WO2015141473A1 - Capacitive sensor - Google Patents

Capacitive sensor Download PDF

Info

Publication number
WO2015141473A1
WO2015141473A1 PCT/JP2015/056393 JP2015056393W WO2015141473A1 WO 2015141473 A1 WO2015141473 A1 WO 2015141473A1 JP 2015056393 W JP2015056393 W JP 2015056393W WO 2015141473 A1 WO2015141473 A1 WO 2015141473A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
transparent conductive
lead
conductive film
capacitive sensor
Prior art date
Application number
PCT/JP2015/056393
Other languages
French (fr)
Japanese (ja)
Inventor
尾藤 三津雄
知行 山井
恭志 北村
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2016508651A priority Critical patent/JP6096375B2/en
Publication of WO2015141473A1 publication Critical patent/WO2015141473A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to a capacitive sensor in which a pattern made of a transparent conductive film containing metal nanowires is formed.
  • Patent Document 1 discloses a touch switch that is a capacitive sensor including a transparent conductive film having a single layer structure.
  • a touch electrode portion and a wiring portion extending from the touch electrode portion are formed of a mesh-like metal wire.
  • the configuration of this touch switch can be realized with a small touch panel, but it is necessary to arrange a large number of thin and long wires as the panel size increases.
  • the wiring portion is formed of a metal wire, when the wiring portion is thin and long, the electrical resistance of the wiring portion is increased.
  • a plurality of transparent conductive structures are formed on the surface of a substrate, and the conductive structures are composed of carbon nanotubes.
  • the conductive wire extending from the conductive structure is made of ITO. However, if the conductive wire is made of ITO or the like, the electrical resistance becomes high, and the electrical resistance of the conductive wire lowers the detection sensitivity.
  • metal nanowires are used for a single-layer transparent conductive film
  • the metal nanowires themselves have a relatively sparse mesh structure. For this reason, when the wiring is elongated, there is a possibility that a portion to be disconnected is generated, and it is difficult to form a thin and long wiring portion.
  • an object of the present invention is to provide a capacitance type sensor that can keep the electrical resistance low even when the panel is enlarged, and can reduce the risk of disconnection when the wiring is elongated. To do.
  • the capacitive sensor of the present invention is a capacitive sensor formed by forming a pattern made of a transparent conductive film on a base material, and the pattern has a plurality of detection electrodes spaced apart from each other. And a plurality of lead wires extending in parallel in the same direction from the plurality of detection electrodes, the transparent conductive film includes metal nanowires, and the transparent conductive film Has an anisotropy in which the resistance value in the direction in which the lead wiring extends is 1 / 1.4 or less than the resistance value in the direction orthogonal to the direction in which the lead wiring extends. It is said.
  • the electrostatic capacity sensor of the present invention can suppress electrical resistance even when a touch panel to which the electrostatic capacity sensor is applied is enlarged, and can obtain good detection sensitivity in a wide operation region. Further, by aligning the orientation direction of the metal nanowires in the transparent conductive film, it becomes easy to connect a plurality of metal nanowires in the orientation direction for a long time.
  • the width of the lead-out wiring is 100 ⁇ m or less.
  • the resistance value in the direction in which the lead wiring extends is 1/3 or more and 1 / 1.4 or less than the resistance value in the direction orthogonal to the direction in which the lead wiring extends.
  • the width of the lead wiring is 60 ⁇ m or more and 100 ⁇ m or less.
  • the metal nanowire is preferably a silver nanowire.
  • the length of the silver nanowire is preferably 1 ⁇ m or more and 1000 ⁇ m or less.
  • the electrical resistance can be kept low even when the panel is enlarged, and furthermore, the wiring is elongated by providing anisotropy to the resistance value of the transparent conductive film. The possibility of disconnection can also be reduced.
  • FIG. 1 is a plan view showing a conductive pattern of the capacitive sensor according to the present embodiment.
  • the capacitive sensor of this embodiment is formed by forming a pattern 20 made of a transparent conductive film having a single layer structure on a film substrate 10, and the pattern 20 includes a detection pattern 21 and a lead-out wiring 22.
  • the film base 10 is, for example, a transparent inorganic substrate or plastic substrate.
  • the form of the substrate is, for example, a film or sheet having transparency. However, a transparent plate material thicker than the film can also be used.
  • the material for the inorganic substrate include quartz, sapphire, and glass.
  • the plastic substrate material include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), aramid, and polyethylene (PE).
  • Polyacrylate Polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin, cycloolefin polymer ( COP).
  • the detection pattern 21 has a configuration in which a plurality of rectangular detection electrodes 21a are arranged at regular intervals in each of the X1-X2 direction and the Y1-Y2 direction.
  • FIG. 1 is a schematic diagram for simplification, and detection electrodes 21a having the same area are arranged.
  • the plurality of lead-out wirings 22 extend in parallel to each other along the same direction (Y1-Y2 direction) from the Y2 side ends of the plurality of detection electrodes 21a. More specifically, the plurality of lead wires 22 extend from the Y2 side end of the second vertical side 21c of the detection electrode 21a to the Y2 side, respectively.
  • a capacitance is formed between a plurality of adjacent detection electrodes 21a.
  • a capacitance is formed between the finger and the detection electrode 21a close to the finger, so that the current value detected from the detection electrode 21a is measured. It is possible to detect which electrode of the plurality of detection electrodes 21a is closest to the finger.
  • the transparent conductive film forming the pattern 20 includes conductive metal nanowires.
  • This metal nanowire is comprised by 1 or more types selected from Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, Sn, for example.
  • the average minor axis diameter of the metal nanowire is preferably larger than 1 nm and not larger than 500 nm.
  • the average long axis length of the metal nanowire is preferably greater than 1 ⁇ m and 1000 ⁇ m or less.
