WO2012026465A1 - Resin composition for photoresist - Google Patents

Resin composition for photoresist Download PDF

Info

Publication number
WO2012026465A1
WO2012026465A1 PCT/JP2011/068975 JP2011068975W WO2012026465A1 WO 2012026465 A1 WO2012026465 A1 WO 2012026465A1 JP 2011068975 W JP2011068975 W JP 2011068975W WO 2012026465 A1 WO2012026465 A1 WO 2012026465A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
photoresist
cyclic olefin
group
resin composition
Prior art date
Application number
PCT/JP2011/068975
Other languages
French (fr)
Japanese (ja)
Inventor
大西 治
陽雄 池田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2012530677A priority Critical patent/JP5692232B2/en
Priority to CN201180040734.7A priority patent/CN103069339B/en
Priority to KR1020137004083A priority patent/KR101830459B1/en
Publication of WO2012026465A1 publication Critical patent/WO2012026465A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • G03F7/0236Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0381Macromolecular compounds which are rendered insoluble or differentially wettable using a combination of a phenolic resin and a polyoxyethylene resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0385Macromolecular compounds which are rendered insoluble or differentially wettable using epoxidised novolak resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a photoresist resin composition.
  • This application claims priority based on Japanese Patent Application No. 2010-190880 filed in Japan on August 27, 2010, the contents of which are incorporated herein by reference.
  • a fine circuit pattern such as a liquid crystal display device circuit or a semiconductor integrated circuit is a mask having a predetermined shape by uniformly coating or applying a photoresist composition on an insulating film or a conductive metal film formed on a substrate. By exposing and developing the coated photoresist composition in the presence, it is made into a pattern of the desired shape. Thereafter, the metal film or the insulating film is removed using the patterned photoresist film as a mask, and then the remaining photoresist film is removed to form a fine circuit on the substrate.
  • a photoresist composition is classified into a negative type and a positive type depending on whether the exposed portion or the photoresist film is soluble or insoluble.
  • a photosensitizer having a quinonediazide group such as a naphthoquinonediazide compound and an alkali-soluble resin (for example, a novolac-type phenolic resin) are used.
  • a positive photoresist composition having such a composition exhibits a high resolving power by developing with an alkaline solution after exposure, and is used for the manufacture of semiconductors such as IC and LSI, the manufacture of liquid crystal display screen devices such as LCDs, and the manufacture of printing masters. It's being used.
  • novolak-type phenolic resins have high heat resistance due to the structure having many aromatic rings against plasma dry etching. So far, novolak-type phenolic resins and naphthoquinone diazide photosensitizers have been used. Numerous positive photoresists have been developed and put into practical use and have achieved great results.
  • the practical characteristics of the photoresist composition for liquid crystal display device circuits include sensitivity of the formed resist film, development contrast, resolution, adhesion to the substrate, residual film ratio, heat resistance, and circuit line width uniformity. Once (CD uniformity).
  • improvement in sensitivity is inevitably required due to the long exposure time in the production line due to the large area of the substrate, which is a characteristic of thin film transistor liquid crystal display devices.
  • the sensitivity and the remaining film ratio are inversely proportional, and the higher the sensitivity, the lower the remaining film ratio tends to decrease.
  • a novolak phenol resin obtained by reacting m / p-cresol and formaldehyde in the presence of an acid catalyst is generally used for a positive photoresist for a liquid crystal display device circuit.
  • Patent Document 1 discloses the use of a method of fractionating a novolak resin in order to improve photoresist characteristics, and the above contents are well known to those skilled in the art. .
  • improvement of the sensitivity of the photoresist is achieved by lowering the molecular weight of the novolak resin.
  • liquid crystal display device photoresist composition such as sensitivity, residual film ratio, development contrast, resolution, adhesion to the substrate, circuit line width uniformity, etc.
  • various photoresist compositions for liquid crystal display device circuits that can improve the above-described characteristics and can be applied to each industrial process have not been developed. Therefore, the demand for this continues.
  • An object of the present invention is to provide a resin composition for a photoresist having particularly high heat resistance, good sensitivity and resolution, high residual film properties, and other characteristics that are not inferior to those of general-purpose ones. .
  • the resin composition for photoresists of one embodiment of the present invention is a resin composition for photoresists comprising a novolac type phenol resin, a cyclic olefin resin, and a photosensitizer comprising a naphthoquinonediazide group-containing compound.
  • the cyclic olefin resin may be a norbornene resin.
  • the cyclic olefin resin may be a cyclic olefin resin containing a repeating unit represented by the following general formula (1).
  • X is any one of O, CH 2 and CH 2 CH 2 , n is an integer from 0 to 5, and R 1 to R 4 are O and Each independently selected from a monovalent organic group having 1 to 30 carbon atoms which may contain F and / or hydrogen, and R 1 to R 4 may be different in the repetition of the monomer, At least one of R 1 to R 4 of all repeating units has an acidic group.
  • the acidic group may be one or more groups selected from the group consisting of a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group.
  • the cyclic olefin resin may have a weight average molecular weight of 1000 to 500,000 daltons.
  • a mixing ratio of the cyclic olefin resin to the phenol resin may be 1 to 90% by weight.
  • a photoresist resin composition having high heat resistance, good sensitivity, resolution, high residual film property, and other characteristics that are not inferior to those of general-purpose products.
  • the present invention is described in detail below.
  • the present invention relates to a resin composition for photoresist.
  • the novolak type phenol resin used for the production of the photoresist composition of the present invention is synthesized by subjecting phenols and aldehydes to a condensation reaction in the presence of an acid catalyst according to a conventional method.
  • the phenols used in the above reaction are not particularly limited.
  • cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5- Xylenols such as xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, ethylphenols such as o-ethylphenol, m-ethylphenol, p-ethylphenol, isopropylphenol, butylphenol, p -In addition to alkylphenols such as tert-butylphenol, polyhydric phenols such as resorcin, catechol, hydroquinone, pyrogallol, phloroglucin, and alkyl polyphenols such as alkylresorcin, alkylcatechol and alkylhydroquinone
  • the ratio of m-cresol is less than the above lower limit, the sensitivity may be lowered, and when it exceeds the upper limit, the heat resistance may be lowered.
  • aldehydes used by the said reaction, For example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde Allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde and the like. Among these, it is preferable in terms of characteristics to use formaldehyde and paraformaldehyde.
  • the reaction molar ratio (F / P) of the phenols (P) and the aldehydes (F) is not particularly limited, and is a known reaction molar ratio in the production of a novolac type phenol resin, and one aspect of the present invention is Can be implemented.
  • the reaction molar ratio is preferably 0.5 to 1.0.
  • a resin composition having a molecular weight suitable for a photoresist is obtained.
  • the reaction molar ratio exceeds the upper limit, the resin composition may be excessively high molecular weight for use in a photoresist, or may be gelled depending on reaction conditions.
  • the content is less than the lower limit, the content of the low-nuclear component is relatively increased, and thus the efficiency in removing this may be reduced.
  • An acid catalyst is generally used for the reaction of the phenols and aldehydes.
  • the acid catalyst is not particularly limited, and examples thereof include organic carboxylic acids such as oxalic acid and acetic acid. Among these, it can also be used individually or in mixture of 2 or more types.
  • the amount of the acid catalyst used is not particularly limited, but is preferably 0.01 to 5% by weight based on the phenols.
  • a photoresist resin is used in the photoresist composition, a small amount of catalyst remains in the resin in order to prevent interference with the characteristics of the photoresist.
  • the catalyst may be removed by a general removal method (neutralization, water washing, filter filtration, etc.).
  • a moderately nonpolar solvent is suitable, for example, hexane, benzene, xylene, etc. are mentioned.
  • the phenol resin used for producing the photoresist resin composition of the present invention is preferably a phenol resin having a weight average molecular weight of 1,000 to 20,000 daltons as measured by GPC (Gel Permeation Chromatography), more preferably a weight average molecular weight. Is between 3000 and 10,000 daltons.
  • GPC Gel Permeation Chromatography
  • GPC measurement can be performed using tetrahydrofuran as an elution solvent, a flow rate of 1.0 ml / min, and a column temperature of 40 ° C. using a differential refractometer as a detector.
  • An apparatus that can be used is, for example, 1) Body: “HLC-8020” manufactured by TOSOH 2) Detector: “UV-8011” manufactured by TOSOH with wavelength set to 280 nm 3) Analytical column: “SHODEX KF-802, KF-803, KF-805” manufactured by Showa Denko KK can be used.
  • the cyclic olefin resin used for producing the photoresist resin composition of the present invention is a resin having a cyclic olefin structure in its main chain, and the cyclic structure derived from the cyclic olefin is directly connected in the chain length direction of the polymer. Therefore, it has a high glass transition point.
  • norbornene resin is preferable from the viewpoint of the performance of the obtained photoresist composition.
  • Examples of the structure of the norbornene resin include those represented by the general formula (1).
  • the functional group on the norbornene resin is appropriately selected according to the purpose of use of the obtained photoresist composition, and can be used without any particular limitation.
  • X is any one of O, CH 2 and CH 2 CH 2
  • n is an integer from 0 to 5.
  • R 1 to R 4 are each independently selected from a monovalent organic group having 1 to 30 carbon atoms and hydrogen, which may contain O and / or F in its structure. R 1 to R 4 may be different among the repeating monomers, but at least one of R 1 to R 4 of all repeating units has an acidic group.
  • Examples of the acidic group that imparts alkali solubility to the resin include a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group, and one or more of these can be introduced.
  • a phenol group that can be expected to exhibit high contrast and a high residual film ratio by interaction with a photosensitive agent is particularly preferable.
  • an example of a method for synthesizing these resins is polymerization using a cyclic olefin represented by the general formula (2) as a monomer.
  • R 1 to R 4 are each independently selected from a monovalent organic group having 1 to 30 carbon atoms and hydrogen, which may contain O and / or F in its structure. R 1 to R 4 may be different among the repeating monomers, but at least one of R 1 to R 4 of all repeating units has an acidic group. Examples of the acidic group include a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group, and one or more of these can be introduced.
  • cyclic olefin monomer used in the present invention include, for example, bicyclo [2.2.1] hept-2-ene-5-carboxylic acid, tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene-8-carboxylic acid, 8-methyltetracyclo [4.4.0.1 2,5 .
  • an acidic group is introduced into the residue by a polymer reaction. Can also be obtained.
  • a monomer in which the ionizable hydrogen atom of the acidic group in the cyclic olefin monomer represented by the general formula (2) is replaced with another structure is used, and after addition polymerization, the original hydrogen atom is deprotected. Can also be obtained by introducing.
  • the restoration of the acidic group by deprotection can be performed by a conventional method.
  • the acidic group equivalent of the cyclic olefin resin having an acidic group in the side chain used for the production of the photoresist resin composition of the present invention is not particularly limited because it depends on its molecular structure, but is 600 g / mol or less. Further, it is preferably 400 g / mol or less. If the acidic group equivalent is less than the above specified value, inorganic alkalis such as sodium hydroxide, potassium hydroxide and aqueous ammonia used during development, organic alkalis such as tetramethylammonium hydroxide, ethylamine, triethylamine and triethanolamine It becomes soluble in aqueous solution.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide and aqueous ammonia used during development
  • organic alkalis such as tetramethylammonium hydroxide, ethylamine, triethylamine and triethanolamine It becomes soluble in aqueous solution.
  • the amount of acidic groups in the resin can be measured by titration of the resin solution using a standard alkaline solution.
  • the acidic group equivalent of the obtained resin can be controlled by selecting the molecular structure of the monomer having an acidic group to be used, or by copolymerizing by changing the abundance ratio between the monomer having an acidic group and the monomer having no acidic group. .
  • a conventionally known method can be applied as a method for producing the cyclic olefin resin.
  • addition polymerization can be performed using a nickel compound or palladium compound which is a coordination polymerization catalyst.
  • nickel compounds include catalysts such as those represented by the chemical formula: E n Ni (C 6 F 5 ) 2 , where n is 1 or 2 and E is neutral.
  • E is preferably a ⁇ -arene ligand such as toluene, benzene, and mesitylene.
  • E is preferably selected from diethyl ether, THF (tetrahydrofuran), ethyl acetate, and dioxane.
  • (toluene) bis (perfluorophenyl) nickel for example, (mesitylene) bis (perfluorophenyl) nickel, (benzene) bis (perfluorophenyl) nickel, bis (tetrahydrofuran) bis (perfluorophenyl) nickel, bis (ethyl acetate) bis (perfluoro Phenyl) nickel and bis (dioxane) bis (perfluorophenyl) nickel.
  • Details are described in PCT WO 97/33198, PCT WO 00/20472, JP 2010-523766, JP 11-505880, and the like.
  • Preferred polymerization solvents used for these polymerizations include hydrocarbons and aromatic solvents.
  • the hydrocarbon solvent include, but are not limited to, pentane, hexane, heptane and the like.
  • the aromatic solvent include toluene, xylene and mesitylene, but are not limited thereto.
  • tetrahydrofuran, diethyl ether, ethyl acetate, lactone, ketone and the like can be used. These solvents can be used alone, or a mixture of two or more can be used as a polymerization solvent.
  • the molecular weight of the resin obtained by polymerization is controlled by, for example, changing the ratio of the catalyst and the monomer, the polymerization temperature, the polarity of the polymerization solvent, and the like. Is possible.
  • the molecular weight of the resin obtained by polymerization can also be controlled by adding a chain transfer agent as appropriate.
  • the weight average molecular weight of the cyclic olefin resin used in the production of the resin composition for photoresists of the present invention is 1000 to 500,000 daltons. If the weight average molecular weight exceeds the above range, the solubility of the resin composition in an alkaline aqueous solution may be reduced during the photoprocessing, and good photoworkability may not be obtained. On the other hand, if the weight average molecular weight is less than the lower limit, the performance improvement effect due to the addition may not be sufficiently obtained.
  • the blending amount of the cyclic olefin resin with respect to the phenol resin is preferably 1 to 90% by weight, more preferably 5 to 50% by weight.
  • the addition amount can be arbitrarily set according to the desired degree of the heat resistance improvement effect, but if the addition amount is too large, the properties such as sensitivity of the phenol resin may be lowered. On the other hand, if the addition amount is too small, the effect of improving the heat resistance may be insufficient.
  • the photosensitizer used for producing the photoresist composition of the present invention is a naphthoquinonediazide group-containing compound.
  • the naphthoquinonediazide group-containing compound for example, (1) 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,6-trihydroxybenzophenone, 2,3,4 Trihydroxy-2'-methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3', 4,4 ', 6-pentahydroxy Benzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ′, 5 ′, 6-hexahydroxy Polyhydroxybenzophenones such as benzophenone, 2,3,3 ′, 4,4 ′, 5′-hexa
  • the naphthoquinonediazide group-containing compound component may be contained singly or in combination of two or more.
  • the blending amount of the photosensitizer is not particularly limited, but it can be blended in the range of usually 5 to 100 parts by weight, preferably 10 to 50 parts by weight with respect to 100 parts by weight of the phenol resin. . If the blending amount of the photosensitive agent is less than the lower limit, it is difficult to obtain an image faithful to the pattern, and transferability may be deteriorated. On the other hand, when the upper limit is exceeded, the sensitivity of the photoresist may be reduced.
  • the solvent to be blended in the composition of the present invention is not particularly limited as long as the phenol resin, the cyclic olefin resin, and the naphthoquinone diazide group-containing compound are dissolved. In the present invention, these components are used dissolved in a solvent.
  • Solvents used in the production of the photoresist composition of the present invention include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol Monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol 20-3-monomethyl ether, methyl pyruvate , Ethyl pyruvate, methyl-3-methoxypropionate and the like can be used alone or in combination.
  • composition of the present invention may contain various additives such as stabilizers such as antioxidants, plasticizers, surfactants, adhesion improvers, and dissolution accelerators as necessary.
  • stabilizers such as antioxidants, plasticizers, surfactants, adhesion improvers, and dissolution accelerators as necessary.
  • An agent may be used.
  • the method for preparing the composition of the present invention is not particularly limited, but when no filler or pigment is added to the composition, the above components may be mixed and stirred in the usual manner.
  • a dispersing device such as a dissolver, a homogenizer, or a three roll mill.
  • composition of the present invention When the composition of the present invention thus obtained is exposed through a mask, a structural change occurs in the composition in the exposed area, and the solubility in an alkali developer is promoted. be able to. On the other hand, in the non-exposed area, low solubility in an alkali developer is maintained, so that a resist function can be imparted due to the difference in solubility thus generated.
  • the naphthoquinonediazide group-containing compound in the composition undergoes a chemical change due to light irradiation, and is dissolved in an alkali developer together with a novolak resin in a later development process and is not exposed.
  • a target pattern can be obtained by development.
  • Synthesis of phenolic resin (Synthesis Example 1) A 3 L 4-necked flask equipped with a stirrer, a thermometer, and a heat exchanger was charged with 600 g of m-cresol, 400 g of p-cresol, 527 g of 37% formalin, and 5 g of oxalic acid, and reacted for 4 hours under reflux conditions. Thereafter, dehydration was performed under normal pressure to an internal temperature of 170 ° C., and dehydration / demonomerization was further performed to 200 ° C. under a reduced pressure of 9.3 ⁇ 10 3 Pa to obtain 950 g of a phenol resin having a weight average molecular weight of 4200 daltons.
  • the organic layer was concentrated with an evaporator and then reprecipitated with hexane.
  • the obtained solid was dried in a vacuum dryer at 60 ° C. overnight to obtain 27 g of white powder.
  • the obtained polymer was put into methanol, the precipitate was agglomerated, washed thoroughly with water, and then dried under vacuum to obtain 7.8 g of white powder.
  • the solution after the reaction was dissolved in 300 g of hexane and washed with ion exchange water three times.
  • the organic layer was concentrated with an evaporator and then reprecipitated with methanol to obtain a white solid.
  • the obtained solid was dried in a vacuum dryer at 60 ° C. overnight to obtain 7.5 g of white powder.
  • composition for photoresist (Example 1) 30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 6 parts of the cyclic olefin resin fat obtained in Synthesis Example 2 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro After dissolving 6 parts of an ester with -5-oxo-naphthalene-1-sulfonic acid in 150 parts of propylene glycol monomethyl ether acetate, it was filtered using a membrane filter having a pore size of 1.0 ⁇ m to prepare a photoresist composition.
  • Example 2 30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 15 parts of the cyclic olefin resin obtained in Synthesis Example 2 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro-5 6 parts of an ester with -oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 ⁇ m to prepare a photoresist composition.
  • Example 3 30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 3 parts of the cyclic olefin resin obtained in Synthesis Example 3 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro-5 6 parts of an ester with -oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 ⁇ m to prepare a photoresist composition.
  • Example 4 30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 6 parts of the cyclic olefin resin obtained in Synthesis Example 4 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro- 6 parts of an ester with 5-oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 ⁇ m to prepare a photoresist composition.
  • Example 5 30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 6 parts of the cyclic olefin resin obtained in Synthesis Example 5 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro- 6 parts of an ester with 5-oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 ⁇ m to prepare a photoresist composition.
  • Example 6 30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 3 parts of the cyclic olefin resin obtained in Synthesis Example 6 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro- 6 parts of an ester with 5-oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 ⁇ m to prepare a photoresist composition.
  • the photoresist composition was applied to a thickness of about 1 ⁇ m on a 3 inch silicon wafer with a spin coater, and dried on a hot plate at 110 ° C. for 100 seconds.
  • the wafer was immersed in a developing solution (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, washed with water, and dried on a hot plate at 110 ° C. for 100 seconds.
  • the ratio of the film thickness after development to the film thickness before development was expressed as a percentage, and was defined as the remaining film ratio.
  • the degree of remaining film (resistance) when used as a photosensitizer and a photoresist can be understood, and the higher the numerical value, the higher the remaining film rate.
  • a photoresist composition was applied to a 3-inch silicon wafer with a spin coater to a thickness of about 1 ⁇ m and dried on a 110 ° C. hot plate for 100 seconds. Then repeated test chart mask on the silicon wafer, 20mJ / cm 2, 40mJ / cm 2, 60mJ / cm 2 of ultraviolet irradiation, respectively, 90 using a developing solution (2.38% tetramethylammonium hydroxide aqueous solution) Developed for seconds.
  • the obtained pattern was evaluated according to the following criteria by observing the pattern shape with a scanning electron microscope.
  • a An image can be formed at 20 mJ / cm 2 or less.
  • B 20 mJ / cm 2 than the image can be formed at 40 mJ / cm 2 or less.
  • C 40 mJ / cm 2 than the image can be formed at 60 mJ / cm 2 or less.
  • the resin composition for photoresists of the present invention has good thermal stability, high sensitivity, high resolution, and high residual film properties, so it is suitable for manufacturing fine circuits of liquid crystal display circuits and semiconductor integrated circuits. Can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Photolithography (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

