WO2015141527A1 - Photosensitive resin composition and electronic device - Google Patents

Photosensitive resin composition and electronic device Download PDF

Info

Publication number
WO2015141527A1
WO2015141527A1 PCT/JP2015/057030 JP2015057030W WO2015141527A1 WO 2015141527 A1 WO2015141527 A1 WO 2015141527A1 JP 2015057030 W JP2015057030 W JP 2015057030W WO 2015141527 A1 WO2015141527 A1 WO 2015141527A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
group
temperature
film
Prior art date
Application number
PCT/JP2015/057030
Other languages
French (fr)
Japanese (ja)
Inventor
大西 治
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2015141527A1 publication Critical patent/WO2015141527A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/402Alkyl substituted imides

Definitions

  • the present invention relates to a photosensitive resin composition and an electronic device, and more particularly to a photosensitive resin composition used for forming a permanent film.
  • Patent Document 1 discloses a radiation-sensitive resin composition containing a copolymer containing a polymerized unit of an unsaturated carboxylic acid and a polymerized unit of a specific compound, a 1,2-quinonediazide compound, and a latent acid generator. Are listed.
  • a photosensitive resin composition used to form a permanent film An alkali-soluble resin;
  • the viscosity at 25 ° C. is ⁇ 1 and ⁇ 1 / ⁇ 0 is 3.0 or less, Maximum exotherm of DSC curve obtained when the temperature is raised from 30 ° C. to 300 ° C.
  • the photosensitive resin composition peak temperatures T 1 is 185 ° C. or less at the peak is provided.
  • an electronic device provided with a cured film of the above-described photosensitive resin composition is provided.
  • the photosensitive resin composition which concerns on this embodiment is a photosensitive resin composition used in order to form a permanent film
  • the photosensitive resin composition is a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so that the solid content is 30%.
  • the initial viscosity at 25 ° C. before storage is ⁇ 0 and the temperature is 40 ⁇ 1.
  • the viscosity at 25 ° C. after storage for 7 days at ° C. as ⁇ 1, ⁇ 1 / ⁇ 0 is 3.0 or less.
  • the photosensitive resin composition was heated from 30 ° C. to 300 ° C.
  • the peak temperature T 1 at the maximum exothermic peak of the DSC curve obtained in 1 is 185 ° C. or lower.
  • the present inventor controls photosensitivity by simultaneously controlling the ratio ( ⁇ 1 / ⁇ 0 ) between the initial viscosity ⁇ 0 and the viscosity ⁇ 1 after storage and the peak temperature T 1 at the maximum exothermic peak of the DSC curve. It was newly found that it can contribute to the improvement of the balance between the temporal stability of the resin composition and the mechanical properties of the cured film. Examples of mechanical properties include properties evaluated by tensile elongation, tensile modulus, glass transition temperature, linear expansion coefficient, 5% weight loss temperature, stress, and the like.
  • the present embodiment provides a photosensitive resin composition having ⁇ 1 / ⁇ 0 of 3.0 or less and a peak temperature T 1 of 185 ° C. or less based on such knowledge. Therefore, according to this embodiment, it is possible to realize a photosensitive resin composition having an excellent balance between stability with time and mechanical properties of a cured film.
  • the photosensitive resin composition is used for forming a permanent film.
  • the permanent film is composed of a cured film obtained by curing the photosensitive resin composition.
  • a permanent film is formed by curing the coating film by heat treatment or the like.
  • Examples of the permanent film formed using the photosensitive resin composition include an interlayer film, a surface protective film, and a dam material.
  • the application of the permanent film is not limited to these.
  • the interlayer film refers to an insulating film provided in a multilayer structure, and the kind thereof is not particularly limited.
  • Examples of the interlayer film include those used in semiconductor device applications such as an interlayer insulating film constituting a multilayer wiring structure of a semiconductor element, a buildup layer or a core layer constituting a circuit board.
  • the interlayer film for example, a flattening film that covers a thin film transistor (TFT) in the display device, a liquid crystal alignment film, and a protrusion provided on a color filter substrate of an MVA (Multi Domain Vertical Alignment) type liquid crystal display device
  • TFT thin film transistor
  • MVA Multi Domain Vertical Alignment
  • the surface protective film refers to an insulating film that is formed on the surface of an electronic component or an electronic device and protects the surface, and the type thereof is not particularly limited. Examples of such a surface protective film include a passivation film or a buffer coat layer provided on a semiconductor element, or a cover coat provided on a flexible substrate.
  • the dam material is a spacer used to form a hollow portion for arranging an optical element or the like on the substrate.
  • the photosensitive resin composition is a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so that the solid content is 30%.
  • the initial viscosity at 25 ° C. before storage is ⁇ 0 and the temperature is 40 ⁇ 1.
  • the viscosity at 25 ° C. after storage for 7 days at ° C. as ⁇ 1, ⁇ 1 / ⁇ 0 is 3.0 or less.
  • ⁇ 1 / ⁇ 0 is 2.0 or less.
  • the lower limit value of ⁇ 1 / ⁇ 0 is not particularly limited, but can be, for example, 0.9 or more.
  • the initial viscosity ⁇ 0 is preferably, for example, from 1 cp to 2000 cp. This makes it easy to set ⁇ 1 / ⁇ 0 to the above range. In addition, workability and film formability can be effectively improved.
  • the initial viscosity ⁇ 0 is prepared by, for example, preparing a varnish-like photosensitive resin composition by dissolving each component described later in an organic solvent so as to have a solid content of 30% and stirring the mixture. It can be defined as the viscosity at 25 ° C. measured within hours.
  • the viscosity ⁇ 1 is preferably, for example, from 1 cp to 2000 cp. This makes it easy to set ⁇ 1 / ⁇ 0 to the above range. Further, it is possible to contribute to improvement of a process margin in the production of a permanent film.
  • the viscosity ⁇ 1 is adjusted to a temperature of 40 immediately after preparing a varnish-like photosensitive resin composition by, for example, dissolving each component described later in an organic solvent so as to have a solid content of 30% and stirring. It can be the viscosity at 25 ° C. measured after storage at ⁇ 1 ° C. for 7 days.
  • the varnish-like photosensitive resin composition is stored by placing an airtight container containing the varnish-like photosensitive resin composition in a clean oven maintained at a temperature of 40 ⁇ 1 ° C. It can be carried out.
  • the photosensitive resin composition is obtained when the temperature is increased from 30 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min using a differential scanning calorimeter after irradiation with g + h + i rays at 300 mJ / cm 2.
  • the peak temperature T 1 at the maximum exothermic peak of the obtained DSC curve is 185 ° C. or lower.
  • the peak temperature T 1 is particularly preferably 180 ° C. or lower.
  • the peak temperature T 1 is preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. Thereby, it can suppress that hardening reaction advances with thermal histories, such as prebaking before post-cure, and can contribute to process stability.
  • the present embodiment by appropriately adjusting the kind and amount of the component contained in the photosensitive resin composition, it is possible to control the peak temperature T 1. In the control of the peak temperature T 1, it is particularly important to adjust the type and amount of solids.
  • the photosensitive resin composition contains an alkali-soluble resin (A) and a photosensitive agent (B). Thereby, the photosensitive resin film which can be patterned by lithography can be formed using the photosensitive resin composition.
  • the alkali-soluble resin (A) includes, for example, acrylic resins such as phenol resin, hydroxystyrene resin, methacrylic acid resin and methacrylic ester resin, precursors having amide bonds such as polybenzoxazole precursor and polyimide precursor, and the like 1 type or 2 or more types selected from resin obtained by spin-drying
  • acrylic resins such as phenol resin, hydroxystyrene resin, methacrylic acid resin and methacrylic ester resin
  • precursors having amide bonds such as polybenzoxazole precursor and polyimide precursor, and the like 1 type or 2 or more types selected from resin obtained by spin-drying
  • the cyclic olefin-based resin includes a copolymer having a structural unit represented by the following formula (1a) and a structural unit represented by the following formula (1b). Can be mentioned.
  • n is 0, 1 or 2.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 10 carbon atoms.
  • A is a structural unit represented by the following formula (2), formula (3), formula (4), formula (5), or formula (6).
  • the molar ratio of the structural unit represented by the formula (1a) is not particularly limited, but is particularly preferably 10 or more and 90 or less with respect to 100 as the whole copolymer.
  • the molar ratio of the structural unit represented by the formula (1b) is not particularly limited, but is particularly preferably 10 or more and 90 or less with respect to 100 as the whole copolymer.
  • R 5 and R 6 are each independently hydrogen or an organic group having 1 to 12 carbon atoms
  • R 7 is hydrogen, an alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms
  • R 8 , R 9 and R 10 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms)
  • R 11 is an organic group having 1 to 10 carbon atoms
  • the copolymer is a structural unit represented by the above formula (1b), for example, each structural unit represented by the above formula (2), formula (3), formula (4), formula (5) and formula (6). 1 type or 2 types or more can be included.
  • 1 type or 2 types or more can be included.
  • these performances can be adjusted by appropriately selecting the structural unit represented by the above formula (1b) contained in the copolymer.
  • each structural unit represented by the above formula (2) can be determined independently. The same applies to each of the structural unit represented by the above formula (1a), the structural unit represented by the above formula (3), the structural unit represented by the formula (4), and the structural unit represented by the formula (5). is there.
  • Examples of the organic group having 1 to 10 carbon atoms constituting R 1 , R 2 , R 3 and R 4 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, and a cycloalkyl group.
  • the organic group may be a carboxyl group or an organic group having a hetero ring such as an epoxy ring or an oxetane ring.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned.
  • alkenyl group examples include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group.
  • Examples of the alkylidene group include a methylidene group and an ethylidene group.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the alkaryl group include a tolyl group and a xylyl group.
  • Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • one or more hydrogen atoms may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • At least one of R 1 , R 2 , R 3 and R 4 is preferably an organic group having an oxetane ring.
  • the alkali-soluble resin (A) includes a polymer containing an oxetanyl group.
  • any one of R 1 , R 2 , R 3 and R 4 is an organic group having an oxetane ring, and the other is hydrogen. Is particularly preferred.
  • Examples of the organic group having an oxetane ring include those represented by the following formula (7).
  • X is a single bond or a divalent organic group having 1 to 6 carbon atoms
  • Y is hydrogen or an alkyl group having 1 to 7 carbon atoms.
  • the divalent organic group constituting X is a linear or branched divalent hydrocarbon group which may have any one or more of oxygen, nitrogen and silicon.
  • an amino group (—NR—), an amide bond (—NHC ( ⁇ O) —), an ester bond (—C ( ⁇ O) —O—), a carbonyl group (—C ( ⁇ O) —) or an ether
  • Those having at least one linking group such as a bond (—O—) in the main chain are more preferable, and those having at least one carbonyl group or ether bond in the main chain as a linking group are particularly preferable.
  • One or more hydrogen atoms in the organic group constituting X may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • the alkyl group constituting Y is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl. Group, and heptyl group.
  • One or more hydrogen atoms contained in the alkyl group constituting Y may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • the organic group having 1 to 12 carbon atoms constituting R 5 and R 6 is particularly preferably, for example, an organic group containing an epoxy ring or an oxetanine ring, or an alkyl group.
  • Alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl Groups, nonyl groups, decyl groups, undecyl groups, and dodecyl groups.
  • One or more hydrogen atoms contained in R 5 and R 6 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • Examples of the alkyl group having 1 to 12 carbon atoms constituting R 7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and pentyl.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms constituting R 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • One or more hydrogen atoms contained in R 7 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • Examples of the alkyl group having 1 to 12 carbon atoms constituting R 8 , R 9 and R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, Examples thereof include tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, and dodecyl group.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms constituting R 8 , R 9 and R 10 include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • One or more hydrogen atoms contained in R 8 , R 9 and R 10 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • Examples of the organic group having 1 to 10 carbon atoms constituting R 11 include an organic group containing an epoxy ring or an oxetane ring, or an alkyl group.
  • Alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl Groups, nonyl groups and decyl groups.
  • One or more hydrogen atoms contained in R 11 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • alkali-soluble resin (A) is a low molecular weight component, and is a monomer represented by the following formula (8), a monomer represented by the following formula (9), a monomer represented by the following formula (10), and a maleic anhydride. Or 2 or more types may be included.
  • n, R 1 , R 2 , R 3 and R 4 can be those exemplified in the above formula (1a))
  • R 7 can be exemplified in the above formula (3)).
  • R 11 can be exemplified in the above formula (5)).
  • content of alkali-soluble resin (A) in the photosensitive resin composition is 20 mass% or more with respect to the whole solid content of the photosensitive resin composition, and is 30 mass% or more. More preferably. Thereby, the sclerosis
  • the content of the alkali-soluble resin (A) in the photosensitive resin composition is preferably 90% by mass or less, more preferably 80% by mass or less, based on the entire solid content of the photosensitive resin composition. Is more preferred. Thereby, the resolution in lithography can be improved.
  • solid content of the photosensitive resin composition refers to the component except the solvent contained in the photosensitive resin composition.
  • the photosensitive agent (B) contains, for example, a diazoquinone compound.
  • a diazoquinone compound used as the photosensitive agent (B) include those exemplified below.
  • N2 is an integer from 1 to 5
  • Q is any one of the structures (a), (b) and (c) shown below, or a hydrogen atom.
  • at least one of Q contained in each compound is any one of the structure (a), the structure (b), and the structure (c).
  • an o-naphthoquinonediazidesulfonic acid derivative in which Q is the structure (a) or the structure (b) is more preferable.
  • the content of the photosensitive agent (B) in the photosensitive resin composition is preferably 5% by mass or more with respect to the entire solid content of the photosensitive resin composition, and is preferably 10% by mass or more. It is more preferable.
  • the content of the photosensitive agent (B) in the photosensitive resin composition is preferably 40% by mass or less, and preferably 30% by mass or less, based on the entire solid content of the photosensitive resin composition. More preferred.
  • the photosensitive resin composition may contain the crosslinking agent (C).
  • the crosslinking agent (C) preferably contains, for example, a compound having a hetero ring as a reactive group, and particularly preferably contains a compound having a glycidyl group or an oxetanyl group.
  • Examples of the compound having a glycidyl group used as the crosslinking agent (C) include an epoxy compound.
  • the epoxy compound include n-butyl glycidyl ether, 2-ethoxyhexyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerol polyglycidyl ether.
  • Glycidyl ether such as sorbitol polyglycidyl ether, glycidyl ether of bisphenol A (or F), glycidyl ether such as adipic acid diglycidyl ester, o-phthalic acid diglycidyl ester, 3,4-epoxycyclohexylmethyl (3,4) -Epoxycyclohexane) carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy -6-methylcyclohexane) carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, dicyclopentanediene oxide, bis (2,3-epoxycyclopentyl) ether, and Celoxide made by Daicel Corporation 2021, celoxide 2081, ceroxide 2083, ceroxide 2085, celoxide 8000, epoxide GT401, and the like, 2,2 ′-(
  • bisphenols such as LX-01 (manufactured by Daiso Corporation), jER1001, 1002, 1003, 1004, 1007, 1009, 1010, and 828 (trade names; manufactured by Mitsubishi Chemical Corporation)
  • a type epoxy resin bisphenol F type epoxy resin such as jER807 (trade name; manufactured by Mitsubishi Chemical Corporation), jER152, 154 (trade name; manufactured by Mitsubishi Chemical Corporation), EPPN201, 202 (trade name; Japan)
  • Phenolic novolak type epoxy resins such as EOCN102, 103S, 104S, 1020, 1025, 1027 (trade name; manufactured by Nippon Kayaku Co., Ltd.), jER157S70 (trade name; Mitsubishi Chemical Corporation) Cresol novolac type epoxy resin, Araldite CY179, 184 (trade name; Hunts) Advanced Materials), ERL-4206, 4221, 4234, 4299 (trade name; manufactured by Dow Chemical), Epicron 200, 400 (trade name; manufactured by DIC Corporation), jER871, 872 (trade name;
  • Examples of the compound having an oxetanyl group used as the crosslinking agent (C) include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, bis [1-ethyl (3-oxetanyl)] methyl.
  • content of the crosslinking agent (C) in the photosensitive resin composition is 10 mass% or more with respect to the whole solid content of the photosensitive resin composition, and is 15 mass% or more. It is more preferable.
  • the content of the crosslinking agent (C) in the photosensitive resin composition is preferably 50% by mass or less, and preferably 40% by mass or less, based on the entire solid content of the photosensitive resin composition. More preferred.
  • the photosensitive resin composition may contain the adhesion assistant (D).
  • the adhesion assistant (D) is not particularly limited, but may include a silane coupling agent such as aminosilane, epoxy silane, acrylic silane, mercaptosilane, vinyl silane, ureido silane, or sulfide silane. These may be used alone or in combination of two or more. Among these, it is more preferable to use epoxysilane from the viewpoint of effectively improving the adhesion to other members.
  • aminosilanes include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, and ⁇ -aminopropyl.
  • Methyldimethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldimethoxysilane, N - ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, N-phenyl- ⁇ -amino-propyltrimethoxysilane, and the like.
  • Examples of the epoxy silane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • Examples of the acrylic silane include ⁇ - (methacryloxypropyl) trimethoxysilane, ⁇ - (methacryloxypropyl) methyldimethoxysilane, and ⁇ - (methacryloxypropyl) methyldiethoxysilane.
  • Examples of mercaptosilane include ⁇ -mercaptopropyltrimethoxysilane.
  • Examples of vinyl silane include vinyl tris ( ⁇ -methoxyethoxy) silane, vinyl triethoxy silane, and vinyl trimethoxy silane.
  • Examples of ureidosilane include 3-ureidopropyltriethoxysilane.
  • Examples of the sulfide silane include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
  • the content of the adhesion assistant (D) in the photosensitive resin composition is preferably 1% by mass or more with respect to the entire solid content of the photosensitive resin composition, and preferably 2% by mass or more. More preferably.
  • the content of the adhesion assistant (D) in the photosensitive resin composition is preferably 20% by mass or less, and preferably 15% by mass or less, based on the entire solid content of the photosensitive resin composition. Is more preferable.
  • the photosensitive resin composition may contain a surfactant (E).
  • the surfactant (E) includes, for example, a compound containing a fluorine group (for example, a fluorinated alkyl group) or a silanol group, or a compound having a siloxane bond as a main skeleton.
  • a fluorine group for example, a fluorinated alkyl group
  • a silanol group for example, a fluorinated alkyl group
  • a compound having a siloxane bond as a main skeleton.
  • the surfactant (E) it is more preferable to use a fluorosurfactant or a silicone surfactant, and it is particularly preferable to use a fluorosurfactant.
  • Examples of the surfactant (E) include, but are not limited to, Megafac F-554, F-556, and F-557 manufactured by DIC Corporation.
  • content of surfactant (E) in the photosensitive resin composition is 0.1 mass% or more with respect to the whole solid content of the photosensitive resin composition, 0.2 More preferably, it is at least mass%.
  • the content of the surfactant (E) in the photosensitive resin composition is preferably 3% by mass or less, preferably 2% by mass or less, based on the entire solid content of the photosensitive resin composition. Is more preferable.
  • the photosensitive resin composition may contain the catalyst (F).
  • the catalyst (F) opens a cyclic ether group contained in the alkali-soluble resin (A) or the cross-linking agent (C), cross-links between the alkali-soluble resins (A), cross-links between the cross-linking agents (C), alkali-soluble resin It promotes the crosslinking of (A) and the crosslinking agent (C). Therefore, it becomes possible to improve the reactivity of the photosensitive resin composition and contribute to the mechanical properties of the cured film.
  • the catalyst (F) can contain, for example, a photobase generator that generates a base by light.
  • a photobase generator that generates a base by light.
  • the photobase generator it is possible to suppress the time-dependent change caused by the progress of the curing reaction before the lithography process. Therefore, the use of a photobase generator as the catalyst (F) improves the balance between the temporal stability of the photosensitive resin composition and the mechanical properties of the cured film formed using the photosensitive resin composition. Can contribute.
  • the photobase generator as the catalyst (F) is not particularly limited, but includes, for example, one or more of the following.
  • the content of the catalyst (F) in the photosensitive resin composition is preferably 0.1% by mass or more based on the entire solid content of the photosensitive resin composition, and is 0.5% by mass. More preferably, it is more preferably 0.7% by mass or more.
  • the content of the catalyst (F) in the photosensitive resin composition is preferably 10% by mass or less, more preferably 3% by mass or less, based on the entire solid content of the photosensitive resin composition. Preferably, it is particularly preferably 1.5% by mass or less.
  • antioxidant can include, for example, one or more selected from the group of phenolic antioxidants, phosphorus antioxidants, and thioether antioxidants.
  • the filler can contain 1 type, or 2 or more types selected from inorganic fillers, such as a silica, for example.
  • the sensitizer is selected from the group of, for example, anthracene, xanthone, anthraquinone, phenanthrene, chrysene, benzpyrene, fluoracene, rubrene, pyrene, indanthrine and thioxanthen-9-ones 1 type, or 2 or more types can be included.
  • the photosensitive resin composition can be formed into a varnish by dissolving the above-described components in a solvent.
  • the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, methyl isobutyl carbinol (MIBC), gamma butyrolactone (GBL), N-methylpyrrolidone (NMP), methyl n- One or more of amyl ketone (MAK), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether (DEGMEE), diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and ethyl lactate may be included.
  • the solvent which can be used in this embodiment is not limited to these.
  • the electronic device 100 includes an insulating film 20 that is a permanent film composed of, for example, a cured film of the above-described photosensitive resin composition.
  • the electronic device 100 according to the present embodiment is not particularly limited as long as it includes an insulating film formed of a photosensitive resin composition.
  • a display device having the insulating film 20 as a planarizing film or a microlens, or an insulating device Examples thereof include a semiconductor device having a multilayer wiring structure using the film 20 as an interlayer insulating film.
  • FIG. 1 is a cross-sectional view illustrating an example of the electronic device 100.
  • FIG. 1 illustrates the case where the electronic device 100 is a liquid crystal display device and the insulating film 20 is used as a planarization film.
  • An electronic device 100 illustrated in FIG. 1 is provided on, for example, a substrate 10, a transistor 30 provided on the substrate 10, an insulating film 20 provided on the substrate 10 so as to cover the transistor 30, and the insulating film 20. Wiring 40.
  • the substrate 10 is, for example, a glass substrate.
  • the transistor 30 is a thin film transistor that constitutes a switching element of a liquid crystal display device, for example.
  • the transistor 30 shown in FIG. 1 includes, for example, a gate electrode 31, a source electrode 32, a drain electrode 33, a gate insulating film 34, and a semiconductor layer 35.
  • the gate electrode 31 is provided on the substrate 10, for example.
  • the gate insulating film 34 is provided on the substrate 10 so as to cover the gate electrode 31.
  • the semiconductor layer 35 is provided on the gate insulating film 34.
  • the semiconductor layer 35 is, for example, a silicon layer.
  • the source electrode 32 is provided on the substrate 10 so that a part thereof is in contact with the semiconductor layer 35.
  • the drain electrode 33 is provided on the substrate 10 so as to be separated from the source electrode 32 and partially in contact with the semiconductor layer 35.
  • the insulating film 20 functions as a planarization film for eliminating a step due to the transistor 30 and the like and forming a flat surface on the substrate 10. Moreover, the insulating film 20 is comprised with the hardened
  • the insulating film 20 is provided with an opening 22 that penetrates the insulating film 20 so as to be connected to the drain electrode 33.
  • a wiring 40 connected to the drain electrode 33 is formed on the insulating film 20 and in the opening 22.
  • the wiring 40 functions as a pixel electrode that constitutes a pixel together with the liquid crystal.
  • An alignment film 90 is provided on the insulating film 20 so as to cover the wiring 40.
  • a counter substrate 12 is disposed above one surface of the substrate 10 where the transistor 30 is provided so as to face the substrate 10.
  • a wiring 42 is provided on one surface of the counter substrate 12 facing the substrate 10. The wiring 42 is provided at a position facing the wiring 40.
  • An alignment film 92 is provided on the one surface of the counter substrate 12 so as to cover the wiring 42.
  • the liquid crystal constituting the liquid crystal layer 14 is filled between the substrate 10 and the counter substrate 12.
  • the electronic device 100 shown in FIG. 1 can be formed as follows, for example. First, the transistor 30 is formed over the substrate 10. Next, the photosensitive resin composition is applied to one surface of the substrate 10 on which the transistor 30 is provided by a printing method or a spin coating method, and the insulating film 20 that covers the transistor 30 is formed. Next, the insulating film 20 is exposed to ultraviolet light or the like and developed to pattern the insulating film 20. Thereby, an opening 22 is formed in a part of the insulating film 20. Next, the insulating film 20 is heated and cured. As a result, the insulating film 20 that is a planarizing film is formed on the substrate 10. Next, a wiring 40 connected to the drain electrode 33 is formed in the opening 22 of the insulating film 20. Thereafter, the counter substrate 12 is disposed on the insulating film 20, and liquid crystal is filled between the counter substrate 12 and the insulating film 20 to form the liquid crystal layer 14. As a result, the electronic device 100 shown in FIG. 1 is formed.
  • MEK (320 g) was added to the solution, and this was added with sodium hydroxide (12.5 g, 0.31 mol), butanol (463.1 g, 6.25 mol), toluene (480 g). Added to the suspension and mixed at 45 ° C. for 3 hours. The mixture is cooled to 40 ° C., treated with formic acid (88% by mass aqueous solution, 49.0 g, 0.94 mol) and protonated, and then MEK and water are added to separate the aqueous layer. Inorganic residues were removed. Subsequently, methanol and hexane were added and the organic layer was separated to remove unreacted monomers.
  • weight average molecular weight (Mw) and number average molecular weight (Mn) of the obtained polymer a polystyrene equivalent value obtained from a calibration curve of standard polystyrene (PS) obtained by GPC measurement was used.
  • PS standard polystyrene
  • the reaction mixture was then cooled to room temperature and diluted by adding 226 g of THF.
  • the diluted solution was poured into a large amount of methanol to precipitate a polymer.
  • the polymer was collected by filtration, further washed with methanol, and then vacuum-dried at 30 ° C. for 16 hours.
  • the polymer yield was 64.6 g and the yield was 51%.
  • the polymer had a weight average molecular weight Mw of 13,500 and a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.71.
  • the obtained polymer had a structure represented by the following formula (12).
  • the oxetane norbornene used in Synthesis Example 2 was synthesized as follows. First, in a reaction vessel equipped with a stirrer and a cooler, 700.0 g of dicyclopentadiene and 100.0 g of liquid paraffin are added, and the decomposition product obtained by heating this at 160 ° C. to 170 ° C. is cooled with a cooler ( The product was cooled at a cooling water temperature of 5 ° C. to obtain cyclopentadiene.
  • the 1 H-NMR spectrum and 13 C-NMR spectrum were analyzed, and it was confirmed that the obtained oxetane norbornene had a structure represented by the above formula.
  • the measured NMR spectrum data were as follows. 1 H-NMR (400 MHz, CDCl 3 ): 0.91 (t, endo-3H), 0.92 (t, exo-3H), 1.29 (d, endo-1H), 1.37-1. 47 (m, 2H), 1.52 (d, exo-1H), 1.73-1.80 (m, 2H), 1.90-1.97 (m, 1H), 2.26-2.
  • the polymer had a weight average molecular weight Mw of 10,330 and a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 2.35.
  • the oxetane norbornene used in this synthesis example was synthesized by the same method as in Synthesis Example 2 above.
  • the obtained polymer had a structure represented by the following formula (14).
  • a varnish-like photosensitive resin composition was prepared for each of Examples 1-4 and Comparative Examples 1-2.
  • Alkali-soluble resin polymer 1 Polymer polymer obtained by Synthesis Example 1 above: Polymer polymer obtained by Synthesis Example 2 above: Polymer obtained by Synthesis Example 3 above
  • Crosslinking agent 1 Compound represented by the following formula (15) (Techmore VG3101L, manufactured by Printec Co., Ltd.)
  • Crosslinking agent 2 Bisphenol A type epoxy compound (LX-01, manufactured by Daiso Corporation)
  • Adhesion aid 1 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, manufactured by Shin-Etsu Silicone Co., Ltd.)
  • Adhesion aid 2 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Silicone Co., Ltd.)
  • Catalyst catalyst 1 Imidazole (1B2PZ, manufactured by Shikoku Chemicals Co., Ltd.)
  • Catalyst 2 Photobase generator represented by the following formula (16) (WPBG-140, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Catalyst 3 Photobase generator represented by the following formula (17) (WPBG-082, manufactured by Wako Pure Chemical Industries, Ltd.)
  • DSC measurement For each example and each comparative example, DSC measurement was performed as follows. First, the obtained photosensitive resin composition was applied to a silicon wafer, and the solvent was removed by heat treatment at 80 ° C. for 90 seconds. Next, the photosensitive resin composition was irradiated with g + h + i rays so that the integrated light amount was 300 mJ / cm 2 . Next, the solid content of the photosensitive resin composition was scraped from the silicon wafer surface, and 3 to 5 mg was weighed into an aluminum pan to prepare a sample.
  • a differential scanning calorimeter (DSC7020, Hitachi High-Tech Science Co., Ltd.) is used for the sample under the conditions of a starting temperature of 30 ° C., a measurement temperature range of 30 to 330 ° C., and a heating rate of 10 ° C./min. Scanning calorimetry was performed. The peak temperature (° C.) of the maximum exothermic peak was calculated from the obtained DSC curve.
  • ⁇ 1 / ⁇ 0 was measured as follows. First, the viscosity at 25 ° C. of the varnish-like photosensitive resin composition immediately after preparation was measured using an E-type viscometer, and this was defined as the initial viscosity ⁇ 0 . On the other hand, the sealed container containing the varnish-shaped photosensitive resin composition immediately after preparation was stored in a clean oven maintained at a temperature of 40 ⁇ 1 ° C. for 7 days, and the varnish-shaped photosensitive resin composition after storage was stored. by measuring the viscosity at 25 ° C., which was used as a viscosity eta 1. And ⁇ 1 / ⁇ 0 was calculated from these measurement results.
  • the cured film was produced as follows using the obtained photosensitive resin composition. First, after the photosensitive resin composition was applied to a 6-inch wafer, the solvent was removed by heat treatment at 80 ° C. for 90 seconds. Next, the photosensitive resin composition was heat-treated in an oven to cure the photosensitive resin composition. In the heat treatment, the inside of the oven on which the wafer is placed is replaced with nitrogen at 30 ° C. for 30 minutes, and the temperature is increased to a curing temperature (150 ° C. or 200 ° C.) at a heating rate of 5 ° C./min. This was carried out by holding at temperature (150 ° C. or 200 ° C.) for 90 minutes.
  • the temperature in the oven was lowered to 70 ° C. or less at a temperature drop rate of 5 ° C./min, and the wafer was taken out.
  • the cured film of the photosensitive resin composition was peeled from the wafer using hydrofluoric acid, and dried under conditions of 60 ° C. and 10 hours.
  • the cured film 1 cured at a curing temperature of 150 ° C. and the cured film 2 cured at a curing temperature of 200 ° C. were obtained for each example and each comparative example.
  • the temporal stability of the obtained photosensitive resin compositions was evaluated as follows. First, the photosensitive resin composition was spin-coated on a 4-inch silicon wafer and then baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 ⁇ m. Next, a 10 ⁇ m line and space width 1: 1 mask is used for this thin film with a Canon g + h + i line mask aligner (PLA-501F), and the pattern dimension is 10 ⁇ m line and space width 1: 1. A line and space pattern (sample 1) with a line and space width of 1: 1 is obtained by developing at 23 ° C.
  • Glass transition temperature (Tg), linear expansion coefficient (CTE) Glass transition temperature (Tg), linear expansion coefficient (CTE)
  • Tg Glass transition temperature
  • CTE linear expansion coefficient
  • the glass transition temperature and the linear expansion coefficient of the obtained cured film 1 (curing temperature 150 ° C.) and cured film 2 (curing temperature 200 ° C.) were measured. Measurement is performed on a test piece (width 5 mm ⁇ length 10 mm or more ⁇ thickness 0.005 to 0.01 mm) made of the cured film 1 or the cured film 2 using a thermomechanical analyzer (TMA) at a starting temperature of 30 ° C. The measurement was performed under the conditions of a measurement temperature range of 30 to 400 ° C. and a heating rate of 5 ° C./min. The linear expansion coefficient was determined from the value at 50 to 100 ° C. The results are shown in Table 1.
  • the stress of the cured film formed using the obtained photosensitive resin composition was measured as follows. First, the photosensitive resin composition was applied to an 8-inch 725 ⁇ m thick silicon wafer and subjected to heat treatment at 80 ° C. for 90 seconds to remove the solvent. Next, heat treatment was performed in an oven set at a specified temperature to obtain a cured film having a thickness of about 7 ⁇ m. Next, the warpage of the obtained wafer with a cured film was measured by a thin film stress measurement system (FLX-2320-S, manufactured by Toago Technology), and the film stress was calculated from the measurement result. The results are shown in Table 1.
  • the numerical values outside the parentheses are the weight parts of each component when the alkali-soluble resin is 100 parts by weight.
  • the numerical value in each shows the compounding ratio (mass%) of each component when the total solid content (namely, component except a solvent) of a resin composition is 100 mass%.
  • Examples 1 and 2 were excellent in balance between stability over time and mechanical properties.
  • Comparative Example 1 for example, the tensile elongation rate and the glass transition temperature of the cured film 2 (curing temperature 200 ° C.) are lower than those in Examples 1 and 2, indicating that the mechanical properties are inferior.
  • Comparative Example 2 it can be seen that good results are not obtained in stability over time.
  • the numerical values outside parentheses are the weight parts of each component when the alkali-soluble resin is 100 parts by weight.
  • the numerical value in each shows the compounding ratio (mass%) of each component when the total solid content (namely, component except a solvent) of a resin composition is 100 mass%.
  • Examples 3 and 4 showed excellent stability over time. Moreover, about Example 3, 4, it has been confirmed that the cured film formed using a photosensitive resin composition shows sufficient mechanical characteristics. In particular, in Examples 3 and 4, the cured film obtained by curing the photosensitive resin composition at 200 ° C. for 90 minutes has a tensile elongation of 10 or more, and in terms of tensile elongation compared to Comparative Example 1. It was excellent from.

