WO2015141465A1 - Glass substrate for dielectric multilayer film filter - Google Patents

Glass substrate for dielectric multilayer film filter Download PDF

Info

Publication number
WO2015141465A1
WO2015141465A1 PCT/JP2015/056315 JP2015056315W WO2015141465A1 WO 2015141465 A1 WO2015141465 A1 WO 2015141465A1 JP 2015056315 W JP2015056315 W JP 2015056315W WO 2015141465 A1 WO2015141465 A1 WO 2015141465A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric multilayer
glass substrate
multilayer film
filter
glass
Prior art date
Application number
PCT/JP2015/056315
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 細田
泰 藤澤
小林 正宏
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015141465A1 publication Critical patent/WO2015141465A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/102Glass compositions containing silica with 40% to 90% silica, by weight containing lead
    • C03C3/108Glass compositions containing silica with 40% to 90% silica, by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes

Definitions

  • the present invention relates to a glass substrate for a dielectric multilayer filter used for optical fiber communication or the like.
  • optical fiber communication electrical information such as voice data, image data, or text data on the sender side is converted into optical information mainly by an LD (laser diode), via an optical fiber network including base stations and relay stations.
  • the receiver side receives the optical information and converts the received optical information into electrical information again, whereby information is communicated from the sender to the receiver.
  • a prism, a mirror, an optical filter (a band pass filter, an edge filter, an etalon, etc.), etc. are used in order to collect optical information from various terminals and sort sent information to each terminal.
  • an EDFA Erbium Doped optical Fiber Amplifier
  • the relay station to amplify optical information attenuated in the optical fiber.
  • WDM wavelength division multiplexing
  • an optical filter that selectively reflects or transmits only light of a specific wavelength is used.
  • an optical filter has a structure in which a dielectric multilayer film is formed on a substrate surface (hereinafter referred to as a dielectric multilayer film filter). Since a laser beam with strong energy is incident on the substrate, glass is used as the material because of its excellent heat resistance and low light absorption at the corresponding wavelength.
  • the refractive index of the dielectric multilayer tends to change due to density changes caused by expansion and contraction due to temperature changes.
  • the wavelength of the light reflected or transmitted by the dielectric multilayer filter may change and communication may not be performed correctly.
  • a method has been proposed in which a compressive stress is applied to the dielectric multilayer film in advance to suppress a wavelength change caused by a temperature change.
  • a dielectric multilayer filter is generally manufactured as follows. (1) A glass substrate having a thermal expansion coefficient larger than that of the dielectric multilayer film is prepared. (2) A dielectric multilayer film is formed by laminating a dielectric film on the surface of a glass substrate heated to several hundred degrees Celsius. (3) After cooling to room temperature, post-processing such as polishing and cutting is performed as necessary. Here, since the glass substrate having a larger thermal expansion coefficient than the dielectric multilayer film contracts more greatly during cooling, compressive stress is applied to the dielectric multilayer film.
  • an object of the present invention is to provide a glass substrate for a dielectric multilayer filter that has a large coefficient of thermal expansion and Young's modulus and is excellent in workability and can be improved in mass productivity.
  • the dielectric multilayer filter glass substrate of the present invention contains, by mass%, Li 2 O + Na 2 O + K 2 O 5-30% and TiO 2 0-2% (excluding 2%), ⁇ It is characterized by being made of an amorphous glass having a thermal expansion coefficient of 95 ⁇ 10 ⁇ 7 to 130 ⁇ 10 ⁇ 7 / K at 30 to + 70 ° C.
  • the workability such as polishing and cutting is improved by containing an alkali metal oxide in the glass composition.
  • the glass structure was strengthened and the workability was decreased. Therefore, it has been found that workability can be improved by containing an appropriate amount of alkali metal oxide in the glass substrate and regulating the upper limit of the content of TiO 2 .
  • the processing process is shortened by improving the workability, it becomes difficult to cause defects such as undesired processing scratches on the glass substrate and the dielectric multilayer film, and to be corroded by the polishing liquid, etc., and the yield is improved. Can also be expected.
  • the glass substrate of this invention consists of amorphous glass, it is excellent in workability markedly compared with the glass substrate which consists of crystallized glass.
  • the glass substrate for dielectric multilayer filter of the present invention preferably has a Young's modulus of 75 GPa or more.
  • the glass substrate for a dielectric multilayer filter of the present invention preferably has a polishing rate by a lapping method of 20 ⁇ m / min or more.
  • the dielectric multilayer filter glass substrate of the present invention contains, by mass%, SiO 2 30 to 60%, Al 2 O 3 0 to 10%, MgO + CaO + SrO + BaO + ZnO 3 to 35%, and ZrO 2 0 to 10%. Is preferred.
  • the glass substrate for a dielectric multilayer filter of the present invention preferably has an internal transmittance of 98% or more at a wavelength of 1550 nm in terms of a thickness of 1 mm.
  • a dielectric multilayer filter of the present invention comprises the above-mentioned dielectric multilayer filter glass substrate, and a dielectric multilayer film formed on the dielectric multilayer filter glass substrate. .
  • the present invention it is possible to provide a glass substrate for a dielectric multilayer film filter that has a large coefficient of thermal expansion and Young's modulus and is excellent in workability, so that mass productivity can be improved.
  • the glass substrate for a dielectric multilayer filter of the present invention is amorphous, containing 5-30% of Li 2 O + Na 2 O + K 2 O and TiO 2 0-2% (excluding 2%) by mass%. Made of quality glass. The reason for specifying the content of each component in this way will be described below. In the following description regarding the content of each component, “%” means “% by mass” unless otherwise specified.
  • Li 2 O, Na 2 O, and K 2 O are components that improve workability and increase the coefficient of thermal expansion.
  • the content of Li 2 O + Na 2 O + K 2 O is 5-30%, preferably 5-22%.
  • Li 2 O + Na 2 O + K 2 O content is too small, the effect is difficult to obtain.
  • the Li 2 O + Na 2 O + K 2 O content is too large, there tends to be inferior in weather resistance.
  • TiO 2 is a component that strengthens the glass structure and lowers workability.
  • the content of TiO 2 is 0 to 2% (however, not including 2%), preferably 0 to 1%, more preferably 0 to 0.5%, and still more preferably not containing. .
  • the glass substrate for multilayer filter of the present invention can contain various components in addition to the above components.
  • the glass substrate for multilayer filter of the present invention contains, by mass%, SiO 2 30-60%, Al 2 O 3 0-10%, MgO + CaO + SrO + BaO + ZnO 3-35%, and ZrO 2 0-10%. Is preferred. The reason for specifying the content of each component in this way will be described below.
  • SiO 2 is a component constituting a glass skeleton and has an effect of improving weather resistance.
  • the content of SiO 2 is preferably 30 to 60%, more preferably 40 to 55%. When the content of SiO 2 is too small, the weather resistance tends to lower. On the other hand, if the content of SiO 2 is too large, processability tends to decrease. Also, melting and molding tend to be difficult.
  • Al 2 O 3 is a component constituting a glass skeleton similarly to SiO 2 and has an effect of improving weather resistance. In particular, it is a component having a high effect of suppressing elution of alkali components in glass.
  • the content of Al 2 O 3 is preferably 0 to 10%, more preferably 1 to 8%. When the content of Al 2 O 3 is too large, processability tends to decrease. Also, melting and molding tend to be difficult.
  • MgO, CaO, BaO, SrO and ZnO are components that act as fluxes and aid melting. Further, like the alkali metal oxide, it has an effect of improving workability.
  • the content of MgO + CaO + SrO + BaO + ZnO is preferably 3 to 35%, more preferably 5 to 34%, still more preferably 10 to 33%, particularly preferably 15 to 32%, and more preferably 20 to Most preferably, it is 30%. When there is too little content of MgO + CaO + SrO + BaO + ZnO, workability will fall easily. On the other hand, if the content of MgO + CaO + SrO + BaO + ZnO is too large, the weather resistance tends to be lowered.