Provided is a resin composition that is for a photoresist, has particularly high heat resistance, has favorable sensitivity and resolution and high film retaining properties, and is not inferior to general-purpose resin compositions in other characteristics either. The resin composition for a photoresist contains a phenolic resin, a cyclic olefin resin, and a compound containing a naphthoquinone diazide group. Preferably, the cyclic olefin resin is a norbornene resin, and the norbornene resin preferably has an acidic group, particularly a phenol group, and has a molecular weight of 1000 to 500,000 daltons.

Description

フォトレジスト用樹脂組成物Resin composition for photoresist
 本発明はフォトレジスト用樹脂組成物に関する。
 本願は、2010年8月27日に、日本に出願された特願2010-190880号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a photoresist resin composition.
This application claims priority based on Japanese Patent Application No. 2010-190880 filed in Japan on August 27, 2010, the contents of which are incorporated herein by reference.
 液晶表示装置回路、または半導体集積回路のように微細な回路パターンは、基板上に形成された絶縁膜、または導電性金属膜にフォトレジスト組成物を均一にコーティングまたは塗布し、所定の形状のマスク存在下でコーティングされたフォトレジスト組成物を露光して現像することにより、目的とする形状のパターンに作られる。その後、パターンが形成されたフォトレジスト膜をマスクとして用いて金属膜または絶縁膜を除去した後、残存するフォトレジスト膜を除去して基板上に微細回路を形成する。このようなフォトレジスト組成物は露光される部分やフォトレジスト膜が可溶か不溶によって、ネガ形とポジ形に分類される。 A fine circuit pattern such as a liquid crystal display device circuit or a semiconductor integrated circuit is a mask having a predetermined shape by uniformly coating or applying a photoresist composition on an insulating film or a conductive metal film formed on a substrate. By exposing and developing the coated photoresist composition in the presence, it is made into a pattern of the desired shape. Thereafter, the metal film or the insulating film is removed using the patterned photoresist film as a mask, and then the remaining photoresist film is removed to form a fine circuit on the substrate. Such a photoresist composition is classified into a negative type and a positive type depending on whether the exposed portion or the photoresist film is soluble or insoluble.
 一般にポジ型フォトレジスト組成物には、ナフトキノンジアジド化合物等のキノンジアジド基を有する感光剤とアルカリ可溶性樹脂(例えば、ノボラック型フェノ-ル樹脂)とが用いられている。このような組成からなるポジ型フォトレジスト組成物は、露光後にアルカリ溶液による現像によって高い解像力を示し、IC、LSI等の半導体製造、LCD等の液晶表示画面機器の製造及び印刷原版の製造等に利用されている。また、ノボラック型フェノ-ル樹脂は、プラズマドライエッチングに対し、芳香環を多く持つ構造に起因する高い耐熱性も有しており、これまでノボラック型フェノ-ル樹脂とナフトキノンジアジド系感光剤とを含有する数多くのポジ型フォトレジストが開発、実用化され、大きな成果を挙げてきている。 Generally, in a positive photoresist composition, a photosensitizer having a quinonediazide group such as a naphthoquinonediazide compound and an alkali-soluble resin (for example, a novolac-type phenolic resin) are used. A positive photoresist composition having such a composition exhibits a high resolving power by developing with an alkaline solution after exposure, and is used for the manufacture of semiconductors such as IC and LSI, the manufacture of liquid crystal display screen devices such as LCDs, and the manufacture of printing masters. It's being used. In addition, novolak-type phenolic resins have high heat resistance due to the structure having many aromatic rings against plasma dry etching. So far, novolak-type phenolic resins and naphthoquinone diazide photosensitizers have been used. Numerous positive photoresists have been developed and put into practical use and have achieved great results.
 液晶表示装置回路用フォトレジスト組成物の実用面での重要な特性は、形成されたレジスト膜の感度、現像コントラスト、解像度、基板との接着力、残膜率、耐熱性、および回路線幅均一度(CD uniformity)である。特に、薄膜トランジスタ液晶表示装置の特徴である基板の大面積化による生産ラインでの長い露光時間のため感度の向上が必ず要求される。また、感度と残膜率は反比例関係で、感度が高ければ残膜率は減少する傾向を示す。 The practical characteristics of the photoresist composition for liquid crystal display device circuits include sensitivity of the formed resist film, development contrast, resolution, adhesion to the substrate, residual film ratio, heat resistance, and circuit line width uniformity. Once (CD uniformity). In particular, improvement in sensitivity is inevitably required due to the long exposure time in the production line due to the large area of the substrate, which is a characteristic of thin film transistor liquid crystal display devices. In addition, the sensitivity and the remaining film ratio are inversely proportional, and the higher the sensitivity, the lower the remaining film ratio tends to decrease.
 液晶表示装置回路用ポジ型フォトレジストには、m/p-クレゾ-ルとホルムアルデヒドとを、酸触媒の存在下で反応させて得られるノボラック型フェノ-ル樹脂が一般に使用されている。そして、フォトレジストの特性を調整または向上させるために、原料フェノール類として用いるm/p-クレゾ-ルの比率や、フェノ-ル樹脂の分子量、分子量分布等の検討がなされてきた。また、特許文献1にはフォトレジスト特性を向上させるためにノボラック樹脂を分溜(Fractionation)処理する方法の使用が開示されており、前記の内容は当分野の従事者には広く知られている。
 一般的にフォトレジストの感度の向上はノボラック樹脂の分子量を低くすることにより達成される。しかし、この手法では耐熱性が悪くなったり、未露光部の残膜率が低下したり、露光部との溶解速度差が充分に得られず、露光部と未露光部との現像コントラストの低下を招く。そして、その結果、解像度の低下という問題が発生する。一方、ノボラック樹脂の分子量を高くすると、耐熱性および解像度は改善されるが、レジスト膜の感度の低下が発生する。すなわち一方を改良しようとすると、他方が悪くなるというきわめて深刻な不都合を生じる。
 これまで、この不都合に対して、様々な改良が試みられてきている。しかし、未だに感度、残膜率、現像コントラスト、解像度、基板との接着力、回路線幅均一度などのような液晶表示装置回路用フォトレジスト組成物の好ましい特性のうちいずれか一つの特性も犠牲にせずに、上記の特性を向上させることが可能であり、かつ各々の産業工程に適用することが可能な、多様な液晶表示装置回路用フォトレジスト組成物は開発されていない。そのため、これに対する要求は続いている。
A novolak phenol resin obtained by reacting m / p-cresol and formaldehyde in the presence of an acid catalyst is generally used for a positive photoresist for a liquid crystal display device circuit. In order to adjust or improve the characteristics of the photoresist, studies have been made on the ratio of m / p-cresol used as a starting phenol, the molecular weight of the phenol resin, the molecular weight distribution, and the like. Patent Document 1 discloses the use of a method of fractionating a novolak resin in order to improve photoresist characteristics, and the above contents are well known to those skilled in the art. .
In general, improvement of the sensitivity of the photoresist is achieved by lowering the molecular weight of the novolak resin. However, with this method, the heat resistance is deteriorated, the remaining film ratio of the unexposed part is reduced, or the difference in dissolution rate from the exposed part is not sufficiently obtained, and the development contrast between the exposed part and the unexposed part is lowered. Invite. As a result, the problem of a decrease in resolution occurs. On the other hand, when the molecular weight of the novolak resin is increased, the heat resistance and resolution are improved, but the sensitivity of the resist film is lowered. That is, trying to improve one causes a very serious inconvenience that the other gets worse.
Until now, various improvements have been attempted for this inconvenience. However, it still sacrifices any one of the preferable characteristics of the liquid crystal display device photoresist composition such as sensitivity, residual film ratio, development contrast, resolution, adhesion to the substrate, circuit line width uniformity, etc. However, various photoresist compositions for liquid crystal display device circuits that can improve the above-described characteristics and can be applied to each industrial process have not been developed. Therefore, the demand for this continues.
特表2002-508415号公報Special table 2002-508415 gazette
 本発明の目的は特に高耐熱性を有し、良好な感度・解像度、高残膜性をもち、その他特性についても汎用のものより劣ることのないフォトレジスト用樹脂組成物を提供することにある。 An object of the present invention is to provide a resin composition for a photoresist having particularly high heat resistance, good sensitivity and resolution, high residual film properties, and other characteristics that are not inferior to those of general-purpose ones. .
 本発明の一態様のフォトレジスト用樹脂組成物は、ノボラック型フェノール樹脂と、環状オレフィン樹脂と、ナフトキノンジアジド基含有化合物からなる感光剤とを含むフォトレジスト用樹脂組成物である。
 上記フォトレジスト用樹脂組成物において、前記環状オレフィン樹脂がノルボルネン樹脂であってもよい。
 上記フォトレジスト用樹脂組成物において、前記環状オレフィン樹脂が下記一般式(1)で示される繰り返し単位を含む環状オレフィン樹脂であってもよい。
The resin composition for photoresists of one embodiment of the present invention is a resin composition for photoresists comprising a novolac type phenol resin, a cyclic olefin resin, and a photosensitizer comprising a naphthoquinonediazide group-containing compound.
In the photoresist resin composition, the cyclic olefin resin may be a norbornene resin.
In the resin composition for photoresists, the cyclic olefin resin may be a cyclic olefin resin containing a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ここで、上記式(1)中、XはO、CH、CHCHのいずれかであり、nは0~5までの整数であり、R~Rはその構造中にO及び/又はFを含んでいても良い炭素数1~30の一価の有機基または水素よりそれぞれ独立に選ばれ、R~Rは単量体の繰り返しの中で異なっていてもよいが、全繰り返し単位のR~Rのうち、少なくとも一つは酸性基を有する。
 上記フォトレジスト用樹脂組成物において、前記酸性基がカルボキシル基,フェノール基,フルオロアルコール基及びスルホアミド基からなる群から選択される1つ以上の基であってもよい。
 上記フォトレジスト用樹脂組成物において、前記環状オレフィン樹脂の重量平均分子量が1000~500,000ダルトンであってもよい。
 上記フォトレジスト用樹脂組成物において、前記フェノール樹脂に対する前記環状オレフィン樹脂の混合比率が1~90重量%であってもよい。
Here, in the above formula (1), X is any one of O, CH 2 and CH 2 CH 2 , n is an integer from 0 to 5, and R 1 to R 4 are O and Each independently selected from a monovalent organic group having 1 to 30 carbon atoms which may contain F and / or hydrogen, and R 1 to R 4 may be different in the repetition of the monomer, At least one of R 1 to R 4 of all repeating units has an acidic group.
In the photoresist resin composition, the acidic group may be one or more groups selected from the group consisting of a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group.
In the photoresist resin composition, the cyclic olefin resin may have a weight average molecular weight of 1000 to 500,000 daltons.
In the resin composition for photoresists, a mixing ratio of the cyclic olefin resin to the phenol resin may be 1 to 90% by weight.
 本発明により、高耐熱性を有し、良好な感度、解像度、高残膜性をもち、その他特性についても汎用のものより劣ることのないフォトレジスト用樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a photoresist resin composition having high heat resistance, good sensitivity, resolution, high residual film property, and other characteristics that are not inferior to those of general-purpose products.
 以下に、本発明について詳細に説明する。
 本発明は、フォトレジスト用樹脂組成物に関するものである。
The present invention is described in detail below.
The present invention relates to a resin composition for photoresist.
 本発明のフォトレジスト組成物の製造に用いるノボラック型フェノール樹脂は、定法に則りフェノール類とアルデヒド類とを酸触媒の存在下で縮合反応させることにより合成される。 The novolak type phenol resin used for the production of the photoresist composition of the present invention is synthesized by subjecting phenols and aldehydes to a condensation reaction in the presence of an acid catalyst according to a conventional method.
 上記反応で用いられるフェノール類としては特に限定されないが、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール類、o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類、イソプロピルフェノール、ブチルフェノール、p-tert-ブチルフェノール等のアルキルフェノール類のほか、レゾルシン、カテコール、ハイドロキノン、ピロガロール、フロログルシン等の多価フェノール類、アルキルレゾルシン、アルキルカテコール、アルキルハイドロキノンなどのアルキル多価フェノール類(いずれのアルキル基も、炭素数は1~4である)が挙げられる。これらは、単独または2種類以上組み合わせて使用することができる。 The phenols used in the above reaction are not particularly limited. For example, cresols such as phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5- Xylenols such as xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol, ethylphenols such as o-ethylphenol, m-ethylphenol, p-ethylphenol, isopropylphenol, butylphenol, p -In addition to alkylphenols such as tert-butylphenol, polyhydric phenols such as resorcin, catechol, hydroquinone, pyrogallol, phloroglucin, and alkyl polyphenols such as alkylresorcin, alkylcatechol and alkylhydroquinone S (any alkyl group, the carbon number of 1-4) can be mentioned. These can be used alone or in combination of two or more.