Abstract

This photosensitive resin composition, which is used to form a permanent film, contains an alkali-soluble resin and a photosensitizer. Letting η0 represent the initial pre-storage viscosity, at 25°C, of a varnish obtained by dissolving this photosensitive resin composition in an organic solvent such that the solid content of said varnish constitutes 30% thereof and letting η1 represent the viscosity of said varnish at 25° after said varnish has been stored for seven days at an air temperature of 40±1°C, η10 is less than or equal to 3.0, and after exposure to g+h+i lines at 300 mJ/cm2, the temperature (T1) of the maximum exothermic peak in a DSC curve obtained for said varnish using a differential scanning calorimeter, with the temperature raised from 30°C to 300°C at a rate of 10°C/min, is less than or equal to 185°C.

Description

感光性樹脂組成物および電子装置Photosensitive resin composition and electronic device
 本発明は、感光性樹脂組成物および電子装置に関し、とくに永久膜を形成するために用いられる感光性樹脂組成物に関する。 The present invention relates to a photosensitive resin composition and an electronic device, and more particularly to a photosensitive resin composition used for forming a permanent film.
 電子装置を構成する絶縁膜として、感光性樹脂組成物を露光して得られる樹脂膜が利用されることがある。このような感光性樹脂組成物に関する技術としては、たとえば特許文献1に記載のものが挙げられる。特許文献1には、不飽和カルボン酸の重合単位および特定の化合物の重合単位を含む共重合体、1,2-キノンジアジド化合物、ならびに潜在性酸発生剤、を含有する感放射線性樹脂組成物が記載されている。 A resin film obtained by exposing a photosensitive resin composition may be used as an insulating film constituting an electronic device. As a technique regarding such a photosensitive resin composition, for example, the one described in Patent Document 1 can be mentioned. Patent Document 1 discloses a radiation-sensitive resin composition containing a copolymer containing a polymerized unit of an unsaturated carboxylic acid and a polymerized unit of a specific compound, a 1,2-quinonediazide compound, and a latent acid generator. Are listed.
特開平9-230596号公報Japanese Patent Laid-Open No. 9-230596
 永久膜を形成するために用いられる感光性樹脂組成物については、その硬化膜が永久膜として十分な機械特性を示すことが求められる。しかしながら、感光性樹脂組成物を用いて形成される硬化膜の機械特性の向上を図る場合において、感光性樹脂組成物の経時安定性の低下を招くおそれがあることが知見された。このため、経時安定性と、硬化膜の機械特性と、のバランスに優れた感光性樹脂組成物が求められていた。 About the photosensitive resin composition used in order to form a permanent film, it is calculated | required that the cured film shows sufficient mechanical characteristics as a permanent film. However, it has been found that when the mechanical properties of a cured film formed using the photosensitive resin composition are improved, the temporal stability of the photosensitive resin composition may be lowered. For this reason, there has been a demand for a photosensitive resin composition having an excellent balance between stability over time and mechanical properties of a cured film.
 本発明によれば、
 永久膜を形成するために用いられる感光性樹脂組成物であって、
 アルカリ可溶性樹脂と、
 感光剤と、
 を含み、
 前記感光性樹脂組成物を固形分量30%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温40±1℃で7日間保管した後の25℃における粘度をηとして、η/ηが3.0以下であり、
 g+h+i線を300mJ/cmで照射した後において、示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から300℃まで昇温した際に得られるDSC曲線の、最大発熱ピークにおけるピーク温度Tが185℃以下である感光性樹脂組成物が提供される。
According to the present invention,
A photosensitive resin composition used to form a permanent film,
An alkali-soluble resin;
A photosensitizer,
Including
For a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so as to have a solid content of 30%, the initial viscosity at 25 ° C. before storage is η 0 and the product is stored for 7 days at a temperature of 40 ± 1 ° C. The viscosity at 25 ° C. is η 1 and η 1 / η 0 is 3.0 or less,
Maximum exotherm of DSC curve obtained when the temperature is raised from 30 ° C. to 300 ° C. using a differential scanning calorimeter after irradiation with g + h + i line at 300 mJ / cm 2 under the condition of a temperature rising rate of 10 ° C./min. the photosensitive resin composition peak temperatures T 1 is 185 ° C. or less at the peak is provided.
 本発明によれば、上述の感光性樹脂組成物の硬化膜を備える電子装置が提供される。 According to the present invention, an electronic device provided with a cured film of the above-described photosensitive resin composition is provided.
 本発明によれば、経時安定性と、硬化膜の機械特性と、のバランスに優れた感光性樹脂組成物を実現することができる。 According to the present invention, it is possible to realize a photosensitive resin composition having an excellent balance between stability over time and mechanical properties of a cured film.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
電子装置の一例を示す断面図である。It is sectional drawing which shows an example of an electronic device.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 本実施形態に係る感光性樹脂組成物は、永久膜を形成するために用いられる感光性樹脂組成物であって、アルカリ可溶性樹脂(A)と、感光剤(B)と、を含む。
 感光性樹脂組成物は、当該感光性樹脂組成物を固形分量30%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温40±1℃で7日間保管した後の25℃における粘度をηとして、η/ηが3.0以下である。また、感光性樹脂組成物は、g+h+i線を300mJ/cmで照射した後において、示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から300℃まで昇温した際に得られるDSC曲線の、最大発熱ピークにおけるピーク温度Tが185℃以下である。
The photosensitive resin composition which concerns on this embodiment is a photosensitive resin composition used in order to form a permanent film | membrane, Comprising: An alkali-soluble resin (A) and a photosensitive agent (B) are included.
The photosensitive resin composition is a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so that the solid content is 30%. The initial viscosity at 25 ° C. before storage is η 0 and the temperature is 40 ± 1. the viscosity at 25 ° C. after storage for 7 days at ° C. as η 1, η 1 / η 0 is 3.0 or less. In addition, the photosensitive resin composition was heated from 30 ° C. to 300 ° C. under a temperature rising rate of 10 ° C./min using a differential scanning calorimeter after irradiating g + h + i rays at 300 mJ / cm 2. The peak temperature T 1 at the maximum exothermic peak of the DSC curve obtained in 1 is 185 ° C. or lower.
 本発明者は、初期粘度ηと保管後の粘度ηとの比(η/η)と、DSC曲線の最大発熱ピークにおけるピーク温度Tと、を同時に制御することにより、感光性樹脂組成物の経時安定性と硬化膜の機械特性のバランスの向上に寄与することができることを新たに知見した。なお、機械特性としては、たとえば引張伸び率、引張弾性率、ガラス転移温度、線膨張係数、5%重量減少温度、および応力等により評価される特性が挙げられる。
 本実施形態は、このような知見に基づいて、η/ηが3.0以下であり、かつピーク温度Tが185℃以下である感光性樹脂組成物を提供するものである。したがって、本実施形態によれば、経時安定性と、硬化膜の機械特性と、のバランスに優れた感光性樹脂組成物を実現することが可能となる。
The present inventor controls photosensitivity by simultaneously controlling the ratio (η 1 / η 0 ) between the initial viscosity η 0 and the viscosity η 1 after storage and the peak temperature T 1 at the maximum exothermic peak of the DSC curve. It was newly found that it can contribute to the improvement of the balance between the temporal stability of the resin composition and the mechanical properties of the cured film. Examples of mechanical properties include properties evaluated by tensile elongation, tensile modulus, glass transition temperature, linear expansion coefficient, 5% weight loss temperature, stress, and the like.
The present embodiment provides a photosensitive resin composition having η 1 / η 0 of 3.0 or less and a peak temperature T 1 of 185 ° C. or less based on such knowledge. Therefore, according to this embodiment, it is possible to realize a photosensitive resin composition having an excellent balance between stability with time and mechanical properties of a cured film.
 以下、本実施形態に係る感光性樹脂組成物、および感光性樹脂組成物を用いて形成される永久膜を備える電子装置100について詳細に説明する。 Hereinafter, the photosensitive resin composition according to the present embodiment and the electronic device 100 including the permanent film formed using the photosensitive resin composition will be described in detail.
 まず、本実施形態に係る感光性樹脂組成物について説明する。
 感光性樹脂組成物は、永久膜を形成するために用いられる。上記永久膜は、感光性樹脂組成物を硬化させることにより得られる硬化膜により構成される。本実施形態においては、たとえば感光性樹脂組成物により構成される塗膜を露光および現像により所望の形状にパターニングした後、当該塗膜を熱処理等によって硬化させることにより永久膜が形成される。
First, the photosensitive resin composition according to this embodiment will be described.
The photosensitive resin composition is used for forming a permanent film. The permanent film is composed of a cured film obtained by curing the photosensitive resin composition. In this embodiment, for example, after a coating film composed of a photosensitive resin composition is patterned into a desired shape by exposure and development, a permanent film is formed by curing the coating film by heat treatment or the like.
 感光性樹脂組成物を用いて形成される永久膜としては、たとえば層間膜、表面保護膜、またはダム材が挙げられる。なお、永久膜の用途は、これらに限定されるものではない。
 層間膜は、多層構造中に設けられる絶縁膜を指し、その種類はとくに限定されない。層間膜としては、たとえば半導体素子の多層配線構造を構成する層間絶縁膜、回路基板を構成するビルドアップ層もしくはコア層等の半導体装置用途において用いられるものが挙げられる。また、層間膜としては、たとえば表示装置における薄膜トランジスタ(TFT(Thin Film Transistor))を覆う平坦化膜、液晶配向膜、MVA(Multi Domain Vertical Alignment)型液晶表示装置のカラーフィルタ基板上に設けられる突起、もしくは有機EL素子の陰極を形成するための隔壁等の表示装置用途において用いられるものも挙げられる。
 表面保護膜は、電子部品や電子装置の表面に形成され、当該表面を保護するための絶縁膜を指し、その種類はとくに限定されない。このような表面保護膜としては、たとえば半導体素子上に設けられるパッシベーション膜もしくはバッファーコート層、またはフレキシブル基板上に設けられるカバーコートが挙げられる。また、ダム材は、基板上に光学素子等を配置するための中空部分を形成するために用いられるスペーサである。
Examples of the permanent film formed using the photosensitive resin composition include an interlayer film, a surface protective film, and a dam material. The application of the permanent film is not limited to these.
The interlayer film refers to an insulating film provided in a multilayer structure, and the kind thereof is not particularly limited. Examples of the interlayer film include those used in semiconductor device applications such as an interlayer insulating film constituting a multilayer wiring structure of a semiconductor element, a buildup layer or a core layer constituting a circuit board. Further, as the interlayer film, for example, a flattening film that covers a thin film transistor (TFT) in the display device, a liquid crystal alignment film, and a protrusion provided on a color filter substrate of an MVA (Multi Domain Vertical Alignment) type liquid crystal display device Or what is used in display apparatus uses, such as a partition for forming the cathode of an organic EL element, is also mentioned.
The surface protective film refers to an insulating film that is formed on the surface of an electronic component or an electronic device and protects the surface, and the type thereof is not particularly limited. Examples of such a surface protective film include a passivation film or a buffer coat layer provided on a semiconductor element, or a cover coat provided on a flexible substrate. The dam material is a spacer used to form a hollow portion for arranging an optical element or the like on the substrate.
 感光性樹脂組成物は、当該感光性樹脂組成物を固形分量30%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温40±1℃で7日間保管した後の25℃における粘度をηとして、η/ηが3.0以下である。これにより、前述したとおり、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて形成される硬化膜の機械特性と、のバランスの向上に寄与することができる。また、経時安定性を良好なものとすることにより、作業性や成膜性においても優れた感光性樹脂組成物を実現することが可能となる。なお、経時安定性と機械特性のバランスをより効果的に向上させる観点からは、η/ηが2.0以下であることがとくに好ましい。また、η/ηの下限値は、とくに限定されないが、たとえば0.9以上とすることができる。 The photosensitive resin composition is a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so that the solid content is 30%. The initial viscosity at 25 ° C. before storage is η 0 and the temperature is 40 ± 1. the viscosity at 25 ° C. after storage for 7 days at ° C. as η 1, η 1 / η 0 is 3.0 or less. Thereby, as above-mentioned, it can contribute to the improvement of the balance of the temporal stability of the photosensitive resin composition, and the mechanical property of the cured film formed using the photosensitive resin composition. Moreover, it becomes possible to implement | achieve the photosensitive resin composition excellent also in workability | operativity and film formability by making temporal stability favorable. From the viewpoint of more effectively improving the balance between stability over time and mechanical properties, it is particularly preferable that η 1 / η 0 is 2.0 or less. Further, the lower limit value of η 1 / η 0 is not particularly limited, but can be, for example, 0.9 or more.
 初期粘度ηは、たとえば1cp以上2000cp以下であることが好ましい。これにより、η/ηを上述の範囲とすることが容易となる。また、作業性や成膜性を効果的に向上させることも可能となる。本実施形態においては、初期粘度ηを、たとえば後述する各成分を固形分量30%となるように有機溶媒へ溶解させて撹拌することによりワニス状の感光性樹脂組成物を調製した後、12時間以内に測定した25℃における粘度として定義することができる。 The initial viscosity η 0 is preferably, for example, from 1 cp to 2000 cp. This makes it easy to set η 1 / η 0 to the above range. In addition, workability and film formability can be effectively improved. In this embodiment, the initial viscosity η 0 is prepared by, for example, preparing a varnish-like photosensitive resin composition by dissolving each component described later in an organic solvent so as to have a solid content of 30% and stirring the mixture. It can be defined as the viscosity at 25 ° C. measured within hours.
 粘度ηは、たとえば1cp以上2000cp以下であることが好ましい。これにより、η/ηを上述の範囲とすることが容易となる。また、永久膜作製におけるプロセスマージンの向上等に寄与することも可能である。本実施形態においては、粘度ηを、たとえば後述する各成分を固形分量30%となるように有機溶媒へ溶解させて撹拌することによりワニス状の感光性樹脂組成物を調製した直後から気温40±1℃で7日間保管した後に測定した25℃における粘度とすることができる。ここでは、たとえば温度40±1℃に保ったクリーンオーブン内に、上記ワニス状の感光性樹脂組成物を入れた密閉容器を載置することにより、上記ワニス状の感光性樹脂組成物の保管を行うことができる。 The viscosity η 1 is preferably, for example, from 1 cp to 2000 cp. This makes it easy to set η 1 / η 0 to the above range. Further, it is possible to contribute to improvement of a process margin in the production of a permanent film. In the present embodiment, the viscosity η 1 is adjusted to a temperature of 40 immediately after preparing a varnish-like photosensitive resin composition by, for example, dissolving each component described later in an organic solvent so as to have a solid content of 30% and stirring. It can be the viscosity at 25 ° C. measured after storage at ± 1 ° C. for 7 days. Here, for example, the varnish-like photosensitive resin composition is stored by placing an airtight container containing the varnish-like photosensitive resin composition in a clean oven maintained at a temperature of 40 ± 1 ° C. It can be carried out.
 本実施形態においては、感光性樹脂組成物に含まれる成分の種類や配合量を適切に調整することにより、粘度ηおよび粘度η、ならびにη/ηを制御することが可能である。これらの中でも、η/ηの制御においては、固形分の種類や配合量を調整することがとくに重要である。 In this embodiment, it is possible to control the viscosity η 0, the viscosity η 1 , and η 1 / η 0 by appropriately adjusting the type and blending amount of the components contained in the photosensitive resin composition. . Among these, in the control of η 1 / η 0 , it is particularly important to adjust the type and blending amount of the solid content.
 感光性樹脂組成物は、g+h+i線を300mJ/cmで照射した後において、示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から300℃まで昇温した際に得られるDSC曲線の、最大発熱ピークにおけるピーク温度Tが185℃以下である。これにより、前述したとおり、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて形成される硬化膜の機械特性と、のバランスの向上に寄与することができる。本実施形態においては、とくに引張伸び率に基づく耐引張性等に優れた感光性樹脂組成物の実現が可能となる。なお、経時安定性と機械特性のバランスを向上させる観点からは、ピーク温度Tが180℃以下であることがとくに好ましい。一方で、ピーク温度Tは、100℃以上であることが好ましく、120℃以上であることがとくに好ましい。これにより、ポストキュア前におけるプリベーク等の熱履歴によって硬化反応が進んでしまうことを抑制し、プロセスの安定性に寄与することができる。 The photosensitive resin composition is obtained when the temperature is increased from 30 ° C. to 300 ° C. at a temperature increase rate of 10 ° C./min using a differential scanning calorimeter after irradiation with g + h + i rays at 300 mJ / cm 2. The peak temperature T 1 at the maximum exothermic peak of the obtained DSC curve is 185 ° C. or lower. Thereby, as above-mentioned, it can contribute to the improvement of the balance of the temporal stability of the photosensitive resin composition, and the mechanical property of the cured film formed using the photosensitive resin composition. In the present embodiment, it is possible to realize a photosensitive resin composition that is particularly excellent in tensile resistance based on tensile elongation. From the viewpoint of improving the balance between stability over time and mechanical properties, the peak temperature T 1 is particularly preferably 180 ° C. or lower. On the other hand, the peak temperature T 1 is preferably 100 ° C. or higher, and particularly preferably 120 ° C. or higher. Thereby, it can suppress that hardening reaction advances with thermal histories, such as prebaking before post-cure, and can contribute to process stability.
 本実施形態においては、感光性樹脂組成物に含まれる成分の種類や配合量を適切に調整することにより、ピーク温度Tを制御することが可能である。なお、ピーク温度Tの制御においては、固形分の種類や配合量を調整することがとくに重要である。 In the present embodiment, by appropriately adjusting the kind and amount of the component contained in the photosensitive resin composition, it is possible to control the peak temperature T 1. In the control of the peak temperature T 1, it is particularly important to adjust the type and amount of solids.
 感光性樹脂組成物は、アルカリ可溶性樹脂(A)と、感光剤(B)と、を含む。これにより、リソグラフィによるパターニングが可能な感光性の樹脂膜を、感光性樹脂組成物を用いて形成することができる。 The photosensitive resin composition contains an alkali-soluble resin (A) and a photosensitive agent (B). Thereby, the photosensitive resin film which can be patterned by lithography can be formed using the photosensitive resin composition.
(アルカリ可溶性樹脂(A))