  • ZrO 2 is a component that increases the coefficient of thermal expansion while maintaining weather resistance.
  • the content of ZrO 2 is preferably 0 to 10%, more preferably 1 to 8%. When the content of ZrO 2 is too large, it tends to be devitrified.
  • a clarifying agent such as Sb 2 O 3 , Y 2 O 3 , La 2 O 3 , Nb 2 O 5, Gd 2 O 3, or the like is included in order to improve Young's modulus or weather resistance. Is also possible. However, As 2 O 3 is not preferable in view of the environment, so it is preferable not to include it.
  • the dielectric multilayer film filter glass substrate of the present invention has a thermal expansion coefficient of 95 ⁇ 10 ⁇ 7 to 130 ⁇ 10 ⁇ 7 / K at ⁇ 30 to + 70 ° C., and 100 ⁇ 10 ⁇ 7 to 130 ⁇ 10 ⁇ 7. / K is preferable, and 103 ⁇ 10 ⁇ 7 to 125 ⁇ 10 ⁇ 7 / K is more preferable. If the thermal expansion coefficient is too small, the application of compressive stress to the dielectric multilayer film tends to be insufficient. As a result, the temperature dependency of the transmitted light center wavelength of the dielectric multilayer filter increases, and the demultiplexing accuracy tends to decrease. On the other hand, when the thermal expansion coefficient is too large, the dielectric multilayer film is easily peeled from the glass substrate.
  • the temperature dependency of the transmitted light center wavelength of the dielectric multilayer filter is preferably 1 pm / K or less.
  • the Young's modulus of the glass substrate for a dielectric multilayer filter of the present invention is preferably 75 GPa or more, and more preferably 80 GPa or more. If the Young's modulus is too small, the glass substrate may be deformed by the stress received from the dielectric multilayer film.
  • the glass substrate for a dielectric multilayer filter of the present invention preferably has a polishing rate by a lapping method of 20 ⁇ m / min or more. If the polishing rate by the lapping method is too low, the processing time becomes long and the productivity tends to decrease. In addition, the glass substrate and the dielectric multilayer film are liable to suffer from problems such as unwanted processing flaws or being corroded by the polishing liquid, etc., and the yield tends to decrease. Note that the polishing rate by the lapping method depends on the measurement conditions described in the examples described later.
  • the internal transmittance at a wavelength of 1550 nm is preferably 98% or more, more preferably 99% or more in terms of thickness of 1 mm. If the internal transmittance is too low, the light propagation efficiency tends to decrease. Further, the temperature may be unduly increased by the absorbed light energy.
  • the glass substrate for a dielectric multilayer filter of the present invention preferably has a mass loss of less than 0.25% and more preferably less than 0.1% in water resistance evaluation according to JOGIS.
  • the dielectric multilayer filter glass substrate of the present invention preferably has a strain point of 380 ° C. or higher. According to the said structure, even if it heats at each process, such as film-forming, washing
  • a dielectric multilayer filter of the present invention comprises the above-mentioned dielectric multilayer filter glass substrate, and a dielectric multilayer film formed on the dielectric multilayer filter glass substrate. .
  • Examples of the constituent components of the dielectric layer constituting the dielectric multilayer film include SiO 2 , Al 2 O 3 , La 2 O 3 , TiO 2 , and Nb 2 O 5 .
  • a dielectric multilayer film is formed by alternately laminating low refractive index films (SiO 2 , Al 2 O 3 etc.) and high refractive index films (La 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 etc.). It has the structure formed.
  • the dielectric multilayer filter of the present invention is manufactured as follows. First, a glass substrate having a size capable of producing a large number of target dielectric multilayer filters (for example, about 2 mm ⁇ 2 mm ⁇ 1 mm) is prepared. If necessary, a polishing process (preferably mirror polishing) is performed on the surface of the glass substrate on which the film is formed. A dielectric multilayer film is formed on a glass substrate by laminating dielectric materials in a predetermined order and with a predetermined film thickness at 200 to 300 ° C. using various film forming methods. After cooling to room temperature, cutting and polishing are performed to obtain a dielectric multilayer filter having a predetermined size. When both cutting and polishing are performed, either may be performed first. In addition, in order to improve the homogeneity of the dielectric multilayer film, heat treatment may be further performed as necessary.
  • a polishing process preferably mirror polishing
  • Examples of the method for forming the dielectric layer include sputtering, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), aerosol deposition, spin coating, dipping, and vacuum deposition.
  • a sputtering method, a CVD method, a vacuum deposition method, or the like that can easily form a predetermined film material in a predetermined order and with a predetermined film thickness is preferable.
  • Examples of cutting means include a wire saw, a rotary blade cutter, a water jet, and a laser cutting.
  • a relatively thick glass substrate for example, a thickness of 10 mm or more
  • a desired thickness for example, about 1 mm
  • the polished surface has a high degree of parallelism with the surface on which the dielectric multilayer film is formed and is a mirror surface.
  • the dielectric multilayer filter glass substrate of the present invention will be described based on examples, but the present invention is not limited to the following examples.
  • Table 1 shows examples (Nos. 1 to 4) and comparative examples (Nos. 5 to 8) of the present invention.
  • a raw material was prepared so as to have the glass composition shown in Table 1, and was melted at 1300 to 1500 ° C. for 4 hours using a platinum crucible. The molten glass was poured onto a carbon plate and annealed to obtain an amorphous glass molded body. Next, the obtained glass compact is lapped with an alumina powder for 10 to 20 minutes using a flat polishing machine, and then polished with a cerium oxide powder for 30 to 60 minutes to form an amorphous glass. A glass substrate for a dielectric multilayer filter was prepared.
  • the obtained glass substrate was measured for thermal expansion coefficient, Young's modulus, polishing rate, water resistance and internal transmittance.
  • the thermal expansion coefficient was determined in the temperature range of ⁇ 30 to + 70 ° C. using a dilatometer.
  • the Young's modulus was measured by a bending resonance method at room temperature using a plate-like sample of 20 mm ⁇ 40 mm ⁇ 2 mm.
  • the polishing rate by the lapping method was measured as follows. A plate sample of 25 mm x 30 mm x 1.8 mm is held in place on a horizontally rotating cast iron lap plate, processed while supplying a polishing agent with a load applied vertically, and the sample thickness after processing is measured. And evaluated.
  • the test conditions were as follows.
  • Lap load 37kPa Wrap plate rotation speed: 110 rpm
  • Distance from center of lap plate to center of plate sample 10cm
  • Abrasive Slurry in which No. 1200 alumina powder and water are mixed at a mass ratio of 1:20
  • Abrasive supply rate 10 mL / min
  • the internal transmittance was obtained after measuring transmittance at a wavelength of 1550 nm for two samples having different thicknesses of 2 mm and 4 mm using a V-670 ultraviolet visible near infrared spectrophotometer manufactured by JASCO Corporation. Based on the measured values, the internal transmittance in terms of 1 mm thickness was obtained by calculation.
  • Glass substrates 1 to 4 have a thermal expansion coefficient of 103 ⁇ 10 ⁇ 7 / K or more, a Young's modulus of 78 GPa or more, a polishing rate of 21 ⁇ m / min or more, a mass loss of 0.13% or less in water resistance evaluation, and an internal transmission The rate was 100%.
  • the glass substrates of 5 to 8 had a polishing rate as small as 15 ⁇ m / min or less and a thermal expansion coefficient as small as 94 ⁇ 10 ⁇ 7 / K or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The provided glass substrate for a dielectric multilayer film filter has a high thermal expansion coefficient and Young's modulus and can improve mass productivity by having excellent workability. This glass substrate for a dielectric multilayer film filter is characterized by comprising amorphous glass which contains, in mass%, 5-30% Li2O+Na2O+K2O and 0-2% TiO2 (exclusive of 2%), and which has a thermal expansion coefficient between 95×10-7 and 130×10-7/K from -30°C to +70°C.

