JP2004026511A - Substrate glass for multilayered film filter and multilayered film filter - Google Patents

Substrate glass for multilayered film filter and multilayered film filter Download PDF

Info

Publication number
JP2004026511A
JP2004026511A JP2002151194A JP2002151194A JP2004026511A JP 2004026511 A JP2004026511 A JP 2004026511A JP 2002151194 A JP2002151194 A JP 2002151194A JP 2002151194 A JP2002151194 A JP 2002151194A JP 2004026511 A JP2004026511 A JP 2004026511A
Authority
JP
Japan
Prior art keywords
glass
substrate glass
multilayer filter
multilayer
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002151194A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshihara
吉原 聡
Masahiro Kobayashi
小林 正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002151194A priority Critical patent/JP2004026511A/en
Publication of JP2004026511A publication Critical patent/JP2004026511A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide substrate glass for a multilayered film filter which maintains the conventional characteristics and provides a high yield of production and the multilayered film filter. <P>SOLUTION: The substrate glass is characterized in that the flatness within a circle of a diameter 50 mm is ≤200 nm and the coefficient of thermal expansion at -30 to 70°C is 90 to 130x10-7/°C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光通信に用いる多層膜フィルター用基板ガラス及び多層膜フィルターに関するものである。
【0002】
【従来の技術】
近年、光通信網の急速な発達により、高性能で安価な光デバイスが大量に必要となってきている。特に、多層膜フィルターは、特定の波長を透過させたり反射させたりすることにより、光の分波・合波を行うパッシブデバイスとして必要不可欠である。
【0003】
光通信分野で用いられる代表的な多層膜フィルターには、多波長の光を極めて狭帯域に切り出すバンドパスフィルター(BPF)、Cバンド(1528nm〜1561nm)とLバンド(1561nm〜1620nm)を分けるエッジフィルター、Cバンドの中心をさらに短波長領域(1528nm〜1545nm:通称ブルーバンド)と長波長領域(1545nm〜1561nm:通称レッドバンド)に分ける広帯域フィルター、EDFA(エルビウム−ドープドファイバー−アンプリファイア)の利得をフラットにするゲインイコライザ等がある。
【0004】
一般にカメラ用の光学フィルターの基材には、プラスチックが使用されているが、上記した多層膜フィルターの基材は、強いレーザー光が入射されるため、耐熱性に優れたガラスが用いられている。
【0005】
また、より多くの情報を伝達するためには、波長の多重数を増加させることが有効であるが、多重数が増大すればするほど、これらの波長を精度よく分離する技術が要求される。多層膜フィルターを使用して波長分離の精度を向上させるためには、多層膜の層数を増加させなければならない。例えば、100GHz(多重化する波長の間隔が0.8nm)用光フィルターでは、20層程度、50GHz(多重化する波長の間隔が0.4nm)用光フィルターでは、100層以上もの多層膜が必要とされる。しかし、多層膜の層数が増加すると、基板ガラスに要求される特性もより厳しいものとなってくる。すなわち、多層膜の屈折率温度安定性を維持させるために、基材の熱膨張係数を多層膜のそれより少し大きくすることが求められ、また、多層膜の寸法安定性を維持するため、基材が多層膜により変形しないように、基材の弾性率を高くすることが求められており、特開2001−66425号には、このような特性を有する光フィルター用基板ガラスが開示されている。
【0006】
【発明が解決しようとする課題】
一方、近年の光通信市場の急激な膨張に伴い、量産性向上による低価格化を実現する技術が要求されている。しかしながら、上記したような層数の多い多層膜フィルターは、生産歩留まりが低く、非常に高価であることが問題となっている。
【0007】
本発明の目的は、従来の特性を維持し、生産歩留まりが高い多層膜フィルター用基板ガラス及び多層膜フィルターを提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、鋭意研究を重ねた結果、多層膜フィルターは、最終形状より大きいサイズの基板ガラスに蒸着やスパッタにより多層膜を形成し、その後切断及び研磨加工により最終形状に仕上げられるが、最終形状より大きいサイズの基板ガラスの平面度が高いほど、多層膜の膜厚のばらつきが小さくなり、多層膜の膜厚のばらつきが小さくなるほど、1枚の基板ガラスから複数の多層膜フィルターを採取した際、各多層膜フィルター間の中心波長のばらつきが小さくなるため、多層膜フィルターの生産歩留まりが向上することを見出し、本発明として提案するものである。
【0009】
すなわち、本発明の多層膜フィルター用基板ガラスは、直径50mmの円内の平面度が、200nm以下であり、−30〜70℃における熱膨張係数が90〜130×10−7/℃であることを特徴とする。
【0010】
また本発明の多層膜フィルターは、直径50mmの円内の平面度が、200nm以下であり、−30〜70℃における熱膨張係数が90〜130×10−7/℃である基板ガラスを使用してなることを特徴とする。
【0011】
【発明の実施の形態】
本発明の多層膜フィルター用基板ガラスは、直径50mmの円内の平面度が、200nm以下、好ましくは150nm以下であるため、多層膜の膜厚のばらつきが小さく、1枚の基板ガラスから複数の多層膜フィルターを採取した際、各多層膜フィルター間の中心波長のばらつきが、中心波長±100pmになり、多層膜フィルターの生産歩留まりが向上する。
【0012】
ここで、平面度とは、レーザー干渉計(FUJINON製F601解析システム)を用いて平面を任意の方向に走査して測定される表面の起伏形状において、該起伏の最も高い部位(P)と最も低い部位(V)との差(P−V)をいう。