 アルカリ可溶性樹脂(A)は、たとえばフェノール樹脂、ヒドロキシスチレン樹脂、メタクリル酸樹脂、メタクリル酸エステル樹脂等のアクリル系樹脂、ポリベンゾオキサゾール前駆体およびポリイミド前駆体等のアミド結合を有する前駆体、ならびに当該前駆体を脱水閉環して得られる樹脂、環状オレフィン構造単位を有する環状オレフィン系樹脂から選択される1種または2種以上を含む。これらの中でも、感光性樹脂組成物の現像性や硬化性、経時安定性、硬化膜の機械特性を向上させる観点からは、環状オレフィン系樹脂を含むことがより好ましい。本実施形態においては、環状オレフィン系樹脂として、下記式(1a)にて示される構造単位および下記式(1b)にて示される構造単位を有する共重合体を含むことがとくに好ましい態様の一例として挙げられる。
(Alkali-soluble resin (A))
The alkali-soluble resin (A) includes, for example, acrylic resins such as phenol resin, hydroxystyrene resin, methacrylic acid resin and methacrylic ester resin, precursors having amide bonds such as polybenzoxazole precursor and polyimide precursor, and the like 1 type or 2 or more types selected from resin obtained by spin-drying | dehydrating and cyclizing a precursor and the cyclic olefin resin which has a cyclic olefin structural unit are included. Among these, from the viewpoint of improving the developability and curability of the photosensitive resin composition, the temporal stability, and the mechanical properties of the cured film, it is more preferable to include a cyclic olefin resin. In the present embodiment, as an example of a particularly preferable embodiment, the cyclic olefin-based resin includes a copolymer having a structural unit represented by the following formula (1a) and a structural unit represented by the following formula (1b). Can be mentioned.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1a)中、nは、0、1または2である。R、R、RおよびRは、それぞれ独立して水素または炭素数1~10の有機基である。Aは、以下の式(2)、式(3)、式(4)、式(5)、または式(6)により示される構造単位である。式(1a)により示される構造単位のモル比は、とくに限定されないが、共重合体全体を100として10以上90以下であることがとくに好ましい。また、式(1b)により示される構造単位のモル比は、とくに限定されないが、共重合体全体を100として10以上90以下であることがとくに好ましい。 In the formula (1a), n is 0, 1 or 2. R 1 , R 2 , R 3 and R 4 are each independently hydrogen or an organic group having 1 to 10 carbon atoms. A is a structural unit represented by the following formula (2), formula (3), formula (4), formula (5), or formula (6). The molar ratio of the structural unit represented by the formula (1a) is not particularly limited, but is particularly preferably 10 or more and 90 or less with respect to 100 as the whole copolymer. Further, the molar ratio of the structural unit represented by the formula (1b) is not particularly limited, but is particularly preferably 10 or more and 90 or less with respect to 100 as the whole copolymer.
Figure JPOXMLDOC01-appb-C000002
(式(2)中、RおよびRは、それぞれ独立して水素、または炭素数1~12の有機基である)
Figure JPOXMLDOC01-appb-C000002
(In formula (2), R 5 and R 6 are each independently hydrogen or an organic group having 1 to 12 carbon atoms)
Figure JPOXMLDOC01-appb-C000003
(式(3)中、Rは、水素、炭素数1~12のアルキル基、または炭素数3~8のシクロアルキル基である)
Figure JPOXMLDOC01-appb-C000003
(In Formula (3), R 7 is hydrogen, an alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms)
Figure JPOXMLDOC01-appb-C000004
(式(4)中、R、RおよびR10は、それぞれ独立して水素、炭素数1~12のアルキル基、または炭素数3~8のシクロアルキル基である)
Figure JPOXMLDOC01-appb-C000004
(In formula (4), R 8 , R 9 and R 10 are each independently hydrogen, an alkyl group having 1 to 12 carbon atoms, or a cycloalkyl group having 3 to 8 carbon atoms)
Figure JPOXMLDOC01-appb-C000005
(式(5)中、R11は炭素数1~10の有機基である)
Figure JPOXMLDOC01-appb-C000005
(In the formula (5), R 11 is an organic group having 1 to 10 carbon atoms)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記共重合体は、上記式(1b)により示される構造単位として、たとえば上記式(2)、式(3)、式(4)、式(5)および式(6)により示される各構造単位のうちの一種または二種以上を含むことができる。これにより、感光性樹脂組成物のリソグラフィ性能、耐溶剤性、硬化性、および経時安定性、ならびに感光性樹脂組成物を用いて形成される硬化膜の機械特性および透過率等の種々の性能を調整することが容易となる。本実施形態においては、上記共重合体中に含まれる上記式(1b)により示される構造単位を適切に選択することにより、これらの性能を調整することが可能である。 The copolymer is a structural unit represented by the above formula (1b), for example, each structural unit represented by the above formula (2), formula (3), formula (4), formula (5) and formula (6). 1 type or 2 types or more can be included. As a result, the lithography performance, solvent resistance, curability, and stability over time of the photosensitive resin composition, and various performances such as mechanical properties and transmittance of the cured film formed using the photosensitive resin composition are achieved. It is easy to adjust. In the present embodiment, these performances can be adjusted by appropriately selecting the structural unit represented by the above formula (1b) contained in the copolymer.
 上記共重合体中に、上記式(2)により示される構造単位が複数存在する場合、上記式(2)により示される各構造単位の構造はそれぞれ独立して決定し得る。これは、上記式(1a)により示される構造単位、上記式(3)により示される構造単位、式(4)により示される構造単位、および式(5)により示される構造単位のそれぞれについて同様である。 When there are a plurality of structural units represented by the above formula (2) in the copolymer, the structure of each structural unit represented by the above formula (2) can be determined independently. The same applies to each of the structural unit represented by the above formula (1a), the structural unit represented by the above formula (3), the structural unit represented by the formula (4), and the structural unit represented by the formula (5). is there.
 R、R、RおよびRを構成する炭素数1~10の有機基としては、たとえばアルキル基、アルケニル基、アルキニル基、アルキリデン基、アリール基、アラルキル基、アルカリル基、およびシクロアルキル基が挙げられる。また、当該有機基は、カルボキシル基、またはエポキシ環もしくはオキセタン環等のヘテロ環を有する有機基であってもよい。
 アルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、およびデシル基が挙げられる。アルケニル基としては、たとえばアリル基、ペンテニル基、およびビニル基が挙げられる。アルキニル基としては、エチニル基が挙げられる。アルキリデン基としては、たとえばメチリデン基、およびエチリデン基が挙げられる。アリール基としては、たとえばフェニル基、およびナフチル基が挙げられる。アラルキル基としては、たとえばベンジル基、およびフェネチル基が挙げられる。アルカリル基としては、たとえばトリル基、キシリル基が挙げられる。シクロアルキル基としては、たとえばアダマンチル基、シクロペンチル基、シクロヘキシル基、およびシクロオクチル基が挙げられる。なお、R、R、RおよびRを構成する有機基は、一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。
Examples of the organic group having 1 to 10 carbon atoms constituting R 1 , R 2 , R 3 and R 4 include an alkyl group, an alkenyl group, an alkynyl group, an alkylidene group, an aryl group, an aralkyl group, an alkaryl group, and a cycloalkyl group. Groups. The organic group may be a carboxyl group or an organic group having a hetero ring such as an epoxy ring or an oxetane ring.
Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, An octyl group, a nonyl group, and a decyl group are mentioned. Examples of the alkenyl group include allyl group, pentenyl group, and vinyl group. An ethynyl group is mentioned as an alkynyl group. Examples of the alkylidene group include a methylidene group and an ethylidene group. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group. Examples of the alkaryl group include a tolyl group and a xylyl group. Examples of the cycloalkyl group include an adamantyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group. In the organic group constituting R 1 , R 2 , R 3 and R 4 , one or more hydrogen atoms may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
 感光性樹脂組成物の経時安定性をより効果的に向上させる観点からは、R、R、RおよびRのうちの少なくとも一つがオキセタン環を有する有機基であることが好ましい。この場合、アルカリ可溶性樹脂(A)は、オキセタニル基を含有するポリマーを含むこととなる。また、経時安定性や耐溶剤性をさらに向上させる観点からは、R、R、RおよびRのうちのいずれか一つがオキセタン環を有する有機基であり、他が水素であることがとくに好ましい。オキセタン環を有する当該有機基としては、たとえば下記式(7)により示されるものが挙げられる。 From the viewpoint of more effectively improving the temporal stability of the photosensitive resin composition, at least one of R 1 , R 2 , R 3 and R 4 is preferably an organic group having an oxetane ring. In this case, the alkali-soluble resin (A) includes a polymer containing an oxetanyl group. Moreover, from the viewpoint of further improving the temporal stability and solvent resistance, any one of R 1 , R 2 , R 3 and R 4 is an organic group having an oxetane ring, and the other is hydrogen. Is particularly preferred. Examples of the organic group having an oxetane ring include those represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(7)中、Xは単結合または炭素数1~6の二価の有機基であり、Yは水素または炭素数1~7のアルキル基である。Xを構成する二価の有機基は、酸素、窒素およびケイ素のいずれか一種または二種以上を有していてもよい、直鎖状または分岐鎖状の二価の炭化水素基である。この中でも、アミノ基(-NR-)、アミド結合(-NHC(=O)-)、エステル結合(-C(=O)-O-)、カルボニル基(-C(=O)-)またはエーテル結合(-O-)等の連結基を主鎖中に一以上有するものがより好ましく、カルボニル基またはエーテル結合の少なくとも一方を連結基として主鎖中に一以上有するものがとくに好ましい。なお、Xを構成する有機基のうちの一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。また、Yを構成するアルキル基は、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、およびヘプチル基が挙げられる。なお、Yを構成するアルキル基に含まれる一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。 In the formula (7), X is a single bond or a divalent organic group having 1 to 6 carbon atoms, and Y is hydrogen or an alkyl group having 1 to 7 carbon atoms. The divalent organic group constituting X is a linear or branched divalent hydrocarbon group which may have any one or more of oxygen, nitrogen and silicon. Among these, an amino group (—NR—), an amide bond (—NHC (═O) —), an ester bond (—C (═O) —O—), a carbonyl group (—C (═O) —) or an ether Those having at least one linking group such as a bond (—O—) in the main chain are more preferable, and those having at least one carbonyl group or ether bond in the main chain as a linking group are particularly preferable. One or more hydrogen atoms in the organic group constituting X may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine. The alkyl group constituting Y is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl. Group, and heptyl group. One or more hydrogen atoms contained in the alkyl group constituting Y may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
 RおよびRを構成する炭素数1~12の有機基としては、たとえばエポキシ環もしくはオキセタニン環を含有する有機基、またはアルキル基であることがとくに好ましい。アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、およびドデシル基が挙げられる。なお、RおよびRに含まれる一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。 The organic group having 1 to 12 carbon atoms constituting R 5 and R 6 is particularly preferably, for example, an organic group containing an epoxy ring or an oxetanine ring, or an alkyl group. Alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl Groups, nonyl groups, decyl groups, undecyl groups, and dodecyl groups. One or more hydrogen atoms contained in R 5 and R 6 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
 Rを構成する炭素数1~12のアルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、およびドデシル基が挙げられる。また、Rを構成する炭素数3~8のシクロアルキル基としては、たとえばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基が挙げられる。なお、Rに含まれる一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。 Examples of the alkyl group having 1 to 12 carbon atoms constituting R 7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and pentyl. Group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, and dodecyl group. Examples of the cycloalkyl group having 3 to 8 carbon atoms constituting R 7 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. One or more hydrogen atoms contained in R 7 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
 R、RおよびR10を構成する炭素数1~12のアルキル基としては、たとえばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、およびドデシル基が挙げられる。また、R、RおよびR10を構成する炭素数3~8のシクロアルキル基としては、たとえばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、およびシクロオクチル基が挙げられる。なお、R、RおよびR10に含まれる一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。 Examples of the alkyl group having 1 to 12 carbon atoms constituting R 8 , R 9 and R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, Examples thereof include tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, and dodecyl group. Examples of the cycloalkyl group having 3 to 8 carbon atoms constituting R 8 , R 9 and R 10 include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group. . One or more hydrogen atoms contained in R 8 , R 9 and R 10 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
 R11を構成する炭素数1~10の有機基としては、エポキシ環もしくはオキセタン環を含有する有機基、またはアルキル基が挙げられる。アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基およびデシル基が挙げられる。なお、R11に含まれる一以上の水素原子が、フッ素、塩素、臭素もしくはヨウ素等のハロゲン原子によって置換されていてもよい。 Examples of the organic group having 1 to 10 carbon atoms constituting R 11 include an organic group containing an epoxy ring or an oxetane ring, or an alkyl group. Alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl Groups, nonyl groups and decyl groups. One or more hydrogen atoms contained in R 11 may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
 なお、上記式(1a)により示される構造単位および上記式(1b)にて示される構造単位を有する上記共重合体は、本発明の効果を損なわない範囲において、上記式(1a)に示される構造単位および上記式(1b)にて示される構造単位以外の他の構造単位を含んでいてもよい。また、アルカリ可溶性樹脂(A)は、低分子量成分として、下記式(8)に示すモノマー、下記式(9)に示すモノマー、下記式(10)に示すモノマー、および無水マレイン酸のうちの一種または二種以上を含んでいてもよい。 The copolymer having the structural unit represented by the formula (1a) and the structural unit represented by the formula (1b) is represented by the formula (1a) as long as the effects of the present invention are not impaired. Other structural units other than the structural unit and the structural unit represented by the above formula (1b) may be included. Moreover, alkali-soluble resin (A) is a low molecular weight component, and is a monomer represented by the following formula (8), a monomer represented by the following formula (9), a monomer represented by the following formula (10), and a maleic anhydride. Or 2 or more types may be included.
Figure JPOXMLDOC01-appb-C000008
(式(8)中、n、R、R、RおよびRは、上記式(1a)において例示したものとすることができる)
Figure JPOXMLDOC01-appb-C000008
(In formula (8), n, R 1 , R 2 , R 3 and R 4 can be those exemplified in the above formula (1a))
Figure JPOXMLDOC01-appb-C000009
(式(9)中、Rは、上記式(3)において例示したものとすることができる)
Figure JPOXMLDOC01-appb-C000009
(In formula (9), R 7 can be exemplified in the above formula (3)).
Figure JPOXMLDOC01-appb-C000010
(式(10)中、R11は、上記式(5)において例示したものとすることができる)
Figure JPOXMLDOC01-appb-C000010
(In formula (10), R 11 can be exemplified in the above formula (5)).
 本実施形態において、感光性樹脂組成物中におけるアルカリ可溶性樹脂(A)の含有量は、感光性樹脂組成物の固形分全体に対して20質量%以上であることが好ましく、30質量%以上であることがより好ましい。これにより、感光性樹脂組成物の硬化性や機械特性をより効果的に向上させることができる。一方で、感光性樹脂組成物中におけるアルカリ可溶性樹脂(A)の含有量は、感光性樹脂組成物の固形分全体に対して90質量%以下であることが好ましく、80質量%以下であることがよりに好ましい。これにより、リソグラフィにおける解像性の向上を図ることができる。なお、本明細書において、感光性樹脂組成物の固形分とは、感光性樹脂組成物中に含まれる、溶媒を除く成分を指す。 In this embodiment, it is preferable that content of alkali-soluble resin (A) in the photosensitive resin composition is 20 mass% or more with respect to the whole solid content of the photosensitive resin composition, and is 30 mass% or more. More preferably. Thereby, the sclerosis | hardenability and mechanical characteristic of the photosensitive resin composition can be improved more effectively. On the other hand, the content of the alkali-soluble resin (A) in the photosensitive resin composition is preferably 90% by mass or less, more preferably 80% by mass or less, based on the entire solid content of the photosensitive resin composition. Is more preferred. Thereby, the resolution in lithography can be improved. In addition, in this specification, solid content of the photosensitive resin composition refers to the component except the solvent contained in the photosensitive resin composition.
(感光剤(B))
 感光剤(B)は、たとえばジアゾキノン化合物を含む。感光剤(B)として用いられるジアゾキノン化合物は、たとえば以下に例示するものを含む。
(Photosensitive agent (B))
The photosensitive agent (B) contains, for example, a diazoquinone compound. Examples of the diazoquinone compound used as the photosensitive agent (B) include those exemplified below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
(n2は、1以上5以下の整数である)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
(N2 is an integer from 1 to 5)
 以上の各化合物において、Qは、以下に示す構造(a)、構造(b)および構造(c)のうちのいずれか、または水素原子である。ただし、各化合物に含まれるQのうちの少なくとも一つは、構造(a)、構造(b)および構造(c)うちのいずれかである。感光性樹脂組成物の透明性および誘電率の観点からは、Qが構造(a)あるいは構造(b)であるo-ナフトキノンジアジドスルホン酸誘導体がより好ましい。 In each of the above compounds, Q is any one of the structures (a), (b) and (c) shown below, or a hydrogen atom. However, at least one of Q contained in each compound is any one of the structure (a), the structure (b), and the structure (c). From the viewpoint of transparency and dielectric constant of the photosensitive resin composition, an o-naphthoquinonediazidesulfonic acid derivative in which Q is the structure (a) or the structure (b) is more preferable.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 本実施形態において、感光性樹脂組成物中における感光剤(B)の含有量は、感光性樹脂組成物の固形分全体に対して5質量%以上であることが好ましく、10質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における感光剤(B)の含有量は、感光性樹脂組成物の固形分全体に対して40質量%以下であることが好ましく、30質量%以下であることがより好ましい。感光剤(B)の含有量をこのような範囲に調整することにより、感光性樹脂組成物における、反応性と、経時安定性と、のバランスをより効果的に向上させることが可能となる。 In the present embodiment, the content of the photosensitive agent (B) in the photosensitive resin composition is preferably 5% by mass or more with respect to the entire solid content of the photosensitive resin composition, and is preferably 10% by mass or more. It is more preferable. On the other hand, the content of the photosensitive agent (B) in the photosensitive resin composition is preferably 40% by mass or less, and preferably 30% by mass or less, based on the entire solid content of the photosensitive resin composition. More preferred. By adjusting the content of the photosensitive agent (B) to such a range, it becomes possible to more effectively improve the balance between reactivity and stability over time in the photosensitive resin composition.
(架橋剤(C))