Description

誘電体多層膜フィルター用ガラス基板Glass substrate for dielectric multilayer filter
 本発明は、光ファイバ通信等に用いられる誘電体多層膜フィルター用ガラス基板に関するものである。 The present invention relates to a glass substrate for a dielectric multilayer filter used for optical fiber communication or the like.
 光ファイバ通信は、発信者側の音声データ、画像データまたは文字データ等の電気情報を、主にLD(レーザーダイオード)によって光情報に変換し、基地局や中継局を含む光ファイバ網を介して、受信者側が光情報を受信し、受信した光情報を再度電気情報に変換することで、発信者から受信者に情報が通信されるものである。基地局では様々な末端からの光情報をまとめたり、送られてきた情報を各末端へ仕分けるために、プリズム、ミラー、光学フィルター(バンドパスフィルター、エッジフィルター、エタロン等)等が用いられる。一方、中継局では光ファイバ内で減衰した光情報を増幅するためにEDFA(Erbium Doped optical Fiber Amplifier)等が用いられる。 In optical fiber communication, electrical information such as voice data, image data, or text data on the sender side is converted into optical information mainly by an LD (laser diode), via an optical fiber network including base stations and relay stations. The receiver side receives the optical information and converts the received optical information into electrical information again, whereby information is communicated from the sender to the receiver. In the base station, a prism, a mirror, an optical filter (a band pass filter, an edge filter, an etalon, etc.), etc. are used in order to collect optical information from various terminals and sort sent information to each terminal. On the other hand, an EDFA (Erbium Doped optical Fiber Amplifier) or the like is used in the relay station to amplify optical information attenuated in the optical fiber.
 近年、通信の高速化、大容量化が進んでおり、光ファイバ通信においては波長分割多重化(Wavelength Division Multiplexing、以下、WDMという)と呼ばれる方式が用いられている。WDM方式は、ある波長帯域において、情報を付与した異なる波長を有する複数の光を1本の光ファイバで同時に送信し、その後各波長に分波して各情報を受信するものである。ここで、波長帯域は予め定められているため、各波長の差が小さいほど、より多くの情報を同時に送信することができる。 In recent years, communication speed and capacity have been increased, and a method called wavelength division multiplexing (hereinafter referred to as WDM) is used in optical fiber communication. In the WDM system, in a certain wavelength band, a plurality of lights having different wavelengths to which information is added are simultaneously transmitted through one optical fiber, and then each information is demultiplexed to each wavelength and received. Here, since the wavelength band is determined in advance, the smaller the difference between the wavelengths, the more information can be transmitted simultaneously.
 WDM方式における分波には、特定波長の光のみを選択的に反射または透過する光学フィルターが用いられる。一般に、光学フィルターは誘電体多層膜が基板表面に形成されてなる構造(以下、誘電体多層膜フィルターという)を有している。基板にはエネルギーの強いレーザー光が入射するため、その材質としては、耐熱性に優れ、該当波長における光の吸収が少ないガラスが用いられている。 For demultiplexing in the WDM system, an optical filter that selectively reflects or transmits only light of a specific wavelength is used. In general, an optical filter has a structure in which a dielectric multilayer film is formed on a substrate surface (hereinafter referred to as a dielectric multilayer film filter). Since a laser beam with strong energy is incident on the substrate, glass is used as the material because of its excellent heat resistance and low light absorption at the corresponding wavelength.
 誘電体多層膜フィルターにおいては、温度変化による膨張収縮を起因とする密度変化によって、誘電体多層膜の屈折率が変化する傾向がある。そのため、誘電体多層膜フィルターが反射する光や透過する光の波長が変化して正しく通信できなくなるおそれがある。この問題を解決するために、誘電体多層膜に予め圧縮応力を付与して、温度変化に起因する波長変化を抑制する方法が提案されている。 In a dielectric multilayer filter, the refractive index of the dielectric multilayer tends to change due to density changes caused by expansion and contraction due to temperature changes. As a result, the wavelength of the light reflected or transmitted by the dielectric multilayer filter may change and communication may not be performed correctly. In order to solve this problem, a method has been proposed in which a compressive stress is applied to the dielectric multilayer film in advance to suppress a wavelength change caused by a temperature change.
 誘電体多層膜フィルターは一般に以下のように作製される。(1)誘電体多層膜よりも熱膨張係数の大きなガラス基板を用意する。(2)ガラス基板を数百℃に加熱した状態で、表面に誘電体膜を積層することにより誘電体多層膜を形成する。(3)常温まで冷却後、必要に応じて研磨や切断等の後加工を行う。ここで、誘電体多層膜より熱膨張係数が大きいガラス基板は、冷却時により大きく収縮するため、誘電体多層膜に圧縮応力が付与される。 A dielectric multilayer filter is generally manufactured as follows. (1) A glass substrate having a thermal expansion coefficient larger than that of the dielectric multilayer film is prepared. (2) A dielectric multilayer film is formed by laminating a dielectric film on the surface of a glass substrate heated to several hundred degrees Celsius. (3) After cooling to room temperature, post-processing such as polishing and cutting is performed as necessary. Here, since the glass substrate having a larger thermal expansion coefficient than the dielectric multilayer film contracts more greatly during cooling, compressive stress is applied to the dielectric multilayer film.
 なお、分波精度を高めるためには、誘電体多層膜における各層の厚さを精密に制御するとともに、層数を増加させる必要がある。誘電体多層膜の層数が増加すると膜全体の厚さが大きくなるため、誘電体多層膜に付与する圧縮応力を大きくする必要がある。そのため、ガラス基板の高熱膨張係数化が要求される。またその場合、ガラス基板にかかる応力も大きくなるため、反り等の変形を抑制するために高ヤング率化することも必要となる。このような要求を満たすため、熱膨張係数及びヤング率の大きい誘電体多層膜フィルター用ガラス基板が提案されている(例えば特許文献1参照)。 In order to improve the demultiplexing accuracy, it is necessary to precisely control the thickness of each layer in the dielectric multilayer film and increase the number of layers. If the number of layers of the dielectric multilayer film increases, the thickness of the entire film increases. Therefore, it is necessary to increase the compressive stress applied to the dielectric multilayer film. Therefore, a high thermal expansion coefficient of the glass substrate is required. In that case, since the stress applied to the glass substrate also increases, it is necessary to increase the Young's modulus in order to suppress deformation such as warpage. In order to satisfy such a requirement, a glass substrate for a dielectric multilayer filter having a large thermal expansion coefficient and Young's modulus has been proposed (for example, see Patent Document 1).
特開2001-66425号公報JP 2001-66425 A
 近年の光通信市場の急激な膨張に伴い、性能を維持しつつ量産性を向上させることによって低価格化が試みられている。具体的には、ガラス基板の加工性を高めること、つまり、ガラス基板の研磨速度や切断速度を高めることにより、加工時間を短縮して生産効率を高めることが可能となる。しかしながら、特許文献1に開示されているガラス基板は加工性に劣るため、量産性に乏しいという問題がある。 With the rapid expansion of the optical communication market in recent years, attempts have been made to reduce the price by improving mass productivity while maintaining performance. Specifically, by increasing the workability of the glass substrate, that is, by increasing the polishing rate and cutting speed of the glass substrate, it is possible to shorten the processing time and increase the production efficiency. However, since the glass substrate disclosed in Patent Document 1 is inferior in workability, there is a problem that it is poor in mass productivity.