 上記フェノール類の中でも、特に、m-クレゾールとp-クレゾールとを用いることが好ましい。これらのフェノール類を用い、かつ、両者の配合比率を調節することで、フォトレジストとしての感度、耐熱性などの諸特性を調節することができる。この場合、m-クレゾールとp-クレゾールとの比率は特に限定されないが、重量比(m-クレゾール/p-クレゾール)=9/1~1/9とすることが好ましい。さらに好ましくは8/2~2/8である。m-クレゾールの比率が上記下限値未満になると感度が低下することがあり、上記上限値を超えると耐熱性が低下することがある。 Among the above phenols, it is particularly preferable to use m-cresol and p-cresol. By using these phenols and adjusting the blending ratio of the two, various characteristics such as sensitivity and heat resistance as a photoresist can be adjusted. In this case, the ratio of m-cresol and p-cresol is not particularly limited, but is preferably a weight ratio (m-cresol / p-cresol) = 9/1 to 1/9. More preferably, it is 8/2 to 2/8. When the ratio of m-cresol is less than the above lower limit, the sensitivity may be lowered, and when it exceeds the upper limit, the heat resistance may be lowered.
 上記反応で用いられるアルデヒド類としては特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド等が挙げられる。これらの中でも、ホルムアルデヒド、パラホルムアルデヒドを用いることが特性上好ましい。 Although it does not specifically limit as aldehydes used by the said reaction, For example, formaldehyde, paraformaldehyde, trioxane, acetaldehyde, propionaldehyde, polyoxymethylene, chloral, hexamethylenetetramine, furfural, glyoxal, n-butyraldehyde, caproaldehyde Allylaldehyde, benzaldehyde, crotonaldehyde, acrolein, tetraoxymethylene, phenylacetaldehyde, o-tolualdehyde, salicylaldehyde and the like. Among these, it is preferable in terms of characteristics to use formaldehyde and paraformaldehyde.
 上記フェノール類(P)とアルデヒド類(F)との反応モル比(F/P)は、特に限定されず、ノボラック型フェノール樹脂の製造において公知の反応モル比にて、本発明の一態様は実施することができる。
 特に、得られたノボラック型フェノール樹脂をフォトレジスト用に適用する場合は、反応モル比を0.5~1.0とすることが好ましい。これにより、フォトレジスト用として好適な分子量を有する樹脂組成物が得られる。上記反応モル比が上記上限値を超えると、樹脂組成物はフォトレジスト用とするには過剰に高分子量化したり、反応条件によってはゲル化したりすることがある。また、上記下限値未満では、低核体成分の含有量が相対的に多くなるため、これを除去する際の効率が低下することがある。
The reaction molar ratio (F / P) of the phenols (P) and the aldehydes (F) is not particularly limited, and is a known reaction molar ratio in the production of a novolac type phenol resin, and one aspect of the present invention is Can be implemented.
In particular, when the obtained novolac type phenol resin is applied to a photoresist, the reaction molar ratio is preferably 0.5 to 1.0. Thereby, a resin composition having a molecular weight suitable for a photoresist is obtained. When the reaction molar ratio exceeds the upper limit, the resin composition may be excessively high molecular weight for use in a photoresist, or may be gelled depending on reaction conditions. In addition, if the content is less than the lower limit, the content of the low-nuclear component is relatively increased, and thus the efficiency in removing this may be reduced.
 前記フェノール類とアルデヒド類との反応には、酸触媒が一般的に使用される。酸触媒としては、特に限定はされないが、例えば、蓚酸、酢酸などの有機カルボン酸などが挙げられる。これらの中から、単独あるいは2種以上を混合して使用することもできる。酸触媒の使用量は特に限定されないが、前記フェノール類に対して0.01~5重量%であることが好ましい。また、フォトレジスト用樹脂をフォトレジスト組成物に用いる時には、フォトレジストの特性への干渉を防ぐために、樹脂に残留している触媒は少量であることが好ましい。もちろん樹脂を合成する過程で、一般的な除去方法(中和、水洗やフィルターろ過等)により、触媒を除去してもよい。
 また、本発明のフォトレジスト用樹脂組成物を製造するのに使用される反応溶媒としては、適度に非極性な溶媒が好適であり、例えばヘキサン、ベンゼン、キシレンなどが挙げられる。
An acid catalyst is generally used for the reaction of the phenols and aldehydes. The acid catalyst is not particularly limited, and examples thereof include organic carboxylic acids such as oxalic acid and acetic acid. Among these, it can also be used individually or in mixture of 2 or more types. The amount of the acid catalyst used is not particularly limited, but is preferably 0.01 to 5% by weight based on the phenols. In addition, when a photoresist resin is used in the photoresist composition, a small amount of catalyst remains in the resin in order to prevent interference with the characteristics of the photoresist. Of course, in the process of synthesizing the resin, the catalyst may be removed by a general removal method (neutralization, water washing, filter filtration, etc.).
Moreover, as a reaction solvent used for manufacturing the resin composition for photoresists of this invention, a moderately nonpolar solvent is suitable, for example, hexane, benzene, xylene, etc. are mentioned.
 本発明のフォトレジスト用樹脂組成物を製造するのに用いるフェノール樹脂としては、GPC(Gel Permeation Chromatography)により測定される重量平均分子量が1000~20000ダルトンであるフェノール樹脂が好ましく、さらに好ましい重量平均分子量は3000~10000ダルトンである。用いるフェノール樹脂の重量平均分子量を、上記範囲内とすることで、フォトレジスト用樹脂組成物の感度、耐熱性、残膜率を最適なものとすることができる。
 上記重量平均分子量は、ポリスチレン標準物質を用いて作成した検量線をもとに計算されるものである。GPC測定は、テトラヒドロフランを溶出溶媒とし、流量1.0ml/min、カラム温度40℃の条件で示差屈折計を検出器として用いて実施することができる。用いることのできる装置は、例えば、
1)本体:TOSOH社製・「HLC-8020」
2)検出器:波長280nmにセットしたTOSOH社製・「UV-8011」
3)分析用カラム:昭和電工社製・「SHODEX KF-802、KF-803、KF-805」をそれぞれ使用することができる。
The phenol resin used for producing the photoresist resin composition of the present invention is preferably a phenol resin having a weight average molecular weight of 1,000 to 20,000 daltons as measured by GPC (Gel Permeation Chromatography), more preferably a weight average molecular weight. Is between 3000 and 10,000 daltons. By setting the weight average molecular weight of the phenol resin to be used within the above range, the sensitivity, heat resistance, and remaining film ratio of the resin composition for photoresist can be optimized.
The weight average molecular weight is calculated based on a calibration curve created using a polystyrene standard. GPC measurement can be performed using tetrahydrofuran as an elution solvent, a flow rate of 1.0 ml / min, and a column temperature of 40 ° C. using a differential refractometer as a detector. An apparatus that can be used is, for example,
1) Body: "HLC-8020" manufactured by TOSOH
2) Detector: “UV-8011” manufactured by TOSOH with wavelength set to 280 nm
3) Analytical column: “SHODEX KF-802, KF-803, KF-805” manufactured by Showa Denko KK can be used.
 本発明のフォトレジスト用樹脂組成物を製造するのに用いられる環状オレフィン樹脂は、その主鎖中に環状オレフィン構造を有する樹脂であり、環状オレフィン由来の環構造がポリマーの鎖長方向に直接連結した剛直な構造を有するため、高いガラス転移点を有するものである。このような樹脂の中でも、得られるフォトレジスト組成物の性能の見地より好ましいのは、ノルボルネン樹脂である。ノルボルネン樹脂の構造としては、たとえば一般式(1)で表されるものを挙げることができる。ノルボルネン樹脂上の官能基としては、得られるフォトレジスト組成物の使用目的に応じて適宜選択され、特に制限されず用いることができる。 The cyclic olefin resin used for producing the photoresist resin composition of the present invention is a resin having a cyclic olefin structure in its main chain, and the cyclic structure derived from the cyclic olefin is directly connected in the chain length direction of the polymer. Therefore, it has a high glass transition point. Among these resins, norbornene resin is preferable from the viewpoint of the performance of the obtained photoresist composition. Examples of the structure of the norbornene resin include those represented by the general formula (1). The functional group on the norbornene resin is appropriately selected according to the purpose of use of the obtained photoresist composition, and can be used without any particular limitation.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ここで式(1)中、XはO、CH、CHCHのいずれかであり、nは0~5までの整数である。R~Rはその構造中にO及び/又はFを含んでいても良い炭素数1~30の一価の有機基または水素よりそれぞれ独立に選ばれる。R~Rは単量体の繰り返しの中で異なっていてもよいが、全繰り返し単位のR~Rのうち、少なくとも一つは酸性基を有するものである。 In the formula (1), X is any one of O, CH 2 and CH 2 CH 2 , and n is an integer from 0 to 5. R 1 to R 4 are each independently selected from a monovalent organic group having 1 to 30 carbon atoms and hydrogen, which may contain O and / or F in its structure. R 1 to R 4 may be different among the repeating monomers, but at least one of R 1 to R 4 of all repeating units has an acidic group.
 樹脂にアルカリ可溶性を付与する酸性基としては、カルボキシル基、フェノール基、フルオロアルコール基、スルホアミド基などをあげることができ、これらのうち1種あるいは2種以上を導入することができる。これらのうち、感光剤とのインタラクションにより高コントラスト及び高残膜率の発現が期待できるフェノール基が特に好ましい。 Examples of the acidic group that imparts alkali solubility to the resin include a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group, and one or more of these can be introduced. Among these, a phenol group that can be expected to exhibit high contrast and a high residual film ratio by interaction with a photosensitive agent is particularly preferable.
 一般的にこれらの樹脂の合成法の例としては一般式(2)で示される環状オレフィンをモノマーとして重合することをあげることができる。 Generally, an example of a method for synthesizing these resins is polymerization using a cyclic olefin represented by the general formula (2) as a monomer.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ここで式(2)中、XはO、CH、CHCHのいずれかであり、nは0~5までの整数である。R~Rはその構造中にO及び/又はFを含んでいても良い炭素数1~30の一価の有機基または水素よりそれぞれ独立に選ばれる。R~Rは単量体の繰り返しの中で異なっていてもよいが、全繰り返し単位のR~Rのうち、少なくとも一つは酸性基を有するものである。酸性基としてはカルボキシル基,フェノール基,フルオロアルコール基,スルホアミド基をあげることができ、これらのうち1種あるいは2種以上導入することができる。 Here, in the formula (2), X is any one of O, CH 2 and CH 2 CH 2 , and n is an integer from 0 to 5. R 1 to R 4 are each independently selected from a monovalent organic group having 1 to 30 carbon atoms and hydrogen, which may contain O and / or F in its structure. R 1 to R 4 may be different among the repeating monomers, but at least one of R 1 to R 4 of all repeating units has an acidic group. Examples of the acidic group include a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group, and one or more of these can be introduced.
 本発明で用いられる環状オレフィンモノマーの具体例としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン-5-カルボン酸、テトラシクロ[4.4.0.12,5.17,10]ドデック-3-エン-8-カルボン酸、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデック-3-エン-8-カルボン酸、(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)酢酸、2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)プロピオン酸、3-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)酪酸、3-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)吉草酸、3-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カプロン酸、コハク酸モノ-(2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カルボニルオキシエチル)エステル、コハク酸モノ-(2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カルボニルオキシプロピル)エステル、コハク酸モノ-(2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カルボニルオキシブチル)エステル、フタル酸モノ-(2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カルボニルオキシエチル)エステル、カプロン酸モノ-(2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カルボニルオキシブチル)エステル、(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)カルボニルオキシ酢酸、2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルフェノール、3-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルフェノール、4-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルフェノール、4-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)フェノール、4-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルカテコール、3-メトキシ-4-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルフェノール、3-メトキシ-2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルフェノール、2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルレゾルシン、1,1-ビストリフルオロメチル-2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)エチルアルコール、1,1-ビストリフルオロメチル-3-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)プロピルアルコール、1,1-ビストリフルオロメチル-4-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)ブチルアルコール、1,1-ビストリフルオロメチル-5-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)ペンチルアルコール、1,1-ビストリフルオロメチル-6-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)ヘキシルアルコール、などをあげることができるが、これら構造に限定されない。 Specific examples of the cyclic olefin monomer used in the present invention include, for example, bicyclo [2.2.1] hept-2-ene-5-carboxylic acid, tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene-8-carboxylic acid, 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene-8-carboxylic acid, (bicyclo [2.2.1] hept-2-en-5-yl) acetic acid, 2- (bicyclo [2.2.1] hept- 2-ene-5-yl) propionic acid, 3- (bicyclo [2.2.1] hept-2-en-5-yl) butyric acid, 3- (bicyclo [2.2.1] hept-2-ene -5-yl) valeric acid, 3- (bicyclo [2.2.1] hept-2-en-5-yl) caproic acid, succinic acid mono- (2- (bicyclo [2.2.1] hept- 2-ene-5-yl) carbonyloxyethyl) ester, succinic acid mono- (2- (bicyclo [2.2.1] hept-2-en-5-yl) carbonyloxypropyl) ester, succinic acid mono- (2- (bicyclo [2.2.1] hept-2-en-5-yl) carbonyloxybutyl) ester, Mono- (2- (bicyclo [2.2.1] hept-2-en-5-yl) carbonyloxyethyl) ester, caproic acid mono- (2- (bicyclo [2.2.1] hept- 2-ene-5-yl) carbonyloxybutyl) ester, (bicyclo [2.2.1] hept-2-en-5-yl) carbonyloxyacetic acid, 2- (bicyclo [2.2.1] hept- 2-en-5-yl) methylphenol, 3- (bicyclo [2.2.1] hept-2-en-5-yl) methylphenol, 4- (bicyclo [2.2.1] hept-2- En-5-yl) methylphenol, 4- (bicyclo [2.2.1] hept-2-en-5-yl) phenol, 4- (bicyclo [2.2.1] hept-2-ene-5 -Yl) methylcatechol, 3-methoxy-4- (bicyclo [2.2.1] Hept-2-en-5-yl) methylphenol, 3-methoxy-2- (bicyclo [2.2.1] hept-2-en-5-yl) methylphenol, 2- (bicyclo [2.2. 1] hept-2-en-5-yl) methylresorcin, 1,1-bistrifluoromethyl-2- (bicyclo [2.2.1] hept-2-en-5-yl) ethyl alcohol, 1,1 -Bistrifluoromethyl-3- (bicyclo [2.2.1] hept-2-en-5-yl) propyl alcohol, 1,1-bistrifluoromethyl-4- (bicyclo [2.2.1] hept- 2-ene-5-yl) butyl alcohol, 1,1-bistrifluoromethyl-5- (bicyclo [2.2.1] hept-2-en-5-yl) pentyl alcohol, 1,1-bistrifluoromethyl -6- (Bicyclo [ 2.2.1] hept-2-en-5-yl) hexyl alcohol, and the like, but are not limited to these structures.