 感光性樹脂組成物は、架橋剤(C)を含んでいてもよい。これにより、硬化性の向上を図り、硬化膜の機械特性に寄与することができる。架橋剤(C)は、たとえば反応性基としてヘテロ環を有する化合物を含むことが好ましく、なかでも、グリシジル基またはオキセタニル基を有する化合物を含むことが好ましい。これらのうち、カルボキシル基や水酸基等の活性水素を持つ官能基との反応性の観点からは、グリシジル基を有する化合物を含むことがより好ましい。
(Crosslinking agent (C))
The photosensitive resin composition may contain the crosslinking agent (C). Thereby, sclerosis | hardenability can be improved and it can contribute to the mechanical characteristic of a cured film. The crosslinking agent (C) preferably contains, for example, a compound having a hetero ring as a reactive group, and particularly preferably contains a compound having a glycidyl group or an oxetanyl group. Among these, it is more preferable to include a compound having a glycidyl group from the viewpoint of reactivity with a functional group having active hydrogen such as a carboxyl group or a hydroxyl group.
 架橋剤(C)として用いられるグリシジル基を有する化合物としては、エポキシ化合物があげられる。エポキシ化合物としては、たとえばn-ブチルグリシジルエーテル、2-エトキシヘキシルグリシジルエーテル、フェニルグリシジルエーテル、アリルグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ビスフェノールA(又はF)のグリシジルエーテル、等のグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル等のグリシジルエステル、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル(3,4-エポキシ-6-メチルシクロヘキサン)カルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ジシクロペンタンジエンオキサイド、ビス(2,3-エポキシシクロペンチル)エーテルや、(株)ダイセル製のセロキサイド2021、セロキサイド2081、セロキサイド2083、セロキサイド2085、セロキサイド8000、エポリードGT401などの脂環式エポキシ、2,2'-(((((1-(4-(2-(4-(オキシラン-2-イルメトキシ)フェニル)プロパン-2-イル)フェニル)エタン-1,1-ジイル)ビス(4,1-フェニレン))ビス(オキシ))ビス(メチレン))ビス(オキシラン)(たとえば、Techmore VG3101L((株)プリンテック製))、エポライト100MF(共栄社化学工業(株)製)、エピオールTMP(日油(株)製)などの脂肪族ポリグリシジルエーテル、1,1,3,3,5,5-ヘキサメチル-1,5-ビス(3-(オキシラン-2-イル・メトキシ)プロピル)トリ・シロキサン(たとえば、DMS-E09(ゲレスト社製))等を用いることができる。 Examples of the compound having a glycidyl group used as the crosslinking agent (C) include an epoxy compound. Examples of the epoxy compound include n-butyl glycidyl ether, 2-ethoxyhexyl glycidyl ether, phenyl glycidyl ether, allyl glycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, glycerol polyglycidyl ether. Glycidyl ether such as sorbitol polyglycidyl ether, glycidyl ether of bisphenol A (or F), glycidyl ether such as adipic acid diglycidyl ester, o-phthalic acid diglycidyl ester, 3,4-epoxycyclohexylmethyl (3,4) -Epoxycyclohexane) carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl (3,4-epoxy -6-methylcyclohexane) carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, dicyclopentanediene oxide, bis (2,3-epoxycyclopentyl) ether, and Celoxide made by Daicel Corporation 2021, celoxide 2081, ceroxide 2083, ceroxide 2085, celoxide 8000, epoxide GT401, and the like, 2,2 ′-(((((1- (4- (2- (4- (oxiran-2-ylmethoxy ) Phenyl) propan-2-yl) phenyl) ethane-1,1-diyl) bis (4,1-phenylene)) bis (oxy)) bis (methylene)) bis (oxirane) (eg Techmore VG3101L ) Made by Printec)), Eporai Aliphatic polyglycidyl ethers such as 100MF (manufactured by Kyoeisha Chemical Industry Co., Ltd.), Epiol TMP (manufactured by NOF Corporation), 1,1,3,3,5,5-hexamethyl-1,5-bis (3 -(Oxiran-2-ylmethoxy) propyl) trisiloxane (for example, DMS-E09 (manufactured by Gerest)) and the like can be used.
 また、たとえばLX-01(ダイソー(株)製)、jER1001、同1002、同1003、同1004、同1007、同1009、同1010、同828(商品名;三菱化学(株)製)などのビスフェノールA型エポキシ樹脂、jER807(商品名;三菱化学(株)製)などのビスフェノールF型エポキシ樹脂、jER152、同154(商品名;三菱化学(株)製)、EPPN201、同202(商品名;日本化薬(株)製)などのフェノールノボラック型エポキシ樹脂、EOCN102、同103S、同104S、1020、1025、1027(商品名;日本化薬(株)製)、jER157S70(商品名;三菱化学(株)製)などのクレゾールノボラック型エポキシ樹脂、アラルダイトCY179、同184(商品名;ハンツマンアドバンスドマテリアル製)、ERL-4206、4221、4234、4299(商品名;ダウケミカル社製)、エピクロン200、同400(商品名;DIC(株)製)、jER871、同872(商品名;三菱化学(株)製)などの環状脂肪族エポキシ樹脂、Poly[(2-oxiranyl)-1,2-cyclohexanediol]2-ethyl-2-(hydroxymethyl)-1,3-propanediol ether (3:1)等の多官能脂環式エポキシ樹脂、EHPE-3150((株)ダイセル製)を使用することもできる。
 なお、本実施形態における感光性樹脂組成物は、上記において例示したエポキシ化合物を一種または二種以上含むことが可能である。
Further, for example, bisphenols such as LX-01 (manufactured by Daiso Corporation), jER1001, 1002, 1003, 1004, 1007, 1009, 1010, and 828 (trade names; manufactured by Mitsubishi Chemical Corporation) A type epoxy resin, bisphenol F type epoxy resin such as jER807 (trade name; manufactured by Mitsubishi Chemical Corporation), jER152, 154 (trade name; manufactured by Mitsubishi Chemical Corporation), EPPN201, 202 (trade name; Japan) Phenolic novolak type epoxy resins such as EOCN102, 103S, 104S, 1020, 1025, 1027 (trade name; manufactured by Nippon Kayaku Co., Ltd.), jER157S70 (trade name; Mitsubishi Chemical Corporation) Cresol novolac type epoxy resin, Araldite CY179, 184 (trade name; Hunts) Advanced Materials), ERL-4206, 4221, 4234, 4299 (trade name; manufactured by Dow Chemical), Epicron 200, 400 (trade name; manufactured by DIC Corporation), jER871, 872 (trade name; Mitsubishi) (Chemical Co., Ltd.) and other cyclic aliphatic epoxy resins such as Poly [(2-oxylanyl) -1,2-cyclohexanediol] 2-ethyl-2- (hydroxymethyl) -1,3-propanediol (3: 1), etc. The polyfunctional alicyclic epoxy resin, EHPE-3150 (manufactured by Daicel Corporation) can also be used.
In addition, the photosensitive resin composition in this embodiment can contain 1 type, or 2 or more types of the epoxy compound illustrated above.
 架橋剤(C)として用いられるオキセタニル基を有する化合物としては、たとえば1,4-ビス{[(3-エチルー3-オキセタニル)メトキシ]メチル}ベンゼン、ビス[1-エチル(3-オキセタニル)]メチルエーテル、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、4,4'-ビス(3-エチル-3-オキセタニルメトキシ)ビフェニル、エチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ジエチレングリコールビス(3-エチル-3-オキセタニルメチル)エーテル、ビス(3-エチル-3-オキセタニルメチル)ジフェノエート、トリメチロールプロパントリス(3-エチル-3-オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3-エチル-3-オキセタニルメチル)エーテル、ポリ[[3-[(3-エチル-3-オキセタニル)メトキシ]プロピル]シラセスキオキサン]誘導体、オキセタニルシリケート、フェノールノボラック型オキセタン、1,3-ビス[(3-エチルオキセタンー3-イル)メトキシ]ベンゼン等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。 Examples of the compound having an oxetanyl group used as the crosslinking agent (C) include 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, bis [1-ethyl (3-oxetanyl)] methyl. Ether, 4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, 4,4′-bis (3-ethyl-3-oxetanylmethoxy) biphenyl, ethylene glycol bis (3-ethyl-3 -Oxetanylmethyl) ether, diethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, bis (3-ethyl-3-oxetanylmethyl) diphenoate, trimethylolpropane tris (3-ethyl-3-oxetanylmethyl) ether, penta Erythritol tetrakis (3-ethyl- -Oxetanylmethyl) ether, poly [[3-[(3-ethyl-3-oxetanyl) methoxy] propyl] silasesquioxane] derivatives, oxetanyl silicate, phenol novolac oxetane, 1,3-bis [(3-ethyloxetane -3-yl) methoxy] benzene and the like, but is not limited thereto. These may be used alone or in combination.
 本実施形態において、感光性樹脂組成物中における架橋剤(C)の含有量は、感光性樹脂組成物の固形分全体に対して10質量%以上であることが好ましく、15質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における架橋剤(C)の含有量は、感光性樹脂組成物の固形分全体に対して50質量%以下であることが好ましく、40質量%以下であることがより好ましい。架橋剤(C)の含有量をこのような範囲に調整することにより、感光性樹脂組成物における、反応性と、経時安定性と、のバランスをより効果的に向上させることが可能となる。 In this embodiment, it is preferable that content of the crosslinking agent (C) in the photosensitive resin composition is 10 mass% or more with respect to the whole solid content of the photosensitive resin composition, and is 15 mass% or more. It is more preferable. On the other hand, the content of the crosslinking agent (C) in the photosensitive resin composition is preferably 50% by mass or less, and preferably 40% by mass or less, based on the entire solid content of the photosensitive resin composition. More preferred. By adjusting the content of the crosslinking agent (C) to such a range, it is possible to more effectively improve the balance between the reactivity and the temporal stability in the photosensitive resin composition.
(密着助剤(D))
 感光性樹脂組成物は、密着助剤(D)を含んでいてもよい。密着助剤(D)は、とくに限定されないが、たとえばアミノシラン、エポキシシラン、アクリルシラン、メルカプトシラン、ビニルシラン、ウレイドシラン、またはスルフィドシラン等のシランカップリング剤を含むことができる。これらは、一種類を単独で用いてもよく、二種類以上を併用してもよい。これらの中でも、他の部材に対する密着性を効果的に向上させる観点からは、エポキシシランを用いることがより好ましい。
 アミノシランとしては、たとえばビス(2―ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ―アミノプロピルトリエトキシシラン、γ―アミノプロピルトリメトキシシラン、γ―アミノプロピルメチルジエトキシシラン、γ―アミノプロピルメチルジメトキシシラン、N―β(アミノエチル)γ―アミノプロピルトリメトキシシラン、N―β(アミノエチル)γ―アミノプロピルトリエトキシシラン、N―β(アミノエチル)γ―アミノプロピルメチルジメトキシシラン、N―β(アミノエチル)γ―アミノプロピルメチルジエトキシシラン、およびN―フェニル-γ―アミノ-プロピルトリメトキシシラン等が挙げられる。エポキシシランとしては、たとえばγ―グリシドキシプロピルトリメトキシシラン、γ―グリシドキシプロピルメチルジエトキシシラン、およびβ―(3,4―エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。アクリルシランとしては、たとえばγ―(メタクリロキシプロピル)トリメトキシシラン、γ―(メタクリロキシプロピル)メチルジメトキシシラン、およびγ―(メタクリロキシプロピル)メチルジエトキシシラン等が挙げられる。メルカプトシランとしては、たとえばγ―メルカプトプロピルトリメトキシシラン等が挙げられる。ビニルシランとしては、たとえばビニルトリス(β―メトキシエトキシ)シラン、ビニルトリエトキシシラン、およびビニルトリメトキシシラン等が挙げられる。ウレイドシランとしては、たとえば3-ウレイドプロピルトリエトキシシラン等が挙げられる。スルフィドシランとしては、たとえばビス(3-(トリエトキシシリル)プロピル)ジスルフィド、およびビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。
(Adhesion aid (D))
The photosensitive resin composition may contain the adhesion assistant (D). The adhesion assistant (D) is not particularly limited, but may include a silane coupling agent such as aminosilane, epoxy silane, acrylic silane, mercaptosilane, vinyl silane, ureido silane, or sulfide silane. These may be used alone or in combination of two or more. Among these, it is more preferable to use epoxysilane from the viewpoint of effectively improving the adhesion to other members.
Examples of aminosilanes include bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, and γ-aminopropyl. Methyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N -Β (aminoethyl) γ-aminopropylmethyldiethoxysilane, N-phenyl-γ-amino-propyltrimethoxysilane, and the like. Examples of the epoxy silane include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. Examples of the acrylic silane include γ- (methacryloxypropyl) trimethoxysilane, γ- (methacryloxypropyl) methyldimethoxysilane, and γ- (methacryloxypropyl) methyldiethoxysilane. Examples of mercaptosilane include γ-mercaptopropyltrimethoxysilane. Examples of vinyl silane include vinyl tris (β-methoxyethoxy) silane, vinyl triethoxy silane, and vinyl trimethoxy silane. Examples of ureidosilane include 3-ureidopropyltriethoxysilane. Examples of the sulfide silane include bis (3- (triethoxysilyl) propyl) disulfide and bis (3- (triethoxysilyl) propyl) tetrasulfide.
 本実施形態において、感光性樹脂組成物中における密着助剤(D)の含有量は、感光性樹脂組成物の固形分全体に対して1質量%以上であることが好ましく、2質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における密着助剤(D)の含有量は、感光性樹脂組成物の固形分全体に対して20質量%以下であることが好ましく、15質量%以下であることがより好ましい。密着助剤(D)の含有量をこのような範囲に調整することにより、感光性樹脂組成物を用いて形成される硬化膜の他の部材に対する密着性を、より効果的に向上させることができる。 In the present embodiment, the content of the adhesion assistant (D) in the photosensitive resin composition is preferably 1% by mass or more with respect to the entire solid content of the photosensitive resin composition, and preferably 2% by mass or more. More preferably. On the other hand, the content of the adhesion assistant (D) in the photosensitive resin composition is preferably 20% by mass or less, and preferably 15% by mass or less, based on the entire solid content of the photosensitive resin composition. Is more preferable. By adjusting the content of the adhesion assistant (D) to such a range, the adhesion of the cured film formed using the photosensitive resin composition to other members can be more effectively improved. it can.
(界面活性剤(E))
 感光性樹脂組成物は、界面活性剤(E)を含んでいてもよい。界面活性剤(E)は、たとえばフッ素基(たとえば、フッ素化アルキル基)もしくはシラノール基を含む化合物、またはシロキサン結合を主骨格とする化合物を含むものである。本実施形態においては、界面活性剤(E)として、フッ素系界面活性剤またはシリコーン系界面活性剤を含むものを用いることがより好ましく、フッ素系界面活性剤を用いることがとくに好ましい。界面活性剤(E)としては、たとえばDIC(株)製のメガファックF-554、F-556、およびF-557等が挙げられるが、これに限定されるものではない。
(Surfactant (E))
The photosensitive resin composition may contain a surfactant (E). The surfactant (E) includes, for example, a compound containing a fluorine group (for example, a fluorinated alkyl group) or a silanol group, or a compound having a siloxane bond as a main skeleton. In the present embodiment, as the surfactant (E), it is more preferable to use a fluorosurfactant or a silicone surfactant, and it is particularly preferable to use a fluorosurfactant. Examples of the surfactant (E) include, but are not limited to, Megafac F-554, F-556, and F-557 manufactured by DIC Corporation.
 本実施形態において、感光性樹脂組成物中における界面活性剤(E)の含有量は、感光性樹脂組成物の固形分全体に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。一方で、感光性樹脂組成物中における界面活性剤(E)の含有量は、感光性樹脂組成物の固形分全体に対して3質量%以下であることが好ましく、2質量%以下であることがより好ましい。界面活性剤(E)の含有量をこのような範囲に調整することにより、感光性樹脂組成物の平坦性を効果的に向上させることができる。また、回転塗布の際に、塗布膜上に放射線状のストリエーションが発生することを防止することが可能となる。 In this embodiment, it is preferable that content of surfactant (E) in the photosensitive resin composition is 0.1 mass% or more with respect to the whole solid content of the photosensitive resin composition, 0.2 More preferably, it is at least mass%. On the other hand, the content of the surfactant (E) in the photosensitive resin composition is preferably 3% by mass or less, preferably 2% by mass or less, based on the entire solid content of the photosensitive resin composition. Is more preferable. By adjusting the content of the surfactant (E) to such a range, the flatness of the photosensitive resin composition can be effectively improved. In addition, it is possible to prevent the occurrence of radial striations on the coating film during spin coating.
(触媒(F))
 感光性樹脂組成物は、触媒(F)を含んでいてもよい。触媒(F)は、アルカリ可溶性樹脂(A)または架橋剤(C)に含まれる環状エーテル基を開き、アルカリ可溶性樹脂(A)同士の架橋や、架橋剤(C)同士の架橋、アルカリ可溶性樹脂(A)と架橋剤(C)の架橋を促進するものである。したがって、感光性樹脂組成物の反応性を向上させ、硬化膜の機械特性に寄与することが可能となる。
(Catalyst (F))
The photosensitive resin composition may contain the catalyst (F). The catalyst (F) opens a cyclic ether group contained in the alkali-soluble resin (A) or the cross-linking agent (C), cross-links between the alkali-soluble resins (A), cross-links between the cross-linking agents (C), alkali-soluble resin It promotes the crosslinking of (A) and the crosslinking agent (C). Therefore, it becomes possible to improve the reactivity of the photosensitive resin composition and contribute to the mechanical properties of the cured film.
 触媒(F)は、たとえば光により塩基を発生する光塩基発生剤を含むことができる。この場合、感光性樹脂組成物を露光する際の光により触媒(F)から塩基を発生させ、この塩基を触媒として上述のように架橋を促進することができる。このように、光塩基発生剤を用いることにより、リソグラフィ工程前に硬化反応が進んで経時変化が生じてしまうことを抑制することができる。したがって、触媒(F)として光塩基発生剤を使用することにより、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて形成される硬化膜の機械特性と、のバランスの向上に寄与することができる。触媒(F)としての光塩基発生剤は、とくに限定されないが、たとえば以下のいずれか一種以上を含むものである。 The catalyst (F) can contain, for example, a photobase generator that generates a base by light. In this case, it is possible to generate a base from the catalyst (F) by light when exposing the photosensitive resin composition, and to promote crosslinking as described above using this base as a catalyst. Thus, by using the photobase generator, it is possible to suppress the time-dependent change caused by the progress of the curing reaction before the lithography process. Therefore, the use of a photobase generator as the catalyst (F) improves the balance between the temporal stability of the photosensitive resin composition and the mechanical properties of the cured film formed using the photosensitive resin composition. Can contribute. The photobase generator as the catalyst (F) is not particularly limited, but includes, for example, one or more of the following.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-I000019
 本実施形態において、感光性樹脂組成物中における触媒(F)の含有量は、感光性樹脂組成物の固形分全体に対して0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、0.7質量%以上であることがとくに好ましい。一方で、感光性樹脂組成物中における触媒(F)の含有量は、感光性樹脂組成物の固形分全体に対して10質量%以下であることが好ましく、3質量%以下であることがより好ましく、1.5質量%以下であることがとくに好ましい。触媒(F)の含有量をこのような範囲に調整することにより、感光性樹脂組成物の経時安定性と、感光性樹脂組成物を用いて形成される硬化膜の機械特性と、のバランスをより効果的に向上させることができる。 In the present embodiment, the content of the catalyst (F) in the photosensitive resin composition is preferably 0.1% by mass or more based on the entire solid content of the photosensitive resin composition, and is 0.5% by mass. More preferably, it is more preferably 0.7% by mass or more. On the other hand, the content of the catalyst (F) in the photosensitive resin composition is preferably 10% by mass or less, more preferably 3% by mass or less, based on the entire solid content of the photosensitive resin composition. Preferably, it is particularly preferably 1.5% by mass or less. By adjusting the content of the catalyst (F) to such a range, the balance between the stability over time of the photosensitive resin composition and the mechanical properties of the cured film formed using the photosensitive resin composition is achieved. It can improve more effectively.
 なお、感光性樹脂組成物中には、必要に応じて酸化防止剤、フィラー、増感剤等の添加剤を添加してもよい。酸化防止剤は、たとえばフェノール系酸化防止剤、リン系酸化防止剤およびチオエーテル系酸化防止剤の群から選択される一種または二種以上を含むことができる。フィラーは、たとえばシリカ等の無機充填剤から選択される一種または二種以上を含むことができる。増感剤は、たとえばアントラセン類、キサントン類、アントラキノン類、フェナントレン類、クリセン類、ベンツピレン類、フルオラセン類、ルブレン類、ピレン類、インダンスリーン類およびチオキサンテン-9-オン類の群から選択される一種または二種以上を含むことができる。 In addition, you may add additives, such as antioxidant, a filler, and a sensitizer, in the photosensitive resin composition as needed. The antioxidant can include, for example, one or more selected from the group of phenolic antioxidants, phosphorus antioxidants, and thioether antioxidants. The filler can contain 1 type, or 2 or more types selected from inorganic fillers, such as a silica, for example. The sensitizer is selected from the group of, for example, anthracene, xanthone, anthraquinone, phenanthrene, chrysene, benzpyrene, fluoracene, rubrene, pyrene, indanthrine and thioxanthen-9-ones 1 type, or 2 or more types can be included.