 以上に鑑み、本発明は、熱膨張係数及びヤング率が大きく、かつ加工性に優れるため量産性の向上が可能な誘電体多層膜フィルター用ガラス基板を提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass substrate for a dielectric multilayer filter that has a large coefficient of thermal expansion and Young's modulus and is excellent in workability and can be improved in mass productivity.
 本発明の誘電体多層膜フィルター用ガラス基板は、質量%で、LiO+NaO+KOを5~30%、及びTiO 0~2%(但し2%を含まない)を含有し、-30~+70℃における熱膨張係数が95×10―7~130×10-7/Kである非晶質ガラスからなることを特徴とする。 The dielectric multilayer filter glass substrate of the present invention contains, by mass%, Li 2 O + Na 2 O + K 2 O 5-30% and TiO 2 0-2% (excluding 2%), − It is characterized by being made of an amorphous glass having a thermal expansion coefficient of 95 × 10 −7 to 130 × 10 −7 / K at 30 to + 70 ° C.
 本発明者等の調査によると、アルカリ金属酸化物をガラス組成中に含有させることにより、研磨や切断等の加工性が向上することがわかった。一方、TiOをガラス組成中に含有させると、ガラス構造が強化され逆に加工性が低下することがわかった。そこで、ガラス基板において、アルカリ金属酸化物を適量含有させるとともに、TiOの含有量の上限を規制することにより、加工性を向上できることを見出した。なお、加工性が向上することにより加工工程が短縮されるため、ガラス基板や誘電体多層膜に望まない加工傷が生じたり、研磨液等によって腐食されるといった不具合が起きにくくなり、歩留まりの向上も期待できる。 According to the investigation by the present inventors, it has been found that the workability such as polishing and cutting is improved by containing an alkali metal oxide in the glass composition. On the other hand, it was found that when TiO 2 was contained in the glass composition, the glass structure was strengthened and the workability was decreased. Therefore, it has been found that workability can be improved by containing an appropriate amount of alkali metal oxide in the glass substrate and regulating the upper limit of the content of TiO 2 . In addition, since the processing process is shortened by improving the workability, it becomes difficult to cause defects such as undesired processing scratches on the glass substrate and the dielectric multilayer film, and to be corroded by the polishing liquid, etc., and the yield is improved. Can also be expected.
 なお、本発明のガラス基板は非晶質ガラスからなるため、結晶化ガラスからなるガラス基板と比較して格段に加工性に優れる。 In addition, since the glass substrate of this invention consists of amorphous glass, it is excellent in workability markedly compared with the glass substrate which consists of crystallized glass.
 本発明の誘電体多層膜フィルター用ガラス基板は、ヤング率が75GPa以上であることが好ましい。 The glass substrate for dielectric multilayer filter of the present invention preferably has a Young's modulus of 75 GPa or more.
 本発明の誘電体多層膜フィルター用ガラス基板は、ラップ法による研磨速度が20μm/分以上であることが好ましい。 The glass substrate for a dielectric multilayer filter of the present invention preferably has a polishing rate by a lapping method of 20 μm / min or more.
 本発明の誘電体多層膜フィルター用ガラス基板は、質量%で、SiO 30~60%、Al 0~10%、MgO+CaO+SrO+BaO+ZnO 3~35%、及びZrO 0~10%を含有することが好ましい。 The dielectric multilayer filter glass substrate of the present invention contains, by mass%, SiO 2 30 to 60%, Al 2 O 3 0 to 10%, MgO + CaO + SrO + BaO + ZnO 3 to 35%, and ZrO 2 0 to 10%. Is preferred.
 本発明の誘電体多層膜フィルター用ガラス基板は、厚さ1mm換算で波長1550nmにおける内部透過率が98%以上であることが好ましい。 The glass substrate for a dielectric multilayer filter of the present invention preferably has an internal transmittance of 98% or more at a wavelength of 1550 nm in terms of a thickness of 1 mm.
 本発明の誘電体多層膜フィルターは、上記の誘電体多層膜フィルター用ガラス基板と、誘電体多層膜フィルター用ガラス基板上に形成された誘電体多層膜と、を備えてなることを特徴とする。 A dielectric multilayer filter of the present invention comprises the above-mentioned dielectric multilayer filter glass substrate, and a dielectric multilayer film formed on the dielectric multilayer filter glass substrate. .
 本発明によれば、熱膨張係数及びヤング率が大きく、かつ加工性に優れるため量産性の向上が可能な誘電体多層膜フィルター用ガラス基板を提供することが可能となる。 According to the present invention, it is possible to provide a glass substrate for a dielectric multilayer film filter that has a large coefficient of thermal expansion and Young's modulus and is excellent in workability, so that mass productivity can be improved.
 本発明の誘電体多層膜フィルター用ガラス基板は、質量%で、LiO+NaO+KOを5~30%、及びTiO 0~2%(但し2%を含まない)を含有する非晶質ガラスからなる。各成分の含有量をこのように特定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「質量%」を意味する。 The glass substrate for a dielectric multilayer filter of the present invention is amorphous, containing 5-30% of Li 2 O + Na 2 O + K 2 O and TiO 2 0-2% (excluding 2%) by mass%. Made of quality glass. The reason for specifying the content of each component in this way will be described below. In the following description regarding the content of each component, “%” means “% by mass” unless otherwise specified.
 LiO、NaO及びKOは加工性を向上させるとともに熱膨張係数を高める成分である。LiO+NaO+KOの含有量は5~30%であり、5~22%であることが好ましい。LiO+NaO+KOの含有量が少なすぎると、上記効果が得られにくくなる。一方、LiO+NaO+KOの含有量が多すぎると、耐候性に劣る傾向がある。 Li 2 O, Na 2 O, and K 2 O are components that improve workability and increase the coefficient of thermal expansion. The content of Li 2 O + Na 2 O + K 2 O is 5-30%, preferably 5-22%. When Li 2 O + Na 2 O + K 2 O content is too small, the effect is difficult to obtain. On the other hand, when the Li 2 O + Na 2 O + K 2 O content is too large, there tends to be inferior in weather resistance.
 TiOはガラス構造を強化し、加工性を低下させる成分である。TiOの含有量は0~2%(但し2%を含まない)であり、0~1%であることが好ましく、0~0.5%であることがより好ましく、含有しないことがさらに好ましい。 TiO 2 is a component that strengthens the glass structure and lowers workability. The content of TiO 2 is 0 to 2% (however, not including 2%), preferably 0 to 1%, more preferably 0 to 0.5%, and still more preferably not containing. .
 本発明の多層膜フィルター用ガラス基板は、上記成分以外にも種々の成分を含有することができる。例えば、本発明の多層膜フィルター用ガラス基板は、質量%で、SiO 30~60%、Al 0~10%、MgO+CaO+SrO+BaO+ZnO 3~35%、及びZrO 0~10%を含有することが好ましい。各成分の含有量をこのように特定した理由を以下に説明する。 The glass substrate for multilayer filter of the present invention can contain various components in addition to the above components. For example, the glass substrate for multilayer filter of the present invention contains, by mass%, SiO 2 30-60%, Al 2 O 3 0-10%, MgO + CaO + SrO + BaO + ZnO 3-35%, and ZrO 2 0-10%. Is preferred. The reason for specifying the content of each component in this way will be described below.
 SiOはガラス骨格を構成する成分であり、耐候性を向上させる効果を有する。SiOの含有量は30~60%であることが好ましく、40~55%であることがより好ましい。SiOの含有量が少なすぎると、耐候性が低下しやすくなる。一方、SiOの含有量が多すぎると、加工性が低下しやすくなる。また、溶融や成形が困難になりやすい。 SiO 2 is a component constituting a glass skeleton and has an effect of improving weather resistance. The content of SiO 2 is preferably 30 to 60%, more preferably 40 to 55%. When the content of SiO 2 is too small, the weather resistance tends to lower. On the other hand, if the content of SiO 2 is too large, processability tends to decrease. Also, melting and molding tend to be difficult.
 Alは、SiOと同様にガラス骨格を構成する成分であり、耐候性を向上させる効果を有する。特に、ガラス中のアルカリ成分の溶出を抑制する効果が高い成分である。Alの含有量は0~10%であることが好ましく、1~8%であることがより好ましい。Alの含有量が多すぎると、加工性が低下しやすくなる。また、溶融や成形が困難になりやすい。 Al 2 O 3 is a component constituting a glass skeleton similarly to SiO 2 and has an effect of improving weather resistance. In particular, it is a component having a high effect of suppressing elution of alkali components in glass. The content of Al 2 O 3 is preferably 0 to 10%, more preferably 1 to 8%. When the content of Al 2 O 3 is too large, processability tends to decrease. Also, melting and molding tend to be difficult.