  • the metal nanowires may be surface-treated with an amino group-containing compound such as PVP or polyethyleneimine. It is preferable to make the addition amount so that the conductivity is not deteriorated when the coating is formed.
  • sulfo group including sulfonate
  • sulfonyl group sulfonamide group
  • carboxylic acid group including carboxylate
  • amide group phosphate group (including phosphate and phosphate ester)
  • phosphino group silanol group
  • a compound having a functional group such as an epoxy group, an isocyanate group, a cyano group, a vinyl group, a thiol group, or a carbinol group, which can be adsorbed on a metal, may be used as a dispersant.
  • Examples of the dispersant for the nanowire ink include water, alcohol (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (for example, At least one selected from cyclohexanone, cyclopentanone), amide (DMF), and sulfide (DMSO) is used.
  • alcohol for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.
  • anone for example, At least one selected from cyclohexanone, cyclopentanone
  • amide DMF
  • DMSO sulfide
  • a high boiling point solvent can be further added to control the evaporation rate of the solvent.
  • a high boiling point solvent can be further added to control the evaporation rate of the solvent.
  • solvents may be
  • the binder material applicable to the nanowire ink can be widely selected from known transparent natural polymer resins or synthetic polymer resins.
  • transparent thermoplastic resins for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, ethyl cellulose, hydroxypropyl methyl cellulose
  • a transparent curable resin for example, a melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, silicon resin such as acrylic-modified silicate
  • the additive include a surfactant, a viscosity modifier, a dispersant, a curing accelerating catalyst, a plasticizer, a stabilizer such as an antioxidant and an antisulfurizing agent, and the like.
  • the metal nanowires included in the pattern 20 are oriented in the Y direction, and the electrical resistance along the Y1-Y2 direction (Y direction) is smaller than the electrical resistance along the X1-X2 direction (X direction), Resistance anisotropy occurs.
  • a pattern 20 can be formed, for example, by a method such as offset printing of the nanowire ink by providing a speed difference between the film substrate 10 and the blanket in the Y direction.
  • FIG. 2 is a photograph showing the orientation state of the metal nanowires formed in the transparent conductive film as described above.
  • the vertical direction is the printing direction MD (Machine Direction), which is the moving direction of the film substrate 10 during transfer from the blanket to the film substrate 10, and the horizontal direction is a direction TD (vertical to the printing direction MD). (Transverse Direction). Since the nanowire ink is transferred from the blanket onto the film substrate 10 under the above-described conditions, it can be seen that the metal nanowires are oriented so as to extend along the printing direction MD as shown in FIG.
  • the resistance value in the Y1-Y2 direction in which the lead wiring 22 extends is relative to the resistance value in the X1-X2 direction orthogonal to the Y1-Y2 direction in which the lead wiring 22 extends. It preferably has an anisotropy of 1 / 1.4 or less. Thereby, even if the panel is enlarged, the electrical resistance can be kept low, and the detection characteristics can be maintained. Further, by orienting the metal nanowires in the nanowire ink 90 in the Y1-Y2 direction, a plurality of metal nanowires can be easily connected in the Y1-Y2 direction, so that disconnection can be prevented.
  • the width of the lead-out wiring 22 can be reduced to, for example, 100 ⁇ m or less, and at the same time, it is possible to realize a wiring that is difficult to insulate and secures conduction. Furthermore, since the number of metal nanowires oriented in the Y1-Y2 direction is increased, resistance against ESD (electrostatic discharge) can be increased.
  • the disconnection rate was determined by measuring the ratio of a large number of patterns having a length of 80 mm in which conduction was not obtained between both ends of each pattern.
  • the line width (the line width of the lead-out wiring 22) is 60 ⁇ m or more, the disconnection rate can be kept low, and the resistance ratio is 80 ⁇ m or more. It turns out that it can conduct without disconnection if there is.
  • the pattern 20 is formed by transferring the pattern formed on the blanket onto the film substrate 10, but instead of this, patterning by etching, cutting by laser etching, by fluorination
  • the pattern 20 can also be formed by non-conductive treatment or the like.
  • a solid nanowire ink layer formed on the film substrate 10 is used, and regions other than the pattern 20 are dissolved with an etching solution, or the pattern 20 is formed by chemical reaction or physical collision by etching.
  • the pattern 20 is formed by removing the area other than the above or by performing non-conductive treatment on the area other than the pattern 20 by fluorination.
  • the moving speed of the film substrate 10 is made faster than the rotation speed of the ink supply roller corresponding to the blanket, as in the above-described embodiment.
  • the metal nanowire in nanowire ink is orientated to a fixed direction.
  • the capacitive sensor according to the present invention is useful for a large touch panel having a transparent conductive film having a single layer structure, and can form a transparent pattern that is difficult to be visually recognized by the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Non-Insulated Conductors (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is a capacitive sensor that makes it possible to minimize electrical resistance even when the size of a panel is increased and to reduce the risk of disconnection when wiring becomes long and thin. The capacitive sensor is obtained by forming a pattern that comprises a transparent conductive film on a substrate. The pattern comprises: a detection pattern in which a plurality of detection electrodes are arranged with spaces therebetween; and a plurality of lead-out wiring lines that extend from each of the plurality of detection electrodes in the same direction and that are parallel to each other. The transparent conductive film comprises a metal nanowire. The transparent conductive film is anisotropic such that the resistance value in the extension direction of the lead-out wiring lines with respect to the resistance value in the direction that is orthogonal to the extension direction of the lead-out wiring lines is 1/1.4 or less.