(溶媒)
 感光性樹脂組成物は、上述の各成分を溶媒に溶解させ、ワニス状とすることができる。溶媒としては、たとえばプロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、乳酸エチル、メチルイソブチルカルビノール(MIBC)、ガンマブチロラクトン(GBL)、N-メチルピロリドン(NMP)、メチルn-アミルケトン(MAK)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル(DEGMEE)、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、および乳酸エチルのうちの一種または二種以上を含むことができる。なお、本実施形態において用いることのできる溶媒は、これらに限定されない。
(solvent)
The photosensitive resin composition can be formed into a varnish by dissolving the above-described components in a solvent. Examples of the solvent include propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, methyl isobutyl carbinol (MIBC), gamma butyrolactone (GBL), N-methylpyrrolidone (NMP), methyl n- One or more of amyl ketone (MAK), diethylene glycol monomethyl ether, diethylene glycol monoethyl ether (DEGMEE), diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, and ethyl lactate may be included. In addition, the solvent which can be used in this embodiment is not limited to these.
(電子装置)
 次に、本実施形態に係る電子装置100について説明する。
 電子装置100は、たとえば上述の感光性樹脂組成物の硬化膜により構成される永久膜である絶縁膜20を備える。本実施形態に係る電子装置100は、感光性樹脂組成物により形成される絶縁膜を備えるものであればとくに限定されないが、たとえば絶縁膜20を平坦化膜やマイクロレンズとして有する表示装置や、絶縁膜20を層間絶縁膜として用いた多層配線構造を備える半導体装置等が挙げられる。
(Electronic device)
Next, the electronic device 100 according to the present embodiment will be described.
The electronic device 100 includes an insulating film 20 that is a permanent film composed of, for example, a cured film of the above-described photosensitive resin composition. The electronic device 100 according to the present embodiment is not particularly limited as long as it includes an insulating film formed of a photosensitive resin composition. For example, a display device having the insulating film 20 as a planarizing film or a microlens, or an insulating device Examples thereof include a semiconductor device having a multilayer wiring structure using the film 20 as an interlayer insulating film.
 図1は、電子装置100の一例を示す断面図である。
 図1においては、電子装置100が液晶表示装置であり、絶縁膜20が平坦化膜として用いられる場合が例示されている。図1に示す電子装置100は、たとえば基板10と、基板10上に設けられたトランジスタ30と、トランジスタ30を覆うように基板10上に設けられた絶縁膜20と、絶縁膜20上に設けられた配線40と、を備えている。
FIG. 1 is a cross-sectional view illustrating an example of the electronic device 100.
FIG. 1 illustrates the case where the electronic device 100 is a liquid crystal display device and the insulating film 20 is used as a planarization film. An electronic device 100 illustrated in FIG. 1 is provided on, for example, a substrate 10, a transistor 30 provided on the substrate 10, an insulating film 20 provided on the substrate 10 so as to cover the transistor 30, and the insulating film 20. Wiring 40.
 基板10は、たとえばガラス基板である。トランジスタ30は、たとえば液晶表示装置のスイッチング素子を構成する薄膜トランジスタである。基板10上には、たとえば複数のトランジスタ30がアレイ状に配列されている。図1に示すトランジスタ30は、たとえばゲート電極31と、ソース電極32と、ドレイン電極33と、ゲート絶縁膜34と、半導体層35と、により構成される。ゲート電極31は、たとえば基板10上に設けられている。ゲート絶縁膜34は、ゲート電極31を覆うように基板10上に設けられる。半導体層35は、ゲート絶縁膜34上に設けられている。また、半導体層35は、たとえばシリコン層である。ソース電極32は、一部が半導体層35と接触するよう基板10上に設けられる。ドレイン電極33は、ソース電極32と離間し、かつ一部が半導体層35と接触するよう基板10上に設けられる。 The substrate 10 is, for example, a glass substrate. The transistor 30 is a thin film transistor that constitutes a switching element of a liquid crystal display device, for example. On the substrate 10, for example, a plurality of transistors 30 are arranged in an array. The transistor 30 shown in FIG. 1 includes, for example, a gate electrode 31, a source electrode 32, a drain electrode 33, a gate insulating film 34, and a semiconductor layer 35. The gate electrode 31 is provided on the substrate 10, for example. The gate insulating film 34 is provided on the substrate 10 so as to cover the gate electrode 31. The semiconductor layer 35 is provided on the gate insulating film 34. The semiconductor layer 35 is, for example, a silicon layer. The source electrode 32 is provided on the substrate 10 so that a part thereof is in contact with the semiconductor layer 35. The drain electrode 33 is provided on the substrate 10 so as to be separated from the source electrode 32 and partially in contact with the semiconductor layer 35.
 絶縁膜20は、トランジスタ30等に起因する段差をなくし、基板10上に平坦な表面を形成するための平坦化膜として機能する。また、絶縁膜20は、上述の感光性樹脂組成物の硬化物により構成される。絶縁膜20には、ドレイン電極33に接続するよう絶縁膜20を貫通する開口22が設けられている。
 絶縁膜20上および開口22内には、ドレイン電極33と接続する配線40が形成されている。配線40は、液晶とともに画素を構成する画素電極として機能する。
 また、絶縁膜20上には、配線40を覆うように配向膜90が設けられている。
The insulating film 20 functions as a planarization film for eliminating a step due to the transistor 30 and the like and forming a flat surface on the substrate 10. Moreover, the insulating film 20 is comprised with the hardened | cured material of the above-mentioned photosensitive resin composition. The insulating film 20 is provided with an opening 22 that penetrates the insulating film 20 so as to be connected to the drain electrode 33.
A wiring 40 connected to the drain electrode 33 is formed on the insulating film 20 and in the opening 22. The wiring 40 functions as a pixel electrode that constitutes a pixel together with the liquid crystal.
An alignment film 90 is provided on the insulating film 20 so as to cover the wiring 40.
 基板10のうちトランジスタ30が設けられている一面の上方には、基板10と対向するよう対向基板12が配置される。対向基板12のうち基板10と対向する一面には、配線42が設けられている。配線42は、配線40と対向する位置に設けられる。また、対向基板12の上記一面上には、配線42を覆うように配向膜92が設けられている。
 基板10と当該対向基板12との間には、液晶層14を構成する液晶が充填される。
A counter substrate 12 is disposed above one surface of the substrate 10 where the transistor 30 is provided so as to face the substrate 10. A wiring 42 is provided on one surface of the counter substrate 12 facing the substrate 10. The wiring 42 is provided at a position facing the wiring 40. An alignment film 92 is provided on the one surface of the counter substrate 12 so as to cover the wiring 42.
The liquid crystal constituting the liquid crystal layer 14 is filled between the substrate 10 and the counter substrate 12.
 図1に示す電子装置100は、たとえば次のように形成することができる。
 まず、基板10上にトランジスタ30を形成する。次いで、基板10のうちトランジスタ30が設けられた一面上に、印刷法あるいはスピンコート法により上記感光性樹脂組成物を塗布し、トランジスタ30を覆う絶縁膜20を形成する。次いで、絶縁膜20に対して紫外線等を露光し、現像して、絶縁膜20をパターニングする。これにより、絶縁膜20の一部に開口22を形成する。次いで、絶縁膜20を加熱硬化させる。これにより、基板10上に、平坦化膜である絶縁膜20が形成されることとなる。
 次いで、絶縁膜20の開口22内に、ドレイン電極33に接続された配線40を形成する。その後、絶縁膜20上に対向基板12を配置し、対向基板12と絶縁膜20との間に液晶を充填し、液晶層14を形成する。
 これにより、図1に示す電子装置100が形成されることとなる。
The electronic device 100 shown in FIG. 1 can be formed as follows, for example.
First, the transistor 30 is formed over the substrate 10. Next, the photosensitive resin composition is applied to one surface of the substrate 10 on which the transistor 30 is provided by a printing method or a spin coating method, and the insulating film 20 that covers the transistor 30 is formed. Next, the insulating film 20 is exposed to ultraviolet light or the like and developed to pattern the insulating film 20. Thereby, an opening 22 is formed in a part of the insulating film 20. Next, the insulating film 20 is heated and cured. As a result, the insulating film 20 that is a planarizing film is formed on the substrate 10.
Next, a wiring 40 connected to the drain electrode 33 is formed in the opening 22 of the insulating film 20. Thereafter, the counter substrate 12 is disposed on the insulating film 20, and liquid crystal is filled between the counter substrate 12 and the insulating film 20 to form the liquid crystal layer 14.
As a result, the electronic device 100 shown in FIG. 1 is formed.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope that can achieve the object of the present invention are included in the present invention.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
(アルカリ可溶性樹脂の合成)
(合成例1)
 撹拌機、冷却管を備えた適切なサイズの反応容器に、無水マレイン酸(MA、122.4g、1.25mol)、2-ノルボルネン(NB、117.6g、1.25mol)およびジメチル2,2'-アゾビス(2-メチルプロピオネート)(11.5g、50.0mmol)を計量し、メチルエチルケトン(MEK、150.8g)およびトルエン(77.7g)に溶解させた。この溶解液に対して、10分間窒素を通気して酸素を除去し、その後、撹拌しつつ60℃、16時間、加熱した。その後、この溶解液に対して、MEK(320g)を加えた後、これを、水酸化ナトリウム(12.5g、0.31mol)、ブタノール(463.1g、6.25mol)、トルエン(480g)の懸濁液に加え、45℃で3時間混合した。そして、この混合液を40℃まで冷却し、ギ酸(88質量%水溶液、49.0g、0.94mol)で処理してプロトン付加し、その後、MEKおよび水を加え、水層を分離することで、無機残留物を除去した。次いで、メタノール、ヘキサンを加え有機層を分離することで未反応モノマーを除去した。さらにPGMEAを添加し、系内のメタノールおよびブタノールを残留量1%未満となるまで減圧留去した。その後、反応溶液を125℃まで加熱し、アルカリ溶解時間が最適範囲となるまで反応させた。これにより、20質量%のポリマー溶液1107.7gを得た(GPC Mw=13,700、Mn=7,400)。
 得られたポリマーは、下記式(11)により示される構造を有する共重合体であった。
(Synthesis of alkali-soluble resin)
(Synthesis Example 1)
In a suitably sized reaction vessel equipped with stirrer and condenser, maleic anhydride (MA, 122.4 g, 1.25 mol), 2-norbornene (NB, 117.6 g, 1.25 mol) and dimethyl 2,2 '-Azobis (2-methylpropionate) (11.5 g, 50.0 mmol) was weighed and dissolved in methyl ethyl ketone (MEK, 150.8 g) and toluene (77.7 g). The dissolved solution was purged with nitrogen for 10 minutes to remove oxygen, and then heated at 60 ° C. for 16 hours with stirring. Thereafter, MEK (320 g) was added to the solution, and this was added with sodium hydroxide (12.5 g, 0.31 mol), butanol (463.1 g, 6.25 mol), toluene (480 g). Added to the suspension and mixed at 45 ° C. for 3 hours. The mixture is cooled to 40 ° C., treated with formic acid (88% by mass aqueous solution, 49.0 g, 0.94 mol) and protonated, and then MEK and water are added to separate the aqueous layer. Inorganic residues were removed. Subsequently, methanol and hexane were added and the organic layer was separated to remove unreacted monomers. Further, PGMEA was added, and methanol and butanol in the system were distilled off under reduced pressure until the residual amount was less than 1%. Thereafter, the reaction solution was heated to 125 ° C. and reacted until the alkali dissolution time reached the optimum range. As a result, 1107.7 g of a 20% by mass polymer solution was obtained (GPC Mw = 13,700, Mn = 7,400).
The obtained polymer was a copolymer having a structure represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 得られたポリマーの重量平均分子量(Mw)、および数平均分子量(Mn)は、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、ポリスチレン換算値を用いた。測定条件は、以下の通りである。
東ソー(株)社製ゲルパーミエーションクロマトグラフィー装置HLC-8320GPC
カラム:東ソー(株)社製TSK-GEL Supermultipore HZ-M
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:THF
試料濃度:2.0mg/ミリリットル
なお、重量平均分子量(Mw)、および数平均分子量(Mn)の測定条件は、後述する合成例2、3において同様である。
As the weight average molecular weight (Mw) and number average molecular weight (Mn) of the obtained polymer, a polystyrene equivalent value obtained from a calibration curve of standard polystyrene (PS) obtained by GPC measurement was used. The measurement conditions are as follows.
Gel permeation chromatography device HLC-8320GPC manufactured by Tosoh Corporation
Column: TSK-GEL Supermultipore HZ-M manufactured by Tosoh Corporation
Detector: RI detector for liquid chromatogram Measurement temperature: 40 ° C
Solvent: THF
Sample concentration: 2.0 mg / milliliter In addition, the measurement conditions of a weight average molecular weight (Mw) and a number average molecular weight (Mn) are the same in the synthesis examples 2 and 3 mentioned later.
(合成例2)
 密閉可能な反応容器内に、オキセタンノルボルネン(10.8g、45.8mmol)、ノルボルネンカルボン酸(11.92g、91.7mmol)、メチルグリシジルエーテルノルボルネン(57.6g、320mmol)、マレイミド(28.88g、297.7mmol)、およびN-シクロヘキシルマレイミド(16.32g、91.2mmol)を計量した。さらに、V-601(8.4g、36.5mmol)を溶解させたPGME58.4gを反応容器に加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、容器を密閉し、70℃で16時間反応させた。次いで、反応混合物を室温まで冷却し、THF226gを添加し希釈した。希釈後の溶液を大量のメタノールに注ぎ、ポリマーを析出させた。次いで、ポリマーを濾取しメタノールでさらに洗浄した後、30℃、16時間真空乾燥させた。ポリマーの収得量は64.6g、収率は51%であった。また、ポリマーは、重量平均分子量Mwが13,500であり、分散度(重量平均分子量Mw/数平均分子量Mn)が1.71であった。
 得られたポリマーは、下記式(12)により示される構造を有していた。
(Synthesis Example 2)
In a sealable reaction vessel, oxetane norbornene (10.8 g, 45.8 mmol), norbornene carboxylic acid (11.92 g, 91.7 mmol), methyl glycidyl ether norbornene (57.6 g, 320 mmol), maleimide (28.88 g) 297.7 mmol), and N-cyclohexylmaleimide (16.32 g, 91.2 mmol). Further, 58.4 g of PGME in which V-601 (8.4 g, 36.5 mmol) was dissolved was added to the reaction vessel, and stirred and dissolved. Next, after the dissolved oxygen in the system was removed by nitrogen bubbling, the container was sealed and reacted at 70 ° C. for 16 hours. The reaction mixture was then cooled to room temperature and diluted by adding 226 g of THF. The diluted solution was poured into a large amount of methanol to precipitate a polymer. Next, the polymer was collected by filtration, further washed with methanol, and then vacuum-dried at 30 ° C. for 16 hours. The polymer yield was 64.6 g and the yield was 51%. The polymer had a weight average molecular weight Mw of 13,500 and a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 1.71.
The obtained polymer had a structure represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 なお、合成例2において用いたオキセタンノルボルネンは、次のように合成した。
 まず、攪拌機および冷却器を備えた反応容器内にジシクロペンタジエン700.0gと流動パラフィン100.0gを加え、これを160℃~170℃で加熱することにより得られる分解生成物を、冷却器(冷却水温度5℃)で冷却して、シクロペンタジエンを得た。次いで、他の反応容器内にオキセタンアクリル(OXE-10、大阪有機化学工業(株)製)283.2gを入れ、これに20℃の条件下で3時間かけて上記で得られたシクロペンタジエン100gを逐添した後、30℃~35℃の条件下で16時間撹拌した。次いで、これにより得られる反応生成物を、ビグリューカラムを用いた減圧蒸留装置にて分留精製し、下記式(13)に示されるオキセタンノルボルネンを得た。
The oxetane norbornene used in Synthesis Example 2 was synthesized as follows.
First, in a reaction vessel equipped with a stirrer and a cooler, 700.0 g of dicyclopentadiene and 100.0 g of liquid paraffin are added, and the decomposition product obtained by heating this at 160 ° C. to 170 ° C. is cooled with a cooler ( The product was cooled at a cooling water temperature of 5 ° C. to obtain cyclopentadiene. Next, 283.2 g of oxetane acrylic (OXE-10, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was placed in another reaction vessel, and 100 g of the cyclopentadiene obtained above was obtained over 3 hours at 20 ° C. After each addition, the mixture was stirred at 30 ° C. to 35 ° C. for 16 hours. Subsequently, the reaction product thus obtained was fractionally purified by a vacuum distillation apparatus using a Vigreux column to obtain oxetane norbornene represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 H-NMRスペクトルおよび13C-NMRスペクトルを解析し、得られたオキセタンノルボルネンが上記式に示される構造を有していることを確認した。また、得られたオキセタンノルボルネンは、endo/exo=78/22の構造異性体混合物であった。なお、測定されたNMRスペクトルデータは、以下のとおりであった。
H-NMR(400MHz,CDCl):0.91(t,endo-3H),0.92(t,exo-3H),1.29(d,endo-1H),1.37-1.47(m,2H),1.52(d,exo-1H),1.73-1.80(m,2H),1.90-1.97(m,1H),2.26-2.30(m,exo-1H),2.92(br s,1H),2.98-3.03(m,endo-1H),3.05(br s,exo-1H),3.23(s,endo-1H),4.16(dd,endo-2H),4.23(dd,exo-2H),4.40(d,endo-2H),4.41(d,exo-2H),4.46(d,endo-2H),4.49(dd,exo-2H),5.92(dd,endo-1H),6.11-6.16(m,exo-2H),6.21(dd,endo-1H).
13C-NMR(100MHz,CDCl):8.0,26.9,29.1,30.3,41.6,42.4,42.6,42.6,43.1,43.3,45.7,46.3,46.6,49.6,65.9,66.2,77.8,77.9,132.1,135.6,137.9,138.0,174.7,176.2ppm.
The 1 H-NMR spectrum and 13 C-NMR spectrum were analyzed, and it was confirmed that the obtained oxetane norbornene had a structure represented by the above formula. The obtained oxetane norbornene was a structural isomer mixture of endo / exo = 78/22. In addition, the measured NMR spectrum data were as follows.
1 H-NMR (400 MHz, CDCl 3 ): 0.91 (t, endo-3H), 0.92 (t, exo-3H), 1.29 (d, endo-1H), 1.37-1. 47 (m, 2H), 1.52 (d, exo-1H), 1.73-1.80 (m, 2H), 1.90-1.97 (m, 1H), 2.26-2. 30 (m, exo-1H), 2.92 (brs, 1H), 2.98-3.03 (m, endo-1H), 3.05 (brs, exo-1H), 3.23 ( s, endo-1H), 4.16 (dd, endo-2H), 4.23 (dd, exo-2H), 4.40 (d, endo-2H), 4.41 (d, exo-2H) 4.46 (d, endo-2H), 4.49 (dd, exo-2H), 5.92 (dd, endo-1H), 6 11-6.16 (m, exo-2H), 6.21 (dd, endo-1H).
13 C-NMR (100 MHz, CDCl 3 ): 8.0, 26.9, 29.1, 30.3, 41.6, 42.4, 42.6, 42.6, 43.1, 43.3 , 45.7, 46.3, 46.6, 49.6, 65.9, 66.2, 77.8, 77.9, 132.1, 135.6, 137.9, 138.0, 174 .7, 176.2 ppm.
(合成例3)
 撹拌機及び冷却管を備えた反応容器内に、オキセタンノルボルネン(30.3g、128mmol)、マレイミド(17.4g、179mmol)、N-シクロヘキシルマレイミド(13.8g、76.9mmol)、エチルオキセタンビニルエーテル(14.5g、103mmol)、ブタンジオールモノビニルモノグリシジルエーテル(4.1g、25.6mmol)を計量した。さらに、V-601(2.36g、10.3mmol)を溶解させたTHF77.6gを反応容器に加え、撹拌・溶解させた。次いで、窒素バブリングにより系内の溶存酸素を除去したのち、窒素雰囲気下にて60℃に保持し、5時間反応させた。次いで、反応混合物を室温まで冷却し、THF106.7gを添加し希釈した。希釈後の溶液を大量のヘキサン中に注ぎ、ポリマーを析出させた。次いで、ポリマーを濾取しヘキサンにてさらに洗浄した後、30℃、16時間真空乾燥させた。ポリマーの収得量は61.8g、収率は77%であった。また、ポリマーは、重量平均分子量Mwが10,330であり、分散度(重量平均分子量Mw/数平均分子量Mn)が2.35であった。なお、本合成例にて用いたオキセタンノルボルネンは、上記合成例2と同様の方法により合成した。
 得られたポリマーは、下記式(14)により示される構造を有していた。
(Synthesis Example 3)