 MgO、CaO、BaO、SrO及びZnOは、融剤として作用して溶融を助ける成分である。また、アルカリ金属酸化物と同様に、加工性を向上させる効果を有する。MgO+CaO+SrO+BaO+ZnOの含有量は3~35%であることが好ましく、5~34%であることがより好ましく、10~33%であることがさらに好ましく、15~32%であることが特に好ましく、20~30%であることが最も好ましい。MgO+CaO+SrO+BaO+ZnOの含有量が少なすぎると、加工性が低下しやすくなる。一方、MgO+CaO+SrO+BaO+ZnOの含有量が多すぎると、耐候性が低下しやすくなる。 MgO, CaO, BaO, SrO and ZnO are components that act as fluxes and aid melting. Further, like the alkali metal oxide, it has an effect of improving workability. The content of MgO + CaO + SrO + BaO + ZnO is preferably 3 to 35%, more preferably 5 to 34%, still more preferably 10 to 33%, particularly preferably 15 to 32%, and more preferably 20 to Most preferably, it is 30%. When there is too little content of MgO + CaO + SrO + BaO + ZnO, workability will fall easily. On the other hand, if the content of MgO + CaO + SrO + BaO + ZnO is too large, the weather resistance tends to be lowered.
 ZrOは、耐候性を維持しつつ熱膨張係数を大きくする成分である。ZrOの含有量は0~10%であることが好ましく、1~8%含有することがより好ましい。ZrOの含有量が多すぎると、失透しやすくなる。 ZrO 2 is a component that increases the coefficient of thermal expansion while maintaining weather resistance. The content of ZrO 2 is preferably 0 to 10%, more preferably 1 to 8%. When the content of ZrO 2 is too large, it tends to be devitrified.
 上記成分以外にも、Sb等の清澄剤や、ヤング率や耐候性を向上させるためにY、La、NbまたはGd等を含有させることも可能である。ただし、Asは環境上好ましくないため、含有させないことが好ましい。 In addition to the above components, a clarifying agent such as Sb 2 O 3 , Y 2 O 3 , La 2 O 3 , Nb 2 O 5, Gd 2 O 3, or the like is included in order to improve Young's modulus or weather resistance. Is also possible. However, As 2 O 3 is not preferable in view of the environment, so it is preferable not to include it.
 本発明の誘電体多層膜フィルター用ガラス基板は、-30~+70℃における熱膨張係数が95×10―7~130×10-7/Kであり、100×10―7~130×10-7/Kであることが好ましく、103×10―7~125×10-7/Kであることがより好ましい。熱膨張係数が小さすぎると、誘電体多層膜への圧縮応力の付与が不十分になる傾向がある。その結果、誘電体多層膜フィルターの透過光中心波長の温度依存性が大きくなり、分波精度が低下する傾向がある。一方、熱膨張係数が大きすぎると、誘電体多層膜がガラス基板から剥離しやすくなる。 The dielectric multilayer film filter glass substrate of the present invention has a thermal expansion coefficient of 95 × 10 −7 to 130 × 10 −7 / K at −30 to + 70 ° C., and 100 × 10 −7 to 130 × 10 −7. / K is preferable, and 103 × 10 −7 to 125 × 10 −7 / K is more preferable. If the thermal expansion coefficient is too small, the application of compressive stress to the dielectric multilayer film tends to be insufficient. As a result, the temperature dependency of the transmitted light center wavelength of the dielectric multilayer filter increases, and the demultiplexing accuracy tends to decrease. On the other hand, when the thermal expansion coefficient is too large, the dielectric multilayer film is easily peeled from the glass substrate.
 なお、誘電体多層膜フィルターの透過光中心波長の温度依存性は1pm/K以下であることが好ましい。 The temperature dependency of the transmitted light center wavelength of the dielectric multilayer filter is preferably 1 pm / K or less.
 本発明の誘電体多層膜フィルター用ガラス基板のヤング率は75GPa以上であることが好ましく、80GPa以上であることがより好ましい。ヤング率が小さすぎると、ガラス基板が誘電体多層膜から受ける応力により変形するおそれがある。 The Young's modulus of the glass substrate for a dielectric multilayer filter of the present invention is preferably 75 GPa or more, and more preferably 80 GPa or more. If the Young's modulus is too small, the glass substrate may be deformed by the stress received from the dielectric multilayer film.
 本発明の誘電体多層膜フィルター用ガラス基板は、ラップ法による研磨速度が20μm/分以上であることが好ましい。ラップ法による研磨速度が低すぎると、加工時間が長くなり生産性が低下しやすくなる。また、ガラス基板や誘電体多層膜に望まない加工傷が生じたり、研磨液等によって腐食されるといった不具合が起きやすくなり、歩留まりが低下する傾向がある。なお、ラップ法による研磨速度は、後述の実施例に記載された測定条件によるものとする。 The glass substrate for a dielectric multilayer filter of the present invention preferably has a polishing rate by a lapping method of 20 μm / min or more. If the polishing rate by the lapping method is too low, the processing time becomes long and the productivity tends to decrease. In addition, the glass substrate and the dielectric multilayer film are liable to suffer from problems such as unwanted processing flaws or being corroded by the polishing liquid, etc., and the yield tends to decrease. Note that the polishing rate by the lapping method depends on the measurement conditions described in the examples described later.
 本発明の誘電体多層膜フィルター用ガラス基板は、厚さ1mm換算で波長1550nmにおける内部透過率が98%以上であることが好ましく、99%以上であることがより好ましい。内部透過率が低すぎると、光の伝播効率が低下しやすくなる。また、吸収した光エネルギーによって温度が不当に上昇するおそれがある。 In the glass substrate for a dielectric multilayer filter of the present invention, the internal transmittance at a wavelength of 1550 nm is preferably 98% or more, more preferably 99% or more in terms of thickness of 1 mm. If the internal transmittance is too low, the light propagation efficiency tends to decrease. Further, the temperature may be unduly increased by the absorbed light energy.
 本発明の誘電体多層膜フィルター用ガラス基板は、JOGISに準じた耐水性評価における質量減が0.25%未満であることが好ましく、0.1%未満であることがより好ましい。 The glass substrate for a dielectric multilayer filter of the present invention preferably has a mass loss of less than 0.25% and more preferably less than 0.1% in water resistance evaluation according to JOGIS.
 本発明の誘電体多層膜フィルター用ガラス基板は、歪点が380℃以上であることが好ましい。当該構成によれば、成膜、洗浄、乾燥等の各工程で加熱されても変形しにくくなる。 The dielectric multilayer filter glass substrate of the present invention preferably has a strain point of 380 ° C. or higher. According to the said structure, even if it heats at each process, such as film-forming, washing | cleaning, and drying, it becomes difficult to deform | transform.
 本発明の誘電体多層膜フィルターは、上記の誘電体多層膜フィルター用ガラス基板と、誘電体多層膜フィルター用ガラス基板上に形成された誘電体多層膜と、を備えてなることを特徴とする。 A dielectric multilayer filter of the present invention comprises the above-mentioned dielectric multilayer filter glass substrate, and a dielectric multilayer film formed on the dielectric multilayer filter glass substrate. .
 誘電体多層膜を構成する誘電体層の構成成分としては、SiO、Al、La、TiO、Nb等が挙げられる。一般に、誘電体多層膜は低屈折率膜(SiO、Al等)と高屈折率膜(La、TiO、Nb、Ta等)が交互に積層されてなる構造を有する。 Examples of the constituent components of the dielectric layer constituting the dielectric multilayer film include SiO 2 , Al 2 O 3 , La 2 O 3 , TiO 2 , and Nb 2 O 5 . Generally, a dielectric multilayer film is formed by alternately laminating low refractive index films (SiO 2 , Al 2 O 3 etc.) and high refractive index films (La 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 etc.). It has the structure formed.