Description

静電容量式センサCapacitive sensor
 本発明は、金属ナノワイヤを含む透明導電膜からなるパターンが形成された静電容量式センサに関する。 The present invention relates to a capacitive sensor in which a pattern made of a transparent conductive film containing metal nanowires is formed.
 特許文献1には、単層構造の透明導電膜を備えた静電容量式センサであるタッチスイッチが開示されている。特許文献1に記載のタッチスイッチは、タッチ電極部ならびにタッチ電極部から延びる配線部が網目状の金属線で形成されている。このタッチスイッチの構成は、小型のタッチパネルでは実現できるものの、パネルサイズが大型になると細く長い配線を多数配置する必要がある。また、配線部が金属線で形成されているため、配線部を細く長くすると、配線部の電気抵抗が高くなる。 Patent Document 1 discloses a touch switch that is a capacitive sensor including a transparent conductive film having a single layer structure. In the touch switch described in Patent Document 1, a touch electrode portion and a wiring portion extending from the touch electrode portion are formed of a mesh-like metal wire. The configuration of this touch switch can be realized with a small touch panel, but it is necessary to arrange a large number of thin and long wires as the panel size increases. In addition, since the wiring portion is formed of a metal wire, when the wiring portion is thin and long, the electrical resistance of the wiring portion is increased.
 特許文献2に記載のタッチパネルは、基板の表面に複数の透明な導電構造体が形成され、この導電構造体はカーボンナノチューブで構成されている。また、導電構造体から延び出る導電線はITOで形成されている。しかし、導電線をITO等で形成すると電気抵抗が高くなってしまうため、導電線の電気抵抗が検知感度を低下させることになる。 In the touch panel described in Patent Document 2, a plurality of transparent conductive structures are formed on the surface of a substrate, and the conductive structures are composed of carbon nanotubes. The conductive wire extending from the conductive structure is made of ITO. However, if the conductive wire is made of ITO or the like, the electrical resistance becomes high, and the electrical resistance of the conductive wire lowers the detection sensitivity.
 このような問題を解決するために、低抵抗の透明導電膜として金属ナノワイヤを含んだものが検討されている。 In order to solve such problems, low-resistance transparent conductive films containing metal nanowires have been studied.
特開2010-191504号公報JP 2010-191504 A 特開2009-146419号公報JP 2009-146419 A
 しかしながら、単層構造の透明導電膜に金属ナノワイヤを用いた場合、金属ナノワイヤ自体は比較的疎なメッシュ構造となっている。そのため、配線が細長くなると断線する箇所が生じるおそれがあり、細く長い配線部を形成するのが困難であった。 However, when metal nanowires are used for a single-layer transparent conductive film, the metal nanowires themselves have a relatively sparse mesh structure. For this reason, when the wiring is elongated, there is a possibility that a portion to be disconnected is generated, and it is difficult to form a thin and long wiring portion.
 そこで本発明は、パネルが大型化しても電気抵抗を低く抑えることができ、かつ、配線が細長くなったときの断線のおそれを低減することのできる静電容量式センサを提供することを目的とする。 Accordingly, an object of the present invention is to provide a capacitance type sensor that can keep the electrical resistance low even when the panel is enlarged, and can reduce the risk of disconnection when the wiring is elongated. To do.
 上記課題を解決するために、本発明の静電容量式センサは、基材に透明導電膜からなるパターンを形成してなる静電容量式センサであって、パターンは、複数の検知電極が間隔を置いて配列された検知パターンと、複数の検知電極からそれぞれ同一の方向に平行して延在する複数の引き出し配線とを含んでおり、透明導電膜は金属ナノワイヤを含んでおり、透明導電膜は、引き出し配線の延在する方向の抵抗値が、引き出し配線の延在する方向と直交する方向の抵抗値に対して1/1.4以下となる異方性を有していることを特徴としている。 In order to solve the above problems, the capacitive sensor of the present invention is a capacitive sensor formed by forming a pattern made of a transparent conductive film on a base material, and the pattern has a plurality of detection electrodes spaced apart from each other. And a plurality of lead wires extending in parallel in the same direction from the plurality of detection electrodes, the transparent conductive film includes metal nanowires, and the transparent conductive film Has an anisotropy in which the resistance value in the direction in which the lead wiring extends is 1 / 1.4 or less than the resistance value in the direction orthogonal to the direction in which the lead wiring extends. It is said.
 本発明の静電容量式センサは、これを適用するタッチパネルが大型化しても電気抵抗を抑えることが可能となり、広い操作領域で良好な検知感度を得ることができる。また、透明導電膜中の金属ナノワイヤの配向方向を揃えることにより、複数の金属ナノワイヤを配向方向に長く連ねやすくなるため、引き出し配線を細く長くしても断線を防止することができる。 The electrostatic capacity sensor of the present invention can suppress electrical resistance even when a touch panel to which the electrostatic capacity sensor is applied is enlarged, and can obtain good detection sensitivity in a wide operation region. Further, by aligning the orientation direction of the metal nanowires in the transparent conductive film, it becomes easy to connect a plurality of metal nanowires in the orientation direction for a long time.
 本発明の静電容量式センサにおいては、引き出し配線の幅が100μm以下であることが好ましい。 In the capacitance type sensor of the present invention, it is preferable that the width of the lead-out wiring is 100 μm or less.
 本発明の静電容量式センサにおいては、引き出し配線の延在する方向の抵抗値が、引き出し配線の延在する方向と直交する方向の抵抗値に対して1/3以上1/1.4以下であって、引き出し配線の幅が60μm以上100μm以下であることが好ましい。 In the capacitance type sensor of the present invention, the resistance value in the direction in which the lead wiring extends is 1/3 or more and 1 / 1.4 or less than the resistance value in the direction orthogonal to the direction in which the lead wiring extends. In addition, it is preferable that the width of the lead wiring is 60 μm or more and 100 μm or less.