 または、一般式(2)で示される環状オレフィンモノマーの代わりに酸性基を有しない環状オレフィンモノマーを使用して同様の重合を行った後、その残基に高分子反応で酸性基を導入することによっても得ることができる。あるいは、一般式(2)で示される環状オレフィンモノマー中の酸性基の電離しうる水素原子を他の構造で置換したモノマーを使用し、これを付加重合した後、脱保護して元の水素原子を導入することにより得ることもできる。脱保護による酸性基の復元は定法によって行うことができる。 Alternatively, after performing similar polymerization using a cyclic olefin monomer having no acidic group instead of the cyclic olefin monomer represented by the general formula (2), an acidic group is introduced into the residue by a polymer reaction. Can also be obtained. Alternatively, a monomer in which the ionizable hydrogen atom of the acidic group in the cyclic olefin monomer represented by the general formula (2) is replaced with another structure is used, and after addition polymerization, the original hydrogen atom is deprotected. Can also be obtained by introducing. The restoration of the acidic group by deprotection can be performed by a conventional method.
 本発明のフォトレジスト用樹脂組成物の製造に用いられる、酸性基を側鎖に有する環状オレフィン樹脂の酸性基当量としては、その分子構造にもよるため特にここでは限定されないが、600g/モル以下、更に400g/モル以下であることが好ましい。酸性基当量が前記規定値以下であれば現像時に用いる水酸化ナトリウム、水酸化カリウム、アンモニア水等の無機アルカリ類、水酸化テトラメチルアンモニウムやエチルアミン、トリエチルアミン、トリエタノールアミン類などの有機アルカリ類の水溶液に可溶となる。酸性基当量が前記上限値よりも大きいと、上記アルカリ水溶液への溶解性が発現しにくくなり、パターン加工を行うことが困難になる。樹脂中の酸性基の量は標準アルカリ溶液を使用した樹脂溶液の滴定などにより測定することができる。
 得られる樹脂の酸性基当量は、使用する酸性基を有するモノマーの分子構造の選択、あるいは酸性基を有するモノマーと有しないモノマーとの存在比を変えて共重合することなどにより制御することができる。
 環状オレフィン樹脂を製造する方法としては、従来公知の手法を適用することができる。例えば、配位重合触媒であるニッケル化合物あるいはパラジウム化合物などを用いて付加重合させることができる。ニッケル化合物の例としては例えば化学式:ENi(Cで表されるような触媒を挙げることができ、この化学式では、nは1または2であり、そしてEは中性の配位子を表わす。nが1である場合、Eは好ましくは、トルエン、ベンゼン、及びメシチレンのようなπ-アレーン配位子である。nが2である場合、Eは好ましくは、ジエチルエーテル、THF(テトラヒドロフラン)、エチルアセテート、及びジオキサンから選択される。例えば(トルエン)ビス(ペルフルオロフェニル)ニッケル、(メシチレン)ビス(ペルフルオロフェニル)ニッケル、(ベンゼン)ビス(ペルフルオロフェニル)ニッケル、ビス(テトラヒドロフラン)ビス(ペルフルオロフェニル)ニッケル、ビス(エチルアセテート)ビス(ペルフルオロフェニル)ニッケル、及びビス(ジオキサン)ビス(ペルフルオロフェニル)ニッケルなどを挙げることができる。詳細についてはPCT WO 97/33198、PCT WO 00/20472、特表2010-523766号公報、特表平11-505880号公報等に述べられている。
The acidic group equivalent of the cyclic olefin resin having an acidic group in the side chain used for the production of the photoresist resin composition of the present invention is not particularly limited because it depends on its molecular structure, but is 600 g / mol or less. Further, it is preferably 400 g / mol or less. If the acidic group equivalent is less than the above specified value, inorganic alkalis such as sodium hydroxide, potassium hydroxide and aqueous ammonia used during development, organic alkalis such as tetramethylammonium hydroxide, ethylamine, triethylamine and triethanolamine It becomes soluble in aqueous solution. When the acidic group equivalent is larger than the upper limit, the solubility in the alkaline aqueous solution is difficult to be exhibited, and it is difficult to perform pattern processing. The amount of acidic groups in the resin can be measured by titration of the resin solution using a standard alkaline solution.
The acidic group equivalent of the obtained resin can be controlled by selecting the molecular structure of the monomer having an acidic group to be used, or by copolymerizing by changing the abundance ratio between the monomer having an acidic group and the monomer having no acidic group. .
A conventionally known method can be applied as a method for producing the cyclic olefin resin. For example, addition polymerization can be performed using a nickel compound or palladium compound which is a coordination polymerization catalyst. Examples of nickel compounds include catalysts such as those represented by the chemical formula: E n Ni (C 6 F 5 ) 2 , where n is 1 or 2 and E is neutral. Represents a ligand. When n is 1, E is preferably a π-arene ligand such as toluene, benzene, and mesitylene. When n is 2, E is preferably selected from diethyl ether, THF (tetrahydrofuran), ethyl acetate, and dioxane. For example, (toluene) bis (perfluorophenyl) nickel, (mesitylene) bis (perfluorophenyl) nickel, (benzene) bis (perfluorophenyl) nickel, bis (tetrahydrofuran) bis (perfluorophenyl) nickel, bis (ethyl acetate) bis (perfluoro Phenyl) nickel and bis (dioxane) bis (perfluorophenyl) nickel. Details are described in PCT WO 97/33198, PCT WO 00/20472, JP 2010-523766, JP 11-505880, and the like.
 これらの重合に使用される好ましい重合溶媒としては炭化水素や芳香族溶媒が含まれる。炭化水素溶媒の例としてはペンタン,ヘキサン,ヘプタンなどがあげられるがこれらに限定されない。また芳香族溶媒の例としては、トルエン、キシレン、メシチレンなどであるが、やはりこれらに限定されない。その他、テトラヒドロフラン,ジエチルエーテル,酢酸エチル、ラクトン、ケトンなども使用できる。これらの溶媒は一種類単独で使用できる他、二種類以上を混合したものを重合溶媒として使用できる。 Preferred polymerization solvents used for these polymerizations include hydrocarbons and aromatic solvents. Examples of the hydrocarbon solvent include, but are not limited to, pentane, hexane, heptane and the like. Examples of the aromatic solvent include toluene, xylene and mesitylene, but are not limited thereto. In addition, tetrahydrofuran, diethyl ether, ethyl acetate, lactone, ketone and the like can be used. These solvents can be used alone, or a mixture of two or more can be used as a polymerization solvent.
 本発明のフォトレジスト用樹脂組成物に含まれるモノマーの重合については、重合で得られる樹脂の分子量を、例えば、触媒とモノマーの比率を変化させたり、重合温度や重合溶媒の極性などによっても制御することが可能である。また適宜連鎖移動剤の添加によっても、重合で得られる樹脂の分子量を制御することができる。 Regarding the polymerization of monomers contained in the photoresist resin composition of the present invention, the molecular weight of the resin obtained by polymerization is controlled by, for example, changing the ratio of the catalyst and the monomer, the polymerization temperature, the polarity of the polymerization solvent, and the like. Is possible. The molecular weight of the resin obtained by polymerization can also be controlled by adding a chain transfer agent as appropriate.
 本発明のフォトレジスト用樹脂組成物の製造に用いられる環状オレフィン樹脂の重量平均分子量は、1000~500,000ダルトンである。重量平均分子量が上記範囲を超えると、その光加工時に樹脂組成物のアルカリ水溶液に対する溶解性が低下し、良好な光加工性が得られなくなる恐れがある。一方、重量平均分子量が前記下限未満であると、添加による性能向上効果が十分得られない可能性がある。 The weight average molecular weight of the cyclic olefin resin used in the production of the resin composition for photoresists of the present invention is 1000 to 500,000 daltons. If the weight average molecular weight exceeds the above range, the solubility of the resin composition in an alkaline aqueous solution may be reduced during the photoprocessing, and good photoworkability may not be obtained. On the other hand, if the weight average molecular weight is less than the lower limit, the performance improvement effect due to the addition may not be sufficiently obtained.
 フェノール樹脂に対する環状オレフィン樹脂の配合量としては、1~90重量%が好ましく、より好ましくは5~50重量%である。添加量は所望する耐熱性向上効果の程度によって任意に設定可能であるが、添加量が多すぎるとフェノール樹脂の有する感度等の性質を低下させる恐れがある。一方、添加量が少なすぎると耐熱性の向上効果が不十分である場合がある。 The blending amount of the cyclic olefin resin with respect to the phenol resin is preferably 1 to 90% by weight, more preferably 5 to 50% by weight. The addition amount can be arbitrarily set according to the desired degree of the heat resistance improvement effect, but if the addition amount is too large, the properties such as sensitivity of the phenol resin may be lowered. On the other hand, if the addition amount is too small, the effect of improving the heat resistance may be insufficient.
 本発明のフォトレジスト組成物の製造に用いる感光剤は、ナフトキノンジアジド基含有化合物である。ナフトキノンジアジド基含有化合物としては、例えば、
(1)2,3,4-トリヒドロキシベンゾフェノン、2,4,4'-トリヒドロキシベンゾフェノン、2,4,6-トリヒドロキシベンゾフェノン、2,3,6-トリヒドロキシベンゾフェノン、2,3,4-トリヒドロキシ-2'-メチルベンゾフェノン、2,3,4,4'-テトラヒドロキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,3',4,4',6-ペンタヒドロキシベンゾフェノン、2,2',3,4,4'-ペンタヒドロキシベンゾフェノン、2,2',3,4,5-ペンタヒドロキシベンゾフェノン、2,3',4,4',5',6-ヘキサヒドロキシベンゾフェノン、2,3,3',4,4',5'-ヘキサヒドロキシベンゾフェノンなどのポリヒドロキシベンゾフェノン類、
(2)ビス(2,4-ジヒドロキシフェニル)メタン、ビス(2,3,4-トリヒドロキシフェニル)メタン、2-(4-ヒドロキシフェニル)-2-(4'-ヒドロキシフェニル)プロパン、2-(2,4-ジヒドロキシフェニル)-2-(2',4'-ジヒドロキシフェニル)プロパン、2-(2,3,4-トリヒドロキシフェニル)-2-(2',3',4'-トリヒドロキシフェニル)プロパン、4,4'-{1-[4-〔2-(4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノール,3,3'-ジメチル-{1-[4-〔2-(3-メチル-4-ヒドロキシフェニル)-2-プロピル〕フェニル]エチリデン}ビスフェノールなどのビス[(ポリ)ヒドロキシフェニル]アルカン類、
(3)トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3、5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-2-ヒドロキシフェニルメタン、ビス(4-ヒドロキシ-2,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,4-ジヒドロキシフェニルメタンなどのトリス(ヒドロキシフェニル)メタン類又はそのメチル置換体、
(4)ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン,ビス(3-シクロヘキシル-4-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-2-ヒドロキシフェニルメタン,ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-3-ヒドロキシフェニルメタン、 ビス(5-シクロヘキシル-4-ヒドロキシ-2-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-3-ヒドロキシフェニルメタン、 ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-3-ヒドロキシフェニルメタン、 ビス(5-シクロヘキシル-4-ヒドロキシ-3-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-4-ヒドロキシフェニルメタン、ビス(3-シクロヘキシル-2-ヒドロキシフェニル)-2-ヒドロキシフェニルメタン、 ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-2-ヒドロキシフェニルメタン、ビス(5-シクロヘキシル-2-ヒドロキシ-4-メチルフェニル)-4-ヒドロキシフェニルメタンなどの、ビス(シクロヘキシルヒドロキシフェニル)(ヒドロキシフェニル)メタン類又はそのメチル置換体などと、
ナフトキノン-1,2-ジアジド-5-スルホン酸又はナフトキノン-1,2-ジアジド-4-スルホン酸などのキノンジアジド基含有スルホン酸との完全エステル化合物、部分エステル化合物、アミド化物又は部分アミド化物、などを挙げることができる。
The photosensitizer used for producing the photoresist composition of the present invention is a naphthoquinonediazide group-containing compound. As the naphthoquinonediazide group-containing compound, for example,
(1) 2,3,4-trihydroxybenzophenone, 2,4,4′-trihydroxybenzophenone, 2,4,6-trihydroxybenzophenone, 2,3,6-trihydroxybenzophenone, 2,3,4 Trihydroxy-2'-methylbenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, 2,3', 4,4 ', 6-pentahydroxy Benzophenone, 2,2 ′, 3,4,4′-pentahydroxybenzophenone, 2,2 ′, 3,4,5-pentahydroxybenzophenone, 2,3 ′, 4,4 ′, 5 ′, 6-hexahydroxy Polyhydroxybenzophenones such as benzophenone, 2,3,3 ′, 4,4 ′, 5′-hexahydroxybenzophenone,
(2) Bis (2,4-dihydroxyphenyl) methane, bis (2,3,4-trihydroxyphenyl) methane, 2- (4-hydroxyphenyl) -2- (4′-hydroxyphenyl) propane, 2- (2,4-dihydroxyphenyl) -2- (2 ′, 4′-dihydroxyphenyl) propane, 2- (2,3,4-trihydroxyphenyl) -2- (2 ′, 3 ′, 4′-tri Hydroxyphenyl) propane, 4,4 ′-{1- [4- [2- (4-hydroxyphenyl) -2-propyl] phenyl] ethylidene} bisphenol, 3,3′-dimethyl- {1- [4- [ Bis [(poly) hydroxyphenyl] alkanes such as 2- (3-methyl-4-hydroxyphenyl) -2-propyl] phenyl] ethylidene} bisphenol,
(3) Tris (4-hydroxyphenyl) methane, bis (4-hydroxy-3,5-dimethylphenyl) -4-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -4-hydroxyphenyl Methane, bis (4-hydroxy-3,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (4-hydroxy-2,5-dimethylphenyl) -2-hydroxyphenylmethane, bis (4-hydroxy-2, Tris (hydroxyphenyl) methanes such as 5-dimethylphenyl) -3,4-dihydroxyphenylmethane and bis (4-hydroxy-3,5-dimethylphenyl) -3,4-dihydroxyphenylmethane, or methyl-substituted products thereof,