【0013】
また、多層膜フィルター用基板ガラスにおける、直径50mmの円内の平面度を、200nm以下とするには、以下に示す方法を用いることが好ましい。
【0014】
まず、10t×100mmφのサイズの板状ガラスを準備し、両面研磨機によって粗研磨する。この工程の通過後には、直径50mmの円内の平面度は、1μm(1000nm)以下にできる。次に、粗研磨された板状ガラスを両面研磨機によって仕上げ研磨を行う。この工程の通過後には、直径50mmの円内の平面度は、300nm以下にできる。最後に、仕上げ研磨された板ガラスをキャリアにセットし、多層膜を形成する面の研磨、すなわち片面最終仕上げ研磨を行うことにより、直径50mmの円内の平面度が200nm以下になる。
【0015】
また、本発明の多層膜フィルター用基板ガラスは、−30〜70℃における熱膨張係数が90〜130×10−7/℃、好ましくは95〜120×10−7/℃であり、基板ガラスと多層膜の熱膨張係数差により多層膜に十分な圧縮応力が与えられるため、多層膜フィルターの中心波長の温度依存性が1pm/℃以下になる。すなわち、熱膨張係数が90×10−7/℃より小さいと、多層膜フィルターの中心波長の温度依存性が、1pm/℃より大きくなり、隣接波長が干渉する恐れがあり、130×10−7/℃より大きいと、多層膜が基板ガラスより剥がれ、フィルターとしての使用に耐えないからである。
【0016】
また、本発明の多層膜フィルター用基板ガラスのヤング率が75GPa以上であると、基板ガラスが多層膜により変形せず、多層膜の寸法安定性が良くなるため好ましい。
【0017】
また、本発明の多層膜フィルター用基板ガラスは、板厚10mm、波長950〜1650nmにおける最小透過率が80%以上、好ましくは88%以上であると、光通信で用いるどの波長域でも、光の減衰率が低いため好ましい。ここで、最小透過率とは、波長950〜1650nmでの最も低い透過率を指す。
【0018】
また、ガラス中のOH基は、1400nm付近の波長の光を吸収する原因となり、光強度が低下するため、1400nm付近の波長の光を使用する場合には、ガラス中のOH基をできるだけ少なくすることが望ましい。
【0019】
また、本発明の多層膜フィルター用基板ガラスは、ラップ法による研磨速度が10μm/分以上であり、沸騰水浴での質量減が0.05wt%/hr以下、0.01Nの硝酸水溶液での質量減が0.20wt%/hr以下であるため、安価で長期間に亘ってフィルター特性が劣化しにくい。すなわち、ラップ法による研磨速度が10μm/分未満であると、基板ガラスの加工性が悪く、加工時間がかかるため、多層膜フィルターの生産効率が悪く、低価格化が実現できず、また、沸騰水浴での質量減が0.05wt%/hrより多く、0.01Nの硝酸水溶液での質量減が0.20wt%/hrより多いと、多層膜フィルターの耐候性が低下し、長期に亘って、高温高湿条件に曝されると、ガラス表面に曇りが発生しやすく、また多層膜が劣化しやすいからである。尚、上記した加工性とは、ガラスの研削加工、切削加工、鏡面研磨加工等の加工性を意味する。
【0020】
尚、ラップ法による研磨速度は、一辺25mm、肉厚3mmの板状試料を水平に回転する鋳鉄製ラップ板の定位置に保持し、垂直に荷重を加えてラップ剤を供給しながら加工し、試料ガラスの質量減少量を測定して評価した。この時のラップ条件は、ラップ荷重が35kPa、ラップ板の回転速度が100r.p.m、ラップ板の中心から板状試料の中心までの距離が10cm、ラップ剤は1200番アルミナ粉末と水との質量比が1:20のスラリーであった。
【0021】
また、耐候性を評価するガラスの質量減の測定方法は、日本光学硝子工業会規格JOGIS「光学ガラスの化学的耐久性の測定方法(粉末法)06−1975」に基づいている。
【0022】
上記した熱膨張係数、ヤング率、耐候性を有する基板ガラスとして、質量%で、SiO 30〜60%、LiO+NaO+KO 5〜33%を含有する基板ガラスが好適であり、質量%でSiO2 30〜60%、Al 1〜10%、B 0〜20%、MgO+CaO+BaO+SrO+ZnO 3〜35%、LiO+NaO+KO 5〜33%、TiO+ZrO 1〜30%、Gd+La 0〜10%を含有する基板ガラスがさらに好適である。
【0023】
次に、上記した範囲に成分含有量を限定した理由を述べる。
【0024】
SiOはガラスの骨格を構成する成分であり、耐候性を向上させる効果を有し、特にその含有量が40〜55%であるとさらに好ましい。SiOが60%を超えると、熱膨張係数が小さく、多層膜フィルターの中心波長の温度依存性が大きくなり、研磨速度が小さく、またガラスの成形が困難になりやすく、30%より少ないと、熱膨張係数が大きく、多層膜が基板ガラスより剥がれやすく、また、耐候性が著しく悪化しやすい。
【0025】
LiO、NaO及びKOは、熱膨張係数を高め、加工性を向上させる成分であり、特に、これらの含有量の合量が10〜33%であるとさらに好ましい。LiO+NaO+KOが5%よりも少ないと、基板ガラスの熱膨張係数が低く、33%よりも多いと、熱膨張係数が高く、耐候性に劣るため好ましくない。
【0026】
Alは、SiOと同様にガラスの骨格を構成する成分であり、ガラス中のアルカリ成分の溶出を抑制し、耐候性を向上させる効果が顕著であるため、1%以上含有することが望ましい。10%より多いと、研磨速度が小さくなりやすい。
【0027】
は、融剤として作用してガラスの溶融を助ける効果があり、特にその含有量が0〜10%であるとさらに好ましい。Bが20%より大きいと、耐候性が著しく悪化し、研磨速度が小さくなりやすく、また、ガラス溶融時に揮発が多くなって脈理が生じ、均一なガラスが得られにくい。
【0028】
MgO、CaO、BaO、SrO及びZnOは、融剤として作用してガラスの溶融を助け、また、研磨速度を大きくし、加工性を向上させる効果を有し、さらに、耐候性を高める効果を有し、特にこれらの含有量の合量が3〜30%であるとさらに好ましい。MgO+CaO+BaO+SrO+ZnOが35%より多いと、熱膨張係数が大きく、多層膜が基板ガラスより剥がれやすく、また耐候性が悪くなりやすく、3%より少ないと、熱膨張係数が小さく、多層膜フィルターの中心波長の温度依存性が大きくなり、ガラスの研磨速度が小さくなりやすく、加工性が悪くなりやすく、また、ガラスの溶融が困難になりやすい。
【0029】
TiO及びZrOは、耐候性を維持しつつ熱膨張係数を大きくする効果があり、特にこれらの含有量の合量が1〜20%であるとさらに好ましい。TiO+ZrOが30%より多くなると、ガラスが失透しやすくなり、1%より少ないと、高い熱膨張係数が得られにくい。
【0030】
Gd及びLaは、熱膨張係数をあまり低下させずに耐候性を向上させる効果を有し、特にこれらの含有量の合量が0〜8%であるとさらに好ましい。Gd+Laが10%よりも多いと熱膨張係数が低くなりやすい。
【0031】
上記した以外にも本発明のガラスは、Sb等の清澄剤を添加することが可能である。ただし、Asは環境上好ましくないため、使用しないほうがよい。
【0032】
【実施例】
以下、本発明の多層膜フィルター用基板ガラス及び多層膜フィルターを実施例に基づいて詳細に説明する。
【0033】
表1、2は、本発明の実施例1〜10を、表3は、実施例11及び比較例1、2を示す。図1に、実施例1の平面度測定結果の一例を、図2に実施例2の赤外域の透過率曲線を示す。
【0034】
【表1】