 本発明の誘電体多層膜フィルターは以下のようにして作製される。まず、目的とする誘電体多層膜フィルター(例えば2mm×2mm×1mm程度)を多数枚作製できる大きさのガラス基板を用意する。必要に応じて、ガラス基板の成膜する側の面に対し研磨加工(好ましくは鏡面研磨)を施す。ガラス基板に対し、各種成膜方法を用いて200~300℃で、誘電体材料を所定の順番、所定の膜厚で積層して誘電体多層膜を形成する。常温にまで冷却した後、切断加工や研磨加工を施し、所定寸法の誘電体多層膜フィルターが得られる。切断加工と研磨加工の両者を行う場合は、いずれを先に行なっても構わない。なお、誘電体多層膜の均質性を高めるために、必要に応じてさらに熱処理を行なっても良い。 The dielectric multilayer filter of the present invention is manufactured as follows. First, a glass substrate having a size capable of producing a large number of target dielectric multilayer filters (for example, about 2 mm × 2 mm × 1 mm) is prepared. If necessary, a polishing process (preferably mirror polishing) is performed on the surface of the glass substrate on which the film is formed. A dielectric multilayer film is formed on a glass substrate by laminating dielectric materials in a predetermined order and with a predetermined film thickness at 200 to 300 ° C. using various film forming methods. After cooling to room temperature, cutting and polishing are performed to obtain a dielectric multilayer filter having a predetermined size. When both cutting and polishing are performed, either may be performed first. In addition, in order to improve the homogeneity of the dielectric multilayer film, heat treatment may be further performed as necessary.
 誘電体層の形成方法としては、スパッタ法、PVD(Physical Vapor Deposition)法、CVD(Chemical Vapor Deposition)法、エアロゾルデポジション法、スピンコート法、ディップ法、真空蒸着法等が挙げられる。なかでも、所定の膜材料を、所定の順番で、しかも所定の膜厚で成膜することが容易なスパッタ法、CVD法、真空蒸着法等が好ましい。 Examples of the method for forming the dielectric layer include sputtering, PVD (Physical Vapor Deposition), CVD (Chemical Vapor Deposition), aerosol deposition, spin coating, dipping, and vacuum deposition. Among these, a sputtering method, a CVD method, a vacuum deposition method, or the like that can easily form a predetermined film material in a predetermined order and with a predetermined film thickness is preferable.
 切断手段としては、ワイヤーソー、回転刃カッター、ウォータージェット、レーザー切断等が挙げられる。 Examples of cutting means include a wire saw, a rotary blade cutter, a water jet, and a laser cutting.
 なお、原料ガラス基板としては、誘電体多層膜からの応力により反り等の変形が発生しないように、比較的厚いガラス基板(例えば厚さ10mm以上)を用いることが好ましい。その場合、誘電体多層膜を形成した後、所望の厚さ(例えば1mm程度)となるまで、誘電体多層膜が形成されていないほうの面を研磨加工する。この際研磨面は、誘電体多層膜を形成した面との平行度を高くし、かつ鏡面にすることが好ましい。 In addition, as a raw material glass substrate, it is preferable to use a relatively thick glass substrate (for example, a thickness of 10 mm or more) so that deformation such as warpage does not occur due to stress from the dielectric multilayer film. In this case, after the dielectric multilayer film is formed, the surface on which the dielectric multilayer film is not formed is polished until a desired thickness (for example, about 1 mm) is obtained. In this case, it is preferable that the polished surface has a high degree of parallelism with the surface on which the dielectric multilayer film is formed and is a mirror surface.
 以下に本発明の誘電体多層膜フィルター用ガラス基板を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the dielectric multilayer filter glass substrate of the present invention will be described based on examples, but the present invention is not limited to the following examples.
 表1に本発明の実施例(No.1~4)及び比較例(No.5~8)を示す。 Table 1 shows examples (Nos. 1 to 4) and comparative examples (Nos. 5 to 8) of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (1)誘電体多層膜フィルター用ガラス基板の作製及び特性評価
 表1に示すガラス組成になるように原料を調合し、白金ルツボを用いて1300~1500℃で4時間溶融した。溶融ガラスをカーボン板上に流し出し、アニールすることにより非晶質のガラス成形体を得た。次に、得られたガラス成形体に対し、平面研磨機にてアルミナ粉末を用いて10~20分間ラッピングし、その後、酸化セリウム粉末を用いて30~60分間ポリッシュして、非晶質ガラスからなる誘電体多層膜フィルター用ガラス基板を作製した。
(1) Fabrication and characteristic evaluation of glass substrate for dielectric multilayer filter A raw material was prepared so as to have the glass composition shown in Table 1, and was melted at 1300 to 1500 ° C. for 4 hours using a platinum crucible. The molten glass was poured onto a carbon plate and annealed to obtain an amorphous glass molded body. Next, the obtained glass compact is lapped with an alumina powder for 10 to 20 minutes using a flat polishing machine, and then polished with a cerium oxide powder for 30 to 60 minutes to form an amorphous glass. A glass substrate for a dielectric multilayer filter was prepared.
 得られたガラス基板について、熱膨張係数、ヤング率、研磨速度、耐水性及び内部透過率を測定した。 The obtained glass substrate was measured for thermal expansion coefficient, Young's modulus, polishing rate, water resistance and internal transmittance.
 熱膨張係数はディラトメーターを使用し、-30~+70℃の温度範囲で求めた。 The thermal expansion coefficient was determined in the temperature range of −30 to + 70 ° C. using a dilatometer.
 ヤング率は、20mm×40mm×2mmの板状試料を使用し、室温で曲げ共振法により計測した。 The Young's modulus was measured by a bending resonance method at room temperature using a plate-like sample of 20 mm × 40 mm × 2 mm.
 ラップ法による研磨速度は以下のようにして測定した。25mm×30mm×1.8mmの板状試料を水平に回転する鋳鉄製ラップ板の定位置に保持し、垂直に荷重を加えて研磨剤を供給しながら加工し、加工後の試料厚さを測定して評価した。試験条件は以下の通りとした。 The polishing rate by the lapping method was measured as follows. A plate sample of 25 mm x 30 mm x 1.8 mm is held in place on a horizontally rotating cast iron lap plate, processed while supplying a polishing agent with a load applied vertically, and the sample thickness after processing is measured. And evaluated. The test conditions were as follows.
  ラップ荷重:37kPa
  ラップ板の回転速度:110rpm
  ラップ板中心から板状試料の中心までの距離:10cm
  研磨剤:1200番アルミナ粉末と水を質量比1:20で混合したスラリー
  研磨剤の供給速度:10mL/分
Lap load: 37kPa
Wrap plate rotation speed: 110 rpm
Distance from center of lap plate to center of plate sample: 10cm
Abrasive: Slurry in which No. 1200 alumina powder and water are mixed at a mass ratio of 1:20 Abrasive supply rate: 10 mL / min
 耐水性は、日本光学硝子工業会規格JOGIS「光学ガラスの化学的耐久性の測定法(粉末法)06-1975」に準じて行なった。なお、評価にはpH6.5~7.5に調整した純水を使用した。 Water resistance was measured according to Japan Optical Glass Industry Association Standard JOGIS “Measurement Method of Chemical Durability of Optical Glass (Powder Method) 06-1975”. For the evaluation, pure water adjusted to pH 6.5 to 7.5 was used.
 内部透過率は、厚さ2mm及び4mmの異なる2枚の試料について、日本分光株式会社製V-670紫外可視近赤外分光光度計を使用して波長1550nmにおける透過率を測定した後、得られた測定値に基づき、厚さ1mm換算の内部透過率を計算により求めた。 The internal transmittance was obtained after measuring transmittance at a wavelength of 1550 nm for two samples having different thicknesses of 2 mm and 4 mm using a V-670 ultraviolet visible near infrared spectrophotometer manufactured by JASCO Corporation. Based on the measured values, the internal transmittance in terms of 1 mm thickness was obtained by calculation.
 (2)結果
 実施例であるNo.1~4のガラス基板は、熱膨張係数が103×10-7/K以上、ヤング率が78GPa以上、研磨速度が21μm/分以上、耐水性評価における質量減が0.13%以下、内部透過率が100%であった。
(2) Result No. which is an example. Glass substrates 1 to 4 have a thermal expansion coefficient of 103 × 10 −7 / K or more, a Young's modulus of 78 GPa or more, a polishing rate of 21 μm / min or more, a mass loss of 0.13% or less in water resistance evaluation, and an internal transmission The rate was 100%.
 一方、比較例であるNo.5~8のガラス基板は、研磨速度が15μm/分以下と小さく、熱膨張係数が94×10-7/K以下と小さかった。 On the other hand, No. which is a comparative example. The glass substrates of 5 to 8 had a polishing rate as small as 15 μm / min or less and a thermal expansion coefficient as small as 94 × 10 −7 / K or less.