 本発明の静電容量式センサにおいては、金属ナノワイヤが銀ナノワイヤであることが好ましい。 In the capacitive sensor of the present invention, the metal nanowire is preferably a silver nanowire.
 本発明の静電容量式センサにおいては、銀ナノワイヤの長さは 1μm以上1000μm以下であることが好ましい。 In the capacitive sensor of the present invention, the length of the silver nanowire is preferably 1 μm or more and 1000 μm or less.
 本発明によると、金属ナノワイヤを用いることによって、パネルが大型化しても電気抵抗を低く抑えることができ、さらに、透明導電膜の抵抗値に異方性を持たせることにより、配線が細長くなっても断線する可能性を低減することができる。 According to the present invention, by using metal nanowires, the electrical resistance can be kept low even when the panel is enlarged, and furthermore, the wiring is elongated by providing anisotropy to the resistance value of the transparent conductive film. The possibility of disconnection can also be reduced.
実施形態に係る静電容量式センサにおけるパターンを示す平面図である。It is a top view which shows the pattern in the electrostatic capacitance type sensor which concerns on embodiment. フィルム基材上の銀ナノワイヤの配向状態を示す写真である。It is a photograph which shows the orientation state of the silver nanowire on a film base material.
 以下、本発明の実施形態に係る静電容量式センサについて図面を参照しつつ詳しく説明する。 Hereinafter, a capacitive sensor according to an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本実施形態に係る静電容量式センサの導電パターンを示す平面図である。
 本実施形態の静電容量式センサは、フィルム基材10に単層構造の透明導電膜からなるパターン20を形成してなり、パターン20は、検知パターン21と引き出し配線22を含む。
FIG. 1 is a plan view showing a conductive pattern of the capacitive sensor according to the present embodiment.
The capacitive sensor of this embodiment is formed by forming a pattern 20 made of a transparent conductive film having a single layer structure on a film substrate 10, and the pattern 20 includes a detection pattern 21 and a lead-out wiring 22.
 フィルム基材10は、例えば、透明性を有する無機基板或いはプラスチック基板である。基板の形態としては、例えば、透明性を有するフィルム、シートである。ただしフィルムよりも厚い透明な板材を用いることもできる。無機基板の材料としては、例えば、石英、サファイア、ガラスなどが挙げられる。プラスチック基板の材料としては、例えば、トリアセチルセルロース(TAC)、ポリエステル(TPEE)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、ポリアミド(PA)、アラミド、ポリエチレン(PE)、ポリアクリレート、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン(PP)、ジアセチルセルロース、ポリ塩化ビニル、アクリル樹脂(PMMA)、ポリカーボネート(PC)、エポキシ樹脂、尿素樹脂、ウレタン樹脂、メラミン樹脂、シクロオレフィンポリマー(COP)などがあげられる。 The film base 10 is, for example, a transparent inorganic substrate or plastic substrate. The form of the substrate is, for example, a film or sheet having transparency. However, a transparent plate material thicker than the film can also be used. Examples of the material for the inorganic substrate include quartz, sapphire, and glass. Examples of the plastic substrate material include triacetyl cellulose (TAC), polyester (TPEE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA), aramid, and polyethylene (PE). , Polyacrylate, polyether sulfone, polysulfone, polypropylene (PP), diacetyl cellulose, polyvinyl chloride, acrylic resin (PMMA), polycarbonate (PC), epoxy resin, urea resin, urethane resin, melamine resin, cycloolefin polymer ( COP).
 図1に示すように、検知パターン21は、四角形状の複数の検知電極21aがX1-X2方向及びY1-Y2方向のそれぞれにおいて一定の間隔を置いて配列された構成である。図1は単純化のため模式化された図であり、検知電極21aは同一面積のものを配置している。 As shown in FIG. 1, the detection pattern 21 has a configuration in which a plurality of rectangular detection electrodes 21a are arranged at regular intervals in each of the X1-X2 direction and the Y1-Y2 direction. FIG. 1 is a schematic diagram for simplification, and detection electrodes 21a having the same area are arranged.
 図1に示すように、複数の引き出し配線22は、複数の検知電極21aのY2側の端部からそれぞれ同一の方向(Y1-Y2方向)に沿うように、互いに平行に延びている。より具体的には、複数の引き出し配線22は、検知電極21aの第2縦辺21cのY2側の端部からY2側へそれぞれ延びている。 As shown in FIG. 1, the plurality of lead-out wirings 22 extend in parallel to each other along the same direction (Y1-Y2 direction) from the Y2 side ends of the plurality of detection electrodes 21a. More specifically, the plurality of lead wires 22 extend from the Y2 side end of the second vertical side 21c of the detection electrode 21a to the Y2 side, respectively.
 この静電容量式センサにおいては、隣り合う複数の検知電極21aの間に静電容量が形成される。検知電極21aの表面に指を接触又は接近させると、指と、指に近い検知電極21aとの間に静電容量が形成されるため、検知電極21aから検出される電流値を計測することで、複数の検知電極21aのどの電極に指が最も接近しているかを検知できる。 In this capacitance type sensor, a capacitance is formed between a plurality of adjacent detection electrodes 21a. When a finger is brought into contact with or close to the surface of the detection electrode 21a, a capacitance is formed between the finger and the detection electrode 21a close to the finger, so that the current value detected from the detection electrode 21a is measured. It is possible to detect which electrode of the plurality of detection electrodes 21a is closest to the finger.
 パターン20を形成する透明導電膜は導電性の金属ナノワイヤを含んでいる。この金属ナノワイヤは、例えば、Ag、Au、Ni、Cu、Pd、Pt、Rh、Ir、Ru、Os、Fe、Co、Snから選択される1種類以上で構成される。金属ナノワイヤの平均短軸径は、1nmよりも大きく500nm以下であることが好ましい。また、金属ナノワイヤの平均長軸長は、好ましくは1μmよりも大きく1000μm以下であることが好ましい。 The transparent conductive film forming the pattern 20 includes conductive metal nanowires. This metal nanowire is comprised by 1 or more types selected from Ag, Au, Ni, Cu, Pd, Pt, Rh, Ir, Ru, Os, Fe, Co, Sn, for example. The average minor axis diameter of the metal nanowire is preferably larger than 1 nm and not larger than 500 nm. The average long axis length of the metal nanowire is preferably greater than 1 μm and 1000 μm or less.