Figure 2004026511
【0035】
【表2】
Figure 2004026511
【0036】
【表3】
Figure 2004026511
表中の実施例及び比較例2は、次のようにして作製した。
【0037】
まず、表1〜3に示す組成になるようにガラス原料を調合し、白金ルツボを用いて1300〜1500℃で4時間溶融し、融液をカーボン板上に流しだし、アニールして、ガラス成形体を得た。
【0038】
上記ガラス成形体をφ76mm×10mmtに加工し、定盤径がφ280mmの両面研磨機を用いて粗研磨した。その際の粗研磨の条件は以下の通りである。粗研磨は2回に分けて行い、1回目には、研磨剤として#400のアルミナを用い、2回目には#1200のアルミナを用いた。キャリア中心位置でのワークと定盤の相対速度を30m/分、研磨荷重を120g/cmに設定した。
【0039】
上記粗研磨によって7.05mmの肉厚となったガラス板は、直径50mmの円内の平面度が1μm(1000nm)以下であった。
【0040】
次に粗研磨後のガラス板を定盤径がφ280mmの両面研磨機を用いて仕上げ研磨を行った。その際の仕上げ研磨の条件は以下の通りである。研磨パッドとして、セリウムパッドを用い、研磨剤として酸化セリウム系研磨剤を用いた。キャリア中心でのワークと定盤の相対速度を30m/分、研磨荷重を120g/cmに設定した。
【0041】
上記仕上げ研磨によって7.005mmの肉厚となったガラス板は、直径50mmの円内の平面度が300nm以下であった。
【0042】
最後に、仕上げ研磨された板ガラスにおいて、多層膜を形成する面をパッド面側にセットし、片面最終仕上げ研磨を行った。その片面最終仕上げ研磨の条件は以下の通りである。定盤径がφ280mmの片面研磨機を用い、研磨パッドとしてセリウムパッドを用い、研磨剤として酸化セリウム系研磨剤を用いた。キャリア中心位置でのワークと定盤の相対速度を10m/分、研磨荷重を40g/cmに設定した。
【0043】
この様にして7.000mmの肉厚となった多層膜フィルター用基板ガラスは、表1、2に示すように、直径50mmの円内の平面度が200nm以下となった。
【0044】
また、比較例1は、片面最終仕上げ研磨を行わず、それ以外は全て実施例と同様の方法で作製した。
【0045】
続いて、上記したガラス基板上に、Ta、SiO誘電体被膜を交互に繰り返した計100層からなる多層膜を、イオンアシスト蒸着装置を用いて形成し、多層膜フィルターを作製した。
【0046】
平面度は、上述した方法に従い、20枚の基板ガラスに対して、最大値及び平均値を算出した。
【0047】
熱膨張係数は、ディラトメーター(マックサイエンス製TD−5000S)を使用し、ヤング率は、三菱電機製超音波探傷装置FD−1800を用いて超音波パルス法で測定した。
【0048】
最小透過率は、10mm厚で、両面を光学研磨した試料を用いて、島津製分光光度計UV−3100PCで測定した。赤外域の透過率は、島津製分光光度計UV−3100PCを使用して、厚さ10mmで、950〜1650nmの波長範囲で測定した。
【0049】
耐水性及び耐酸性は、ガラス試料を粒度420〜590μmに粉砕し、その比重グラムを秤量して白金篭に入れ、それを試薬の入ったフラスコに入れて煮沸水浴中で60分間処理し、処理後の粉末ガラスの質量減少量(質量%)を算出したものである(日本光学硝子工業会規格JOGIS「光学ガラスの化学的耐久性の測定方法(粉末法)06−1975」による)。尚、耐水性評価で用いた試薬はpH6.5〜7.5に調整した純水であり、耐酸性評価で用いた試薬は0.01Nに調整した硝酸水溶液である。
【0050】
多層膜フィルターの生産歩留りは、作製した多層膜フィルターのうち所望する中心波長のばらつきが中心波長±100pmの範囲内にあるものを良品として算出した。
【0051】
また、多層膜フィルターの中心波長の温度依存性は、0℃から70℃まで温度を上昇させ、その間での1550nm付近の中心波長の変化を、スペクトラムアナライザー(アドバンテスト製Q―8384)で測定して求めた。
【0052】
本発明の実施例1〜11は、平面度が高く、多層膜フィルターの生産歩留りが高く、また、熱膨張係数が高いため、多層膜フィルターの中心波長の温度依存性が、1pm/℃以下であった。また、図2に示すように、実施例2は、1400nm付近の光の吸収がほとんど見られなかった。
【0053】
一方、比較例1は基板ガラスの熱膨張係数が110×10−7/℃であり、多層膜フィルターの中心波長の温度依存性が小さいものの、片面最終仕上げ研磨を行わなかったため、平面度が大きく、多層膜フィルターの生産歩留りが低かった。比較例2は、平面度が高く、多層膜フィルターの生産歩留まりが高いが、熱膨張係数が低いため、多層膜フィルターの中心波長の温度依存性が大きかった。
【0054】
【発明の効果】
以上説明したように、本発明の多層膜フィルター用基板ガラスは、平面度が高いため、多層膜フィルターの生産歩留りが高く、安価に製造でき、熱膨張係数が高いため、中心波長の温度依存性が小さく、光通信用の光フィルターとして好適である。
【0055】
【図面の簡単な説明】
【図1】本発明における実施例1の平面度測定結果の一例。
【図2】本発明における実施例2の赤外域の透過率曲線である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a substrate glass for a multilayer filter used for optical communication and a multilayer filter.
[0002]
[Prior art]
In recent years, with the rapid development of optical communication networks, a large number of high-performance and inexpensive optical devices have been required. In particular, a multilayer filter is indispensable as a passive device that transmits or reflects a specific wavelength to split / combine light.
[0003]
Typical multilayer filters used in the optical communication field include a bandpass filter (BPF) that cuts out multi-wavelength light into an extremely narrow band, and an edge that separates a C band (1528 nm to 1561 nm) and an L band (1561 nm to 1620 nm). EDFA (erbium-doped fiber-amplifier), a filter, a broadband filter that further divides the center of the C band into a short wavelength region (1528 nm to 1545 nm: commonly called blue band) and a long wavelength region (1545 nm to 1561 nm: commonly called red band). There is a gain equalizer that makes the gain flat.
[0004]
In general, plastic is used as a base material of an optical filter for a camera, but since the base material of the above-described multilayer filter receives a strong laser beam, glass having excellent heat resistance is used. .
[0005]
In order to transmit more information, it is effective to increase the multiplexing number of wavelengths. However, as the multiplexing number increases, a technique for separating these wavelengths with higher accuracy is required. In order to improve the accuracy of wavelength separation using a multilayer filter, the number of layers of the multilayer film must be increased. For example, an optical filter for 100 GHz (multiplexed wavelength interval is 0.8 nm) requires about 20 layers, and an optical filter for 50 GHz (multiplexed wavelength interval is 0.4 nm) requires 100 or more multilayer films. It is said. However, as the number of layers of the multilayer film increases, the characteristics required for the substrate glass become more severe. That is, in order to maintain the temperature stability of the refractive index of the multilayer film, it is required that the thermal expansion coefficient of the base material be slightly larger than that of the multilayer film, and to maintain the dimensional stability of the multilayer film, In order to prevent the material from being deformed by the multilayer film, it is required to increase the elastic modulus of the base material. Japanese Patent Application Laid-Open No. 2001-66425 discloses a substrate glass for an optical filter having such characteristics. .
[0006]
[Problems to be solved by the invention]
On the other hand, with the rapid expansion of the optical communication market in recent years, there is a demand for a technology for realizing a low price by improving mass productivity. However, the multilayer filter having a large number of layers as described above has a problem that the production yield is low and the filter is very expensive.
[0007]
An object of the present invention is to provide a substrate glass for a multilayer filter and a multilayer filter which maintain the conventional characteristics and have a high production yield.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies, and as a result, the multilayer filter is formed into a multilayer film by vapor deposition or sputtering on a substrate glass having a size larger than the final shape, and thereafter is finished to the final shape by cutting and polishing. The higher the flatness of the substrate glass with a size larger than the final shape, the smaller the variation in the thickness of the multilayer film becomes, and the smaller the variation in the thickness of the multilayer film becomes, the more multiple multilayer filters are collected from one substrate glass In doing so, the present inventors have found that the variation in the center wavelength between the multilayer filters is reduced, so that the production yield of the multilayer filters is improved, and this is proposed as the present invention.