Claims (6)

  1.  質量%で、LiO+NaO+KOを5~30%、及びTiO 0~2%(但し2%を含まない)を含有し、-30~+70℃における熱膨張係数が95×10―7~130×10-7/Kである非晶質ガラスからなることを特徴とする誘電体多層膜フィルター用ガラス基板。 By mass%, Li 2 O + Na 2 O + K 2 O 5-30% and containing TiO 2 0 ~ 2% (but not including 2%), -30 thermal expansion coefficient at ~ + 70 ° C. is 95 × 10 - A glass substrate for a dielectric multilayer filter comprising an amorphous glass having a density of 7 to 130 × 10 −7 / K.
  2.  ヤング率が75GPa以上であることを特徴とする請求項1に記載の誘電体多層膜フィルター用ガラス基板。 The glass substrate for a dielectric multilayer filter according to claim 1, wherein Young's modulus is 75 GPa or more.
  3.  ラップ法による研磨速度が20μm/分以上であることを特徴とする請求項1または2に記載の誘電体多層膜フィルター用ガラス基板。 The glass substrate for a dielectric multilayer film filter according to claim 1 or 2, wherein a polishing rate by a lapping method is 20 µm / min or more.
  4.  質量%で、SiO 30~60%、Al 0~10%、MgO+CaO+SrO+BaO+ZnO 3~35%、及びZrO 0~10%を含有することを特徴とする請求項1~3のいずれか一項に記載の誘電体多層膜フィルター用ガラス基板。 The composition according to any one of claims 1 to 3, characterized by containing, in mass%, SiO 2 30 to 60%, Al 2 O 3 0 to 10%, MgO + CaO + SrO + BaO + ZnO 3 to 35%, and ZrO 2 0 to 10%. A glass substrate for a dielectric multilayer filter according to the item.
  5.  厚さ1mm換算で波長1550nmにおける内部透過率が98%以上であることを特徴とする請求項1~4のいずれか一項に記載の誘電体多層膜フィルター用ガラス基板。 The glass substrate for a dielectric multilayer filter according to any one of claims 1 to 4, wherein the internal transmittance at a wavelength of 1550 nm in terms of 1 mm thickness is 98% or more.
  6.  請求項1~5のいずれかに記載の誘電体多層膜フィルター用ガラス基板と、前記誘電体多層膜フィルター用ガラス基板上に形成された誘電体多層膜と、を備えてなることを特徴とする誘電体多層膜フィルター。 A dielectric multilayer film filter glass substrate according to any one of claims 1 to 5, and a dielectric multilayer film formed on the dielectric multilayer film filter glass substrate. Dielectric multilayer filter.
PCT/JP2015/056315 2014-03-18 2015-03-04 Glass substrate for dielectric multilayer film filter WO2015141465A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-054284 2014-03-18
JP2014054284A JP2015174811A (en) 2014-03-18 2014-03-18 Glass substrate for dielectric multilayer film filter