 透明導電膜を形成するナノワイヤインク中での金属ナノワイヤの分散性向上のため、金属ナノワイヤは、PVP、ポリエチレンイミンなどのアミノ基含有化合物で表面処理されていても良い。塗膜化した際に導電性が劣化しない程度の添加量にすることが好ましい。その他、スルホ基(スルホン酸塩含む)、スルホニル基、スルホンアミド基、カルボン酸基(カルボン酸塩含む)、アミド基、リン酸基(リン酸塩、リン酸エステル含む)、フォスフィノ基、シラノール基、エポキシ基、イソシアネート基、シアノ基、ビニル基、チオール基、カルビノール基などの官能基を有する化合物で金属に吸着可能なものを分散剤として用いても良い。 In order to improve the dispersibility of the metal nanowires in the nanowire ink forming the transparent conductive film, the metal nanowires may be surface-treated with an amino group-containing compound such as PVP or polyethyleneimine. It is preferable to make the addition amount so that the conductivity is not deteriorated when the coating is formed. In addition, sulfo group (including sulfonate), sulfonyl group, sulfonamide group, carboxylic acid group (including carboxylate), amide group, phosphate group (including phosphate and phosphate ester), phosphino group, silanol group A compound having a functional group such as an epoxy group, an isocyanate group, a cyano group, a vinyl group, a thiol group, or a carbinol group, which can be adsorbed on a metal, may be used as a dispersant.
 ナノワイヤインクの分散剤としては、例えば、水、アルコール(例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、tert-ブタノールなど)、アノン(例えば、シクロヘキサノン、シクロペンタノン)、アミド(DMF)、スルフィド(DMSO)から選択される少なくとも1種類以上を用いる。 Examples of the dispersant for the nanowire ink include water, alcohol (for example, methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, tert-butanol, etc.), anone (for example, At least one selected from cyclohexanone, cyclopentanone), amide (DMF), and sulfide (DMSO) is used.
 ナノワイヤインクの乾燥ムラやクラックを抑えるため、高沸点溶媒をさらに添加して、溶剤の蒸発速度をコントロールすることもできる。例えば、ブチルセロソルブ、ジアセトンアルコール、ブチルトリグリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールイソプロピルエーテル、トリプロピレングリコールイソプロピルエーテル、メチルグリコールが挙げられる。これらの溶媒は単独で用いられてもよく、また、複数を組み合わせてもよい。 In order to suppress drying unevenness and cracks in the nanowire ink, a high boiling point solvent can be further added to control the evaporation rate of the solvent. For example, butyl cellosolve, diacetone alcohol, butyl triglycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monoisopropyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, Diethylene glycol monomethyl ether Diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol isopropyl ether, dipropylene glycol isopropyl ether, tripropylene glycol Propyl ether, methyl glycol. These solvents may be used alone or in combination.
 ナノワイヤインクに適用可能なバインダ材料としては、既知の透明な天然高分子樹脂または合成高分子樹脂から広く選択して使用することができる。例えば、透明な熱可塑性樹脂(例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン、エチルセルロース、ヒドロキシプロピルメチルセルロース)や、熱・光・電子線・放射線で硬化する透明硬化性樹脂(例えば、メラミンアクリレート、ウレタンアクリレート、イソシアネート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケートなどのシリコン樹脂)を使用することができる。さらに添加剤としては、界面活性剤、粘度調整剤、分散剤、硬化促進触媒、可塑剤、酸化防止剤や硫化防止剤などの安定剤などが挙げられる。 The binder material applicable to the nanowire ink can be widely selected from known transparent natural polymer resins or synthetic polymer resins. For example, transparent thermoplastic resins (for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride, ethyl cellulose, hydroxypropyl methyl cellulose), A transparent curable resin (for example, a melamine acrylate, urethane acrylate, isocyanate, epoxy resin, polyimide resin, silicon resin such as acrylic-modified silicate) that can be cured by heat, light, electron beam, or radiation can be used. Furthermore, examples of the additive include a surfactant, a viscosity modifier, a dispersant, a curing accelerating catalyst, a plasticizer, a stabilizer such as an antioxidant and an antisulfurizing agent, and the like.
 また、パターン20に含まれる金属ナノワイヤはY方向に配向されており、Y1-Y2方向(Y方向)に沿った電気抵抗が、X1-X2方向(X方向)に沿った電気抵抗よりも小さく、抵抗の異方性が生じている。このようなパターン20は、たとえばナノワイヤインクをフィルム基材10とブランケットとをY方向に速度差を設けてオフセット印刷するなどの方法で形成することができる。 Further, the metal nanowires included in the pattern 20 are oriented in the Y direction, and the electrical resistance along the Y1-Y2 direction (Y direction) is smaller than the electrical resistance along the X1-X2 direction (X direction), Resistance anisotropy occurs. Such a pattern 20 can be formed, for example, by a method such as offset printing of the nanowire ink by providing a speed difference between the film substrate 10 and the blanket in the Y direction.
 図2は、上述のように形成され透明導電膜中の金属ナノワイヤの配向状態を示す写真である。図2において、上下方向は印刷方向MD(Machine Direction)であってブランケットからフィルム基材10への転写時のフィルム基材10の移動方向であり、左右方向は印刷方向MDに垂直な方向TD(Transverse Direction)である。上述の条件でナノワイヤインクをブランケットからフィルム基材10上へ転写しているため、図2に示すように、金属ナノワイヤは印刷方向MDに沿って延びるように配向されていることが分かる。 FIG. 2 is a photograph showing the orientation state of the metal nanowires formed in the transparent conductive film as described above. In FIG. 2, the vertical direction is the printing direction MD (Machine Direction), which is the moving direction of the film substrate 10 during transfer from the blanket to the film substrate 10, and the horizontal direction is a direction TD (vertical to the printing direction MD). (Transverse Direction). Since the nanowire ink is transferred from the blanket onto the film substrate 10 under the above-described conditions, it can be seen that the metal nanowires are oriented so as to extend along the printing direction MD as shown in FIG.