[0009]
That is, the substrate glass for a multilayer filter of the present invention has a flatness within a circle having a diameter of 50 mm of 200 nm or less, and a coefficient of thermal expansion at −30 to 70 ° C. of 90 to 130 × 10 −7 / ° C. It is characterized by.
[0010]
The multilayer filter of the present invention uses a substrate glass whose flatness within a circle having a diameter of 50 mm is 200 nm or less and whose coefficient of thermal expansion at -30 to 70 ° C is 90 to 130 × 10 −7 / ° C. It is characterized by becoming.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The substrate glass for a multilayer filter of the present invention has a flatness within a circle having a diameter of 50 mm of 200 nm or less, preferably 150 nm or less. When a multilayer filter is collected, the variation of the center wavelength between the multilayer filters becomes the center wavelength ± 100 pm, and the production yield of the multilayer filter is improved.
[0012]
Here, the flatness refers to the highest part (P) and the highest part of the undulation in the surface undulation shape measured by scanning the plane in an arbitrary direction using a laser interferometer (F601 analysis system manufactured by FUJINON). It refers to the difference (PV) from the low site (V).
[0013]
Further, in order to set the flatness within a circle having a diameter of 50 mm in the substrate glass for a multilayer filter to 200 nm or less, it is preferable to use the following method.
[0014]
First, a sheet glass having a size of 10 t × 100 mmφ is prepared and roughly polished by a double-side polishing machine. After this step, the flatness within a circle having a diameter of 50 mm can be reduced to 1 μm (1000 nm) or less. Next, the roughly polished sheet glass is subjected to finish polishing by a double-side polishing machine. After this step, the flatness within a circle having a diameter of 50 mm can be reduced to 300 nm or less. Finally, the finished polished sheet glass is set on a carrier, and the surface on which the multilayer film is to be formed is polished, that is, one-sided final polishing is performed, so that the flatness within a circle having a diameter of 50 mm becomes 200 nm or less.
[0015]
Further, the substrate glass for a multilayer filter of the present invention has a coefficient of thermal expansion at −30 to 70 ° C. of 90 to 130 × 10 −7 / ° C., preferably 95 to 120 × 10 −7 / ° C. Since a sufficient compressive stress is applied to the multilayer film due to the difference in thermal expansion coefficient between the multilayer films, the temperature dependence of the center wavelength of the multilayer filter becomes 1 pm / ° C. or less. That is, the thermal expansion coefficient is less than 90 × 10 -7 / ℃, the temperature dependence of the center wavelength of the multi-layer film filter, 1 pm / ° C. becomes greater than, may cause adjacent wavelength interfere, 130 × 10 -7 If it is higher than / ° C, the multilayer film is peeled off from the substrate glass and cannot be used as a filter.
[0016]
Further, it is preferable that the Young's modulus of the substrate glass for a multilayer filter of the present invention is 75 GPa or more, because the substrate glass is not deformed by the multilayer film and the dimensional stability of the multilayer film is improved.
[0017]
Further, when the substrate glass for a multilayer filter of the present invention has a minimum transmittance of 80% or more, preferably 88% or more at a plate thickness of 10 mm and a wavelength of 950 to 1650 nm, light of any wavelength range used in optical communication can be obtained. This is preferable because the attenuation rate is low. Here, the minimum transmittance indicates the lowest transmittance at a wavelength of 950 to 1650 nm.
[0018]
Further, OH groups in the glass cause absorption of light having a wavelength of about 1400 nm, and the light intensity is reduced. Therefore, when using light having a wavelength of about 1400 nm, the number of OH groups in the glass is reduced as much as possible. It is desirable.
[0019]
Further, the substrate glass for a multilayer filter of the present invention has a polishing rate of 10 μm / min or more by a lapping method, a mass loss in a boiling water bath of 0.05 wt% / hr or less, and a mass in a 0.01 N nitric acid aqueous solution. Since the reduction is 0.20 wt% / hr or less, the filter characteristics are inexpensive and hardly deteriorate over a long period of time. That is, when the polishing rate by the lapping method is less than 10 μm / min, the workability of the substrate glass is poor and the processing time is long, so that the production efficiency of the multilayer filter is low, the price cannot be reduced, and the boiling is not realized. If the mass loss in a water bath is more than 0.05 wt% / hr, and the mass loss in a 0.01 N aqueous nitric acid solution is more than 0.20 wt% / hr, the weather resistance of the multilayer filter is reduced, and over a long period of time. When exposed to high-temperature and high-humidity conditions, fogging is likely to occur on the glass surface, and the multilayer film is likely to deteriorate. In addition, the above-mentioned workability means workability such as grinding, cutting, and mirror polishing of glass.
[0020]