(4) Bis (3-cyclohexyl-4-hydroxyphenyl) -3-hydroxyphenylmethane, bis (3-cyclohexyl-4-hydroxyphenyl) -2-hydroxyphenylmethane, bis (3-cyclohexyl-4-hydroxyphenyl) -4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -3-hydroxyphenylmethane Bis (5-cyclohexyl-4-hydroxy-2-methylphenyl) -4-hydroxyphenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy -3-Me Ruphenyl) -4-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3-methylphenyl) -3-hydroxyphenylmethane, bis (5-cyclohexyl-4-hydroxy-3-methylphenyl) -2-hydroxy Phenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -4-hydroxyphenylmethane, bis (3-cyclohexyl-2-hydroxyphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-2-hydroxy-4) Bis (cyclohexylhydroxyphenyl) (hydroxyphenyl) methane, such as -methylphenyl) -2-hydroxyphenylmethane, bis (5-cyclohexyl-2-hydroxy-4-methylphenyl) -4-hydroxyphenylmethane, or And the like methyl substituents,
Complete ester compounds, partial ester compounds, amidated products or partially amidated products with quinonediazide group-containing sulfonic acids such as naphthoquinone-1,2-diazide-5-sulfonic acid or naphthoquinone-1,2-diazide-4-sulfonic acid, etc. Can be mentioned.
 ここで上記ナフトキノンジアジド基含有化合物成分としては、一種単独で含有してもよいし、2種以上を含有してもよい。 Here, the naphthoquinonediazide group-containing compound component may be contained singly or in combination of two or more.
 本発明の樹脂組成物において、感光剤の配合量としては特に限定されないが、フェノール樹脂100重量部に対し、通常5~100重量部、好ましくは10~50重量部の範囲で配合することができる。感光剤の配合量が上記下限値未満ではパターンに忠実な画像を得にくく、転写性が低下することがある。一方、上記上限値を超えると、フォトレジストとして感度の低下がみられることがある。 In the resin composition of the present invention, the blending amount of the photosensitizer is not particularly limited, but it can be blended in the range of usually 5 to 100 parts by weight, preferably 10 to 50 parts by weight with respect to 100 parts by weight of the phenol resin. . If the blending amount of the photosensitive agent is less than the lower limit, it is difficult to obtain an image faithful to the pattern, and transferability may be deteriorated. On the other hand, when the upper limit is exceeded, the sensitivity of the photoresist may be reduced.
 本発明の組成物に配合される溶媒は、前記フェノール樹脂と環状オレフィン樹脂とナフトキノンジアジド基含有化合物とが溶解するものであれば特に限定されない。本発明においてはこれらの成分を溶媒に溶解して使用する。本発明のフォトレジスト組成物の製造に用いる溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、メチル-1,3-ブチレングリコールアセテート、1,3-ブチレングリコール20-3-モノメチルエーテル、ピルビン酸メチル、ピルビン酸エチル、メチル-3-メトキシプロピオネート等を単独または混合して使用できる。 The solvent to be blended in the composition of the present invention is not particularly limited as long as the phenol resin, the cyclic olefin resin, and the naphthoquinone diazide group-containing compound are dissolved. In the present invention, these components are used dissolved in a solvent. Solvents used in the production of the photoresist composition of the present invention include N-methyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylacetamide, dimethyl sulfoxide, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, propylene glycol Monomethyl ether, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl lactate, ethyl lactate, butyl lactate, methyl-1,3-butylene glycol acetate, 1,3-butylene glycol 20-3-monomethyl ether, methyl pyruvate , Ethyl pyruvate, methyl-3-methoxypropionate and the like can be used alone or in combination.
 なお、本発明の組成物には、以上説明した成分のほかにも、必要により、酸化防止剤などの安定剤、可塑剤、界面活性剤、密着性向上剤、溶解促進剤などの種々の添加剤を使用してもよい。 In addition to the above-described components, the composition of the present invention may contain various additives such as stabilizers such as antioxidants, plasticizers, surfactants, adhesion improvers, and dissolution accelerators as necessary. An agent may be used.
 本発明の組成物の調製方法としては特に限定されないが、組成物に充填材、顔料を添加しない場合には、上記の成分を通常の方法で混合・攪拌するだけでよく、充填材、顔料を添加する場合には、例えば、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散、混合させればよい。また、必要に応じて、さらにメッシュフィルター、メンブレンフィルター等を用いて濾過してもよい。 The method for preparing the composition of the present invention is not particularly limited, but when no filler or pigment is added to the composition, the above components may be mixed and stirred in the usual manner. In the case of adding, for example, it may be dispersed and mixed using a dispersing device such as a dissolver, a homogenizer, or a three roll mill. Moreover, you may further filter using a mesh filter, a membrane filter, etc. as needed.
 このようにして得られた本発明の組成物に対して、マスクを介して露光を行うことで、露光部においては組成物に構造変化が生じ、アルカリ現像液に対しての溶解性を促進させることができる。一方、非露光部においてはアルカリ現像液に対する低い溶解性を保持しているため、こうして生じた溶解性の差により、レジスト機能を付与することができる。 When the composition of the present invention thus obtained is exposed through a mask, a structural change occurs in the composition in the exposed area, and the solubility in an alkali developer is promoted. be able to. On the other hand, in the non-exposed area, low solubility in an alkali developer is maintained, so that a resist function can be imparted due to the difference in solubility thus generated.
 本発明の組成物をフォトレジストとして使用した場合、光の照射により組成物中のナフトキノンジアジド基含有化合物が化学変化を起こし、後の現像工程においてノボラック樹脂と共にアルカリ現像液に溶解し、露光されなかった部分との間に明確な溶解速度差を生ずることで、目的とするパターンを現像により得ることができる。 When the composition of the present invention is used as a photoresist, the naphthoquinonediazide group-containing compound in the composition undergoes a chemical change due to light irradiation, and is dissolved in an alkali developer together with a novolak resin in a later development process and is not exposed. By producing a clear difference in dissolution rate between the first and second parts, a target pattern can be obtained by development.
 以下、本発明を合成例および実施例により説明する。しかし本発明はこれらの合成例および実施例によって限定されるものではない。また、合成例、実施例及び比較例に記載されている「部」及び「%」は、すべて「重量部」及び「重量%」を示す。但し、ホルマリン水溶液の濃度(%)を除く。 Hereinafter, the present invention will be described with reference to synthesis examples and examples. However, the present invention is not limited by these synthesis examples and examples. Further, “parts” and “%” described in the synthesis examples, examples and comparative examples all represent “parts by weight” and “% by weight”. However, the concentration (%) of the formalin aqueous solution is excluded.
1.フェノール樹脂の合成
(合成例1)
 攪拌装置、温度計、熱交換器を備えた3Lの4口フラスコにm-クレゾール600g、p-クレゾール400g、37%ホルマリン527g、シュウ酸5gを仕込み、還流条件にて4時間反応させた。この後、内温170℃まで常圧下で脱水し、さらに9.3×10Paの減圧下で200℃まで脱水・脱モノマーを行い、重量平均分子量4200ダルトンのフェノール樹脂950gを得た。
1. Synthesis of phenolic resin (Synthesis Example 1)
A 3 L 4-necked flask equipped with a stirrer, a thermometer, and a heat exchanger was charged with 600 g of m-cresol, 400 g of p-cresol, 527 g of 37% formalin, and 5 g of oxalic acid, and reacted for 4 hours under reflux conditions. Thereafter, dehydration was performed under normal pressure to an internal temperature of 170 ° C., and dehydration / demonomerization was further performed to 200 ° C. under a reduced pressure of 9.3 × 10 3 Pa to obtain 950 g of a phenol resin having a weight average molecular weight of 4200 daltons.
2.環状オレフィン樹脂の合成
(合成例2)
[4-(2-ビシクロ[2.2.1]ヘプタ-5-エン)フェニル]アセテート(11.4g,50mmol)、トルエン(17.6g)及びメチルエチルケトン(27.4g)を攪拌装置を備えた反応容器に仕込み、乾燥窒素ガスで内部を置換した。内容物を加熱し、内温が50℃到達したところで(η-トルエン)Ni(C(0.97g,2.00mmol)を10gのトルエンに溶解させた溶液を添加した。50℃で3時間反応させた後、室温まで冷却した。THF(50g)及び10%水酸化カリウム水溶液(80g)を添加し、5時間還流反応させた。その後、酢酸を添加して中和した後、イオン交換水による水洗作業を3回実施した。有機層をエバポレーターで濃縮した後、ヘキサンで再沈殿した。得られた固体を60℃の真空乾燥機で一晩乾燥し、8.2gの淡黄色粉末が得られた。得られたポリマーの分子量はGPCによりMw=11,000 Mn=5300であった。
2. Synthesis of cyclic olefin resin (Synthesis Example 2)
[4- (2-bicyclo [2.2.1] hept-5-ene) phenyl] acetate (11.4 g, 50 mmol), toluene (17.6 g) and methyl ethyl ketone (27.4 g) were equipped with a stirrer. The reaction vessel was charged and the inside was replaced with dry nitrogen gas. The contents were heated, and when the internal temperature reached 50 ° C., a solution in which (η 6 -toluene) Ni (C 6 F 5 ) 2 (0.97 g, 2.00 mmol) was dissolved in 10 g of toluene was added. After reacting at 50 ° C. for 3 hours, the mixture was cooled to room temperature. THF (50 g) and 10% aqueous potassium hydroxide solution (80 g) were added, and the mixture was refluxed for 5 hours. Then, after adding and neutralizing acetic acid, the water washing operation | work with ion-exchange water was implemented 3 times. The organic layer was concentrated with an evaporator and then reprecipitated with hexane. The obtained solid was dried in a vacuum dryer at 60 ° C. overnight to obtain 8.2 g of a pale yellow powder. The molecular weight of the obtained polymer was Mw = 11,000 Mn = 5300 by GPC.
(合成例3)
 3-メトキシ-4-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)メチルフェノール、(5.0g,18.4mmol)、エチル-3-(3-ビシクロ[2.2.1]ヘプタ-5-エン)プロパノエート(0.89g,4.59mmol)トルエン(28g)及びメチルエチルケトン(10g)を攪拌装置を備えた反応容器に仕込み、乾燥窒素ガスで内部を置換した。内容物を加熱し内温が60℃に到達したところで(η-トルエン)Ni(C(0.22g,0.46mmol)を5gのトルエンに溶解させた溶液を添加した。60℃で3時間反応させた後、室温まで冷却した。THF(50g)及び10%水酸化カリウム水溶液(50g)を添加し、5時間還流反応させた。その後酢酸を添加して中和した後、イオン交換水による水洗作業を3回実施した。有機層をエバポレーターで濃縮した後、ヘキサンで再沈殿した。得られた固体を60℃の真空乾燥機で一晩乾燥し、8.2gの淡黄色粉末が得られた。得られたポリマーの分子量はGPCによりMw=16,000 Mn=9000であった。
(Synthesis Example 3)
3-methoxy-4- (bicyclo [2.2.1] hept-2-en-5-yl) methylphenol, (5.0 g, 18.4 mmol), ethyl-3- (3-bicyclo [2.2 .1] Hepta-5-ene) propanoate (0.89 g, 4.59 mmol) Toluene (28 g) and methyl ethyl ketone (10 g) were charged into a reaction vessel equipped with a stirrer, and the inside was replaced with dry nitrogen gas. When the contents were heated and the internal temperature reached 60 ° C., a solution in which (η 6 -toluene) Ni (C 6 F 5 ) 2 (0.22 g, 0.46 mmol) was dissolved in 5 g of toluene was added. After reacting at 60 ° C. for 3 hours, the mixture was cooled to room temperature. THF (50 g) and 10% aqueous potassium hydroxide solution (50 g) were added, and the mixture was refluxed for 5 hours. Thereafter, acetic acid was added for neutralization, and then a water washing operation with ion-exchanged water was performed three times. The organic layer was concentrated with an evaporator and then reprecipitated with hexane. The obtained solid was dried in a vacuum dryer at 60 ° C. overnight to obtain 8.2 g of a pale yellow powder. The molecular weight of the obtained polymer was Mw = 16,000 Mn = 9000 by GPC.
(合成例4)
 エチル-3-(3-ビシクロ[2.2.1]ヘプタ-5-エン)プロパノエート(37.3g,0.19mol)、1,1-ビストリフルオロメチル-2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)エチルアルコール(13.2g,0.05mol)、トルエン(55g)、トリエチルシラン(1.4g)、酢酸エチル(13g)、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(0.06g,0.07mmol)を攪拌装置を備えた反応容器に仕込み、乾燥窒素ガスで内部を置換した。内容物を加熱し内温が100℃に到達したところで(アセトニトリル)ビス(トリイソプロピルホスフィン)パラジウム(アセテート)(ペンタフルオロフェニルボレート)(0.03g,0.02mmol)の酢酸エチル(6g)溶液を添加した。100℃で16時間反応させた後室温まで冷却し、THF及び10%水酸化カリウム水溶液(300g)を添加し、5時間還流反応させた。その後酢酸を添加して中和した後、イオン交換水による水洗作業を3回実施した。有機層をエバポレーターで濃縮した後、ヘキサンで再沈殿した。得られた固体を60℃の真空乾燥機で一晩乾燥し、27gの白色粉末が得られた。得られたポリマーの分子量はGPCによりMw=8,200 Mn=4,200であった。
(Synthesis Example 4)
Ethyl-3- (3-bicyclo [2.2.1] hept-5-ene) propanoate (37.3 g, 0.19 mol), 1,1-bistrifluoromethyl-2- (bicyclo [2.2.1 ] Hept-2-en-5-yl) ethyl alcohol (13.2 g, 0.05 mol), toluene (55 g), triethylsilane (1.4 g), ethyl acetate (13 g), dimethylanilinium tetrakis (pentafluorophenyl) ) Borate (0.06 g, 0.07 mmol) was charged into a reaction vessel equipped with a stirrer, and the inside was replaced with dry nitrogen gas. When the contents were heated and the internal temperature reached 100 ° C., a solution of (acetonitrile) bis (triisopropylphosphine) palladium (acetate) (pentafluorophenylborate) (0.03 g, 0.02 mmol) in ethyl acetate (6 g) was added. Added. After reacting at 100 ° C. for 16 hours, the mixture was cooled to room temperature, THF and 10% aqueous potassium hydroxide solution (300 g) were added, and the mixture was refluxed for 5 hours. Thereafter, acetic acid was added for neutralization, and then a water washing operation with ion-exchanged water was performed three times. The organic layer was concentrated with an evaporator and then reprecipitated with hexane. The obtained solid was dried in a vacuum dryer at 60 ° C. overnight to obtain 27 g of white powder. The molecular weight of the obtained polymer was Mw = 8,200 Mn = 4,200 by GPC.