 パターン20を構成する透明導電膜において、引き出し配線22の延在するY1-Y2方向の抵抗値は、引き出し配線22の延在するY1-Y2方向と直交するX1-X2方向の抵抗値に対して1/1.4以下となる異方性を有していることが好ましい。これにより、パネルが大型化しても電気抵抗を低く抑えることができ、検知特性を維持することが可能となる。また、ナノワイヤインク90中の金属ナノワイヤをY1-Y2方向に配向させることで、複数の金属ナノワイヤをY1-Y2方向に連ねやすくなるため、断線を防止することができる。また、この構成により、引き出し配線22の幅を細く、例えば100μm以下にすることができ、同時に、絶縁しづらく、導通を確保した配線を実現することが可能となる。さらに、Y1-Y2方向に配向した金属ナノワイヤの本数が多くなるため、ESD(静電気放電)に対する耐性を高めることができる。 In the transparent conductive film constituting the pattern 20, the resistance value in the Y1-Y2 direction in which the lead wiring 22 extends is relative to the resistance value in the X1-X2 direction orthogonal to the Y1-Y2 direction in which the lead wiring 22 extends. It preferably has an anisotropy of 1 / 1.4 or less. Thereby, even if the panel is enlarged, the electrical resistance can be kept low, and the detection characteristics can be maintained. Further, by orienting the metal nanowires in the nanowire ink 90 in the Y1-Y2 direction, a plurality of metal nanowires can be easily connected in the Y1-Y2 direction, so that disconnection can be prevented. Also, with this configuration, the width of the lead-out wiring 22 can be reduced to, for example, 100 μm or less, and at the same time, it is possible to realize a wiring that is difficult to insulate and secures conduction. Furthermore, since the number of metal nanowires oriented in the Y1-Y2 direction is increased, resistance against ESD (electrostatic discharge) can be increased.
 (実施例)
 以下の条件で、金属ナノワイヤを含む透明導電膜からなるパターンを形成した。
 フィルム基材:PET
 金属ナノワイヤ:銀ナノワイヤ(平均短軸径:50nm、平均長軸長:10μm)
 ナノワイヤインクの分散剤:水
(Example)
Under the following conditions, a pattern made of a transparent conductive film containing metal nanowires was formed.
Film base: PET
Metal nanowire: Silver nanowire (average minor axis diameter: 50 nm, average major axis length: 10 μm)
Nanowire ink dispersant: water
 このパターンの特定は次のとおりとなった。
 抵抗比(Y方向/X方向):1/3以上1/1.4以下
 線幅     :断線率
 80μm以上 :断線なし
 60μm   :断線率5%
 40μm   :断線率40%
 20μm   :断線率99%
The identification of this pattern was as follows.
Resistance ratio (Y direction / X direction): 1/3 or more and 1 / 1.4 or less Line width: Disconnection rate 80 μm or more: No disconnection 60 μm: Disconnection rate 5%
40 μm: Disconnection rate 40%
20 μm: Disconnection rate 99%
 ここで、断線率は、80mmの長さのパターンを多数形成し、それぞれのパターンの両端間で導通が得られないものの割合を測定した。 Here, the disconnection rate was determined by measuring the ratio of a large number of patterns having a length of 80 mm in which conduction was not obtained between both ends of each pattern.
 以上の結果から、抵抗比1/3以上1/1.4以下の範囲においては、線幅(引き出し配線22の線幅)が60μm以上であれば断線率を低く抑えることができ、80μm以上であれば断線することなく導通できることが分かった。 From the above results, in the range where the resistance ratio is 1/3 or more and 1 / 1.4 or less, if the line width (the line width of the lead-out wiring 22) is 60 μm or more, the disconnection rate can be kept low, and the resistance ratio is 80 μm or more. It turns out that it can conduct without disconnection if there is.
 以下に変形例について説明する。
 上述の実施形態においては、ブランケット上に形成されたパターンをフィルム基材10上に転写することによってパターン20を形成したが、これに代えて、エッチングによるパターン化、レーザエッチングによるカット、フッ化による非導電処理などによってパターン20を形成することもできる。これらの製法では、ナノワイヤインクの層をフィルム基材10上にベタで形成したものを用い、パターン20以外の領域をエッチング液で溶解させたり、エッチングによる化学反応や物理的な衝突等によってパターン20以外の領域を除去し、又は、フッ化によってパターン20以外の領域を非導電処理することによって、パターン20を形成する。これらの製法では、ナノワイヤインクの層をフィルム基材10上に形成するときに、上述の実施形態と同様に、ブランケットに対応するインク供給ローラの回転速度よりもフィルム基材10の移動速度を速くすることにより、ナノワイヤインク中の金属ナノワイヤを一定方向に配向させる。
A modification will be described below.
In the above-described embodiment, the pattern 20 is formed by transferring the pattern formed on the blanket onto the film substrate 10, but instead of this, patterning by etching, cutting by laser etching, by fluorination The pattern 20 can also be formed by non-conductive treatment or the like. In these manufacturing methods, a solid nanowire ink layer formed on the film substrate 10 is used, and regions other than the pattern 20 are dissolved with an etching solution, or the pattern 20 is formed by chemical reaction or physical collision by etching. The pattern 20 is formed by removing the area other than the above or by performing non-conductive treatment on the area other than the pattern 20 by fluorination. In these manufacturing methods, when the nanowire ink layer is formed on the film substrate 10, the moving speed of the film substrate 10 is made faster than the rotation speed of the ink supply roller corresponding to the blanket, as in the above-described embodiment. By doing so, the metal nanowire in nanowire ink is orientated to a fixed direction.
 本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.
 以上のように、本発明に係る静電容量式センサは、単層構造の透明導電膜を有する大型のタッチパネルに有用であり、使用者から視認しづらい透明のパターンを形成することができる。 As described above, the capacitive sensor according to the present invention is useful for a large touch panel having a transparent conductive film having a single layer structure, and can form a transparent pattern that is difficult to be visually recognized by the user.
 10  フィルム基材
 20  パターン
 21  検知パターン
 21a 検知電極
 22  引き出し配線
DESCRIPTION OF SYMBOLS 10 Film base material 20 Pattern 21 Detection pattern 21a Detection electrode 22 Lead-out wiring