In a reaction vessel equipped with a stirrer and a condenser, oxetane norbornene (30.3 g, 128 mmol), maleimide (17.4 g, 179 mmol), N-cyclohexylmaleimide (13.8 g, 76.9 mmol), ethyl oxetane vinyl ether ( 14.5 g, 103 mmol), butanediol monovinyl monoglycidyl ether (4.1 g, 25.6 mmol) was weighed. Further, 77.6 g of THF in which V-601 (2.36 g, 10.3 mmol) was dissolved was added to the reaction vessel, and stirred and dissolved. Next, the dissolved oxygen in the system was removed by nitrogen bubbling, and then kept at 60 ° C. in a nitrogen atmosphere and reacted for 5 hours. The reaction mixture was then cooled to room temperature and diluted by adding 106.7 g of THF. The diluted solution was poured into a large amount of hexane to precipitate a polymer. Next, the polymer was collected by filtration, further washed with hexane, and then vacuum-dried at 30 ° C. for 16 hours. The yield of the polymer was 61.8 g, and the yield was 77%. The polymer had a weight average molecular weight Mw of 10,330 and a dispersity (weight average molecular weight Mw / number average molecular weight Mn) of 2.35. The oxetane norbornene used in this synthesis example was synthesized by the same method as in Synthesis Example 2 above.
The obtained polymer had a structure represented by the following formula (14).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(感光性樹脂組成物の調製)
 実施例1~4および比較例1~2のそれぞれについて、ワニス状の感光性樹脂組成物を調製した。感光性樹脂組成物は、表1または表2に従い配合された各成分を、PGMEAとDEGMEEの混合溶媒(PGMEA:DEGMEE=70:30)に固形分量(TS)が30%となるように溶解させて撹拌させた後、孔径0.2μmのフィルターで濾過することにより得た。表1および表2中における各成分の詳細は下記のとおりである。
(Preparation of photosensitive resin composition)
A varnish-like photosensitive resin composition was prepared for each of Examples 1-4 and Comparative Examples 1-2. In the photosensitive resin composition, each component formulated according to Table 1 or Table 2 is dissolved in a mixed solvent of PGMEA and DEGMEE (PGMEA: DEGMEE = 70: 30) so that the solid content (TS) is 30%. And then filtered through a filter having a pore size of 0.2 μm. Details of each component in Tables 1 and 2 are as follows.
(A)アルカリ可溶性樹脂
ポリマー1:上記合成例1により得られたポリマー
ポリマー2:上記合成例2により得られたポリマー
ポリマー3:上記合成例3により得られたポリマー
(A) Alkali-soluble resin polymer 1: Polymer polymer obtained by Synthesis Example 1 above: Polymer polymer obtained by Synthesis Example 2 above: Polymer obtained by Synthesis Example 3 above
(B)感光剤
下記式(B1)により示される化合物と1,2-ナフトキノンジアジド-5-スルホニルクロライドとのエステル化物(PA-28、ダイトーケミックス(株)製)
(B) Photosensitizer esterified product of a compound represented by the following formula (B1) and 1,2-naphthoquinonediazide-5-sulfonyl chloride (PA-28, manufactured by Daitokemix Co., Ltd.)
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(C)架橋剤
架橋剤1:下記式(15)で示される化合物(Techmore VG3101L、(株)プリンテック製)
架橋剤2:ビスフェノールA型エポキシ化合物(LX-01、ダイソー(株)製)
(C) Crosslinking agent Crosslinking agent 1: Compound represented by the following formula (15) (Techmore VG3101L, manufactured by Printec Co., Ltd.)
Crosslinking agent 2: Bisphenol A type epoxy compound (LX-01, manufactured by Daiso Corporation)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(D)密着助剤
密着助剤1:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(KBM-303、信越シリコーン(株)製)
密着助剤2:3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越シリコーン(株)製)
(D) Adhesion aid Adhesion aid 1: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, manufactured by Shin-Etsu Silicone Co., Ltd.)
Adhesion aid 2: 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Silicone Co., Ltd.)
(E)界面活性剤
フッ素系界面活性剤(F-557、DIC(株)製)
(E) Surfactant Fluorosurfactant (F-557, manufactured by DIC Corporation)
(F)触媒
触媒1:イミダゾール(1B2PZ、四国化成工業(株)製)
触媒2:下記式(16)で示される光塩基発生剤(WPBG-140、和光純薬工業(株)製)
触媒3:下記式(17)で示される光塩基発生剤(WPBG-082、和光純薬工業(株)製)
(F) Catalyst catalyst 1: Imidazole (1B2PZ, manufactured by Shikoku Chemicals Co., Ltd.)
Catalyst 2: Photobase generator represented by the following formula (16) (WPBG-140, manufactured by Wako Pure Chemical Industries, Ltd.)
Catalyst 3: Photobase generator represented by the following formula (17) (WPBG-082, manufactured by Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(DSC測定)
 各実施例および各比較例のそれぞれについて、以下のようにDSC測定を行った。
 まず、得られた感光性樹脂組成物をシリコンウェハへ塗布し、80℃、90秒の条件下で熱処理を施すことにより脱溶媒を行った。次いで、感光性樹脂組成物に対し、g+h+i線を積算光量が300mJ/cmとなるように照射した。次いで、シリコンウェハ表面から感光性樹脂組成物の固形分を削り取り、3~5mgをアルミパンへ秤量し試料とした。次いで、当該試料に対し、開始温度30℃、測定温度範囲30~330℃、昇温速度10℃/minの条件下で、示差走査熱量計(DSC7020、(株)日立ハイテクサイエンス)を用いて示差走査熱量測定を行った。得られたDSC曲線から、最大発熱ピークのピーク温度(℃)をそれぞれ算出した。
(DSC measurement)
For each example and each comparative example, DSC measurement was performed as follows.
First, the obtained photosensitive resin composition was applied to a silicon wafer, and the solvent was removed by heat treatment at 80 ° C. for 90 seconds. Next, the photosensitive resin composition was irradiated with g + h + i rays so that the integrated light amount was 300 mJ / cm 2 . Next, the solid content of the photosensitive resin composition was scraped from the silicon wafer surface, and 3 to 5 mg was weighed into an aluminum pan to prepare a sample. Next, a differential scanning calorimeter (DSC7020, Hitachi High-Tech Science Co., Ltd.) is used for the sample under the conditions of a starting temperature of 30 ° C., a measurement temperature range of 30 to 330 ° C., and a heating rate of 10 ° C./min. Scanning calorimetry was performed. The peak temperature (° C.) of the maximum exothermic peak was calculated from the obtained DSC curve.
(η/ηの測定)
 各実施例および各比較例のそれぞれについて、以下のようにη/ηの測定を行った。まず、調製直後におけるワニス状の感光性樹脂組成物の25℃における粘度を、E型粘度計を用いて測定し、これを初期粘度ηとした。一方で、調製直後のワニス状の感光性樹脂組成物を入れた密閉容器を、気温40±1℃に保ったクリーンオーブン内で7日間保管し、保管後のワニス状の感光性樹脂組成物の25℃における粘度を測定して、これを粘度ηとした。そして、これらの測定結果から、η/ηを算出した。
(Measurement of η 1 / η 0)
For each example and each comparative example, η 1 / η 0 was measured as follows. First, the viscosity at 25 ° C. of the varnish-like photosensitive resin composition immediately after preparation was measured using an E-type viscometer, and this was defined as the initial viscosity η 0 . On the other hand, the sealed container containing the varnish-shaped photosensitive resin composition immediately after preparation was stored in a clean oven maintained at a temperature of 40 ± 1 ° C. for 7 days, and the varnish-shaped photosensitive resin composition after storage was stored. by measuring the viscosity at 25 ° C., which was used as a viscosity eta 1. And η 1 / η 0 was calculated from these measurement results.
(硬化膜の作製)
 各実施例および各比較例のそれぞれについて、得られた感光性樹脂組成物を用いて次のように硬化膜を作製した。まず、6インチウェハに感光性樹脂組成物を塗布した後、80℃、90秒の条件下で熱処理を施すことにより脱溶媒を行った。次いで、オーブン中で感光性樹脂組成物に対し熱処理を行い、感光性樹脂組成物を硬化させた。当該熱処理は、上記ウェハが載置されたオーブン内を30℃、30分で窒素にて置換し、昇温速度5℃/minで硬化温度(150℃または200℃)まで昇温した後、硬化温度(150℃または200℃)にて90分間保持することにより行った。上記熱処理後、降温速度5℃/minでオーブン内の温度を70℃以下まで降温させ、上記ウェハを取り出した。次いで、フッ酸を用いて上記ウェハから感光性樹脂組成物の硬化膜を剥離して、60℃、10時間の条件下で乾燥した。このようにして、各実施例および各比較例のそれぞれについて、硬化温度150℃により硬化させた硬化膜1と、硬化温度200℃により硬化させた硬化膜2と、を得た。
(Production of cured film)
About each of each Example and each comparative example, the cured film was produced as follows using the obtained photosensitive resin composition. First, after the photosensitive resin composition was applied to a 6-inch wafer, the solvent was removed by heat treatment at 80 ° C. for 90 seconds. Next, the photosensitive resin composition was heat-treated in an oven to cure the photosensitive resin composition. In the heat treatment, the inside of the oven on which the wafer is placed is replaced with nitrogen at 30 ° C. for 30 minutes, and the temperature is increased to a curing temperature (150 ° C. or 200 ° C.) at a heating rate of 5 ° C./min. This was carried out by holding at temperature (150 ° C. or 200 ° C.) for 90 minutes. After the heat treatment, the temperature in the oven was lowered to 70 ° C. or less at a temperature drop rate of 5 ° C./min, and the wafer was taken out. Next, the cured film of the photosensitive resin composition was peeled from the wafer using hydrofluoric acid, and dried under conditions of 60 ° C. and 10 hours. Thus, the cured film 1 cured at a curing temperature of 150 ° C. and the cured film 2 cured at a curing temperature of 200 ° C. were obtained for each example and each comparative example.
(経時安定性)
 実施例1、2および比較例1、2について、得られた感光性樹脂組成物の経時安定性を次のように評価した。まず、感光性樹脂組成物を4インチシリコンウェハ上に回転塗布した後、100℃、120秒間ホットプレートにてベークすることにより、約3.0μm厚の薄膜を得た。次いで、この薄膜にキヤノン社製g+h+i線マスクアライナー(PLA-501F)にて10μmのラインとスペースの幅が1:1のマスクを使用し、パターン寸法が10μmのラインとスペースの幅が1:1となる最適露光量で露光し、0.5質量%水酸化テトラメチルアンモニウム水溶液で23℃、60秒間現像することで、ラインとスペース幅が1:1のライン&スペースパターン(サンプル1)を得た。同様の試験を23℃で1週間保管した後の感光性樹脂組成物についても実施し、ライン&スペースパターン(サンプル2)を得た。そして、サンプル1に基づくサンプル2のパターン寸法の変動(CD変動)を算出した。CD変動が10%以下のものを○とし、10%を超えるものは×として評価した。
(Stability over time)
With respect to Examples 1 and 2 and Comparative Examples 1 and 2, the temporal stability of the obtained photosensitive resin compositions was evaluated as follows. First, the photosensitive resin composition was spin-coated on a 4-inch silicon wafer and then baked on a hot plate at 100 ° C. for 120 seconds to obtain a thin film having a thickness of about 3.0 μm. Next, a 10 μm line and space width 1: 1 mask is used for this thin film with a Canon g + h + i line mask aligner (PLA-501F), and the pattern dimension is 10 μm line and space width 1: 1. A line and space pattern (sample 1) with a line and space width of 1: 1 is obtained by developing at 23 ° C. for 60 seconds with a 0.5 mass% tetramethylammonium hydroxide aqueous solution. It was. A similar test was also performed on the photosensitive resin composition after being stored at 23 ° C. for 1 week to obtain a line and space pattern (sample 2). And the variation (CD variation) of the pattern dimension of sample 2 based on sample 1 was calculated. A CD variation of 10% or less was evaluated as ◯, and a CD variation exceeding 10% was evaluated as ×.
(引張弾性率、引張伸び率)
 実施例1、2および比較例1、2について、得られた硬化膜1(硬化温度150℃)および硬化膜2(硬化温度200℃)の引張弾性率および引張伸び率を、次のように測定した。まず、硬化膜1または硬化膜2からなる試験片(幅10mm×長さ60mm以上×厚み0.005~0.01mm)に対して引張試験(引張速度:0.05mm/min)を、温度23℃、湿度55%の雰囲気中で実施した。引張試験は、オリエンテック社製引張試験機(テンシロンRTC-1210A)を用いて行った。次いで、当該引張試験の結果から、引張弾性率および引張伸び率を算出した。ここでは、上記引張試験を試験回数n=5で行い、引張弾性率および引張伸び率のそれぞれについて5回の平均値を求め、これを測定値として表1に示した。
(Tensile modulus, tensile elongation)
For Examples 1 and 2 and Comparative Examples 1 and 2, the tensile modulus and tensile elongation of the obtained cured film 1 (curing temperature 150 ° C.) and cured film 2 (curing temperature 200 ° C.) were measured as follows. did. First, a tensile test (tensile speed: 0.05 mm / min) was applied to a test piece (width 10 mm × length 60 mm or more × thickness 0.005 to 0.01 mm) made of cured film 1 or cured film 2 at a temperature of 23 The test was carried out in an atmosphere at a temperature of 55 ° C. and a humidity of 55%. The tensile test was performed using an orientec tensile tester (Tensilon RTC-1210A). Next, the tensile modulus and tensile elongation were calculated from the results of the tensile test. Here, the tensile test was performed with the number of tests n = 5, and an average value of 5 times was obtained for each of the tensile modulus and the tensile elongation, and these are shown in Table 1 as measured values.
(ガラス転移温度(Tg)、線膨張係数(CTE))
 実施例1、2および比較例1、2について、得られた硬化膜1(硬化温度150℃)および硬化膜2(硬化温度200℃)のガラス転移温度と線膨張係数を測定した。測定は、硬化膜1または硬化膜2からなる試験片(幅5mm×長さ10mm以上×厚み0.005~0.01mm)に対し、熱機械分析装置(TMA)を用いて、開始温度30℃、測定温度範囲30~400℃、昇温速度5℃/minの条件下において行った。なお、線膨張係数は、50~100℃における値から求めた。結果を表1に示す。
(Glass transition temperature (Tg), linear expansion coefficient (CTE))
For Examples 1 and 2 and Comparative Examples 1 and 2, the glass transition temperature and the linear expansion coefficient of the obtained cured film 1 (curing temperature 150 ° C.) and cured film 2 (curing temperature 200 ° C.) were measured. Measurement is performed on a test piece (width 5 mm × length 10 mm or more × thickness 0.005 to 0.01 mm) made of the cured film 1 or the cured film 2 using a thermomechanical analyzer (TMA) at a starting temperature of 30 ° C. The measurement was performed under the conditions of a measurement temperature range of 30 to 400 ° C. and a heating rate of 5 ° C./min. The linear expansion coefficient was determined from the value at 50 to 100 ° C. The results are shown in Table 1.
(5%重量減少温度)
 実施例1、2および比較例1、2について、得られた硬化膜1(硬化温度150℃)および硬化膜2(硬化温度200℃)の5%重量減少温度を測定した。測定は、硬化膜1または硬化膜2をアルミパンに10mg秤量して得られた試料に対し、熱重量/示差熱測定装置(TG/DTA)を用いて、開始温度30℃、測定温度範囲30~500℃、昇温速度5℃/minの条件下において行った。結果を表1に示す。
(5% weight loss temperature)
For Examples 1 and 2 and Comparative Examples 1 and 2, the 5% weight loss temperature of the obtained cured film 1 (curing temperature 150 ° C.) and cured film 2 (curing temperature 200 ° C.) was measured. The measurement is performed on a sample obtained by weighing 10 mg of the cured film 1 or the cured film 2 in an aluminum pan, using a thermogravimetric / differential calorimeter (TG / DTA), a starting temperature of 30 ° C., a measurement temperature range of 30 The measurement was performed at a temperature of ˜500 ° C. and a heating rate of 5 ° C./min. The results are shown in Table 1.
(応力)
 実施例1、2および比較例1について、得られた感光性樹脂組成物を用いて形成した硬化膜の応力を、次のように測定した。まず、感光性樹脂組成物を8インチ725μm厚シリコンウェハに塗布し80℃、90秒の条件下で熱処理を施すことにより脱溶媒を行った。次いで、指定温度に設定したオーブン中で熱処理を行い厚み約7μmの硬化膜を得た。次いで、得られた硬化膜付きウェハについて薄膜応力測定システム(FLX-2320-S、東朋テクノロジー製)により反りを測定し、測定結果から膜応力を算出した。結果を表1に示す。
(stress)
About Example 1, 2 and Comparative Example 1, the stress of the cured film formed using the obtained photosensitive resin composition was measured as follows. First, the photosensitive resin composition was applied to an 8-inch 725 μm thick silicon wafer and subjected to heat treatment at 80 ° C. for 90 seconds to remove the solvent. Next, heat treatment was performed in an oven set at a specified temperature to obtain a cured film having a thickness of about 7 μm. Next, the warpage of the obtained wafer with a cured film was measured by a thin film stress measurement system (FLX-2320-S, manufactured by Toago Technology), and the film stress was calculated from the measurement result. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 なお、表1中において、感光性樹脂組成物に含まれる各成分の配合量を示す数値のうち、かっこ外の数値はアルカリ可溶性樹脂を100重量部としたときの各成分の重量部を、かっこ内の数値は樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100質量%としたときの各成分の配合割合(質量%)を、それぞれ示している。 In Table 1, among the numerical values indicating the blending amount of each component contained in the photosensitive resin composition, the numerical values outside the parentheses are the weight parts of each component when the alkali-soluble resin is 100 parts by weight. The numerical value in each shows the compounding ratio (mass%) of each component when the total solid content (namely, component except a solvent) of a resin composition is 100 mass%.
 表1に示すように、実施例1、2は、経時安定性と機械特性のバランスに優れていた。一方で、比較例1では、たとえば引張伸び率や硬化膜2(硬化温度200℃)のガラス転移温度において実施例1、2よりも低い値を示しており、機械特性が劣ることが分かる。また、比較例2では、経時安定性において良好な結果が得られていないことが分かる。 As shown in Table 1, Examples 1 and 2 were excellent in balance between stability over time and mechanical properties. On the other hand, in Comparative Example 1, for example, the tensile elongation rate and the glass transition temperature of the cured film 2 (curing temperature 200 ° C.) are lower than those in Examples 1 and 2, indicating that the mechanical properties are inferior. Moreover, in Comparative Example 2, it can be seen that good results are not obtained in stability over time.
 また、実施例3、4について、感光性樹脂組成物の経時安定性を評価した。経時安定性の評価は、実施例1と同様にして行った。結果を表2に示す。 Further, with respect to Examples 3 and 4, the temporal stability of the photosensitive resin composition was evaluated. Evaluation of stability over time was performed in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 なお、表2中において、感光性樹脂組成物に含まれる各成分の配合量を示す数値のうち、かっこ外の数値はアルカリ可溶性樹脂を100重量部としたときの各成分の重量部を、かっこ内の数値は樹脂組成物の全固形分(すなわち、溶媒を除く成分)を100質量%としたときの各成分の配合割合(質量%)を、それぞれ示している。 In Table 2, among the numerical values indicating the blending amount of each component contained in the photosensitive resin composition, the numerical values outside parentheses are the weight parts of each component when the alkali-soluble resin is 100 parts by weight. The numerical value in each shows the compounding ratio (mass%) of each component when the total solid content (namely, component except a solvent) of a resin composition is 100 mass%.
 表2に示すように、実施例3、4は、優れた経時安定性を示した。また、実施例3、4については、感光性樹脂組成物を用いて形成される硬化膜が十分な機械特性を示すことが確認されている。とくに、実施例3、4においては、感光性樹脂組成物を200℃、90分で硬化して得られる硬化膜の引張伸び率が10以上であり、比較例1と比べて引張伸び率の観点から優れていた。 As shown in Table 2, Examples 3 and 4 showed excellent stability over time. Moreover, about Example 3, 4, it has been confirmed that the cured film formed using a photosensitive resin composition shows sufficient mechanical characteristics. In particular, in Examples 3 and 4, the cured film obtained by curing the photosensitive resin composition at 200 ° C. for 90 minutes has a tensile elongation of 10 or more, and in terms of tensile elongation compared to Comparative Example 1. It was excellent from.
 この出願は、2014年3月20日に出願された日本出願特願2014-058128号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-058128 filed on March 20, 2014, the entire disclosure of which is incorporated herein.