(合成例5)
 1,1-ビストリフルオロメチル-2-(ビシクロ[2.2.1]ヘプト-2-エン-5-イル)エチルアルコール(9.9g,0.036mol)、ビシクロ[2.2.1]ヘプト-2-エン-5-カルボン酸トリメチルシリルエステル(2.2g,0.012mol)、酢酸エチル(100g)、シクロヘキサン(100g)を攪拌装置を備えた反応容器に仕込み、乾燥窒素ガスで内部を置換した。内容物を加熱し内温が100℃に到達したところで(アリル)パラジウム(トリシクロヘキシルホスフィン)トリフルオロアセテート(0.006g,0.008mmol)の塩化メチレン(2g)溶液及びリチウムテトラキス(ペンタフルオロフェニル)ボレート0.034gのトルエン(2g)溶液を添加した。更に1-ヘキセン(2.6g,0.03mol)を添加し、20℃で5時間反応させた後室温まで冷却した。得られたポリマーをメタノールに投入し、沈殿物を凝集し、水で十分洗浄した後、真空下で乾燥し、7.8gの白色粉末が得られた。得られたポリマーの分子量はGPCによりMw=12,200 Mn=6,100であった。
(Synthesis Example 5)
1,1-bistrifluoromethyl-2- (bicyclo [2.2.1] hept-2-en-5-yl) ethyl alcohol (9.9 g, 0.036 mol), bicyclo [2.2.1] hept -2-ene-5-carboxylic acid trimethylsilyl ester (2.2 g, 0.012 mol), ethyl acetate (100 g) and cyclohexane (100 g) were charged into a reaction vessel equipped with a stirrer, and the interior was replaced with dry nitrogen gas. . When the contents were heated and the internal temperature reached 100 ° C., a solution of (allyl) palladium (tricyclohexylphosphine) trifluoroacetate (0.006 g, 0.008 mmol) in methylene chloride (2 g) and lithium tetrakis (pentafluorophenyl) A solution of 0.034 g of borate in toluene (2 g) was added. Further, 1-hexene (2.6 g, 0.03 mol) was added and reacted at 20 ° C. for 5 hours, and then cooled to room temperature. The obtained polymer was put into methanol, the precipitate was agglomerated, washed thoroughly with water, and then dried under vacuum to obtain 7.8 g of white powder. The molecular weight of the obtained polymer was Mw = 12,200 Mn = 6,100 by GPC.
(合成例6)
 5-ブチルビシクロ[2.2.1]ヘプト-2-エン(13.0g,0.087mol)、トルエン(18g)及びメチルエチルケトン(11g)を攪拌装置を備えた反応容器に仕込み、乾燥窒素ガスで内部を置換した。内容物を加熱し内温が60℃に到達したところで(η-トルエン)Ni(C(0.42g,0.87mmol)を10gのトルエンに溶解させた溶液を添加した。60℃で3時間反応させた後、室温まで冷却した。反応後の溶液をヘキサン300gに溶解させ、イオン交換水による水洗作業を3回実施した。有機層をエバポレーターで濃縮した後、メタノールで再沈殿し、白色固体を得た。得られた固体を60℃の真空乾燥機で一晩乾燥し、7.5gの白色粉末が得られた。得られたポリマーの分子量はGPCによりMw=31,000 Mn=14、000であった。
(Synthesis Example 6)
5-Butylbicyclo [2.2.1] hept-2-ene (13.0 g, 0.087 mol), toluene (18 g) and methyl ethyl ketone (11 g) were charged into a reaction vessel equipped with a stirrer and dried nitrogen gas was added. Replaced the interior. When the contents were heated and the internal temperature reached 60 ° C., a solution in which (η 6 -toluene) Ni (C 6 F 5 ) 2 (0.42 g, 0.87 mmol) was dissolved in 10 g of toluene was added. After reacting at 60 ° C. for 3 hours, the mixture was cooled to room temperature. The solution after the reaction was dissolved in 300 g of hexane and washed with ion exchange water three times. The organic layer was concentrated with an evaporator and then reprecipitated with methanol to obtain a white solid. The obtained solid was dried in a vacuum dryer at 60 ° C. overnight to obtain 7.5 g of white powder. The molecular weight of the obtained polymer was Mw = 31,000 Mn = 14,000 by GPC.
4.フォトレジスト用組成物の調製
(実施例1)
 合成例1で得られたノボラック型フェノール樹脂30部と合成例2で得られた環状オレフィン樹脂脂6部、2,3,4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
4). Preparation of composition for photoresist (Example 1)
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 6 parts of the cyclic olefin resin fat obtained in Synthesis Example 2 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro After dissolving 6 parts of an ester with -5-oxo-naphthalene-1-sulfonic acid in 150 parts of propylene glycol monomethyl ether acetate, it was filtered using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
(実施例2)
 合成例1で得られたノボラック型フェノール樹脂30部と合成例2で得られ環状オレフィン樹脂15部、2,3,4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
(Example 2)
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 15 parts of the cyclic olefin resin obtained in Synthesis Example 2 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro-5 6 parts of an ester with -oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
(実施例3)
 合成例1で得られたノボラック型フェノール樹脂30部と合成例3で得られ環状オレフィン樹脂3部、2,3,4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
(Example 3)
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 3 parts of the cyclic olefin resin obtained in Synthesis Example 3 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro-5 6 parts of an ester with -oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
(実施例4)
 合成例1で得られたノボラック型フェノール樹脂30部と合成例4で得られた環状オレフィン樹脂6部、2,3,4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
Example 4
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 6 parts of the cyclic olefin resin obtained in Synthesis Example 4 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro- 6 parts of an ester with 5-oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
(実施例5)
 合成例1で得られたノボラック型フェノール樹脂30部と合成例5で得られた環状オレフィン樹脂6部、2,3,4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
(Example 5)
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 6 parts of the cyclic olefin resin obtained in Synthesis Example 5 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro- 6 parts of an ester with 5-oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
(実施例6)
 合成例1で得られたノボラック型フェノール樹脂30部と合成例6で得られた環状オレフィン樹脂3部、2,3,4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
(Example 6)
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and 3 parts of the cyclic olefin resin obtained in Synthesis Example 6 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro- 6 parts of an ester with 5-oxo-naphthalene-1-sulfonic acid was dissolved in 150 parts of propylene glycol monomethyl ether acetate, followed by filtration using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
(比較例1)
 合成例1で得られたノボラック型フェノール樹脂30部、2,3, 4,4’-テトラヒドロキシベンゾフェノンと6-ジアゾ-5,6-ジヒドロ-5-オキソ-ナフタレン-1-スルホン酸とのエステル6部をプロピレングリコールモノメチルエーテルアセテート150部に溶解した後、孔径1.0μmのメンブレンフィルターを用いて濾過し、フォトレジスト組成物を調製した。
(Comparative Example 1)
30 parts of the novolak-type phenol resin obtained in Synthesis Example 1 and ester of 2,3,4,4′-tetrahydroxybenzophenone and 6-diazo-5,6-dihydro-5-oxo-naphthalene-1-sulfonic acid Six parts were dissolved in 150 parts of propylene glycol monomethyl ether acetate, and then filtered using a membrane filter having a pore size of 1.0 μm to prepare a photoresist composition.
 実施例1~5、及び比較例1~2で得られたフォトレジスト組成物を用いて、下記に示す特性評価を行った。結果を表1に示す。 The following characteristics evaluation was performed using the photoresist compositions obtained in Examples 1 to 5 and Comparative Examples 1 and 2. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
5.特性の評価方法
(1)耐熱性の評価方法
 ヘキサメチルジシラザン処理したシリコンウエハ上にスピンコーターで乾燥時の膜厚が1.5μmになるように塗布し、110℃で90秒間ホットプレ-ト上で乾燥させた。その後、縮小投影露光装置を用い、テストチャ-トマスクを介して露光し、現像液(2.38%テトラメチルアンモニウムヒドロオキサイド水溶液)を用い、60秒間現像した。得られたシリコンウエハ-を温度を変えたホットプレ-ト上で3分間放置し、シリコウエハ-上のレジストパタ-ンの形状を走査型電子顕微鏡で観察し、正常なレジストパターンが得られなくなった時の温度を耐熱温度とした。
5. Characteristic Evaluation Method (1) Heat Resistance Evaluation Method A silicon wafer treated with hexamethyldisilazane was applied with a spin coater so that the film thickness when dried was 1.5 μm, and was heated on a hot plate at 110 ° C. for 90 seconds. And dried. Thereafter, exposure was performed through a test chart mask using a reduction projection exposure apparatus, and development was performed for 60 seconds using a developer (2.38% tetramethylammonium hydroxide aqueous solution). When the obtained silicon wafer is left on a hot plate with different temperatures for 3 minutes and the shape of the resist pattern on the silicon wafer is observed with a scanning electron microscope, a normal resist pattern cannot be obtained. The temperature was defined as the heat resistant temperature.
(2)残膜率測定方法
 フォトレジスト組成物を3インチシリコンウエハ上に約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で100秒間乾燥させた。そのウエハを現像液(2.38%水酸化テトラメチルアンモニウム水溶液)に60秒間浸した後、水で洗浄し、110℃のホットプレート上で100秒間乾燥させた。現像前の膜厚に対する、現像後の膜厚の比を百分率で表し、残膜率とした。これにより、感光剤とフォトレジストとして用いたときの残膜(耐性)の程度がわかり、数値が高いほど残膜率が高いことを示す。
(2) Remaining film ratio measuring method The photoresist composition was applied to a thickness of about 1 μm on a 3 inch silicon wafer with a spin coater, and dried on a hot plate at 110 ° C. for 100 seconds. The wafer was immersed in a developing solution (2.38% tetramethylammonium hydroxide aqueous solution) for 60 seconds, washed with water, and dried on a hot plate at 110 ° C. for 100 seconds. The ratio of the film thickness after development to the film thickness before development was expressed as a percentage, and was defined as the remaining film ratio. As a result, the degree of remaining film (resistance) when used as a photosensitizer and a photoresist can be understood, and the higher the numerical value, the higher the remaining film rate.
(3)感度の測定方法
 フォトレジスト組成物を3インチのシリコンウエハに約1μmの厚さになるようにスピンコーターで塗布し、110℃のホットプレート上で100秒間乾燥させた。次いでこのシリコンウエハにテストチャートマスクを重ね、20mJ/cm,40mJ/cm,60mJ/cmの紫外線をそれぞれ照射し、現像液(2.38%の水酸化テトラメチルアンモニウム水溶液)を用い90秒間現像した。得られたパターンを走査型電子顕微鏡でパターン形状を観察することにより以下の基準で評価した。
A 20mJ/cm以下で画像が形成できる。
B 20mJ/cm超、40mJ/cm以下で画像が形成できる。
C 40mJ/cm超、60mJ/cm以下で画像が形成できる。
(3) Sensitivity Measurement Method A photoresist composition was applied to a 3-inch silicon wafer with a spin coater to a thickness of about 1 μm and dried on a 110 ° C. hot plate for 100 seconds. Then repeated test chart mask on the silicon wafer, 20mJ / cm 2, 40mJ / cm 2, 60mJ / cm 2 of ultraviolet irradiation, respectively, 90 using a developing solution (2.38% tetramethylammonium hydroxide aqueous solution) Developed for seconds. The obtained pattern was evaluated according to the following criteria by observing the pattern shape with a scanning electron microscope.
A An image can be formed at 20 mJ / cm 2 or less.
B 20 mJ / cm 2 than the image can be formed at 40 mJ / cm 2 or less.
C 40 mJ / cm 2 than the image can be formed at 60 mJ / cm 2 or less.
(4)解像度の測定
 上記調製したフォトレジスト組成物を、スピンコーターを用いてシリコンウエハ上に塗布し、110℃、100秒間プリベークして、膜厚1.5μmのレジスト膜を形成した。これに100~1μmの線幅が刻まれたパターンマスクを介し、紫外線を用いて露光した。露光後、直ちに2.38wt%のテトラメチルアンモニウムハイドロオキサイト水溶液により、23℃で60秒間現像し、水洗、乾燥を行い、ポジ型パターンを得た。その際、一定の露光量で解像される最小のフォトレジストパターンの寸法を解像度とした。
 表1の結果から、実施例1~5は、本発明のフォトレジスト用樹脂組成物であり、本発明の樹脂組成物でない比較例1~2に比べて、優れた残膜率、感度及び特に耐熱性を持つものであることが証明できた。
(4) Measurement of resolution The above-prepared photoresist composition was applied onto a silicon wafer using a spin coater and pre-baked at 110 ° C. for 100 seconds to form a resist film having a thickness of 1.5 μm. This was exposed using ultraviolet rays through a pattern mask in which a line width of 100 to 1 μm was engraved. Immediately after the exposure, the film was developed with a 2.38 wt% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 60 seconds, washed with water and dried to obtain a positive pattern. At that time, the dimension of the smallest photoresist pattern that can be resolved with a constant exposure amount is defined as the resolution.
From the results of Table 1, Examples 1 to 5 are resin compositions for photoresists of the present invention, and excellent residual film ratio, sensitivity and particularly compared to Comparative Examples 1 and 2 which are not resin compositions of the present invention. It was proved to have heat resistance.
 本発明のフォトレジスト用樹脂組成物は、良好な熱安定性を有し、かつ高感度・高解像度で高残膜性を有することから、液晶表示装置回路や半導体集積回路の微細回路製造に好適に用いることができる。 The resin composition for photoresists of the present invention has good thermal stability, high sensitivity, high resolution, and high residual film properties, so it is suitable for manufacturing fine circuits of liquid crystal display circuits and semiconductor integrated circuits. Can be used.