Claims (5)

  1.  基材に透明導電膜からなるパターンを形成してなる静電容量式センサであって、
     前記パターンは、
    複数の検知電極が間隔を置いて配列された検知パターンと、
    前記複数の検知電極からそれぞれ同一の方向に平行して延在する複数の引き出し配線とを含んでおり、
     前記透明導電膜は金属ナノワイヤを含んでおり、
     前記透明導電膜は、前記引き出し配線の延在する方向の抵抗値が、前記引き出し配線の延在する方向と直交する方向の抵抗値に対して1/1.4以下となる異方性を有していることを特徴とする静電容量式センサ。
    A capacitance type sensor formed by forming a pattern made of a transparent conductive film on a substrate,
    The pattern is
    A detection pattern in which a plurality of detection electrodes are arranged at intervals, and
    A plurality of lead wires extending in parallel in the same direction from the plurality of detection electrodes,
    The transparent conductive film includes metal nanowires,
    The transparent conductive film has an anisotropy in which a resistance value in a direction in which the lead wiring extends is 1 / 1.4 or less with respect to a resistance value in a direction orthogonal to the direction in which the lead wiring extends. Capacitive sensor characterized by that.
  2.  前記引き出し配線の幅が100μm以下であることを特徴とする請求項1に記載の静電容量式センサ。 The capacitance type sensor according to claim 1, wherein the width of the lead-out wiring is 100 μm or less.
  3.  前記引き出し配線の延在する方向の抵抗値が、前記引き出し配線の延在する方向と直交する方向の抵抗値に対して1/3以上1/1.4以下であって、
     前記引き出し配線の幅が60μm以上100μm以下であることを特徴とする請求項1又は請求項2に記載の静電容量式センサ。
    A resistance value in a direction in which the lead wiring extends is not less than 1/3 and not more than 1 / 1.4 in a direction perpendicular to a direction in which the lead wiring extends,
    The capacitance type sensor according to claim 1 or 2, wherein a width of the lead wiring is 60 µm or more and 100 µm or less.
  4.  金属ナノワイヤが銀ナノワイヤであることを特徴とする請求項1~請求項3のいずれか1項に記載の静電容量式センサ。 The capacitive sensor according to any one of claims 1 to 3, wherein the metal nanowire is a silver nanowire.
  5.  前記銀ナノワイヤの長さは1μm以上1000μm以下であることを特徴とする請求項4に記載の静電容量式センサ。 5. The capacitive sensor according to claim 4, wherein the silver nanowire has a length of 1 μm or more and 1000 μm or less.
PCT/JP2015/056393 2014-03-20 2015-03-04 Capacitive sensor WO2015141473A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508651A JP6096375B2 (en) 2014-03-20 2015-03-04 Capacitive sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-058991 2014-03-20
JP2014058991 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141473A1 true WO2015141473A1 (en) 2015-09-24