Claims (6)

  1.  永久膜を形成するために用いられる感光性樹脂組成物であって、
     アルカリ可溶性樹脂と、
     感光剤と、
     を含み、
     前記感光性樹脂組成物を固形分量30%となるように有機溶媒に溶解して得たワニスについて、保管前の25℃における初期粘度をηとし、気温40±1℃で7日間保管した後の25℃における粘度をηとして、η/ηが3.0以下であり、
     g+h+i線を300mJ/cmで照射した後において、示差走査熱量計を用いて昇温速度10℃/minの条件下で30℃から300℃まで昇温した際に得られるDSC曲線の、最大発熱ピークにおけるピーク温度Tが185℃以下である感光性樹脂組成物。
    A photosensitive resin composition used to form a permanent film,
    An alkali-soluble resin;
    A photosensitizer,
    Including
    For a varnish obtained by dissolving the photosensitive resin composition in an organic solvent so as to have a solid content of 30%, the initial viscosity at 25 ° C. before storage is η 0 and the product is stored for 7 days at a temperature of 40 ± 1 ° C. The viscosity at 25 ° C. is η 1 and η 1 / η 0 is 3.0 or less,
    Maximum exotherm of DSC curve obtained when the temperature is raised from 30 ° C. to 300 ° C. using a differential scanning calorimeter after irradiation with g + h + i line at 300 mJ / cm 2 under the condition of a temperature rising rate of 10 ° C./min. the photosensitive resin composition peak temperatures T 1 is 185 ° C. or less at the peak.
  2.  請求項1に記載の感光性樹脂組成物において、
     光塩基発生剤をさらに含む感光性樹脂組成物。
    In the photosensitive resin composition of Claim 1,
    A photosensitive resin composition further comprising a photobase generator.
  3.  請求項2に記載の感光性樹脂組成物において、
     前記光塩基発生剤の含有量は、前記感光性樹脂組成物の固形分全体に対して0.1質量%以上10質量%以下である感光性樹脂組成物。
    In the photosensitive resin composition of Claim 2,
    Content of the said photobase generator is a photosensitive resin composition which is 0.1 to 10 mass% with respect to the whole solid of the said photosensitive resin composition.
  4.  請求項1~3いずれか一項に記載の感光性樹脂組成物において、
     前記アルカリ可溶性樹脂は、環状オレフィン系樹脂を含む感光性樹脂組成物。
    In the photosensitive resin composition according to any one of claims 1 to 3,
    The alkali-soluble resin is a photosensitive resin composition containing a cyclic olefin-based resin.
  5.  請求項1~4いずれか一項に記載の感光性樹脂組成物において、
     前記アルカリ可溶性樹脂は、オキセタニル基を含有するポリマーを含む感光性樹脂組成物。
    In the photosensitive resin composition according to any one of claims 1 to 4,
    The alkali-soluble resin is a photosensitive resin composition containing a polymer containing an oxetanyl group.
  6.  請求項1~5いずれか一項に記載の感光性樹脂組成物の硬化膜を備える電子装置。 An electronic device comprising a cured film of the photosensitive resin composition according to any one of claims 1 to 5.
PCT/JP2015/057030 2014-03-20 2015-03-10 Photosensitive resin composition and electronic device WO2015141527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014058128A JP2015184325A (en) 2014-03-20 2014-03-20 Photosensitive resin composition and electronic device
JP2014-058128 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141527A1 true WO2015141527A1 (en) 2015-09-24