The polishing rate by the lap method is such that a plate-like sample having a side length of 25 mm and a thickness of 3 mm is held in a fixed position on a horizontally rotating cast iron lap plate, and is processed while supplying a lapping agent by applying a load vertically. The mass loss of the sample glass was measured and evaluated. The lap conditions at this time were as follows: the lap load was 35 kPa, and the rotation speed of the lap plate was 100 r. p. m, the distance from the center of the lap plate to the center of the plate sample was 10 cm, and the lapping agent was a slurry having a mass ratio of # 1200 alumina powder to water of 1:20.
[0021]
The method of measuring the weight loss of the glass for evaluating the weather resistance is based on the Japan Optical Glass Industrial Association standard JOGIS “Method for measuring the chemical durability of optical glass (powder method) 06-1975”.
[0022]
As the substrate glass having the above-described coefficient of thermal expansion, Young's modulus, and weather resistance, a substrate glass containing 30 to 60% of SiO 2 and 5 to 33% of Li 2 O + Na 2 O + K 2 O by mass% is preferable. SiO 2 30 to 60% in%, Al 2 O 3 1~10% , B 2 O 3 0~20%, MgO + CaO + BaO + SrO + ZnO 3~35%, Li 2 O + Na 2 O + K 2 O 5~33%, TiO 2 + ZrO 2 1 ~30%, Gd 2 O 3 + La 2 O 3 substrate glass containing 0-10% are more preferred.
[0023]
Next, the reason why the content of the component is limited to the above range will be described.
[0024]
SiO 2 is a component constituting the skeleton of glass, and has an effect of improving weather resistance. It is particularly preferable that the content thereof is 40 to 55%. If the SiO 2 content exceeds 60%, the coefficient of thermal expansion is small, the temperature dependence of the center wavelength of the multilayer filter becomes large, the polishing rate is low, and the glass is likely to be difficult to form. The thermal expansion coefficient is large, the multilayer film is easily peeled off from the substrate glass, and the weather resistance is apt to be significantly deteriorated.
[0025]
Li 2 O, Na 2 O and K 2 O are components that increase the coefficient of thermal expansion and improve processability, and it is particularly preferable that the total content of these components is 10 to 33%. If the content of Li 2 O + Na 2 O + K 2 O is less than 5%, the thermal expansion coefficient of the substrate glass is low, and if it is more than 33%, the thermal expansion coefficient is high and the weather resistance is poor, which is not preferable.
[0026]
Al 2 O 3 , like SiO 2 , is a component that constitutes the skeleton of glass, and has a remarkable effect of suppressing the elution of alkali components in glass and improving weather resistance. Is desirable. If it is more than 10%, the polishing rate tends to decrease.
[0027]
B 2 O 3 acts as a flux and has the effect of assisting the melting of the glass. In particular, the content is more preferably 0 to 10%. When B 2 O 3 is more than 20%, the weather resistance is remarkably deteriorated, the polishing rate is apt to be reduced, and the volatilization is increased when the glass is melted, and striae occur, making it difficult to obtain a uniform glass.
[0028]
MgO, CaO, BaO, SrO and ZnO act as fluxes to help melt the glass, have the effect of increasing the polishing rate, improve the workability, and have the effect of increasing the weather resistance. In particular, it is more preferable that the total of these contents is 3 to 30%. When the content of MgO + CaO + BaO + SrO + ZnO is more than 35%, the thermal expansion coefficient is large, the multilayer film is easily peeled off from the substrate glass, and the weather resistance is easily deteriorated. When it is less than 3%, the thermal expansion coefficient is small and the center wavelength of the multilayer film filter is small. The temperature dependency increases, the polishing rate of the glass tends to decrease, the workability tends to deteriorate, and the melting of the glass tends to be difficult.
[0029]
TiO 2 and ZrO 2 have the effect of increasing the coefficient of thermal expansion while maintaining weather resistance, and it is particularly preferable that the total content of these is 1 to 20%. If the content of TiO 2 + ZrO 2 is more than 30%, the glass tends to be devitrified, and if it is less than 1%, it is difficult to obtain a high thermal expansion coefficient.
[0030]
Gd 2 O 3 and La 2 O 3 have the effect of improving the weather resistance without significantly lowering the coefficient of thermal expansion, and it is particularly preferable that the total content of these contents is 0 to 8%. If Gd 2 O 3 + La 2 O 3 is more than 10%, the thermal expansion coefficient tends to be low.
[0031]
In addition to the above, the glass of the present invention can be added with a fining agent such as Sb 2 O 3 . However, As 2 O 3 is not preferable because it is environmentally unfavorable.
[0032]
【Example】
Hereinafter, the substrate glass for a multilayer filter and the multilayer filter of the present invention will be described in detail based on examples.
[0033]
Tables 1 and 2 show Examples 1 to 10 of the present invention, and Table 3 shows Example 11 and Comparative Examples 1 and 2. FIG. 1 shows an example of the flatness measurement result of the first embodiment, and FIG. 2 shows a transmittance curve in the infrared region of the second embodiment.
[0034]
[Table 1]
Figure 2004026511
[0035]
[Table 2]
Figure 2004026511
[0036]
[Table 3]
Figure 2004026511
Examples and Comparative Example 2 in the table were produced as follows.
[0037]
First, a glass raw material was prepared so as to have the composition shown in Tables 1 to 3, melted at 1300 to 1500 ° C. for 4 hours using a platinum crucible, poured out on a carbon plate, and annealed to form a glass. Got a body.
[0038]
The above glass molded body was processed into φ76 mm × 10 mmt, and was roughly polished using a double-side polishing machine having a platen diameter of φ280 mm. The conditions of the rough polishing at that time are as follows. Rough polishing was performed twice, and the first time was using # 400 alumina as a polishing agent, and the second time was using # 1200 alumina. The relative speed between the workpiece and the surface plate at the carrier center position was set at 30 m / min, and the polishing load was set at 120 g / cm 2 .