Claims (11)

  1.  ノボラック型フェノール樹脂と、環状オレフィン樹脂と、ナフトキノンジアジド基含有化合物からなる感光剤とを含むフォトレジスト用樹脂組成物。 A resin composition for a photoresist, comprising a novolac-type phenol resin, a cyclic olefin resin, and a photosensitizer comprising a naphthoquinonediazide group-containing compound.
  2.  前記環状オレフィン樹脂がノルボルネン樹脂である請求項1記載のフォトレジスト用樹脂組成物。 The resin composition for photoresists according to claim 1, wherein the cyclic olefin resin is a norbornene resin.
  3.  前記環状オレフィン樹脂が下記一般式(1)で示される繰り返し単位を含む環状オレフィン樹脂である請求項1記載のフォトレジスト用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、XはO、CH、CHCHのいずれかであり、nは0~5までの整数である。R~Rはその構造中にO及び/又はFを含んでいても良い炭素数1~30の一価の有機基または水素よりそれぞれ独立に選ばれる。R~Rは単量体の繰り返しの中で異なっていてもよいが、全繰り返し単位のR~Rのうち、少なくとも一つは酸性基を有する。]
    The resin composition for photoresists according to claim 1, wherein the cyclic olefin resin is a cyclic olefin resin containing a repeating unit represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), X is any one of O, CH 2 and CH 2 CH 2 , and n is an integer from 0 to 5. R 1 to R 4 are each independently selected from a monovalent organic group having 1 to 30 carbon atoms and hydrogen, which may contain O and / or F in its structure. R 1 to R 4 may be different among repeating monomers, but at least one of R 1 to R 4 of all repeating units has an acidic group. ]
  4.  前記酸性基がカルボキシル基,フェノール基,フルオロアルコール基及びスルホアミド基からなる群から選択される1つ以上の基である請求項3記載のフォトレジスト用樹脂組成物。 The photoresist resin composition according to claim 3, wherein the acidic group is one or more groups selected from the group consisting of a carboxyl group, a phenol group, a fluoroalcohol group, and a sulfoamide group.
  5.  前記酸性基がフェノール基を有する請求項3又は4記載のフォトレジスト用樹脂組成物。 The resin composition for photoresists according to claim 3 or 4, wherein the acidic group has a phenol group.
  6.  前記環状オレフィン樹脂の重量平均分子量が1000~500,000ダルトンである請求項1~4のいずれか一項に記載のフォトレジスト樹脂組成物。 The photoresist resin composition according to any one of claims 1 to 4, wherein the cyclic olefin resin has a weight average molecular weight of 1,000 to 500,000 daltons.
  7.  前記環状オレフィン樹脂の重量平均分子量が1000~500,000ダルトンである請求項5記載のフォトレジスト樹脂組成物。 The photoresist resin composition according to claim 5, wherein the cyclic olefin resin has a weight average molecular weight of 1000 to 500,000 daltons.
  8.  前記フェノール樹脂に対する前記環状オレフィン樹脂の混合比率が1~90重量%である請求項1~4のいずれか一項に記載のフォトレジスト樹脂組成物。 The photoresist resin composition according to any one of claims 1 to 4, wherein a mixing ratio of the cyclic olefin resin to the phenol resin is 1 to 90% by weight.
  9.  前記フェノール樹脂に対する前記環状オレフィン樹脂の混合比率が1~90重量%である請求項5記載のフォトレジスト樹脂組成物。 6. The photoresist resin composition according to claim 5, wherein a mixing ratio of the cyclic olefin resin to the phenol resin is 1 to 90% by weight.
  10.  前記フェノール樹脂に対する前記環状オレフィン樹脂の混合比率が1~90重量%である請求項6記載のフォトレジスト樹脂組成物。 The photoresist resin composition according to claim 6, wherein a mixing ratio of the cyclic olefin resin to the phenol resin is 1 to 90% by weight.
  11.  前記フェノール樹脂に対する前記環状オレフィン樹脂の混合比率が1~90重量%である請求項7記載のフォトレジスト樹脂組成物。 The photoresist resin composition according to claim 7, wherein a mixing ratio of the cyclic olefin resin to the phenol resin is 1 to 90% by weight.
PCT/JP2011/068975 2010-08-27 2011-08-23 Resin composition for photoresist WO2012026465A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012530677A JP5692232B2 (en) 2010-08-27 2011-08-23 Resin composition for photoresist
CN201180040734.7A CN103069339B (en) 2010-08-27 2011-08-23 Photoresist resin combination
KR1020137004083A KR101830459B1 (en) 2010-08-27 2011-08-23 Resin composition for photoresist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-190880 2010-08-27
JP2010190880 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026465A1 true WO2012026465A1 (en) 2012-03-01