Family

ID=54144447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056393 WO2015141473A1 (en) 2014-03-20 2015-03-04 Capacitive sensor

Country Status (2)

Country Link
JP (1) JP6096375B2 (en)
WO (1) WO2015141473A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018014382A1 (en) * 2016-07-19 2018-01-25 武汉华星光电技术有限公司 Array substrate and touch control display
WO2018062517A1 (en) * 2016-09-30 2018-04-05 大日本印刷株式会社 Electroconductive film, touch panel, and image display device
JP2021060521A (en) * 2019-10-08 2021-04-15 大日本印刷株式会社 Light-modulating film and dimmer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514597A (en) * 2008-02-28 2011-05-06 スリーエム イノベイティブ プロパティズ カンパニー Touch screen sensor with varying sheet resistance
JP2014026584A (en) * 2012-07-30 2014-02-06 Shin Etsu Polymer Co Ltd Transparent wiring sheet and manufacturing method of the same, and input member for touch panel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937279B (en) * 2009-06-30 2013-11-13 群康科技(深圳)有限公司 Touch screen and driving method thereof
JP2011039758A (en) * 2009-08-11 2011-02-24 Seiko Epson Corp Touch panel device, display, and electronic equipment
JP5374457B2 (en) * 2010-07-30 2013-12-25 グンゼ株式会社 Planar body and touch panel
US9134867B2 (en) * 2010-12-09 2015-09-15 Sharp Kabushiki Kaisha Touch panel, display device including the touch panel, and method of manufacturing the touch panel
JP2012203628A (en) * 2011-03-25 2012-10-22 Hosiden Corp Touch panel and electronic device including the same
JP2013235471A (en) * 2012-05-10 2013-11-21 Panasonic Corp Touch panel
JP5840096B2 (en) * 2012-05-28 2016-01-06 富士フイルム株式会社 Conductive film and touch panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514597A (en) * 2008-02-28 2011-05-06 スリーエム イノベイティブ プロパティズ カンパニー Touch screen sensor with varying sheet resistance
JP2014026584A (en) * 2012-07-30 2014-02-06 Shin Etsu Polymer Co Ltd Transparent wiring sheet and manufacturing method of the same, and input member for touch panel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018014382A1 (en) * 2016-07-19 2018-01-25 武汉华星光电技术有限公司 Array substrate and touch control display
WO2018062517A1 (en) * 2016-09-30 2018-04-05 大日本印刷株式会社 Electroconductive film, touch panel, and image display device
CN110088848A (en) * 2016-09-30 2019-08-02 大日本印刷株式会社 Conductive film, touch panel and image display device
US10831327B2 (en) 2016-09-30 2020-11-10 Dai Nippon Printing Co., Ltd. Electroconductive film, touch panel, and image display device
CN110088848B (en) * 2016-09-30 2021-03-12 大日本印刷株式会社 Conductive film, touch panel, and image display device
US11298925B2 (en) 2016-09-30 2022-04-12 Dai Nippon Printing Co., Ltd. Electroconductive film, touch panel, and image display device
US11648759B2 (en) 2016-09-30 2023-05-16 Dai Nippon Printing Co., Ltd. Electroconductive film, touch panel, and image display device
JP2021060521A (en) * 2019-10-08 2021-04-15 大日本印刷株式会社 Light-modulating film and dimmer
JP7279608B2 (en) 2019-10-08 2023-05-23 大日本印刷株式会社 Light control film and light control device

Also Published As

Publication number Publication date
JPWO2015141473A1 (en) 2017-04-06
JP6096375B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
US8748749B2 (en) Patterned transparent conductors and related manufacturing methods
JP6630393B2 (en) Capacitive sensor
KR20140044895A (en) Transparent conductive multilayer electrode and associated manufacturing process
JP6605082B2 (en) Capacitive sensor
JP6096375B2 (en) Capacitive sensor
US20180307341A1 (en) Touch devices including nanoscale conductive films
US20160320872A1 (en) Touch sensor device and manufacturing method thereof
JP6717316B2 (en) Method for forming functional thin line pattern and functional thin line pattern
JP5944588B2 (en) Method for forming transparent conductive film
US10474309B2 (en) Conductive element, input device, and electronic apparatus
US20180162323A1 (en) Fogging removal system and fogging removal method using the same
JP2017111478A (en) Sheet for capacitance type touch sensor and method for manufacturing the same
CN204423340U (en) Touch-control module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765865

Country of ref document: EP

Kind code of ref document: A1