[0039]
The glass plate having a thickness of 7.05 mm by the rough polishing had a flatness within a circle having a diameter of 50 mm of 1 μm (1000 nm) or less.
[0040]
Next, the glass plate after the rough polishing was finish-polished using a double-side polishing machine having a platen diameter of 280 mm. The conditions of the finish polishing at that time are as follows. A cerium pad was used as a polishing pad, and a cerium oxide-based polishing agent was used as a polishing agent. The relative speed between the work and the platen at the center of the carrier was set at 30 m / min, and the polishing load was set at 120 g / cm 2 .
[0041]
The flatness within a circle having a diameter of 50 mm was 300 nm or less in the glass plate having a thickness of 7.005 mm by the finish polishing.
[0042]
Finally, the surface on which the multilayer film is to be formed was set on the pad surface side of the finish-polished sheet glass, and one-sided final polishing was performed. The conditions of the one-sided final polishing are as follows. A cerium pad was used as a polishing pad, and a cerium oxide-based polishing agent was used as a polishing agent, using a single-side polishing machine having a platen diameter of φ280 mm. The relative speed between the work and the surface plate at the carrier center position was set at 10 m / min, and the polishing load was set at 40 g / cm 2 .
[0043]
As shown in Tables 1 and 2, in the multilayer glass filter substrate glass having a thickness of 7.000 mm, the flatness within a circle having a diameter of 50 mm was 200 nm or less.
[0044]
Comparative Example 1 was manufactured in the same manner as in Example except that one-side final polishing was not performed.
[0045]
Subsequently, a multilayer film composed of a total of 100 layers in which Ta 2 O 5 and SiO 2 dielectric coatings were alternately repeated was formed on the above-mentioned glass substrate by using an ion-assisted vapor deposition apparatus to produce a multilayer filter. .
[0046]
For the flatness, the maximum value and the average value were calculated for 20 substrate glasses according to the method described above.
[0047]
The coefficient of thermal expansion was measured using a dilatometer (TD-5000S manufactured by Mac Science), and the Young's modulus was measured by an ultrasonic pulse method using an ultrasonic flaw detector FD-1800 manufactured by Mitsubishi Electric.
[0048]
The minimum transmittance was measured with a spectrophotometer UV-3100PC manufactured by Shimadzu using a sample having a thickness of 10 mm and optically polished on both sides. The transmittance in the infrared region was measured in a wavelength range of 950 to 1650 nm with a thickness of 10 mm using a spectrophotometer UV-3100PC manufactured by Shimadzu.
[0049]
Water resistance and acid resistance were measured by grinding a glass sample to a particle size of 420 to 590 μm, weighing its specific gravity in a platinum basket, placing it in a flask containing reagents, and treating it in a boiling water bath for 60 minutes. The amount of mass reduction (% by mass) of the subsequent powdered glass was calculated (according to the Japan Optical Glass Industry Association Standard JOGIS “Method for measuring the chemical durability of optical glass (powder method) 06-1975”). The reagent used in the water resistance evaluation was pure water adjusted to pH 6.5 to 7.5, and the reagent used in the acid resistance evaluation was an aqueous nitric acid solution adjusted to 0.01 N.
[0050]
The production yield of the multilayer filter was calculated as a non-defective product in which the dispersion of the desired center wavelength was within the range of the center wavelength ± 100 pm among the manufactured multilayer filters.
[0051]
The temperature dependence of the center wavelength of the multilayer filter is determined by raising the temperature from 0 ° C. to 70 ° C. and measuring the change in the center wavelength around 1550 nm during that time using a spectrum analyzer (Q-8384 manufactured by Advantest). I asked.
[0052]
In Examples 1 to 11 of the present invention, since the flatness is high, the production yield of the multilayer filter is high, and the thermal expansion coefficient is high, the temperature dependence of the center wavelength of the multilayer filter is 1 pm / ° C. or less. there were. Further, as shown in FIG. 2, in Example 2, absorption of light near 1400 nm was hardly observed.
[0053]
On the other hand, in Comparative Example 1, the coefficient of thermal expansion of the substrate glass was 110 × 10 −7 / ° C., and although the temperature dependence of the center wavelength of the multilayer filter was small, the flatness was large because the single-sided final polishing was not performed. , The production yield of the multilayer filter was low. In Comparative Example 2, although the flatness was high and the production yield of the multilayer filter was high, the temperature dependence of the center wavelength of the multilayer filter was large because the coefficient of thermal expansion was low.
[0054]
【The invention's effect】
As described above, the substrate glass for a multilayer filter of the present invention has a high flatness, so that the production yield of the multilayer filter is high, it can be manufactured at low cost, and the thermal expansion coefficient is high, so that the temperature dependence of the center wavelength is high. And is suitable as an optical filter for optical communication.
[0055]
[Brief description of the drawings]
FIG. 1 is an example of a flatness measurement result of Example 1 of the present invention.
FIG. 2 is a transmittance curve in an infrared region of Example 2 of the present invention.