Publications (1)

Publication Number Publication Date
WO2015141465A1 true WO2015141465A1 (en) 2015-09-24

Family

ID=54144439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056315 WO2015141465A1 (en) 2014-03-18 2015-03-04 Glass substrate for dielectric multilayer film filter

Country Status (3)

Country Link
JP (1) JP2015174811A (en)
TW (1) TW201538452A (en)
WO (1) WO2015141465A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026511A (en) * 2001-09-10 2004-01-29 Nippon Electric Glass Co Ltd Substrate glass for multilayered film filter and multilayered film filter
JP2004067460A (en) * 2002-08-07 2004-03-04 Central Glass Co Ltd Glass composition
JP2005162520A (en) * 2003-12-01 2005-06-23 Central Glass Co Ltd Glass composition for wdm optical filter
JP2005187215A (en) * 2003-12-24 2005-07-14 Central Glass Co Ltd Glass composition for wavelength division multiplexing optical filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026511A (en) * 2001-09-10 2004-01-29 Nippon Electric Glass Co Ltd Substrate glass for multilayered film filter and multilayered film filter
JP2004067460A (en) * 2002-08-07 2004-03-04 Central Glass Co Ltd Glass composition
JP2005162520A (en) * 2003-12-01 2005-06-23 Central Glass Co Ltd Glass composition for wdm optical filter
JP2005187215A (en) * 2003-12-24 2005-07-14 Central Glass Co Ltd Glass composition for wavelength division multiplexing optical filter

Also Published As

Publication number Publication date
JP2015174811A (en) 2015-10-05
TW201538452A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
US8826695B2 (en) Method for manufacturing optical glass element
US8206830B2 (en) Glass material for mold pressing and method for manufacturing optical glass element
TWI628152B (en) Glass ceramics and multilayer inorganic film filters
WO2019150654A1 (en) Chemically strengthened glass
JP2008301066A (en) Lithium tantalate (lt) or lithium niobate (ln) single crystal compound substrate
CN101454251B (en) Optical glass
TW201609581A (en) Crystallized glass
US20230187227A1 (en) Laminate and method for producing laminate
WO2015141465A1 (en) Glass substrate for dielectric multilayer film filter
JP5218059B2 (en) Optical glass
JP5669341B2 (en) Optical glass, optical element and precision press molding preform
JP2004067460A (en) Glass composition
WO2016121506A1 (en) Glass substrate for dielectric multilayer film filters
JP2004026510A (en) Substrate glass for multilayered film filter and multilayered film filter
CN112714753B (en) Optical glass
JP4736207B2 (en) Crystallized glass for optical filter substrate and optical filter
KR100523240B1 (en) Glass for wavelength division multiplexing optical filter
JP2004026511A (en) Substrate glass for multilayered film filter and multilayered film filter
JP2004053997A (en) Substrate for dielectric multilayer film filter and dielectric multilayer film filter
WO2002100790A1 (en) Multi-layer film filter-use substrate glass and multi-layer film filter
JP2005162520A (en) Glass composition for wdm optical filter
JP5249697B2 (en) Optical glass
JP2005289790A (en) Crystallized glass and device for optical communications using the same
TW202406869A (en) Glass, glass sheet, and method for producing glass sheet
JP2005187215A (en) Glass composition for wavelength division multiplexing optical filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765759

Country of ref document: EP

Kind code of ref document: A1