Family

ID=54144498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057030 WO2015141527A1 (en) 2014-03-20 2015-03-10 Photosensitive resin composition and electronic device

Country Status (3)

Country Link
JP (1) JP2015184325A (en)
TW (1) TW201546545A (en)
WO (1) WO2015141527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238932A1 (en) * 2015-02-18 2016-08-18 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
CN112368641A (en) * 2018-08-09 2021-02-12 东丽株式会社 Photosensitive resin composition, photosensitive sheet, cured film of photosensitive resin composition and photosensitive sheet, method for producing cured film, and electronic component
WO2022224826A1 (en) * 2021-04-23 2022-10-27 Jsr株式会社 Photosensitive composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111447A (en) * 2015-12-16 2017-06-22 住友ベークライト株式会社 Photosensitive resin composition and method for manufacturing electronic device
JP6915340B2 (en) * 2017-03-27 2021-08-04 住友ベークライト株式会社 Photosensitive resin composition, cured film and electrical / electronic equipment
JP6958402B2 (en) * 2018-02-09 2021-11-02 住友ベークライト株式会社 Polymer, photosensitive resin composition, photosensitive resin film, pattern, organic electroluminescence element, method for producing a substrate having a pattern, and method for producing a polymer.
JP7359447B2 (en) * 2018-05-07 2023-10-11 学校法人東京理科大学 Curable composition, compound, base converting proliferator and cured product
JP7408992B2 (en) 2019-10-16 2024-01-09 住友ベークライト株式会社 Photosensitive resin composition and method for producing electronic devices

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343748A (en) * 2000-03-28 2001-12-14 Fujitsu Ltd Negative-type resist composition, resist pattern forming method and method for manufacturing semiconductor device
JP2003238624A (en) * 2002-02-21 2003-08-27 Jsr Corp Cyclic olefin (co)polymer, its composition and crosslinked material thereof
JP2003313177A (en) * 2002-04-23 2003-11-06 Jsr Corp Cyclic olefin having oxetanyl group
JP2007279493A (en) * 2006-04-10 2007-10-25 Tokyo Ohka Kogyo Co Ltd Negative resist composition and resist pattern forming method
WO2009041681A1 (en) * 2007-09-28 2009-04-02 Deos Laboratory Inc. Copolymer, resin composition, spacer for display panel, planarization film, thermosetting protective film, microlens, and process for producing copolymer
JP2012008537A (en) * 2010-05-27 2012-01-12 Jsr Corp Radiation-sensitive resin composition for forming cured film, method for producing radiation-sensitive resin composition for forming cured film, cured film, method for forming cured film, and display element
JP2012211988A (en) * 2011-03-31 2012-11-01 Nippon Zeon Co Ltd Negative photosensitive resin composition and electronic component
JP2013152375A (en) * 2012-01-25 2013-08-08 Jsr Corp Negative radiation-sensitive composition, pattern forming method and method for manufacturing insulating film
WO2013171888A1 (en) * 2012-05-17 2013-11-21 太陽インキ製造株式会社 Alkali-development-type thermoset resin composition and printed circuit board
JP2013242348A (en) * 2012-05-17 2013-12-05 Taiyo Ink Mfg Ltd Pattern formation method, alkaline-developable thermosetting resin composition and printed circuit board
JP2015025892A (en) * 2013-07-25 2015-02-05 日本ゼオン株式会社 Negative photosensitive resin composition and electronic component

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761182B2 (en) * 2010-04-27 2015-08-12 Jsr株式会社 Positive radiation-sensitive composition, interlayer insulating film for display element, and method for forming the same
CN103069339B (en) * 2010-08-27 2015-11-25 住友电木株式会社 Photoresist resin combination

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343748A (en) * 2000-03-28 2001-12-14 Fujitsu Ltd Negative-type resist composition, resist pattern forming method and method for manufacturing semiconductor device
JP2003238624A (en) * 2002-02-21 2003-08-27 Jsr Corp Cyclic olefin (co)polymer, its composition and crosslinked material thereof
JP2003313177A (en) * 2002-04-23 2003-11-06 Jsr Corp Cyclic olefin having oxetanyl group
JP2007279493A (en) * 2006-04-10 2007-10-25 Tokyo Ohka Kogyo Co Ltd Negative resist composition and resist pattern forming method
WO2009041681A1 (en) * 2007-09-28 2009-04-02 Deos Laboratory Inc. Copolymer, resin composition, spacer for display panel, planarization film, thermosetting protective film, microlens, and process for producing copolymer
JP2012008537A (en) * 2010-05-27 2012-01-12 Jsr Corp Radiation-sensitive resin composition for forming cured film, method for producing radiation-sensitive resin composition for forming cured film, cured film, method for forming cured film, and display element
JP2012211988A (en) * 2011-03-31 2012-11-01 Nippon Zeon Co Ltd Negative photosensitive resin composition and electronic component
JP2013152375A (en) * 2012-01-25 2013-08-08 Jsr Corp Negative radiation-sensitive composition, pattern forming method and method for manufacturing insulating film
WO2013171888A1 (en) * 2012-05-17 2013-11-21 太陽インキ製造株式会社 Alkali-development-type thermoset resin composition and printed circuit board
JP2013242348A (en) * 2012-05-17 2013-12-05 Taiyo Ink Mfg Ltd Pattern formation method, alkaline-developable thermosetting resin composition and printed circuit board
JP2015025892A (en) * 2013-07-25 2015-02-05 日本ゼオン株式会社 Negative photosensitive resin composition and electronic component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238932A1 (en) * 2015-02-18 2016-08-18 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
US9952507B2 (en) * 2015-02-18 2018-04-24 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
US20180203349A1 (en) * 2015-02-18 2018-07-19 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
US10409160B2 (en) 2015-02-18 2019-09-10 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
US20190369492A1 (en) * 2015-02-18 2019-12-05 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
US10634998B2 (en) 2015-02-18 2020-04-28 Promerus, Llc Photoimageable polyolefin compositions containing photobase generators
CN112368641A (en) * 2018-08-09 2021-02-12 东丽株式会社 Photosensitive resin composition, photosensitive sheet, cured film of photosensitive resin composition and photosensitive sheet, method for producing cured film, and electronic component
WO2022224826A1 (en) * 2021-04-23 2022-10-27 Jsr株式会社 Photosensitive composition

Also Published As

Publication number Publication date
TW201546545A (en) 2015-12-16
JP2015184325A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2015141527A1 (en) Photosensitive resin composition and electronic device
JP6677247B2 (en) Method for producing polymer
JP5672403B1 (en) Photosensitive resin composition and electronic device
JP2015007770A (en) Photosensitive resin composition, and electronic device
JP2015064576A (en) Photosensitive resin composition
JP6624049B2 (en) Polymer, photosensitive resin composition and electronic device
JP2018115337A (en) Polymer, photosensitive resin composition, and electronic device
JP5673880B1 (en) Photosensitive resin composition, electronic device, and method of manufacturing electronic device
WO2015141525A1 (en) Photosensitive resin composition and electronic device
JP6459192B2 (en) Photosensitive resin composition
JP6720480B2 (en) Polymer, photosensitive resin composition, resin film and electronic device
JP2015182957A (en) Compound, and photosensitive resin composition
JP2016177010A (en) Photosensitive resin composition, resin film and electronic device
JP2020071280A (en) Photosensitive resin composition and electronic device manufacturing method
JP6558479B2 (en) Polymer and photosensitive resin composition
JP2017044860A (en) Positive photosensitive resin composition, cured film and electronic device
WO2015141526A1 (en) Polymer, photosensitive resin composition, and electronic device
JP7180189B2 (en) Photosensitive resin composition, structure, optical component, and method for producing optical component
JP6710903B2 (en) Photosensitive resin composition
JP6772443B2 (en) Polymer manufacturing methods, polymers, photosensitive resin compositions, resin films and electronic devices
JP2016177012A (en) Photosensitive resin composition, resin film and electronic device
KR20230095576A (en) Photosensitive resin composition, photosensitive resin layer, redistribution layer and semiconductor device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764328

Country of ref document: EP

Kind code of ref document: A1