Claims (6)

直径50mmの円内における平面度が、200nm以下であり、−30〜70℃における熱膨張係数が90〜130×10−7/℃であることを特徴とする多層膜フィルター用基板ガラス。A substrate glass for a multilayer filter, wherein the flatness within a circle having a diameter of 50 mm is 200 nm or less, and the coefficient of thermal expansion at -30 to 70 ° C is 90 to 130 × 10 -7 / ° C. ヤング率が75GPa以上であることを特徴とする請求項1に記載の多層膜フィルター用基板ガラス。The substrate glass for a multilayer filter according to claim 1, wherein the Young's modulus is 75 GPa or more. 板厚10mm、波長950〜1650nmにおける最小透過率が、80%以上であることを特徴とする請求項1又は2に記載の多層膜フィルター用基板ガラス。The substrate glass for a multilayer filter according to claim 1 or 2, wherein a minimum transmittance at a plate thickness of 10 mm and a wavelength of 950 to 1650 nm is 80% or more. 質量%で、SiO 30〜60%、LiO+NaO+KO 5〜33%を含有することを特徴とする請求項1〜3のいずれかに記載の多層膜フィルター用基板ガラス。By mass%, SiO 2 30~60%, Li 2 O + Na 2 O + K 2 O 5~33% multilayer filter substrate glass according to any one of claims 1 to 3, characterized in that it contains. 質量%で、SiO 30〜60%、Al 1〜10%、B 0〜20%、MgO+CaO+BaO+SrO+ZnO 3〜35%、LiO+NaO+KO 5〜33%、TiO+ZrO 1〜30%、Gd+La 0〜10%を含有することを特徴とする請求項1〜4のいずれかに記載の多層膜フィルター用基板ガラス。30 to 60% by mass of SiO 2 , 1 to 10% of Al 2 O 3 , 0 to 20% of B 2 O 3, 3 to 35% of MgO + CaO + BaO + SrO + ZnO, 5 to 33% of Li 2 O + Na 2 O + K 2 O, TiO 2 + ZrO by mass% 2 1~30%, Gd 2 O 3 + La 2 O 3 0~10% multilayer filter substrate glass according to any one of claims 1 to 4, characterized in that it contains. 請求項1〜5のいずれかに記載の多層膜フィルター用基板ガラスを用いた多層膜フィルター。A multilayer filter using the substrate glass for a multilayer filter according to claim 1.
JP2002151194A 2001-09-10 2002-05-24 Substrate glass for multilayered film filter and multilayered film filter Withdrawn JP2004026511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151194A JP2004026511A (en) 2001-09-10 2002-05-24 Substrate glass for multilayered film filter and multilayered film filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001273138 2001-09-10
JP2002132709 2002-05-08
JP2002151194A JP2004026511A (en) 2001-09-10 2002-05-24 Substrate glass for multilayered film filter and multilayered film filter

