05 2014-03-13 山下電装株式会社 Solar simulator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842145A (en) * 2016-04-26 2016-08-10 上海小糸车灯有限公司 Sunlight focusing analysis device for automobile lamp lens and use method thereof
WO2017185534A1 (en) * 2016-04-26 2017-11-02 上海小糸车灯有限公司 Sunlight focusing analysis device for vehicle lamp lens, and method for using same
CN105842145B (en) * 2016-04-26 2018-10-30 上海小糸车灯有限公司 A kind of lens of car light solar light focusing analytical equipment and its application method
CN107843335A (en) * 2016-09-20 2018-03-27 海信集团有限公司 Target surface veiling glare illuminance measurement device and measuring method
CN107843335B (en) * 2016-09-20 2019-09-20 海信集团有限公司 Target surface veiling glare illuminance measurement device and measurement method
CN111740700A (en) * 2020-07-03 2020-10-02 龙岩学院 Solar panel characteristic detection device
CN112013299A (en) * 2020-08-17 2020-12-01 长春理工大学 Collimating system multidimensional adjusting mechanism for small solar simulator
CN117805011A (en) * 2024-03-01 2024-04-02 山东龙光天旭太阳能有限公司 Vacuum heat collecting pipe performance detection device

Also Published As

Publication number Publication date
JP2015185206A (en) 2015-10-22
JP6293540B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
WO2015141659A1 (en) Pseudo-sunlight irradiation device, photo-irradiation-intensity measurement device, and heat-collector-efficiency measurement method
Wang et al. Development of a Fresnel lens based high-flux solar simulator
Wirz et al. Potential improvements in the optical and thermal efficiencies of parabolic trough concentrators
Venkatachalam et al. Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study
Arunkumar et al. Productivity enhancements of compound parabolic concentrator tubular solar stills
Wang et al. Design and validation of a low-cost high-flux solar simulator using Fresnel lens concentrators
Balaji et al. Optical modelling and performance analysis of a solar LFR receiver system with parabolic and involute secondary reflectors
Krueger Design and characterization of a concentrating solar simulator
Krueger et al. Operational performance of the University of Minnesota 45 kWe high-flux solar simulator
Martínez-Manuel et al. A 17.5 kWel high flux solar simulator with controllable flux-spot capabilities: design and validation study
Avargani et al. An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications
Okuhara et al. A solar simulator for the measurement of heat collection efficiency of parabolic trough receivers
Zhang et al. Optical sensitivity analysis of geometrical deformation on the parabolic trough solar collector with Monte Carlo Ray-Trace method
Xu et al. Effects of deformation of cylindrical compound parabolic concentrator (CPC) on concentration characteristics
Sen et al. Linear Fresnel mirror solar concentrator with tracking
Song et al. Flexible high flux solar simulator based on optical fiber bundles
Li et al. A flexibly controllable high-flux solar simulator for concentrated solar energy research from extreme magnitudes to uniform distributions
Ali et al. Design and experimental analysis of a static 3-D elliptical hyperboloid concentrator for process heat applications
Hofer et al. Extended heat loss and temperature analysis of three linear Fresnel receiver designs
KR20100101325A (en) Heating exchanger using solar heat and heating apparatus thereof
Gupta et al. Dual Fresnel lens and segmented mirrors based efficient solar concentration system without tracking sun for solar thermal energy generation
WO2019030558A1 (en) Solar energy collector
Krueger et al. Operational performance of the university of Minnesota 45kWe high-flux solar simulator
JP2016071311A (en) Sunlight beam-condensing unit using aspheric surface single lens
Sullivan et al. Design and test validation of a novel low-cost quartz window for reducing heat losses in concentrating solar power applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764811

Country of ref document: EP

Kind code of ref document: A1