Family

ID=45723459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068975 WO2012026465A1 (en) 2010-08-27 2011-08-23 Resin composition for photoresist

Country Status (5)

Country Link
JP (1) JP5692232B2 (en)
KR (1) KR101830459B1 (en)
CN (1) CN103069339B (en)
TW (1) TWI505022B (en)
WO (1) WO2012026465A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184325A (en) * 2014-03-20 2015-10-22 住友ベークライト株式会社 Photosensitive resin composition and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150102132A (en) 2014-02-27 2015-09-07 삼성디스플레이 주식회사 Complex substrate for display apparatus, display apparatus having the same and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508415A (en) * 1997-12-15 2002-03-19 クラリアント・インターナシヨナル・リミテッド Separated novolak resin and photoresist composition obtained therefrom
WO2006129875A1 (en) * 2005-06-01 2006-12-07 Zeon Corporation Radiation-sensitive resin composition, layered product, and process for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE542837T1 (en) * 1998-02-23 2012-02-15 Sumitomo Bakelite Co POLYCYCLIC RESISTANT COMPOSITIONS WITH IMPROVED ETCH RESISTANCE
JP3796982B2 (en) * 1998-06-02 2006-07-12 住友化学株式会社 Positive resist composition
WO2006017035A1 (en) * 2004-07-07 2006-02-16 Promerus Llc Photosensitive dielectric resin compositions and their uses
KR101024157B1 (en) * 2006-06-07 2011-03-22 스미토모 베이클리트 컴퍼니 리미티드 Method of manufacturing light receiving device
JP4748324B2 (en) * 2007-03-22 2011-08-17 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film, microlens and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508415A (en) * 1997-12-15 2002-03-19 クラリアント・インターナシヨナル・リミテッド Separated novolak resin and photoresist composition obtained therefrom
WO2006129875A1 (en) * 2005-06-01 2006-12-07 Zeon Corporation Radiation-sensitive resin composition, layered product, and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184325A (en) * 2014-03-20 2015-10-22 住友ベークライト株式会社 Photosensitive resin composition and electronic device

Also Published As

Publication number Publication date
CN103069339A (en) 2013-04-24
CN103069339B (en) 2015-11-25
TW201211690A (en) 2012-03-16
KR101830459B1 (en) 2018-02-20
JP5692232B2 (en) 2015-04-01
JPWO2012026465A1 (en) 2013-10-28
KR20130100989A (en) 2013-09-12
TWI505022B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
TWI534547B (en) Positive photoresist composition, coated film and novolac-type phenolic resin
JP6221316B2 (en) Method for producing resin composition for photoresist, method for producing photoresist, and method for producing liquid crystal device
JP6003881B2 (en) Method for producing resin composition for photoresist
JP2010039237A (en) Resin composition for photoresist
JP2010085567A (en) Resin composition for photoresist
JP5692232B2 (en) Resin composition for photoresist
JP6302643B2 (en) Positive resist composition, resist pattern forming method, pattern forming method comprising metal layer, and through electrode manufacturing method
JP2009192571A (en) Resin composition for photoresist
JP2009075510A (en) Photoresist resin composition
JP3624718B2 (en) Positive photoresist composition
TWI546323B (en) Novolac type phenolic resin, photoresist composition and manufacturing method of liquid crystal device
TWI557158B (en) Photoresist resin composition
JP2010230850A (en) Resin composition for photoresist
JP2009075436A (en) Photoresist resin composition
JP4929733B2 (en) Method for producing novolac type phenolic resin
JP4661064B2 (en) Method for producing phenolic resin for photoresist and photoresist composition
KR20120068463A (en) Positive photoresist composition
JP4273897B2 (en) Method for producing photoresist resin
JP3640638B2 (en) Method for forming resist pattern for liquid crystal display device manufacturing
JP3789926B2 (en) Positive photoresist composition
KR20140137047A (en) Positive photoresist composition
JP5953831B2 (en) Method for producing resin composition for photoresist
JP2020055955A (en) Novolak type phenolic resin, photosensitive resin composition and manufacturing method of novolak type phenolic resin
JP2005010753A (en) Positive type photoresist composition for manufacturing system lcd, and method for forming resist pattern
KR20120068460A (en) Positive photoresist composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040734.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819928

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530677

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137004083

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819928

Country of ref document: EP

Kind code of ref document: A1