Publications (1)

Publication Number Publication Date
JP2004026511A true JP2004026511A (en) 2004-01-29

Family

ID=31191818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151194A Withdrawn JP2004026511A (en) 2001-09-10 2002-05-24 Substrate glass for multilayered film filter and multilayered film filter

Country Status (1)

Country Link
JP (1) JP2004026511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067460A (en) * 2002-08-07 2004-03-04 Central Glass Co Ltd Glass composition
WO2015141465A1 (en) * 2014-03-18 2015-09-24 日本電気硝子株式会社 Glass substrate for dielectric multilayer film filter
KR20210072759A (en) * 2018-10-10 2021-06-17 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. Near-infrared (NIR) band-pass filter, manufacturing method of NIR band-pass filter, and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067460A (en) * 2002-08-07 2004-03-04 Central Glass Co Ltd Glass composition
WO2015141465A1 (en) * 2014-03-18 2015-09-24 日本電気硝子株式会社 Glass substrate for dielectric multilayer film filter
KR20210072759A (en) * 2018-10-10 2021-06-17 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. Near-infrared (NIR) band-pass filter, manufacturing method of NIR band-pass filter, and use thereof
JP2022504612A (en) * 2018-10-10 2022-01-13 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド Near-infrared (NIR) bandpass filter, manufacturing method of NIR bandpass filter and its use
JP7185035B2 (en) 2018-10-10 2022-12-06 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド Near infrared (NIR) bandpass filter, method of making NIR bandpass filter and use thereof
KR102584059B1 (en) * 2018-10-10 2023-09-27 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. Near-infrared (NIR) band-pass filter, manufacturing method of NIR band-pass filter, and use thereof

Similar Documents

Publication Publication Date Title
TWI628152B (en) Glass ceramics and multilayer inorganic film filters
JP3399883B2 (en) Glass for optical filter and optical filter
JP2005082406A (en) Preform for precision press forming, its manufacturing method, optical element, and its manufacturing method
JP2003279749A (en) Polarizing glass
TWI232209B (en) Lead-free and arsenic-free special short flint glass
RU2375316C2 (en) Optical glass
JP2004026511A (en) Substrate glass for multilayered film filter and multilayered film filter
JP2004026510A (en) Substrate glass for multilayered film filter and multilayered film filter
WO2019044563A1 (en) Glass
WO2002100790A1 (en) Multi-layer film filter-use substrate glass and multi-layer film filter
JP2004067460A (en) Glass composition
JP7296306B2 (en) Glass-ceramics for optical filters and optical filters
JP2004053997A (en) Substrate for dielectric multilayer film filter and dielectric multilayer film filter
JP4626934B2 (en) LCD protective glass
JP4136589B2 (en) Glass for optical filter and optical filter
JP6699809B1 (en) Optical glass
JP2017222568A (en) Phosphate glass having improved weather resistance
US7005187B2 (en) Glass for a light filter and a light filter
JP4736207B2 (en) Crystallized glass for optical filter substrate and optical filter
KR100523240B1 (en) Glass for wavelength division multiplexing optical filter
JP3600548B2 (en) Glass ceramics and optical filters for optical filters
EP1086389B1 (en) Ultra-thin glass polarizers and method of making same
US7101625B2 (en) Glass for a light filter and a light filter
WO2015141465A1 (en) Glass substrate for dielectric multilayer film filter
JP2004026580A (en) Colored glass

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802